* config/rs6000/rs6000.h (WIDEST_HARDWARE_FP_SIZE): Define.
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blobb447dcc19a40754f586e62aa7f6e50013f049fea
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions. */
27 /* Definitions for the object file format. These are set at
28 compile-time. */
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
44 /* Default string to use for cpu if not specified. */
45 #ifndef TARGET_CPU_DEFAULT
46 #define TARGET_CPU_DEFAULT ((char *)0)
47 #endif
49 /* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51 #define ASM_CPU_SPEC \
52 "%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -m604} \
62 %{mcpu=power4: -mpower4} \
63 %{mcpu=powerpc: -mppc} \
64 %{mcpu=rios: -mpwr} \
65 %{mcpu=rios1: -mpwr} \
66 %{mcpu=rios2: -mpwrx} \
67 %{mcpu=rsc: -mpwr} \
68 %{mcpu=rsc1: -mpwr} \
69 %{mcpu=401: -mppc} \
70 %{mcpu=403: -m403} \
71 %{mcpu=405: -m405} \
72 %{mcpu=405f: -m405} \
73 %{mcpu=505: -mppc} \
74 %{mcpu=601: -m601} \
75 %{mcpu=602: -mppc} \
76 %{mcpu=603: -mppc} \
77 %{mcpu=603e: -mppc} \
78 %{mcpu=ec603e: -mppc} \
79 %{mcpu=604: -mppc} \
80 %{mcpu=604e: -mppc} \
81 %{mcpu=620: -mppc} \
82 %{mcpu=630: -m604} \
83 %{mcpu=740: -mppc} \
84 %{mcpu=7400: -mppc} \
85 %{mcpu=7450: -mppc} \
86 %{mcpu=750: -mppc} \
87 %{mcpu=801: -mppc} \
88 %{mcpu=821: -mppc} \
89 %{mcpu=823: -mppc} \
90 %{mcpu=860: -mppc} \
91 %{mcpu=8540: -me500} \
92 %{maltivec: -maltivec}"
94 #define CPP_DEFAULT_SPEC ""
96 #define ASM_DEFAULT_SPEC ""
98 /* This macro defines names of additional specifications to put in the specs
99 that can be used in various specifications like CC1_SPEC. Its definition
100 is an initializer with a subgrouping for each command option.
102 Each subgrouping contains a string constant, that defines the
103 specification name, and a string constant that used by the GNU CC driver
104 program.
106 Do not define this macro if it does not need to do anything. */
108 #define SUBTARGET_EXTRA_SPECS
110 #define EXTRA_SPECS \
111 { "cpp_default", CPP_DEFAULT_SPEC }, \
112 { "asm_cpu", ASM_CPU_SPEC }, \
113 { "asm_default", ASM_DEFAULT_SPEC }, \
114 SUBTARGET_EXTRA_SPECS
116 /* Architecture type. */
118 extern int target_flags;
120 /* Use POWER architecture instructions and MQ register. */
121 #define MASK_POWER 0x00000001
123 /* Use POWER2 extensions to POWER architecture. */
124 #define MASK_POWER2 0x00000002
126 /* Use PowerPC architecture instructions. */
127 #define MASK_POWERPC 0x00000004
129 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
130 #define MASK_PPC_GPOPT 0x00000008
132 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
133 #define MASK_PPC_GFXOPT 0x00000010
135 /* Use PowerPC-64 architecture instructions. */
136 #define MASK_POWERPC64 0x00000020
138 /* Use revised mnemonic names defined for PowerPC architecture. */
139 #define MASK_NEW_MNEMONICS 0x00000040
141 /* Disable placing fp constants in the TOC; can be turned on when the
142 TOC overflows. */
143 #define MASK_NO_FP_IN_TOC 0x00000080
145 /* Disable placing symbol+offset constants in the TOC; can be turned on when
146 the TOC overflows. */
147 #define MASK_NO_SUM_IN_TOC 0x00000100
149 /* Output only one TOC entry per module. Normally linking fails if
150 there are more than 16K unique variables/constants in an executable. With
151 this option, linking fails only if there are more than 16K modules, or
152 if there are more than 16K unique variables/constant in a single module.
154 This is at the cost of having 2 extra loads and one extra store per
155 function, and one less allocable register. */
156 #define MASK_MINIMAL_TOC 0x00000200
158 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
159 #define MASK_64BIT 0x00000400
161 /* Disable use of FPRs. */
162 #define MASK_SOFT_FLOAT 0x00000800
164 /* Enable load/store multiple, even on PowerPC */
165 #define MASK_MULTIPLE 0x00001000
167 /* Use string instructions for block moves */
168 #define MASK_STRING 0x00002000
170 /* Disable update form of load/store */
171 #define MASK_NO_UPDATE 0x00004000
173 /* Disable fused multiply/add operations */
174 #define MASK_NO_FUSED_MADD 0x00008000
176 /* Nonzero if we need to schedule the prolog and epilog. */
177 #define MASK_SCHED_PROLOG 0x00010000
179 /* Use AltiVec instructions. */
180 #define MASK_ALTIVEC 0x00020000
182 /* Return small structures in memory (as the AIX ABI requires). */
183 #define MASK_AIX_STRUCT_RET 0x00040000
185 /* The only remaining free bits are 0x00780000. sysv4.h uses
186 0x00800000 -> 0x40000000, and 0x80000000 is not available
187 because target_flags is signed. */
189 #define TARGET_POWER (target_flags & MASK_POWER)
190 #define TARGET_POWER2 (target_flags & MASK_POWER2)
191 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
192 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
193 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
194 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
195 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
196 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
197 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
198 #define TARGET_64BIT (target_flags & MASK_64BIT)
199 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
200 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
201 #define TARGET_STRING (target_flags & MASK_STRING)
202 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
203 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
204 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
205 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
206 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
208 #define TARGET_32BIT (! TARGET_64BIT)
209 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
210 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
211 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
213 #ifdef IN_LIBGCC2
214 /* For libgcc2 we make sure this is a compile time constant */
215 #if defined (__64BIT__) || defined (__powerpc64__)
216 #define TARGET_POWERPC64 1
217 #else
218 #define TARGET_POWERPC64 0
219 #endif
220 #else
221 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
222 #endif
224 #define TARGET_XL_CALL 0
226 /* Run-time compilation parameters selecting different hardware subsets.
228 Macro to define tables used to set the flags.
229 This is a list in braces of pairs in braces,
230 each pair being { "NAME", VALUE }
231 where VALUE is the bits to set or minus the bits to clear.
232 An empty string NAME is used to identify the default VALUE. */
234 #define TARGET_SWITCHES \
235 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
236 N_("Use POWER instruction set")}, \
237 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
238 | MASK_POWER2), \
239 N_("Use POWER2 instruction set")}, \
240 {"no-power2", - MASK_POWER2, \
241 N_("Do not use POWER2 instruction set")}, \
242 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
243 | MASK_STRING), \
244 N_("Do not use POWER instruction set")}, \
245 {"powerpc", MASK_POWERPC, \
246 N_("Use PowerPC instruction set")}, \
247 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
248 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
249 N_("Do not use PowerPC instruction set")}, \
250 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
251 N_("Use PowerPC General Purpose group optional instructions")},\
252 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
253 N_("Don't use PowerPC General Purpose group optional instructions")},\
254 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
255 N_("Use PowerPC Graphics group optional instructions")},\
256 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
257 N_("Don't use PowerPC Graphics group optional instructions")},\
258 {"powerpc64", MASK_POWERPC64, \
259 N_("Use PowerPC-64 instruction set")}, \
260 {"no-powerpc64", - MASK_POWERPC64, \
261 N_("Don't use PowerPC-64 instruction set")}, \
262 {"altivec", MASK_ALTIVEC , \
263 N_("Use AltiVec instructions")}, \
264 {"no-altivec", - MASK_ALTIVEC , \
265 N_("Don't use AltiVec instructions")}, \
266 {"new-mnemonics", MASK_NEW_MNEMONICS, \
267 N_("Use new mnemonics for PowerPC architecture")},\
268 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
269 N_("Use old mnemonics for PowerPC architecture")},\
270 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
271 | MASK_MINIMAL_TOC), \
272 N_("Put everything in the regular TOC")}, \
273 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
274 N_("Place floating point constants in TOC")}, \
275 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
276 N_("Don't place floating point constants in TOC")},\
277 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
278 N_("Place symbol+offset constants in TOC")}, \
279 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
280 N_("Don't place symbol+offset constants in TOC")},\
281 {"minimal-toc", MASK_MINIMAL_TOC, \
282 "Use only one TOC entry per procedure"}, \
283 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
284 ""}, \
285 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
286 N_("Place variable addresses in the regular TOC")},\
287 {"hard-float", - MASK_SOFT_FLOAT, \
288 N_("Use hardware fp")}, \
289 {"soft-float", MASK_SOFT_FLOAT, \
290 N_("Do not use hardware fp")}, \
291 {"multiple", MASK_MULTIPLE, \
292 N_("Generate load/store multiple instructions")}, \
293 {"no-multiple", - MASK_MULTIPLE, \
294 N_("Do not generate load/store multiple instructions")},\
295 {"string", MASK_STRING, \
296 N_("Generate string instructions for block moves")},\
297 {"no-string", - MASK_STRING, \
298 N_("Do not generate string instructions for block moves")},\
299 {"update", - MASK_NO_UPDATE, \
300 N_("Generate load/store with update instructions")},\
301 {"no-update", MASK_NO_UPDATE, \
302 N_("Do not generate load/store with update instructions")},\
303 {"fused-madd", - MASK_NO_FUSED_MADD, \
304 N_("Generate fused multiply/add instructions")},\
305 {"no-fused-madd", MASK_NO_FUSED_MADD, \
306 N_("Don't generate fused multiply/add instructions")},\
307 {"sched-prolog", MASK_SCHED_PROLOG, \
308 ""}, \
309 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
310 N_("Don't schedule the start and end of the procedure")},\
311 {"sched-epilog", MASK_SCHED_PROLOG, \
312 ""}, \
313 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
314 ""}, \
315 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
316 N_("Return all structures in memory (AIX default)")},\
317 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
318 N_("Return small structures in registers (SVR4 default)")},\
319 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
320 ""},\
321 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
322 ""},\
323 SUBTARGET_SWITCHES \
324 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
325 ""}}
327 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
329 /* This is meant to be redefined in the host dependent files */
330 #define SUBTARGET_SWITCHES
332 /* Processor type. Order must match cpu attribute in MD file. */
333 enum processor_type
335 PROCESSOR_RIOS1,
336 PROCESSOR_RIOS2,
337 PROCESSOR_RS64A,
338 PROCESSOR_MPCCORE,
339 PROCESSOR_PPC403,
340 PROCESSOR_PPC405,
341 PROCESSOR_PPC601,
342 PROCESSOR_PPC603,
343 PROCESSOR_PPC604,
344 PROCESSOR_PPC604e,
345 PROCESSOR_PPC620,
346 PROCESSOR_PPC630,
347 PROCESSOR_PPC750,
348 PROCESSOR_PPC7400,
349 PROCESSOR_PPC7450,
350 PROCESSOR_PPC8540,
351 PROCESSOR_POWER4
354 extern enum processor_type rs6000_cpu;
356 /* Recast the processor type to the cpu attribute. */
357 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
359 /* Define generic processor types based upon current deployment. */
360 #define PROCESSOR_COMMON PROCESSOR_PPC601
361 #define PROCESSOR_POWER PROCESSOR_RIOS1
362 #define PROCESSOR_POWERPC PROCESSOR_PPC604
363 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
365 /* Define the default processor. This is overridden by other tm.h files. */
366 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
367 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
369 /* Specify the dialect of assembler to use. New mnemonics is dialect one
370 and the old mnemonics are dialect zero. */
371 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
373 /* This is meant to be overridden in target specific files. */
374 #define SUBTARGET_OPTIONS
376 #define TARGET_OPTIONS \
378 {"cpu=", &rs6000_select[1].string, \
379 N_("Use features of and schedule code for given CPU") }, \
380 {"tune=", &rs6000_select[2].string, \
381 N_("Schedule code for given CPU") }, \
382 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
383 {"traceback=", &rs6000_traceback_name, \
384 N_("Select full, part, or no traceback table") }, \
385 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
386 {"long-double-", &rs6000_long_double_size_string, \
387 N_("Specify size of long double (64 or 128 bits)") }, \
388 {"isel=", &rs6000_isel_string, \
389 N_("Specify yes/no if isel instructions should be generated") }, \
390 {"vrsave=", &rs6000_altivec_vrsave_string, \
391 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
392 {"longcall", &rs6000_longcall_switch, \
393 N_("Avoid all range limits on call instructions") }, \
394 {"no-longcall", &rs6000_longcall_switch, "" }, \
395 SUBTARGET_OPTIONS \
398 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
399 struct rs6000_cpu_select
401 const char *string;
402 const char *name;
403 int set_tune_p;
404 int set_arch_p;
407 extern struct rs6000_cpu_select rs6000_select[];
409 /* Debug support */
410 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
411 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
412 extern int rs6000_debug_stack; /* debug stack applications */
413 extern int rs6000_debug_arg; /* debug argument handling */
415 #define TARGET_DEBUG_STACK rs6000_debug_stack
416 #define TARGET_DEBUG_ARG rs6000_debug_arg
418 extern const char *rs6000_traceback_name; /* Type of traceback table. */
420 /* These are separate from target_flags because we've run out of bits
421 there. */
422 extern const char *rs6000_long_double_size_string;
423 extern int rs6000_long_double_type_size;
424 extern int rs6000_altivec_abi;
425 extern int rs6000_spe_abi;
426 extern int rs6000_isel;
427 extern int rs6000_fprs;
428 extern const char *rs6000_isel_string;
429 extern const char *rs6000_altivec_vrsave_string;
430 extern int rs6000_altivec_vrsave;
431 extern const char *rs6000_longcall_switch;
432 extern int rs6000_default_long_calls;
434 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
435 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
436 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
438 #define TARGET_SPE_ABI 0
439 #define TARGET_SPE 0
440 #define TARGET_ISEL 0
441 #define TARGET_FPRS 1
443 /* Sometimes certain combinations of command options do not make sense
444 on a particular target machine. You can define a macro
445 `OVERRIDE_OPTIONS' to take account of this. This macro, if
446 defined, is executed once just after all the command options have
447 been parsed.
449 Don't use this macro to turn on various extra optimizations for
450 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
452 On the RS/6000 this is used to define the target cpu type. */
454 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
456 /* Define this to change the optimizations performed by default. */
457 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
459 /* Show we can debug even without a frame pointer. */
460 #define CAN_DEBUG_WITHOUT_FP
462 /* Target pragma. */
463 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
464 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
465 } while (0)
467 /* Target #defines. */
468 #define TARGET_CPU_CPP_BUILTINS() \
469 rs6000_cpu_cpp_builtins (pfile)
471 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
472 we're compiling for. Some configurations may need to override it. */
473 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
474 do \
476 if (BYTES_BIG_ENDIAN) \
478 builtin_define ("__BIG_ENDIAN__"); \
479 builtin_define ("_BIG_ENDIAN"); \
480 builtin_assert ("machine=bigendian"); \
482 else \
484 builtin_define ("__LITTLE_ENDIAN__"); \
485 builtin_define ("_LITTLE_ENDIAN"); \
486 builtin_assert ("machine=littleendian"); \
489 while (0)
491 /* Target machine storage layout. */
493 /* Define this macro if it is advisable to hold scalars in registers
494 in a wider mode than that declared by the program. In such cases,
495 the value is constrained to be within the bounds of the declared
496 type, but kept valid in the wider mode. The signedness of the
497 extension may differ from that of the type. */
499 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
500 if (GET_MODE_CLASS (MODE) == MODE_INT \
501 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
502 (MODE) = word_mode;
504 /* Define this if function arguments should also be promoted using the above
505 procedure. */
507 #define PROMOTE_FUNCTION_ARGS
509 /* Likewise, if the function return value is promoted. */
511 #define PROMOTE_FUNCTION_RETURN
513 /* Define this if most significant bit is lowest numbered
514 in instructions that operate on numbered bit-fields. */
515 /* That is true on RS/6000. */
516 #define BITS_BIG_ENDIAN 1
518 /* Define this if most significant byte of a word is the lowest numbered. */
519 /* That is true on RS/6000. */
520 #define BYTES_BIG_ENDIAN 1
522 /* Define this if most significant word of a multiword number is lowest
523 numbered.
