* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / ada / exp_ch6.adb
blobc16fc495c154ca2144f389427f7bdf60da16ed94
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Prag; use Exp_Prag;
44 with Exp_Tss; use Exp_Tss;
45 with Exp_Util; use Exp_Util;
46 with Fname; use Fname;
47 with Freeze; use Freeze;
48 with Inline; use Inline;
49 with Lib; use Lib;
50 with Namet; use Namet;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Ch6; use Sem_Ch6;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_SCIL; use Sem_SCIL;
69 with Sem_Util; use Sem_Util;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with Stringt; use Stringt;
74 with Targparm; use Targparm;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Validsw; use Validsw;
79 package body Exp_Ch6 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call (N : Node_Id);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return (N : Node_Id);
206 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
207 -- a procedure body, entry body, accept statement, or extended return
208 -- statement. Note that all non-function returns are simple return
209 -- statements.
211 function Expand_Protected_Object_Reference
212 (N : Node_Id;
213 Scop : Entity_Id) return Node_Id;
215 procedure Expand_Protected_Subprogram_Call
216 (N : Node_Id;
217 Subp : Entity_Id;
218 Scop : Entity_Id);
219 -- A call to a protected subprogram within the protected object may appear
220 -- as a regular call. The list of actuals must be expanded to contain a
221 -- reference to the object itself, and the call becomes a call to the
222 -- corresponding protected subprogram.
224 function Has_Unconstrained_Access_Discriminants
225 (Subtyp : Entity_Id) return Boolean;
226 -- Returns True if the given subtype is unconstrained and has one
227 -- or more access discriminants.
229 procedure Expand_Simple_Function_Return (N : Node_Id);
230 -- Expand simple return from function. In the case where we are returning
231 -- from a function body this is called by Expand_N_Simple_Return_Statement.
233 ----------------------------------------------
234 -- Add_Access_Actual_To_Build_In_Place_Call --
235 ----------------------------------------------
237 procedure Add_Access_Actual_To_Build_In_Place_Call
238 (Function_Call : Node_Id;
239 Function_Id : Entity_Id;
240 Return_Object : Node_Id;
241 Is_Access : Boolean := False)
243 Loc : constant Source_Ptr := Sloc (Function_Call);
244 Obj_Address : Node_Id;
245 Obj_Acc_Formal : Entity_Id;
247 begin
248 -- Locate the implicit access parameter in the called function
250 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
252 -- If no return object is provided, then pass null
254 if not Present (Return_Object) then
255 Obj_Address := Make_Null (Loc);
256 Set_Parent (Obj_Address, Function_Call);
258 -- If Return_Object is already an expression of an access type, then use
259 -- it directly, since it must be an access value denoting the return
260 -- object, and couldn't possibly be the return object itself.
262 elsif Is_Access then
263 Obj_Address := Return_Object;
264 Set_Parent (Obj_Address, Function_Call);
266 -- Apply Unrestricted_Access to caller's return object
268 else
269 Obj_Address :=
270 Make_Attribute_Reference (Loc,
271 Prefix => Return_Object,
272 Attribute_Name => Name_Unrestricted_Access);
274 Set_Parent (Return_Object, Obj_Address);
275 Set_Parent (Obj_Address, Function_Call);
276 end if;
278 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
280 -- Build the parameter association for the new actual and add it to the
281 -- end of the function's actuals.
283 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
284 end Add_Access_Actual_To_Build_In_Place_Call;
286 ------------------------------------------------------
287 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
288 ------------------------------------------------------
290 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
291 (Function_Call : Node_Id;
292 Function_Id : Entity_Id;
293 Alloc_Form : BIP_Allocation_Form := Unspecified;
294 Alloc_Form_Exp : Node_Id := Empty;
295 Pool_Actual : Node_Id := Make_Null (No_Location))
297 Loc : constant Source_Ptr := Sloc (Function_Call);
298 Alloc_Form_Actual : Node_Id;
299 Alloc_Form_Formal : Node_Id;
300 Pool_Formal : Node_Id;
302 begin
303 -- The allocation form generally doesn't need to be passed in the case
304 -- of a constrained result subtype, since normally the caller performs
305 -- the allocation in that case. However this formal is still needed in
306 -- the case where the function has a tagged result, because generally
307 -- such functions can be called in a dispatching context and such calls
308 -- must be handled like calls to class-wide functions.
310 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
311 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
312 then
313 return;
314 end if;
316 -- Locate the implicit allocation form parameter in the called function.
317 -- Maybe it would be better for each implicit formal of a build-in-place
318 -- function to have a flag or a Uint attribute to identify it. ???
320 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
322 if Present (Alloc_Form_Exp) then
323 pragma Assert (Alloc_Form = Unspecified);
325 Alloc_Form_Actual := Alloc_Form_Exp;
327 else
328 pragma Assert (Alloc_Form /= Unspecified);
330 Alloc_Form_Actual :=
331 Make_Integer_Literal (Loc,
332 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
333 end if;
335 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
337 -- Build the parameter association for the new actual and add it to the
338 -- end of the function's actuals.
340 Add_Extra_Actual_To_Call
341 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
343 -- Pass the Storage_Pool parameter. This parameter is omitted on
344 -- .NET/JVM/ZFP as those targets do not support pools.
346 if VM_Target = No_VM
347 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
348 then
349 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
350 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
351 Add_Extra_Actual_To_Call
352 (Function_Call, Pool_Formal, Pool_Actual);
353 end if;
354 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
356 -----------------------------------------------------------
357 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
358 -----------------------------------------------------------
360 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
361 (Func_Call : Node_Id;
362 Func_Id : Entity_Id;
363 Ptr_Typ : Entity_Id := Empty;
364 Master_Exp : Node_Id := Empty)
366 begin
367 if not Needs_BIP_Finalization_Master (Func_Id) then
368 return;
369 end if;
371 declare
372 Formal : constant Entity_Id :=
373 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
374 Loc : constant Source_Ptr := Sloc (Func_Call);
376 Actual : Node_Id;
377 Desig_Typ : Entity_Id;
379 begin
380 -- If there is a finalization master actual, such as the implicit
381 -- finalization master of an enclosing build-in-place function,
382 -- then this must be added as an extra actual of the call.
384 if Present (Master_Exp) then
385 Actual := Master_Exp;
387 -- Case where the context does not require an actual master
389 elsif No (Ptr_Typ) then
390 Actual := Make_Null (Loc);
392 else
393 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
395 -- Check for a library-level access type whose designated type has
396 -- supressed finalization. Such an access types lack a master.
397 -- Pass a null actual to the callee in order to signal a missing
398 -- master.
400 if Is_Library_Level_Entity (Ptr_Typ)
401 and then Finalize_Storage_Only (Desig_Typ)
402 then
403 Actual := Make_Null (Loc);
405 -- Types in need of finalization actions
407 elsif Needs_Finalization (Desig_Typ) then
409 -- The general mechanism of creating finalization masters for
410 -- anonymous access types is disabled by default, otherwise
411 -- finalization masters will pop all over the place. Such types
412 -- use context-specific masters.
414 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
415 and then No (Finalization_Master (Ptr_Typ))
416 then
417 Build_Finalization_Master
418 (Typ => Ptr_Typ,
419 Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
420 Encl_Scope => Scope (Ptr_Typ));
421 end if;
423 -- Access-to-controlled types should always have a master
425 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
427 Actual :=
428 Make_Attribute_Reference (Loc,
429 Prefix =>
430 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
431 Attribute_Name => Name_Unrestricted_Access);
433 -- Tagged types
435 else
436 Actual := Make_Null (Loc);
437 end if;
438 end if;
440 Analyze_And_Resolve (Actual, Etype (Formal));
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
445 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
446 end;
447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call : Node_Id;
455 Extra_Formal : Entity_Id;
456 Extra_Actual : Node_Id)
458 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
459 Param_Assoc : Node_Id;
461 begin
462 Param_Assoc :=
463 Make_Parameter_Association (Loc,
464 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
465 Explicit_Actual_Parameter => Extra_Actual);
467 Set_Parent (Param_Assoc, Subprogram_Call);
468 Set_Parent (Extra_Actual, Param_Assoc);
470 if Present (Parameter_Associations (Subprogram_Call)) then
471 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
472 N_Parameter_Association
473 then
475 -- Find last named actual, and append
477 declare
478 L : Node_Id;
479 begin
480 L := First_Actual (Subprogram_Call);
481 while Present (L) loop
482 if No (Next_Actual (L)) then
483 Set_Next_Named_Actual (Parent (L), Extra_Actual);
484 exit;
485 end if;
486 Next_Actual (L);
487 end loop;
488 end;
490 else
491 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
492 end if;
494 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
496 else
497 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
498 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
499 end if;
500 end Add_Extra_Actual_To_Call;
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call : Node_Id;
508 Function_Id : Entity_Id;
509 Master_Actual : Node_Id;
510 Chain : Node_Id := Empty)
512 Loc : constant Source_Ptr := Sloc (Function_Call);
513 Result_Subt : constant Entity_Id :=
514 Available_View (Etype (Function_Id));
515 Actual : Node_Id;
516 Chain_Actual : Node_Id;
517 Chain_Formal : Node_Id;
518 Master_Formal : Node_Id;
520 begin
521 -- No such extra parameters are needed if there are no tasks
523 if not Has_Task (Result_Subt) then
524 return;
525 end if;
527 Actual := Master_Actual;
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
531 if Restriction_Active (No_Task_Hierarchy) then
532 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
537 elsif Nkind (Actual) = N_Defining_Identifier then
538 Actual := New_Occurrence_Of (Actual, Loc);
539 end if;
541 -- Locate the implicit master parameter in the called function
543 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
544 Analyze_And_Resolve (Actual, Etype (Master_Formal));
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
549 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
551 -- Locate the implicit activation chain parameter in the called function
553 Chain_Formal :=
554 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
556 -- Create the actual which is a pointer to the current activation chain
558 if No (Chain) then
559 Chain_Actual :=
560 Make_Attribute_Reference (Loc,
561 Prefix => Make_Identifier (Loc, Name_uChain),
562 Attribute_Name => Name_Unrestricted_Access);
564 -- Allocator case; make a reference to the Chain passed in by the caller
566 else
567 Chain_Actual :=
568 Make_Attribute_Reference (Loc,
569 Prefix => New_Occurrence_Of (Chain, Loc),
570 Attribute_Name => Name_Unrestricted_Access);
571 end if;
573 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
578 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
579 end Add_Task_Actuals_To_Build_In_Place_Call;
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
585 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
586 begin
587 case Kind is
588 when BIP_Alloc_Form =>
589 return "BIPalloc";
590 when BIP_Storage_Pool =>
591 return "BIPstoragepool";
592 when BIP_Finalization_Master =>
593 return "BIPfinalizationmaster";
594 when BIP_Task_Master =>
595 return "BIPtaskmaster";
596 when BIP_Activation_Chain =>
597 return "BIPactivationchain";
598 when BIP_Object_Access =>
599 return "BIPaccess";
600 end case;
601 end BIP_Formal_Suffix;
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
607 function Build_In_Place_Formal
608 (Func : Entity_Id;
609 Kind : BIP_Formal_Kind) return Entity_Id
611 Formal_Name : constant Name_Id :=
612 New_External_Name
613 (Chars (Func), BIP_Formal_Suffix (Kind));
614 Extra_Formal : Entity_Id := Extra_Formals (Func);
616 begin
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
622 -- that point. At the point of call the full view must be available and
623 -- the extra formals can be created.
625 if No (Extra_Formal) then
626 Create_Extra_Formals (Func);
627 Extra_Formal := Extra_Formals (Func);
628 end if;
630 loop
631 pragma Assert (Present (Extra_Formal));
632 exit when Chars (Extra_Formal) = Formal_Name;
634 Next_Formal_With_Extras (Extra_Formal);
635 end loop;
637 return Extra_Formal;
638 end Build_In_Place_Formal;
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
644 procedure Check_Overriding_Operation (Subp : Entity_Id) is
645 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
646 Op_List : constant Elist_Id := Primitive_Operations (Typ);
647 Op_Elmt : Elmt_Id;
648 Prim_Op : Entity_Id;
649 Par_Op : Entity_Id;
651 begin
652 if Is_Derived_Type (Typ)
653 and then not Is_Private_Type (Typ)
654 and then In_Open_Scopes (Scope (Etype (Typ)))
655 and then Is_Base_Type (Typ)
656 then
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
662 Op_Elmt := First_Elmt (Op_List);
663 while Present (Op_Elmt) loop
664 Prim_Op := Node (Op_Elmt);
665 Par_Op := Alias (Prim_Op);
667 if Present (Par_Op)
668 and then not Comes_From_Source (Prim_Op)
669 and then Chars (Prim_Op) /= Chars (Par_Op)
670 and then Chars (Par_Op) = Chars (Subp)
671 and then Is_Hidden (Par_Op)
672 and then Type_Conformant (Prim_Op, Subp)
673 then
674 Set_DT_Position (Subp, DT_Position (Prim_Op));
675 end if;
677 Next_Elmt (Op_Elmt);
678 end loop;
679 end if;
680 end Check_Overriding_Operation;
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
686 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
687 Loc : constant Source_Ptr := Sloc (N);
689 Var_List : constant Elist_Id := New_Elmt_List;
690 -- List of globals referenced by body of procedure
692 Call_List : constant Elist_Id := New_Elmt_List;
693 -- List of recursive calls in body of procedure
695 Shad_List : constant Elist_Id := New_Elmt_List;
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
699 Scop : constant Uint := Scope_Depth (Spec);
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
703 Max_Vars : constant := 4;
704 -- Do not test more than four global variables
706 Count_Vars : Natural := 0;
707 -- Count variables found so far
709 Var : Entity_Id;
710 Elm : Elmt_Id;
711 Ent : Entity_Id;
712 Call : Elmt_Id;
713 Decl : Node_Id;
714 Test : Node_Id;
715 Elm1 : Elmt_Id;
716 Elm2 : Elmt_Id;
717 Last : Node_Id;
719 function Process (Nod : Node_Id) return Traverse_Result;
720 -- Function to traverse the subprogram body (using Traverse_Func)
722 -------------
723 -- Process --
724 -------------
726 function Process (Nod : Node_Id) return Traverse_Result is
727 begin
728 -- Procedure call
730 if Nkind (Nod) = N_Procedure_Call_Statement then
732 -- Case of one of the detected recursive calls
734 if Is_Entity_Name (Name (Nod))
735 and then Has_Recursive_Call (Entity (Name (Nod)))
736 and then Entity (Name (Nod)) = Spec
737 then
738 Append_Elmt (Nod, Call_List);
739 return Skip;
741 -- Any other procedure call may have side effects
743 else
744 return Abandon;
745 end if;
747 -- A call to a pure function can always be ignored
749 elsif Nkind (Nod) = N_Function_Call
750 and then Is_Entity_Name (Name (Nod))
751 and then Is_Pure (Entity (Name (Nod)))
752 then
753 return Skip;
755 -- Case of an identifier reference
757 elsif Nkind (Nod) = N_Identifier then
758 Ent := Entity (Nod);
760 -- If no entity, then ignore the reference
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
765 if No (Ent) then
766 return Skip;
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
771 elsif No (Scope (Ent)) then
772 return Skip;
774 -- Ignore the reference if not to a more global object
776 elsif Scope_Depth (Scope (Ent)) >= Scop then
777 return Skip;
779 -- References to types, exceptions and constants are always OK
781 elsif Is_Type (Ent)
782 or else Ekind (Ent) = E_Exception
783 or else Ekind (Ent) = E_Constant
784 then
785 return Skip;
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
791 elsif Ekind (Ent) /= E_Variable
792 or else not Is_Scalar_Type (Etype (Ent))
793 or else Treat_As_Volatile (Ent)
794 then
795 return Abandon;
797 -- Otherwise we have a reference to a global scalar
799 else
800 -- Loop through global entities already detected
802 Elm := First_Elmt (Var_List);
803 loop
804 -- If not detected before, record this new global reference
806 if No (Elm) then
807 Count_Vars := Count_Vars + 1;
809 if Count_Vars <= Max_Vars then
810 Append_Elmt (Entity (Nod), Var_List);
811 else
812 return Abandon;
813 end if;
815 exit;
817 -- If recorded before, ignore
819 elsif Node (Elm) = Entity (Nod) then
820 return Skip;
822 -- Otherwise keep looking
824 else
825 Next_Elmt (Elm);
826 end if;
827 end loop;
829 return Skip;
830 end if;
832 -- For all other node kinds, recursively visit syntactic children
834 else
835 return OK;
836 end if;
837 end Process;
839 function Traverse_Body is new Traverse_Func (Process);
841 -- Start of processing for Detect_Infinite_Recursion
843 begin
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
846 -- case.
848 if Restriction_Active (No_Implicit_Conditionals) then
849 return;
850 end if;
852 -- Otherwise do traversal and quit if we get abandon signal
854 if Traverse_Body (N) = Abandon then
855 return;
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
859 -- due to bugs or errors, we do not want to bomb).
861 elsif Is_Empty_Elmt_List (Call_List) then
862 return;
863 end if;
865 -- Here is the case where we detect recursion at compile time
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
870 Push_Scope (Spec);
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
875 -- Var_List.
877 Last := Empty;
878 Elm := First_Elmt (Var_List);
879 while Present (Elm) loop
880 Var := Node (Elm);
881 Ent := Make_Temporary (Loc, 'S');
882 Append_Elmt (Ent, Shad_List);
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
889 Decl :=
890 Make_Object_Declaration (Loc,
891 Defining_Identifier => Ent,
892 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
893 Constant_Present => True,
894 Expression => New_Occurrence_Of (Var, Loc));
896 if No (Last) then
897 Prepend (Decl, Declarations (N));
898 else
899 Insert_After (Last, Decl);
900 end if;
902 Last := Decl;
903 Analyze (Decl);
904 Next_Elmt (Elm);
905 end loop;
907 -- Loop through calls
909 Call := First_Elmt (Call_List);
910 while Present (Call) loop
912 -- Build a predicate expression of the form
914 -- True
915 -- and then global1 = temp1
916 -- and then global2 = temp2
917 -- ...
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
923 Test := New_Occurrence_Of (Standard_True, Loc);
925 Elm1 := First_Elmt (Var_List);
926 Elm2 := First_Elmt (Shad_List);
927 while Present (Elm1) loop
928 Test :=
929 Make_And_Then (Loc,
930 Left_Opnd => Test,
931 Right_Opnd =>
932 Make_Op_Eq (Loc,
933 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
934 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
936 Next_Elmt (Elm1);
937 Next_Elmt (Elm2);
938 end loop;
940 -- Now we replace the call with the sequence
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
944 -- else
945 -- original-call
946 -- end if;
948 Rewrite (Node (Call),
949 Make_If_Statement (Loc,
950 Condition => Test,
951 Then_Statements => New_List (
952 Make_Raise_Storage_Error (Loc,
953 Reason => SE_Infinite_Recursion)),
955 Else_Statements => New_List (
956 Relocate_Node (Node (Call)))));
958 Analyze (Node (Call));
960 Next_Elmt (Call);
961 end loop;
963 -- Remove temporary scope stack entry used for analysis
965 Pop_Scope;
966 end Detect_Infinite_Recursion;
968 --------------------
969 -- Expand_Actuals --
970 --------------------
972 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
973 Loc : constant Source_Ptr := Sloc (N);
974 Actual : Node_Id;
975 Formal : Entity_Id;
976 N_Node : Node_Id;
977 Post_Call : List_Id;
978 E_Actual : Entity_Id;
979 E_Formal : Entity_Id;
981 procedure Add_Call_By_Copy_Code;
982 -- For cases where the parameter must be passed by copy, this routine
983 -- generates a temporary variable into which the actual is copied and
984 -- then passes this as the parameter. For an OUT or IN OUT parameter,
985 -- an assignment is also generated to copy the result back. The call
986 -- also takes care of any constraint checks required for the type
987 -- conversion case (on both the way in and the way out).
989 procedure Add_Simple_Call_By_Copy_Code;
990 -- This is similar to the above, but is used in cases where we know
991 -- that all that is needed is to simply create a temporary and copy
992 -- the value in and out of the temporary.
994 procedure Check_Fortran_Logical;
995 -- A value of type Logical that is passed through a formal parameter
996 -- must be normalized because .TRUE. usually does not have the same
997 -- representation as True. We assume that .FALSE. = False = 0.
998 -- What about functions that return a logical type ???
1000 function Is_Legal_Copy return Boolean;
1001 -- Check that an actual can be copied before generating the temporary
1002 -- to be used in the call. If the actual is of a by_reference type then
1003 -- the program is illegal (this can only happen in the presence of
1004 -- rep. clauses that force an incorrect alignment). If the formal is
1005 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1006 -- the effect that this might lead to unaligned arguments.
1008 function Make_Var (Actual : Node_Id) return Entity_Id;
1009 -- Returns an entity that refers to the given actual parameter, Actual
1010 -- (not including any type conversion). If Actual is an entity name,
1011 -- then this entity is returned unchanged, otherwise a renaming is
1012 -- created to provide an entity for the actual.
1014 procedure Reset_Packed_Prefix;
1015 -- The expansion of a packed array component reference is delayed in
1016 -- the context of a call. Now we need to complete the expansion, so we
1017 -- unmark the analyzed bits in all prefixes.
1019 ---------------------------
1020 -- Add_Call_By_Copy_Code --
1021 ---------------------------
1023 procedure Add_Call_By_Copy_Code is
1024 Expr : Node_Id;
1025 Init : Node_Id;
1026 Temp : Entity_Id;
1027 Indic : Node_Id;
1028 Var : Entity_Id;
1029 F_Typ : constant Entity_Id := Etype (Formal);
1030 V_Typ : Entity_Id;
1031 Crep : Boolean;
1033 begin
1034 if not Is_Legal_Copy then
1035 return;
1036 end if;
1038 Temp := Make_Temporary (Loc, 'T', Actual);
1040 -- Use formal type for temp, unless formal type is an unconstrained
1041 -- array, in which case we don't have to worry about bounds checks,
1042 -- and we use the actual type, since that has appropriate bounds.
1044 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1045 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1046 else
1047 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1048 end if;
1050 if Nkind (Actual) = N_Type_Conversion then
1051 V_Typ := Etype (Expression (Actual));
1053 -- If the formal is an (in-)out parameter, capture the name
1054 -- of the variable in order to build the post-call assignment.
1056 Var := Make_Var (Expression (Actual));
1058 Crep := not Same_Representation
1059 (F_Typ, Etype (Expression (Actual)));
1061 else
1062 V_Typ := Etype (Actual);
1063 Var := Make_Var (Actual);
1064 Crep := False;
1065 end if;
1067 -- Setup initialization for case of in out parameter, or an out
1068 -- parameter where the formal is an unconstrained array (in the
1069 -- latter case, we have to pass in an object with bounds).
1071 -- If this is an out parameter, the initial copy is wasteful, so as
1072 -- an optimization for the one-dimensional case we extract the
1073 -- bounds of the actual and build an uninitialized temporary of the
1074 -- right size.
1076 if Ekind (Formal) = E_In_Out_Parameter
1077 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1078 then
1079 if Nkind (Actual) = N_Type_Conversion then
1080 if Conversion_OK (Actual) then
1081 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1082 else
1083 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1084 end if;
1086 elsif Ekind (Formal) = E_Out_Parameter
1087 and then Is_Array_Type (F_Typ)
1088 and then Number_Dimensions (F_Typ) = 1
1089 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1090 then
1091 -- Actual is a one-dimensional array or slice, and the type
1092 -- requires no initialization. Create a temporary of the
1093 -- right size, but do not copy actual into it (optimization).
1095 Init := Empty;
1096 Indic :=
1097 Make_Subtype_Indication (Loc,
1098 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1099 Constraint =>
1100 Make_Index_Or_Discriminant_Constraint (Loc,
1101 Constraints => New_List (
1102 Make_Range (Loc,
1103 Low_Bound =>
1104 Make_Attribute_Reference (Loc,
1105 Prefix => New_Occurrence_Of (Var, Loc),
1106 Attribute_Name => Name_First),
1107 High_Bound =>
1108 Make_Attribute_Reference (Loc,
1109 Prefix => New_Occurrence_Of (Var, Loc),
1110 Attribute_Name => Name_Last)))));
1112 else
1113 Init := New_Occurrence_Of (Var, Loc);
1114 end if;
1116 -- An initialization is created for packed conversions as
1117 -- actuals for out parameters to enable Make_Object_Declaration
1118 -- to determine the proper subtype for N_Node. Note that this
1119 -- is wasteful because the extra copying on the call side is
1120 -- not required for such out parameters. ???
1122 elsif Ekind (Formal) = E_Out_Parameter
1123 and then Nkind (Actual) = N_Type_Conversion
1124 and then (Is_Bit_Packed_Array (F_Typ)
1125 or else
1126 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1127 then
1128 if Conversion_OK (Actual) then
1129 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1130 else
1131 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1132 end if;
1134 elsif Ekind (Formal) = E_In_Parameter then
1136 -- Handle the case in which the actual is a type conversion
1138 if Nkind (Actual) = N_Type_Conversion then
1139 if Conversion_OK (Actual) then
1140 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1141 else
1142 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1143 end if;
1144 else
1145 Init := New_Occurrence_Of (Var, Loc);
1146 end if;
1148 else
1149 Init := Empty;
1150 end if;
1152 N_Node :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Temp,
1155 Object_Definition => Indic,
1156 Expression => Init);
1157 Set_Assignment_OK (N_Node);
1158 Insert_Action (N, N_Node);
1160 -- Now, normally the deal here is that we use the defining
1161 -- identifier created by that object declaration. There is
1162 -- one exception to this. In the change of representation case
1163 -- the above declaration will end up looking like:
1165 -- temp : type := identifier;
1167 -- And in this case we might as well use the identifier directly
1168 -- and eliminate the temporary. Note that the analysis of the
1169 -- declaration was not a waste of time in that case, since it is
1170 -- what generated the necessary change of representation code. If
1171 -- the change of representation introduced additional code, as in
1172 -- a fixed-integer conversion, the expression is not an identifier
1173 -- and must be kept.
1175 if Crep
1176 and then Present (Expression (N_Node))
1177 and then Is_Entity_Name (Expression (N_Node))
1178 then
1179 Temp := Entity (Expression (N_Node));
1180 Rewrite (N_Node, Make_Null_Statement (Loc));
1181 end if;
1183 -- For IN parameter, all we do is to replace the actual
1185 if Ekind (Formal) = E_In_Parameter then
1186 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1187 Analyze (Actual);
1189 -- Processing for OUT or IN OUT parameter
1191 else
1192 -- Kill current value indications for the temporary variable we
1193 -- created, since we just passed it as an OUT parameter.
1195 Kill_Current_Values (Temp);
1196 Set_Is_Known_Valid (Temp, False);
1198 -- If type conversion, use reverse conversion on exit
1200 if Nkind (Actual) = N_Type_Conversion then
1201 if Conversion_OK (Actual) then
1202 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1203 else
1204 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1205 end if;
1206 else
1207 Expr := New_Occurrence_Of (Temp, Loc);
1208 end if;
1210 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1211 Analyze (Actual);
1213 -- If the actual is a conversion of a packed reference, it may
1214 -- already have been expanded by Remove_Side_Effects, and the
1215 -- resulting variable is a temporary which does not designate
1216 -- the proper out-parameter, which may not be addressable. In
1217 -- that case, generate an assignment to the original expression
1218 -- (before expansion of the packed reference) so that the proper
1219 -- expansion of assignment to a packed component can take place.
1221 declare
1222 Obj : Node_Id;
1223 Lhs : Node_Id;
1225 begin
1226 if Is_Renaming_Of_Object (Var)
1227 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1228 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1229 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1230 = N_Indexed_Component
1231 and then
1232 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1233 then
1234 Obj := Renamed_Object (Var);
1235 Lhs :=
1236 Make_Selected_Component (Loc,
1237 Prefix =>
1238 New_Copy_Tree (Original_Node (Prefix (Obj))),
1239 Selector_Name => New_Copy (Selector_Name (Obj)));
1240 Reset_Analyzed_Flags (Lhs);
1242 else
1243 Lhs := New_Occurrence_Of (Var, Loc);
1244 end if;
1246 Set_Assignment_OK (Lhs);
1248 if Is_Access_Type (E_Formal)
1249 and then Is_Entity_Name (Lhs)
1250 and then
1251 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1252 then
1253 -- Copyback target is an Ada 2012 stand-alone object of an
1254 -- anonymous access type.
1256 pragma Assert (Ada_Version >= Ada_2012);
1258 if Type_Access_Level (E_Formal) >
1259 Object_Access_Level (Lhs)
1260 then
1261 Append_To (Post_Call,
1262 Make_Raise_Program_Error (Loc,
1263 Reason => PE_Accessibility_Check_Failed));
1264 end if;
1266 Append_To (Post_Call,
1267 Make_Assignment_Statement (Loc,
1268 Name => Lhs,
1269 Expression => Expr));
1271 -- We would like to somehow suppress generation of the
1272 -- extra_accessibility assignment generated by the expansion
1273 -- of the above assignment statement. It's not a correctness
1274 -- issue because the following assignment renders it dead,
1275 -- but generating back-to-back assignments to the same
1276 -- target is undesirable. ???
1278 Append_To (Post_Call,
1279 Make_Assignment_Statement (Loc,
1280 Name => New_Occurrence_Of (
1281 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1282 Expression => Make_Integer_Literal (Loc,
1283 Type_Access_Level (E_Formal))));
1285 else
1286 Append_To (Post_Call,
1287 Make_Assignment_Statement (Loc,
1288 Name => Lhs,
1289 Expression => Expr));
1290 end if;
1291 end;
1292 end if;
1293 end Add_Call_By_Copy_Code;
1295 ----------------------------------
1296 -- Add_Simple_Call_By_Copy_Code --
1297 ----------------------------------
1299 procedure Add_Simple_Call_By_Copy_Code is
1300 Temp : Entity_Id;
1301 Decl : Node_Id;
1302 Incod : Node_Id;
1303 Outcod : Node_Id;
1304 Lhs : Node_Id;
1305 Rhs : Node_Id;
1306 Indic : Node_Id;
1307 F_Typ : constant Entity_Id := Etype (Formal);
1309 begin
1310 if not Is_Legal_Copy then
1311 return;
1312 end if;
1314 -- Use formal type for temp, unless formal type is an unconstrained
1315 -- array, in which case we don't have to worry about bounds checks,
1316 -- and we use the actual type, since that has appropriate bounds.
1318 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1319 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1320 else
1321 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1322 end if;
1324 -- Prepare to generate code
1326 Reset_Packed_Prefix;
1328 Temp := Make_Temporary (Loc, 'T', Actual);
1329 Incod := Relocate_Node (Actual);
1330 Outcod := New_Copy_Tree (Incod);
1332 -- Generate declaration of temporary variable, initializing it
1333 -- with the input parameter unless we have an OUT formal or
1334 -- this is an initialization call.
1336 -- If the formal is an out parameter with discriminants, the
1337 -- discriminants must be captured even if the rest of the object
1338 -- is in principle uninitialized, because the discriminants may
1339 -- be read by the called subprogram.
1341 if Ekind (Formal) = E_Out_Parameter then
1342 Incod := Empty;
1344 if Has_Discriminants (Etype (Formal)) then
1345 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1346 end if;
1348 elsif Inside_Init_Proc then
1350 -- Could use a comment here to match comment below ???
1352 if Nkind (Actual) /= N_Selected_Component
1353 or else
1354 not Has_Discriminant_Dependent_Constraint
1355 (Entity (Selector_Name (Actual)))
1356 then
1357 Incod := Empty;
1359 -- Otherwise, keep the component in order to generate the proper
1360 -- actual subtype, that depends on enclosing discriminants.
1362 else
1363 null;
1364 end if;
1365 end if;
1367 Decl :=
1368 Make_Object_Declaration (Loc,
1369 Defining_Identifier => Temp,
1370 Object_Definition => Indic,
1371 Expression => Incod);
1373 if Inside_Init_Proc
1374 and then No (Incod)
1375 then
1376 -- If the call is to initialize a component of a composite type,
1377 -- and the component does not depend on discriminants, use the
1378 -- actual type of the component. This is required in case the
1379 -- component is constrained, because in general the formal of the
1380 -- initialization procedure will be unconstrained. Note that if
1381 -- the component being initialized is constrained by an enclosing
1382 -- discriminant, the presence of the initialization in the
1383 -- declaration will generate an expression for the actual subtype.
1385 Set_No_Initialization (Decl);
1386 Set_Object_Definition (Decl,
1387 New_Occurrence_Of (Etype (Actual), Loc));
1388 end if;
1390 Insert_Action (N, Decl);
1392 -- The actual is simply a reference to the temporary
1394 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1396 -- Generate copy out if OUT or IN OUT parameter
1398 if Ekind (Formal) /= E_In_Parameter then
1399 Lhs := Outcod;
1400 Rhs := New_Occurrence_Of (Temp, Loc);
1402 -- Deal with conversion
1404 if Nkind (Lhs) = N_Type_Conversion then
1405 Lhs := Expression (Lhs);
1406 Rhs := Convert_To (Etype (Actual), Rhs);
1407 end if;
1409 Append_To (Post_Call,
1410 Make_Assignment_Statement (Loc,
1411 Name => Lhs,
1412 Expression => Rhs));
1413 Set_Assignment_OK (Name (Last (Post_Call)));
1414 end if;
1415 end Add_Simple_Call_By_Copy_Code;
1417 ---------------------------
1418 -- Check_Fortran_Logical --
1419 ---------------------------
1421 procedure Check_Fortran_Logical is
1422 Logical : constant Entity_Id := Etype (Formal);
1423 Var : Entity_Id;
1425 -- Note: this is very incomplete, e.g. it does not handle arrays
1426 -- of logical values. This is really not the right approach at all???)
1428 begin
1429 if Convention (Subp) = Convention_Fortran
1430 and then Root_Type (Etype (Formal)) = Standard_Boolean
1431 and then Ekind (Formal) /= E_In_Parameter
1432 then
1433 Var := Make_Var (Actual);
1434 Append_To (Post_Call,
1435 Make_Assignment_Statement (Loc,
1436 Name => New_Occurrence_Of (Var, Loc),
1437 Expression =>
1438 Unchecked_Convert_To (
1439 Logical,
1440 Make_Op_Ne (Loc,
1441 Left_Opnd => New_Occurrence_Of (Var, Loc),
1442 Right_Opnd =>
1443 Unchecked_Convert_To (
1444 Logical,
1445 New_Occurrence_Of (Standard_False, Loc))))));
1446 end if;
1447 end Check_Fortran_Logical;
1449 -------------------
1450 -- Is_Legal_Copy --
1451 -------------------
1453 function Is_Legal_Copy return Boolean is
1454 begin
1455 -- An attempt to copy a value of such a type can only occur if
1456 -- representation clauses give the actual a misaligned address.
1458 if Is_By_Reference_Type (Etype (Formal)) then
1460 -- If the front-end does not perform full type layout, the actual
1461 -- may in fact be properly aligned but there is not enough front-
1462 -- end information to determine this. In that case gigi will emit
1463 -- an error if a copy is not legal, or generate the proper code.
1464 -- For other backends we report the error now.
1466 -- Seems wrong to be issuing an error in the expander, since it
1467 -- will be missed in -gnatc mode ???
