2014-08-04 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / freeze.adb
blob17f96491c38fe990870cf883f38f6bdc15d3b810
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Prag; use Sem_Prag;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sinfo; use Sinfo;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Ttypes; use Ttypes;
66 with Uintp; use Uintp;
67 with Urealp; use Urealp;
68 with Warnsw; use Warnsw;
70 package body Freeze is
72 -----------------------
73 -- Local Subprograms --
74 -----------------------
76 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
77 -- Typ is a type that is being frozen. If no size clause is given,
78 -- but a default Esize has been computed, then this default Esize is
79 -- adjusted up if necessary to be consistent with a given alignment,
80 -- but never to a value greater than Long_Long_Integer'Size. This
81 -- is used for all discrete types and for fixed-point types.
83 procedure Build_And_Analyze_Renamed_Body
84 (Decl : Node_Id;
85 New_S : Entity_Id;
86 After : in out Node_Id);
87 -- Build body for a renaming declaration, insert in tree and analyze
89 procedure Check_Address_Clause (E : Entity_Id);
90 -- Apply legality checks to address clauses for object declarations,
91 -- at the point the object is frozen. Also ensure any initialization is
92 -- performed only after the object has been frozen.
94 procedure Check_Component_Storage_Order
95 (Encl_Type : Entity_Id;
96 Comp : Entity_Id;
97 ADC : Node_Id;
98 Comp_ADC_Present : out Boolean);
99 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
100 -- clause, verify that the component type has an explicit and compatible
101 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
102 -- entity of the component under consideration. For an Encl_Type that
103 -- does not have a Scalar_Storage_Order attribute definition clause,
104 -- verify that the component also does not have such a clause.
105 -- ADC is the attribute definition clause if present (or Empty). On return,
106 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
107 -- attribute definition clause.
109 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
110 -- When an expression function is frozen by a use of it, the expression
111 -- itself is frozen. Check that the expression does not include references
112 -- to deferred constants without completion. We report this at the freeze
113 -- point of the function, to provide a better error message.
115 procedure Check_Strict_Alignment (E : Entity_Id);
116 -- E is a base type. If E is tagged or has a component that is aliased
117 -- or tagged or contains something this is aliased or tagged, set
118 -- Strict_Alignment.
120 procedure Check_Unsigned_Type (E : Entity_Id);
121 pragma Inline (Check_Unsigned_Type);
122 -- If E is a fixed-point or discrete type, then all the necessary work
123 -- to freeze it is completed except for possible setting of the flag
124 -- Is_Unsigned_Type, which is done by this procedure. The call has no
125 -- effect if the entity E is not a discrete or fixed-point type.
127 procedure Freeze_And_Append
128 (Ent : Entity_Id;
129 N : Node_Id;
130 Result : in out List_Id);
131 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
132 -- nodes to Result, modifying Result from No_List if necessary. N has
133 -- the same usage as in Freeze_Entity.
135 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
136 -- Freeze enumeration type. The Esize field is set as processing
137 -- proceeds (i.e. set by default when the type is declared and then
138 -- adjusted by rep clauses. What this procedure does is to make sure
139 -- that if a foreign convention is specified, and no specific size
140 -- is given, then the size must be at least Integer'Size.
142 procedure Freeze_Static_Object (E : Entity_Id);
143 -- If an object is frozen which has Is_Statically_Allocated set, then
144 -- all referenced types must also be marked with this flag. This routine
145 -- is in charge of meeting this requirement for the object entity E.
147 procedure Freeze_Subprogram (E : Entity_Id);
148 -- Perform freezing actions for a subprogram (create extra formals,
149 -- and set proper default mechanism values). Note that this routine
150 -- is not called for internal subprograms, for which neither of these
151 -- actions is needed (or desirable, we do not want for example to have
152 -- these extra formals present in initialization procedures, where they
153 -- would serve no purpose). In this call E is either a subprogram or
154 -- a subprogram type (i.e. an access to a subprogram).
156 function Is_Fully_Defined (T : Entity_Id) return Boolean;
157 -- True if T is not private and has no private components, or has a full
158 -- view. Used to determine whether the designated type of an access type
159 -- should be frozen when the access type is frozen. This is done when an
160 -- allocator is frozen, or an expression that may involve attributes of
161 -- the designated type. Otherwise freezing the access type does not freeze
162 -- the designated type.
164 procedure Process_Default_Expressions
165 (E : Entity_Id;
166 After : in out Node_Id);
167 -- This procedure is called for each subprogram to complete processing of
168 -- default expressions at the point where all types are known to be frozen.