525 For RS/6000 we can decide arbitrarily since there are no machine
526 instructions for them. Might as well be consistent with bits and bytes. */
527 #define WORDS_BIG_ENDIAN 1
529 #define MAX_BITS_PER_WORD 64
531 /* Width of a word, in units (bytes). */
532 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
533 #ifdef IN_LIBGCC2
534 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
535 #else
536 #define MIN_UNITS_PER_WORD 4
537 #endif
538 #define UNITS_PER_FP_WORD 8
539 #define UNITS_PER_ALTIVEC_WORD 16
540 #define UNITS_PER_SPE_WORD 8
542 /* Type used for ptrdiff_t, as a string used in a declaration. */
543 #define PTRDIFF_TYPE "int"
545 /* Type used for size_t, as a string used in a declaration. */
546 #define SIZE_TYPE "long unsigned int"
548 /* Type used for wchar_t, as a string used in a declaration. */
549 #define WCHAR_TYPE "short unsigned int"
551 /* Width of wchar_t in bits. */
552 #define WCHAR_TYPE_SIZE 16
554 /* A C expression for the size in bits of the type `short' on the
555 target machine. If you don't define this, the default is half a
556 word. (If this would be less than one storage unit, it is
557 rounded up to one unit.) */
558 #define SHORT_TYPE_SIZE 16
560 /* A C expression for the size in bits of the type `int' on the
561 target machine. If you don't define this, the default is one
562 word. */
563 #define INT_TYPE_SIZE 32
565 /* A C expression for the size in bits of the type `long' on the
566 target machine. If you don't define this, the default is one
567 word. */
568 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
569 #define MAX_LONG_TYPE_SIZE 64
571 /* A C expression for the size in bits of the type `long long' on the
572 target machine. If you don't define this, the default is two
573 words. */
574 #define LONG_LONG_TYPE_SIZE 64
576 /* A C expression for the size in bits of the type `float' on the
577 target machine. If you don't define this, the default is one
578 word. */
579 #define FLOAT_TYPE_SIZE 32
581 /* A C expression for the size in bits of the type `double' on the
582 target machine. If you don't define this, the default is two
583 words. */
584 #define DOUBLE_TYPE_SIZE 64
586 /* A C expression for the size in bits of the type `long double' on
587 the target machine. If you don't define this, the default is two
588 words. */
589 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
591 /* Constant which presents upper bound of the above value. */
592 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
594 /* Define this to set long double type size to use in libgcc2.c, which can
595 not depend on target_flags. */
596 #ifdef __LONG_DOUBLE_128__
597 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
598 #else
599 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
600 #endif
602 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
603 #define WIDEST_HARDWARE_FP_SIZE 64
605 /* Width in bits of a pointer.
606 See also the macro `Pmode' defined below. */
607 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
609 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
610 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
612 /* Boundary (in *bits*) on which stack pointer should be aligned. */
613 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
615 /* Allocation boundary (in *bits*) for the code of a function. */
616 #define FUNCTION_BOUNDARY 32
618 /* No data type wants to be aligned rounder than this. */
619 #define BIGGEST_ALIGNMENT 128
621 /* A C expression to compute the alignment for a variables in the
622 local store. TYPE is the data type, and ALIGN is the alignment
623 that the object would ordinarily have. */
624 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
625 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
626 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
628 /* Alignment of field after `int : 0' in a structure. */
629 #define EMPTY_FIELD_BOUNDARY 32
631 /* Every structure's size must be a multiple of this. */
632 #define STRUCTURE_SIZE_BOUNDARY 8
634 /* Return 1 if a structure or array containing FIELD should be
635 accessed using `BLKMODE'.
637 For the SPE, simd types are V2SI, and gcc can be tempted to put the
638 entire thing in a DI and use subregs to access the internals.
639 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
640 back-end. Because a single GPR can hold a V2SI, but not a DI, the
641 best thing to do is set structs to BLKmode and avoid Severe Tire
642 Damage. */
643 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
644 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
646 /* A bit-field declared as `int' forces `int' alignment for the struct. */
647 #define PCC_BITFIELD_TYPE_MATTERS 1
649 /* Make strings word-aligned so strcpy from constants will be faster.
650 Make vector constants quadword aligned. */
651 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
652 (TREE_CODE (EXP) == STRING_CST \
653 && (ALIGN) < BITS_PER_WORD \
654 ? BITS_PER_WORD \
655 : (ALIGN))
657 /* Make arrays of chars word-aligned for the same reasons.
658 Align vectors to 128 bits. */
659 #define DATA_ALIGNMENT(TYPE, ALIGN) \
660 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
661 : TREE_CODE (TYPE) == ARRAY_TYPE \
662 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
663 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
665 /* Nonzero if move instructions will actually fail to work
666 when given unaligned data. */
667 #define STRICT_ALIGNMENT 0
669 /* Define this macro to be the value 1 if unaligned accesses have a cost
670 many times greater than aligned accesses, for example if they are
671 emulated in a trap handler. */
672 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
673 (STRICT_ALIGNMENT \
674 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
675 || (MODE) == DImode) \
676 && (ALIGN) < 32))
678 /* Standard register usage. */
680 /* Number of actual hardware registers.
681 The hardware registers are assigned numbers for the compiler
682 from 0 to just below FIRST_PSEUDO_REGISTER.
683 All registers that the compiler knows about must be given numbers,
684 even those that are not normally considered general registers.
686 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
687 an MQ register, a count register, a link register, and 8 condition
688 register fields, which we view here as separate registers.
690 In addition, the difference between the frame and argument pointers is
691 a function of the number of registers saved, so we need to have a
692 register for AP that will later be eliminated in favor of SP or FP.
693 This is a normal register, but it is fixed.
695 We also create a pseudo register for float/int conversions, that will
696 really represent the memory location used. It is represented here as
697 a register, in order to work around problems in allocating stack storage
698 in inline functions. */
700 #define FIRST_PSEUDO_REGISTER 113
702 /* This must be included for pre gcc 3.0 glibc compatibility. */
703 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
705 /* 1 for registers that have pervasive standard uses
706 and are not available for the register allocator.
708 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
709 as a local register; for all other OS's r2 is the TOC pointer.
711 cr5 is not supposed to be used.
713 On System V implementations, r13 is fixed and not available for use. */
715 #define FIXED_REGISTERS \
716 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
717 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
718 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
719 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
720 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
721 /* AltiVec registers. */ \
722 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
724 1, 1 \
725 , 1, 1 \
728 /* 1 for registers not available across function calls.
729 These must include the FIXED_REGISTERS and also any
730 registers that can be used without being saved.
731 The latter must include the registers where values are returned
732 and the register where structure-value addresses are passed.
733 Aside from that, you can include as many other registers as you like. */
735 #define CALL_USED_REGISTERS \
736 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
738 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
740 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
741 /* AltiVec registers. */ \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
744 1, 1 \
745 , 1, 1 \
748 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
749 the entire set of `FIXED_REGISTERS' be included.
750 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
751 This macro is optional. If not specified, it defaults to the value
752 of `CALL_USED_REGISTERS'. */
754 #define CALL_REALLY_USED_REGISTERS \
755 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
756 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
757 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
758 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
759 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
760 /* AltiVec registers. */ \
761 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
762 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
763 0, 0 \
764 , 0, 0 \
767 #define MQ_REGNO 64
768 #define CR0_REGNO 68
769 #define CR1_REGNO 69
770 #define CR2_REGNO 70
771 #define CR3_REGNO 71
772 #define CR4_REGNO 72
773 #define MAX_CR_REGNO 75
774 #define XER_REGNO 76
775 #define FIRST_ALTIVEC_REGNO 77
776 #define LAST_ALTIVEC_REGNO 108
777 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
778 #define VRSAVE_REGNO 109
779 #define VSCR_REGNO 110
780 #define SPE_ACC_REGNO 111
781 #define SPEFSCR_REGNO 112
783 /* List the order in which to allocate registers. Each register must be
784 listed once, even those in FIXED_REGISTERS.
786 We allocate in the following order:
787 fp0 (not saved or used for anything)
788 fp13 - fp2 (not saved; incoming fp arg registers)
789 fp1 (not saved; return value)
790 fp31 - fp14 (saved; order given to save least number)
791 cr7, cr6 (not saved or special)
792 cr1 (not saved, but used for FP operations)
793 cr0 (not saved, but used for arithmetic operations)
794 cr4, cr3, cr2 (saved)
795 r0 (not saved; cannot be base reg)
796 r9 (not saved; best for TImode)
797 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
798 r3 (not saved; return value register)
799 r31 - r13 (saved; order given to save least number)
800 r12 (not saved; if used for DImode or DFmode would use r13)
801 mq (not saved; best to use it if we can)
802 ctr (not saved; when we have the choice ctr is better)
803 lr (saved)
804 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
805 spe_acc, spefscr (fixed)
807 AltiVec registers:
808 v0 - v1 (not saved or used for anything)
809 v13 - v3 (not saved; incoming vector arg registers)
810 v2 (not saved; incoming vector arg reg; return value)
811 v19 - v14 (not saved or used for anything)
812 v31 - v20 (saved; order given to save least number)
816 #define REG_ALLOC_ORDER \
817 {32, \
818 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
819 33, \
820 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
821 50, 49, 48, 47, 46, \
822 75, 74, 69, 68, 72, 71, 70, \
823 0, \
824 9, 11, 10, 8, 7, 6, 5, 4, \
825 3, \
826 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
827 18, 17, 16, 15, 14, 13, 12, \
828 64, 66, 65, \
829 73, 1, 2, 67, 76, \
830 /* AltiVec registers. */ \
831 77, 78, \
832 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
833 79, \
834 96, 95, 94, 93, 92, 91, \
835 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
836 97, 109, 110 \
837 , 111, 112 \
840 /* True if register is floating-point. */
841 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
843 /* True if register is a condition register. */
844 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
846 /* True if register is a condition register, but not cr0. */
847 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
849 /* True if register is an integer register. */
850 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
852 /* SPE SIMD registers are just the GPRs. */
853 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
855 /* True if register is the XER register. */
856 #define XER_REGNO_P(N) ((N) == XER_REGNO)
858 /* True if register is an AltiVec register. */
859 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
861 /* Return number of consecutive hard regs needed starting at reg REGNO
862 to hold something of mode MODE.
863 This is ordinarily the length in words of a value of mode MODE
864 but can be less for certain modes in special long registers.
866 For the SPE, GPRs are 64 bits but only 32 bits are visible in
867 scalar instructions. The upper 32 bits are only available to the
868 SIMD instructions.
870 POWER and PowerPC GPRs hold 32 bits worth;
871 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
873 #define HARD_REGNO_NREGS(REGNO, MODE) \
874 (FP_REGNO_P (REGNO) \
875 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
876 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
877 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
878 : ALTIVEC_REGNO_P (REGNO) \
879 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
880 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
882 #define ALTIVEC_VECTOR_MODE(MODE) \
883 ((MODE) == V16QImode \
884 || (MODE) == V8HImode \
885 || (MODE) == V4SFmode \
886 || (MODE) == V4SImode)
888 #define SPE_VECTOR_MODE(MODE) \
889 ((MODE) == V4HImode \
890 || (MODE) == V2SFmode \
891 || (MODE) == V1DImode \
892 || (MODE) == V2SImode)
894 /* Define this macro to be nonzero if the port is prepared to handle
895 insns involving vector mode MODE. At the very least, it must have
896 move patterns for this mode. */
898 #define VECTOR_MODE_SUPPORTED_P(MODE) \
899 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
900 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
902 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
903 For POWER and PowerPC, the GPRs can hold any mode, but the float
904 registers only can hold floating modes and DImode, and CR register only
905 can hold CC modes. We cannot put TImode anywhere except general
906 register and it must be able to fit within the register set. */
908 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
909 (FP_REGNO_P (REGNO) ? \
910 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
911 || (GET_MODE_CLASS (MODE) == MODE_INT \
912 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
913 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
914 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
915 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
916 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
917 : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
918 : 1)
920 /* Value is 1 if it is a good idea to tie two pseudo registers
921 when one has mode MODE1 and one has mode MODE2.
922 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
923 for any hard reg, then this must be 0 for correct output. */
924 #define MODES_TIEABLE_P(MODE1, MODE2) \
925 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
926 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
927 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
928 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
929 : GET_MODE_CLASS (MODE1) == MODE_CC \
930 ? GET_MODE_CLASS (MODE2) == MODE_CC \
931 : GET_MODE_CLASS (MODE2) == MODE_CC \
932 ? GET_MODE_CLASS (MODE1) == MODE_CC \
933 : ALTIVEC_VECTOR_MODE (MODE1) \
934 ? ALTIVEC_VECTOR_MODE (MODE2) \
935 : ALTIVEC_VECTOR_MODE (MODE2) \
936 ? ALTIVEC_VECTOR_MODE (MODE1) \
937 : 1)
939 /* A C expression returning the cost of moving data from a register of class
940 CLASS1 to one of CLASS2. */
942 #define REGISTER_MOVE_COST rs6000_register_move_cost
944 /* A C expressions returning the cost of moving data of MODE from a register to
945 or from memory. */
947 #define MEMORY_MOVE_COST rs6000_memory_move_cost
949 /* Specify the cost of a branch insn; roughly the number of extra insns that
950 should be added to avoid a branch.
952 Set this to 3 on the RS/6000 since that is roughly the average cost of an
953 unscheduled conditional branch. */
955 #define BRANCH_COST 3
958 /* A fixed register used at prologue and epilogue generation to fix
959 addressing modes. The SPE needs heavy addressing fixes at the last
960 minute, and it's best to save a register for it.
962 AltiVec also needs fixes, but we've gotten around using r11, which
963 is actually wrong because when use_backchain_to_restore_sp is true,
964 we end up clobbering r11.
966 The AltiVec case needs to be fixed. Dunno if we should break ABI
967 compatability and reserve a register for it as well.. */
969 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
971 /* Define this macro to change register usage conditional on target flags.
972 Set MQ register fixed (already call_used) if not POWER architecture
973 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
974 64-bit AIX reserves GPR13 for thread-private data.