1469 if Frontend_Layout_On_Target then
1470 Error_Msg_N
1471 ("misaligned actual cannot be passed by reference", Actual);
1472 end if;
1474 return False;
1476 -- For users of Starlet, we assume that the specification of by-
1477 -- reference mechanism is mandatory. This may lead to unaligned
1478 -- objects but at least for DEC legacy code it is known to work.
1479 -- The warning will alert users of this code that a problem may
1480 -- be lurking.
1482 elsif Mechanism (Formal) = By_Reference
1483 and then Is_Valued_Procedure (Scope (Formal))
1484 then
1485 Error_Msg_N
1486 ("by_reference actual may be misaligned??", Actual);
1487 return False;
1489 else
1490 return True;
1491 end if;
1492 end Is_Legal_Copy;
1494 --------------
1495 -- Make_Var --
1496 --------------
1498 function Make_Var (Actual : Node_Id) return Entity_Id is
1499 Var : Entity_Id;
1501 begin
1502 if Is_Entity_Name (Actual) then
1503 return Entity (Actual);
1505 else
1506 Var := Make_Temporary (Loc, 'T', Actual);
1508 N_Node :=
1509 Make_Object_Renaming_Declaration (Loc,
1510 Defining_Identifier => Var,
1511 Subtype_Mark =>
1512 New_Occurrence_Of (Etype (Actual), Loc),
1513 Name => Relocate_Node (Actual));
1515 Insert_Action (N, N_Node);
1516 return Var;
1517 end if;
1518 end Make_Var;
1520 -------------------------
1521 -- Reset_Packed_Prefix --
1522 -------------------------
1524 procedure Reset_Packed_Prefix is
1525 Pfx : Node_Id := Actual;
1526 begin
1527 loop
1528 Set_Analyzed (Pfx, False);
1529 exit when
1530 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1531 Pfx := Prefix (Pfx);
1532 end loop;
1533 end Reset_Packed_Prefix;
1535 -- Start of processing for Expand_Actuals
1537 begin
1538 Post_Call := New_List;
1540 Formal := First_Formal (Subp);
1541 Actual := First_Actual (N);
1542 while Present (Formal) loop
1543 E_Formal := Etype (Formal);
1544 E_Actual := Etype (Actual);
1546 if Is_Scalar_Type (E_Formal)
1547 or else Nkind (Actual) = N_Slice
1548 then
1549 Check_Fortran_Logical;
1551 -- RM 6.4.1 (11)
1553 elsif Ekind (Formal) /= E_Out_Parameter then
1555 -- The unusual case of the current instance of a protected type
1556 -- requires special handling. This can only occur in the context
1557 -- of a call within the body of a protected operation.
1559 if Is_Entity_Name (Actual)
1560 and then Ekind (Entity (Actual)) = E_Protected_Type
1561 and then In_Open_Scopes (Entity (Actual))
1562 then
1563 if Scope (Subp) /= Entity (Actual) then
1564 Error_Msg_N
1565 ("operation outside protected type may not "
1566 & "call back its protected operations??", Actual);
1567 end if;
1569 Rewrite (Actual,
1570 Expand_Protected_Object_Reference (N, Entity (Actual)));
1571 end if;
1573 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1574 -- build-in-place function, then a temporary return object needs
1575 -- to be created and access to it must be passed to the function.
1576 -- Currently we limit such functions to those with inherently
1577 -- limited result subtypes, but eventually we plan to expand the
1578 -- functions that are treated as build-in-place to include other
1579 -- composite result types.
1581 if Is_Build_In_Place_Function_Call (Actual) then
1582 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1583 end if;
1585 Apply_Constraint_Check (Actual, E_Formal);
1587 -- Out parameter case. No constraint checks on access type
1588 -- RM 6.4.1 (13)
1590 elsif Is_Access_Type (E_Formal) then
1591 null;
1593 -- RM 6.4.1 (14)
1595 elsif Has_Discriminants (Base_Type (E_Formal))
1596 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1597 then
1598 Apply_Constraint_Check (Actual, E_Formal);
1600 -- RM 6.4.1 (15)
1602 else
1603 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1604 end if;
1606 -- Processing for IN-OUT and OUT parameters
1608 if Ekind (Formal) /= E_In_Parameter then
1610 -- For type conversions of arrays, apply length/range checks
1612 if Is_Array_Type (E_Formal)
1613 and then Nkind (Actual) = N_Type_Conversion
1614 then
1615 if Is_Constrained (E_Formal) then
1616 Apply_Length_Check (Expression (Actual), E_Formal);
1617 else
1618 Apply_Range_Check (Expression (Actual), E_Formal);
1619 end if;
1620 end if;
1622 -- If argument is a type conversion for a type that is passed
1623 -- by copy, then we must pass the parameter by copy.
1625 if Nkind (Actual) = N_Type_Conversion
1626 and then
1627 (Is_Numeric_Type (E_Formal)
1628 or else Is_Access_Type (E_Formal)
1629 or else Is_Enumeration_Type (E_Formal)
1630 or else Is_Bit_Packed_Array (Etype (Formal))
1631 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1633 -- Also pass by copy if change of representation
1635 or else not Same_Representation
1636 (Etype (Formal),
1637 Etype (Expression (Actual))))
1638 then
1639 Add_Call_By_Copy_Code;
1641 -- References to components of bit packed arrays are expanded
1642 -- at this point, rather than at the point of analysis of the
1643 -- actuals, to handle the expansion of the assignment to
1644 -- [in] out parameters.
1646 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1647 Add_Simple_Call_By_Copy_Code;
1649 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1650 -- because the back-end cannot cope with such objects. In other
1651 -- cases where alignment forces a copy, the back-end generates
1652 -- it properly. It should not be generated unconditionally in the
1653 -- front-end because it does not know precisely the alignment
1654 -- requirements of the target, and makes too conservative an
1655 -- estimate, leading to superfluous copies or spurious errors
1656 -- on by-reference parameters.
1658 elsif Nkind (Actual) = N_Selected_Component
1659 and then
1660 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1661 and then not Represented_As_Scalar (Etype (Formal))
1662 then
1663 Add_Simple_Call_By_Copy_Code;
1665 -- References to slices of bit packed arrays are expanded
1667 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1668 Add_Call_By_Copy_Code;
1670 -- References to possibly unaligned slices of arrays are expanded
1672 elsif Is_Possibly_Unaligned_Slice (Actual) then
1673 Add_Call_By_Copy_Code;
1675 -- Deal with access types where the actual subtype and the
1676 -- formal subtype are not the same, requiring a check.
1678 -- It is necessary to exclude tagged types because of "downward
1679 -- conversion" errors.
1681 elsif Is_Access_Type (E_Formal)
1682 and then not Same_Type (E_Formal, E_Actual)
1683 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1684 then
1685 Add_Call_By_Copy_Code;
1687 -- If the actual is not a scalar and is marked for volatile
1688 -- treatment, whereas the formal is not volatile, then pass
1689 -- by copy unless it is a by-reference type.
1691 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1692 -- because this is the enforcement of a language rule that applies
1693 -- only to "real" volatile variables, not e.g. to the address
1694 -- clause overlay case.
1696 elsif Is_Entity_Name (Actual)
1697 and then Is_Volatile (Entity (Actual))
1698 and then not Is_By_Reference_Type (E_Actual)
1699 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1700 and then not Is_Volatile (E_Formal)
1701 then
1702 Add_Call_By_Copy_Code;
1704 elsif Nkind (Actual) = N_Indexed_Component
1705 and then Is_Entity_Name (Prefix (Actual))
1706 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1707 then
1708 Add_Call_By_Copy_Code;
1710 -- Add call-by-copy code for the case of scalar out parameters
1711 -- when it is not known at compile time that the subtype of the
1712 -- formal is a subrange of the subtype of the actual (or vice
1713 -- versa for in out parameters), in order to get range checks
1714 -- on such actuals. (Maybe this case should be handled earlier
1715 -- in the if statement???)
1717 elsif Is_Scalar_Type (E_Formal)
1718 and then
1719 (not In_Subrange_Of (E_Formal, E_Actual)
1720 or else
1721 (Ekind (Formal) = E_In_Out_Parameter
1722 and then not In_Subrange_Of (E_Actual, E_Formal)))
1723 then
1724 -- Perhaps the setting back to False should be done within
1725 -- Add_Call_By_Copy_Code, since it could get set on other
1726 -- cases occurring above???
1728 if Do_Range_Check (Actual) then
1729 Set_Do_Range_Check (Actual, False);
1730 end if;
1732 Add_Call_By_Copy_Code;
1733 end if;
1735 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1736 -- by-reference parameters on exit from the call. If the actual
1737 -- is a derived type and the operation is inherited, the body
1738 -- of the operation will not contain a call to the predicate
1739 -- function, so it must be done explicitly after the call. Ditto
1740 -- if the actual is an entity of a predicated subtype.
1742 -- The rule refers to by-reference types, but a check is needed
1743 -- for by-copy types as well. That check is subsumed by the rule
1744 -- for subtype conversion on assignment, but we can generate the
1745 -- required check now.
1747 -- Note also that Subp may be either a subprogram entity for
1748 -- direct calls, or a type entity for indirect calls, which must
1749 -- be handled separately because the name does not denote an
1750 -- overloadable entity.
1752 declare
1753 Aund : constant Entity_Id := Underlying_Type (E_Actual);
1754 Atyp : Entity_Id;
1756 begin
1757 if No (Aund) then
1758 Atyp := E_Actual;
1759 else
1760 Atyp := Aund;
1761 end if;
1763 if Has_Predicates (Atyp)
1764 and then Present (Predicate_Function (Atyp))
1766 -- Skip predicate checks for special cases
1768 and then Predicate_Tests_On_Arguments (Subp)
1769 then
1770 Append_To (Post_Call,
1771 Make_Predicate_Check (Atyp, Actual));
1772 end if;
1773 end;
1775 -- Processing for IN parameters
1777 else
1778 -- For IN parameters is in the packed array case, we expand an
1779 -- indexed component (the circuit in Exp_Ch4 deliberately left
1780 -- indexed components appearing as actuals untouched, so that
1781 -- the special processing above for the OUT and IN OUT cases
1782 -- could be performed. We could make the test in Exp_Ch4 more
1783 -- complex and have it detect the parameter mode, but it is
1784 -- easier simply to handle all cases here.)
1786 if Nkind (Actual) = N_Indexed_Component
1787 and then Is_Packed (Etype (Prefix (Actual)))
1788 then
1789 Reset_Packed_Prefix;
1790 Expand_Packed_Element_Reference (Actual);
1792 -- If we have a reference to a bit packed array, we copy it, since
1793 -- the actual must be byte aligned.
1795 -- Is this really necessary in all cases???
1797 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1798 Add_Simple_Call_By_Copy_Code;
1800 -- If a non-scalar actual is possibly unaligned, we need a copy
1802 elsif Is_Possibly_Unaligned_Object (Actual)
1803 and then not Represented_As_Scalar (Etype (Formal))
1804 then
1805 Add_Simple_Call_By_Copy_Code;
1807 -- Similarly, we have to expand slices of packed arrays here
1808 -- because the result must be byte aligned.
1810 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1811 Add_Call_By_Copy_Code;
1813 -- Only processing remaining is to pass by copy if this is a
1814 -- reference to a possibly unaligned slice, since the caller
1815 -- expects an appropriately aligned argument.
1817 elsif Is_Possibly_Unaligned_Slice (Actual) then
1818 Add_Call_By_Copy_Code;
1820 -- An unusual case: a current instance of an enclosing task can be
1821 -- an actual, and must be replaced by a reference to self.
1823 elsif Is_Entity_Name (Actual)
1824 and then Is_Task_Type (Entity (Actual))
1825 then
1826 if In_Open_Scopes (Entity (Actual)) then
1827 Rewrite (Actual,
1828 (Make_Function_Call (Loc,
1829 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
1830 Analyze (Actual);
1832 -- A task type cannot otherwise appear as an actual
1834 else
1835 raise Program_Error;
1836 end if;
1837 end if;
1838 end if;
1840 Next_Formal (Formal);
1841 Next_Actual (Actual);
1842 end loop;
1844 -- Find right place to put post call stuff if it is present
1846 if not Is_Empty_List (Post_Call) then
1848 -- Cases where the call is not a member of a statement list
1850 if not Is_List_Member (N) then
1852 -- In Ada 2012 the call may be a function call in an expression
1853 -- (since OUT and IN OUT parameters are now allowed for such
1854 -- calls). The write-back of (in)-out parameters is handled
1855 -- by the back-end, but the constraint checks generated when
1856 -- subtypes of formal and actual don't match must be inserted
1857 -- in the form of assignments.
1859 if Ada_Version >= Ada_2012
1860 and then Nkind (N) = N_Function_Call
1861 then
1862 -- We used to just do handle this by climbing up parents to
1863 -- a non-statement/declaration and then simply making a call
1864 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1865 -- work. If we are in the middle of an expression, e.g. the
1866 -- condition of an IF, this call would insert after the IF
1867 -- statement, which is much too late to be doing the write
1868 -- back. For example:
1870 -- if Clobber (X) then
1871 -- Put_Line (X'Img);
1872 -- else
1873 -- goto Junk
1874 -- end if;
1876 -- Now assume Clobber changes X, if we put the write back
1877 -- after the IF, the Put_Line gets the wrong value and the
1878 -- goto causes the write back to be skipped completely.
1880 -- To deal with this, we replace the call by
1882 -- do
1883 -- Tnnn : function-result-type renames function-call;
1884 -- Post_Call actions
1885 -- in
1886 -- Tnnn;
1887 -- end;
1889 -- Note: this won't do in Modify_Tree_For_C mode, but we
1890 -- will deal with that later (it will require creating a
1891 -- declaration for Temp, using Insert_Declaration) ???
1893 declare
1894 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
1895 FRTyp : constant Entity_Id := Etype (N);
1896 Name : constant Node_Id := Relocate_Node (N);
1898 begin
1899 Prepend_To (Post_Call,
1900 Make_Object_Renaming_Declaration (Loc,
1901 Defining_Identifier => Tnnn,
1902 Subtype_Mark => New_Occurrence_Of (FRTyp, Loc),
1903 Name => Name));
1905 Rewrite (N,
1906 Make_Expression_With_Actions (Loc,
1907 Actions => Post_Call,
1908 Expression => New_Occurrence_Of (Tnnn, Loc)));
1910 -- We don't want to just blindly call Analyze_And_Resolve
1911 -- because that would cause unwanted recursion on the call.
1912 -- So for a moment set the call as analyzed to prevent that
1913 -- recursion, and get the rest analyzed properly, then reset
1914 -- the analyzed flag, so our caller can continue.
1916 Set_Analyzed (Name, True);
1917 Analyze_And_Resolve (N, FRTyp);
1918 Set_Analyzed (Name, False);
1920 -- Reset calling argument to point to function call inside
1921 -- the expression with actions so the caller can continue
1922 -- to process the call.
1924 N := Name;
1925 end;
1927 -- If not the special Ada 2012 case of a function call, then
1928 -- we must have the triggering statement of a triggering
1929 -- alternative or an entry call alternative, and we can add
1930 -- the post call stuff to the corresponding statement list.
1932 else
1933 declare
1934 P : Node_Id;
1936 begin
1937 P := Parent (N);
1938 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1939 N_Entry_Call_Alternative));
1941 if Is_Non_Empty_List (Statements (P)) then
1942 Insert_List_Before_And_Analyze
1943 (First (Statements (P)), Post_Call);
1944 else
1945 Set_Statements (P, Post_Call);
1946 end if;
1948 return;
1949 end;
1950 end if;
1952 -- Otherwise, normal case where N is in a statement sequence,
1953 -- just put the post-call stuff after the call statement.
1955 else
1956 Insert_Actions_After (N, Post_Call);
1957 return;
1958 end if;
1959 end if;
1961 -- The call node itself is re-analyzed in Expand_Call
1963 end Expand_Actuals;
1965 -----------------
1966 -- Expand_Call --
1967 -----------------
1969 -- This procedure handles expansion of function calls and procedure call
1970 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1971 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
1973 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
1974 -- Provide values of actuals for all formals in Extra_Formals list
1975 -- Replace "call" to enumeration literal function by literal itself
1976 -- Rewrite call to predefined operator as operator
1977 -- Replace actuals to in-out parameters that are numeric conversions,
1978 -- with explicit assignment to temporaries before and after the call.
1980 -- Note that the list of actuals has been filled with default expressions
1981 -- during semantic analysis of the call. Only the extra actuals required
1982 -- for the 'Constrained attribute and for accessibility checks are added
1983 -- at this point.
1985 procedure Expand_Call (N : Node_Id) is
1986 Loc : constant Source_Ptr := Sloc (N);
1987 Call_Node : Node_Id := N;
1988 Extra_Actuals : List_Id := No_List;
1989 Prev : Node_Id := Empty;
1991 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1992 -- Adds one entry to the end of the actual parameter list. Used for
1993 -- default parameters and for extra actuals (for Extra_Formals). The
1994 -- argument is an N_Parameter_Association node.
1996 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1997 -- Adds an extra actual to the list of extra actuals. Expr is the
1998 -- expression for the value of the actual, EF is the entity for the
1999 -- extra formal.
2001 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2002 -- Within an instance, a type derived from an untagged formal derived
2003 -- type inherits from the original parent, not from the actual. The
2004 -- current derivation mechanism has the derived type inherit from the
2005 -- actual, which is only correct outside of the instance. If the
2006 -- subprogram is inherited, we test for this particular case through a
2007 -- convoluted tree traversal before setting the proper subprogram to be
2008 -- called.
2010 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2011 -- Return true if E comes from an instance that is not yet frozen
2013 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2014 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2016 function New_Value (From : Node_Id) return Node_Id;
2017 -- From is the original Expression. New_Value is equivalent to a call
2018 -- to Duplicate_Subexpr with an explicit dereference when From is an
2019 -- access parameter.
2021 --------------------------
2022 -- Add_Actual_Parameter --
2023 --------------------------
2025 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2026 Actual_Expr : constant Node_Id :=
2027 Explicit_Actual_Parameter (Insert_Param);
2029 begin
2030 -- Case of insertion is first named actual
2032 if No (Prev) or else
2033 Nkind (Parent (Prev)) /= N_Parameter_Association
2034 then
2035 Set_Next_Named_Actual
2036 (Insert_Param, First_Named_Actual (Call_Node));
2037 Set_First_Named_Actual (Call_Node, Actual_Expr);
2039 if No (Prev) then
2040 if No (Parameter_Associations (Call_Node)) then
2041 Set_Parameter_Associations (Call_Node, New_List);
2042 end if;
2044 Append (Insert_Param, Parameter_Associations (Call_Node));
2046 else
2047 Insert_After (Prev, Insert_Param);
2048 end if;
2050 -- Case of insertion is not first named actual
2052 else
2053 Set_Next_Named_Actual
2054 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2055 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2056 Append (Insert_Param, Parameter_Associations (Call_Node));
2057 end if;
2059 Prev := Actual_Expr;
2060 end Add_Actual_Parameter;
2062 ----------------------
2063 -- Add_Extra_Actual --
2064 ----------------------
2066 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2067 Loc : constant Source_Ptr := Sloc (Expr);
2069 begin
2070 if Extra_Actuals = No_List then
2071 Extra_Actuals := New_List;
2072 Set_Parent (Extra_Actuals, Call_Node);
2073 end if;
2075 Append_To (Extra_Actuals,
2076 Make_Parameter_Association (Loc,
2077 Selector_Name => New_Occurrence_Of (EF, Loc),
2078 Explicit_Actual_Parameter => Expr));
2080 Analyze_And_Resolve (Expr, Etype (EF));
2082 if Nkind (Call_Node) = N_Function_Call then
2083 Set_Is_Accessibility_Actual (Parent (Expr));
2084 end if;
2085 end Add_Extra_Actual;
2087 ---------------------------
2088 -- Inherited_From_Formal --
2089 ---------------------------
2091 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2092 Par : Entity_Id;
2093 Gen_Par : Entity_Id;
2094 Gen_Prim : Elist_Id;
2095 Elmt : Elmt_Id;
2096 Indic : Node_Id;
2098 begin
2099 -- If the operation is inherited, it is attached to the corresponding
2100 -- type derivation. If the parent in the derivation is a generic
2101 -- actual, it is a subtype of the actual, and we have to recover the
2102 -- original derived type declaration to find the proper parent.
2104 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2105 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2106 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2107 N_Derived_Type_Definition
2108 or else not In_Instance
2109 then
2110 return Empty;
2112 else
2113 Indic :=
2114 Subtype_Indication
2115 (Type_Definition (Original_Node (Parent (S))));
2117 if Nkind (Indic) = N_Subtype_Indication then
2118 Par := Entity (Subtype_Mark (Indic));
2119 else
2120 Par := Entity (Indic);
2121 end if;
2122 end if;
2124 if not Is_Generic_Actual_Type (Par)
2125 or else Is_Tagged_Type (Par)
2126 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2127 or else not In_Open_Scopes (Scope (Par))
2128 then
2129 return Empty;
2130 else
2131 Gen_Par := Generic_Parent_Type (Parent (Par));
2132 end if;
2134 -- If the actual has no generic parent type, the formal is not
2135 -- a formal derived type, so nothing to inherit.
2137 if No (Gen_Par) then
2138 return Empty;
2139 end if;
2141 -- If the generic parent type is still the generic type, this is a
2142 -- private formal, not a derived formal, and there are no operations
2143 -- inherited from the formal.
2145 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2146 return Empty;
2147 end if;
2149 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2151 Elmt := First_Elmt (Gen_Prim);
2152 while Present (Elmt) loop
2153 if Chars (Node (Elmt)) = Chars (S) then
2154 declare
2155 F1 : Entity_Id;
2156 F2 : Entity_Id;
2158 begin
2159 F1 := First_Formal (S);
2160 F2 := First_Formal (Node (Elmt));
2161 while Present (F1)
2162 and then Present (F2)
2163 loop
2164 if Etype (F1) = Etype (F2)
2165 or else Etype (F2) = Gen_Par
2166 then
2167 Next_Formal (F1);
2168 Next_Formal (F2);
2169 else
2170 Next_Elmt (Elmt);
2171 exit; -- not the right subprogram
2172 end if;
2174 return Node (Elmt);
2175 end loop;
2176 end;
2178 else
2179 Next_Elmt (Elmt);
2180 end if;
2181 end loop;
2183 raise Program_Error;
2184 end Inherited_From_Formal;
2186 --------------------------
2187 -- In_Unfrozen_Instance --
2188 --------------------------
2190 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2191 S : Entity_Id;
2193 begin
2194 S := E;
2195 while Present (S) and then S /= Standard_Standard loop
2196 if Is_Generic_Instance (S)
2197 and then Present (Freeze_Node (S))
2198 and then not Analyzed (Freeze_Node (S))
2199 then
2200 return True;
2201 end if;
2203 S := Scope (S);
2204 end loop;
2206 return False;
2207 end In_Unfrozen_Instance;
2209 -------------------------
2210 -- Is_Direct_Deep_Call --
2211 -------------------------
2213 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2214 begin
2215 if Is_TSS (Subp, TSS_Deep_Adjust)
2216 or else Is_TSS (Subp, TSS_Deep_Finalize)
2217 or else Is_TSS (Subp, TSS_Deep_Initialize)
2218 then
2219 declare
2220 Actual : Node_Id;
2221 Formal : Node_Id;
2223 begin
2224 Actual := First (Parameter_Associations (N));
2225 Formal := First_Formal (Subp);
2226 while Present (Actual)
2227 and then Present (Formal)
2228 loop
2229 if Nkind (Actual) = N_Identifier
2230 and then Is_Controlling_Actual (Actual)
2231 and then Etype (Actual) = Etype (Formal)
2232 then
2233 return True;
2234 end if;
2236 Next (Actual);
2237 Next_Formal (Formal);
2238 end loop;
2239 end;
2240 end if;
2242 return False;
2243 end Is_Direct_Deep_Call;
2245 ---------------
2246 -- New_Value --
2247 ---------------
2249 function New_Value (From : Node_Id) return Node_Id is
2250 Res : constant Node_Id := Duplicate_Subexpr (From);
2251 begin
2252 if Is_Access_Type (Etype (From)) then
2253 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2254 else
2255 return Res;
2256 end if;
2257 end New_Value;
2259 -- Local variables
2261 Curr_S : constant Entity_Id := Current_Scope;
2262 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2263 Actual : Node_Id;
2264 Formal : Entity_Id;
2265 Orig_Subp : Entity_Id := Empty;
2266 Param_Count : Natural := 0;
2267 Parent_Formal : Entity_Id;
2268 Parent_Subp : Entity_Id;
2269 Scop : Entity_Id;
2270 Subp : Entity_Id;
2272 Prev_Orig : Node_Id;
2273 -- Original node for an actual, which may have been rewritten. If the
2274 -- actual is a function call that has been transformed from a selected
2275 -- component, the original node is unanalyzed. Otherwise, it carries
2276 -- semantic information used to generate additional actuals.
2278 CW_Interface_Formals_Present : Boolean := False;
2280 -- Start of processing for Expand_Call
2282 begin
2283 -- Expand the procedure call if the first actual has a dimension and if
2284 -- the procedure is Put (Ada 2012).
2286 if Ada_Version >= Ada_2012
2287 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2288 and then Present (Parameter_Associations (Call_Node))
2289 then
2290 Expand_Put_Call_With_Symbol (Call_Node);
2291 end if;
2293 -- Ignore if previous error
2295 if Nkind (Call_Node) in N_Has_Etype
2296 and then Etype (Call_Node) = Any_Type
2297 then
2298 return;
2299 end if;
2301 -- Call using access to subprogram with explicit dereference
2303 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2304 Subp := Etype (Name (Call_Node));
2305 Parent_Subp := Empty;
2307 -- Case of call to simple entry, where the Name is a selected component
2308 -- whose prefix is the task, and whose selector name is the entry name
2310 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2311 Subp := Entity (Selector_Name (Name (Call_Node)));
2312 Parent_Subp := Empty;
2314 -- Case of call to member of entry family, where Name is an indexed
2315 -- component, with the prefix being a selected component giving the
2316 -- task and entry family name, and the index being the entry index.
2318 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2319 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2320 Parent_Subp := Empty;
2322 -- Normal case
2324 else
2325 Subp := Entity (Name (Call_Node));
2326 Parent_Subp := Alias (Subp);
2328 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2329 -- if we can tell that the first parameter cannot possibly be null.
2330 -- This improves efficiency by avoiding a run-time test.
2332 -- We do not do this if Raise_Exception_Always does not exist, which
2333 -- can happen in configurable run time profiles which provide only a
2334 -- Raise_Exception.
2336 if Is_RTE (Subp, RE_Raise_Exception)
2337 and then RTE_Available (RE_Raise_Exception_Always)
2338 then
2339 declare
2340 FA : constant Node_Id :=
2341 Original_Node (First_Actual (Call_Node));
2343 begin
2344 -- The case we catch is where the first argument is obtained
2345 -- using the Identity attribute (which must always be
2346 -- non-null).
2348 if Nkind (FA) = N_Attribute_Reference
2349 and then Attribute_Name (FA) = Name_Identity
2350 then
2351 Subp := RTE (RE_Raise_Exception_Always);
2352 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2353 end if;
2354 end;
2355 end if;
2357 if Ekind (Subp) = E_Entry then
2358 Parent_Subp := Empty;
2359 end if;
2360 end if;
2362 -- Detect the following code in System.Finalization_Masters only on
2363 -- .NET/JVM targets:
2365 -- procedure Finalize (Master : in out Finalization_Master) is
2366 -- begin
2367 -- . . .
2368 -- begin
2369 -- Finalize (Curr_Ptr.all);
2371 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2372 -- cannot be named in library or user code, the compiler has to deal
2373 -- with this by transforming the call to Finalize into Deep_Finalize.
2375 if VM_Target /= No_VM
2376 and then Chars (Subp) = Name_Finalize
2377 and then Ekind (Curr_S) = E_Block
2378 and then Ekind (Scope (Curr_S)) = E_Procedure
2379 and then Chars (Scope (Curr_S)) = Name_Finalize
2380 and then Etype (First_Formal (Scope (Curr_S))) =
2381 RTE (RE_Finalization_Master)
2382 then
2383 declare
2384 Deep_Fin : constant Entity_Id :=
2385 Find_Prim_Op (RTE (RE_Root_Controlled),
2386 TSS_Deep_Finalize);
2387 begin
2388 -- Since Root_Controlled is a tagged type, the compiler should
2389 -- always generate Deep_Finalize for it.
2391 pragma Assert (Present (Deep_Fin));
2393 -- Generate:
2394 -- Deep_Finalize (Curr_Ptr.all);
2396 Rewrite (N,
2397 Make_Procedure_Call_Statement (Loc,
2398 Name =>
2399 New_Occurrence_Of (Deep_Fin, Loc),
2400 Parameter_Associations =>
2401 New_Copy_List_Tree (Parameter_Associations (N))));
2403 Analyze (N);
2404 return;
2405 end;
2406 end if;
2408 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2409 -- alternative in an asynchronous select or as an entry call in
2410 -- a conditional or timed select. Check whether the procedure call
2411 -- is a renaming of an entry and rewrite it as an entry call.
2413 if Ada_Version >= Ada_2005
2414 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2415 and then
2416 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2417 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2418 or else
2419 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2420 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2421 then
2422 declare
2423 Ren_Decl : Node_Id;
2424 Ren_Root : Entity_Id := Subp;
2426 begin
2427 -- This may be a chain of renamings, find the root
2429 if Present (Alias (Ren_Root)) then
2430 Ren_Root := Alias (Ren_Root);
2431 end if;
2433 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2434 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2436 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2437 Rewrite (Call_Node,
2438 Make_Entry_Call_Statement (Loc,
2439 Name =>
2440 New_Copy_Tree (Name (Ren_Decl)),
2441 Parameter_Associations =>
2442 New_Copy_List_Tree
2443 (Parameter_Associations (Call_Node))));
2445 return;
2446 end if;
2447 end if;
2448 end;
2449 end if;
2451 -- First step, compute extra actuals, corresponding to any Extra_Formals
2452 -- present. Note that we do not access Extra_Formals directly, instead
2453 -- we simply note the presence of the extra formals as we process the
2454 -- regular formals collecting corresponding actuals in Extra_Actuals.
2456 -- We also generate any required range checks for actuals for in formals
2457 -- as we go through the loop, since this is a convenient place to do it.
2458 -- (Though it seems that this would be better done in Expand_Actuals???)
2460 -- Special case: Thunks must not compute the extra actuals; they must
2461 -- just propagate to the target primitive their extra actuals.
2463 if Is_Thunk (Current_Scope)
2464 and then Thunk_Entity (Current_Scope) = Subp
2465 and then Present (Extra_Formals (Subp))
2466 then
2467 pragma Assert (Present (Extra_Formals (Current_Scope)));
2469 declare
2470 Target_Formal : Entity_Id;
2471 Thunk_Formal : Entity_Id;
2473 begin
2474 Target_Formal := Extra_Formals (Subp);
2475 Thunk_Formal := Extra_Formals (Current_Scope);
2476 while Present (Target_Formal) loop
2477 Add_Extra_Actual
2478 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2480 Target_Formal := Extra_Formal (Target_Formal);
2481 Thunk_Formal := Extra_Formal (Thunk_Formal);
2482 end loop;
2484 while Is_Non_Empty_List (Extra_Actuals) loop
2485 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2486 end loop;
2488 Expand_Actuals (Call_Node, Subp);
2489 return;
2490 end;
2491 end if;
2493 Formal := First_Formal (Subp);
2494 Actual := First_Actual (Call_Node);
2495 Param_Count := 1;
2496 while Present (Formal) loop
2498 -- Generate range check if required
2500 if Do_Range_Check (Actual)
2501 and then Ekind (Formal) = E_In_Parameter
2502 then
2503 Generate_Range_Check
2504 (Actual, Etype (Formal), CE_Range_Check_Failed);
2505 end if;
2507 -- Prepare to examine current entry
2509 Prev := Actual;
2510 Prev_Orig := Original_Node (Prev);
2512 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2513 -- to expand it in a further round.
2515 CW_Interface_Formals_Present :=
2516 CW_Interface_Formals_Present
2517 or else
2518 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2519 and then Is_Interface (Etype (Etype (Formal))))
2520 or else
2521 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2522 and then Is_Interface (Directly_Designated_Type
2523 (Etype (Etype (Formal)))));
2525 -- Create possible extra actual for constrained case. Usually, the
2526 -- extra actual is of the form actual'constrained, but since this
2527 -- attribute is only available for unconstrained records, TRUE is
2528 -- expanded if the type of the formal happens to be constrained (for
2529 -- instance when this procedure is inherited from an unconstrained
2530 -- record to a constrained one) or if the actual has no discriminant
2531 -- (its type is constrained). An exception to this is the case of a
2532 -- private type without discriminants. In this case we pass FALSE
2533 -- because the object has underlying discriminants with defaults.
2535 if Present (Extra_Constrained (Formal)) then
2536 if Ekind (Etype (Prev)) in Private_Kind
2537 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2538 then
2539 Add_Extra_Actual
2540 (New_Occurrence_Of (Standard_False, Loc),
2541 Extra_Constrained (Formal));
2543 elsif Is_Constrained (Etype (Formal))
2544 or else not Has_Discriminants (Etype (Prev))
2545 then
2546 Add_Extra_Actual
2547 (New_Occurrence_Of (Standard_True, Loc),
2548 Extra_Constrained (Formal));
2550 -- Do not produce extra actuals for Unchecked_Union parameters.
2551 -- Jump directly to the end of the loop.
2553 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2554 goto Skip_Extra_Actual_Generation;
2556 else
2557 -- If the actual is a type conversion, then the constrained
2558 -- test applies to the actual, not the target type.
2560 declare
2561 Act_Prev : Node_Id;
2563 begin
2564 -- Test for unchecked conversions as well, which can occur
2565 -- as out parameter actuals on calls to stream procedures.
2567 Act_Prev := Prev;
2568 while Nkind_In (Act_Prev, N_Type_Conversion,
2569 N_Unchecked_Type_Conversion)
2570 loop
2571 Act_Prev := Expression (Act_Prev);
2572 end loop;
2574 -- If the expression is a conversion of a dereference, this
2575 -- is internally generated code that manipulates addresses,
2576 -- e.g. when building interface tables. No check should
2577 -- occur in this case, and the discriminated object is not
2578 -- directly a hand.
2580 if not Comes_From_Source (Actual)
2581 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2582 and then Nkind (Act_Prev) = N_Explicit_Dereference
2583 then
2584 Add_Extra_Actual
2585 (New_Occurrence_Of (Standard_False, Loc),
2586 Extra_Constrained (Formal));
2588 else
2589 Add_Extra_Actual
2590 (Make_Attribute_Reference (Sloc (Prev),
2591 Prefix =>
2592 Duplicate_Subexpr_No_Checks
2593 (Act_Prev, Name_Req => True),
2594 Attribute_Name => Name_Constrained),
2595 Extra_Constrained (Formal));
2596 end if;
2597 end;
2598 end if;
2599 end if;
2601 -- Create possible extra actual for accessibility level
2603 if Present (Extra_Accessibility (Formal)) then
2605 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2606 -- attribute, then the original actual may be an aliased object
2607 -- occurring as the prefix in a call using "Object.Operation"
2608 -- notation. In that case we must pass the level of the object,
2609 -- so Prev_Orig is reset to Prev and the attribute will be
2610 -- processed by the code for Access attributes further below.
2612 if Prev_Orig /= Prev
2613 and then Nkind (Prev) = N_Attribute_Reference
2614 and then
2615 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2616 and then Is_Aliased_View (Prev_Orig)
2617 then
2618 Prev_Orig := Prev;
2619 end if;
2621 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2622 -- accessibility levels.