169 -- The expressions must be analyzed in full, to make sure that all error
170 -- processing is done (they have only been pre-analyzed). If the expression
171 -- is not an entity or literal, its analysis may generate code which must
172 -- not be executed. In that case we build a function body to hold that
173 -- code. This wrapper function serves no other purpose (it used to be
174 -- called to evaluate the default, but now the default is inlined at each
175 -- point of call).
177 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
178 -- Typ is a record or array type that is being frozen. This routine sets
179 -- the default component alignment from the scope stack values if the
180 -- alignment is otherwise not specified.
182 procedure Check_Debug_Info_Needed (T : Entity_Id);
183 -- As each entity is frozen, this routine is called to deal with the
184 -- setting of Debug_Info_Needed for the entity. This flag is set if
185 -- the entity comes from source, or if we are in Debug_Generated_Code
186 -- mode or if the -gnatdV debug flag is set. However, it never sets
187 -- the flag if Debug_Info_Off is set. This procedure also ensures that
188 -- subsidiary entities have the flag set as required.
190 procedure Set_SSO_From_Default (T : Entity_Id);
191 -- T is a record or array type that is being frozen. If it is a base type,
192 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
193 -- will be set appropriately. Note that an explicit occurrence of aspect
194 -- Scalar_Storage_Order or an explicit setting of this aspect with an
195 -- attribute definition clause occurs, then these two flags are reset in
196 -- any case, so call will have no effect.
198 procedure Undelay_Type (T : Entity_Id);
199 -- T is a type of a component that we know to be an Itype. We don't want
200 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
201 -- Full_View or Corresponding_Record_Type.
203 procedure Warn_Overlay
204 (Expr : Node_Id;
205 Typ : Entity_Id;
206 Nam : Node_Id);
207 -- Expr is the expression for an address clause for entity Nam whose type
208 -- is Typ. If Typ has a default initialization, and there is no explicit
209 -- initialization in the source declaration, check whether the address
210 -- clause might cause overlaying of an entity, and emit a warning on the
211 -- side effect that the initialization will cause.
213 -------------------------------
214 -- Adjust_Esize_For_Alignment --
215 -------------------------------
217 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
218 Align : Uint;
220 begin
221 if Known_Esize (Typ) and then Known_Alignment (Typ) then
222 Align := Alignment_In_Bits (Typ);
224 if Align > Esize (Typ)
225 and then Align <= Standard_Long_Long_Integer_Size
226 then
227 Set_Esize (Typ, Align);
228 end if;
229 end if;
230 end Adjust_Esize_For_Alignment;
232 ------------------------------------
233 -- Build_And_Analyze_Renamed_Body --
234 ------------------------------------
236 procedure Build_And_Analyze_Renamed_Body
237 (Decl : Node_Id;
238 New_S : Entity_Id;
239 After : in out Node_Id)
241 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
242 Ent : constant Entity_Id := Defining_Entity (Decl);
243 Body_Node : Node_Id;
244 Renamed_Subp : Entity_Id;
246 begin
247 -- If the renamed subprogram is intrinsic, there is no need for a
248 -- wrapper body: we set the alias that will be called and expanded which
249 -- completes the declaration. This transformation is only legal if the
250 -- renamed entity has already been elaborated.
252 -- Note that it is legal for a renaming_as_body to rename an intrinsic
253 -- subprogram, as long as the renaming occurs before the new entity
254 -- is frozen (RM 8.5.4 (5)).
256 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
257 and then Is_Entity_Name (Name (Body_Decl))
258 then
259 Renamed_Subp := Entity (Name (Body_Decl));
260 else
261 Renamed_Subp := Empty;
262 end if;
264 if Present (Renamed_Subp)
265 and then Is_Intrinsic_Subprogram (Renamed_Subp)
266 and then
267 (not In_Same_Source_Unit (Renamed_Subp, Ent)
268 or else Sloc (Renamed_Subp) < Sloc (Ent))
270 -- We can make the renaming entity intrinsic if the renamed function
271 -- has an interface name, or if it is one of the shift/rotate
272 -- operations known to the compiler.
274 and then
275 (Present (Interface_Name (Renamed_Subp))
276 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
277 Name_Rotate_Right,
278 Name_Shift_Left,
279 Name_Shift_Right,
280 Name_Shift_Right_Arithmetic))
281 then
282 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
284 if Present (Alias (Renamed_Subp)) then
285 Set_Alias (Ent, Alias (Renamed_Subp));
286 else
287 Set_Alias (Ent, Renamed_Subp);
288 end if;
290 Set_Is_Intrinsic_Subprogram (Ent);
291 Set_Has_Completion (Ent);
293 else
294 Body_Node := Build_Renamed_Body (Decl, New_S);
295 Insert_After (After, Body_Node);
296 Mark_Rewrite_Insertion (Body_Node);
297 Analyze (Body_Node);
298 After := Body_Node;
299 end if;
300 end Build_And_Analyze_Renamed_Body;
302 ------------------------
303 -- Build_Renamed_Body --
304 ------------------------
306 function Build_Renamed_Body
307 (Decl : Node_Id;
308 New_S : Entity_Id) return Node_Id
310 Loc : constant Source_Ptr := Sloc (New_S);
311 -- We use for the source location of the renamed body, the location of
312 -- the spec entity. It might seem more natural to use the location of
313 -- the renaming declaration itself, but that would be wrong, since then
314 -- the body we create would look as though it was created far too late,
315 -- and this could cause problems with elaboration order analysis,
316 -- particularly in connection with instantiations.