975 Conditionally disable FPRs. */
977 #define CONDITIONAL_REGISTER_USAGE \
979 int i; \
980 if (! TARGET_POWER) \
981 fixed_regs[64] = 1; \
982 if (TARGET_64BIT) \
983 fixed_regs[13] = call_used_regs[13] \
984 = call_really_used_regs[13] = 1; \
985 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
986 for (i = 32; i < 64; i++) \
987 fixed_regs[i] = call_used_regs[i] \
988 = call_really_used_regs[i] = 1; \
989 if (DEFAULT_ABI == ABI_V4 \
990 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
991 && flag_pic == 1) \
992 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
993 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
994 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
995 if (DEFAULT_ABI == ABI_DARWIN \
996 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
997 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
998 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
999 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1000 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 if (TARGET_ALTIVEC) \
1002 global_regs[VSCR_REGNO] = 1; \
1003 if (TARGET_SPE) \
1005 global_regs[SPEFSCR_REGNO] = 1; \
1006 fixed_regs[FIXED_SCRATCH] \
1007 = call_used_regs[FIXED_SCRATCH] \
1008 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1010 if (! TARGET_ALTIVEC) \
1012 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1013 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1014 call_really_used_regs[VRSAVE_REGNO] = 1; \
1016 if (TARGET_ALTIVEC_ABI) \
1017 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1018 call_used_regs[i] = call_really_used_regs[i] = 1; \
1021 /* Specify the registers used for certain standard purposes.
1022 The values of these macros are register numbers. */
1024 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1025 /* #define PC_REGNUM */
1027 /* Register to use for pushing function arguments. */
1028 #define STACK_POINTER_REGNUM 1
1030 /* Base register for access to local variables of the function. */
1031 #define FRAME_POINTER_REGNUM 31
1033 /* Value should be nonzero if functions must have frame pointers.
1034 Zero means the frame pointer need not be set up (and parms
1035 may be accessed via the stack pointer) in functions that seem suitable.
1036 This is computed in `reload', in reload1.c. */
1037 #define FRAME_POINTER_REQUIRED 0
1039 /* Base register for access to arguments of the function. */
1040 #define ARG_POINTER_REGNUM 67
1042 /* Place to put static chain when calling a function that requires it. */
1043 #define STATIC_CHAIN_REGNUM 11
1045 /* Link register number. */
1046 #define LINK_REGISTER_REGNUM 65
1048 /* Count register number. */
1049 #define COUNT_REGISTER_REGNUM 66
1051 /* Place that structure value return address is placed.
1053 On the RS/6000, it is passed as an extra parameter. */
1054 #define STRUCT_VALUE 0
1056 /* Define the classes of registers for register constraints in the
1057 machine description. Also define ranges of constants.
1059 One of the classes must always be named ALL_REGS and include all hard regs.
1060 If there is more than one class, another class must be named NO_REGS
1061 and contain no registers.
1063 The name GENERAL_REGS must be the name of a class (or an alias for
1064 another name such as ALL_REGS). This is the class of registers
1065 that is allowed by "g" or "r" in a register constraint.
1066 Also, registers outside this class are allocated only when
1067 instructions express preferences for them.
1069 The classes must be numbered in nondecreasing order; that is,
1070 a larger-numbered class must never be contained completely
1071 in a smaller-numbered class.
1073 For any two classes, it is very desirable that there be another
1074 class that represents their union. */
1076 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1077 and condition registers, plus three special registers, MQ, CTR, and the
1078 link register.
1080 However, r0 is special in that it cannot be used as a base register.
1081 So make a class for registers valid as base registers.
1083 Also, cr0 is the only condition code register that can be used in
1084 arithmetic insns, so make a separate class for it. */
1086 enum reg_class
1088 NO_REGS,
1089 BASE_REGS,
1090 GENERAL_REGS,
1091 FLOAT_REGS,
1092 ALTIVEC_REGS,
1093 VRSAVE_REGS,
1094 VSCR_REGS,
1095 SPE_ACC_REGS,
1096 SPEFSCR_REGS,
1097 NON_SPECIAL_REGS,
1098 MQ_REGS,
1099 LINK_REGS,
1100 CTR_REGS,
1101 LINK_OR_CTR_REGS,
1102 SPECIAL_REGS,
1103 SPEC_OR_GEN_REGS,
1104 CR0_REGS,
1105 CR_REGS,
1106 NON_FLOAT_REGS,
1107 XER_REGS,
1108 ALL_REGS,
1109 LIM_REG_CLASSES
1112 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1114 /* Give names of register classes as strings for dump file. */
1116 #define REG_CLASS_NAMES \
1118 "NO_REGS", \
1119 "BASE_REGS", \
1120 "GENERAL_REGS", \
1121 "FLOAT_REGS", \
1122 "ALTIVEC_REGS", \
1123 "VRSAVE_REGS", \
1124 "VSCR_REGS", \
1125 "SPE_ACC_REGS", \
1126 "SPEFSCR_REGS", \
1127 "NON_SPECIAL_REGS", \
1128 "MQ_REGS", \
1129 "LINK_REGS", \
1130 "CTR_REGS", \
1131 "LINK_OR_CTR_REGS", \
1132 "SPECIAL_REGS", \
1133 "SPEC_OR_GEN_REGS", \
1134 "CR0_REGS", \
1135 "CR_REGS", \
1136 "NON_FLOAT_REGS", \
1137 "XER_REGS", \
1138 "ALL_REGS" \
1141 /* Define which registers fit in which classes.
1142 This is an initializer for a vector of HARD_REG_SET
1143 of length N_REG_CLASSES. */
1145 #define REG_CLASS_CONTENTS \
1147 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1148 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1149 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1150 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1151 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1153 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1154 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1155 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1156 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1157 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1158 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1159 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1160 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1161 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1162 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1163 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1164 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1165 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1166 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1167 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1170 /* The same information, inverted:
1171 Return the class number of the smallest class containing
1172 reg number REGNO. This could be a conditional expression
1173 or could index an array. */
1175 #define REGNO_REG_CLASS(REGNO) \
1176 ((REGNO) == 0 ? GENERAL_REGS \
1177 : (REGNO) < 32 ? BASE_REGS \
1178 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1179 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1180 : (REGNO) == CR0_REGNO ? CR0_REGS \
1181 : CR_REGNO_P (REGNO) ? CR_REGS \
1182 : (REGNO) == MQ_REGNO ? MQ_REGS \
1183 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1184 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1185 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1186 : (REGNO) == XER_REGNO ? XER_REGS \
1187 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1188 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1189 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1190 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1191 : NO_REGS)
1193 /* The class value for index registers, and the one for base regs. */
1194 #define INDEX_REG_CLASS GENERAL_REGS
1195 #define BASE_REG_CLASS BASE_REGS
1197 /* Get reg_class from a letter such as appears in the machine description. */
1199 #define REG_CLASS_FROM_LETTER(C) \
1200 ((C) == 'f' ? FLOAT_REGS \
1201 : (C) == 'b' ? BASE_REGS \
1202 : (C) == 'h' ? SPECIAL_REGS \
1203 : (C) == 'q' ? MQ_REGS \
1204 : (C) == 'c' ? CTR_REGS \
1205 : (C) == 'l' ? LINK_REGS \
1206 : (C) == 'v' ? ALTIVEC_REGS \
1207 : (C) == 'x' ? CR0_REGS \
1208 : (C) == 'y' ? CR_REGS \
1209 : (C) == 'z' ? XER_REGS \
1210 : NO_REGS)
1212 /* The letters I, J, K, L, M, N, and P in a register constraint string
1213 can be used to stand for particular ranges of immediate operands.
1214 This macro defines what the ranges are.
1215 C is the letter, and VALUE is a constant value.
1216 Return 1 if VALUE is in the range specified by C.
1218 `I' is a signed 16-bit constant
1219 `J' is a constant with only the high-order 16 bits nonzero
1220 `K' is a constant with only the low-order 16 bits nonzero
1221 `L' is a signed 16-bit constant shifted left 16 bits
1222 `M' is a constant that is greater than 31
1223 `N' is a positive constant that is an exact power of two
1224 `O' is the constant zero
1225 `P' is a constant whose negation is a signed 16-bit constant */
1227 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1228 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1229 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1230 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1231 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1232 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1233 : (C) == 'M' ? (VALUE) > 31 \
1234 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1235 : (C) == 'O' ? (VALUE) == 0 \
1236 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1237 : 0)
1239 /* Similar, but for floating constants, and defining letters G and H.
1240 Here VALUE is the CONST_DOUBLE rtx itself.
1242 We flag for special constants when we can copy the constant into
1243 a general register in two insns for DF/DI and one insn for SF.
1245 'H' is used for DI/DF constants that take 3 insns. */
1247 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1248 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1249 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1250 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1251 : 0)
1253 /* Optional extra constraints for this machine.
1255 'Q' means that is a memory operand that is just an offset from a reg.
1256 'R' is for AIX TOC entries.
1257 'S' is a constant that can be placed into a 64-bit mask operand
1258 'T' is a constant that can be placed into a 32-bit mask operand
1259 'U' is for V.4 small data references.
1260 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1262 #define EXTRA_CONSTRAINT(OP, C) \
1263 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1264 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1265 : (C) == 'S' ? mask64_operand (OP, DImode) \
1266 : (C) == 'T' ? mask_operand (OP, SImode) \
1267 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1268 && small_data_operand (OP, GET_MODE (OP))) \
1269 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1270 && (fixed_regs[CR0_REGNO] \
1271 || !logical_operand (OP, DImode)) \
1272 && !mask64_operand (OP, DImode)) \
1273 : 0)
1275 /* Given an rtx X being reloaded into a reg required to be
1276 in class CLASS, return the class of reg to actually use.
1277 In general this is just CLASS; but on some machines
1278 in some cases it is preferable to use a more restrictive class.
1280 On the RS/6000, we have to return NO_REGS when we want to reload a
1281 floating-point CONST_DOUBLE to force it to be copied to memory.
1283 We also don't want to reload integer values into floating-point
1284 registers if we can at all help it. In fact, this can
1285 cause reload to abort, if it tries to generate a reload of CTR
1286 into a FP register and discovers it doesn't have the memory location
1287 required.
1289 ??? Would it be a good idea to have reload do the converse, that is
1290 try to reload floating modes into FP registers if possible?
1293 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1294 (((GET_CODE (X) == CONST_DOUBLE \
1295 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1296 ? NO_REGS \
1297 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1298 && (CLASS) == NON_SPECIAL_REGS) \
1299 ? GENERAL_REGS \
1300 : (CLASS)))
1302 /* Return the register class of a scratch register needed to copy IN into
1303 or out of a register in CLASS in MODE. If it can be done directly,
1304 NO_REGS is returned. */
1306 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1307 secondary_reload_class (CLASS, MODE, IN)
1309 /* If we are copying between FP or AltiVec registers and anything
1310 else, we need a memory location. */
1312 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1313 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1314 || (CLASS2) == FLOAT_REGS \
1315 || (CLASS1) == ALTIVEC_REGS \
1316 || (CLASS2) == ALTIVEC_REGS))
1318 /* Return the maximum number of consecutive registers
1319 needed to represent mode MODE in a register of class CLASS.
1321 On RS/6000, this is the size of MODE in words,
1322 except in the FP regs, where a single reg is enough for two words. */
1323 #define CLASS_MAX_NREGS(CLASS, MODE) \
1324 (((CLASS) == FLOAT_REGS) \
1325 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1326 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1329 /* Return a class of registers that cannot change FROM mode to TO mode. */
1331 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO) \
1332 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) ? FLOAT_REGS \
1333 : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1 ? GENERAL_REGS \
1334 : NO_REGS)
1336 /* Stack layout; function entry, exit and calling. */
1338 /* Enumeration to give which calling sequence to use. */
1339 enum rs6000_abi {
1340 ABI_NONE,
1341 ABI_AIX, /* IBM's AIX */
1342 ABI_AIX_NODESC, /* AIX calling sequence minus
1343 function descriptors */
1344 ABI_V4, /* System V.4/eabi */
1345 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1348 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1350 /* Structure used to define the rs6000 stack */
1351 typedef struct rs6000_stack {
1352 int first_gp_reg_save; /* first callee saved GP register used */
1353 int first_fp_reg_save; /* first callee saved FP register used */
1354 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1355 int lr_save_p; /* true if the link reg needs to be saved */
1356 int cr_save_p; /* true if the CR reg needs to be saved */
1357 unsigned int vrsave_mask; /* mask of vec registers to save */
1358 int toc_save_p; /* true if the TOC needs to be saved */
1359 int push_p; /* true if we need to allocate stack space */
1360 int calls_p; /* true if the function makes any calls */
1361 enum rs6000_abi abi; /* which ABI to use */
1362 int gp_save_offset; /* offset to save GP regs from initial SP */
1363 int fp_save_offset; /* offset to save FP regs from initial SP */
1364 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
1365 int lr_save_offset; /* offset to save LR from initial SP */
1366 int cr_save_offset; /* offset to save CR from initial SP */
1367 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1368 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1369 int toc_save_offset; /* offset to save the TOC pointer */
1370 int varargs_save_offset; /* offset to save the varargs registers */
1371 int ehrd_offset; /* offset to EH return data */
1372 int reg_size; /* register size (4 or 8) */
1373 int varargs_size; /* size to hold V.4 args passed in regs */
1374 int vars_size; /* variable save area size */
1375 int parm_size; /* outgoing parameter size */
1376 int save_size; /* save area size */
1377 int fixed_size; /* fixed size of stack frame */
1378 int gp_size; /* size of saved GP registers */
1379 int fp_size; /* size of saved FP registers */
1380 int altivec_size; /* size of saved AltiVec registers */
1381 int cr_size; /* size to hold CR if not in save_size */
1382 int lr_size; /* size to hold LR if not in save_size */
1383 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1384 int altivec_padding_size; /* size of altivec alignment padding if
1385 not in save_size */
1386 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1387 int spe_padding_size;
1388 int toc_size; /* size to hold TOC if not in save_size */
1389 int total_size; /* total bytes allocated for stack */
1390 } rs6000_stack_t;
1392 /* Define this if pushing a word on the stack
1393 makes the stack pointer a smaller address. */
1394 #define STACK_GROWS_DOWNWARD
1396 /* Define this if the nominal address of the stack frame
1397 is at the high-address end of the local variables;
1398 that is, each additional local variable allocated
1399 goes at a more negative offset in the frame.
1401 On the RS/6000, we grow upwards, from the area after the outgoing
1402 arguments. */
1403 /* #define FRAME_GROWS_DOWNWARD */
1405 /* Size of the outgoing register save area */
1406 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1407 || DEFAULT_ABI == ABI_AIX_NODESC \
1408 || DEFAULT_ABI == ABI_DARWIN) \
1409 ? (TARGET_64BIT ? 64 : 32) \
1410 : 0)
1412 /* Size of the fixed area on the stack */
1413 #define RS6000_SAVE_AREA \
1414 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1415 << (TARGET_64BIT ? 1 : 0))
1417 /* MEM representing address to save the TOC register */
1418 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1419 plus_constant (stack_pointer_rtx, \
1420 (TARGET_32BIT ? 20 : 40)))
1422 /* Size of the V.4 varargs area if needed */
1423 #define RS6000_VARARGS_AREA 0
1425 /* Align an address */
1426 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1428 /* Size of V.4 varargs area in bytes */
1429 #define RS6000_VARARGS_SIZE \
1430 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1432 /* Offset within stack frame to start allocating local variables at.
1433 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1434 first local allocated. Otherwise, it is the offset to the BEGINNING
1435 of the first local allocated.
1437 On the RS/6000, the frame pointer is the same as the stack pointer,
1438 except for dynamic allocations. So we start after the fixed area and
1439 outgoing parameter area. */
1441 #define STARTING_FRAME_OFFSET \
1442 (RS6000_ALIGN (current_function_outgoing_args_size, \
1443 TARGET_ALTIVEC ? 16 : 8) \
1444 + RS6000_VARARGS_AREA \
1445 + RS6000_SAVE_AREA)
1447 /* Offset from the stack pointer register to an item dynamically
1448 allocated on the stack, e.g., by `alloca'.