2624 if Is_Thunk (Current_Scope) then
2625 declare
2626 Parm_Ent : Entity_Id;
2628 begin
2629 if Is_Controlling_Actual (Actual) then
2631 -- Find the corresponding actual of the thunk
2633 Parm_Ent := First_Entity (Current_Scope);
2634 for J in 2 .. Param_Count loop
2635 Next_Entity (Parm_Ent);
2636 end loop;
2638 -- Handle unchecked conversion of access types generated
2639 -- in thunks (cf. Expand_Interface_Thunk).
2641 elsif Is_Access_Type (Etype (Actual))
2642 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2643 then
2644 Parm_Ent := Entity (Expression (Actual));
2646 else pragma Assert (Is_Entity_Name (Actual));
2647 Parm_Ent := Entity (Actual);
2648 end if;
2650 Add_Extra_Actual
2651 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2652 Extra_Accessibility (Formal));
2653 end;
2655 elsif Is_Entity_Name (Prev_Orig) then
2657 -- When passing an access parameter, or a renaming of an access
2658 -- parameter, as the actual to another access parameter we need
2659 -- to pass along the actual's own access level parameter. This
2660 -- is done if we are within the scope of the formal access
2661 -- parameter (if this is an inlined body the extra formal is
2662 -- irrelevant).
2664 if (Is_Formal (Entity (Prev_Orig))
2665 or else
2666 (Present (Renamed_Object (Entity (Prev_Orig)))
2667 and then
2668 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2669 and then
2670 Is_Formal
2671 (Entity (Renamed_Object (Entity (Prev_Orig))))))
2672 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2673 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2674 then
2675 declare
2676 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2678 begin
2679 pragma Assert (Present (Parm_Ent));
2681 if Present (Extra_Accessibility (Parm_Ent)) then
2682 Add_Extra_Actual
2683 (New_Occurrence_Of
2684 (Extra_Accessibility (Parm_Ent), Loc),
2685 Extra_Accessibility (Formal));
2687 -- If the actual access parameter does not have an
2688 -- associated extra formal providing its scope level,
2689 -- then treat the actual as having library-level
2690 -- accessibility.
2692 else
2693 Add_Extra_Actual
2694 (Make_Integer_Literal (Loc,
2695 Intval => Scope_Depth (Standard_Standard)),
2696 Extra_Accessibility (Formal));
2697 end if;
2698 end;
2700 -- The actual is a normal access value, so just pass the level
2701 -- of the actual's access type.
2703 else
2704 Add_Extra_Actual
2705 (Dynamic_Accessibility_Level (Prev_Orig),
2706 Extra_Accessibility (Formal));
2707 end if;
2709 -- If the actual is an access discriminant, then pass the level
2710 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2712 elsif Nkind (Prev_Orig) = N_Selected_Component
2713 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2714 E_Discriminant
2715 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2716 E_Anonymous_Access_Type
2717 then
2718 Add_Extra_Actual
2719 (Make_Integer_Literal (Loc,
2720 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2721 Extra_Accessibility (Formal));
2723 -- All other cases
2725 else
2726 case Nkind (Prev_Orig) is
2728 when N_Attribute_Reference =>
2729 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2731 -- For X'Access, pass on the level of the prefix X
2733 when Attribute_Access =>
2735 -- If this is an Access attribute applied to the
2736 -- the current instance object passed to a type
2737 -- initialization procedure, then use the level
2738 -- of the type itself. This is not really correct,
2739 -- as there should be an extra level parameter
2740 -- passed in with _init formals (only in the case
2741 -- where the type is immutably limited), but we
2742 -- don't have an easy way currently to create such
2743 -- an extra formal (init procs aren't ever frozen).
2744 -- For now we just use the level of the type,
2745 -- which may be too shallow, but that works better
2746 -- than passing Object_Access_Level of the type,
2747 -- which can be one level too deep in some cases.
2748 -- ???
2750 if Is_Entity_Name (Prefix (Prev_Orig))
2751 and then Is_Type (Entity (Prefix (Prev_Orig)))
2752 then
2753 Add_Extra_Actual
2754 (Make_Integer_Literal (Loc,
2755 Intval =>
2756 Type_Access_Level
2757 (Entity (Prefix (Prev_Orig)))),
2758 Extra_Accessibility (Formal));
2760 else
2761 Add_Extra_Actual
2762 (Make_Integer_Literal (Loc,
2763 Intval =>
2764 Object_Access_Level
2765 (Prefix (Prev_Orig))),
2766 Extra_Accessibility (Formal));
2767 end if;
2769 -- Treat the unchecked attributes as library-level
2771 when Attribute_Unchecked_Access |
2772 Attribute_Unrestricted_Access =>
2773 Add_Extra_Actual
2774 (Make_Integer_Literal (Loc,
2775 Intval => Scope_Depth (Standard_Standard)),
2776 Extra_Accessibility (Formal));
2778 -- No other cases of attributes returning access
2779 -- values that can be passed to access parameters.
2781 when others =>
2782 raise Program_Error;
2784 end case;
2786 -- For allocators we pass the level of the execution of the
2787 -- called subprogram, which is one greater than the current
2788 -- scope level.
2790 when N_Allocator =>
2791 Add_Extra_Actual
2792 (Make_Integer_Literal (Loc,
2793 Intval => Scope_Depth (Current_Scope) + 1),
2794 Extra_Accessibility (Formal));
2796 -- For most other cases we simply pass the level of the
2797 -- actual's access type. The type is retrieved from
2798 -- Prev rather than Prev_Orig, because in some cases
2799 -- Prev_Orig denotes an original expression that has
2800 -- not been analyzed.
2802 when others =>
2803 Add_Extra_Actual
2804 (Dynamic_Accessibility_Level (Prev),
2805 Extra_Accessibility (Formal));
2806 end case;
2807 end if;
2808 end if;
2810 -- Perform the check of 4.6(49) that prevents a null value from being
2811 -- passed as an actual to an access parameter. Note that the check
2812 -- is elided in the common cases of passing an access attribute or
2813 -- access parameter as an actual. Also, we currently don't enforce
2814 -- this check for expander-generated actuals and when -gnatdj is set.
2816 if Ada_Version >= Ada_2005 then
2818 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
2819 -- the intent of 6.4.1(13) is that null-exclusion checks should
2820 -- not be done for 'out' parameters, even though it refers only
2821 -- to constraint checks, and a null_exclusion is not a constraint.
2822 -- Note that AI05-0196-1 corrects this mistake in the RM.
2824 if Is_Access_Type (Etype (Formal))
2825 and then Can_Never_Be_Null (Etype (Formal))
2826 and then Ekind (Formal) /= E_Out_Parameter
2827 and then Nkind (Prev) /= N_Raise_Constraint_Error
2828 and then (Known_Null (Prev)
2829 or else not Can_Never_Be_Null (Etype (Prev)))
2830 then
2831 Install_Null_Excluding_Check (Prev);
2832 end if;
2834 -- Ada_Version < Ada_2005
2836 else
2837 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2838 or else Access_Checks_Suppressed (Subp)
2839 then
2840 null;
2842 elsif Debug_Flag_J then
2843 null;
2845 elsif not Comes_From_Source (Prev) then
2846 null;
2848 elsif Is_Entity_Name (Prev)
2849 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2850 then
2851 null;
2853 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2854 null;
2856 -- Suppress null checks when passing to access parameters of Java
2857 -- and CIL subprograms. (Should this be done for other foreign
2858 -- conventions as well ???)
2860 elsif Convention (Subp) = Convention_Java
2861 or else Convention (Subp) = Convention_CIL
2862 then
2863 null;
2865 else
2866 Install_Null_Excluding_Check (Prev);
2867 end if;
2868 end if;
2870 -- Perform appropriate validity checks on parameters that
2871 -- are entities.
2873 if Validity_Checks_On then
2874 if (Ekind (Formal) = E_In_Parameter
2875 and then Validity_Check_In_Params)
2876 or else
2877 (Ekind (Formal) = E_In_Out_Parameter
2878 and then Validity_Check_In_Out_Params)
2879 then
2880 -- If the actual is an indexed component of a packed type (or
2881 -- is an indexed or selected component whose prefix recursively
2882 -- meets this condition), it has not been expanded yet. It will
2883 -- be copied in the validity code that follows, and has to be
2884 -- expanded appropriately, so reanalyze it.
2886 -- What we do is just to unset analyzed bits on prefixes till
2887 -- we reach something that does not have a prefix.
2889 declare
2890 Nod : Node_Id;
2892 begin
2893 Nod := Actual;
2894 while Nkind_In (Nod, N_Indexed_Component,
2895 N_Selected_Component)
2896 loop
2897 Set_Analyzed (Nod, False);
2898 Nod := Prefix (Nod);
2899 end loop;
2900 end;
2902 Ensure_Valid (Actual);
2903 end if;
2904 end if;
2906 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2907 -- since this is a left side reference. We only do this for calls
2908 -- from the source program since we assume that compiler generated
2909 -- calls explicitly generate any required checks. We also need it
2910 -- only if we are doing standard validity checks, since clearly it is
2911 -- not needed if validity checks are off, and in subscript validity
2912 -- checking mode, all indexed components are checked with a call
2913 -- directly from Expand_N_Indexed_Component.
2915 if Comes_From_Source (Call_Node)
2916 and then Ekind (Formal) /= E_In_Parameter
2917 and then Validity_Checks_On
2918 and then Validity_Check_Default
2919 and then not Validity_Check_Subscripts
2920 then
2921 Check_Valid_Lvalue_Subscripts (Actual);
2922 end if;
2924 -- Mark any scalar OUT parameter that is a simple variable as no
2925 -- longer known to be valid (unless the type is always valid). This
2926 -- reflects the fact that if an OUT parameter is never set in a
2927 -- procedure, then it can become invalid on the procedure return.
2929 if Ekind (Formal) = E_Out_Parameter
2930 and then Is_Entity_Name (Actual)
2931 and then Ekind (Entity (Actual)) = E_Variable
2932 and then not Is_Known_Valid (Etype (Actual))
2933 then
2934 Set_Is_Known_Valid (Entity (Actual), False);
2935 end if;
2937 -- For an OUT or IN OUT parameter, if the actual is an entity, then
2938 -- clear current values, since they can be clobbered. We are probably
2939 -- doing this in more places than we need to, but better safe than
2940 -- sorry when it comes to retaining bad current values.
2942 if Ekind (Formal) /= E_In_Parameter
2943 and then Is_Entity_Name (Actual)
2944 and then Present (Entity (Actual))
2945 then
2946 declare
2947 Ent : constant Entity_Id := Entity (Actual);
2948 Sav : Node_Id;
2950 begin
2951 -- For an OUT or IN OUT parameter that is an assignable entity,
2952 -- we do not want to clobber the Last_Assignment field, since
2953 -- if it is set, it was precisely because it is indeed an OUT
2954 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
2955 -- since the subprogram could have returned in invalid value.
2957 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
2958 and then Is_Assignable (Ent)
2959 then
2960 Sav := Last_Assignment (Ent);
2961 Kill_Current_Values (Ent);
2962 Set_Last_Assignment (Ent, Sav);
2963 Set_Is_Known_Valid (Ent, False);
2965 -- For all other cases, just kill the current values
2967 else
2968 Kill_Current_Values (Ent);
2969 end if;
2970 end;
2971 end if;
2973 -- If the formal is class wide and the actual is an aggregate, force
2974 -- evaluation so that the back end who does not know about class-wide
2975 -- type, does not generate a temporary of the wrong size.
2977 if not Is_Class_Wide_Type (Etype (Formal)) then
2978 null;
2980 elsif Nkind (Actual) = N_Aggregate
2981 or else (Nkind (Actual) = N_Qualified_Expression
2982 and then Nkind (Expression (Actual)) = N_Aggregate)
2983 then
2984 Force_Evaluation (Actual);
2985 end if;
2987 -- In a remote call, if the formal is of a class-wide type, check
2988 -- that the actual meets the requirements described in E.4(18).
2990 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
2991 Insert_Action (Actual,
2992 Make_Transportable_Check (Loc,
2993 Duplicate_Subexpr_Move_Checks (Actual)));
2994 end if;
2996 -- This label is required when skipping extra actual generation for
2997 -- Unchecked_Union parameters.
2999 <<Skip_Extra_Actual_Generation>>
3001 Param_Count := Param_Count + 1;
3002 Next_Actual (Actual);
3003 Next_Formal (Formal);
3004 end loop;
3006 -- If we are calling an Ada 2012 function which needs to have the
3007 -- "accessibility level determined by the point of call" (AI05-0234)
3008 -- passed in to it, then pass it in.
3010 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3011 and then
3012 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3013 then
3014 declare
3015 Ancestor : Node_Id := Parent (Call_Node);
3016 Level : Node_Id := Empty;
3017 Defer : Boolean := False;
3019 begin
3020 -- Unimplemented: if Subp returns an anonymous access type, then
3022 -- a) if the call is the operand of an explict conversion, then
3023 -- the target type of the conversion (a named access type)
3024 -- determines the accessibility level pass in;
3026 -- b) if the call defines an access discriminant of an object
3027 -- (e.g., the discriminant of an object being created by an
3028 -- allocator, or the discriminant of a function result),
3029 -- then the accessibility level to pass in is that of the
3030 -- discriminated object being initialized).
3032 -- ???
3034 while Nkind (Ancestor) = N_Qualified_Expression
3035 loop
3036 Ancestor := Parent (Ancestor);
3037 end loop;
3039 case Nkind (Ancestor) is
3040 when N_Allocator =>
3042 -- At this point, we'd like to assign
3044 -- Level := Dynamic_Accessibility_Level (Ancestor);
3046 -- but Etype of Ancestor may not have been set yet,
3047 -- so that doesn't work.
3049 -- Handle this later in Expand_Allocator_Expression.
3051 Defer := True;
3053 when N_Object_Declaration | N_Object_Renaming_Declaration =>
3054 declare
3055 Def_Id : constant Entity_Id :=
3056 Defining_Identifier (Ancestor);
3058 begin
3059 if Is_Return_Object (Def_Id) then
3060 if Present (Extra_Accessibility_Of_Result
3061 (Return_Applies_To (Scope (Def_Id))))
3062 then
3063 -- Pass along value that was passed in if the
3064 -- routine we are returning from also has an
3065 -- Accessibility_Of_Result formal.
3067 Level :=
3068 New_Occurrence_Of
3069 (Extra_Accessibility_Of_Result
3070 (Return_Applies_To (Scope (Def_Id))), Loc);
3071 end if;
3072 else
3073 Level :=
3074 Make_Integer_Literal (Loc,
3075 Intval => Object_Access_Level (Def_Id));
3076 end if;
3077 end;
3079 when N_Simple_Return_Statement =>
3080 if Present (Extra_Accessibility_Of_Result
3081 (Return_Applies_To
3082 (Return_Statement_Entity (Ancestor))))
3083 then
3084 -- Pass along value that was passed in if the returned
3085 -- routine also has an Accessibility_Of_Result formal.
3087 Level :=
3088 New_Occurrence_Of
3089 (Extra_Accessibility_Of_Result
3090 (Return_Applies_To
3091 (Return_Statement_Entity (Ancestor))), Loc);
3092 end if;
3094 when others =>
3095 null;
3096 end case;
3098 if not Defer then
3099 if not Present (Level) then
3101 -- The "innermost master that evaluates the function call".
3103 -- ??? - Should we use Integer'Last here instead in order
3104 -- to deal with (some of) the problems associated with
3105 -- calls to subps whose enclosing scope is unknown (e.g.,
3106 -- Anon_Access_To_Subp_Param.all)?
3108 Level := Make_Integer_Literal (Loc,
3109 Scope_Depth (Current_Scope) + 1);
3110 end if;
3112 Add_Extra_Actual
3113 (Level,
3114 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3115 end if;
3116 end;
3117 end if;
3119 -- If we are expanding the RHS of an assignment we need to check if tag
3120 -- propagation is needed. You might expect this processing to be in
3121 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3122 -- assignment might be transformed to a declaration for an unconstrained
3123 -- value if the expression is classwide.
3125 if Nkind (Call_Node) = N_Function_Call
3126 and then Is_Tag_Indeterminate (Call_Node)
3127 and then Is_Entity_Name (Name (Call_Node))
3128 then
3129 declare
3130 Ass : Node_Id := Empty;
3132 begin
3133 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3134 Ass := Parent (Call_Node);
3136 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3137 and then Nkind (Parent (Parent (Call_Node))) =
3138 N_Assignment_Statement
3139 then
3140 Ass := Parent (Parent (Call_Node));
3142 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3143 and then Nkind (Parent (Parent (Call_Node))) =
3144 N_Assignment_Statement
3145 then
3146 Ass := Parent (Parent (Call_Node));
3147 end if;
3149 if Present (Ass)
3150 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3151 then
3152 if Is_Access_Type (Etype (Call_Node)) then
3153 if Designated_Type (Etype (Call_Node)) /=
3154 Root_Type (Etype (Name (Ass)))
3155 then
3156 Error_Msg_NE
3157 ("tag-indeterminate expression "
3158 & " must have designated type& (RM 5.2 (6))",
3159 Call_Node, Root_Type (Etype (Name (Ass))));
3160 else
3161 Propagate_Tag (Name (Ass), Call_Node);
3162 end if;
3164 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3165 Error_Msg_NE
3166 ("tag-indeterminate expression must have type&"
3167 & "(RM 5.2 (6))",
3168 Call_Node, Root_Type (Etype (Name (Ass))));
3170 else
3171 Propagate_Tag (Name (Ass), Call_Node);
3172 end if;
3174 -- The call will be rewritten as a dispatching call, and
3175 -- expanded as such.
3177 return;
3178 end if;
3179 end;
3180 end if;
3182 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3183 -- it to point to the correct secondary virtual table
3185 if Nkind (Call_Node) in N_Subprogram_Call
3186 and then CW_Interface_Formals_Present
3187 then
3188 Expand_Interface_Actuals (Call_Node);
3189 end if;
3191 -- Deals with Dispatch_Call if we still have a call, before expanding
3192 -- extra actuals since this will be done on the re-analysis of the
3193 -- dispatching call. Note that we do not try to shorten the actual list
3194 -- for a dispatching call, it would not make sense to do so. Expansion
3195 -- of dispatching calls is suppressed when VM_Target, because the VM
3196 -- back-ends directly handle the generation of dispatching calls and
3197 -- would have to undo any expansion to an indirect call.
3199 if Nkind (Call_Node) in N_Subprogram_Call
3200 and then Present (Controlling_Argument (Call_Node))
3201 then
3202 declare
3203 Call_Typ : constant Entity_Id := Etype (Call_Node);
3204 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3205 Eq_Prim_Op : Entity_Id := Empty;
3206 New_Call : Node_Id;
3207 Param : Node_Id;
3208 Prev_Call : Node_Id;
3210 begin
3211 if not Is_Limited_Type (Typ) then
3212 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3213 end if;
3215 if Tagged_Type_Expansion then
3216 Expand_Dispatching_Call (Call_Node);
3218 -- The following return is worrisome. Is it really OK to skip
3219 -- all remaining processing in this procedure ???
3221 return;
3223 -- VM targets
3225 else
3226 Apply_Tag_Checks (Call_Node);
3228 -- If this is a dispatching "=", we must first compare the
3229 -- tags so we generate: x.tag = y.tag and then x = y
3231 if Subp = Eq_Prim_Op then
3233 -- Mark the node as analyzed to avoid reanalizing this
3234 -- dispatching call (which would cause a never-ending loop)
3236 Prev_Call := Relocate_Node (Call_Node);
3237 Set_Analyzed (Prev_Call);
3239 Param := First_Actual (Call_Node);
3240 New_Call :=
3241 Make_And_Then (Loc,
3242 Left_Opnd =>
3243 Make_Op_Eq (Loc,
3244 Left_Opnd =>
3245 Make_Selected_Component (Loc,
3246 Prefix => New_Value (Param),
3247 Selector_Name =>
3248 New_Occurrence_Of
3249 (First_Tag_Component (Typ), Loc)),
3251 Right_Opnd =>
3252 Make_Selected_Component (Loc,
3253 Prefix =>
3254 Unchecked_Convert_To (Typ,
3255 New_Value (Next_Actual (Param))),
3256 Selector_Name =>
3257 New_Occurrence_Of
3258 (First_Tag_Component (Typ), Loc))),
3259 Right_Opnd => Prev_Call);
3261 Rewrite (Call_Node, New_Call);
3263 Analyze_And_Resolve
3264 (Call_Node, Call_Typ, Suppress => All_Checks);
3265 end if;
3267 -- Expansion of a dispatching call results in an indirect call,
3268 -- which in turn causes current values to be killed (see
3269 -- Resolve_Call), so on VM targets we do the call here to
3270 -- ensure consistent warnings between VM and non-VM targets.
3272 Kill_Current_Values;
3273 end if;
3275 -- If this is a dispatching "=" then we must update the reference
3276 -- to the call node because we generated:
3277 -- x.tag = y.tag and then x = y
3279 if Subp = Eq_Prim_Op then
3280 Call_Node := Right_Opnd (Call_Node);
3281 end if;
3282 end;
3283 end if;
3285 -- Similarly, expand calls to RCI subprograms on which pragma
3286 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3287 -- later. Do this only when the call comes from source since we
3288 -- do not want such a rewriting to occur in expanded code.
3290 if Is_All_Remote_Call (Call_Node) then
3291 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3293 -- Similarly, do not add extra actuals for an entry call whose entity
3294 -- is a protected procedure, or for an internal protected subprogram
3295 -- call, because it will be rewritten as a protected subprogram call
3296 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3298 elsif Is_Protected_Type (Scope (Subp))
3299 and then (Ekind (Subp) = E_Procedure
3300 or else Ekind (Subp) = E_Function)
3301 then
3302 null;
3304 -- During that loop we gathered the extra actuals (the ones that
3305 -- correspond to Extra_Formals), so now they can be appended.
3307 else
3308 while Is_Non_Empty_List (Extra_Actuals) loop
3309 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3310 end loop;
3311 end if;
3313 -- At this point we have all the actuals, so this is the point at which
3314 -- the various expansion activities for actuals is carried out.
3316 Expand_Actuals (Call_Node, Subp);
3318 -- Verify that the actuals do not share storage. This check must be done
3319 -- on the caller side rather that inside the subprogram to avoid issues
3320 -- of parameter passing.
3322 if Check_Aliasing_Of_Parameters then
3323 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3324 end if;
3326 -- If the subprogram is a renaming, or if it is inherited, replace it in
3327 -- the call with the name of the actual subprogram being called. If this
3328 -- is a dispatching call, the run-time decides what to call. The Alias
3329 -- attribute does not apply to entries.
3331 if Nkind (Call_Node) /= N_Entry_Call_Statement
3332 and then No (Controlling_Argument (Call_Node))
3333 and then Present (Parent_Subp)
3334 and then not Is_Direct_Deep_Call (Subp)
3335 then
3336 if Present (Inherited_From_Formal (Subp)) then
3337 Parent_Subp := Inherited_From_Formal (Subp);
3338 else
3339 Parent_Subp := Ultimate_Alias (Parent_Subp);
3340 end if;
3342 -- The below setting of Entity is suspect, see F109-018 discussion???
3344 Set_Entity (Name (Call_Node), Parent_Subp);
3346 if Is_Abstract_Subprogram (Parent_Subp)
3347 and then not In_Instance
3348 then
3349 Error_Msg_NE
3350 ("cannot call abstract subprogram &!",
3351 Name (Call_Node), Parent_Subp);
3352 end if;
3354 -- Inspect all formals of derived subprogram Subp. Compare parameter
3355 -- types with the parent subprogram and check whether an actual may
3356 -- need a type conversion to the corresponding formal of the parent
3357 -- subprogram.
3359 -- Not clear whether intrinsic subprograms need such conversions. ???
3361 if not Is_Intrinsic_Subprogram (Parent_Subp)
3362 or else Is_Generic_Instance (Parent_Subp)
3363 then
3364 declare
3365 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3366 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3367 -- and resolve the newly generated construct.
3369 -------------
3370 -- Convert --
3371 -------------
3373 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3374 begin
3375 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3376 Analyze (Act);
3377 Resolve (Act, Typ);
3378 end Convert;
3380 -- Local variables
3382 Actual_Typ : Entity_Id;
3383 Formal_Typ : Entity_Id;
3384 Parent_Typ : Entity_Id;
3386 begin
3387 Actual := First_Actual (Call_Node);
3388 Formal := First_Formal (Subp);
3389 Parent_Formal := First_Formal (Parent_Subp);
3390 while Present (Formal) loop
3391 Actual_Typ := Etype (Actual);
3392 Formal_Typ := Etype (Formal);
3393 Parent_Typ := Etype (Parent_Formal);
3395 -- For an IN parameter of a scalar type, the parent formal
3396 -- type and derived formal type differ or the parent formal
3397 -- type and actual type do not match statically.
3399 if Is_Scalar_Type (Formal_Typ)
3400 and then Ekind (Formal) = E_In_Parameter
3401 and then Formal_Typ /= Parent_Typ
3402 and then
3403 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3404 and then not Raises_Constraint_Error (Actual)
3405 then
3406 Convert (Actual, Parent_Typ);
3407 Enable_Range_Check (Actual);
3409 -- If the actual has been marked as requiring a range
3410 -- check, then generate it here.
3412 if Do_Range_Check (Actual) then
3413 Generate_Range_Check
3414 (Actual, Etype (Formal), CE_Range_Check_Failed);
3415 end if;
3417 -- For access types, the parent formal type and actual type
3418 -- differ.
3420 elsif Is_Access_Type (Formal_Typ)
3421 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3422 then
3423 if Ekind (Formal) /= E_In_Parameter then
3424 Convert (Actual, Parent_Typ);
3426 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3427 and then Designated_Type (Parent_Typ) /=
3428 Designated_Type (Actual_Typ)
3429 and then not Is_Controlling_Formal (Formal)
3430 then
3431 -- This unchecked conversion is not necessary unless
3432 -- inlining is enabled, because in that case the type
3433 -- mismatch may become visible in the body about to be
3434 -- inlined.
3436 Rewrite (Actual,
3437 Unchecked_Convert_To (Parent_Typ,
3438 Relocate_Node (Actual)));
3439 Analyze (Actual);
3440 Resolve (Actual, Parent_Typ);
3441 end if;
3443 -- If there is a change of representation, then generate a
3444 -- warning, and do the change of representation.
3446 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3447 Error_Msg_N
3448 ("??change of representation required", Actual);
3449 Convert (Actual, Parent_Typ);
3451 -- For array and record types, the parent formal type and
3452 -- derived formal type have different sizes or pragma Pack
3453 -- status.
3455 elsif ((Is_Array_Type (Formal_Typ)
3456 and then Is_Array_Type (Parent_Typ))
3457 or else
3458 (Is_Record_Type (Formal_Typ)
3459 and then Is_Record_Type (Parent_Typ)))
3460 and then
3461 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3462 or else Has_Pragma_Pack (Formal_Typ) /=
3463 Has_Pragma_Pack (Parent_Typ))
3464 then
3465 Convert (Actual, Parent_Typ);
3466 end if;
3468 Next_Actual (Actual);
3469 Next_Formal (Formal);
3470 Next_Formal (Parent_Formal);
3471 end loop;
3472 end;
3473 end if;
3475 Orig_Subp := Subp;
3476 Subp := Parent_Subp;
3477 end if;
3479 -- Deal with case where call is an explicit dereference
3481 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3483 -- Handle case of access to protected subprogram type
3485 if Is_Access_Protected_Subprogram_Type
3486 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3487 then
3488 -- If this is a call through an access to protected operation, the
3489 -- prefix has the form (object'address, operation'access). Rewrite
3490 -- as a for other protected calls: the object is the 1st parameter
3491 -- of the list of actuals.
3493 declare
3494 Call : Node_Id;
3495 Parm : List_Id;
3496 Nam : Node_Id;
3497 Obj : Node_Id;
3498 Ptr : constant Node_Id := Prefix (Name (Call_Node));
3500 T : constant Entity_Id :=
3501 Equivalent_Type (Base_Type (Etype (Ptr)));
3503 D_T : constant Entity_Id :=
3504 Designated_Type (Base_Type (Etype (Ptr)));
3506 begin
3507 Obj :=
3508 Make_Selected_Component (Loc,
3509 Prefix => Unchecked_Convert_To (T, Ptr),
3510 Selector_Name =>
3511 New_Occurrence_Of (First_Entity (T), Loc));
3513 Nam :=
3514 Make_Selected_Component (Loc,
3515 Prefix => Unchecked_Convert_To (T, Ptr),
3516 Selector_Name =>
3517 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
3519 Nam :=
3520 Make_Explicit_Dereference (Loc,
3521 Prefix => Nam);
3523 if Present (Parameter_Associations (Call_Node)) then
3524 Parm := Parameter_Associations (Call_Node);
3525 else
3526 Parm := New_List;
3527 end if;
3529 Prepend (Obj, Parm);
3531 if Etype (D_T) = Standard_Void_Type then
3532 Call :=
3533 Make_Procedure_Call_Statement (Loc,
3534 Name => Nam,
3535 Parameter_Associations => Parm);
3536 else
3537 Call :=
3538 Make_Function_Call (Loc,
3539 Name => Nam,
3540 Parameter_Associations => Parm);
3541 end if;
3543 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
3544 Set_Etype (Call, Etype (D_T));
3546 -- We do not re-analyze the call to avoid infinite recursion.
3547 -- We analyze separately the prefix and the object, and set
3548 -- the checks on the prefix that would otherwise be emitted
3549 -- when resolving a call.
3551 Rewrite (Call_Node, Call);
3552 Analyze (Nam);
3553 Apply_Access_Check (Nam);
3554 Analyze (Obj);
3555 return;
3556 end;
3557 end if;
3558 end if;
3560 -- If this is a call to an intrinsic subprogram, then perform the
3561 -- appropriate expansion to the corresponding tree node and we
3562 -- are all done (since after that the call is gone).
3564 -- In the case where the intrinsic is to be processed by the back end,
3565 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3566 -- since the idea in this case is to pass the call unchanged. If the
3567 -- intrinsic is an inherited unchecked conversion, and the derived type
3568 -- is the target type of the conversion, we must retain it as the return
3569 -- type of the expression. Otherwise the expansion below, which uses the
3570 -- parent operation, will yield the wrong type.
3572 if Is_Intrinsic_Subprogram (Subp) then
3573 Expand_Intrinsic_Call (Call_Node, Subp);
3575 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
3576 and then Parent_Subp /= Orig_Subp
3577 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3578 then
3579 Set_Etype (Call_Node, Etype (Orig_Subp));
3580 end if;
3582 return;
3583 end if;
3585 if Ekind_In (Subp, E_Function, E_Procedure) then
3587 -- We perform two simple optimization on calls:
3589 -- a) replace calls to null procedures unconditionally;
3591 -- b) for To_Address, just do an unchecked conversion. Not only is
3592 -- this efficient, but it also avoids order of elaboration problems
3593 -- when address clauses are inlined (address expression elaborated
3594 -- at the wrong point).
3596 -- We perform these optimization regardless of whether we are in the
3597 -- main unit or in a unit in the context of the main unit, to ensure
3598 -- that tree generated is the same in both cases, for CodePeer use.
3600 if Is_RTE (Subp, RE_To_Address) then
3601 Rewrite (Call_Node,
3602 Unchecked_Convert_To
3603 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
3604 return;
3606 elsif Is_Null_Procedure (Subp) then
3607 Rewrite (Call_Node, Make_Null_Statement (Loc));
3608 return;
3609 end if;
3611 -- Handle inlining. No action needed if the subprogram is not inlined
3613 if not Is_Inlined (Subp) then
3614 null;
3616 -- Handle frontend inlining
3618 elsif not Back_End_Inlining then
3619 Inlined_Subprogram : declare
3620 Bod : Node_Id;
3621 Must_Inline : Boolean := False;
3622 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3624 begin
3625 -- Verify that the body to inline has already been seen, and
3626 -- that if the body is in the current unit the inlining does
3627 -- not occur earlier. This avoids order-of-elaboration problems
3628 -- in the back end.
3630 -- This should be documented in sinfo/einfo ???
3632 if No (Spec)
3633 or else Nkind (Spec) /= N_Subprogram_Declaration
3634 or else No (Body_To_Inline (Spec))
3635 then
3636 Must_Inline := False;
3638 -- If this an inherited function that returns a private type,
3639 -- do not inline if the full view is an unconstrained array,
3640 -- because such calls cannot be inlined.
3642 elsif Present (Orig_Subp)
3643 and then Is_Array_Type (Etype (Orig_Subp))
3644 and then not Is_Constrained (Etype (Orig_Subp))
3645 then
3646 Must_Inline := False;
3648 elsif In_Unfrozen_Instance (Scope (Subp)) then
3649 Must_Inline := False;
3651 else
3652 Bod := Body_To_Inline (Spec);
3654 if (In_Extended_Main_Code_Unit (Call_Node)
3655 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
3656 or else Has_Pragma_Inline_Always (Subp))
3657 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3658 or else
3659 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3660 then
3661 Must_Inline := True;
3663 -- If we are compiling a package body that is not the main
3664 -- unit, it must be for inlining/instantiation purposes,
3665 -- in which case we inline the call to insure that the same
3666 -- temporaries are generated when compiling the body by
3667 -- itself. Otherwise link errors can occur.
3669 -- If the function being called is itself in the main unit,
3670 -- we cannot inline, because there is a risk of double
3671 -- elaboration and/or circularity: the inlining can make
3672 -- visible a private entity in the body of the main unit,
3673 -- that gigi will see before its sees its proper definition.
3675 elsif not (In_Extended_Main_Code_Unit (Call_Node))
3676 and then In_Package_Body
3677 then
3678 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3679 end if;
3680 end if;
3682 if Must_Inline then
3683 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3685 else
3686 -- Let the back end handle it
3688 Add_Inlined_Body (Subp);
3690 if Front_End_Inlining
3691 and then Nkind (Spec) = N_Subprogram_Declaration
3692 and then (In_Extended_Main_Code_Unit (Call_Node))
3693 and then No (Body_To_Inline (Spec))
3694 and then not Has_Completion (Subp)
3695 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3696 then
3697 Cannot_Inline
3698 ("cannot inline& (body not seen yet)?",
3699 Call_Node, Subp);
3700 end if;
3701 end if;
3702 end Inlined_Subprogram;
3704 -- Back end inlining: let the back end handle it
3706 elsif No (Unit_Declaration_Node (Subp))
3707 or else Nkind (Unit_Declaration_Node (Subp)) /=
3708 N_Subprogram_Declaration
3709 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
3710 then
3711 Add_Inlined_Body (Subp);
3712 Register_Backend_Call (Call_Node);
3714 -- If the call is to a function in a run-time unit that is marked
3715 -- Inline_Always, we must suppress debugging information on it,
3716 -- so that the code that is eventually inlined will not affect
3717 -- debugging of the user program.
3719 if Is_Predefined_File_Name
3720 (Unit_File_Name (Get_Source_Unit (Sloc (Subp))))
3721 and then In_Extended_Main_Source_Unit (N)
3722 then
3723 -- We make an exception for calls to the Ada hierarchy if call
3724 -- comes from source, because some user applications need the
3725 -- debugging information for such calls.