318 N : constant Node_Id := Unit_Declaration_Node (New_S);
319 Nam : constant Node_Id := Name (N);
320 Old_S : Entity_Id;
321 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
322 Actuals : List_Id := No_List;
323 Call_Node : Node_Id;
324 Call_Name : Node_Id;
325 Body_Node : Node_Id;
326 Formal : Entity_Id;
327 O_Formal : Entity_Id;
328 Param_Spec : Node_Id;
330 Pref : Node_Id := Empty;
331 -- If the renamed entity is a primitive operation given in prefix form,
332 -- the prefix is the target object and it has to be added as the first
333 -- actual in the generated call.
335 begin
336 -- Determine the entity being renamed, which is the target of the call
337 -- statement. If the name is an explicit dereference, this is a renaming
338 -- of a subprogram type rather than a subprogram. The name itself is
339 -- fully analyzed.
341 if Nkind (Nam) = N_Selected_Component then
342 Old_S := Entity (Selector_Name (Nam));
344 elsif Nkind (Nam) = N_Explicit_Dereference then
345 Old_S := Etype (Nam);
347 elsif Nkind (Nam) = N_Indexed_Component then
348 if Is_Entity_Name (Prefix (Nam)) then
349 Old_S := Entity (Prefix (Nam));
350 else
351 Old_S := Entity (Selector_Name (Prefix (Nam)));
352 end if;
354 elsif Nkind (Nam) = N_Character_Literal then
355 Old_S := Etype (New_S);
357 else
358 Old_S := Entity (Nam);
359 end if;
361 if Is_Entity_Name (Nam) then
363 -- If the renamed entity is a predefined operator, retain full name
364 -- to ensure its visibility.
366 if Ekind (Old_S) = E_Operator
367 and then Nkind (Nam) = N_Expanded_Name
368 then
369 Call_Name := New_Copy (Name (N));
370 else
371 Call_Name := New_Occurrence_Of (Old_S, Loc);
372 end if;
374 else
375 if Nkind (Nam) = N_Selected_Component
376 and then Present (First_Formal (Old_S))
377 and then
378 (Is_Controlling_Formal (First_Formal (Old_S))
379 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
380 then
382 -- Retrieve the target object, to be added as a first actual
383 -- in the call.
385 Call_Name := New_Occurrence_Of (Old_S, Loc);
386 Pref := Prefix (Nam);
388 else
389 Call_Name := New_Copy (Name (N));
390 end if;
392 -- Original name may have been overloaded, but is fully resolved now
394 Set_Is_Overloaded (Call_Name, False);
395 end if;
397 -- For simple renamings, subsequent calls can be expanded directly as
398 -- calls to the renamed entity. The body must be generated in any case
399 -- for calls that may appear elsewhere. This is not done in the case
400 -- where the subprogram is an instantiation because the actual proper
401 -- body has not been built yet.
403 if Ekind_In (Old_S, E_Function, E_Procedure)
404 and then Nkind (Decl) = N_Subprogram_Declaration
405 and then not Is_Generic_Instance (Old_S)
406 then
407 Set_Body_To_Inline (Decl, Old_S);
408 end if;
410 -- The body generated for this renaming is an internal artifact, and
411 -- does not constitute a freeze point for the called entity.
413 Set_Must_Not_Freeze (Call_Name);
415 Formal := First_Formal (Defining_Entity (Decl));
417 if Present (Pref) then
418 declare
419 Pref_Type : constant Entity_Id := Etype (Pref);
420 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
422 begin
423 -- The controlling formal may be an access parameter, or the
424 -- actual may be an access value, so adjust accordingly.