1450 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1451 length of the outgoing arguments. The default is correct for most
1452 machines. See `function.c' for details. */
1453 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1454 (RS6000_ALIGN (current_function_outgoing_args_size, \
1455 TARGET_ALTIVEC ? 16 : 8) \
1456 + (STACK_POINTER_OFFSET))
1458 /* If we generate an insn to push BYTES bytes,
1459 this says how many the stack pointer really advances by.
1460 On RS/6000, don't define this because there are no push insns. */
1461 /* #define PUSH_ROUNDING(BYTES) */
1463 /* Offset of first parameter from the argument pointer register value.
1464 On the RS/6000, we define the argument pointer to the start of the fixed
1465 area. */
1466 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1468 /* Offset from the argument pointer register value to the top of
1469 stack. This is different from FIRST_PARM_OFFSET because of the
1470 register save area. */
1471 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1473 /* Define this if stack space is still allocated for a parameter passed
1474 in a register. The value is the number of bytes allocated to this
1475 area. */
1476 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1478 /* Define this if the above stack space is to be considered part of the
1479 space allocated by the caller. */
1480 #define OUTGOING_REG_PARM_STACK_SPACE
1482 /* This is the difference between the logical top of stack and the actual sp.
1484 For the RS/6000, sp points past the fixed area. */
1485 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1487 /* Define this if the maximum size of all the outgoing args is to be
1488 accumulated and pushed during the prologue. The amount can be
1489 found in the variable current_function_outgoing_args_size. */
1490 #define ACCUMULATE_OUTGOING_ARGS 1
1492 /* Value is the number of bytes of arguments automatically
1493 popped when returning from a subroutine call.
1494 FUNDECL is the declaration node of the function (as a tree),
1495 FUNTYPE is the data type of the function (as a tree),
1496 or for a library call it is an identifier node for the subroutine name.
1497 SIZE is the number of bytes of arguments passed on the stack. */
1499 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1501 /* Define how to find the value returned by a function.
1502 VALTYPE is the data type of the value (as a tree).
1503 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1504 otherwise, FUNC is 0.
1506 On the SPE, both FPs and vectors are returned in r3.
1508 On RS/6000 an integer value is in r3 and a floating-point value is in
1509 fp1, unless -msoft-float. */
1511 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1512 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1513 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1514 || POINTER_TYPE_P (VALTYPE) \
1515 ? word_mode : TYPE_MODE (VALTYPE), \
1516 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1517 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
1518 : TREE_CODE (VALTYPE) == REAL_TYPE \
1519 && TARGET_SPE_ABI && !TARGET_FPRS \
1520 ? GP_ARG_RETURN \
1521 : TREE_CODE (VALTYPE) == REAL_TYPE \
1522 && TARGET_HARD_FLOAT && TARGET_FPRS \
1523 ? FP_ARG_RETURN : GP_ARG_RETURN)
1525 /* Define how to find the value returned by a library function
1526 assuming the value has mode MODE. */
1528 #define LIBCALL_VALUE(MODE) \
1529 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1530 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1531 && TARGET_HARD_FLOAT && TARGET_FPRS \
1532 ? FP_ARG_RETURN : GP_ARG_RETURN)
1534 /* The AIX ABI for the RS/6000 specifies that all structures are
1535 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1536 specifies that structures <= 8 bytes are returned in r3/r4, but a
1537 draft put them in memory, and GCC used to implement the draft
1538 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1539 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1540 compatibility can change DRAFT_V4_STRUCT_RET to override the
1541 default, and -m switches get the final word. See
1542 rs6000_override_options for more details.
1544 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1545 long double support is enabled. These values are returned in memory.
1547 int_size_in_bytes returns -1 for variable size objects, which go in
1548 memory always. The cast to unsigned makes -1 > 8. */
1550 #define RETURN_IN_MEMORY(TYPE) \
1551 ((AGGREGATE_TYPE_P (TYPE) \
1552 && (TARGET_AIX_STRUCT_RET \
1553 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1554 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1556 /* DRAFT_V4_STRUCT_RET defaults off. */
1557 #define DRAFT_V4_STRUCT_RET 0
1559 /* Let RETURN_IN_MEMORY control what happens. */
1560 #define DEFAULT_PCC_STRUCT_RETURN 0
1562 /* Mode of stack savearea.
1563 FUNCTION is VOIDmode because calling convention maintains SP.
1564 BLOCK needs Pmode for SP.
1565 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1566 #define STACK_SAVEAREA_MODE(LEVEL) \
1567 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1568 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1570 /* Minimum and maximum general purpose registers used to hold arguments. */
1571 #define GP_ARG_MIN_REG 3
1572 #define GP_ARG_MAX_REG 10
1573 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1575 /* Minimum and maximum floating point registers used to hold arguments. */
1576 #define FP_ARG_MIN_REG 33
1577 #define FP_ARG_AIX_MAX_REG 45
1578 #define FP_ARG_V4_MAX_REG 40
1579 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1580 || DEFAULT_ABI == ABI_AIX_NODESC \
1581 || DEFAULT_ABI == ABI_DARWIN) \
1582 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1583 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1585 /* Minimum and maximum AltiVec registers used to hold arguments. */
1586 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1587 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1588 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1590 /* Return registers */
1591 #define GP_ARG_RETURN GP_ARG_MIN_REG
1592 #define FP_ARG_RETURN FP_ARG_MIN_REG
1593 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1595 /* Flags for the call/call_value rtl operations set up by function_arg */
1596 #define CALL_NORMAL 0x00000000 /* no special processing */
1597 /* Bits in 0x00000001 are unused. */
1598 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1599 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1600 #define CALL_LONG 0x00000008 /* always call indirect */
1602 /* 1 if N is a possible register number for a function value
1603 as seen by the caller.
1605 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1606 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1607 || ((N) == FP_ARG_RETURN) \
1608 || (TARGET_ALTIVEC && \
1609 (N) == ALTIVEC_ARG_RETURN))
1611 /* 1 if N is a possible register number for function argument passing.
1612 On RS/6000, these are r3-r10 and fp1-fp13.
1613 On AltiVec, v2 - v13 are used for passing vectors. */
1614 #define FUNCTION_ARG_REGNO_P(N) \
1615 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1616 || (TARGET_ALTIVEC && \
1617 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
1618 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1621 /* A C structure for machine-specific, per-function data.
1622 This is added to the cfun structure. */
1623 typedef struct machine_function GTY(())
1625 /* Whether a System V.4 varargs area was created. */
1626 int sysv_varargs_p;
1627 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1628 int ra_needs_full_frame;
1629 } machine_function;
1631 /* Define a data type for recording info about an argument list
1632 during the scan of that argument list. This data type should
1633 hold all necessary information about the function itself
1634 and about the args processed so far, enough to enable macros
1635 such as FUNCTION_ARG to determine where the next arg should go.
1637 On the RS/6000, this is a structure. The first element is the number of
1638 total argument words, the second is used to store the next
1639 floating-point register number, and the third says how many more args we
1640 have prototype types for.
1642 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1643 the next availible GP register, `fregno' is the next available FP
1644 register, and `words' is the number of words used on the stack.
1646 The varargs/stdarg support requires that this structure's size
1647 be a multiple of sizeof(int). */
1649 typedef struct rs6000_args
1651 int words; /* # words used for passing GP registers */
1652 int fregno; /* next available FP register */
1653 int vregno; /* next available AltiVec register */
1654 int nargs_prototype; /* # args left in the current prototype */
1655 int orig_nargs; /* Original value of nargs_prototype */
1656 int prototype; /* Whether a prototype was defined */
1657 int call_cookie; /* Do special things for this call */
1658 int sysv_gregno; /* next available GP register */
1659 } CUMULATIVE_ARGS;
1661 /* Define intermediate macro to compute the size (in registers) of an argument
1662 for the RS/6000. */
1664 #define RS6000_ARG_SIZE(MODE, TYPE) \
1665 ((MODE) != BLKmode \
1666 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1667 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1669 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1670 for a call to a function whose data type is FNTYPE.
1671 For a library call, FNTYPE is 0. */
1673 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1674 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1676 /* Similar, but when scanning the definition of a procedure. We always
1677 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1679 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1680 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1682 /* Update the data in CUM to advance over an argument
1683 of mode MODE and data type TYPE.
1684 (TYPE is null for libcalls where that information may not be available.) */
1686 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1687 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1689 /* Nonzero if we can use a floating-point register to pass this arg. */
1690 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1691 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1692 && (CUM).fregno <= FP_ARG_MAX_REG \
1693 && TARGET_HARD_FLOAT && TARGET_FPRS)
1695 /* Nonzero if we can use an AltiVec register to pass this arg. */
1696 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1697 (ALTIVEC_VECTOR_MODE (MODE) \
1698 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1699 && TARGET_ALTIVEC_ABI)
1701 /* Determine where to put an argument to a function.
1702 Value is zero to push the argument on the stack,
1703 or a hard register in which to store the argument.
1705 MODE is the argument's machine mode.
1706 TYPE is the data type of the argument (as a tree).
1707 This is null for libcalls where that information may
1708 not be available.
1709 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1710 the preceding args and about the function being called.
1711 NAMED is nonzero if this argument is a named parameter
1712 (otherwise it is an extra parameter matching an ellipsis).
1714 On RS/6000 the first eight words of non-FP are normally in registers
1715 and the rest are pushed. The first 13 FP args are in registers.
1717 If this is floating-point and no prototype is specified, we use
1718 both an FP and integer register (or possibly FP reg and stack). Library
1719 functions (when TYPE is zero) always have the proper types for args,
1720 so we can pass the FP value just in one register. emit_library_function
1721 doesn't support EXPR_LIST anyway. */
1723 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1724 function_arg (&CUM, MODE, TYPE, NAMED)
1726 /* For an arg passed partly in registers and partly in memory,
1727 this is the number of registers used.
1728 For args passed entirely in registers or entirely in memory, zero. */
1730 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1731 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1733 /* A C expression that indicates when an argument must be passed by
1734 reference. If nonzero for an argument, a copy of that argument is
1735 made in memory and a pointer to the argument is passed instead of
1736 the argument itself. The pointer is passed in whatever way is
1737 appropriate for passing a pointer to that type. */
1739 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1740 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1742 /* If defined, a C expression which determines whether, and in which
1743 direction, to pad out an argument with extra space. The value
1744 should be of type `enum direction': either `upward' to pad above
1745 the argument, `downward' to pad below, or `none' to inhibit
1746 padding. */
1748 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1750 /* If defined, a C expression that gives the alignment boundary, in bits,
1751 of an argument with the specified mode and type. If it is not defined,
1752 PARM_BOUNDARY is used for all arguments. */
1754 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1755 function_arg_boundary (MODE, TYPE)
1757 /* Perform any needed actions needed for a function that is receiving a
1758 variable number of arguments.
1760 CUM is as above.
1762 MODE and TYPE are the mode and type of the current parameter.
1764 PRETEND_SIZE is a variable that should be set to the amount of stack
1765 that must be pushed by the prolog to pretend that our caller pushed
1768 Normally, this macro will push all remaining incoming registers on the
1769 stack and set PRETEND_SIZE to the length of the registers pushed. */
1771 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1772 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1774 /* Define the `__builtin_va_list' type for the ABI. */
1775 #define BUILD_VA_LIST_TYPE(VALIST) \
1776 (VALIST) = rs6000_build_va_list ()
1778 /* Implement `va_start' for varargs and stdarg. */
1779 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1780 rs6000_va_start (valist, nextarg)
1782 /* Implement `va_arg'. */
1783 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1784 rs6000_va_arg (valist, type)
1786 /* For AIX, the rule is that structures are passed left-aligned in
1787 their stack slot. However, GCC does not presently do this:
1788 structures which are the same size as integer types are passed
1789 right-aligned, as if they were in fact integers. This only
1790 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1791 ABI_V4 does not use std_expand_builtin_va_arg. */
1792 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1794 /* Define this macro to be a nonzero value if the location where a function
1795 argument is passed depends on whether or not it is a named argument. */
1796 #define STRICT_ARGUMENT_NAMING 1
1798 /* Output assembler code to FILE to increment profiler label # LABELNO
1799 for profiling a function entry. */
1801 #define FUNCTION_PROFILER(FILE, LABELNO) \
1802 output_function_profiler ((FILE), (LABELNO));
1804 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1805 the stack pointer does not matter. No definition is equivalent to
1806 always zero.
1808 On the RS/6000, this is nonzero because we can restore the stack from
1809 its backpointer, which we maintain. */
1810 #define EXIT_IGNORE_STACK 1
1812 /* Define this macro as a C expression that is nonzero for registers
1813 that are used by the epilogue or the return' pattern. The stack
1814 and frame pointer registers are already be assumed to be used as
1815 needed. */
1817 #define EPILOGUE_USES(REGNO) \
1818 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1819 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1820 || (current_function_calls_eh_return \
1821 && TARGET_AIX \
1822 && (REGNO) == TOC_REGISTER))
1825 /* TRAMPOLINE_TEMPLATE deleted */
1827 /* Length in units of the trampoline for entering a nested function. */
1829 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1831 /* Emit RTL insns to initialize the variable parts of a trampoline.
1832 FNADDR is an RTX for the address of the function's pure code.
1833 CXT is an RTX for the static chain value for the function. */
1835 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1836 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1838 /* Definitions for __builtin_return_address and __builtin_frame_address.
1839 __builtin_return_address (0) should give link register (65), enable
1840 this. */
1841 /* This should be uncommented, so that the link register is used, but
1842 currently this would result in unmatched insns and spilling fixed
1843 registers so we'll leave it for another day. When these problems are
1844 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1845 (mrs) */
1846 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1848 /* Number of bytes into the frame return addresses can be found. See
1849 rs6000_stack_info in rs6000.c for more information on how the different
1850 abi's store the return address. */
1851 #define RETURN_ADDRESS_OFFSET \
1852 ((DEFAULT_ABI == ABI_AIX \
1853 || DEFAULT_ABI == ABI_DARWIN \
1854 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
1855 (DEFAULT_ABI == ABI_V4) ? 4 : \
1856 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1858 /* The current return address is in link register (65). The return address
1859 of anything farther back is accessed normally at an offset of 8 from the
1860 frame pointer. */
1861 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1862 (rs6000_return_addr (COUNT, FRAME))
1865 /* Definitions for register eliminations.
1867 We have two registers that can be eliminated on the RS/6000. First, the
1868 frame pointer register can often be eliminated in favor of the stack
1869 pointer register. Secondly, the argument pointer register can always be
1870 eliminated; it is replaced with either the stack or frame pointer.
1872 In addition, we use the elimination mechanism to see if r30 is needed
1873 Initially we assume that it isn't. If it is, we spill it. This is done
1874 by making it an eliminable register. We replace it with itself so that
1875 if it isn't needed, then existing uses won't be modified. */
1877 /* This is an array of structures. Each structure initializes one pair
1878 of eliminable registers. The "from" register number is given first,
1879 followed by "to". Eliminations of the same "from" register are listed
1880 in order of preference. */
1881 #define ELIMINABLE_REGS \
1882 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1883 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1884 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1885 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1887 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1888 Frame pointer elimination is automatically handled.