3727 if Comes_From_Source (Call_Node)
3728 and then Name_Buffer (1 .. 2) = "a-"
3729 then
3730 null;
3731 else
3732 Set_Needs_Debug_Info (Subp, False);
3733 end if;
3734 end if;
3736 -- Front end expansion of simple functions returning unconstrained
3737 -- types (see Check_And_Split_Unconstrained_Function) and simple
3738 -- renamings inlined by the front end (see Build_Renamed_Entity).
3740 else
3741 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3742 end if;
3743 end if;
3745 -- Check for protected subprogram. This is either an intra-object call,
3746 -- or a protected function call. Protected procedure calls are rewritten
3747 -- as entry calls and handled accordingly.
3749 -- In Ada 2005, this may be an indirect call to an access parameter that
3750 -- is an access_to_subprogram. In that case the anonymous type has a
3751 -- scope that is a protected operation, but the call is a regular one.
3752 -- In either case do not expand call if subprogram is eliminated.
3754 Scop := Scope (Subp);
3756 if Nkind (Call_Node) /= N_Entry_Call_Statement
3757 and then Is_Protected_Type (Scop)
3758 and then Ekind (Subp) /= E_Subprogram_Type
3759 and then not Is_Eliminated (Subp)
3760 then
3761 -- If the call is an internal one, it is rewritten as a call to the
3762 -- corresponding unprotected subprogram.
3764 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
3765 end if;
3767 -- Functions returning controlled objects need special attention. If
3768 -- the return type is limited, then the context is initialization and
3769 -- different processing applies. If the call is to a protected function,
3770 -- the expansion above will call Expand_Call recursively. Otherwise the
3771 -- function call is transformed into a temporary which obtains the
3772 -- result from the secondary stack.
3774 if Needs_Finalization (Etype (Subp)) then
3775 if not Is_Limited_View (Etype (Subp))
3776 and then
3777 (No (First_Formal (Subp))
3778 or else
3779 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3780 then
3781 Expand_Ctrl_Function_Call (Call_Node);
3783 -- Build-in-place function calls which appear in anonymous contexts
3784 -- need a transient scope to ensure the proper finalization of the
3785 -- intermediate result after its use.
3787 elsif Is_Build_In_Place_Function_Call (Call_Node)
3788 and then
3789 Nkind_In (Parent (Call_Node), N_Attribute_Reference,
3790 N_Function_Call,
3791 N_Indexed_Component,
3792 N_Object_Renaming_Declaration,
3793 N_Procedure_Call_Statement,
3794 N_Selected_Component,
3795 N_Slice)
3796 then
3797 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
3798 end if;
3799 end if;
3800 end Expand_Call;
3802 -------------------------------
3803 -- Expand_Ctrl_Function_Call --
3804 -------------------------------
3806 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
3807 function Is_Element_Reference (N : Node_Id) return Boolean;
3808 -- Determine whether node N denotes a reference to an Ada 2012 container
3809 -- element.
3811 --------------------------
3812 -- Is_Element_Reference --
3813 --------------------------
3815 function Is_Element_Reference (N : Node_Id) return Boolean is
3816 Ref : constant Node_Id := Original_Node (N);
3818 begin
3819 -- Analysis marks an element reference by setting the generalized
3820 -- indexing attribute of an indexed component before the component
3821 -- is rewritten into a function call.
3823 return
3824 Nkind (Ref) = N_Indexed_Component
3825 and then Present (Generalized_Indexing (Ref));
3826 end Is_Element_Reference;
3828 -- Local variables
3830 Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
3832 -- Start of processing for Expand_Ctrl_Function_Call
3834 begin
3835 -- Optimization, if the returned value (which is on the sec-stack) is
3836 -- returned again, no need to copy/readjust/finalize, we can just pass
3837 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
3838 -- attachment is needed
3840 if Nkind (Parent (N)) = N_Simple_Return_Statement then
3841 return;
3842 end if;
3844 -- Resolution is now finished, make sure we don't start analysis again
3845 -- because of the duplication.
3847 Set_Analyzed (N);
3849 -- A function which returns a controlled object uses the secondary
3850 -- stack. Rewrite the call into a temporary which obtains the result of
3851 -- the function using 'reference.
3853 Remove_Side_Effects (N);
3855 -- When the temporary function result appears inside a case expression
3856 -- or an if expression, its lifetime must be extended to match that of
3857 -- the context. If not, the function result will be finalized too early
3858 -- and the evaluation of the expression could yield incorrect result. An
3859 -- exception to this rule are references to Ada 2012 container elements.
3860 -- Such references must be finalized at the end of each iteration of the
3861 -- related quantified expression, otherwise the container will remain
3862 -- busy.
3864 if not Is_Elem_Ref
3865 and then Within_Case_Or_If_Expression (N)
3866 and then Nkind (N) = N_Explicit_Dereference
3867 then
3868 Set_Is_Processed_Transient (Entity (Prefix (N)));
3869 end if;
3870 end Expand_Ctrl_Function_Call;
3872 ----------------------------------------
3873 -- Expand_N_Extended_Return_Statement --
3874 ----------------------------------------
3876 -- If there is a Handled_Statement_Sequence, we rewrite this:
3878 -- return Result : T := <expression> do
3879 -- <handled_seq_of_stms>
3880 -- end return;
3882 -- to be:
3884 -- declare
3885 -- Result : T := <expression>;
3886 -- begin
3887 -- <handled_seq_of_stms>
3888 -- return Result;
3889 -- end;
3891 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
3893 -- return Result : T := <expression>;
3895 -- to be:
3897 -- return <expression>;
3899 -- unless it's build-in-place or there's no <expression>, in which case
3900 -- we generate:
3902 -- declare
3903 -- Result : T := <expression>;
3904 -- begin
3905 -- return Result;
3906 -- end;
3908 -- Note that this case could have been written by the user as an extended
3909 -- return statement, or could have been transformed to this from a simple
3910 -- return statement.
3912 -- That is, we need to have a reified return object if there are statements
3913 -- (which might refer to it) or if we're doing build-in-place (so we can
3914 -- set its address to the final resting place or if there is no expression
3915 -- (in which case default initial values might need to be set).
3917 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
3918 Loc : constant Source_Ptr := Sloc (N);
3920 Par_Func : constant Entity_Id :=
3921 Return_Applies_To (Return_Statement_Entity (N));
3922 Result_Subt : constant Entity_Id := Etype (Par_Func);
3923 Ret_Obj_Id : constant Entity_Id :=
3924 First_Entity (Return_Statement_Entity (N));
3925 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
3927 Is_Build_In_Place : constant Boolean :=
3928 Is_Build_In_Place_Function (Par_Func);
3930 Exp : Node_Id;
3931 HSS : Node_Id;
3932 Result : Node_Id;
3933 Return_Stmt : Node_Id;
3934 Stmts : List_Id;
3936 function Build_Heap_Allocator
3937 (Temp_Id : Entity_Id;
3938 Temp_Typ : Entity_Id;
3939 Func_Id : Entity_Id;
3940 Ret_Typ : Entity_Id;
3941 Alloc_Expr : Node_Id) return Node_Id;
3942 -- Create the statements necessary to allocate a return object on the
3943 -- caller's master. The master is available through implicit parameter
3944 -- BIPfinalizationmaster.
3946 -- if BIPfinalizationmaster /= null then
3947 -- declare
3948 -- type Ptr_Typ is access Ret_Typ;
3949 -- for Ptr_Typ'Storage_Pool use
3950 -- Base_Pool (BIPfinalizationmaster.all).all;
3951 -- Local : Ptr_Typ;
3953 -- begin
3954 -- procedure Allocate (...) is
3955 -- begin
3956 -- System.Storage_Pools.Subpools.Allocate_Any (...);
3957 -- end Allocate;
3959 -- Local := <Alloc_Expr>;
3960 -- Temp_Id := Temp_Typ (Local);
3961 -- end;
3962 -- end if;
3964 -- Temp_Id is the temporary which is used to reference the internally
3965 -- created object in all allocation forms. Temp_Typ is the type of the
3966 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
3967 -- type of Func_Id. Alloc_Expr is the actual allocator.
3969 function Move_Activation_Chain return Node_Id;
3970 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
3971 -- with parameters:
3972 -- From current activation chain
3973 -- To activation chain passed in by the caller
3974 -- New_Master master passed in by the caller
3976 --------------------------
3977 -- Build_Heap_Allocator --
3978 --------------------------
3980 function Build_Heap_Allocator
3981 (Temp_Id : Entity_Id;
3982 Temp_Typ : Entity_Id;
3983 Func_Id : Entity_Id;
3984 Ret_Typ : Entity_Id;
3985 Alloc_Expr : Node_Id) return Node_Id
3987 begin
3988 pragma Assert (Is_Build_In_Place_Function (Func_Id));
3990 -- Processing for build-in-place object allocation. This is disabled
3991 -- on .NET/JVM because the targets do not support pools.
3993 if VM_Target = No_VM
3994 and then Needs_Finalization (Ret_Typ)
3995 then
3996 declare
3997 Decls : constant List_Id := New_List;
3998 Fin_Mas_Id : constant Entity_Id :=
3999 Build_In_Place_Formal
4000 (Func_Id, BIP_Finalization_Master);
4001 Stmts : constant List_Id := New_List;
4002 Desig_Typ : Entity_Id;
4003 Local_Id : Entity_Id;
4004 Pool_Id : Entity_Id;
4005 Ptr_Typ : Entity_Id;
4007 begin
4008 -- Generate:
4009 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4011 Pool_Id := Make_Temporary (Loc, 'P');
4013 Append_To (Decls,
4014 Make_Object_Renaming_Declaration (Loc,
4015 Defining_Identifier => Pool_Id,
4016 Subtype_Mark =>
4017 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4018 Name =>
4019 Make_Explicit_Dereference (Loc,
4020 Prefix =>
4021 Make_Function_Call (Loc,
4022 Name =>
4023 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4024 Parameter_Associations => New_List (
4025 Make_Explicit_Dereference (Loc,
4026 Prefix =>
4027 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4029 -- Create an access type which uses the storage pool of the
4030 -- caller's master. This additional type is necessary because
4031 -- the finalization master cannot be associated with the type
4032 -- of the temporary. Otherwise the secondary stack allocation
4033 -- will fail.
4035 Desig_Typ := Ret_Typ;
4037 -- Ensure that the build-in-place machinery uses a fat pointer
4038 -- when allocating an unconstrained array on the heap. In this
4039 -- case the result object type is a constrained array type even
4040 -- though the function type is unconstrained.
4042 if Ekind (Desig_Typ) = E_Array_Subtype then
4043 Desig_Typ := Base_Type (Desig_Typ);
4044 end if;
4046 -- Generate:
4047 -- type Ptr_Typ is access Desig_Typ;
4049 Ptr_Typ := Make_Temporary (Loc, 'P');
4051 Append_To (Decls,
4052 Make_Full_Type_Declaration (Loc,
4053 Defining_Identifier => Ptr_Typ,
4054 Type_Definition =>
4055 Make_Access_To_Object_Definition (Loc,
4056 Subtype_Indication =>
4057 New_Occurrence_Of (Desig_Typ, Loc))));
4059 -- Perform minor decoration in order to set the master and the
4060 -- storage pool attributes.
4062 Set_Ekind (Ptr_Typ, E_Access_Type);
4063 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4064 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4066 -- Create the temporary, generate:
4067 -- Local_Id : Ptr_Typ;
4069 Local_Id := Make_Temporary (Loc, 'T');
4071 Append_To (Decls,
4072 Make_Object_Declaration (Loc,
4073 Defining_Identifier => Local_Id,
4074 Object_Definition =>
4075 New_Occurrence_Of (Ptr_Typ, Loc)));
4077 -- Allocate the object, generate:
4078 -- Local_Id := <Alloc_Expr>;
4080 Append_To (Stmts,
4081 Make_Assignment_Statement (Loc,
4082 Name => New_Occurrence_Of (Local_Id, Loc),
4083 Expression => Alloc_Expr));
4085 -- Generate:
4086 -- Temp_Id := Temp_Typ (Local_Id);
4088 Append_To (Stmts,
4089 Make_Assignment_Statement (Loc,
4090 Name => New_Occurrence_Of (Temp_Id, Loc),
4091 Expression =>
4092 Unchecked_Convert_To (Temp_Typ,
4093 New_Occurrence_Of (Local_Id, Loc))));
4095 -- Wrap the allocation in a block. This is further conditioned
4096 -- by checking the caller finalization master at runtime. A
4097 -- null value indicates a non-existent master, most likely due
4098 -- to a Finalize_Storage_Only allocation.
4100 -- Generate:
4101 -- if BIPfinalizationmaster /= null then
4102 -- declare
4103 -- <Decls>
4104 -- begin
4105 -- <Stmts>
4106 -- end;
4107 -- end if;
4109 return
4110 Make_If_Statement (Loc,
4111 Condition =>
4112 Make_Op_Ne (Loc,
4113 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4114 Right_Opnd => Make_Null (Loc)),
4116 Then_Statements => New_List (
4117 Make_Block_Statement (Loc,
4118 Declarations => Decls,
4119 Handled_Statement_Sequence =>
4120 Make_Handled_Sequence_Of_Statements (Loc,
4121 Statements => Stmts))));
4122 end;
4124 -- For all other cases, generate:
4125 -- Temp_Id := <Alloc_Expr>;
4127 else
4128 return
4129 Make_Assignment_Statement (Loc,
4130 Name => New_Occurrence_Of (Temp_Id, Loc),
4131 Expression => Alloc_Expr);
4132 end if;
4133 end Build_Heap_Allocator;
4135 ---------------------------
4136 -- Move_Activation_Chain --
4137 ---------------------------
4139 function Move_Activation_Chain return Node_Id is
4140 begin
4141 return
4142 Make_Procedure_Call_Statement (Loc,
4143 Name =>
4144 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4146 Parameter_Associations => New_List (
4148 -- Source chain
4150 Make_Attribute_Reference (Loc,
4151 Prefix => Make_Identifier (Loc, Name_uChain),
4152 Attribute_Name => Name_Unrestricted_Access),
4154 -- Destination chain
4156 New_Occurrence_Of
4157 (Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
4159 -- New master
4161 New_Occurrence_Of
4162 (Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
4163 end Move_Activation_Chain;
4165 -- Start of processing for Expand_N_Extended_Return_Statement
4167 begin
4168 -- Given that functionality of interface thunks is simple (just displace
4169 -- the pointer to the object) they are always handled by means of
4170 -- simple return statements.
4172 pragma Assert (not Is_Thunk (Current_Scope));
4174 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4175 Exp := Expression (Ret_Obj_Decl);
4176 else
4177 Exp := Empty;
4178 end if;
4180 HSS := Handled_Statement_Sequence (N);
4182 -- If the returned object needs finalization actions, the function must
4183 -- perform the appropriate cleanup should it fail to return. The state
4184 -- of the function itself is tracked through a flag which is coupled
4185 -- with the scope finalizer. There is one flag per each return object
4186 -- in case of multiple returns.
4188 if Is_Build_In_Place
4189 and then Needs_Finalization (Etype (Ret_Obj_Id))
4190 then
4191 declare
4192 Flag_Decl : Node_Id;
4193 Flag_Id : Entity_Id;
4194 Func_Bod : Node_Id;
4196 begin
4197 -- Recover the function body
4199 Func_Bod := Unit_Declaration_Node (Par_Func);
4201 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4202 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4203 end if;
4205 -- Create a flag to track the function state
4207 Flag_Id := Make_Temporary (Loc, 'F');
4208 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4210 -- Insert the flag at the beginning of the function declarations,
4211 -- generate:
4212 -- Fnn : Boolean := False;
4214 Flag_Decl :=
4215 Make_Object_Declaration (Loc,
4216 Defining_Identifier => Flag_Id,
4217 Object_Definition =>
4218 New_Occurrence_Of (Standard_Boolean, Loc),
4219 Expression =>
4220 New_Occurrence_Of (Standard_False, Loc));
4222 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4223 Analyze (Flag_Decl);
4224 end;
4225 end if;
4227 -- Build a simple_return_statement that returns the return object when
4228 -- there is a statement sequence, or no expression, or the result will
4229 -- be built in place. Note however that we currently do this for all
4230 -- composite cases, even though nonlimited composite results are not yet
4231 -- built in place (though we plan to do so eventually).
4233 if Present (HSS)
4234 or else Is_Composite_Type (Result_Subt)
4235 or else No (Exp)
4236 then
4237 if No (HSS) then
4238 Stmts := New_List;
4240 -- If the extended return has a handled statement sequence, then wrap
4241 -- it in a block and use the block as the first statement.
4243 else
4244 Stmts := New_List (
4245 Make_Block_Statement (Loc,
4246 Declarations => New_List,
4247 Handled_Statement_Sequence => HSS));
4248 end if;
4250 -- If the result type contains tasks, we call Move_Activation_Chain.
4251 -- Later, the cleanup code will call Complete_Master, which will
4252 -- terminate any unactivated tasks belonging to the return statement
4253 -- master. But Move_Activation_Chain updates their master to be that
4254 -- of the caller, so they will not be terminated unless the return
4255 -- statement completes unsuccessfully due to exception, abort, goto,
4256 -- or exit. As a formality, we test whether the function requires the
4257 -- result to be built in place, though that's necessarily true for
4258 -- the case of result types with task parts.
4260 if Is_Build_In_Place
4261 and then Has_Task (Result_Subt)
4262 then
4263 -- The return expression is an aggregate for a complex type which
4264 -- contains tasks. This particular case is left unexpanded since
4265 -- the regular expansion would insert all temporaries and
4266 -- initialization code in the wrong block.
4268 if Nkind (Exp) = N_Aggregate then
4269 Expand_N_Aggregate (Exp);
4270 end if;
4272 -- Do not move the activation chain if the return object does not
4273 -- contain tasks.
4275 if Has_Task (Etype (Ret_Obj_Id)) then
4276 Append_To (Stmts, Move_Activation_Chain);
4277 end if;
4278 end if;
4280 -- Update the state of the function right before the object is
4281 -- returned.
4283 if Is_Build_In_Place
4284 and then Needs_Finalization (Etype (Ret_Obj_Id))
4285 then
4286 declare
4287 Flag_Id : constant Entity_Id :=
4288 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4290 begin
4291 -- Generate:
4292 -- Fnn := True;
4294 Append_To (Stmts,
4295 Make_Assignment_Statement (Loc,
4296 Name => New_Occurrence_Of (Flag_Id, Loc),
4297 Expression => New_Occurrence_Of (Standard_True, Loc)));
4298 end;
4299 end if;
4301 -- Build a simple_return_statement that returns the return object
4303 Return_Stmt :=
4304 Make_Simple_Return_Statement (Loc,
4305 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4306 Append_To (Stmts, Return_Stmt);
4308 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4309 end if;
4311 -- Case where we build a return statement block
4313 if Present (HSS) then
4314 Result :=
4315 Make_Block_Statement (Loc,
4316 Declarations => Return_Object_Declarations (N),
4317 Handled_Statement_Sequence => HSS);
4319 -- We set the entity of the new block statement to be that of the
4320 -- return statement. This is necessary so that various fields, such
4321 -- as Finalization_Chain_Entity carry over from the return statement
4322 -- to the block. Note that this block is unusual, in that its entity
4323 -- is an E_Return_Statement rather than an E_Block.
4325 Set_Identifier
4326 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4328 -- If the object decl was already rewritten as a renaming, then we
4329 -- don't want to do the object allocation and transformation of of
4330 -- the return object declaration to a renaming. This case occurs
4331 -- when the return object is initialized by a call to another
4332 -- build-in-place function, and that function is responsible for
4333 -- the allocation of the return object.
4335 if Is_Build_In_Place
4336 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4337 then
4338 pragma Assert
4339 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4340 and then Is_Build_In_Place_Function_Call
4341 (Expression (Original_Node (Ret_Obj_Decl))));
4343 -- Return the build-in-place result by reference
4345 Set_By_Ref (Return_Stmt);
4347 elsif Is_Build_In_Place then
4349 -- Locate the implicit access parameter associated with the
4350 -- caller-supplied return object and convert the return
4351 -- statement's return object declaration to a renaming of a
4352 -- dereference of the access parameter. If the return object's
4353 -- declaration includes an expression that has not already been
4354 -- expanded as separate assignments, then add an assignment
4355 -- statement to ensure the return object gets initialized.
4357 -- declare
4358 -- Result : T [:= <expression>];
4359 -- begin
4360 -- ...
4362 -- is converted to
4364 -- declare
4365 -- Result : T renames FuncRA.all;
4366 -- [Result := <expression;]
4367 -- begin
4368 -- ...
4370 declare
4371 Return_Obj_Id : constant Entity_Id :=
4372 Defining_Identifier (Ret_Obj_Decl);
4373 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4374 Return_Obj_Expr : constant Node_Id :=
4375 Expression (Ret_Obj_Decl);
4376 Constr_Result : constant Boolean :=
4377 Is_Constrained (Result_Subt);
4378 Obj_Alloc_Formal : Entity_Id;
4379 Object_Access : Entity_Id;
4380 Obj_Acc_Deref : Node_Id;
4381 Init_Assignment : Node_Id := Empty;
4383 begin
4384 -- Build-in-place results must be returned by reference
4386 Set_By_Ref (Return_Stmt);
4388 -- Retrieve the implicit access parameter passed by the caller
4390 Object_Access :=
4391 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
4393 -- If the return object's declaration includes an expression
4394 -- and the declaration isn't marked as No_Initialization, then
4395 -- we need to generate an assignment to the object and insert
4396 -- it after the declaration before rewriting it as a renaming
4397 -- (otherwise we'll lose the initialization). The case where
4398 -- the result type is an interface (or class-wide interface)
4399 -- is also excluded because the context of the function call
4400 -- must be unconstrained, so the initialization will always
4401 -- be done as part of an allocator evaluation (storage pool
4402 -- or secondary stack), never to a constrained target object
4403 -- passed in by the caller. Besides the assignment being
4404 -- unneeded in this case, it avoids problems with trying to
4405 -- generate a dispatching assignment when the return expression
4406 -- is a nonlimited descendant of a limited interface (the
4407 -- interface has no assignment operation).
4409 if Present (Return_Obj_Expr)
4410 and then not No_Initialization (Ret_Obj_Decl)
4411 and then not Is_Interface (Return_Obj_Typ)
4412 then
4413 Init_Assignment :=
4414 Make_Assignment_Statement (Loc,
4415 Name => New_Occurrence_Of (Return_Obj_Id, Loc),
4416 Expression => Relocate_Node (Return_Obj_Expr));
4418 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4419 Set_Assignment_OK (Name (Init_Assignment));
4420 Set_No_Ctrl_Actions (Init_Assignment);
4422 Set_Parent (Name (Init_Assignment), Init_Assignment);
4423 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4425 Set_Expression (Ret_Obj_Decl, Empty);
4427 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4428 and then not Is_Class_Wide_Type
4429 (Etype (Expression (Init_Assignment)))
4430 then
4431 Rewrite (Expression (Init_Assignment),
4432 Make_Type_Conversion (Loc,
4433 Subtype_Mark =>
4434 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
4435 Expression =>
4436 Relocate_Node (Expression (Init_Assignment))));
4437 end if;
4439 -- In the case of functions where the calling context can
4440 -- determine the form of allocation needed, initialization
4441 -- is done with each part of the if statement that handles
4442 -- the different forms of allocation (this is true for
4443 -- unconstrained and tagged result subtypes).
4445 if Constr_Result
4446 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4447 then
4448 Insert_After (Ret_Obj_Decl, Init_Assignment);
4449 end if;
4450 end if;
4452 -- When the function's subtype is unconstrained, a run-time
4453 -- test is needed to determine the form of allocation to use
4454 -- for the return object. The function has an implicit formal
4455 -- parameter indicating this. If the BIP_Alloc_Form formal has
4456 -- the value one, then the caller has passed access to an
4457 -- existing object for use as the return object. If the value
4458 -- is two, then the return object must be allocated on the
4459 -- secondary stack. Otherwise, the object must be allocated in
4460 -- a storage pool (currently only supported for the global
4461 -- heap, user-defined storage pools TBD ???). We generate an
4462 -- if statement to test the implicit allocation formal and
4463 -- initialize a local access value appropriately, creating
4464 -- allocators in the secondary stack and global heap cases.
4465 -- The special formal also exists and must be tested when the
4466 -- function has a tagged result, even when the result subtype
4467 -- is constrained, because in general such functions can be
4468 -- called in dispatching contexts and must be handled similarly
4469 -- to functions with a class-wide result.
4471 if not Constr_Result
4472 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4473 then
4474 Obj_Alloc_Formal :=
4475 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
4477 declare
4478 Pool_Id : constant Entity_Id :=
4479 Make_Temporary (Loc, 'P');
4480 Alloc_Obj_Id : Entity_Id;
4481 Alloc_Obj_Decl : Node_Id;
4482 Alloc_If_Stmt : Node_Id;
4483 Heap_Allocator : Node_Id;
4484 Pool_Decl : Node_Id;
4485 Pool_Allocator : Node_Id;
4486 Ptr_Type_Decl : Node_Id;
4487 Ref_Type : Entity_Id;
4488 SS_Allocator : Node_Id;
4490 begin
4491 -- Reuse the itype created for the function's implicit
4492 -- access formal. This avoids the need to create a new
4493 -- access type here, plus it allows assigning the access
4494 -- formal directly without applying a conversion.
4496 -- Ref_Type := Etype (Object_Access);
4498 -- Create an access type designating the function's
4499 -- result subtype.
4501 Ref_Type := Make_Temporary (Loc, 'A');
4503 Ptr_Type_Decl :=
4504 Make_Full_Type_Declaration (Loc,
4505 Defining_Identifier => Ref_Type,
4506 Type_Definition =>
4507 Make_Access_To_Object_Definition (Loc,
4508 All_Present => True,
4509 Subtype_Indication =>
4510 New_Occurrence_Of (Return_Obj_Typ, Loc)));
4512 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
4514 -- Create an access object that will be initialized to an
4515 -- access value denoting the return object, either coming
4516 -- from an implicit access value passed in by the caller
4517 -- or from the result of an allocator.
4519 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4520 Set_Etype (Alloc_Obj_Id, Ref_Type);
4522 Alloc_Obj_Decl :=
4523 Make_Object_Declaration (Loc,
4524 Defining_Identifier => Alloc_Obj_Id,
4525 Object_Definition =>
4526 New_Occurrence_Of (Ref_Type, Loc));
4528 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
4530 -- Create allocators for both the secondary stack and
4531 -- global heap. If there's an initialization expression,
4532 -- then create these as initialized allocators.
4534 if Present (Return_Obj_Expr)
4535 and then not No_Initialization (Ret_Obj_Decl)
4536 then
4537 -- Always use the type of the expression for the
4538 -- qualified expression, rather than the result type.
4539 -- In general we cannot always use the result type
4540 -- for the allocator, because the expression might be
4541 -- of a specific type, such as in the case of an
4542 -- aggregate or even a nonlimited object when the
4543 -- result type is a limited class-wide interface type.
4545 Heap_Allocator :=
4546 Make_Allocator (Loc,
4547 Expression =>
4548 Make_Qualified_Expression (Loc,
4549 Subtype_Mark =>
4550 New_Occurrence_Of
4551 (Etype (Return_Obj_Expr), Loc),
4552 Expression =>
4553 New_Copy_Tree (Return_Obj_Expr)));
4555 else
4556 -- If the function returns a class-wide type we cannot
4557 -- use the return type for the allocator. Instead we
4558 -- use the type of the expression, which must be an
4559 -- aggregate of a definite type.
4561 if Is_Class_Wide_Type (Return_Obj_Typ) then
4562 Heap_Allocator :=
4563 Make_Allocator (Loc,
4564 Expression =>
4565 New_Occurrence_Of
4566 (Etype (Return_Obj_Expr), Loc));
4567 else
4568 Heap_Allocator :=
4569 Make_Allocator (Loc,
4570 Expression =>
4571 New_Occurrence_Of (Return_Obj_Typ, Loc));
4572 end if;
4574 -- If the object requires default initialization then
4575 -- that will happen later following the elaboration of
4576 -- the object renaming. If we don't turn it off here
4577 -- then the object will be default initialized twice.
4579 Set_No_Initialization (Heap_Allocator);
4580 end if;
4582 -- The Pool_Allocator is just like the Heap_Allocator,
4583 -- except we set Storage_Pool and Procedure_To_Call so
4584 -- it will use the user-defined storage pool.
4586 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
4588 -- Do not generate the renaming of the build-in-place
4589 -- pool parameter on .NET/JVM/ZFP because the parameter
4590 -- is not created in the first place.
4592 if VM_Target = No_VM
4593 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
4594 then
4595 Pool_Decl :=
4596 Make_Object_Renaming_Declaration (Loc,
4597 Defining_Identifier => Pool_Id,
4598 Subtype_Mark =>
4599 New_Occurrence_Of
4600 (RTE (RE_Root_Storage_Pool), Loc),
4601 Name =>
4602 Make_Explicit_Dereference (Loc,
4603 New_Occurrence_Of
4604 (Build_In_Place_Formal
4605 (Par_Func, BIP_Storage_Pool), Loc)));
4606 Set_Storage_Pool (Pool_Allocator, Pool_Id);
4607 Set_Procedure_To_Call
4608 (Pool_Allocator, RTE (RE_Allocate_Any));
4609 else
4610 Pool_Decl := Make_Null_Statement (Loc);
4611 end if;
4613 -- If the No_Allocators restriction is active, then only
4614 -- an allocator for secondary stack allocation is needed.
4615 -- It's OK for such allocators to have Comes_From_Source
4616 -- set to False, because gigi knows not to flag them as
4617 -- being a violation of No_Implicit_Heap_Allocations.
4619 if Restriction_Active (No_Allocators) then
4620 SS_Allocator := Heap_Allocator;
4621 Heap_Allocator := Make_Null (Loc);
4622 Pool_Allocator := Make_Null (Loc);
4624 -- Otherwise the heap and pool allocators may be needed,
4625 -- so we make another allocator for secondary stack
4626 -- allocation.
4628 else
4629 SS_Allocator := New_Copy_Tree (Heap_Allocator);
4631 -- The heap and pool allocators are marked as
4632 -- Comes_From_Source since they correspond to an
4633 -- explicit user-written allocator (that is, it will
4634 -- only be executed on behalf of callers that call the
4635 -- function as initialization for such an allocator).
4636 -- Prevents errors when No_Implicit_Heap_Allocations
4637 -- is in force.
4639 Set_Comes_From_Source (Heap_Allocator, True);
4640 Set_Comes_From_Source (Pool_Allocator, True);
4641 end if;
4643 -- The allocator is returned on the secondary stack. We
4644 -- don't do this on VM targets, since the SS is not used.
4646 if VM_Target = No_VM then
4647 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4648 Set_Procedure_To_Call
4649 (SS_Allocator, RTE (RE_SS_Allocate));
4651 -- The allocator is returned on the secondary stack,
4652 -- so indicate that the function return, as well as
4653 -- the block that encloses the allocator, must not
4654 -- release it. The flags must be set now because
4655 -- the decision to use the secondary stack is done
4656 -- very late in the course of expanding the return
4657 -- statement, past the point where these flags are
4658 -- normally set.
4660 Set_Sec_Stack_Needed_For_Return (Par_Func);
4661 Set_Sec_Stack_Needed_For_Return
4662 (Return_Statement_Entity (N));
4663 Set_Uses_Sec_Stack (Par_Func);
4664 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4665 end if;
4667 -- Create an if statement to test the BIP_Alloc_Form
4668 -- formal and initialize the access object to either the
4669 -- BIP_Object_Access formal (BIP_Alloc_Form =
4670 -- Caller_Allocation), the result of allocating the
4671 -- object in the secondary stack (BIP_Alloc_Form =
4672 -- Secondary_Stack), or else an allocator to create the
4673 -- return object in the heap or user-defined pool
4674 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4676 -- ??? An unchecked type conversion must be made in the
4677 -- case of assigning the access object formal to the
4678 -- local access object, because a normal conversion would
4679 -- be illegal in some cases (such as converting access-
4680 -- to-unconstrained to access-to-constrained), but the
4681 -- the unchecked conversion will presumably fail to work
4682 -- right in just such cases. It's not clear at all how to
4683 -- handle this. ???
4685 Alloc_If_Stmt :=
4686 Make_If_Statement (Loc,
4687 Condition =>
4688 Make_Op_Eq (Loc,
4689 Left_Opnd =>
4690 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4691 Right_Opnd =>
4692 Make_Integer_Literal (Loc,
4693 UI_From_Int (BIP_Allocation_Form'Pos
4694 (Caller_Allocation)))),
4696 Then_Statements => New_List (
4697 Make_Assignment_Statement (Loc,
4698 Name =>
4699 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4700 Expression =>
4701 Make_Unchecked_Type_Conversion (Loc,
4702 Subtype_Mark =>
4703 New_Occurrence_Of (Ref_Type, Loc),
4704 Expression =>
4705 New_Occurrence_Of (Object_Access, Loc)))),
4707 Elsif_Parts => New_List (
4708 Make_Elsif_Part (Loc,
4709 Condition =>
4710 Make_Op_Eq (Loc,
4711 Left_Opnd =>
4712 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4713 Right_Opnd =>
4714 Make_Integer_Literal (Loc,
4715 UI_From_Int (BIP_Allocation_Form'Pos
4716 (Secondary_Stack)))),
4718 Then_Statements => New_List (
4719 Make_Assignment_Statement (Loc,
4720 Name =>
4721 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4722 Expression => SS_Allocator))),
4724 Make_Elsif_Part (Loc,
4725 Condition =>
4726 Make_Op_Eq (Loc,
4727 Left_Opnd =>
4728 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4729 Right_Opnd =>
4730 Make_Integer_Literal (Loc,
4731 UI_From_Int (BIP_Allocation_Form'Pos
4732 (Global_Heap)))),
4734 Then_Statements => New_List (
4735 Build_Heap_Allocator
4736 (Temp_Id => Alloc_Obj_Id,
4737 Temp_Typ => Ref_Type,
4738 Func_Id => Par_Func,
4739 Ret_Typ => Return_Obj_Typ,
4740 Alloc_Expr => Heap_Allocator)))),
4742 Else_Statements => New_List (
4743 Pool_Decl,
4744 Build_Heap_Allocator
4745 (Temp_Id => Alloc_Obj_Id,
4746 Temp_Typ => Ref_Type,
4747 Func_Id => Par_Func,
4748 Ret_Typ => Return_Obj_Typ,
4749 Alloc_Expr => Pool_Allocator)));
4751 -- If a separate initialization assignment was created
4752 -- earlier, append that following the assignment of the
4753 -- implicit access formal to the access object, to ensure
4754 -- that the return object is initialized in that case. In
4755 -- this situation, the target of the assignment must be
4756 -- rewritten to denote a dereference of the access to the
4757 -- return object passed in by the caller.
4759 if Present (Init_Assignment) then
4760 Rewrite (Name (Init_Assignment),
4761 Make_Explicit_Dereference (Loc,
4762 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
4764 Set_Etype
4765 (Name (Init_Assignment), Etype (Return_Obj_Id));
4767 Append_To
4768 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
4769 end if;
4771 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
4773 -- Remember the local access object for use in the
4774 -- dereference of the renaming created below.
4776 Object_Access := Alloc_Obj_Id;
4777 end;
4778 end if;
4780 -- Replace the return object declaration with a renaming of a
4781 -- dereference of the access value designating the return
4782 -- object.
4784 Obj_Acc_Deref :=
4785 Make_Explicit_Dereference (Loc,
4786 Prefix => New_Occurrence_Of (Object_Access, Loc));
4788 Rewrite (Ret_Obj_Decl,
4789 Make_Object_Renaming_Declaration (Loc,
4790 Defining_Identifier => Return_Obj_Id,
4791 Access_Definition => Empty,
4792 Subtype_Mark =>
4793 New_Occurrence_Of (Return_Obj_Typ, Loc),
4794 Name => Obj_Acc_Deref));
4796 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
4797 end;
4798 end if;
4800 -- Case where we do not build a block
4802 else
4803 -- We're about to drop Return_Object_Declarations on the floor, so
4804 -- we need to insert it, in case it got expanded into useful code.
4805 -- Remove side effects from expression, which may be duplicated in
4806 -- subsequent checks (see Expand_Simple_Function_Return).
4808 Insert_List_Before (N, Return_Object_Declarations (N));
4809 Remove_Side_Effects (Exp);
4811 -- Build simple_return_statement that returns the expression directly
4813 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
4814 Result := Return_Stmt;
4815 end if;
4817 -- Set the flag to prevent infinite recursion
4819 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
4821 Rewrite (N, Result);
4822 Analyze (N);
4823 end Expand_N_Extended_Return_Statement;
4825 ----------------------------
4826 -- Expand_N_Function_Call --
4827 ----------------------------
4829 procedure Expand_N_Function_Call (N : Node_Id) is
4830 begin
4831 Expand_Call (N);
4832 end Expand_N_Function_Call;
4834 ---------------------------------------
4835 -- Expand_N_Procedure_Call_Statement --
4836 ---------------------------------------
4838 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4839 begin
4840 Expand_Call (N);
4841 end Expand_N_Procedure_Call_Statement;
4843 --------------------------------------
4844 -- Expand_N_Simple_Return_Statement --
4845 --------------------------------------
4847 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
4848 begin
4849 -- Defend against previous errors (i.e. the return statement calls a
4850 -- function that is not available in configurable runtime).
4852 if Present (Expression (N))
4853 and then Nkind (Expression (N)) = N_Empty
4854 then
4855 Check_Error_Detected;
4856 return;
4857 end if;
4859 -- Distinguish the function and non-function cases:
4861 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
4863 when E_Function |
4864 E_Generic_Function =>
4865 Expand_Simple_Function_Return (N);
4867 when E_Procedure |
4868 E_Generic_Procedure |
4869 E_Entry |
4870 E_Entry_Family |
4871 E_Return_Statement =>
4872 Expand_Non_Function_Return (N);
4874 when others =>
4875 raise Program_Error;
4876 end case;
4878 exception
4879 when RE_Not_Available =>
4880 return;
4881 end Expand_N_Simple_Return_Statement;
4883 ------------------------------
4884 -- Expand_N_Subprogram_Body --
4885 ------------------------------
4887 -- Add poll call if ATC polling is enabled, unless the body will be inlined
4888 -- by the back-end.
4890 -- Add dummy push/pop label nodes at start and end to clear any local
4891 -- exception indications if local-exception-to-goto optimization is active.
4893 -- Add return statement if last statement in body is not a return statement
4894 -- (this makes things easier on Gigi which does not want to have to handle
4895 -- a missing return).
4897 -- Add call to Activate_Tasks if body is a task activator
4899 -- Deal with possible detection of infinite recursion
4901 -- Eliminate body completely if convention stubbed
4903 -- Encode entity names within body, since we will not need to reference
4904 -- these entities any longer in the front end.
4906 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4908 -- Reset Pure indication if any parameter has root type System.Address
4909 -- or has any parameters of limited types, where limited means that the
4910 -- run-time view is limited (i.e. the full type is limited).
4912 -- Wrap thread body
4914 procedure Expand_N_Subprogram_Body (N : Node_Id) is
4915 Loc : constant Source_Ptr := Sloc (N);
4916 H : constant Node_Id := Handled_Statement_Sequence (N);
4917 Body_Id : Entity_Id;
4918 Except_H : Node_Id;
4919 L : List_Id;
4920 Spec_Id : Entity_Id;
4922 procedure Add_Return (S : List_Id);
4923 -- Append a return statement to the statement sequence S if the last
4924 -- statement is not already a return or a goto statement. Note that
4925 -- the latter test is not critical, it does not matter if we add a few
4926 -- extra returns, since they get eliminated anyway later on.
4928 ----------------
4929 -- Add_Return --
4930 ----------------
4932 procedure Add_Return (S : List_Id) is
4933 Last_Stm : Node_Id;
4934 Loc : Source_Ptr;
4936 begin
4937 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
4938 -- not relevant in this context since they are not executable.
4940 Last_Stm := Last (S);
4941 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
4942 Prev (Last_Stm);
4943 end loop;
4945 -- Now insert return unless last statement is a transfer
4947 if not Is_Transfer (Last_Stm) then
4949 -- The source location for the return is the end label of the
4950 -- procedure if present. Otherwise use the sloc of the last
4951 -- statement in the list. If the list comes from a generated
4952 -- exception handler and we are not debugging generated code,
4953 -- all the statements within the handler are made invisible
4954 -- to the debugger.
4956 if Nkind (Parent (S)) = N_Exception_Handler
4957 and then not Comes_From_Source (Parent (S))
4958 then
4959 Loc := Sloc (Last_Stm);
4960 elsif Present (End_Label (H)) then
4961 Loc := Sloc (End_Label (H));
4962 else
4963 Loc := Sloc (Last_Stm);
4964 end if;
4966 declare
4967 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
4969 begin
4970 -- Append return statement, and set analyzed manually. We can't
4971 -- call Analyze on this return since the scope is wrong.
4973 -- Note: it almost works to push the scope and then do the
4974 -- Analyze call, but something goes wrong in some weird cases
4975 -- and it is not worth worrying about ???
4977 -- The return statement is handled properly, and the call
4978 -- to the postcondition, inserted below, does not require
4979 -- information from the body either. However, that call is
4980 -- analyzed in the enclosing scope, and an elaboration check
4981 -- might improperly be added to it. A guard in Sem_Elab is
4982 -- needed to prevent that spurious check, see Check_Elab_Call.
4984 Append_To (S, Rtn);
4985 Set_Analyzed (Rtn);
4987 -- Call _Postconditions procedure if appropriate. We need to
4988 -- do this explicitly because we did not analyze the generated
4989 -- return statement above, so the call did not get inserted.
4991 if Ekind (Spec_Id) = E_Procedure
4992 and then Has_Postconditions (Spec_Id)
4993 then
4994 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
4995 Insert_Action (Rtn,
4996 Make_Procedure_Call_Statement (Loc,
4997 Name =>
4998 New_Occurrence_Of
4999 (Postcondition_Proc (Spec_Id), Loc)));
5000 end if;
5001 end;
5002 end if;
5003 end Add_Return;
5005 -- Start of processing for Expand_N_Subprogram_Body
5007 begin
5008 -- Set L to either the list of declarations if present, or to the list
5009 -- of statements if no declarations are present. This is used to insert
5010 -- new stuff at the start.
5012 if Is_Non_Empty_List (Declarations (N)) then
5013 L := Declarations (N);
5014 else
5015 L := Statements (H);
5016 end if;
5018 -- If local-exception-to-goto optimization active, insert dummy push
5019 -- statements at start, and dummy pop statements at end, but inhibit
5020 -- this if we have No_Exception_Handlers, since they are useless and
5021 -- intefere with analysis, e.g. by codepeer.
5023 if (Debug_Flag_Dot_G
5024 or else Restriction_Active (No_Exception_Propagation))
5025 and then not Restriction_Active (No_Exception_Handlers)
5026 and then not CodePeer_Mode
5027 and then Is_Non_Empty_List (L)
5028 then
5029 declare
5030 FS : constant Node_Id := First (L);
5031 FL : constant Source_Ptr := Sloc (FS);
5032 LS : Node_Id;
5033 LL : Source_Ptr;
5035 begin
5036 -- LS points to either last statement, if statements are present
5037 -- or to the last declaration if there are no statements present.
5038 -- It is the node after which the pop's are generated.
5040 if Is_Non_Empty_List (Statements (H)) then
5041 LS := Last (Statements (H));
5042 else
5043 LS := Last (L);
5044 end if;
5046 LL := Sloc (LS);
5048 Insert_List_Before_And_Analyze (FS, New_List (
5049 Make_Push_Constraint_Error_Label (FL),
5050 Make_Push_Program_Error_Label (FL),
5051 Make_Push_Storage_Error_Label (FL)));
5053 Insert_List_After_And_Analyze (LS, New_List (
5054 Make_Pop_Constraint_Error_Label (LL),
5055 Make_Pop_Program_Error_Label (LL),
5056 Make_Pop_Storage_Error_Label (LL)));
5057 end;
5058 end if;
5060 -- Find entity for subprogram
5062 Body_Id := Defining_Entity (N);
5064 if Present (Corresponding_Spec (N)) then
5065 Spec_Id := Corresponding_Spec (N);
5066 else
5067 Spec_Id := Body_Id;
5068 end if;
5070 -- Need poll on entry to subprogram if polling enabled. We only do this
5071 -- for non-empty subprograms, since it does not seem necessary to poll
5072 -- for a dummy null subprogram.
5074 if Is_Non_Empty_List (L) then
5076 -- Do not add a polling call if the subprogram is to be inlined by
5077 -- the back-end, to avoid repeated calls with multiple inlinings.
5079 if Is_Inlined (Spec_Id)
5080 and then Front_End_Inlining
5081 and then Optimization_Level > 1
5082 then
5083 null;
5084 else
5085 Generate_Poll_Call (First (L));
5086 end if;
5087 end if;
5089 -- If this is a Pure function which has any parameters whose root type
5090 -- is System.Address, reset the Pure indication, since it will likely
5091 -- cause incorrect code to be generated as the parameter is probably
5092 -- a pointer, and the fact that the same pointer is passed does not mean
5093 -- that the same value is being referenced.
5095 -- Note that if the programmer gave an explicit Pure_Function pragma,
5096 -- then we believe the programmer, and leave the subprogram Pure.
5098 -- This code should probably be at the freeze point, so that it happens
5099 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5100 -- semantic tree has Is_Pure set properly ???
5102 if Is_Pure (Spec_Id)
5103 and then Is_Subprogram (Spec_Id)
5104 and then not Has_Pragma_Pure_Function (Spec_Id)
5105 then
5106 declare
5107 F : Entity_Id;
5109 begin
5110 F := First_Formal (Spec_Id);
5111 while Present (F) loop
5112 if Is_Descendent_Of_Address (Etype (F))
5114 -- Note that this test is being made in the body of the
5115 -- subprogram, not the spec, so we are testing the full
5116 -- type for being limited here, as required.
5118 or else Is_Limited_Type (Etype (F))
5119 then
5120 Set_Is_Pure (Spec_Id, False);
5122 if Spec_Id /= Body_Id then
5123 Set_Is_Pure (Body_Id, False);
5124 end if;
5126 exit;
5127 end if;
5129 Next_Formal (F);
5130 end loop;
5131 end;
5132 end if;
5134 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5136 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5137 declare
5138 F : Entity_Id;
5139 A : Node_Id;
5141 begin
5142 -- Loop through formals
5144 F := First_Formal (Spec_Id);
5145 while Present (F) loop
5146 if Is_Scalar_Type (Etype (F))
5147 and then Ekind (F) = E_Out_Parameter
5148 then
5149 Check_Restriction (No_Default_Initialization, F);
5151 -- Insert the initialization. We turn off validity checks
5152 -- for this assignment, since we do not want any check on
5153 -- the initial value itself (which may well be invalid).
5154 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5156 A := Make_Assignment_Statement (Loc,
5157 Name => New_Occurrence_Of (F, Loc),
5158 Expression => Get_Simple_Init_Val (Etype (F), N));
5159 Set_Suppress_Assignment_Checks (A);
5161 Insert_Before_And_Analyze (First (L),
5162 A, Suppress => Validity_Check);
5163 end if;
5165 Next_Formal (F);
5166 end loop;
5167 end;
5168 end if;
5170 -- Clear out statement list for stubbed procedure
5172 if Present (Corresponding_Spec (N)) then
5173 Set_Elaboration_Flag (N, Spec_Id);
5175 if Convention (Spec_Id) = Convention_Stubbed
5176 or else Is_Eliminated (Spec_Id)
5177 then
5178 Set_Declarations (N, Empty_List);
5179 Set_Handled_Statement_Sequence (N,
5180 Make_Handled_Sequence_Of_Statements (Loc,
5181 Statements => New_List (Make_Null_Statement (Loc))));
5182 return;
5183 end if;
5184 end if;
5186 -- Create a set of discriminals for the next protected subprogram body
5188 if Is_List_Member (N)
5189 and then Present (Parent (List_Containing (N)))
5190 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5191 and then Present (Next_Protected_Operation (N))
5192 then
5193 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5194 end if;
5196 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5197 -- subprograms with no specs are not frozen.
5199 declare
5200 Typ : constant Entity_Id := Etype (Spec_Id);
5201 Utyp : constant Entity_Id := Underlying_Type (Typ);
5203 begin
5204 if not Acts_As_Spec (N)
5205 and then Nkind (Parent (Parent (Spec_Id))) /=
5206 N_Subprogram_Body_Stub
5207 then
5208 null;
5210 elsif Is_Limited_View (Typ) then
5211 Set_Returns_By_Ref (Spec_Id);
5213 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5214 Set_Returns_By_Ref (Spec_Id);
5215 end if;
5216 end;
5218 -- For a procedure, we add a return for all possible syntactic ends of
5219 -- the subprogram.
5221 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5222 Add_Return (Statements (H));
5224 if Present (Exception_Handlers (H)) then
5225 Except_H := First_Non_Pragma (Exception_Handlers (H));
5226 while Present (Except_H) loop
5227 Add_Return (Statements (Except_H));
5228 Next_Non_Pragma (Except_H);
5229 end loop;
5230 end if;
5232 -- For a function, we must deal with the case where there is at least
5233 -- one missing return. What we do is to wrap the entire body of the
5234 -- function in a block:
5236 -- begin
5237 -- ...
5238 -- end;
5240 -- becomes
5242 -- begin
5243 -- begin
5244 -- ...
5245 -- end;
5247 -- raise Program_Error;
5248 -- end;
5250 -- This approach is necessary because the raise must be signalled to the
5251 -- caller, not handled by any local handler (RM 6.4(11)).
5253 -- Note: we do not need to analyze the constructed sequence here, since
5254 -- it has no handler, and an attempt to analyze the handled statement
5255 -- sequence twice is risky in various ways (e.g. the issue of expanding
5256 -- cleanup actions twice).
5258 elsif Has_Missing_Return (Spec_Id) then
5259 declare
5260 Hloc : constant Source_Ptr := Sloc (H);
5261 Blok : constant Node_Id :=
5262 Make_Block_Statement (Hloc,
5263 Handled_Statement_Sequence => H);
5264 Rais : constant Node_Id :=
5265 Make_Raise_Program_Error (Hloc,
5266 Reason => PE_Missing_Return);
5268 begin
5269 Set_Handled_Statement_Sequence (N,
5270 Make_Handled_Sequence_Of_Statements (Hloc,
5271 Statements => New_List (Blok, Rais)));
5273 Push_Scope (Spec_Id);
5274 Analyze (Blok);
5275 Analyze (Rais);
5276 Pop_Scope;
5277 end;
5278 end if;
5280 -- If subprogram contains a parameterless recursive call, then we may
5281 -- have an infinite recursion, so see if we can generate code to check
5282 -- for this possibility if storage checks are not suppressed.
5284 if Ekind (Spec_Id) = E_Procedure
5285 and then Has_Recursive_Call (Spec_Id)
5286 and then not Storage_Checks_Suppressed (Spec_Id)
5287 then
5288 Detect_Infinite_Recursion (N, Spec_Id);
5289 end if;
5291 -- Set to encode entity names in package body before gigi is called
5293 Qualify_Entity_Names (N);
5294 end Expand_N_Subprogram_Body;
5296 -----------------------------------
5297 -- Expand_N_Subprogram_Body_Stub --
5298 -----------------------------------
5300 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5301 begin
5302 if Present (Corresponding_Body (N)) then
5303 Expand_N_Subprogram_Body (
5304 Unit_Declaration_Node (Corresponding_Body (N)));
5305 end if;
5306 end Expand_N_Subprogram_Body_Stub;
5308 -------------------------------------
5309 -- Expand_N_Subprogram_Declaration --
5310 -------------------------------------
5312 -- If the declaration appears within a protected body, it is a private
5313 -- operation of the protected type. We must create the corresponding
5314 -- protected subprogram an associated formals. For a normal protected
5315 -- operation, this is done when expanding the protected type declaration.
5317 -- If the declaration is for a null procedure, emit null body
5319 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5320 Loc : constant Source_Ptr := Sloc (N);
5321 Subp : constant Entity_Id := Defining_Entity (N);
5322 Scop : constant Entity_Id := Scope (Subp);
5323 Prot_Decl : Node_Id;
5324 Prot_Bod : Node_Id;
5325 Prot_Id : Entity_Id;
5327 begin
5328 -- In SPARK, subprogram declarations are only allowed in package
5329 -- specifications.
5331 if Nkind (Parent (N)) /= N_Package_Specification then
5332 if Nkind (Parent (N)) = N_Compilation_Unit then
5333 Check_SPARK_05_Restriction
5334 ("subprogram declaration is not a library item", N);
5336 elsif Present (Next (N))
5337 and then Nkind (Next (N)) = N_Pragma
5338 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5339 then
5340 -- In SPARK, subprogram declarations are also permitted in
5341 -- declarative parts when immediately followed by a corresponding
5342 -- pragma Import. We only check here that there is some pragma
5343 -- Import.
5345 null;
5346 else
5347 Check_SPARK_05_Restriction
5348 ("subprogram declaration is not allowed here", N);
5349 end if;
5350 end if;
5352 -- Deal with case of protected subprogram. Do not generate protected
5353 -- operation if operation is flagged as eliminated.
5355 if Is_List_Member (N)
5356 and then Present (Parent (List_Containing (N)))
5357 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5358 and then Is_Protected_Type (Scop)
5359 then
5360 if No (Protected_Body_Subprogram (Subp))
5361 and then not Is_Eliminated (Subp)
5362 then
5363 Prot_Decl :=
5364 Make_Subprogram_Declaration (Loc,
5365 Specification =>
5366 Build_Protected_Sub_Specification
5367 (N, Scop, Unprotected_Mode));
5369 -- The protected subprogram is declared outside of the protected
5370 -- body. Given that the body has frozen all entities so far, we
5371 -- analyze the subprogram and perform freezing actions explicitly.
5372 -- including the generation of an explicit freeze node, to ensure
5373 -- that gigi has the proper order of elaboration.
5374 -- If the body is a subunit, the insertion point is before the
5375 -- stub in the parent.
5377 Prot_Bod := Parent (List_Containing (N));
5379 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5380 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5381 end if;
5383 Insert_Before (Prot_Bod, Prot_Decl);
5384 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5385 Set_Has_Delayed_Freeze (Prot_Id);
5387 Push_Scope (Scope (Scop));
5388 Analyze (Prot_Decl);
5389 Freeze_Before (N, Prot_Id);
5390 Set_Protected_Body_Subprogram (Subp, Prot_Id);
5392 -- Create protected operation as well. Even though the operation
5393 -- is only accessible within the body, it is possible to make it
5394 -- available outside of the protected object by using 'Access to
5395 -- provide a callback, so build protected version in all cases.
5397 Prot_Decl :=
5398 Make_Subprogram_Declaration (Loc,
5399 Specification =>
5400 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5401 Insert_Before (Prot_Bod, Prot_Decl);
5402 Analyze (Prot_Decl);
5404 Pop_Scope;
5405 end if;
5407 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5408 -- cases this is superfluous because calls to it will be automatically
5409 -- inlined, but we definitely need the body if preconditions for the
5410 -- procedure are present.
5412 elsif Nkind (Specification (N)) = N_Procedure_Specification
5413 and then Null_Present (Specification (N))
5414 then
5415 declare
5416 Bod : constant Node_Id := Body_To_Inline (N);
5418 begin
5419 Set_Has_Completion (Subp, False);
5420 Append_Freeze_Action (Subp, Bod);
5422 -- The body now contains raise statements, so calls to it will
5423 -- not be inlined.
5425 Set_Is_Inlined (Subp, False);
5426 end;
5427 end if;
5428 end Expand_N_Subprogram_Declaration;
5430 --------------------------------
5431 -- Expand_Non_Function_Return --
5432 --------------------------------
5434 procedure Expand_Non_Function_Return (N : Node_Id) is
5435 pragma Assert (No (Expression (N)));
5437 Loc : constant Source_Ptr := Sloc (N);
5438 Scope_Id : Entity_Id :=
5439 Return_Applies_To (Return_Statement_Entity (N));
5440 Kind : constant Entity_Kind := Ekind (Scope_Id);
5441 Call : Node_Id;
5442 Acc_Stat : Node_Id;
5443 Goto_Stat : Node_Id;
5444 Lab_Node : Node_Id;
5446 begin
5447 -- Call _Postconditions procedure if procedure with active
5448 -- postconditions. Here, we use the Postcondition_Proc attribute,
5449 -- which is needed for implicitly-generated returns. Functions
5450 -- never have implicitly-generated returns, and there's no
5451 -- room for Postcondition_Proc in E_Function, so we look up the
5452 -- identifier Name_uPostconditions for function returns (see
5453 -- Expand_Simple_Function_Return).
5455 if Ekind (Scope_Id) = E_Procedure
5456 and then Has_Postconditions (Scope_Id)
5457 then
5458 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
5459 Insert_Action (N,
5460 Make_Procedure_Call_Statement (Loc,
5461 Name => New_Occurrence_Of (Postcondition_Proc (Scope_Id), Loc)));
5462 end if;
5464 -- If it is a return from a procedure do no extra steps
5466 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5467 return;
5469 -- If it is a nested return within an extended one, replace it with a
5470 -- return of the previously declared return object.
5472 elsif Kind = E_Return_Statement then
5473 Rewrite (N,
5474 Make_Simple_Return_Statement (Loc,
5475 Expression =>
5476 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5477 Set_Comes_From_Extended_Return_Statement (N);
5478 Set_Return_Statement_Entity (N, Scope_Id);
5479 Expand_Simple_Function_Return (N);
5480 return;
5481 end if;
5483 pragma Assert (Is_Entry (Scope_Id));
5485 -- Look at the enclosing block to see whether the return is from an
5486 -- accept statement or an entry body.
5488 for J in reverse 0 .. Scope_Stack.Last loop
5489 Scope_Id := Scope_Stack.Table (J).Entity;
5490 exit when Is_Concurrent_Type (Scope_Id);
5491 end loop;
5493 -- If it is a return from accept statement it is expanded as call to
5494 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5496 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5497 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5499 if Is_Task_Type (Scope_Id) then
5501 Call :=
5502 Make_Procedure_Call_Statement (Loc,
5503 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
5504 Insert_Before (N, Call);
5505 -- why not insert actions here???
5506 Analyze (Call);
5508 Acc_Stat := Parent (N);
5509 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5510 Acc_Stat := Parent (Acc_Stat);
5511 end loop;
5513 Lab_Node := Last (Statements
5514 (Handled_Statement_Sequence (Acc_Stat)));
5516 Goto_Stat := Make_Goto_Statement (Loc,
5517 Name => New_Occurrence_Of
5518 (Entity (Identifier (Lab_Node)), Loc));
5520 Set_Analyzed (Goto_Stat);
5522 Rewrite (N, Goto_Stat);
5523 Analyze (N);
5525 -- If it is a return from an entry body, put a Complete_Entry_Body call
5526 -- in front of the return.
5528 elsif Is_Protected_Type (Scope_Id) then
5529 Call :=
5530 Make_Procedure_Call_Statement (Loc,
5531 Name =>
5532 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
5533 Parameter_Associations => New_List (
5534 Make_Attribute_Reference (Loc,
5535 Prefix =>
5536 New_Occurrence_Of
5537 (Find_Protection_Object (Current_Scope), Loc),
5538 Attribute_Name => Name_Unchecked_Access)));
5540 Insert_Before (N, Call);
5541 Analyze (Call);
5542 end if;
5543 end Expand_Non_Function_Return;
5545 ---------------------------------------
5546 -- Expand_Protected_Object_Reference --
5547 ---------------------------------------
5549 function Expand_Protected_Object_Reference
5550 (N : Node_Id;
5551 Scop : Entity_Id) return Node_Id
5553 Loc : constant Source_Ptr := Sloc (N);
5554 Corr : Entity_Id;
5555 Rec : Node_Id;
5556 Param : Entity_Id;
5557 Proc : Entity_Id;
5559 begin
5560 Rec := Make_Identifier (Loc, Name_uObject);
5561 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5563 -- Find enclosing protected operation, and retrieve its first parameter,
5564 -- which denotes the enclosing protected object. If the enclosing
5565 -- operation is an entry, we are immediately within the protected body,
5566 -- and we can retrieve the object from the service entries procedure. A
5567 -- barrier function has the same signature as an entry. A barrier
5568 -- function is compiled within the protected object, but unlike
5569 -- protected operations its never needs locks, so that its protected
5570 -- body subprogram points to itself.
5572 Proc := Current_Scope;
5573 while Present (Proc)
5574 and then Scope (Proc) /= Scop
5575 loop
5576 Proc := Scope (Proc);
5577 end loop;
5579 Corr := Protected_Body_Subprogram (Proc);
5581 if No (Corr) then
5583 -- Previous error left expansion incomplete.
5584 -- Nothing to do on this call.
5586 return Empty;
5587 end if;
5589 Param :=
5590 Defining_Identifier
5591 (First (Parameter_Specifications (Parent (Corr))));
5593 if Is_Subprogram (Proc) and then Proc /= Corr then
5595 -- Protected function or procedure
5597 Set_Entity (Rec, Param);
5599 -- Rec is a reference to an entity which will not be in scope when
5600 -- the call is reanalyzed, and needs no further analysis.
5602 Set_Analyzed (Rec);
5604 else
5605 -- Entry or barrier function for entry body. The first parameter of
5606 -- the entry body procedure is pointer to the object. We create a
5607 -- local variable of the proper type, duplicating what is done to
5608 -- define _object later on.
5610 declare
5611 Decls : List_Id;
5612 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
5614 begin
5615 Decls := New_List (
5616 Make_Full_Type_Declaration (Loc,
5617 Defining_Identifier => Obj_Ptr,
5618 Type_Definition =>
5619 Make_Access_To_Object_Definition (Loc,
5620 Subtype_Indication =>
5621 New_Occurrence_Of
5622 (Corresponding_Record_Type (Scop), Loc))));
5624 Insert_Actions (N, Decls);
5625 Freeze_Before (N, Obj_Ptr);
5627 Rec :=
5628 Make_Explicit_Dereference (Loc,
5629 Prefix =>
5630 Unchecked_Convert_To (Obj_Ptr,
5631 New_Occurrence_Of (Param, Loc)));
5633 -- Analyze new actual. Other actuals in calls are already analyzed
5634 -- and the list of actuals is not reanalyzed after rewriting.
5636 Set_Parent (Rec, N);
5637 Analyze (Rec);
5638 end;
5639 end if;
5641 return Rec;
5642 end Expand_Protected_Object_Reference;
5644 --------------------------------------
5645 -- Expand_Protected_Subprogram_Call --
5646 --------------------------------------
5648 procedure Expand_Protected_Subprogram_Call
5649 (N : Node_Id;
5650 Subp : Entity_Id;
5651 Scop : Entity_Id)
5653 Rec : Node_Id;
5655 procedure Freeze_Called_Function;
5656 -- If it is a function call it can appear in elaboration code and
5657 -- the called entity must be frozen before the call. This must be
5658 -- done before the call is expanded, as the expansion may rewrite it
5659 -- to something other than a call (e.g. a temporary initialized in a
5660 -- transient block).
5662 ----------------------------
5663 -- Freeze_Called_Function --
5664 ----------------------------
5666 procedure Freeze_Called_Function is
5667 begin
5668 if Ekind (Subp) = E_Function then
5669 Freeze_Expression (Name (N));
5670 end if;
5671 end Freeze_Called_Function;
5673 -- Start of processing for Expand_Protected_Subprogram_Call
5675 begin
5676 -- If the protected object is not an enclosing scope, this is an inter-
5677 -- object function call. Inter-object procedure calls are expanded by
5678 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5679 -- subprogram being called is in the protected body being compiled, and
5680 -- if the protected object in the call is statically the enclosing type.
5681 -- The object may be an component of some other data structure, in which
5682 -- case this must be handled as an inter-object call.
5684 if not In_Open_Scopes (Scop)
5685 or else not Is_Entity_Name (Name (N))
5686 then
5687 if Nkind (Name (N)) = N_Selected_Component then
5688 Rec := Prefix (Name (N));
5690 else
5691 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5692 Rec := Prefix (Prefix (Name (N)));
5693 end if;
5695 Freeze_Called_Function;
5696 Build_Protected_Subprogram_Call (N,
5697 Name => New_Occurrence_Of (Subp, Sloc (N)),
5698 Rec => Convert_Concurrent (Rec, Etype (Rec)),
5699 External => True);
5701 else
5702 Rec := Expand_Protected_Object_Reference (N, Scop);
5704 if No (Rec) then
5705 return;
5706 end if;
5708 Freeze_Called_Function;
5709 Build_Protected_Subprogram_Call (N,
5710 Name => Name (N),
5711 Rec => Rec,
5712 External => False);
5714 end if;
5716 -- Analyze and resolve the new call. The actuals have already been
5717 -- resolved, but expansion of a function call will add extra actuals
5718 -- if needed. Analysis of a procedure call already includes resolution.
5720 Analyze (N);
5722 if Ekind (Subp) = E_Function then
5723 Resolve (N, Etype (Subp));
5724 end if;
5725 end Expand_Protected_Subprogram_Call;
5727 --------------------------------------------
5728 -- Has_Unconstrained_Access_Discriminants --
5729 --------------------------------------------
5731 function Has_Unconstrained_Access_Discriminants
5732 (Subtyp : Entity_Id) return Boolean
5734 Discr : Entity_Id;
5736 begin
5737 if Has_Discriminants (Subtyp)
5738 and then not Is_Constrained (Subtyp)
5739 then
5740 Discr := First_Discriminant (Subtyp);
5741 while Present (Discr) loop
5742 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
5743 return True;
5744 end if;
5746 Next_Discriminant (Discr);
5747 end loop;
5748 end if;
5750 return False;
5751 end Has_Unconstrained_Access_Discriminants;
5753 -----------------------------------
5754 -- Expand_Simple_Function_Return --
5755 -----------------------------------
5757 -- The "simple" comes from the syntax rule simple_return_statement. The
5758 -- semantics are not at all simple.
5760 procedure Expand_Simple_Function_Return (N : Node_Id) is
5761 Loc : constant Source_Ptr := Sloc (N);
5763 Scope_Id : constant Entity_Id :=
5764 Return_Applies_To (Return_Statement_Entity (N));
5765 -- The function we are returning from
5767 R_Type : constant Entity_Id := Etype (Scope_Id);
5768 -- The result type of the function
5770 Utyp : constant Entity_Id := Underlying_Type (R_Type);
5772 Exp : constant Node_Id := Expression (N);
5773 pragma Assert (Present (Exp));
5775 Exptyp : constant Entity_Id := Etype (Exp);
5776 -- The type of the expression (not necessarily the same as R_Type)
5778 Subtype_Ind : Node_Id;
5779 -- If the result type of the function is class-wide and the expression
5780 -- has a specific type, then we use the expression's type as the type of
5781 -- the return object. In cases where the expression is an aggregate that
5782 -- is built in place, this avoids the need for an expensive conversion
5783 -- of the return object to the specific type on assignments to the
5784 -- individual components.
5786 begin
5787 if Is_Class_Wide_Type (R_Type)
5788 and then not Is_Class_Wide_Type (Etype (Exp))
5789 then
5790 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
5791 else
5792 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
5793 end if;
5795 -- For the case of a simple return that does not come from an extended
5796 -- return, in the case of Ada 2005 where we are returning a limited
5797 -- type, we rewrite "return <expression>;" to be:
5799 -- return _anon_ : <return_subtype> := <expression>
5801 -- The expansion produced by Expand_N_Extended_Return_Statement will
5802 -- contain simple return statements (for example, a block containing
5803 -- simple return of the return object), which brings us back here with
5804 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
5805 -- checking for a simple return that does not come from an extended
5806 -- return is to avoid this infinite recursion.
5808 -- The reason for this design is that for Ada 2005 limited returns, we
5809 -- need to reify the return object, so we can build it "in place", and
5810 -- we need a block statement to hang finalization and tasking stuff.
5812 -- ??? In order to avoid disruption, we avoid translating to extended
5813 -- return except in the cases where we really need to (Ada 2005 for
5814 -- inherently limited). We might prefer to do this translation in all
5815 -- cases (except perhaps for the case of Ada 95 inherently limited),
5816 -- in order to fully exercise the Expand_N_Extended_Return_Statement
5817 -- code. This would also allow us to do the build-in-place optimization
5818 -- for efficiency even in cases where it is semantically not required.
5820 -- As before, we check the type of the return expression rather than the
5821 -- return type of the function, because the latter may be a limited
5822 -- class-wide interface type, which is not a limited type, even though
5823 -- the type of the expression may be.
5825 if not Comes_From_Extended_Return_Statement (N)
5826 and then Is_Limited_View (Etype (Expression (N)))
5827 and then Ada_Version >= Ada_2005
5828 and then not Debug_Flag_Dot_L
5830 -- The functionality of interface thunks is simple and it is always
5831 -- handled by means of simple return statements. This leaves their
5832 -- expansion simple and clean.
5834 and then not Is_Thunk (Current_Scope)
5835 then
5836 declare
5837 Return_Object_Entity : constant Entity_Id :=
5838 Make_Temporary (Loc, 'R', Exp);
5840 Obj_Decl : constant Node_Id :=
5841 Make_Object_Declaration (Loc,
5842 Defining_Identifier => Return_Object_Entity,
5843 Object_Definition => Subtype_Ind,
5844 Expression => Exp);
5846 Ext : constant Node_Id :=
5847 Make_Extended_Return_Statement (Loc,
5848 Return_Object_Declarations => New_List (Obj_Decl));
5849 -- Do not perform this high-level optimization if the result type
5850 -- is an interface because the "this" pointer must be displaced.
5852 begin
5853 Rewrite (N, Ext);
5854 Analyze (N);
5855 return;
5856 end;
5857 end if;
5859 -- Here we have a simple return statement that is part of the expansion
5860 -- of an extended return statement (either written by the user, or
5861 -- generated by the above code).
5863 -- Always normalize C/Fortran boolean result. This is not always needed,
5864 -- but it seems a good idea to minimize the passing around of non-
5865 -- normalized values, and in any case this handles the processing of
5866 -- barrier functions for protected types, which turn the condition into
5867 -- a return statement.
5869 if Is_Boolean_Type (Exptyp)
5870 and then Nonzero_Is_True (Exptyp)
5871 then
5872 Adjust_Condition (Exp);
5873 Adjust_Result_Type (Exp, Exptyp);
5874 end if;
5876 -- Do validity check if enabled for returns
5878 if Validity_Checks_On
5879 and then Validity_Check_Returns
5880 then
5881 Ensure_Valid (Exp);
5882 end if;
5884 -- Check the result expression of a scalar function against the subtype
5885 -- of the function by inserting a conversion. This conversion must
5886 -- eventually be performed for other classes of types, but for now it's
5887 -- only done for scalars.