1890 For the RS/6000, if frame pointer elimination is being done, we would like
1891 to convert ap into fp, not sp.
1893 We need r30 if -mminimal-toc was specified, and there are constant pool
1894 references. */
1896 #define CAN_ELIMINATE(FROM, TO) \
1897 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1898 ? ! frame_pointer_needed \
1899 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1900 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1901 : 1)
1903 /* Define the offset between two registers, one to be eliminated, and the other
1904 its replacement, at the start of a routine. */
1905 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1907 rs6000_stack_t *info = rs6000_stack_info (); \
1909 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1910 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1911 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1912 (OFFSET) = info->total_size; \
1913 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1914 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1915 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
1916 (OFFSET) = 0; \
1917 else \
1918 abort (); \
1921 /* Addressing modes, and classification of registers for them. */
1923 #define HAVE_PRE_DECREMENT 1
1924 #define HAVE_PRE_INCREMENT 1
1926 /* Macros to check register numbers against specific register classes. */
1928 /* These assume that REGNO is a hard or pseudo reg number.
1929 They give nonzero only if REGNO is a hard reg of the suitable class
1930 or a pseudo reg currently allocated to a suitable hard reg.
1931 Since they use reg_renumber, they are safe only once reg_renumber
1932 has been allocated, which happens in local-alloc.c. */
1934 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1935 ((REGNO) < FIRST_PSEUDO_REGISTER \
1936 ? (REGNO) <= 31 || (REGNO) == 67 \
1937 : (reg_renumber[REGNO] >= 0 \
1938 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1940 #define REGNO_OK_FOR_BASE_P(REGNO) \
1941 ((REGNO) < FIRST_PSEUDO_REGISTER \
1942 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1943 : (reg_renumber[REGNO] > 0 \
1944 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1946 /* Maximum number of registers that can appear in a valid memory address. */
1948 #define MAX_REGS_PER_ADDRESS 2
1950 /* Recognize any constant value that is a valid address. */
1952 #define CONSTANT_ADDRESS_P(X) \
1953 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1954 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1955 || GET_CODE (X) == HIGH)
1957 /* Nonzero if the constant value X is a legitimate general operand.
1958 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1960 On the RS/6000, all integer constants are acceptable, most won't be valid
1961 for particular insns, though. Only easy FP constants are
1962 acceptable. */
1964 #define LEGITIMATE_CONSTANT_P(X) \
1965 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1966 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1967 || easy_fp_constant (X, GET_MODE (X)))
1969 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1970 and check its validity for a certain class.
1971 We have two alternate definitions for each of them.
1972 The usual definition accepts all pseudo regs; the other rejects
1973 them unless they have been allocated suitable hard regs.
1974 The symbol REG_OK_STRICT causes the latter definition to be used.
1976 Most source files want to accept pseudo regs in the hope that
1977 they will get allocated to the class that the insn wants them to be in.
1978 Source files for reload pass need to be strict.
1979 After reload, it makes no difference, since pseudo regs have
1980 been eliminated by then. */
1982 #ifdef REG_OK_STRICT
1983 # define REG_OK_STRICT_FLAG 1
1984 #else
1985 # define REG_OK_STRICT_FLAG 0
1986 #endif
1988 /* Nonzero if X is a hard reg that can be used as an index
1989 or if it is a pseudo reg in the non-strict case. */
1990 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1991 ((! (STRICT) \
1992 && (REGNO (X) <= 31 \
1993 || REGNO (X) == ARG_POINTER_REGNUM \
1994 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1995 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
1997 /* Nonzero if X is a hard reg that can be used as a base reg
1998 or if it is a pseudo reg in the non-strict case. */
1999 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2000 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2002 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2003 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2005 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2006 that is a valid memory address for an instruction.
2007 The MODE argument is the machine mode for the MEM expression
2008 that wants to use this address.
2010 On the RS/6000, there are four valid address: a SYMBOL_REF that
2011 refers to a constant pool entry of an address (or the sum of it
2012 plus a constant), a short (16-bit signed) constant plus a register,
2013 the sum of two registers, or a register indirect, possibly with an
2014 auto-increment. For DFmode and DImode with a constant plus register,
2015 we must ensure that both words are addressable or PowerPC64 with offset
2016 word aligned.
2018 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2019 32-bit DImode, TImode), indexed addressing cannot be used because
2020 adjacent memory cells are accessed by adding word-sized offsets
2021 during assembly output. */
2023 #define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2025 #define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2027 /* SPE offset addressing is limited to 5-bits worth of double words. */
2028 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
2030 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
2031 (TARGET_TOC \
2032 && GET_CODE (X) == PLUS \
2033 && GET_CODE (XEXP (X, 0)) == REG \
2034 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2035 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2037 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
2038 (DEFAULT_ABI == ABI_V4 \
2039 && !flag_pic && !TARGET_TOC \
2040 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2041 && small_data_operand (X, MODE))
2043 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
2044 (GET_CODE (X) == CONST_INT \
2045 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2047 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2048 (GET_CODE (X) == PLUS \
2049 && GET_CODE (XEXP (X, 0)) == REG \
2050 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2051 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
2052 && (! ALTIVEC_VECTOR_MODE (MODE) \
2053 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2054 && (! SPE_VECTOR_MODE (MODE) \
2055 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2056 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
2057 && (((MODE) != DFmode && (MODE) != DImode) \
2058 || (TARGET_32BIT \
2059 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2060 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2061 && (((MODE) != TFmode && (MODE) != TImode) \
2062 || (TARGET_32BIT \
2063 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2064 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
2065 && ! (INTVAL (XEXP (X, 1)) & 3)))))
2067 #define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2068 (GET_CODE (X) == PLUS \
2069 && GET_CODE (XEXP (X, 0)) == REG \
2070 && GET_CODE (XEXP (X, 1)) == REG \
2071 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2072 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2073 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2074 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2076 #define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2077 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2079 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2080 (TARGET_ELF \
2081 && ! flag_pic && ! TARGET_TOC \
2082 && GET_MODE_NUNITS (MODE) == 1 \
2083 && (GET_MODE_BITSIZE (MODE) <= 32 \
2084 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
2085 && GET_CODE (X) == LO_SUM \
2086 && GET_CODE (XEXP (X, 0)) == REG \
2087 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2088 && CONSTANT_P (XEXP (X, 1)))
2090 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2091 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2092 goto ADDR; \
2095 /* Try machine-dependent ways of modifying an illegitimate address
2096 to be legitimate. If we find one, return the new, valid address.
2097 This macro is used in only one place: `memory_address' in explow.c.
2099 OLDX is the address as it was before break_out_memory_refs was called.
2100 In some cases it is useful to look at this to decide what needs to be done.
2102 MODE and WIN are passed so that this macro can use
2103 GO_IF_LEGITIMATE_ADDRESS.
2105 It is always safe for this macro to do nothing. It exists to recognize
2106 opportunities to optimize the output.
2108 On RS/6000, first check for the sum of a register with a constant
2109 integer that is out of range. If so, generate code to add the
2110 constant with the low-order 16 bits masked to the register and force
2111 this result into another register (this can be done with `cau').
2112 Then generate an address of REG+(CONST&0xffff), allowing for the
2113 possibility of bit 16 being a one.
2115 Then check for the sum of a register and something not constant, try to
2116 load the other things into a register and return the sum. */
2118 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2119 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2120 if (result != NULL_RTX) \
2122 (X) = result; \
2123 goto WIN; \
2127 /* Try a machine-dependent way of reloading an illegitimate address
2128 operand. If we find one, push the reload and jump to WIN. This
2129 macro is used in only one place: `find_reloads_address' in reload.c.
2131 Implemented on rs6000 by rs6000_legitimize_reload_address.
2132 Note that (X) is evaluated twice; this is safe in current usage. */
2134 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2135 do { \
2136 int win; \
2137 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2138 (int)(TYPE), (IND_LEVELS), &win); \
2139 if ( win ) \
2140 goto WIN; \
2141 } while (0)
2143 /* Go to LABEL if ADDR (a legitimate address expression)
2144 has an effect that depends on the machine mode it is used for.
2146 On the RS/6000 this is true if the address is valid with a zero offset
2147 but not with an offset of four (this means it cannot be used as an
2148 address for DImode or DFmode) or is a pre-increment or decrement. Since
2149 we know it is valid, we just check for an address that is not valid with
2150 an offset of four. */
2152 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2153 { if (GET_CODE (ADDR) == PLUS \
2154 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2155 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2156 (TARGET_32BIT ? 4 : 8))) \
2157 goto LABEL; \
2158 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2159 goto LABEL; \
2160 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2161 goto LABEL; \
2162 if (GET_CODE (ADDR) == LO_SUM) \
2163 goto LABEL; \
2166 /* The register number of the register used to address a table of
2167 static data addresses in memory. In some cases this register is
2168 defined by a processor's "application binary interface" (ABI).
2169 When this macro is defined, RTL is generated for this register
2170 once, as with the stack pointer and frame pointer registers. If
2171 this macro is not defined, it is up to the machine-dependent files
2172 to allocate such a register (if necessary). */
2174 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2175 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2177 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2179 /* Define this macro if the register defined by
2180 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2181 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2183 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2185 /* By generating position-independent code, when two different
2186 programs (A and B) share a common library (libC.a), the text of
2187 the library can be shared whether or not the library is linked at
2188 the same address for both programs. In some of these
2189 environments, position-independent code requires not only the use
2190 of different addressing modes, but also special code to enable the
2191 use of these addressing modes.
2193 The `FINALIZE_PIC' macro serves as a hook to emit these special
2194 codes once the function is being compiled into assembly code, but
2195 not before. (It is not done before, because in the case of
2196 compiling an inline function, it would lead to multiple PIC
2197 prologues being included in functions which used inline functions
2198 and were compiled to assembly language.) */
2200 /* #define FINALIZE_PIC */
2202 /* A C expression that is nonzero if X is a legitimate immediate
2203 operand on the target machine when generating position independent
2204 code. You can assume that X satisfies `CONSTANT_P', so you need
2205 not check this. You can also assume FLAG_PIC is true, so you need
2206 not check it either. You need not define this macro if all
2207 constants (including `SYMBOL_REF') can be immediate operands when
2208 generating position independent code. */
2210 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2212 /* In rare cases, correct code generation requires extra machine
2213 dependent processing between the second jump optimization pass and
2214 delayed branch scheduling. On those machines, define this macro
2215 as a C statement to act on the code starting at INSN. */
2217 /* #define MACHINE_DEPENDENT_REORG(INSN) */
2220 /* Define this if some processing needs to be done immediately before
2221 emitting code for an insn. */
2223 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2225 /* Specify the machine mode that this machine uses
2226 for the index in the tablejump instruction. */
2227 #define CASE_VECTOR_MODE SImode
2229 /* Define as C expression which evaluates to nonzero if the tablejump
2230 instruction expects the table to contain offsets from the address of the
2231 table.
2232 Do not define this if the table should contain absolute addresses. */
2233 #define CASE_VECTOR_PC_RELATIVE 1
2235 /* Define this as 1 if `char' should by default be signed; else as 0. */
2236 #define DEFAULT_SIGNED_CHAR 0
2238 /* This flag, if defined, says the same insns that convert to a signed fixnum
2239 also convert validly to an unsigned one. */
2241 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2243 /* Max number of bytes we can move from memory to memory
2244 in one reasonably fast instruction. */
2245 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2246 #define MAX_MOVE_MAX 8
2248 /* Nonzero if access to memory by bytes is no faster than for words.
2249 Also nonzero if doing byte operations (specifically shifts) in registers
2250 is undesirable. */
2251 #define SLOW_BYTE_ACCESS 1
2253 /* Define if operations between registers always perform the operation
2254 on the full register even if a narrower mode is specified. */
2255 #define WORD_REGISTER_OPERATIONS
2257 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2258 will either zero-extend or sign-extend. The value of this macro should
2259 be the code that says which one of the two operations is implicitly
2260 done, NIL if none. */
2261 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2263 /* Define if loading short immediate values into registers sign extends. */
2264 #define SHORT_IMMEDIATES_SIGN_EXTEND
2266 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2267 is done just by pretending it is already truncated. */
2268 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2270 /* Specify the machine mode that pointers have.
2271 After generation of rtl, the compiler makes no further distinction
2272 between pointers and any other objects of this machine mode. */
2273 #define Pmode (TARGET_32BIT ? SImode : DImode)
2275 /* Mode of a function address in a call instruction (for indexing purposes).
2276 Doesn't matter on RS/6000. */
2277 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2279 /* Define this if addresses of constant functions
2280 shouldn't be put through pseudo regs where they can be cse'd.
2281 Desirable on machines where ordinary constants are expensive
2282 but a CALL with constant address is cheap. */
2283 #define NO_FUNCTION_CSE
2285 /* Define this to be nonzero if shift instructions ignore all but the low-order
2286 few bits.
2288 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2289 have been dropped from the PowerPC architecture. */
2291 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2293 /* Compute the cost of computing a constant rtl expression RTX
2294 whose rtx-code is CODE. The body of this macro is a portion
2295 of a switch statement. If the code is computed here,
2296 return it with a return statement. Otherwise, break from the switch.
2298 On the RS/6000, if it is valid in the insn, it is free. So this
2299 always returns 0. */
2301 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2302 case CONST_INT: \
2303 case CONST: \
2304 case LABEL_REF: \
2305 case SYMBOL_REF: \
2306 case CONST_DOUBLE: \
2307 case HIGH: \
2308 return 0;
2310 /* Provide the costs of a rtl expression. This is in the body of a
2311 switch on CODE. */
2313 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2314 case PLUS: \
2315 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2316 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2317 + 0x8000) >= 0x10000) \
2318 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2319 ? COSTS_N_INSNS (2) \
2320 : COSTS_N_INSNS (1)); \
2321 case AND: \
2322 case IOR: \
2323 case XOR: \
2324 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2325 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2326 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2327 ? COSTS_N_INSNS (2) \
2328 : COSTS_N_INSNS (1)); \
2329 case MULT: \
2330 if (optimize_size) \
2331 return COSTS_N_INSNS (2); \
2332 switch (rs6000_cpu) \
2334 case PROCESSOR_RIOS1: \
2335 case PROCESSOR_PPC405: \
2336 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2337 ? COSTS_N_INSNS (5) \
2338 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2339 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2340 case PROCESSOR_RS64A: \
2341 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2342 ? GET_MODE (XEXP (X, 1)) != DImode \
2343 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2344 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2345 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
2346 case PROCESSOR_RIOS2: \
2347 case PROCESSOR_MPCCORE: \
2348 case PROCESSOR_PPC604e: \
2349 return COSTS_N_INSNS (2); \
2350 case PROCESSOR_PPC601: \
2351 return COSTS_N_INSNS (5); \
2352 case PROCESSOR_PPC603: \
2353 case PROCESSOR_PPC7400: \
2354 case PROCESSOR_PPC750: \
2355 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2356 ? COSTS_N_INSNS (5) \
2357 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2358 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2359 case PROCESSOR_PPC7450: \
2360 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2361 ? COSTS_N_INSNS (4) \
2362 : COSTS_N_INSNS (3)); \
2363 case PROCESSOR_PPC403: \
2364 case PROCESSOR_PPC604: \
2365 case PROCESSOR_PPC8540: \
2366 return COSTS_N_INSNS (4); \
2367 case PROCESSOR_PPC620: \
2368 case PROCESSOR_PPC630: \
2369 case PROCESSOR_POWER4: \
2370 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2371 ? GET_MODE (XEXP (X, 1)) != DImode \
2372 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
2373 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2374 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2376 case DIV: \
2377 case MOD: \
2378 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2379 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2380 return COSTS_N_INSNS (2); \
2381 /* otherwise fall through to normal divide. */ \
2382 case UDIV: \
2383 case UMOD: \
2384 switch (rs6000_cpu) \
2386 case PROCESSOR_RIOS1: \
2387 return COSTS_N_INSNS (19); \
2388 case PROCESSOR_RIOS2: \
2389 return COSTS_N_INSNS (13); \
2390 case PROCESSOR_RS64A: \
2391 return (GET_MODE (XEXP (X, 1)) != DImode \
2392 ? COSTS_N_INSNS (65) \
2393 : COSTS_N_INSNS (67)); \
2394 case PROCESSOR_MPCCORE: \
2395 return COSTS_N_INSNS (6); \
2396 case PROCESSOR_PPC403: \
2397 return COSTS_N_INSNS (33); \
2398 case PROCESSOR_PPC405: \
2399 return COSTS_N_INSNS (35); \
2400 case PROCESSOR_PPC601: \
2401 return COSTS_N_INSNS (36); \
2402 case PROCESSOR_PPC603: \
2403 return COSTS_N_INSNS (37); \
2404 case PROCESSOR_PPC604: \
2405 case PROCESSOR_PPC604e: \
2406 return COSTS_N_INSNS (20); \
2407 case PROCESSOR_PPC620: \
2408 case PROCESSOR_PPC630: \
2409 case PROCESSOR_POWER4: \
2410 return (GET_MODE (XEXP (X, 1)) != DImode \
2411 ? COSTS_N_INSNS (21) \
2412 : COSTS_N_INSNS (37)); \
2413 case PROCESSOR_PPC750: \
2414 case PROCESSOR_PPC8540: \
2415 case PROCESSOR_PPC7400: \
2416 return COSTS_N_INSNS (19); \
2417 case PROCESSOR_PPC7450: \
2418 return COSTS_N_INSNS (23); \
2420 case FFS: \
2421 return COSTS_N_INSNS (4); \
2422 case MEM: \
2423 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2424 return 5;
2426 /* Compute the cost of an address. This is meant to approximate the size
2427 and/or execution delay of an insn using that address. If the cost is
2428 approximated by the RTL complexity, including CONST_COSTS above, as
2429 is usually the case for CISC machines, this macro should not be defined.
2430 For aggressively RISCy machines, only one insn format is allowed, so
2431 this macro should be a constant. The value of this macro only matters
2432 for valid addresses.
2434 For the RS/6000, everything is cost 0. */
2436 #define ADDRESS_COST(RTX) 0
2438 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2439 should be adjusted to reflect any required changes. This macro is used when
2440 there is some systematic length adjustment required that would be difficult
2441 to express in the length attribute. */
2443 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2445 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2446 COMPARE, return the mode to be used for the comparison. For
2447 floating-point, CCFPmode should be used. CCUNSmode should be used
2448 for unsigned comparisons. CCEQmode should be used when we are
2449 doing an inequality comparison on the result of a
2450 comparison. CCmode should be used in all other cases. */
2452 #define SELECT_CC_MODE(OP,X,Y) \
2453 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2454 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2455 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2456 ? CCEQmode : CCmode))
2458 /* Define the information needed to generate branch and scc insns. This is
2459 stored from the compare operation. Note that we can't use "rtx" here
2460 since it hasn't been defined! */
2462 extern GTY(()) rtx rs6000_compare_op0;
2463 extern GTY(()) rtx rs6000_compare_op1;
2464 extern int rs6000_compare_fp_p;
2466 /* Control the assembler format that we output. */
2468 /* A C string constant describing how to begin a comment in the target
2469 assembler language. The compiler assumes that the comment will end at
2470 the end of the line. */
2471 #define ASM_COMMENT_START " #"
2473 /* Implicit library calls should use memcpy, not bcopy, etc. */
2475 #define TARGET_MEM_FUNCTIONS
2477 /* Flag to say the TOC is initialized */
2478 extern int toc_initialized;
2480 /* Macro to output a special constant pool entry. Go to WIN if we output
2481 it. Otherwise, it is written the usual way.
2483 On the RS/6000, toc entries are handled this way. */
2485 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2486 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2488 output_toc (FILE, X, LABELNO, MODE); \
2489 goto WIN; \
2493 #ifdef HAVE_GAS_WEAK
2494 #define RS6000_WEAK 1
2495 #else
2496 #define RS6000_WEAK 0
2497 #endif
2499 #if RS6000_WEAK
2500 /* Used in lieu of ASM_WEAKEN_LABEL. */
2501 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2502 do \
2504 fputs ("\t.weak\t", (FILE)); \
2505 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2506 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2507 && DEFAULT_ABI == ABI_AIX) \
2509 if (TARGET_XCOFF) \
2510 fputs ("[DS]", (FILE)); \
2511 fputs ("\n\t.weak\t.", (FILE)); \
2512 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2514 fputc ('\n', (FILE)); \
2515 if (VAL) \
2517 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2518 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2519 && DEFAULT_ABI == ABI_AIX) \
2521 fputs ("\t.set\t.", (FILE)); \
2522 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2523 fputs (",.", (FILE)); \
2524 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2525 fputc ('\n', (FILE)); \
2529 while (0)
2530 #endif
2532 /* This implements the `alias' attribute. */
2533 #undef ASM_OUTPUT_DEF_FROM_DECLS
2534 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2535 do \
2537 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2538 const char *name = IDENTIFIER_POINTER (TARGET); \
2539 if (TREE_CODE (DECL) == FUNCTION_DECL \
2540 && DEFAULT_ABI == ABI_AIX) \
2542 if (TREE_PUBLIC (DECL)) \
2544 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2546 fputs ("\t.globl\t.", FILE); \
2547 RS6000_OUTPUT_BASENAME (FILE, alias); \
2548 putc ('\n', FILE); \
2551 else if (TARGET_XCOFF) \
2553 fputs ("\t.lglobl\t.", FILE); \
2554 RS6000_OUTPUT_BASENAME (FILE, alias); \
2555 putc ('\n', FILE); \
2557 fputs ("\t.set\t.", FILE); \
2558 RS6000_OUTPUT_BASENAME (FILE, alias); \
2559 fputs (",.", FILE); \
2560 RS6000_OUTPUT_BASENAME (FILE, name); \
2561 fputc ('\n', FILE); \
2563 ASM_OUTPUT_DEF (FILE, alias, name); \
2565 while (0)
2567 /* Output to assembler file text saying following lines
2568 may contain character constants, extra white space, comments, etc. */
2570 #define ASM_APP_ON ""
2572 /* Output to assembler file text saying following lines
2573 no longer contain unusual constructs. */
2575 #define ASM_APP_OFF ""
2577 /* How to refer to registers in assembler output.
2578 This sequence is indexed by compiler's hard-register-number (see above). */
2580 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2582 #define REGISTER_NAMES \
2584 &rs6000_reg_names[ 0][0], /* r0 */ \
2585 &rs6000_reg_names[ 1][0], /* r1 */ \
2586 &rs6000_reg_names[ 2][0], /* r2 */ \
2587 &rs6000_reg_names[ 3][0], /* r3 */ \
2588 &rs6000_reg_names[ 4][0], /* r4 */ \
2589 &rs6000_reg_names[ 5][0], /* r5 */ \
2590 &rs6000_reg_names[ 6][0], /* r6 */ \
2591 &rs6000_reg_names[ 7][0], /* r7 */ \
2592 &rs6000_reg_names[ 8][0], /* r8 */ \
2593 &rs6000_reg_names[ 9][0], /* r9 */ \
2594 &rs6000_reg_names[10][0], /* r10 */ \
2595 &rs6000_reg_names[11][0], /* r11 */ \
2596 &rs6000_reg_names[12][0], /* r12 */ \
2597 &rs6000_reg_names[13][0], /* r13 */ \
2598 &rs6000_reg_names[14][0], /* r14 */ \
2599 &rs6000_reg_names[15][0], /* r15 */ \
2600 &rs6000_reg_names[16][0], /* r16 */ \
2601 &rs6000_reg_names[17][0], /* r17 */ \
2602 &rs6000_reg_names[18][0], /* r18 */ \
2603 &rs6000_reg_names[19][0], /* r19 */ \
2604 &rs6000_reg_names[20][0], /* r20 */ \
2605 &rs6000_reg_names[21][0], /* r21 */ \
2606 &rs6000_reg_names[22][0], /* r22 */ \
2607 &rs6000_reg_names[23][0], /* r23 */ \
2608 &rs6000_reg_names[24][0], /* r24 */ \
2609 &rs6000_reg_names[25][0], /* r25 */ \
2610 &rs6000_reg_names[26][0], /* r26 */ \
2611 &rs6000_reg_names[27][0], /* r27 */ \
2612 &rs6000_reg_names[28][0], /* r28 */ \
2613 &rs6000_reg_names[29][0], /* r29 */ \
2614 &rs6000_reg_names[30][0], /* r30 */ \
2615 &rs6000_reg_names[31][0], /* r31 */ \
2617 &rs6000_reg_names[32][0], /* fr0 */ \
2618 &rs6000_reg_names[33][0], /* fr1 */ \
2619 &rs6000_reg_names[34][0], /* fr2 */ \
2620 &rs6000_reg_names[35][0], /* fr3 */ \
2621 &rs6000_reg_names[36][0], /* fr4 */ \
2622 &rs6000_reg_names[37][0], /* fr5 */ \
2623 &rs6000_reg_names[38][0], /* fr6 */ \
2624 &rs6000_reg_names[39][0], /* fr7 */ \
2625 &rs6000_reg_names[40][0], /* fr8 */ \
2626 &rs6000_reg_names[41][0], /* fr9 */ \
2627 &rs6000_reg_names[42][0], /* fr10 */ \
2628 &rs6000_reg_names[43][0], /* fr11 */ \
2629 &rs6000_reg_names[44][0], /* fr12 */ \
2630 &rs6000_reg_names[45][0], /* fr13 */ \
2631 &rs6000_reg_names[46][0], /* fr14 */ \
2632 &rs6000_reg_names[47][0], /* fr15 */ \
2633 &rs6000_reg_names[48][0], /* fr16 */ \
2634 &rs6000_reg_names[49][0], /* fr17 */ \
2635 &rs6000_reg_names[50][0], /* fr18 */ \
2636 &rs6000_reg_names[51][0], /* fr19 */ \
2637 &rs6000_reg_names[52][0], /* fr20 */ \
2638 &rs6000_reg_names[53][0], /* fr21 */ \
2639 &rs6000_reg_names[54][0], /* fr22 */ \
2640 &rs6000_reg_names[55][0], /* fr23 */ \
2641 &rs6000_reg_names[56][0], /* fr24 */ \
2642 &rs6000_reg_names[57][0], /* fr25 */ \
2643 &rs6000_reg_names[58][0], /* fr26 */ \
2644 &rs6000_reg_names[59][0], /* fr27 */ \
2645 &rs6000_reg_names[60][0], /* fr28 */ \
2646 &rs6000_reg_names[61][0], /* fr29 */ \
2647 &rs6000_reg_names[62][0], /* fr30 */ \
2648 &rs6000_reg_names[63][0], /* fr31 */ \
2650 &rs6000_reg_names[64][0], /* mq */ \
2651 &rs6000_reg_names[65][0], /* lr */ \
2652 &rs6000_reg_names[66][0], /* ctr */ \
2653 &rs6000_reg_names[67][0], /* ap */ \
2655 &rs6000_reg_names[68][0], /* cr0 */ \
2656 &rs6000_reg_names[69][0], /* cr1 */ \
2657 &rs6000_reg_names[70][0], /* cr2 */ \
2658 &rs6000_reg_names[71][0], /* cr3 */ \
2659 &rs6000_reg_names[72][0], /* cr4 */ \
2660 &rs6000_reg_names[73][0], /* cr5 */ \
2661 &rs6000_reg_names[74][0], /* cr6 */ \
2662 &rs6000_reg_names[75][0], /* cr7 */ \
2664 &rs6000_reg_names[76][0], /* xer */ \
2666 &rs6000_reg_names[77][0], /* v0 */ \
2667 &rs6000_reg_names[78][0], /* v1 */ \
2668 &rs6000_reg_names[79][0], /* v2 */ \
2669 &rs6000_reg_names[80][0], /* v3 */ \
2670 &rs6000_reg_names[81][0], /* v4 */ \
2671 &rs6000_reg_names[82][0], /* v5 */ \
2672 &rs6000_reg_names[83][0], /* v6 */ \
2673 &rs6000_reg_names[84][0], /* v7 */ \
2674 &rs6000_reg_names[85][0], /* v8 */ \
2675 &rs6000_reg_names[86][0], /* v9 */ \
2676 &rs6000_reg_names[87][0], /* v10 */ \
2677 &rs6000_reg_names[88][0], /* v11 */ \
2678 &rs6000_reg_names[89][0], /* v12 */ \
2679 &rs6000_reg_names[90][0], /* v13 */ \
2680 &rs6000_reg_names[91][0], /* v14 */ \
2681 &rs6000_reg_names[92][0], /* v15 */ \
2682 &rs6000_reg_names[93][0], /* v16 */ \
2683 &rs6000_reg_names[94][0], /* v17 */ \
2684 &rs6000_reg_names[95][0], /* v18 */ \
2685 &rs6000_reg_names[96][0], /* v19 */ \
2686 &rs6000_reg_names[97][0], /* v20 */ \
2687 &rs6000_reg_names[98][0], /* v21 */ \
2688 &rs6000_reg_names[99][0], /* v22 */ \
2689 &rs6000_reg_names[100][0], /* v23 */ \
2690 &rs6000_reg_names[101][0], /* v24 */ \
2691 &rs6000_reg_names[102][0], /* v25 */ \
2692 &rs6000_reg_names[103][0], /* v26 */ \
2693 &rs6000_reg_names[104][0], /* v27 */ \
2694 &rs6000_reg_names[105][0], /* v28 */ \
2695 &rs6000_reg_names[106][0], /* v29 */ \
2696 &rs6000_reg_names[107][0], /* v30 */ \
2697 &rs6000_reg_names[108][0], /* v31 */ \
2698 &rs6000_reg_names[109][0], /* vrsave */ \
2699 &rs6000_reg_names[110][0], /* vscr */ \
2700 &rs6000_reg_names[111][0], /* spe_acc */ \
2701 &rs6000_reg_names[112][0], /* spefscr */ \
2704 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2705 following for it. Switch to use the alternate names since
2706 they are more mnemonic. */
2708 #define DEBUG_REGISTER_NAMES \
2710 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2711 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2712 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2713 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2714 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2715 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2716 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2717 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2718 "mq", "lr", "ctr", "ap", \
2719 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2720 "xer", \
2721 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2722 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2723 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2724 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2725 "vrsave", "vscr" \
2726 , "spe_acc", "spefscr" \
2729 /* Table of additional register names to use in user input. */
2731 #define ADDITIONAL_REGISTER_NAMES \
2732 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2733 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2734 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2735 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2736 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2737 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2738 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2739 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2740 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2741 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2742 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2743 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2744 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2745 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2746 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2747 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2748 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2749 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2750 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2751 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2752 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2753 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2754 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2755 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2756 {"vrsave", 109}, {"vscr", 110}, \
2757 {"spe_acc", 111}, {"spefscr", 112}, \
2758 /* no additional names for: mq, lr, ctr, ap */ \
2759 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2760 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2761 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2763 /* Text to write out after a CALL that may be replaced by glue code by
2764 the loader. This depends on the AIX version. */
2765 #define RS6000_CALL_GLUE "cror 31,31,31"
2767 /* This is how to output an element of a case-vector that is relative. */
2769 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2770 do { char buf[100]; \
2771 fputs ("\t.long ", FILE); \
2772 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2773 assemble_name (FILE, buf); \
2774 putc ('-', FILE); \
2775 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2776 assemble_name (FILE, buf); \
2777 putc ('\n', FILE); \
2778 } while (0)
2780 /* This is how to output an assembler line
2781 that says to advance the location counter
2782 to a multiple of 2**LOG bytes. */
2784 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2785 if ((LOG) != 0) \
2786 fprintf (FILE, "\t.align %d\n", (LOG))
2788 /* Pick up the return address upon entry to a procedure. Used for
2789 dwarf2 unwind information. This also enables the table driven
2790 mechanism. */
2792 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2793 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2795 /* Describe how we implement __builtin_eh_return. */
2796 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2797 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2799 /* Print operand X (an rtx) in assembler syntax to file FILE.