5888 -- ???
5890 if Is_Scalar_Type (Exptyp) then
5891 Rewrite (Exp, Convert_To (R_Type, Exp));
5893 -- The expression is resolved to ensure that the conversion gets
5894 -- expanded to generate a possible constraint check.
5896 Analyze_And_Resolve (Exp, R_Type);
5897 end if;
5899 -- Deal with returning variable length objects and controlled types
5901 -- Nothing to do if we are returning by reference, or this is not a
5902 -- type that requires special processing (indicated by the fact that
5903 -- it requires a cleanup scope for the secondary stack case).
5905 if Is_Limited_View (Exptyp)
5906 or else Is_Limited_Interface (Exptyp)
5907 then
5908 null;
5910 -- No copy needed for thunks returning interface type objects since
5911 -- the object is returned by reference and the maximum functionality
5912 -- required is just to displace the pointer.
5914 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
5915 null;
5917 elsif not Requires_Transient_Scope (R_Type) then
5919 -- Mutable records with no variable length components are not
5920 -- returned on the sec-stack, so we need to make sure that the
5921 -- backend will only copy back the size of the actual value, and not
5922 -- the maximum size. We create an actual subtype for this purpose.
5924 declare
5925 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
5926 Decl : Node_Id;
5927 Ent : Entity_Id;
5928 begin
5929 if Has_Discriminants (Ubt)
5930 and then not Is_Constrained (Ubt)
5931 and then not Has_Unchecked_Union (Ubt)
5932 then
5933 Decl := Build_Actual_Subtype (Ubt, Exp);
5934 Ent := Defining_Identifier (Decl);
5935 Insert_Action (Exp, Decl);
5936 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
5937 Analyze_And_Resolve (Exp);
5938 end if;
5939 end;
5941 -- Here if secondary stack is used
5943 else
5944 -- Prevent the reclamation of the secondary stack by all enclosing
5945 -- blocks and loops as well as the related function, otherwise the
5946 -- result will be reclaimed too early or even clobbered. Due to a
5947 -- possible mix of internally generated blocks, source blocks and
5948 -- loops, the scope stack may not be contiguous as all labels are
5949 -- inserted at the top level within the related function. Instead,
5950 -- perform a parent-based traversal and mark all appropriate
5951 -- constructs.
5953 declare
5954 P : Node_Id;
5956 begin
5957 P := N;
5958 while Present (P) loop
5960 -- Mark the label of a source or internally generated block or
5961 -- loop.
5963 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
5964 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
5966 -- Mark the enclosing function
5968 elsif Nkind (P) = N_Subprogram_Body then
5969 if Present (Corresponding_Spec (P)) then
5970 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
5971 else
5972 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
5973 end if;
5975 -- Do not go beyond the enclosing function
5977 exit;
5978 end if;
5980 P := Parent (P);
5981 end loop;
5982 end;
5984 -- Optimize the case where the result is a function call. In this
5985 -- case either the result is already on the secondary stack, or is
5986 -- already being returned with the stack pointer depressed and no
5987 -- further processing is required except to set the By_Ref flag
5988 -- to ensure that gigi does not attempt an extra unnecessary copy.
5989 -- (actually not just unnecessary but harmfully wrong in the case
5990 -- of a controlled type, where gigi does not know how to do a copy).
5991 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
5992 -- for array types if the constrained status of the target type is
5993 -- different from that of the expression.
5995 if Requires_Transient_Scope (Exptyp)
5996 and then
5997 (not Is_Array_Type (Exptyp)
5998 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
5999 or else CW_Or_Has_Controlled_Part (Utyp))
6000 and then Nkind (Exp) = N_Function_Call
6001 then
6002 Set_By_Ref (N);
6004 -- Remove side effects from the expression now so that other parts
6005 -- of the expander do not have to reanalyze this node without this
6006 -- optimization
6008 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6010 -- For controlled types, do the allocation on the secondary stack
6011 -- manually in order to call adjust at the right time:
6013 -- type Anon1 is access R_Type;
6014 -- for Anon1'Storage_pool use ss_pool;
6015 -- Anon2 : anon1 := new R_Type'(expr);
6016 -- return Anon2.all;
6018 -- We do the same for classwide types that are not potentially
6019 -- controlled (by the virtue of restriction No_Finalization) because
6020 -- gigi is not able to properly allocate class-wide types.
6022 elsif CW_Or_Has_Controlled_Part (Utyp) then
6023 declare
6024 Loc : constant Source_Ptr := Sloc (N);
6025 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6026 Alloc_Node : Node_Id;
6027 Temp : Entity_Id;
6029 begin
6030 Set_Ekind (Acc_Typ, E_Access_Type);
6032 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6034 -- This is an allocator for the secondary stack, and it's fine
6035 -- to have Comes_From_Source set False on it, as gigi knows not
6036 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6038 Alloc_Node :=
6039 Make_Allocator (Loc,
6040 Expression =>
6041 Make_Qualified_Expression (Loc,
6042 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6043 Expression => Relocate_Node (Exp)));
6045 -- We do not want discriminant checks on the declaration,
6046 -- given that it gets its value from the allocator.
6048 Set_No_Initialization (Alloc_Node);
6050 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6052 Insert_List_Before_And_Analyze (N, New_List (
6053 Make_Full_Type_Declaration (Loc,
6054 Defining_Identifier => Acc_Typ,
6055 Type_Definition =>
6056 Make_Access_To_Object_Definition (Loc,
6057 Subtype_Indication => Subtype_Ind)),
6059 Make_Object_Declaration (Loc,
6060 Defining_Identifier => Temp,
6061 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6062 Expression => Alloc_Node)));
6064 Rewrite (Exp,
6065 Make_Explicit_Dereference (Loc,
6066 Prefix => New_Occurrence_Of (Temp, Loc)));
6068 -- Ada 2005 (AI-251): If the type of the returned object is
6069 -- an interface then add an implicit type conversion to force
6070 -- displacement of the "this" pointer.
6072 if Is_Interface (R_Type) then
6073 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6074 end if;
6076 Analyze_And_Resolve (Exp, R_Type);
6077 end;
6079 -- Otherwise use the gigi mechanism to allocate result on the
6080 -- secondary stack.
6082 else
6083 Check_Restriction (No_Secondary_Stack, N);
6084 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6086 -- If we are generating code for the VM do not use
6087 -- SS_Allocate since everything is heap-allocated anyway.
6089 if VM_Target = No_VM then
6090 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6091 end if;
6092 end if;
6093 end if;
6095 -- Implement the rules of 6.5(8-10), which require a tag check in
6096 -- the case of a limited tagged return type, and tag reassignment for
6097 -- nonlimited tagged results. These actions are needed when the return
6098 -- type is a specific tagged type and the result expression is a
6099 -- conversion or a formal parameter, because in that case the tag of
6100 -- the expression might differ from the tag of the specific result type.
6102 if Is_Tagged_Type (Utyp)
6103 and then not Is_Class_Wide_Type (Utyp)
6104 and then (Nkind_In (Exp, N_Type_Conversion,
6105 N_Unchecked_Type_Conversion)
6106 or else (Is_Entity_Name (Exp)
6107 and then Ekind (Entity (Exp)) in Formal_Kind))
6108 then
6109 -- When the return type is limited, perform a check that the tag of
6110 -- the result is the same as the tag of the return type.
6112 if Is_Limited_Type (R_Type) then
6113 Insert_Action (Exp,
6114 Make_Raise_Constraint_Error (Loc,
6115 Condition =>
6116 Make_Op_Ne (Loc,
6117 Left_Opnd =>
6118 Make_Selected_Component (Loc,
6119 Prefix => Duplicate_Subexpr (Exp),
6120 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6121 Right_Opnd =>
6122 Make_Attribute_Reference (Loc,
6123 Prefix =>
6124 New_Occurrence_Of (Base_Type (Utyp), Loc),
6125 Attribute_Name => Name_Tag)),
6126 Reason => CE_Tag_Check_Failed));
6128 -- If the result type is a specific nonlimited tagged type, then we
6129 -- have to ensure that the tag of the result is that of the result
6130 -- type. This is handled by making a copy of the expression in
6131 -- the case where it might have a different tag, namely when the
6132 -- expression is a conversion or a formal parameter. We create a new
6133 -- object of the result type and initialize it from the expression,
6134 -- which will implicitly force the tag to be set appropriately.
6136 else
6137 declare
6138 ExpR : constant Node_Id := Relocate_Node (Exp);
6139 Result_Id : constant Entity_Id :=
6140 Make_Temporary (Loc, 'R', ExpR);
6141 Result_Exp : constant Node_Id :=
6142 New_Occurrence_Of (Result_Id, Loc);
6143 Result_Obj : constant Node_Id :=
6144 Make_Object_Declaration (Loc,
6145 Defining_Identifier => Result_Id,
6146 Object_Definition =>
6147 New_Occurrence_Of (R_Type, Loc),
6148 Constant_Present => True,
6149 Expression => ExpR);
6151 begin
6152 Set_Assignment_OK (Result_Obj);
6153 Insert_Action (Exp, Result_Obj);
6155 Rewrite (Exp, Result_Exp);
6156 Analyze_And_Resolve (Exp, R_Type);
6157 end;
6158 end if;
6160 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6161 -- a check that the level of the return expression's underlying type
6162 -- is not deeper than the level of the master enclosing the function.
6163 -- Always generate the check when the type of the return expression
6164 -- is class-wide, when it's a type conversion, or when it's a formal
6165 -- parameter. Otherwise, suppress the check in the case where the
6166 -- return expression has a specific type whose level is known not to
6167 -- be statically deeper than the function's result type.
6169 -- No runtime check needed in interface thunks since it is performed
6170 -- by the target primitive associated with the thunk.
6172 -- Note: accessibility check is skipped in the VM case, since there
6173 -- does not seem to be any practical way to implement this check.
6175 elsif Ada_Version >= Ada_2005
6176 and then Tagged_Type_Expansion
6177 and then Is_Class_Wide_Type (R_Type)
6178 and then not Is_Thunk (Current_Scope)
6179 and then not Scope_Suppress.Suppress (Accessibility_Check)
6180 and then
6181 (Is_Class_Wide_Type (Etype (Exp))
6182 or else Nkind_In (Exp, N_Type_Conversion,
6183 N_Unchecked_Type_Conversion)
6184 or else (Is_Entity_Name (Exp)
6185 and then Ekind (Entity (Exp)) in Formal_Kind)
6186 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6187 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6188 then
6189 declare
6190 Tag_Node : Node_Id;
6192 begin
6193 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6194 -- "this" to reference the base of the object. This is required to
6195 -- get access to the TSD of the object.
6197 if Is_Class_Wide_Type (Etype (Exp))
6198 and then Is_Interface (Etype (Exp))
6199 and then Nkind (Exp) = N_Explicit_Dereference
6200 then
6201 Tag_Node :=
6202 Make_Explicit_Dereference (Loc,
6203 Prefix =>
6204 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6205 Make_Function_Call (Loc,
6206 Name =>
6207 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6208 Parameter_Associations => New_List (
6209 Unchecked_Convert_To (RTE (RE_Address),
6210 Duplicate_Subexpr (Prefix (Exp)))))));
6211 else
6212 Tag_Node :=
6213 Make_Attribute_Reference (Loc,
6214 Prefix => Duplicate_Subexpr (Exp),
6215 Attribute_Name => Name_Tag);
6216 end if;
6218 Insert_Action (Exp,
6219 Make_Raise_Program_Error (Loc,
6220 Condition =>
6221 Make_Op_Gt (Loc,
6222 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6223 Right_Opnd =>
6224 Make_Integer_Literal (Loc,
6225 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6226 Reason => PE_Accessibility_Check_Failed));
6227 end;
6229 -- AI05-0073: If function has a controlling access result, check that
6230 -- the tag of the return value, if it is not null, matches designated
6231 -- type of return type.
6233 -- The return expression is referenced twice in the code below, so it
6234 -- must be made free of side effects. Given that different compilers
6235 -- may evaluate these parameters in different order, both occurrences
6236 -- perform a copy.
6238 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6239 and then Has_Controlling_Result (Scope_Id)
6240 then
6241 Insert_Action (N,
6242 Make_Raise_Constraint_Error (Loc,
6243 Condition =>
6244 Make_And_Then (Loc,
6245 Left_Opnd =>
6246 Make_Op_Ne (Loc,
6247 Left_Opnd => Duplicate_Subexpr (Exp),
6248 Right_Opnd => Make_Null (Loc)),
6250 Right_Opnd => Make_Op_Ne (Loc,
6251 Left_Opnd =>
6252 Make_Selected_Component (Loc,
6253 Prefix => Duplicate_Subexpr (Exp),
6254 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6256 Right_Opnd =>
6257 Make_Attribute_Reference (Loc,
6258 Prefix =>
6259 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6260 Attribute_Name => Name_Tag))),
6262 Reason => CE_Tag_Check_Failed),
6263 Suppress => All_Checks);
6264 end if;
6266 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6267 -- ensure that the function result does not outlive an
6268 -- object designated by one of it discriminants.
6270 if Present (Extra_Accessibility_Of_Result (Scope_Id))
6271 and then Has_Unconstrained_Access_Discriminants (R_Type)
6272 then
6273 declare
6274 Discrim_Source : Node_Id;
6276 procedure Check_Against_Result_Level (Level : Node_Id);
6277 -- Check the given accessibility level against the level
6278 -- determined by the point of call. (AI05-0234).
6280 --------------------------------
6281 -- Check_Against_Result_Level --
6282 --------------------------------
6284 procedure Check_Against_Result_Level (Level : Node_Id) is
6285 begin
6286 Insert_Action (N,
6287 Make_Raise_Program_Error (Loc,
6288 Condition =>
6289 Make_Op_Gt (Loc,
6290 Left_Opnd => Level,
6291 Right_Opnd =>
6292 New_Occurrence_Of
6293 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6294 Reason => PE_Accessibility_Check_Failed));
6295 end Check_Against_Result_Level;
6297 begin
6298 Discrim_Source := Exp;
6299 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6300 Discrim_Source := Expression (Discrim_Source);
6301 end loop;
6303 if Nkind (Discrim_Source) = N_Identifier
6304 and then Is_Return_Object (Entity (Discrim_Source))
6305 then
6306 Discrim_Source := Entity (Discrim_Source);
6308 if Is_Constrained (Etype (Discrim_Source)) then
6309 Discrim_Source := Etype (Discrim_Source);
6310 else
6311 Discrim_Source := Expression (Parent (Discrim_Source));
6312 end if;
6314 elsif Nkind (Discrim_Source) = N_Identifier
6315 and then Nkind_In (Original_Node (Discrim_Source),
6316 N_Aggregate, N_Extension_Aggregate)
6317 then
6318 Discrim_Source := Original_Node (Discrim_Source);
6320 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6321 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6322 then
6323 Discrim_Source := Original_Node (Discrim_Source);
6324 end if;
6326 while Nkind_In (Discrim_Source, N_Qualified_Expression,
6327 N_Type_Conversion,
6328 N_Unchecked_Type_Conversion)
6329 loop
6330 Discrim_Source := Expression (Discrim_Source);
6331 end loop;
6333 case Nkind (Discrim_Source) is
6334 when N_Defining_Identifier =>
6336 pragma Assert (Is_Composite_Type (Discrim_Source)
6337 and then Has_Discriminants (Discrim_Source)
6338 and then Is_Constrained (Discrim_Source));
6340 declare
6341 Discrim : Entity_Id :=
6342 First_Discriminant (Base_Type (R_Type));
6343 Disc_Elmt : Elmt_Id :=
6344 First_Elmt (Discriminant_Constraint
6345 (Discrim_Source));
6346 begin
6347 loop
6348 if Ekind (Etype (Discrim)) =
6349 E_Anonymous_Access_Type
6350 then
6351 Check_Against_Result_Level
6352 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6353 end if;
6355 Next_Elmt (Disc_Elmt);
6356 Next_Discriminant (Discrim);
6357 exit when not Present (Discrim);
6358 end loop;
6359 end;
6361 when N_Aggregate | N_Extension_Aggregate =>
6363 -- Unimplemented: extension aggregate case where discrims
6364 -- come from ancestor part, not extension part.
6366 declare
6367 Discrim : Entity_Id :=
6368 First_Discriminant (Base_Type (R_Type));
6370 Disc_Exp : Node_Id := Empty;
6372 Positionals_Exhausted
6373 : Boolean := not Present (Expressions
6374 (Discrim_Source));
6376 function Associated_Expr
6377 (Comp_Id : Entity_Id;
6378 Associations : List_Id) return Node_Id;
6380 -- Given a component and a component associations list,
6381 -- locate the expression for that component; returns
6382 -- Empty if no such expression is found.
6384 ---------------------
6385 -- Associated_Expr --
6386 ---------------------
6388 function Associated_Expr
6389 (Comp_Id : Entity_Id;
6390 Associations : List_Id) return Node_Id
6392 Assoc : Node_Id;
6393 Choice : Node_Id;
6395 begin
6396 -- Simple linear search seems ok here
6398 Assoc := First (Associations);
6399 while Present (Assoc) loop
6400 Choice := First (Choices (Assoc));
6401 while Present (Choice) loop
6402 if (Nkind (Choice) = N_Identifier
6403 and then Chars (Choice) = Chars (Comp_Id))
6404 or else (Nkind (Choice) = N_Others_Choice)
6405 then
6406 return Expression (Assoc);
6407 end if;
6409 Next (Choice);
6410 end loop;
6412 Next (Assoc);
6413 end loop;
6415 return Empty;
6416 end Associated_Expr;
6418 -- Start of processing for Expand_Simple_Function_Return
6420 begin
6421 if not Positionals_Exhausted then
6422 Disc_Exp := First (Expressions (Discrim_Source));
6423 end if;
6425 loop
6426 if Positionals_Exhausted then
6427 Disc_Exp :=
6428 Associated_Expr
6429 (Discrim,
6430 Component_Associations (Discrim_Source));
6431 end if;
6433 if Ekind (Etype (Discrim)) =
6434 E_Anonymous_Access_Type
6435 then
6436 Check_Against_Result_Level
6437 (Dynamic_Accessibility_Level (Disc_Exp));
6438 end if;
6440 Next_Discriminant (Discrim);
6441 exit when not Present (Discrim);
6443 if not Positionals_Exhausted then
6444 Next (Disc_Exp);
6445 Positionals_Exhausted := not Present (Disc_Exp);
6446 end if;
6447 end loop;
6448 end;
6450 when N_Function_Call =>
6452 -- No check needed (check performed by callee)
6454 null;
6456 when others =>
6458 declare
6459 Level : constant Node_Id :=
6460 Make_Integer_Literal (Loc,
6461 Object_Access_Level (Discrim_Source));
6463 begin
6464 -- Unimplemented: check for name prefix that includes
6465 -- a dereference of an access value with a dynamic
6466 -- accessibility level (e.g., an access param or a
6467 -- saooaaat) and use dynamic level in that case. For
6468 -- example:
6469 -- return Access_Param.all(Some_Index).Some_Component;
6470 -- ???
6472 Set_Etype (Level, Standard_Natural);
6473 Check_Against_Result_Level (Level);
6474 end;
6476 end case;
6477 end;
6478 end if;
6480 -- If we are returning an object that may not be bit-aligned, then copy
6481 -- the value into a temporary first. This copy may need to expand to a
6482 -- loop of component operations.
6484 if Is_Possibly_Unaligned_Slice (Exp)
6485 or else Is_Possibly_Unaligned_Object (Exp)
6486 then
6487 declare
6488 ExpR : constant Node_Id := Relocate_Node (Exp);
6489 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6490 begin
6491 Insert_Action (Exp,
6492 Make_Object_Declaration (Loc,
6493 Defining_Identifier => Tnn,
6494 Constant_Present => True,
6495 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6496 Expression => ExpR),
6497 Suppress => All_Checks);
6498 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6499 end;
6500 end if;
6502 -- Generate call to postcondition checks if they are present
6504 if Ekind (Scope_Id) = E_Function
6505 and then Has_Postconditions (Scope_Id)
6506 then
6507 -- We are going to reference the returned value twice in this case,
6508 -- once in the call to _Postconditions, and once in the actual return
6509 -- statement, but we can't have side effects happening twice, and in
6510 -- any case for efficiency we don't want to do the computation twice.
6512 -- If the returned expression is an entity name, we don't need to
6513 -- worry since it is efficient and safe to reference it twice, that's
6514 -- also true for literals other than string literals, and for the
6515 -- case of X.all where X is an entity name.
6517 if Is_Entity_Name (Exp)
6518 or else Nkind_In (Exp, N_Character_Literal,
6519 N_Integer_Literal,
6520 N_Real_Literal)
6521 or else (Nkind (Exp) = N_Explicit_Dereference
6522 and then Is_Entity_Name (Prefix (Exp)))
6523 then
6524 null;
6526 -- Otherwise we are going to need a temporary to capture the value
6528 else
6529 declare
6530 ExpR : Node_Id := Relocate_Node (Exp);
6531 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6533 begin
6534 -- In the case of discriminated objects, we have created a
6535 -- constrained subtype above, and used the underlying type.
6536 -- This transformation is post-analysis and harmless, except
6537 -- that now the call to the post-condition will be analyzed and
6538 -- type kinds have to match.
6540 if Nkind (ExpR) = N_Unchecked_Type_Conversion
6541 and then
6542 Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
6543 then
6544 ExpR := Expression (ExpR);
6545 end if;
6547 -- For a complex expression of an elementary type, capture
6548 -- value in the temporary and use it as the reference.
6550 if Is_Elementary_Type (R_Type) then
6551 Insert_Action (Exp,
6552 Make_Object_Declaration (Loc,
6553 Defining_Identifier => Tnn,
6554 Constant_Present => True,
6555 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6556 Expression => ExpR),
6557 Suppress => All_Checks);
6559 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6561 -- If we have something we can rename, generate a renaming of
6562 -- the object and replace the expression with a reference
6564 elsif Is_Object_Reference (Exp) then
6565 Insert_Action (Exp,
6566 Make_Object_Renaming_Declaration (Loc,
6567 Defining_Identifier => Tnn,
6568 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6569 Name => ExpR),
6570 Suppress => All_Checks);
6572 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6574 -- Otherwise we have something like a string literal or an
6575 -- aggregate. We could copy the value, but that would be
6576 -- inefficient. Instead we make a reference to the value and
6577 -- capture this reference with a renaming, the expression is
6578 -- then replaced by a dereference of this renaming.
6580 else
6581 -- For now, copy the value, since the code below does not
6582 -- seem to work correctly ???
6584 Insert_Action (Exp,
6585 Make_Object_Declaration (Loc,
6586 Defining_Identifier => Tnn,
6587 Constant_Present => True,
6588 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6589 Expression => Relocate_Node (Exp)),
6590 Suppress => All_Checks);
6592 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6594 -- Insert_Action (Exp,
6595 -- Make_Object_Renaming_Declaration (Loc,
6596 -- Defining_Identifier => Tnn,
6597 -- Access_Definition =>
6598 -- Make_Access_Definition (Loc,
6599 -- All_Present => True,
6600 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6601 -- Name =>
6602 -- Make_Reference (Loc,
6603 -- Prefix => Relocate_Node (Exp))),
6604 -- Suppress => All_Checks);
6606 -- Rewrite (Exp,
6607 -- Make_Explicit_Dereference (Loc,
6608 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6609 end if;
6610 end;
6611 end if;
6613 -- Generate call to _postconditions
6615 Insert_Action (Exp,
6616 Make_Procedure_Call_Statement (Loc,
6617 Name => Make_Identifier (Loc, Name_uPostconditions),
6618 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6619 end if;
6621 -- Ada 2005 (AI-251): If this return statement corresponds with an
6622 -- simple return statement associated with an extended return statement
6623 -- and the type of the returned object is an interface then generate an
6624 -- implicit conversion to force displacement of the "this" pointer.
6626 if Ada_Version >= Ada_2005
6627 and then Comes_From_Extended_Return_Statement (N)
6628 and then Nkind (Expression (N)) = N_Identifier
6629 and then Is_Interface (Utyp)
6630 and then Utyp /= Underlying_Type (Exptyp)
6631 then
6632 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6633 Analyze_And_Resolve (Exp);
6634 end if;
6635 end Expand_Simple_Function_Return;
6637 --------------------------------
6638 -- Expand_Subprogram_Contract --
6639 --------------------------------
6641 procedure Expand_Subprogram_Contract
6642 (N : Node_Id;
6643 Spec_Id : Entity_Id;
6644 Body_Id : Entity_Id)
6646 procedure Add_Invariant_And_Predicate_Checks
6647 (Subp_Id : Entity_Id;
6648 Stmts : in out List_Id;
6649 Result : out Node_Id);
6650 -- Process the result of function Subp_Id (if applicable) and all its
6651 -- formals. Add invariant and predicate checks where applicable. The
6652 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6653 -- function, Result contains the entity of parameter _Result, to be
6654 -- used in the creation of procedure _Postconditions.
6656 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
6657 -- Append a node to a list. If there is no list, create a new one. When
6658 -- the item denotes a pragma, it is added to the list only when it is
6659 -- enabled.
6661 procedure Build_Postconditions_Procedure
6662 (Subp_Id : Entity_Id;
6663 Stmts : List_Id;
6664 Result : Entity_Id);
6665 -- Create the body of procedure _Postconditions which handles various
6666 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6667 -- of statements to be checked on exit. Parameter Result is the entity
6668 -- of parameter _Result when Subp_Id denotes a function.
6670 function Build_Pragma_Check_Equivalent
6671 (Prag : Node_Id;
6672 Subp_Id : Entity_Id := Empty;
6673 Inher_Id : Entity_Id := Empty) return Node_Id;
6674 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6675 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6676 -- the routine corrects the references of all formals of Inher_Id to
6677 -- point to the formals of Subp_Id.
6679 procedure Collect_Body_Postconditions (Stmts : in out List_Id);
6680 -- Process all postconditions found in the declarations of the body. The
6681 -- routine appends the pragma Check equivalents to list Stmts.
6683 procedure Collect_Spec_Postconditions
6684 (Subp_Id : Entity_Id;
6685 Stmts : in out List_Id);
6686 -- Process all [inherited] postconditions of subprogram spec Subp_Id.
6687 -- The routine appends the pragma Check equivalents to list Stmts.
6689 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id);
6690 -- Process all [inherited] preconditions of subprogram spec Subp_Id. The
6691 -- routine prepends the pragma Check equivalents to the declarations of
6692 -- the body.
6694 procedure Prepend_To_Declarations (Item : Node_Id);
6695 -- Prepend a single item to the declarations of the subprogram body
6697 procedure Process_Contract_Cases
6698 (Subp_Id : Entity_Id;
6699 Stmts : in out List_Id);
6700 -- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
6701 -- appends the expanded code to list Stmts.
6703 ----------------------------------------
6704 -- Add_Invariant_And_Predicate_Checks --
6705 ----------------------------------------
6707 procedure Add_Invariant_And_Predicate_Checks
6708 (Subp_Id : Entity_Id;
6709 Stmts : in out List_Id;
6710 Result : out Node_Id)
6712 procedure Add_Invariant_Access_Checks (Id : Entity_Id);
6713 -- Id denotes the return value of a function or a formal parameter.
6714 -- Add an invariant check if the type of Id is access to a type with
6715 -- invariants. The routine appends the generated code to Stmts.
6717 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
6718 -- Determine whether type Typ can benefit from invariant checks. To
6719 -- qualify, the type must have a non-null invariant procedure and
6720 -- subprogram Subp_Id must appear visible from the point of view of
6721 -- the type.
6723 ---------------------------------
6724 -- Add_Invariant_Access_Checks --
6725 ---------------------------------
6727 procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
6728 Loc : constant Source_Ptr := Sloc (N);
6729 Ref : Node_Id;
6730 Typ : Entity_Id;
6732 begin
6733 Typ := Etype (Id);
6735 if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
6736 Typ := Designated_Type (Typ);
6738 if Invariant_Checks_OK (Typ) then
6739 Ref :=
6740 Make_Explicit_Dereference (Loc,
6741 Prefix => New_Occurrence_Of (Id, Loc));
6742 Set_Etype (Ref, Typ);
6744 -- Generate:
6745 -- if <Id> /= null then
6746 -- <invariant_call (<Ref>)>
6747 -- end if;
6749 Append_Enabled_Item
6750 (Item =>
6751 Make_If_Statement (Loc,
6752 Condition =>
6753 Make_Op_Ne (Loc,
6754 Left_Opnd => New_Occurrence_Of (Id, Loc),
6755 Right_Opnd => Make_Null (Loc)),
6756 Then_Statements => New_List (
6757 Make_Invariant_Call (Ref))),
6758 List => Stmts);
6759 end if;
6760 end if;
6761 end Add_Invariant_Access_Checks;
6763 -------------------------
6764 -- Invariant_Checks_OK --
6765 -------------------------
6767 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
6768 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
6769 -- Determine whether the body of procedure Proc_Id contains a sole
6770 -- null statement, possibly followed by an optional return.
6772 function Has_Public_Visibility_Of_Subprogram return Boolean;
6773 -- Determine whether type Typ has public visibility of subprogram
6774 -- Subp_Id.
6776 -------------------
6777 -- Has_Null_Body --
6778 -------------------
6780 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
6781 Body_Id : Entity_Id;
6782 Decl : Node_Id;
6783 Spec : Node_Id;
6784 Stmt1 : Node_Id;
6785 Stmt2 : Node_Id;
6787 begin
6788 Spec := Parent (Proc_Id);
6789 Decl := Parent (Spec);
6791 -- Retrieve the entity of the invariant procedure body
6793 if Nkind (Spec) = N_Procedure_Specification
6794 and then Nkind (Decl) = N_Subprogram_Declaration
6795 then
6796 Body_Id := Corresponding_Body (Decl);
6798 -- The body acts as a spec
6800 else
6801 Body_Id := Proc_Id;
6802 end if;
6804 -- The body will be generated later
6806 if No (Body_Id) then
6807 return False;
6808 end if;
6810 Spec := Parent (Body_Id);
6811 Decl := Parent (Spec);
6813 pragma Assert
6814 (Nkind (Spec) = N_Procedure_Specification
6815 and then Nkind (Decl) = N_Subprogram_Body);
6817 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
6819 -- Look for a null statement followed by an optional return
6820 -- statement.
6822 if Nkind (Stmt1) = N_Null_Statement then
6823 Stmt2 := Next (Stmt1);
6825 if Present (Stmt2) then
6826 return Nkind (Stmt2) = N_Simple_Return_Statement;
6827 else
6828 return True;
6829 end if;
6830 end if;
6832 return False;
6833 end Has_Null_Body;
6835 -----------------------------------------
6836 -- Has_Public_Visibility_Of_Subprogram --
6837 -----------------------------------------
6839 function Has_Public_Visibility_Of_Subprogram return Boolean is
6840 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
6842 begin
6843 -- An Initialization procedure must be considered visible even
6844 -- though it is internally generated.
6846 if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
6847 return True;
6849 elsif Ekind (Scope (Typ)) /= E_Package then
6850 return False;
6852 -- Internally generated code is never publicly visible except
6853 -- for a subprogram that is the implementation of an expression
6854 -- function. In that case the visibility is determined by the
6855 -- last check.
6857 elsif not Comes_From_Source (Subp_Decl)
6858 and then
6859 (Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
6860 or else not
6861 Comes_From_Source (Defining_Entity (Subp_Decl)))
6862 then
6863 return False;
6865 -- Determine whether the subprogram is declared in the visible
6866 -- declarations of the package containing the type.
6868 else
6869 return List_Containing (Subp_Decl) =
6870 Visible_Declarations
6871 (Specification (Unit_Declaration_Node (Scope (Typ))));
6872 end if;
6873 end Has_Public_Visibility_Of_Subprogram;
6875 -- Start of processing for Invariant_Checks_OK
6877 begin
6878 return
6879 Has_Invariants (Typ)
6880 and then Present (Invariant_Procedure (Typ))
6881 and then not Has_Null_Body (Invariant_Procedure (Typ))
6882 and then Has_Public_Visibility_Of_Subprogram;
6883 end Invariant_Checks_OK;
6885 -- Local variables
6887 Loc : constant Source_Ptr := Sloc (N);
6888 -- Source location of subprogram contract
6890 Formal : Entity_Id;
6891 Typ : Entity_Id;
6893 -- Start of processing for Add_Invariant_And_Predicate_Checks
6895 begin
6896 Result := Empty;
6898 -- Do not generate any checks if no code is being generated
6900 if not Expander_Active then
6901 return;
6902 end if;
6904 -- Process the result of a function
6906 if Ekind_In (Subp_Id, E_Function, E_Generic_Function) then
6907 Typ := Etype (Subp_Id);
6909 -- Generate _Result which is used in procedure _Postconditions to
6910 -- verify the return value.
6912 Result := Make_Defining_Identifier (Loc, Name_uResult);
6913 Set_Etype (Result, Typ);
6915 -- Add an invariant check when the return type has invariants and
6916 -- the related function is visible to the outside.
6918 if Invariant_Checks_OK (Typ) then
6919 Append_Enabled_Item
6920 (Item =>
6921 Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
6922 List => Stmts);
6923 end if;
6925 -- Add an invariant check when the return type is an access to a
6926 -- type with invariants.
6928 Add_Invariant_Access_Checks (Result);
6929 end if;
6931 -- Add invariant and predicates for all formals that qualify
6933 Formal := First_Formal (Subp_Id);
6934 while Present (Formal) loop
6935 Typ := Etype (Formal);
6937 if Ekind (Formal) /= E_In_Parameter
6938 or else Is_Access_Type (Typ)
6939 then
6940 if Invariant_Checks_OK (Typ) then
6941 Append_Enabled_Item
6942 (Item =>
6943 Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
6944 List => Stmts);
6945 end if;
6947 Add_Invariant_Access_Checks (Formal);
6949 -- Note: we used to add predicate checks for OUT and IN OUT
6950 -- formals here, but that was misguided, since such checks are
6951 -- performed on the caller side, based on the predicate of the
6952 -- actual, rather than the predicate of the formal.
6954 end if;
6956 Next_Formal (Formal);
6957 end loop;
6958 end Add_Invariant_And_Predicate_Checks;
6960 -------------------------
6961 -- Append_Enabled_Item --
6962 -------------------------
6964 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
6965 begin
6966 -- Do not chain ignored or disabled pragmas
6968 if Nkind (Item) = N_Pragma
6969 and then (Is_Ignored (Item) or else Is_Disabled (Item))
6970 then
6971 null;
6973 -- Otherwise, add the item
6975 else
6976 if No (List) then
6977 List := New_List;
6978 end if;
6980 -- If the pragma is a conjunct in a composite postcondition, it
6981 -- has been processed in reverse order. In the postcondition body
6982 -- if must appear before the others.
6984 if Nkind (Item) = N_Pragma
6985 and then From_Aspect_Specification (Item)
6986 and then Split_PPC (Item)
6987 then
6988 Prepend (Item, List);
6989 else
6990 Append (Item, List);
6991 end if;
6992 end if;
6993 end Append_Enabled_Item;
6995 ------------------------------------
6996 -- Build_Postconditions_Procedure --
6997 ------------------------------------
6999 procedure Build_Postconditions_Procedure
7000 (Subp_Id : Entity_Id;
7001 Stmts : List_Id;
7002 Result : Entity_Id)
7004 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id);
7005 -- Insert node Stmt before the first source declaration of the
7006 -- related subprogram's body. If no such declaration exists, Stmt
7007 -- becomes the last declaration.