2800 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2801 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2803 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2805 /* Define which CODE values are valid. */
2807 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2808 ((CODE) == '.')
2810 /* Print a memory address as an operand to reference that memory location. */
2812 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2814 /* Define the codes that are matched by predicates in rs6000.c. */
2816 #define PREDICATE_CODES \
2817 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2818 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2819 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2820 LABEL_REF, SUBREG, REG, MEM}}, \
2821 {"short_cint_operand", {CONST_INT}}, \
2822 {"u_short_cint_operand", {CONST_INT}}, \
2823 {"non_short_cint_operand", {CONST_INT}}, \
2824 {"exact_log2_cint_operand", {CONST_INT}}, \
2825 {"gpc_reg_operand", {SUBREG, REG}}, \
2826 {"cc_reg_operand", {SUBREG, REG}}, \
2827 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2828 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2829 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2830 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2831 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2832 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2833 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2834 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2835 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2836 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2837 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2838 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2839 {"easy_fp_constant", {CONST_DOUBLE}}, \
2840 {"zero_fp_constant", {CONST_DOUBLE}}, \
2841 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2842 {"lwa_operand", {SUBREG, MEM, REG}}, \
2843 {"volatile_mem_operand", {MEM}}, \
2844 {"offsettable_mem_operand", {MEM}}, \
2845 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2846 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2847 {"non_add_cint_operand", {CONST_INT}}, \
2848 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2849 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2850 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2851 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2852 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2853 {"mask_operand", {CONST_INT}}, \
2854 {"mask_operand_wrap", {CONST_INT}}, \
2855 {"mask64_operand", {CONST_INT}}, \
2856 {"mask64_2_operand", {CONST_INT}}, \
2857 {"count_register_operand", {REG}}, \
2858 {"xer_operand", {REG}}, \
2859 {"symbol_ref_operand", {SYMBOL_REF}}, \
2860 {"call_operand", {SYMBOL_REF, REG}}, \
2861 {"current_file_function_operand", {SYMBOL_REF}}, \
2862 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2863 CONST_DOUBLE, SYMBOL_REF}}, \
2864 {"load_multiple_operation", {PARALLEL}}, \
2865 {"store_multiple_operation", {PARALLEL}}, \
2866 {"vrsave_operation", {PARALLEL}}, \
2867 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2868 GT, LEU, LTU, GEU, GTU, \
2869 UNORDERED, ORDERED, \
2870 UNGE, UNLE }}, \
2871 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2872 UNORDERED }}, \
2873 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2874 GT, LEU, LTU, GEU, GTU, \
2875 UNORDERED, ORDERED, \
2876 UNGE, UNLE }}, \
2877 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2878 GT, LEU, LTU, GEU, GTU}}, \
2879 {"boolean_operator", {AND, IOR, XOR}}, \
2880 {"boolean_or_operator", {IOR, XOR}}, \
2881 {"altivec_register_operand", {REG}}, \
2882 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2884 /* uncomment for disabling the corresponding default options */
2885 /* #define MACHINE_no_sched_interblock */
2886 /* #define MACHINE_no_sched_speculative */
2887 /* #define MACHINE_no_sched_speculative_load */
2889 /* General flags. */
2890 extern int flag_pic;
2891 extern int optimize;
2892 extern int flag_expensive_optimizations;
2893 extern int frame_pointer_needed;
2895 enum rs6000_builtins
2897 /* AltiVec builtins. */
2898 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2899 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2900 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2901 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2902 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2903 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2904 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2905 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2906 ALTIVEC_BUILTIN_VADDUBM,
2907 ALTIVEC_BUILTIN_VADDUHM,
2908 ALTIVEC_BUILTIN_VADDUWM,
2909 ALTIVEC_BUILTIN_VADDFP,
2910 ALTIVEC_BUILTIN_VADDCUW,
2911 ALTIVEC_BUILTIN_VADDUBS,
2912 ALTIVEC_BUILTIN_VADDSBS,
2913 ALTIVEC_BUILTIN_VADDUHS,
2914 ALTIVEC_BUILTIN_VADDSHS,
2915 ALTIVEC_BUILTIN_VADDUWS,
2916 ALTIVEC_BUILTIN_VADDSWS,
2917 ALTIVEC_BUILTIN_VAND,
2918 ALTIVEC_BUILTIN_VANDC,
2919 ALTIVEC_BUILTIN_VAVGUB,
2920 ALTIVEC_BUILTIN_VAVGSB,
2921 ALTIVEC_BUILTIN_VAVGUH,
2922 ALTIVEC_BUILTIN_VAVGSH,
2923 ALTIVEC_BUILTIN_VAVGUW,
2924 ALTIVEC_BUILTIN_VAVGSW,
2925 ALTIVEC_BUILTIN_VCFUX,
2926 ALTIVEC_BUILTIN_VCFSX,
2927 ALTIVEC_BUILTIN_VCTSXS,
2928 ALTIVEC_BUILTIN_VCTUXS,
2929 ALTIVEC_BUILTIN_VCMPBFP,
2930 ALTIVEC_BUILTIN_VCMPEQUB,
2931 ALTIVEC_BUILTIN_VCMPEQUH,
2932 ALTIVEC_BUILTIN_VCMPEQUW,
2933 ALTIVEC_BUILTIN_VCMPEQFP,
2934 ALTIVEC_BUILTIN_VCMPGEFP,
2935 ALTIVEC_BUILTIN_VCMPGTUB,
2936 ALTIVEC_BUILTIN_VCMPGTSB,
2937 ALTIVEC_BUILTIN_VCMPGTUH,
2938 ALTIVEC_BUILTIN_VCMPGTSH,
2939 ALTIVEC_BUILTIN_VCMPGTUW,
2940 ALTIVEC_BUILTIN_VCMPGTSW,
2941 ALTIVEC_BUILTIN_VCMPGTFP,
2942 ALTIVEC_BUILTIN_VEXPTEFP,
2943 ALTIVEC_BUILTIN_VLOGEFP,
2944 ALTIVEC_BUILTIN_VMADDFP,
2945 ALTIVEC_BUILTIN_VMAXUB,
2946 ALTIVEC_BUILTIN_VMAXSB,
2947 ALTIVEC_BUILTIN_VMAXUH,
2948 ALTIVEC_BUILTIN_VMAXSH,
2949 ALTIVEC_BUILTIN_VMAXUW,
2950 ALTIVEC_BUILTIN_VMAXSW,
2951 ALTIVEC_BUILTIN_VMAXFP,
2952 ALTIVEC_BUILTIN_VMHADDSHS,
2953 ALTIVEC_BUILTIN_VMHRADDSHS,
2954 ALTIVEC_BUILTIN_VMLADDUHM,
2955 ALTIVEC_BUILTIN_VMRGHB,
2956 ALTIVEC_BUILTIN_VMRGHH,
2957 ALTIVEC_BUILTIN_VMRGHW,
2958 ALTIVEC_BUILTIN_VMRGLB,
2959 ALTIVEC_BUILTIN_VMRGLH,
2960 ALTIVEC_BUILTIN_VMRGLW,
2961 ALTIVEC_BUILTIN_VMSUMUBM,
2962 ALTIVEC_BUILTIN_VMSUMMBM,
2963 ALTIVEC_BUILTIN_VMSUMUHM,
2964 ALTIVEC_BUILTIN_VMSUMSHM,
2965 ALTIVEC_BUILTIN_VMSUMUHS,
2966 ALTIVEC_BUILTIN_VMSUMSHS,
2967 ALTIVEC_BUILTIN_VMINUB,
2968 ALTIVEC_BUILTIN_VMINSB,
2969 ALTIVEC_BUILTIN_VMINUH,
2970 ALTIVEC_BUILTIN_VMINSH,
2971 ALTIVEC_BUILTIN_VMINUW,
2972 ALTIVEC_BUILTIN_VMINSW,
2973 ALTIVEC_BUILTIN_VMINFP,
2974 ALTIVEC_BUILTIN_VMULEUB,
2975 ALTIVEC_BUILTIN_VMULESB,
2976 ALTIVEC_BUILTIN_VMULEUH,
2977 ALTIVEC_BUILTIN_VMULESH,
2978 ALTIVEC_BUILTIN_VMULOUB,
2979 ALTIVEC_BUILTIN_VMULOSB,
2980 ALTIVEC_BUILTIN_VMULOUH,
2981 ALTIVEC_BUILTIN_VMULOSH,
2982 ALTIVEC_BUILTIN_VNMSUBFP,
2983 ALTIVEC_BUILTIN_VNOR,
2984 ALTIVEC_BUILTIN_VOR,
2985 ALTIVEC_BUILTIN_VSEL_4SI,
2986 ALTIVEC_BUILTIN_VSEL_4SF,
2987 ALTIVEC_BUILTIN_VSEL_8HI,
2988 ALTIVEC_BUILTIN_VSEL_16QI,
2989 ALTIVEC_BUILTIN_VPERM_4SI,
2990 ALTIVEC_BUILTIN_VPERM_4SF,
2991 ALTIVEC_BUILTIN_VPERM_8HI,
2992 ALTIVEC_BUILTIN_VPERM_16QI,
2993 ALTIVEC_BUILTIN_VPKUHUM,
2994 ALTIVEC_BUILTIN_VPKUWUM,
2995 ALTIVEC_BUILTIN_VPKPX,
2996 ALTIVEC_BUILTIN_VPKUHSS,
2997 ALTIVEC_BUILTIN_VPKSHSS,
2998 ALTIVEC_BUILTIN_VPKUWSS,
2999 ALTIVEC_BUILTIN_VPKSWSS,
3000 ALTIVEC_BUILTIN_VPKUHUS,
3001 ALTIVEC_BUILTIN_VPKSHUS,
3002 ALTIVEC_BUILTIN_VPKUWUS,
3003 ALTIVEC_BUILTIN_VPKSWUS,
3004 ALTIVEC_BUILTIN_VREFP,
3005 ALTIVEC_BUILTIN_VRFIM,
3006 ALTIVEC_BUILTIN_VRFIN,
3007 ALTIVEC_BUILTIN_VRFIP,
3008 ALTIVEC_BUILTIN_VRFIZ,
3009 ALTIVEC_BUILTIN_VRLB,
3010 ALTIVEC_BUILTIN_VRLH,
3011 ALTIVEC_BUILTIN_VRLW,
3012 ALTIVEC_BUILTIN_VRSQRTEFP,
3013 ALTIVEC_BUILTIN_VSLB,
3014 ALTIVEC_BUILTIN_VSLH,
3015 ALTIVEC_BUILTIN_VSLW,
3016 ALTIVEC_BUILTIN_VSL,
3017 ALTIVEC_BUILTIN_VSLO,
3018 ALTIVEC_BUILTIN_VSPLTB,
3019 ALTIVEC_BUILTIN_VSPLTH,
3020 ALTIVEC_BUILTIN_VSPLTW,
3021 ALTIVEC_BUILTIN_VSPLTISB,
3022 ALTIVEC_BUILTIN_VSPLTISH,
3023 ALTIVEC_BUILTIN_VSPLTISW,
3024 ALTIVEC_BUILTIN_VSRB,
3025 ALTIVEC_BUILTIN_VSRH,
3026 ALTIVEC_BUILTIN_VSRW,
3027 ALTIVEC_BUILTIN_VSRAB,
3028 ALTIVEC_BUILTIN_VSRAH,
3029 ALTIVEC_BUILTIN_VSRAW,
3030 ALTIVEC_BUILTIN_VSR,
3031 ALTIVEC_BUILTIN_VSRO,
3032 ALTIVEC_BUILTIN_VSUBUBM,
3033 ALTIVEC_BUILTIN_VSUBUHM,
3034 ALTIVEC_BUILTIN_VSUBUWM,