7009 --------------------------------------------
7010 -- Insert_Before_First_Source_Declaration --
7011 --------------------------------------------
7013 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id) is
7014 Decls : constant List_Id := Declarations (N);
7015 Decl : Node_Id;
7017 begin
7018 -- Inspect the declarations of the related subprogram body looking
7019 -- for the first source declaration.
7021 if Present (Decls) then
7022 Decl := First (Decls);
7023 while Present (Decl) loop
7024 if Comes_From_Source (Decl) then
7025 Insert_Before (Decl, Stmt);
7026 return;
7027 end if;
7029 Next (Decl);
7030 end loop;
7032 -- If we get there, then the subprogram body lacks any source
7033 -- declarations. The body of _Postconditions now acts as the
7034 -- last declaration.
7036 Append (Stmt, Decls);
7038 -- Ensure that the body has a declaration list
7040 else
7041 Set_Declarations (N, New_List (Stmt));
7042 end if;
7043 end Insert_Before_First_Source_Declaration;
7045 -- Local variables
7047 Loc : constant Source_Ptr := Sloc (N);
7048 Params : List_Id := No_List;
7049 Proc_Id : Entity_Id;
7051 -- Start of processing for Build_Postconditions_Procedure
7053 begin
7054 -- Do not create the routine if no code is being generated
7056 if not Expander_Active then
7057 return;
7059 -- Nothing to do if there are no actions to check on exit
7061 elsif No (Stmts) then
7062 return;
7063 end if;
7065 Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
7067 -- The related subprogram is a function, create the specification of
7068 -- parameter _Result.
7070 if Present (Result) then
7071 Params := New_List (
7072 Make_Parameter_Specification (Loc,
7073 Defining_Identifier => Result,
7074 Parameter_Type =>
7075 New_Occurrence_Of (Etype (Result), Loc)));
7076 end if;
7078 -- Insert _Postconditions before the first source declaration of the
7079 -- body. This ensures that the body will not cause any premature
7080 -- freezing as it may mention types:
7082 -- procedure Proc (Obj : Array_Typ) is
7083 -- procedure _postconditions is
7084 -- begin
7085 -- ... Obj ...
7086 -- end _postconditions;
7088 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7089 -- begin
7091 -- In the example above, Obj is of type T but the incorrect placement
7092 -- of _Postconditions will cause a crash in gigi due to an out of
7093 -- order reference. The body of _Postconditions must be placed after
7094 -- the declaration of Temp to preserve correct visibility.
7096 -- Note that we set an explicit End_Label in order to override the
7097 -- sloc of the implicit RETURN statement, and prevent it from
7098 -- inheriting the sloc of one of the postconditions: this would cause
7099 -- confusing debug info to be produced, interfering with coverage
7100 -- analysis tools.
7102 Insert_Before_First_Source_Declaration (
7103 Make_Subprogram_Body (Loc,
7104 Specification =>
7105 Make_Procedure_Specification (Loc,
7106 Defining_Unit_Name => Proc_Id,
7107 Parameter_Specifications => Params),
7109 Declarations => Empty_List,
7110 Handled_Statement_Sequence =>
7111 Make_Handled_Sequence_Of_Statements (Loc,
7112 Statements => Stmts,
7113 End_Label => Make_Identifier (Loc, Chars (Proc_Id)))));
7115 -- Set the attributes of the related subprogram to capture the
7116 -- generated procedure.
7118 if Ekind_In (Subp_Id, E_Generic_Procedure, E_Procedure) then
7119 Set_Postcondition_Proc (Subp_Id, Proc_Id);
7120 end if;
7122 Set_Has_Postconditions (Subp_Id);
7123 end Build_Postconditions_Procedure;
7125 -----------------------------------
7126 -- Build_Pragma_Check_Equivalent --
7127 -----------------------------------
7129 function Build_Pragma_Check_Equivalent
7130 (Prag : Node_Id;
7131 Subp_Id : Entity_Id := Empty;
7132 Inher_Id : Entity_Id := Empty) return Node_Id
7134 Loc : constant Source_Ptr := Sloc (Prag);
7135 Prag_Nam : constant Name_Id := Pragma_Name (Prag);
7136 Check_Prag : Node_Id;
7137 Formals_Map : Elist_Id;
7138 Inher_Formal : Entity_Id;
7139 Msg_Arg : Node_Id;
7140 Nam : Name_Id;
7141 Subp_Formal : Entity_Id;
7143 begin
7144 Formals_Map := No_Elist;
7146 -- When the pre- or postcondition is inherited, map the formals of
7147 -- the inherited subprogram to those of the current subprogram.
7149 if Present (Inher_Id) then
7150 pragma Assert (Present (Subp_Id));
7152 Formals_Map := New_Elmt_List;
7154 -- Create a relation <inherited formal> => <subprogram formal>
7156 Inher_Formal := First_Formal (Inher_Id);
7157 Subp_Formal := First_Formal (Subp_Id);
7158 while Present (Inher_Formal) and then Present (Subp_Formal) loop
7159 Append_Elmt (Inher_Formal, Formals_Map);
7160 Append_Elmt (Subp_Formal, Formals_Map);
7162 Next_Formal (Inher_Formal);
7163 Next_Formal (Subp_Formal);
7164 end loop;
7165 end if;
7167 -- Copy the original pragma while performing substitutions (if
7168 -- applicable).
7170 Check_Prag :=
7171 New_Copy_Tree
7172 (Source => Prag,
7173 Map => Formals_Map,
7174 New_Scope => Current_Scope);
7176 -- Mark the pragma as being internally generated and reset the
7177 -- Analyzed flag.
7179 Set_Comes_From_Source (Check_Prag, False);
7180 Set_Analyzed (Check_Prag, False);
7182 -- For a postcondition pragma within a generic, preserve the pragma
7183 -- for later expansion. This is also used when an error was detected,
7184 -- thus setting Expander_Active to False.
7186 if Prag_Nam = Name_Postcondition and then not Expander_Active then
7187 return Check_Prag;
7188 end if;
7190 if Present (Corresponding_Aspect (Prag)) then
7191 Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
7192 else
7193 Nam := Prag_Nam;
7194 end if;
7196 -- Convert the copy into pragma Check by correcting the name and
7197 -- adding a check_kind argument.
7199 Set_Pragma_Identifier
7200 (Check_Prag, Make_Identifier (Loc, Name_Check));
7202 Prepend_To (Pragma_Argument_Associations (Check_Prag),
7203 Make_Pragma_Argument_Association (Loc,
7204 Expression => Make_Identifier (Loc, Nam)));
7206 -- Update the error message when the pragma is inherited
7208 if Present (Inher_Id) then
7209 Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
7211 if Chars (Msg_Arg) = Name_Message then
7212 String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
7214 -- Insert "inherited" to improve the error message
7216 if Name_Buffer (1 .. 8) = "failed p" then
7217 Insert_Str_In_Name_Buffer ("inherited ", 8);
7218 Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
7219 end if;
7220 end if;
7221 end if;
7223 return Check_Prag;
7224 end Build_Pragma_Check_Equivalent;
7226 ---------------------------------
7227 -- Collect_Body_Postconditions --
7228 ---------------------------------
7230 procedure Collect_Body_Postconditions (Stmts : in out List_Id) is
7231 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id);
7232 -- Process all postconditions of the kind denoted by Post_Nam
7234 -----------------------------------------
7235 -- Collect_Body_Postconditions_Of_Kind --
7236 -----------------------------------------
7238 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id) is
7239 procedure Collect_Body_Postconditions_In_Decls
7240 (First_Decl : Node_Id);
7241 -- Process all postconditions found in a declarative list starting
7242 -- with declaration First_Decl.
7244 ------------------------------------------
7245 -- Collect_Body_Postconditions_In_Decls --
7246 ------------------------------------------
7248 procedure Collect_Body_Postconditions_In_Decls
7249 (First_Decl : Node_Id)
7251 Check_Prag : Node_Id;
7252 Decl : Node_Id;
7254 begin
7255 -- Inspect the declarative list looking for a pragma that
7256 -- matches the desired name.
7258 Decl := First_Decl;
7259 while Present (Decl) loop
7261 -- Note that non-matching pragmas are skipped
7263 if Nkind (Decl) = N_Pragma then
7264 if Pragma_Name (Decl) = Post_Nam then
7265 if not Analyzed (Decl) then
7266 Analyze (Decl);
7267 end if;
7269 Check_Prag := Build_Pragma_Check_Equivalent (Decl);
7271 if Expander_Active then
7272 Append_Enabled_Item
7273 (Item => Check_Prag,
7274 List => Stmts);
7276 -- If analyzing a generic unit, save pragma for later
7278 else
7279 Prepend_To_Declarations (Check_Prag);
7280 end if;
7281 end if;
7283 -- Skip internally generated code
7285 elsif not Comes_From_Source (Decl) then
7286 null;
7288 -- Postcondition pragmas are usually grouped together. There
7289 -- is no need to inspect the whole declarative list.
7291 else
7292 exit;
7293 end if;
7295 Next (Decl);
7296 end loop;
7297 end Collect_Body_Postconditions_In_Decls;
7299 -- Local variables
7301 Unit_Decl : constant Node_Id := Parent (N);
7303 -- Start of processing for Collect_Body_Postconditions_Of_Kind
7305 begin
7306 pragma Assert (Nam_In (Post_Nam, Name_Postcondition,
7307 Name_Refined_Post));
7309 -- Inspect the declarations of the subprogram body looking for a
7310 -- pragma that matches the desired name.
7312 Collect_Body_Postconditions_In_Decls
7313 (First_Decl => First (Declarations (N)));
7315 -- The subprogram body being processed is actually the proper body
7316 -- of a stub with a corresponding spec. The subprogram stub may
7317 -- carry a postcondition pragma in which case it must be taken
7318 -- into account. The pragma appears after the stub.
7320 if Present (Spec_Id) and then Nkind (Unit_Decl) = N_Subunit then
7321 Collect_Body_Postconditions_In_Decls
7322 (First_Decl => Next (Corresponding_Stub (Unit_Decl)));
7323 end if;
7324 end Collect_Body_Postconditions_Of_Kind;
7326 -- Start of processing for Collect_Body_Postconditions
7328 begin
7329 Collect_Body_Postconditions_Of_Kind (Name_Refined_Post);
7330 Collect_Body_Postconditions_Of_Kind (Name_Postcondition);
7331 end Collect_Body_Postconditions;
7333 ---------------------------------
7334 -- Collect_Spec_Postconditions --
7335 ---------------------------------
7337 procedure Collect_Spec_Postconditions
7338 (Subp_Id : Entity_Id;
7339 Stmts : in out List_Id)
7341 Inher_Subps : constant Subprogram_List :=
7342 Inherited_Subprograms (Subp_Id);
7343 Check_Prag : Node_Id;
7344 Prag : Node_Id;
7345 Inher_Subp_Id : Entity_Id;
7347 begin
7348 -- Process the contract of the spec
7350 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7351 while Present (Prag) loop
7352 if Pragma_Name (Prag) = Name_Postcondition then
7353 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7355 if Expander_Active then
7356 Append_Enabled_Item
7357 (Item => Check_Prag,
7358 List => Stmts);
7360 -- When analyzing a generic unit, save the pragma for later
7362 else
7363 Prepend_To_Declarations (Check_Prag);
7364 end if;
7365 end if;
7367 Prag := Next_Pragma (Prag);
7368 end loop;
7370 -- Process the contracts of all inherited subprograms, looking for
7371 -- class-wide postconditions.
7373 for Index in Inher_Subps'Range loop
7374 Inher_Subp_Id := Inher_Subps (Index);
7376 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7377 while Present (Prag) loop
7378 if Pragma_Name (Prag) = Name_Postcondition
7379 and then Class_Present (Prag)
7380 then
7381 Check_Prag :=
7382 Build_Pragma_Check_Equivalent
7383 (Prag => Prag,
7384 Subp_Id => Subp_Id,
7385 Inher_Id => Inher_Subp_Id);
7387 if Expander_Active then
7388 Append_Enabled_Item
7389 (Item => Check_Prag,
7390 List => Stmts);
7392 -- When analyzing a generic unit, save the pragma for later
7394 else
7395 Prepend_To_Declarations (Check_Prag);
7396 end if;
7397 end if;
7399 Prag := Next_Pragma (Prag);
7400 end loop;
7401 end loop;
7402 end Collect_Spec_Postconditions;
7404 --------------------------------
7405 -- Collect_Spec_Preconditions --
7406 --------------------------------
7408 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id) is
7409 Class_Pre : Node_Id := Empty;
7410 -- The sole class-wide precondition pragma that applies to the
7411 -- subprogram.
7413 procedure Add_Or_Save_Precondition (Prag : Node_Id);
7414 -- Save a class-wide precondition or add a regulat precondition to
7415 -- the declarative list of the body.
7417 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
7418 -- Merge two class-wide preconditions by "or else"-ing them. The
7419 -- changes are accumulated in parameter Into. Update the error
7420 -- message of Into.
7422 ------------------------------
7423 -- Add_Or_Save_Precondition --
7424 ------------------------------
7426 procedure Add_Or_Save_Precondition (Prag : Node_Id) is
7427 Check_Prag : Node_Id;
7429 begin
7430 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7432 -- Save the sole class-wide precondition (if any) for the next
7433 -- step where it will be merged with inherited preconditions.
7435 if Class_Present (Prag) then
7436 pragma Assert (No (Class_Pre));
7437 Class_Pre := Check_Prag;
7439 -- Accumulate the corresponding Check pragmas to the top of the
7440 -- declarations. Prepending the items ensures that they will be
7441 -- evaluated in their original order.
7443 else
7444 Prepend_To_Declarations (Check_Prag);
7445 end if;
7446 end Add_Or_Save_Precondition;
7448 -------------------------
7449 -- Merge_Preconditions --
7450 -------------------------
7452 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
7453 function Expression_Arg (Prag : Node_Id) return Node_Id;
7454 -- Return the boolean expression argument of a precondition while
7455 -- updating its parenteses count for the subsequent merge.
7457 function Message_Arg (Prag : Node_Id) return Node_Id;
7458 -- Return the message argument of a precondition
7460 --------------------
7461 -- Expression_Arg --
7462 --------------------
7464 function Expression_Arg (Prag : Node_Id) return Node_Id is
7465 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7466 Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
7468 begin
7469 if Paren_Count (Arg) = 0 then
7470 Set_Paren_Count (Arg, 1);
7471 end if;
7473 return Arg;
7474 end Expression_Arg;
7476 -----------------
7477 -- Message_Arg --
7478 -----------------
7480 function Message_Arg (Prag : Node_Id) return Node_Id is
7481 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7482 begin
7483 return Get_Pragma_Arg (Last (Args));
7484 end Message_Arg;
7486 -- Local variables
7488 From_Expr : constant Node_Id := Expression_Arg (From);
7489 From_Msg : constant Node_Id := Message_Arg (From);
7490 Into_Expr : constant Node_Id := Expression_Arg (Into);
7491 Into_Msg : constant Node_Id := Message_Arg (Into);
7492 Loc : constant Source_Ptr := Sloc (Into);
7494 -- Start of processing for Merge_Preconditions
7496 begin
7497 -- Merge the two preconditions by "or else"-ing them
7499 Rewrite (Into_Expr,
7500 Make_Or_Else (Loc,
7501 Right_Opnd => Relocate_Node (Into_Expr),
7502 Left_Opnd => From_Expr));
7504 -- Merge the two error messages to produce a single message of the
7505 -- form:
7507 -- failed precondition from ...
7508 -- also failed inherited precondition from ...
7510 if not Exception_Locations_Suppressed then
7511 Start_String (Strval (Into_Msg));
7512 Store_String_Char (ASCII.LF);
7513 Store_String_Chars (" also ");
7514 Store_String_Chars (Strval (From_Msg));
7516 Set_Strval (Into_Msg, End_String);
7517 end if;
7518 end Merge_Preconditions;
7520 -- Local variables
7522 Inher_Subps : constant Subprogram_List :=
7523 Inherited_Subprograms (Subp_Id);
7524 Subp_Decl : constant Node_Id := Parent (Parent (Subp_Id));
7525 Check_Prag : Node_Id;
7526 Decl : Node_Id;
7527 Inher_Subp_Id : Entity_Id;
7528 Prag : Node_Id;
7530 -- Start of processing for Collect_Spec_Preconditions
7532 begin
7533 -- Process the contract of the spec
7535 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7536 while Present (Prag) loop
7537 if Pragma_Name (Prag) = Name_Precondition then
7538 Add_Or_Save_Precondition (Prag);
7539 end if;
7541 Prag := Next_Pragma (Prag);
7542 end loop;
7544 -- The subprogram declaration being processed is actually a body
7545 -- stub. The stub may carry a precondition pragma in which case it
7546 -- must be taken into account. The pragma appears after the stub.
7548 if Nkind (Subp_Decl) = N_Subprogram_Body_Stub then
7550 -- Inspect the declarations following the body stub
7552 Decl := Next (Subp_Decl);
7553 while Present (Decl) loop
7555 -- Note that non-matching pragmas are skipped
7557 if Nkind (Decl) = N_Pragma then
7558 if Pragma_Name (Decl) = Name_Precondition then
7559 if not Analyzed (Decl) then
7560 Analyze (Decl);
7561 end if;
7563 Add_Or_Save_Precondition (Decl);
7564 end if;
7566 -- Skip internally generated code
7568 elsif not Comes_From_Source (Decl) then
7569 null;
7571 -- Preconditions are usually grouped together. There is no need
7572 -- to inspect the whole declarative list.
7574 else
7575 exit;
7576 end if;
7578 Next (Decl);
7579 end loop;
7580 end if;
7582 -- Process the contracts of all inherited subprograms, looking for
7583 -- class-wide preconditions.
7585 for Index in Inher_Subps'Range loop
7586 Inher_Subp_Id := Inher_Subps (Index);
7588 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7589 while Present (Prag) loop
7590 if Pragma_Name (Prag) = Name_Precondition
7591 and then Class_Present (Prag)
7592 then
7593 Check_Prag :=
7594 Build_Pragma_Check_Equivalent
7595 (Prag => Prag,
7596 Subp_Id => Subp_Id,
7597 Inher_Id => Inher_Subp_Id);
7599 -- The spec or an inherited subprogram already yielded a
7600 -- class-wide precondition. Merge the existing precondition
7601 -- with the current one using "or else".
7603 if Present (Class_Pre) then
7604 Merge_Preconditions (Check_Prag, Class_Pre);
7605 else
7606 Class_Pre := Check_Prag;
7607 end if;
7608 end if;
7610 Prag := Next_Pragma (Prag);
7611 end loop;
7612 end loop;
7614 -- Add the merged class-wide preconditions (if any)
7616 if Present (Class_Pre) then
7617 Prepend_To_Declarations (Class_Pre);
7618 end if;
7619 end Collect_Spec_Preconditions;
7621 -----------------------------
7622 -- Prepend_To_Declarations --
7623 -----------------------------
7625 procedure Prepend_To_Declarations (Item : Node_Id) is
7626 Decls : List_Id := Declarations (N);
7628 begin
7629 -- Ensure that the body has a declarative list
7631 if No (Decls) then
7632 Decls := New_List;
7633 Set_Declarations (N, Decls);
7634 end if;
7636 Prepend_To (Decls, Item);
7637 end Prepend_To_Declarations;
7639 ----------------------------
7640 -- Process_Contract_Cases --
7641 ----------------------------
7643 procedure Process_Contract_Cases
7644 (Subp_Id : Entity_Id;
7645 Stmts : in out List_Id)
7647 Prag : Node_Id;
7649 begin
7650 -- Do not build the Contract_Cases circuitry if no code is being
7651 -- generated.
7653 if not Expander_Active then
7654 return;
7655 end if;
7657 Prag := Contract_Test_Cases (Contract (Subp_Id));
7658 while Present (Prag) loop
7659 if Pragma_Name (Prag) = Name_Contract_Cases then
7660 Expand_Contract_Cases
7661 (CCs => Prag,
7662 Subp_Id => Subp_Id,
7663 Decls => Declarations (N),
7664 Stmts => Stmts);
7665 end if;
7667 Prag := Next_Pragma (Prag);
7668 end loop;
7669 end Process_Contract_Cases;
7671 -- Local variables
7673 Post_Stmts : List_Id := No_List;
7674 Result : Entity_Id;
7675 Subp_Id : Entity_Id;
7677 -- Start of processing for Expand_Subprogram_Contract
7679 begin
7680 if Present (Spec_Id) then
7681 Subp_Id := Spec_Id;
7682 else
7683 Subp_Id := Body_Id;
7684 end if;
7686 -- Do not process a predicate function as its body will end up with a
7687 -- recursive call to itself and blow up the stack.
7689 if Ekind (Subp_Id) = E_Function
7690 and then Is_Predicate_Function (Subp_Id)
7691 then
7692 return;
7694 -- Do not process TSS subprograms
7696 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
7697 return;
7698 end if;
7700 -- The expansion of a subprogram contract involves the relocation of
7701 -- various contract assertions to the declarations of the body in a
7702 -- particular order. The order is as follows:
7704 -- function Example (...) return ... is
7705 -- procedure _Postconditions (...) is
7706 -- begin
7707 -- <refined postconditions from body>
7708 -- <postconditions from body>
7709 -- <postconditions from spec>
7710 -- <inherited postconditions>
7711 -- <contract case consequences>
7712 -- <invariant check of function result (if applicable)>
7713 -- <invariant and predicate checks of parameters>
7714 -- end _Postconditions;
7716 -- <inherited preconditions>
7717 -- <preconditions from spec>
7718 -- <preconditions from body>
7719 -- <refined preconditions from body>
7720 -- <contract case conditions>
7722 -- <source declarations>
7723 -- begin
7724 -- <source statements>
7726 -- _Preconditions (Result);
7727 -- return Result;
7728 -- end Example;
7730 -- Routine _Postconditions holds all contract assertions that must be
7731 -- verified on exit from the related routine.
7733 -- Collect all [inherited] preconditions from the spec, transform them
7734 -- into Check pragmas and add them to the declarations of the body in
7735 -- the order outlined above.
7737 if Present (Spec_Id) then
7738 Collect_Spec_Preconditions (Spec_Id);
7739 end if;
7741 -- Transform all [refined] postconditions of the body into Check
7742 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7744 Collect_Body_Postconditions (Post_Stmts);
7746 -- Transform all [inherited] postconditions from the spec into Check
7747 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7749 if Present (Spec_Id) then
7750 Collect_Spec_Postconditions (Spec_Id, Post_Stmts);
7752 -- Transform pragma Contract_Cases from the spec into its circuitry
7754 Process_Contract_Cases (Spec_Id, Post_Stmts);
7755 end if;
7757 -- Apply invariant and predicate checks on the result of a function (if
7758 -- applicable) and all formals. The resulting checks are accumulated in
7759 -- list Post_Stmts.
7761 Add_Invariant_And_Predicate_Checks (Subp_Id, Post_Stmts, Result);
7763 -- Construct procedure _Postconditions
7765 Build_Postconditions_Procedure (Subp_Id, Post_Stmts, Result);
7766 end Expand_Subprogram_Contract;
7768 --------------------------------
7769 -- Is_Build_In_Place_Function --
7770 --------------------------------
7772 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7773 begin
7774 -- This function is called from Expand_Subtype_From_Expr during
7775 -- semantic analysis, even when expansion is off. In those cases
7776 -- the build_in_place expansion will not take place.
7778 if not Expander_Active then
7779 return False;
7780 end if;
7782 -- For now we test whether E denotes a function or access-to-function
7783 -- type whose result subtype is inherently limited. Later this test
7784 -- may be revised to allow composite nonlimited types. Functions with
7785 -- a foreign convention or whose result type has a foreign convention
7786 -- never qualify.
7788 if Ekind_In (E, E_Function, E_Generic_Function)
7789 or else (Ekind (E) = E_Subprogram_Type
7790 and then Etype (E) /= Standard_Void_Type)
7791 then
7792 -- Note: If the function has a foreign convention, it cannot build
7793 -- its result in place, so you're on your own. On the other hand,
7794 -- if only the return type has a foreign convention, its layout is
7795 -- intended to be compatible with the other language, but the build-
7796 -- in place machinery can ensure that the object is not copied.
7798 if Has_Foreign_Convention (E) then
7799 return False;
7801 -- In Ada 2005 all functions with an inherently limited return type
7802 -- must be handled using a build-in-place profile, including the case
7803 -- of a function with a limited interface result, where the function
7804 -- may return objects of nonlimited descendants.
7806 else
7807 return Is_Limited_View (Etype (E))
7808 and then Ada_Version >= Ada_2005
7809 and then not Debug_Flag_Dot_L;
7810 end if;
7812 else
7813 return False;
7814 end if;
7815 end Is_Build_In_Place_Function;
7817 -------------------------------------
7818 -- Is_Build_In_Place_Function_Call --
7819 -------------------------------------
7821 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7822 Exp_Node : Node_Id := N;
7823 Function_Id : Entity_Id;
7825 begin
7826 -- Return False if the expander is currently inactive, since awareness
7827 -- of build-in-place treatment is only relevant during expansion. Note
7828 -- that Is_Build_In_Place_Function, which is called as part of this
7829 -- function, is also conditioned this way, but we need to check here as
7830 -- well to avoid blowing up on processing protected calls when expansion
7831 -- is disabled (such as with -gnatc) since those would trip over the
7832 -- raise of Program_Error below.
7834 -- In SPARK mode, build-in-place calls are not expanded, so that we
7835 -- may end up with a call that is neither resolved to an entity, nor
7836 -- an indirect call.
7838 if not Expander_Active then
7839 return False;
7840 end if;
7842 -- Step past qualification or unchecked conversion (the latter can occur
7843 -- in cases of calls to 'Input).
7845 if Nkind_In (Exp_Node, N_Qualified_Expression,
7846 N_Unchecked_Type_Conversion)
7847 then
7848 Exp_Node := Expression (N);
7849 end if;
7851 if Nkind (Exp_Node) /= N_Function_Call then
7852 return False;
7854 else
7855 if Is_Entity_Name (Name (Exp_Node)) then
7856 Function_Id := Entity (Name (Exp_Node));
7858 -- In the case of an explicitly dereferenced call, use the subprogram
7859 -- type generated for the dereference.
7861 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7862 Function_Id := Etype (Name (Exp_Node));
7864 -- This may be a call to a protected function.
7866 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7867 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7869 else
7870 raise Program_Error;
7871 end if;
7873 return Is_Build_In_Place_Function (Function_Id);
7874 end if;
7875 end Is_Build_In_Place_Function_Call;
7877 -----------------------
7878 -- Freeze_Subprogram --
7879 -----------------------
7881 procedure Freeze_Subprogram (N : Node_Id) is
7882 Loc : constant Source_Ptr := Sloc (N);
7884 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7885 -- (Ada 2005): Register a predefined primitive in all the secondary
7886 -- dispatch tables of its primitive type.
7888 ----------------------------------
7889 -- Register_Predefined_DT_Entry --
7890 ----------------------------------
7892 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7893 Iface_DT_Ptr : Elmt_Id;
7894 Tagged_Typ : Entity_Id;
7895 Thunk_Id : Entity_Id;
7896 Thunk_Code : Node_Id;
7898 begin
7899 Tagged_Typ := Find_Dispatching_Type (Prim);
7901 if No (Access_Disp_Table (Tagged_Typ))
7902 or else not Has_Interfaces (Tagged_Typ)
7903 or else not RTE_Available (RE_Interface_Tag)
7904 or else Restriction_Active (No_Dispatching_Calls)
7905 then
7906 return;
7907 end if;
7909 -- Skip the first two access-to-dispatch-table pointers since they
7910 -- leads to the primary dispatch table (predefined DT and user
7911 -- defined DT). We are only concerned with the secondary dispatch
7912 -- table pointers. Note that the access-to- dispatch-table pointer
7913 -- corresponds to the first implemented interface retrieved below.
7915 Iface_DT_Ptr :=
7916 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7918 while Present (Iface_DT_Ptr)
7919 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7920 loop
7921 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7922 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7924 if Present (Thunk_Code) then
7925 Insert_Actions_After (N, New_List (
7926 Thunk_Code,
7928 Build_Set_Predefined_Prim_Op_Address (Loc,
7929 Tag_Node =>
7930 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7931 Position => DT_Position (Prim),
7932 Address_Node =>
7933 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7934 Make_Attribute_Reference (Loc,
7935 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
7936 Attribute_Name => Name_Unrestricted_Access))),
7938 Build_Set_Predefined_Prim_Op_Address (Loc,
7939 Tag_Node =>
7940 New_Occurrence_Of
7941 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7942 Loc),
7943 Position => DT_Position (Prim),
7944 Address_Node =>
7945 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7946 Make_Attribute_Reference (Loc,
7947 Prefix => New_Occurrence_Of (Prim, Loc),
7948 Attribute_Name => Name_Unrestricted_Access)))));
7949 end if;
7951 -- Skip the tag of the predefined primitives dispatch table
7953 Next_Elmt (Iface_DT_Ptr);
7954 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7956 -- Skip tag of the no-thunks dispatch table
7958 Next_Elmt (Iface_DT_Ptr);
7959 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7961 -- Skip tag of predefined primitives no-thunks dispatch table
7963 Next_Elmt (Iface_DT_Ptr);
7964 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7966 Next_Elmt (Iface_DT_Ptr);
7967 end loop;
7968 end Register_Predefined_DT_Entry;
7970 -- Local variables
7972 Subp : constant Entity_Id := Entity (N);
7974 -- Start of processing for Freeze_Subprogram
7976 begin
7977 -- We suppress the initialization of the dispatch table entry when
7978 -- VM_Target because the dispatching mechanism is handled internally
7979 -- by the VM.
7981 if Is_Dispatching_Operation (Subp)
7982 and then not Is_Abstract_Subprogram (Subp)
7983 and then Present (DTC_Entity (Subp))
7984 and then Present (Scope (DTC_Entity (Subp)))
7985 and then Tagged_Type_Expansion
7986 and then not Restriction_Active (No_Dispatching_Calls)
7987 and then RTE_Available (RE_Tag)
7988 then
7989 declare
7990 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7992 begin
7993 -- Handle private overridden primitives
7995 if not Is_CPP_Class (Typ) then
7996 Check_Overriding_Operation (Subp);
7997 end if;
7999 -- We assume that imported CPP primitives correspond with objects
8000 -- whose constructor is in the CPP side; therefore we don't need
8001 -- to generate code to register them in the dispatch table.
8003 if Is_CPP_Class (Typ) then
8004 null;
8006 -- Handle CPP primitives found in derivations of CPP_Class types.
8007 -- These primitives must have been inherited from some parent, and
8008 -- there is no need to register them in the dispatch table because
8009 -- Build_Inherit_Prims takes care of initializing these slots.
8011 elsif Is_Imported (Subp)
8012 and then (Convention (Subp) = Convention_CPP
8013 or else Convention (Subp) = Convention_C)
8014 then
8015 null;
8017 -- Generate code to register the primitive in non statically
8018 -- allocated dispatch tables
8020 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
8022 -- When a primitive is frozen, enter its name in its dispatch
8023 -- table slot.
8025 if not Is_Interface (Typ)
8026 or else Present (Interface_Alias (Subp))
8027 then
8028 if Is_Predefined_Dispatching_Operation (Subp) then
8029 Register_Predefined_DT_Entry (Subp);
8030 end if;
8032 Insert_Actions_After (N,
8033 Register_Primitive (Loc, Prim => Subp));
8034 end if;
8035 end if;
8036 end;
8037 end if;
8039 -- Mark functions that return by reference. Note that it cannot be part
8040 -- of the normal semantic analysis of the spec since the underlying
8041 -- returned type may not be known yet (for private types).
8043 declare
8044 Typ : constant Entity_Id := Etype (Subp);
8045 Utyp : constant Entity_Id := Underlying_Type (Typ);
8046 begin
8047 if Is_Limited_View (Typ) then
8048 Set_Returns_By_Ref (Subp);
8049 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
8050 Set_Returns_By_Ref (Subp);
8051 end if;
8052 end;
8054 -- Wnen freezing a null procedure, analyze its delayed aspects now
8055 -- because we may not have reached the end of the declarative list when
8056 -- delayed aspects are normally analyzed. This ensures that dispatching
8057 -- calls are properly rewritten when the generated _Postcondition
8058 -- procedure is analyzed in the null procedure body.
8060 if Nkind (Parent (Subp)) = N_Procedure_Specification
8061 and then Null_Present (Parent (Subp))
8062 then
8063 Analyze_Subprogram_Contract (Subp);
8064 end if;
8065 end Freeze_Subprogram;
8067 -----------------------
8068 -- Is_Null_Procedure --
8069 -----------------------
8071 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8072 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8074 begin
8075 if Ekind (Subp) /= E_Procedure then
8076 return False;
8078 -- Check if this is a declared null procedure
8080 elsif Nkind (Decl) = N_Subprogram_Declaration then
8081 if not Null_Present (Specification (Decl)) then
8082 return False;
8084 elsif No (Body_To_Inline (Decl)) then
8085 return False;
8087 -- Check if the body contains only a null statement, followed by
8088 -- the return statement added during expansion.
8090 else
8091 declare
8092 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8094 Stat : Node_Id;
8095 Stat2 : Node_Id;
8097 begin
8098 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8099 return False;
8100 else
8101 -- We must skip SCIL nodes because they are currently
8102 -- implemented as special N_Null_Statement nodes.
8104 Stat :=
8105 First_Non_SCIL_Node
8106 (Statements (Handled_Statement_Sequence (Orig_Bod)));
8107 Stat2 := Next_Non_SCIL_Node (Stat);
8109 return
8110 Is_Empty_List (Declarations (Orig_Bod))
8111 and then Nkind (Stat) = N_Null_Statement
8112 and then
8113 (No (Stat2)
8114 or else
8115 (Nkind (Stat2) = N_Simple_Return_Statement
8116 and then No (Next (Stat2))));
8117 end if;
8118 end;
8119 end if;
8121 else
8122 return False;
8123 end if;
8124 end Is_Null_Procedure;
8126 -------------------------------------------
8127 -- Make_Build_In_Place_Call_In_Allocator --
8128 -------------------------------------------
8130 procedure Make_Build_In_Place_Call_In_Allocator
8131 (Allocator : Node_Id;
8132 Function_Call : Node_Id)
8134 Acc_Type : constant Entity_Id := Etype (Allocator);
8135 Loc : Source_Ptr;
8136 Func_Call : Node_Id := Function_Call;
8137 Ref_Func_Call : Node_Id;
8138 Function_Id : Entity_Id;
8139 Result_Subt : Entity_Id;
8140 New_Allocator : Node_Id;
8141 Return_Obj_Access : Entity_Id; -- temp for function result
8142 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8143 Alloc_Form : BIP_Allocation_Form;
8144 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8145 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8146 Chain : Entity_Id; -- activation chain, in case of tasks
8148 begin
8149 -- Step past qualification or unchecked conversion (the latter can occur
8150 -- in cases of calls to 'Input).
8152 if Nkind_In (Func_Call,
8153 N_Qualified_Expression,
8154 N_Unchecked_Type_Conversion)
8155 then
8156 Func_Call := Expression (Func_Call);
8157 end if;
8159 -- If the call has already been processed to add build-in-place actuals
8160 -- then return. This should not normally occur in an allocator context,
8161 -- but we add the protection as a defensive measure.