3035 ALTIVEC_BUILTIN_VSUBFP,
3036 ALTIVEC_BUILTIN_VSUBCUW,
3037 ALTIVEC_BUILTIN_VSUBUBS,
3038 ALTIVEC_BUILTIN_VSUBSBS,
3039 ALTIVEC_BUILTIN_VSUBUHS,
3040 ALTIVEC_BUILTIN_VSUBSHS,
3041 ALTIVEC_BUILTIN_VSUBUWS,
3042 ALTIVEC_BUILTIN_VSUBSWS,
3043 ALTIVEC_BUILTIN_VSUM4UBS,
3044 ALTIVEC_BUILTIN_VSUM4SBS,
3045 ALTIVEC_BUILTIN_VSUM4SHS,
3046 ALTIVEC_BUILTIN_VSUM2SWS,
3047 ALTIVEC_BUILTIN_VSUMSWS,
3048 ALTIVEC_BUILTIN_VXOR,
3049 ALTIVEC_BUILTIN_VSLDOI_16QI,
3050 ALTIVEC_BUILTIN_VSLDOI_8HI,
3051 ALTIVEC_BUILTIN_VSLDOI_4SI,
3052 ALTIVEC_BUILTIN_VSLDOI_4SF,
3053 ALTIVEC_BUILTIN_VUPKHSB,
3054 ALTIVEC_BUILTIN_VUPKHPX,
3055 ALTIVEC_BUILTIN_VUPKHSH,
3056 ALTIVEC_BUILTIN_VUPKLSB,
3057 ALTIVEC_BUILTIN_VUPKLPX,
3058 ALTIVEC_BUILTIN_VUPKLSH,
3059 ALTIVEC_BUILTIN_MTVSCR,
3060 ALTIVEC_BUILTIN_MFVSCR,
3061 ALTIVEC_BUILTIN_DSSALL,
3062 ALTIVEC_BUILTIN_DSS,
3063 ALTIVEC_BUILTIN_LVSL,
3064 ALTIVEC_BUILTIN_LVSR,
3065 ALTIVEC_BUILTIN_DSTT,
3066 ALTIVEC_BUILTIN_DSTST,
3067 ALTIVEC_BUILTIN_DSTSTT,
3068 ALTIVEC_BUILTIN_DST,
3069 ALTIVEC_BUILTIN_LVEBX,
3070 ALTIVEC_BUILTIN_LVEHX,
3071 ALTIVEC_BUILTIN_LVEWX,
3072 ALTIVEC_BUILTIN_LVXL,
3073 ALTIVEC_BUILTIN_LVX,
3074 ALTIVEC_BUILTIN_STVX,
3075 ALTIVEC_BUILTIN_STVEBX,
3076 ALTIVEC_BUILTIN_STVEHX,
3077 ALTIVEC_BUILTIN_STVEWX,
3078 ALTIVEC_BUILTIN_STVXL,
3079 ALTIVEC_BUILTIN_VCMPBFP_P,
3080 ALTIVEC_BUILTIN_VCMPEQFP_P,
3081 ALTIVEC_BUILTIN_VCMPEQUB_P,
3082 ALTIVEC_BUILTIN_VCMPEQUH_P,
3083 ALTIVEC_BUILTIN_VCMPEQUW_P,
3084 ALTIVEC_BUILTIN_VCMPGEFP_P,
3085 ALTIVEC_BUILTIN_VCMPGTFP_P,
3086 ALTIVEC_BUILTIN_VCMPGTSB_P,
3087 ALTIVEC_BUILTIN_VCMPGTSH_P,
3088 ALTIVEC_BUILTIN_VCMPGTSW_P,
3089 ALTIVEC_BUILTIN_VCMPGTUB_P,
3090 ALTIVEC_BUILTIN_VCMPGTUH_P,
3091 ALTIVEC_BUILTIN_VCMPGTUW_P,
3092 ALTIVEC_BUILTIN_ABSS_V4SI,
3093 ALTIVEC_BUILTIN_ABSS_V8HI,
3094 ALTIVEC_BUILTIN_ABSS_V16QI,
3095 ALTIVEC_BUILTIN_ABS_V4SI,
3096 ALTIVEC_BUILTIN_ABS_V4SF,
3097 ALTIVEC_BUILTIN_ABS_V8HI,
3098 ALTIVEC_BUILTIN_ABS_V16QI
3099 /* SPE builtins. */
3100 , SPE_BUILTIN_EVADDW,
3101 SPE_BUILTIN_EVAND,
3102 SPE_BUILTIN_EVANDC,
3103 SPE_BUILTIN_EVDIVWS,
3104 SPE_BUILTIN_EVDIVWU,
3105 SPE_BUILTIN_EVEQV,
3106 SPE_BUILTIN_EVFSADD,
3107 SPE_BUILTIN_EVFSDIV,
3108 SPE_BUILTIN_EVFSMUL,
3109 SPE_BUILTIN_EVFSSUB,
3110 SPE_BUILTIN_EVLDDX,
3111 SPE_BUILTIN_EVLDHX,
3112 SPE_BUILTIN_EVLDWX,
3113 SPE_BUILTIN_EVLHHESPLATX,
3114 SPE_BUILTIN_EVLHHOSSPLATX,
3115 SPE_BUILTIN_EVLHHOUSPLATX,
3116 SPE_BUILTIN_EVLWHEX,
3117 SPE_BUILTIN_EVLWHOSX,
3118 SPE_BUILTIN_EVLWHOUX,
3119 SPE_BUILTIN_EVLWHSPLATX,
3120 SPE_BUILTIN_EVLWWSPLATX,
3121 SPE_BUILTIN_EVMERGEHI,
3122 SPE_BUILTIN_EVMERGEHILO,
3123 SPE_BUILTIN_EVMERGELO,
3124 SPE_BUILTIN_EVMERGELOHI,
3125 SPE_BUILTIN_EVMHEGSMFAA,
3126 SPE_BUILTIN_EVMHEGSMFAN,
3127 SPE_BUILTIN_EVMHEGSMIAA,
3128 SPE_BUILTIN_EVMHEGSMIAN,
3129 SPE_BUILTIN_EVMHEGUMIAA,
3130 SPE_BUILTIN_EVMHEGUMIAN,
3131 SPE_BUILTIN_EVMHESMF,
3132 SPE_BUILTIN_EVMHESMFA,
3133 SPE_BUILTIN_EVMHESMFAAW,
3134 SPE_BUILTIN_EVMHESMFANW,
3135 SPE_BUILTIN_EVMHESMI,
3136 SPE_BUILTIN_EVMHESMIA,
3137 SPE_BUILTIN_EVMHESMIAAW,
3138 SPE_BUILTIN_EVMHESMIANW,
3139 SPE_BUILTIN_EVMHESSF,
3140 SPE_BUILTIN_EVMHESSFA,
3141 SPE_BUILTIN_EVMHESSFAAW,
3142 SPE_BUILTIN_EVMHESSFANW,
3143 SPE_BUILTIN_EVMHESSIAAW,
3144 SPE_BUILTIN_EVMHESSIANW,
3145 SPE_BUILTIN_EVMHEUMI,
3146 SPE_BUILTIN_EVMHEUMIA,
3147 SPE_BUILTIN_EVMHEUMIAAW,
3148 SPE_BUILTIN_EVMHEUMIANW,
3149 SPE_BUILTIN_EVMHEUSIAAW,
3150 SPE_BUILTIN_EVMHEUSIANW,
3151 SPE_BUILTIN_EVMHOGSMFAA,
3152 SPE_BUILTIN_EVMHOGSMFAN,
3153 SPE_BUILTIN_EVMHOGSMIAA,
3154 SPE_BUILTIN_EVMHOGSMIAN,
3155 SPE_BUILTIN_EVMHOGUMIAA,
3156 SPE_BUILTIN_EVMHOGUMIAN,
3157 SPE_BUILTIN_EVMHOSMF,
3158 SPE_BUILTIN_EVMHOSMFA,
3159 SPE_BUILTIN_EVMHOSMFAAW,
3160 SPE_BUILTIN_EVMHOSMFANW,
3161 SPE_BUILTIN_EVMHOSMI,
3162 SPE_BUILTIN_EVMHOSMIA,
3163 SPE_BUILTIN_EVMHOSMIAAW,
3164 SPE_BUILTIN_EVMHOSMIANW,
3165 SPE_BUILTIN_EVMHOSSF,
3166 SPE_BUILTIN_EVMHOSSFA,
3167 SPE_BUILTIN_EVMHOSSFAAW,
3168 SPE_BUILTIN_EVMHOSSFANW,
3169 SPE_BUILTIN_EVMHOSSIAAW,
3170 SPE_BUILTIN_EVMHOSSIANW,
3171 SPE_BUILTIN_EVMHOUMI,
3172 SPE_BUILTIN_EVMHOUMIA,
3173 SPE_BUILTIN_EVMHOUMIAAW,
3174 SPE_BUILTIN_EVMHOUMIANW,
3175 SPE_BUILTIN_EVMHOUSIAAW,
3176 SPE_BUILTIN_EVMHOUSIANW,
3177 SPE_BUILTIN_EVMWHSMF,
3178 SPE_BUILTIN_EVMWHSMFA,
3179 SPE_BUILTIN_EVMWHSMI,
3180 SPE_BUILTIN_EVMWHSMIA,
3181 SPE_BUILTIN_EVMWHSSF,
3182 SPE_BUILTIN_EVMWHSSFA,
3183 SPE_BUILTIN_EVMWHUMI,
3184 SPE_BUILTIN_EVMWHUMIA,
3185 SPE_BUILTIN_EVMWLSMIAAW,
3186 SPE_BUILTIN_EVMWLSMIANW,
3187 SPE_BUILTIN_EVMWLSSIAAW,
3188 SPE_BUILTIN_EVMWLSSIANW,
3189 SPE_BUILTIN_EVMWLUMI,
3190 SPE_BUILTIN_EVMWLUMIA,
3191 SPE_BUILTIN_EVMWLUMIAAW,
3192 SPE_BUILTIN_EVMWLUMIANW,
3193 SPE_BUILTIN_EVMWLUSIAAW,
3194 SPE_BUILTIN_EVMWLUSIANW,
3195 SPE_BUILTIN_EVMWSMF,
3196 SPE_BUILTIN_EVMWSMFA,
3197 SPE_BUILTIN_EVMWSMFAA,
3198 SPE_BUILTIN_EVMWSMFAN,
3199 SPE_BUILTIN_EVMWSMI,
3200 SPE_BUILTIN_EVMWSMIA,
3201 SPE_BUILTIN_EVMWSMIAA,
3202 SPE_BUILTIN_EVMWSMIAN,
3203 SPE_BUILTIN_EVMWHSSFAA,
3204 SPE_BUILTIN_EVMWSSF,
3205 SPE_BUILTIN_EVMWSSFA,
3206 SPE_BUILTIN_EVMWSSFAA,
3207 SPE_BUILTIN_EVMWSSFAN,
3208 SPE_BUILTIN_EVMWUMI,
3209 SPE_BUILTIN_EVMWUMIA,
3210 SPE_BUILTIN_EVMWUMIAA,
3211 SPE_BUILTIN_EVMWUMIAN,
3212 SPE_BUILTIN_EVNAND,
3213 SPE_BUILTIN_EVNOR,
3214 SPE_BUILTIN_EVOR,
3215 SPE_BUILTIN_EVORC,
3216 SPE_BUILTIN_EVRLW,
3217 SPE_BUILTIN_EVSLW,
3218 SPE_BUILTIN_EVSRWS,
3219 SPE_BUILTIN_EVSRWU,
3220 SPE_BUILTIN_EVSTDDX,
3221 SPE_BUILTIN_EVSTDHX,
3222 SPE_BUILTIN_EVSTDWX,
3223 SPE_BUILTIN_EVSTWHEX,
3224 SPE_BUILTIN_EVSTWHOX,
3225 SPE_BUILTIN_EVSTWWEX,
3226 SPE_BUILTIN_EVSTWWOX,
3227 SPE_BUILTIN_EVSUBFW,
3228 SPE_BUILTIN_EVXOR,
3229 SPE_BUILTIN_EVABS,
3230 SPE_BUILTIN_EVADDSMIAAW,
3231 SPE_BUILTIN_EVADDSSIAAW,
3232 SPE_BUILTIN_EVADDUMIAAW,
3233 SPE_BUILTIN_EVADDUSIAAW,
3234 SPE_BUILTIN_EVCNTLSW,
3235 SPE_BUILTIN_EVCNTLZW,
3236 SPE_BUILTIN_EVEXTSB,
3237 SPE_BUILTIN_EVEXTSH,
3238 SPE_BUILTIN_EVFSABS,
3239 SPE_BUILTIN_EVFSCFSF,
3240 SPE_BUILTIN_EVFSCFSI,
3241 SPE_BUILTIN_EVFSCFUF,
3242 SPE_BUILTIN_EVFSCFUI,
3243 SPE_BUILTIN_EVFSCTSF,
3244 SPE_BUILTIN_EVFSCTSI,
3245 SPE_BUILTIN_EVFSCTSIZ,
3246 SPE_BUILTIN_EVFSCTUF,
3247 SPE_BUILTIN_EVFSCTUI,
3248 SPE_BUILTIN_EVFSCTUIZ,
3249 SPE_BUILTIN_EVFSNABS,
3250 SPE_BUILTIN_EVFSNEG,
3251 SPE_BUILTIN_EVMRA,
3252 SPE_BUILTIN_EVNEG,
3253 SPE_BUILTIN_EVRNDW,
3254 SPE_BUILTIN_EVSUBFSMIAAW,
3255 SPE_BUILTIN_EVSUBFSSIAAW,
3256 SPE_BUILTIN_EVSUBFUMIAAW,
3257 SPE_BUILTIN_EVSUBFUSIAAW,
3258 SPE_BUILTIN_EVADDIW,
3259 SPE_BUILTIN_EVLDD,
3260 SPE_BUILTIN_EVLDH,
3261 SPE_BUILTIN_EVLDW,
3262 SPE_BUILTIN_EVLHHESPLAT,
3263 SPE_BUILTIN_EVLHHOSSPLAT,
3264 SPE_BUILTIN_EVLHHOUSPLAT,
3265 SPE_BUILTIN_EVLWHE,
3266 SPE_BUILTIN_EVLWHOS,
3267 SPE_BUILTIN_EVLWHOU,
3268 SPE_BUILTIN_EVLWHSPLAT,
3269 SPE_BUILTIN_EVLWWSPLAT,
3270 SPE_BUILTIN_EVRLWI,
3271 SPE_BUILTIN_EVSLWI,
3272 SPE_BUILTIN_EVSRWIS,
3273 SPE_BUILTIN_EVSRWIU,
3274 SPE_BUILTIN_EVSTDD,
3275 SPE_BUILTIN_EVSTDH,
3276 SPE_BUILTIN_EVSTDW,
3277 SPE_BUILTIN_EVSTWHE,
3278 SPE_BUILTIN_EVSTWHO,
3279 SPE_BUILTIN_EVSTWWE,
3280 SPE_BUILTIN_EVSTWWO,
3281 SPE_BUILTIN_EVSUBIFW,
3283 /* Compares. */
3284 SPE_BUILTIN_EVCMPEQ,
3285 SPE_BUILTIN_EVCMPGTS,
3286 SPE_BUILTIN_EVCMPGTU,
3287 SPE_BUILTIN_EVCMPLTS,
3288 SPE_BUILTIN_EVCMPLTU,
3289 SPE_BUILTIN_EVFSCMPEQ,
3290 SPE_BUILTIN_EVFSCMPGT,
3291 SPE_BUILTIN_EVFSCMPLT,
3292 SPE_BUILTIN_EVFSTSTEQ,
3293 SPE_BUILTIN_EVFSTSTGT,
3294 SPE_BUILTIN_EVFSTSTLT,
3296 /* EVSEL compares. */
3297 SPE_BUILTIN_EVSEL_CMPEQ,
3298 SPE_BUILTIN_EVSEL_CMPGTS,
3299 SPE_BUILTIN_EVSEL_CMPGTU,
3300 SPE_BUILTIN_EVSEL_CMPLTS,
3301 SPE_BUILTIN_EVSEL_CMPLTU,
3302 SPE_BUILTIN_EVSEL_FSCMPEQ,
3303 SPE_BUILTIN_EVSEL_FSCMPGT,
3304 SPE_BUILTIN_EVSEL_FSCMPLT,
3305 SPE_BUILTIN_EVSEL_FSTSTEQ,
3306 SPE_BUILTIN_EVSEL_FSTSTGT,
3307 SPE_BUILTIN_EVSEL_FSTSTLT,
3309 SPE_BUILTIN_EVSPLATFI,
3310 SPE_BUILTIN_EVSPLATI,
3311 SPE_BUILTIN_EVMWHSSMAA,
3312 SPE_BUILTIN_EVMWHSMFAA,
3313 SPE_BUILTIN_EVMWHSMIAA,
3314 SPE_BUILTIN_EVMWHUSIAA,
3315 SPE_BUILTIN_EVMWHUMIAA,
3316 SPE_BUILTIN_EVMWHSSFAN,
3317 SPE_BUILTIN_EVMWHSSIAN,
3318 SPE_BUILTIN_EVMWHSMFAN,
3319 SPE_BUILTIN_EVMWHSMIAN,
3320 SPE_BUILTIN_EVMWHUSIAN,
3321 SPE_BUILTIN_EVMWHUMIAN,
3322 SPE_BUILTIN_EVMWHGSSFAA,
3323 SPE_BUILTIN_EVMWHGSMFAA,
3324 SPE_BUILTIN_EVMWHGSMIAA,
3325 SPE_BUILTIN_EVMWHGUMIAA,
3326 SPE_BUILTIN_EVMWHGSSFAN,
3327 SPE_BUILTIN_EVMWHGSMFAN,
3328 SPE_BUILTIN_EVMWHGSMIAN,
3329 SPE_BUILTIN_EVMWHGUMIAN,
3330 SPE_BUILTIN_MTSPEFSCR,
3331 SPE_BUILTIN_MFSPEFSCR,
3332 SPE_BUILTIN_BRINC