8163 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8164 return;
8165 end if;
8167 -- Mark the call as processed as a build-in-place call
8169 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8171 Loc := Sloc (Function_Call);
8173 if Is_Entity_Name (Name (Func_Call)) then
8174 Function_Id := Entity (Name (Func_Call));
8176 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8177 Function_Id := Etype (Name (Func_Call));
8179 else
8180 raise Program_Error;
8181 end if;
8183 Result_Subt := Available_View (Etype (Function_Id));
8185 -- Create a temp for the function result. In the caller-allocates case,
8186 -- this will be initialized to the result of a new uninitialized
8187 -- allocator. Note: we do not use Allocator as the Related_Node of
8188 -- Return_Obj_Access in call to Make_Temporary below as this would
8189 -- create a sort of infinite "recursion".
8191 Return_Obj_Access := Make_Temporary (Loc, 'R');
8192 Set_Etype (Return_Obj_Access, Acc_Type);
8194 -- When the result subtype is constrained, the return object is
8195 -- allocated on the caller side, and access to it is passed to the
8196 -- function.
8198 -- Here and in related routines, we must examine the full view of the
8199 -- type, because the view at the point of call may differ from that
8200 -- that in the function body, and the expansion mechanism depends on
8201 -- the characteristics of the full view.
8203 if Is_Constrained (Underlying_Type (Result_Subt)) then
8205 -- Replace the initialized allocator of form "new T'(Func (...))"
8206 -- with an uninitialized allocator of form "new T", where T is the
8207 -- result subtype of the called function. The call to the function
8208 -- is handled separately further below.
8210 New_Allocator :=
8211 Make_Allocator (Loc,
8212 Expression => New_Occurrence_Of (Result_Subt, Loc));
8213 Set_No_Initialization (New_Allocator);
8215 -- Copy attributes to new allocator. Note that the new allocator
8216 -- logically comes from source if the original one did, so copy the
8217 -- relevant flag. This ensures proper treatment of the restriction
8218 -- No_Implicit_Heap_Allocations in this case.
8220 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8221 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8222 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8224 Rewrite (Allocator, New_Allocator);
8226 -- Initial value of the temp is the result of the uninitialized
8227 -- allocator
8229 Temp_Init := Relocate_Node (Allocator);
8231 -- Indicate that caller allocates, and pass in the return object
8233 Alloc_Form := Caller_Allocation;
8234 Pool := Make_Null (No_Location);
8235 Return_Obj_Actual :=
8236 Make_Unchecked_Type_Conversion (Loc,
8237 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8238 Expression =>
8239 Make_Explicit_Dereference (Loc,
8240 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8242 -- When the result subtype is unconstrained, the function itself must
8243 -- perform the allocation of the return object, so we pass parameters
8244 -- indicating that.
8246 else
8247 Temp_Init := Empty;
8249 -- Case of a user-defined storage pool. Pass an allocation parameter
8250 -- indicating that the function should allocate its result in the
8251 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8252 -- pool may not be aliased.
8254 if VM_Target = No_VM
8255 and then Present (Associated_Storage_Pool (Acc_Type))
8256 then
8257 Alloc_Form := User_Storage_Pool;
8258 Pool :=
8259 Make_Attribute_Reference (Loc,
8260 Prefix =>
8261 New_Occurrence_Of
8262 (Associated_Storage_Pool (Acc_Type), Loc),
8263 Attribute_Name => Name_Unrestricted_Access);
8265 -- No user-defined pool; pass an allocation parameter indicating that
8266 -- the function should allocate its result on the heap.
8268 else
8269 Alloc_Form := Global_Heap;
8270 Pool := Make_Null (No_Location);
8271 end if;
8273 -- The caller does not provide the return object in this case, so we
8274 -- have to pass null for the object access actual.
8276 Return_Obj_Actual := Empty;
8277 end if;
8279 -- Declare the temp object
8281 Insert_Action (Allocator,
8282 Make_Object_Declaration (Loc,
8283 Defining_Identifier => Return_Obj_Access,
8284 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8285 Expression => Temp_Init));
8287 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8289 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8290 -- then generate an implicit conversion to force displacement of the
8291 -- "this" pointer.
8293 if Is_Interface (Designated_Type (Acc_Type)) then
8294 Rewrite
8295 (Ref_Func_Call,
8296 OK_Convert_To (Acc_Type, Ref_Func_Call));
8297 end if;
8299 declare
8300 Assign : constant Node_Id :=
8301 Make_Assignment_Statement (Loc,
8302 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8303 Expression => Ref_Func_Call);
8304 -- Assign the result of the function call into the temp. In the
8305 -- caller-allocates case, this is overwriting the temp with its
8306 -- initial value, which has no effect. In the callee-allocates case,
8307 -- this is setting the temp to point to the object allocated by the
8308 -- callee.
8310 Actions : List_Id;
8311 -- Actions to be inserted. If there are no tasks, this is just the
8312 -- assignment statement. If the allocated object has tasks, we need
8313 -- to wrap the assignment in a block that activates them. The
8314 -- activation chain of that block must be passed to the function,
8315 -- rather than some outer chain.
8316 begin
8317 if Has_Task (Result_Subt) then
8318 Actions := New_List;
8319 Build_Task_Allocate_Block_With_Init_Stmts
8320 (Actions, Allocator, Init_Stmts => New_List (Assign));
8321 Chain := Activation_Chain_Entity (Last (Actions));
8322 else
8323 Actions := New_List (Assign);
8324 Chain := Empty;
8325 end if;
8327 Insert_Actions (Allocator, Actions);
8328 end;
8330 -- When the function has a controlling result, an allocation-form
8331 -- parameter must be passed indicating that the caller is allocating
8332 -- the result object. This is needed because such a function can be
8333 -- called as a dispatching operation and must be treated similarly
8334 -- to functions with unconstrained result subtypes.
8336 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8337 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8339 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8340 (Func_Call, Function_Id, Acc_Type);
8342 Add_Task_Actuals_To_Build_In_Place_Call
8343 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8344 Chain => Chain);
8346 -- Add an implicit actual to the function call that provides access
8347 -- to the allocated object. An unchecked conversion to the (specific)
8348 -- result subtype of the function is inserted to handle cases where
8349 -- the access type of the allocator has a class-wide designated type.
8351 Add_Access_Actual_To_Build_In_Place_Call
8352 (Func_Call, Function_Id, Return_Obj_Actual);
8354 -- If the build-in-place function call returns a controlled object,
8355 -- the finalization master will require a reference to routine
8356 -- Finalize_Address of the designated type. Setting this attribute
8357 -- is done in the same manner to expansion of allocators.
8359 if Needs_Finalization (Result_Subt) then
8361 -- Controlled types with supressed finalization do not need to
8362 -- associate the address of their Finalize_Address primitives with
8363 -- a master since they do not need a master to begin with.
8365 if Is_Library_Level_Entity (Acc_Type)
8366 and then Finalize_Storage_Only (Result_Subt)
8367 then
8368 null;
8370 -- Do not generate the call to Set_Finalize_Address in CodePeer mode
8371 -- because Finalize_Address is never built.
8373 elsif not CodePeer_Mode then
8374 Insert_Action (Allocator,
8375 Make_Set_Finalize_Address_Call (Loc,
8376 Typ => Etype (Function_Id),
8377 Ptr_Typ => Acc_Type));
8378 end if;
8379 end if;
8381 -- Finally, replace the allocator node with a reference to the temp
8383 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8385 Analyze_And_Resolve (Allocator, Acc_Type);
8386 end Make_Build_In_Place_Call_In_Allocator;
8388 ---------------------------------------------------
8389 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8390 ---------------------------------------------------
8392 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8393 (Function_Call : Node_Id)
8395 Loc : Source_Ptr;
8396 Func_Call : Node_Id := Function_Call;
8397 Function_Id : Entity_Id;
8398 Result_Subt : Entity_Id;
8399 Return_Obj_Id : Entity_Id;
8400 Return_Obj_Decl : Entity_Id;
8402 begin
8403 -- Step past qualification or unchecked conversion (the latter can occur
8404 -- in cases of calls to 'Input).
8406 if Nkind_In (Func_Call, N_Qualified_Expression,
8407 N_Unchecked_Type_Conversion)
8408 then
8409 Func_Call := Expression (Func_Call);
8410 end if;
8412 -- If the call has already been processed to add build-in-place actuals
8413 -- then return. One place this can occur is for calls to build-in-place
8414 -- functions that occur within a call to a protected operation, where
8415 -- due to rewriting and expansion of the protected call there can be
8416 -- more than one call to Expand_Actuals for the same set of actuals.
8418 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8419 return;
8420 end if;
8422 -- Mark the call as processed as a build-in-place call
8424 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8426 Loc := Sloc (Function_Call);
8428 if Is_Entity_Name (Name (Func_Call)) then
8429 Function_Id := Entity (Name (Func_Call));
8431 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8432 Function_Id := Etype (Name (Func_Call));
8434 else
8435 raise Program_Error;
8436 end if;
8438 Result_Subt := Etype (Function_Id);
8440 -- If the build-in-place function returns a controlled object, then the
8441 -- object needs to be finalized immediately after the context. Since
8442 -- this case produces a transient scope, the servicing finalizer needs
8443 -- to name the returned object. Create a temporary which is initialized
8444 -- with the function call:
8446 -- Temp_Id : Func_Type := BIP_Func_Call;
8448 -- The initialization expression of the temporary will be rewritten by
8449 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8450 -- Call_In_Object_Declaration.
8452 if Needs_Finalization (Result_Subt) then
8453 declare
8454 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8455 Temp_Decl : Node_Id;
8457 begin
8458 -- Reset the guard on the function call since the following does
8459 -- not perform actual call expansion.
8461 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8463 Temp_Decl :=
8464 Make_Object_Declaration (Loc,
8465 Defining_Identifier => Temp_Id,
8466 Object_Definition =>
8467 New_Occurrence_Of (Result_Subt, Loc),
8468 Expression =>
8469 New_Copy_Tree (Function_Call));
8471 Insert_Action (Function_Call, Temp_Decl);
8473 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8474 Analyze (Function_Call);
8475 end;
8477 -- When the result subtype is constrained, an object of the subtype is
8478 -- declared and an access value designating it is passed as an actual.
8480 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
8482 -- Create a temporary object to hold the function result
8484 Return_Obj_Id := Make_Temporary (Loc, 'R');
8485 Set_Etype (Return_Obj_Id, Result_Subt);
8487 Return_Obj_Decl :=
8488 Make_Object_Declaration (Loc,
8489 Defining_Identifier => Return_Obj_Id,
8490 Aliased_Present => True,
8491 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8493 Set_No_Initialization (Return_Obj_Decl);
8495 Insert_Action (Func_Call, Return_Obj_Decl);
8497 -- When the function has a controlling result, an allocation-form
8498 -- parameter must be passed indicating that the caller is allocating
8499 -- the result object. This is needed because such a function can be
8500 -- called as a dispatching operation and must be treated similarly
8501 -- to functions with unconstrained result subtypes.
8503 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8504 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8506 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8507 (Func_Call, Function_Id);
8509 Add_Task_Actuals_To_Build_In_Place_Call
8510 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8512 -- Add an implicit actual to the function call that provides access
8513 -- to the caller's return object.
8515 Add_Access_Actual_To_Build_In_Place_Call
8516 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8518 -- When the result subtype is unconstrained, the function must allocate
8519 -- the return object in the secondary stack, so appropriate implicit
8520 -- parameters are added to the call to indicate that. A transient
8521 -- scope is established to ensure eventual cleanup of the result.
8523 else
8524 -- Pass an allocation parameter indicating that the function should
8525 -- allocate its result on the secondary stack.
8527 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8528 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8530 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8531 (Func_Call, Function_Id);
8533 Add_Task_Actuals_To_Build_In_Place_Call
8534 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8536 -- Pass a null value to the function since no return object is
8537 -- available on the caller side.
8539 Add_Access_Actual_To_Build_In_Place_Call
8540 (Func_Call, Function_Id, Empty);
8541 end if;
8542 end Make_Build_In_Place_Call_In_Anonymous_Context;
8544 --------------------------------------------
8545 -- Make_Build_In_Place_Call_In_Assignment --
8546 --------------------------------------------
8548 procedure Make_Build_In_Place_Call_In_Assignment
8549 (Assign : Node_Id;
8550 Function_Call : Node_Id)
8552 Lhs : constant Node_Id := Name (Assign);
8553 Func_Call : Node_Id := Function_Call;
8554 Func_Id : Entity_Id;
8555 Loc : Source_Ptr;
8556 Obj_Decl : Node_Id;
8557 Obj_Id : Entity_Id;
8558 Ptr_Typ : Entity_Id;
8559 Ptr_Typ_Decl : Node_Id;
8560 New_Expr : Node_Id;
8561 Result_Subt : Entity_Id;
8562 Target : Node_Id;
8564 begin
8565 -- Step past qualification or unchecked conversion (the latter can occur
8566 -- in cases of calls to 'Input).
8568 if Nkind_In (Func_Call, N_Qualified_Expression,
8569 N_Unchecked_Type_Conversion)
8570 then
8571 Func_Call := Expression (Func_Call);
8572 end if;
8574 -- If the call has already been processed to add build-in-place actuals
8575 -- then return. This should not normally occur in an assignment context,
8576 -- but we add the protection as a defensive measure.
8578 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8579 return;
8580 end if;
8582 -- Mark the call as processed as a build-in-place call
8584 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8586 Loc := Sloc (Function_Call);
8588 if Is_Entity_Name (Name (Func_Call)) then
8589 Func_Id := Entity (Name (Func_Call));
8591 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8592 Func_Id := Etype (Name (Func_Call));
8594 else
8595 raise Program_Error;
8596 end if;
8598 Result_Subt := Etype (Func_Id);
8600 -- When the result subtype is unconstrained, an additional actual must
8601 -- be passed to indicate that the caller is providing the return object.
8602 -- This parameter must also be passed when the called function has a
8603 -- controlling result, because dispatching calls to the function needs
8604 -- to be treated effectively the same as calls to class-wide functions.
8606 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8607 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8609 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8610 (Func_Call, Func_Id);
8612 Add_Task_Actuals_To_Build_In_Place_Call
8613 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8615 -- Add an implicit actual to the function call that provides access to
8616 -- the caller's return object.
8618 Add_Access_Actual_To_Build_In_Place_Call
8619 (Func_Call,
8620 Func_Id,
8621 Make_Unchecked_Type_Conversion (Loc,
8622 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8623 Expression => Relocate_Node (Lhs)));
8625 -- Create an access type designating the function's result subtype
8627 Ptr_Typ := Make_Temporary (Loc, 'A');
8629 Ptr_Typ_Decl :=
8630 Make_Full_Type_Declaration (Loc,
8631 Defining_Identifier => Ptr_Typ,
8632 Type_Definition =>
8633 Make_Access_To_Object_Definition (Loc,
8634 All_Present => True,
8635 Subtype_Indication =>
8636 New_Occurrence_Of (Result_Subt, Loc)));
8637 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8639 -- Finally, create an access object initialized to a reference to the
8640 -- function call. We know this access value is non-null, so mark the
8641 -- entity accordingly to suppress junk access checks.
8643 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8645 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8646 Set_Etype (Obj_Id, Ptr_Typ);
8647 Set_Is_Known_Non_Null (Obj_Id);
8649 Obj_Decl :=
8650 Make_Object_Declaration (Loc,
8651 Defining_Identifier => Obj_Id,
8652 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8653 Expression => New_Expr);
8654 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8656 Rewrite (Assign, Make_Null_Statement (Loc));
8658 -- Retrieve the target of the assignment
8660 if Nkind (Lhs) = N_Selected_Component then
8661 Target := Selector_Name (Lhs);
8662 elsif Nkind (Lhs) = N_Type_Conversion then
8663 Target := Expression (Lhs);
8664 else
8665 Target := Lhs;
8666 end if;
8668 -- If we are assigning to a return object or this is an expression of
8669 -- an extension aggregate, the target should either be an identifier
8670 -- or a simple expression. All other cases imply a different scenario.
8672 if Nkind (Target) in N_Has_Entity then
8673 Target := Entity (Target);
8674 else
8675 return;
8676 end if;
8677 end Make_Build_In_Place_Call_In_Assignment;
8679 ----------------------------------------------------
8680 -- Make_Build_In_Place_Call_In_Object_Declaration --
8681 ----------------------------------------------------
8683 procedure Make_Build_In_Place_Call_In_Object_Declaration
8684 (Object_Decl : Node_Id;
8685 Function_Call : Node_Id)
8687 Loc : Source_Ptr;
8688 Obj_Def_Id : constant Entity_Id :=
8689 Defining_Identifier (Object_Decl);
8690 Enclosing_Func : constant Entity_Id :=
8691 Enclosing_Subprogram (Obj_Def_Id);
8692 Call_Deref : Node_Id;
8693 Caller_Object : Node_Id;
8694 Def_Id : Entity_Id;
8695 Fmaster_Actual : Node_Id := Empty;
8696 Func_Call : Node_Id := Function_Call;
8697 Function_Id : Entity_Id;
8698 Pool_Actual : Node_Id;
8699 Ptr_Typ : Entity_Id;
8700 Ptr_Typ_Decl : Node_Id;
8701 Pass_Caller_Acc : Boolean := False;
8702 Res_Decl : Node_Id;
8703 Result_Subt : Entity_Id;
8705 begin
8706 -- Step past qualification or unchecked conversion (the latter can occur
8707 -- in cases of calls to 'Input).
8709 if Nkind_In (Func_Call, N_Qualified_Expression,
8710 N_Unchecked_Type_Conversion)
8711 then
8712 Func_Call := Expression (Func_Call);
8713 end if;
8715 -- If the call has already been processed to add build-in-place actuals
8716 -- then return. This should not normally occur in an object declaration,
8717 -- but we add the protection as a defensive measure.
8719 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8720 return;
8721 end if;
8723 -- Mark the call as processed as a build-in-place call
8725 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8727 Loc := Sloc (Function_Call);
8729 if Is_Entity_Name (Name (Func_Call)) then
8730 Function_Id := Entity (Name (Func_Call));
8732 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8733 Function_Id := Etype (Name (Func_Call));
8735 else
8736 raise Program_Error;
8737 end if;
8739 Result_Subt := Etype (Function_Id);
8741 -- Create an access type designating the function's result subtype. We
8742 -- use the type of the original call because it may be a call to an
8743 -- inherited operation, which the expansion has replaced with the parent
8744 -- operation that yields the parent type. Note that this access type
8745 -- must be declared before we establish a transient scope, so that it
8746 -- receives the proper accessibility level.
8748 Ptr_Typ := Make_Temporary (Loc, 'A');
8749 Ptr_Typ_Decl :=
8750 Make_Full_Type_Declaration (Loc,
8751 Defining_Identifier => Ptr_Typ,
8752 Type_Definition =>
8753 Make_Access_To_Object_Definition (Loc,
8754 All_Present => True,
8755 Subtype_Indication =>
8756 New_Occurrence_Of (Etype (Function_Call), Loc)));
8758 -- The access type and its accompanying object must be inserted after
8759 -- the object declaration in the constrained case, so that the function
8760 -- call can be passed access to the object. In the unconstrained case,
8761 -- or if the object declaration is for a return object, the access type
8762 -- and object must be inserted before the object, since the object
8763 -- declaration is rewritten to be a renaming of a dereference of the
8764 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8765 -- the result object is in a different (transient) scope, so won't
8766 -- cause freezing.
8768 if Is_Constrained (Underlying_Type (Result_Subt))
8769 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
8770 then
8771 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
8772 else
8773 Insert_Action (Object_Decl, Ptr_Typ_Decl);
8774 end if;
8776 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8777 -- elaborated in an inner (transient) scope and thus won't cause
8778 -- freezing by itself.
8780 declare
8781 Ptr_Typ_Freeze_Ref : constant Node_Id :=
8782 New_Occurrence_Of (Ptr_Typ, Loc);
8783 begin
8784 Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
8785 Freeze_Expression (Ptr_Typ_Freeze_Ref);
8786 end;
8788 -- If the the object is a return object of an enclosing build-in-place
8789 -- function, then the implicit build-in-place parameters of the
8790 -- enclosing function are simply passed along to the called function.
8791 -- (Unfortunately, this won't cover the case of extension aggregates
8792 -- where the ancestor part is a build-in-place unconstrained function
8793 -- call that should be passed along the caller's parameters. Currently
8794 -- those get mishandled by reassigning the result of the call to the
8795 -- aggregate return object, when the call result should really be
8796 -- directly built in place in the aggregate and not in a temporary. ???)
8798 if Is_Return_Object (Defining_Identifier (Object_Decl)) then
8799 Pass_Caller_Acc := True;
8801 -- When the enclosing function has a BIP_Alloc_Form formal then we
8802 -- pass it along to the callee (such as when the enclosing function
8803 -- has an unconstrained or tagged result type).
8805 if Needs_BIP_Alloc_Form (Enclosing_Func) then
8806 if VM_Target = No_VM and then
8807 RTE_Available (RE_Root_Storage_Pool_Ptr)
8808 then
8809 Pool_Actual :=
8810 New_Occurrence_Of (Build_In_Place_Formal
8811 (Enclosing_Func, BIP_Storage_Pool), Loc);
8813 -- The build-in-place pool formal is not built on .NET/JVM
8815 else
8816 Pool_Actual := Empty;
8817 end if;
8819 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8820 (Func_Call,
8821 Function_Id,
8822 Alloc_Form_Exp =>
8823 New_Occurrence_Of
8824 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
8825 Loc),
8826 Pool_Actual => Pool_Actual);
8828 -- Otherwise, if enclosing function has a constrained result subtype,
8829 -- then caller allocation will be used.
8831 else
8832 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8833 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8834 end if;
8836 if Needs_BIP_Finalization_Master (Enclosing_Func) then
8837 Fmaster_Actual :=
8838 New_Occurrence_Of
8839 (Build_In_Place_Formal
8840 (Enclosing_Func, BIP_Finalization_Master), Loc);
8841 end if;
8843 -- Retrieve the BIPacc formal from the enclosing function and convert
8844 -- it to the access type of the callee's BIP_Object_Access formal.
8846 Caller_Object :=
8847 Make_Unchecked_Type_Conversion (Loc,
8848 Subtype_Mark =>
8849 New_Occurrence_Of
8850 (Etype
8851 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
8852 Loc),
8853 Expression =>
8854 New_Occurrence_Of
8855 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
8856 Loc));
8858 -- In the constrained case, add an implicit actual to the function call
8859 -- that provides access to the declared object. An unchecked conversion
8860 -- to the (specific) result type of the function is inserted to handle
8861 -- the case where the object is declared with a class-wide type.
8863 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
8864 Caller_Object :=
8865 Make_Unchecked_Type_Conversion (Loc,
8866 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8867 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
8869 -- When the function has a controlling result, an allocation-form
8870 -- parameter must be passed indicating that the caller is allocating
8871 -- the result object. This is needed because such a function can be
8872 -- called as a dispatching operation and must be treated similarly
8873 -- to functions with unconstrained result subtypes.
8875 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8876 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8878 -- In other unconstrained cases, pass an indication to do the allocation
8879 -- on the secondary stack and set Caller_Object to Empty so that a null
8880 -- value will be passed for the caller's object address. A transient
8881 -- scope is established to ensure eventual cleanup of the result.
8883 else
8884 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8885 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8886 Caller_Object := Empty;
8888 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
8889 end if;
8891 -- Pass along any finalization master actual, which is needed in the
8892 -- case where the called function initializes a return object of an
8893 -- enclosing build-in-place function.
8895 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8896 (Func_Call => Func_Call,
8897 Func_Id => Function_Id,
8898 Master_Exp => Fmaster_Actual);
8900 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
8901 and then Has_Task (Result_Subt)
8902 then
8903 -- Here we're passing along the master that was passed in to this
8904 -- function.
8906 Add_Task_Actuals_To_Build_In_Place_Call
8907 (Func_Call, Function_Id,
8908 Master_Actual =>
8909 New_Occurrence_Of (Build_In_Place_Formal
8910 (Enclosing_Func, BIP_Task_Master), Loc));
8912 else
8913 Add_Task_Actuals_To_Build_In_Place_Call
8914 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8915 end if;
8917 Add_Access_Actual_To_Build_In_Place_Call
8918 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
8920 -- Finally, create an access object initialized to a reference to the
8921 -- function call. We know this access value cannot be null, so mark the
8922 -- entity accordingly to suppress the access check.
8924 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8925 Set_Etype (Def_Id, Ptr_Typ);
8926 Set_Is_Known_Non_Null (Def_Id);
8928 Res_Decl :=
8929 Make_Object_Declaration (Loc,
8930 Defining_Identifier => Def_Id,
8931 Constant_Present => True,
8932 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8933 Expression =>
8934 Make_Reference (Loc, Relocate_Node (Func_Call)));
8936 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8938 -- If the result subtype of the called function is constrained and
8939 -- is not itself the return expression of an enclosing BIP function,
8940 -- then mark the object as having no initialization.
8942 if Is_Constrained (Underlying_Type (Result_Subt))
8943 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
8944 then
8945 -- The related object declaration is encased in a transient block
8946 -- because the build-in-place function call contains at least one
8947 -- nested function call that produces a controlled transient
8948 -- temporary:
8950 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8952 -- Since the build-in-place expansion decouples the call from the
8953 -- object declaration, the finalization machinery lacks the context
8954 -- which prompted the generation of the transient block. To resolve
8955 -- this scenario, store the build-in-place call.
8957 if Scope_Is_Transient
8958 and then Node_To_Be_Wrapped = Object_Decl
8959 then
8960 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8961 end if;
8963 Set_Expression (Object_Decl, Empty);
8964 Set_No_Initialization (Object_Decl);
8966 -- In case of an unconstrained result subtype, or if the call is the
8967 -- return expression of an enclosing BIP function, rewrite the object
8968 -- declaration as an object renaming where the renamed object is a
8969 -- dereference of <function_Call>'reference:
8971 -- Obj : Subt renames <function_call>'Ref.all;
8973 else
8974 Call_Deref :=
8975 Make_Explicit_Dereference (Loc,
8976 Prefix => New_Occurrence_Of (Def_Id, Loc));
8978 Loc := Sloc (Object_Decl);
8979 Rewrite (Object_Decl,
8980 Make_Object_Renaming_Declaration (Loc,
8981 Defining_Identifier => Make_Temporary (Loc, 'D'),
8982 Access_Definition => Empty,
8983 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8984 Name => Call_Deref));
8986 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
8988 Analyze (Object_Decl);
8990 -- Replace the internal identifier of the renaming declaration's
8991 -- entity with identifier of the original object entity. We also have
8992 -- to exchange the entities containing their defining identifiers to
8993 -- ensure the correct replacement of the object declaration by the
8994 -- object renaming declaration to avoid homograph conflicts (since
8995 -- the object declaration's defining identifier was already entered
8996 -- in current scope). The Next_Entity links of the two entities also
8997 -- have to be swapped since the entities are part of the return
8998 -- scope's entity list and the list structure would otherwise be
8999 -- corrupted. Finally, the homonym chain must be preserved as well.
9001 declare
9002 Renaming_Def_Id : constant Entity_Id :=
9003 Defining_Identifier (Object_Decl);
9004 Next_Entity_Temp : constant Entity_Id :=
9005 Next_Entity (Renaming_Def_Id);
9006 begin
9007 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
9009 -- Swap next entity links in preparation for exchanging entities
9011 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
9012 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
9013 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
9015 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
9017 -- Preserve source indication of original declaration, so that
9018 -- xref information is properly generated for the right entity.
9020 Preserve_Comes_From_Source
9021 (Object_Decl, Original_Node (Object_Decl));
9023 Preserve_Comes_From_Source
9024 (Obj_Def_Id, Original_Node (Object_Decl));
9026 Set_Comes_From_Source (Renaming_Def_Id, False);
9027 end;
9028 end if;
9030 -- If the object entity has a class-wide Etype, then we need to change
9031 -- it to the result subtype of the function call, because otherwise the
9032 -- object will be class-wide without an explicit initialization and
9033 -- won't be allocated properly by the back end. It seems unclean to make
9034 -- such a revision to the type at this point, and we should try to
9035 -- improve this treatment when build-in-place functions with class-wide
9036 -- results are implemented. ???
9038 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
9039 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
9040 end if;
9041 end Make_Build_In_Place_Call_In_Object_Declaration;
9043 --------------------------------------------
9044 -- Make_CPP_Constructor_Call_In_Allocator --
9045 --------------------------------------------
9047 procedure Make_CPP_Constructor_Call_In_Allocator
9048 (Allocator : Node_Id;
9049 Function_Call : Node_Id)
9051 Loc : constant Source_Ptr := Sloc (Function_Call);
9052 Acc_Type : constant Entity_Id := Etype (Allocator);
9053 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9054 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9056 New_Allocator : Node_Id;
9057 Return_Obj_Access : Entity_Id;
9058 Tmp_Obj : Node_Id;
9060 begin
9061 pragma Assert (Nkind (Allocator) = N_Allocator
9062 and then Nkind (Function_Call) = N_Function_Call);
9063 pragma Assert (Convention (Function_Id) = Convention_CPP
9064 and then Is_Constructor (Function_Id));
9065 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9067 -- Replace the initialized allocator of form "new T'(Func (...))" with
9068 -- an uninitialized allocator of form "new T", where T is the result
9069 -- subtype of the called function. The call to the function is handled
9070 -- separately further below.
9072 New_Allocator :=
9073 Make_Allocator (Loc,
9074 Expression => New_Occurrence_Of (Result_Subt, Loc));
9075 Set_No_Initialization (New_Allocator);
9077 -- Copy attributes to new allocator. Note that the new allocator
9078 -- logically comes from source if the original one did, so copy the
9079 -- relevant flag. This ensures proper treatment of the restriction
9080 -- No_Implicit_Heap_Allocations in this case.
9082 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9083 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9084 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9086 Rewrite (Allocator, New_Allocator);
9088 -- Create a new access object and initialize it to the result of the
9089 -- new uninitialized allocator. Note: we do not use Allocator as the
9090 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9091 -- as this would create a sort of infinite "recursion".
9093 Return_Obj_Access := Make_Temporary (Loc, 'R');
9094 Set_Etype (Return_Obj_Access, Acc_Type);
9096 -- Generate:
9097 -- Rnnn : constant ptr_T := new (T);
9098 -- Init (Rnn.all,...);
9100 Tmp_Obj :=
9101 Make_Object_Declaration (Loc,
9102 Defining_Identifier => Return_Obj_Access,
9103 Constant_Present => True,
9104 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9105 Expression => Relocate_Node (Allocator));
9106 Insert_Action (Allocator, Tmp_Obj);
9108 Insert_List_After_And_Analyze (Tmp_Obj,
9109 Build_Initialization_Call (Loc,
9110 Id_Ref =>
9111 Make_Explicit_Dereference (Loc,
9112 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9113 Typ => Etype (Function_Id),
9114 Constructor_Ref => Function_Call));
9116 -- Finally, replace the allocator node with a reference to the result of
9117 -- the function call itself (which will effectively be an access to the
9118 -- object created by the allocator).
9120 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9122 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9123 -- generate an implicit conversion to force displacement of the "this"
9124 -- pointer.
9126 if Is_Interface (Designated_Type (Acc_Type)) then
9127 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9128 end if;
9130 Analyze_And_Resolve (Allocator, Acc_Type);
9131 end Make_CPP_Constructor_Call_In_Allocator;
9133 -----------------------------------
9134 -- Needs_BIP_Finalization_Master --
9135 -----------------------------------
9137 function Needs_BIP_Finalization_Master
9138 (Func_Id : Entity_Id) return Boolean
9140 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9141 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9142 begin
9143 return
9144 not Restriction_Active (No_Finalization)
9145 and then Needs_Finalization (Func_Typ);
9146 end Needs_BIP_Finalization_Master;
9148 --------------------------
9149 -- Needs_BIP_Alloc_Form --
9150 --------------------------
9152 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9153 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9154 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9155 begin
9156 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9157 end Needs_BIP_Alloc_Form;
9159 --------------------------------------
9160 -- Needs_Result_Accessibility_Level --
9161 --------------------------------------
9163 function Needs_Result_Accessibility_Level
9164 (Func_Id : Entity_Id) return Boolean
9166 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9168 function Has_Unconstrained_Access_Discriminant_Component
9169 (Comp_Typ : Entity_Id) return Boolean;
9170 -- Returns True if any component of the type has an unconstrained access
9171 -- discriminant.
9173 -----------------------------------------------------
9174 -- Has_Unconstrained_Access_Discriminant_Component --
9175 -----------------------------------------------------
9177 function Has_Unconstrained_Access_Discriminant_Component
9178 (Comp_Typ : Entity_Id) return Boolean
9180 begin
9181 if not Is_Limited_Type (Comp_Typ) then
9182 return False;
9184 -- Only limited types can have access discriminants with
9185 -- defaults.
9187 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9188 return True;
9190 elsif Is_Array_Type (Comp_Typ) then
9191 return Has_Unconstrained_Access_Discriminant_Component
9192 (Underlying_Type (Component_Type (Comp_Typ)));
9194 elsif Is_Record_Type (Comp_Typ) then
9195 declare
9196 Comp : Entity_Id;
9198 begin
9199 Comp := First_Component (Comp_Typ);
9200 while Present (Comp) loop
9201 if Has_Unconstrained_Access_Discriminant_Component
9202 (Underlying_Type (Etype (Comp)))
9203 then
9204 return True;
9205 end if;
9207 Next_Component (Comp);
9208 end loop;
9209 end;
9210 end if;
9212 return False;
9213 end Has_Unconstrained_Access_Discriminant_Component;
9215 Feature_Disabled : constant Boolean := True;
9216 -- Temporary
9218 -- Start of processing for Needs_Result_Accessibility_Level
9220 begin
9221 -- False if completion unavailable (how does this happen???)
9223 if not Present (Func_Typ) then
9224 return False;
9226 elsif Feature_Disabled then
9227 return False;
9229 -- False if not a function, also handle enum-lit renames case
9231 elsif Func_Typ = Standard_Void_Type
9232 or else Is_Scalar_Type (Func_Typ)
9233 then
9234 return False;
9236 -- Handle a corner case, a cross-dialect subp renaming. For example,
9237 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9238 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9240 elsif Present (Alias (Func_Id)) then
9242 -- Unimplemented: a cross-dialect subp renaming which does not set
9243 -- the Alias attribute (e.g., a rename of a dereference of an access
9244 -- to subprogram value). ???
9246 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9248 -- Remaining cases require Ada 2012 mode
9250 elsif Ada_Version < Ada_2012 then
9251 return False;
9253 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9254 or else Is_Tagged_Type (Func_Typ)
9255 then
9256 -- In the case of, say, a null tagged record result type, the need
9257 -- for this extra parameter might not be obvious. This function
9258 -- returns True for all tagged types for compatibility reasons.
9259 -- A function with, say, a tagged null controlling result type might
9260 -- be overridden by a primitive of an extension having an access
9261 -- discriminant and the overrider and overridden must have compatible
9262 -- calling conventions (including implicitly declared parameters).
9263 -- Similarly, values of one access-to-subprogram type might designate
9264 -- both a primitive subprogram of a given type and a function
9265 -- which is, for example, not a primitive subprogram of any type.
9266 -- Again, this requires calling convention compatibility.
9267 -- It might be possible to solve these issues by introducing
9268 -- wrappers, but that is not the approach that was chosen.
9270 return True;
9272 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9273 return True;
9275 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9276 return True;
9278 -- False for all other cases
9280 else
9281 return False;
9282 end if;
9283 end Needs_Result_Accessibility_Level;
9285 end Exp_Ch6;