426 if Is_Access_Type (Pref_Type)
427 and then not Is_Access_Type (Form_Type)
428 then
429 Actuals := New_List
430 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
432 elsif Is_Access_Type (Form_Type)
433 and then not Is_Access_Type (Pref)
434 then
435 Actuals := New_List
436 (Make_Attribute_Reference (Loc,
437 Attribute_Name => Name_Access,
438 Prefix => Relocate_Node (Pref)));
439 else
440 Actuals := New_List (Pref);
441 end if;
442 end;
444 elsif Present (Formal) then
445 Actuals := New_List;
447 else
448 Actuals := No_List;
449 end if;
451 if Present (Formal) then
452 while Present (Formal) loop
453 Append (New_Occurrence_Of (Formal, Loc), Actuals);
454 Next_Formal (Formal);
455 end loop;
456 end if;
458 -- If the renamed entity is an entry, inherit its profile. For other
459 -- renamings as bodies, both profiles must be subtype conformant, so it
460 -- is not necessary to replace the profile given in the declaration.
461 -- However, default values that are aggregates are rewritten when
462 -- partially analyzed, so we recover the original aggregate to insure
463 -- that subsequent conformity checking works. Similarly, if the default
464 -- expression was constant-folded, recover the original expression.
466 Formal := First_Formal (Defining_Entity (Decl));
468 if Present (Formal) then
469 O_Formal := First_Formal (Old_S);
470 Param_Spec := First (Parameter_Specifications (Spec));
471 while Present (Formal) loop
472 if Is_Entry (Old_S) then
473 if Nkind (Parameter_Type (Param_Spec)) /=
474 N_Access_Definition
475 then
476 Set_Etype (Formal, Etype (O_Formal));
477 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
478 end if;
480 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
481 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
482 Nkind (Default_Value (O_Formal))
483 then
484 Set_Expression (Param_Spec,
485 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
486 end if;
488 Next_Formal (Formal);
489 Next_Formal (O_Formal);
490 Next (Param_Spec);
491 end loop;
492 end if;
494 -- If the renamed entity is a function, the generated body contains a
495 -- return statement. Otherwise, build a procedure call. If the entity is
496 -- an entry, subsequent analysis of the call will transform it into the
497 -- proper entry or protected operation call. If the renamed entity is
498 -- a character literal, return it directly.
500 if Ekind (Old_S) = E_Function
501 or else Ekind (Old_S) = E_Operator
502 or else (Ekind (Old_S) = E_Subprogram_Type
503 and then Etype (Old_S) /= Standard_Void_Type)
504 then
505 Call_Node :=
506 Make_Simple_Return_Statement (Loc,
507 Expression =>
508 Make_Function_Call (Loc,
509 Name => Call_Name,
510 Parameter_Associations => Actuals));
512 elsif Ekind (Old_S) = E_Enumeration_Literal then
513 Call_Node :=
514 Make_Simple_Return_Statement (Loc,
515 Expression => New_Occurrence_Of (Old_S, Loc));
517 elsif Nkind (Nam) = N_Character_Literal then
518 Call_Node :=
519 Make_Simple_Return_Statement (Loc,
520 Expression => Call_Name);
522 else
523 Call_Node :=
524 Make_Procedure_Call_Statement (Loc,
525 Name => Call_Name,
526 Parameter_Associations => Actuals);
527 end if;
529 -- Create entities for subprogram body and formals
531 Set_Defining_Unit_Name (Spec,
532 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
534 Param_Spec := First (Parameter_Specifications (Spec));
535 while Present (Param_Spec) loop
536 Set_Defining_Identifier (Param_Spec,
537 Make_Defining_Identifier (Loc,
538 Chars => Chars (Defining_Identifier (Param_Spec))));
539 Next (Param_Spec);
540 end loop;
542 Body_Node :=
543 Make_Subprogram_Body (Loc,
544 Specification => Spec,
545 Declarations => New_List,
546 Handled_Statement_Sequence =>
547 Make_Handled_Sequence_Of_Statements (Loc,
548 Statements => New_List (Call_Node)));
550 if Nkind (Decl) /= N_Subprogram_Declaration then
551 Rewrite (N,
552 Make_Subprogram_Declaration (Loc,
553 Specification => Specification (N)));
554 end if;
556 -- Link the body to the entity whose declaration it completes. If
557 -- the body is analyzed when the renamed entity is frozen, it may
558 -- be necessary to restore the proper scope (see package Exp_Ch13).
560 if Nkind (N) = N_Subprogram_Renaming_Declaration
561 and then Present (Corresponding_Spec (N))
562 then
563 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
564 else
565 Set_Corresponding_Spec (Body_Node, New_S);
566 end if;
568 return Body_Node;
569 end Build_Renamed_Body;
571 --------------------------
572 -- Check_Address_Clause --
573 --------------------------
575 procedure Check_Address_Clause (E : Entity_Id) is
576 Addr : constant Node_Id := Address_Clause (E);
577 Expr : Node_Id;
578 Decl : constant Node_Id := Declaration_Node (E);
579 Loc : constant Source_Ptr := Sloc (Decl);
580 Typ : constant Entity_Id := Etype (E);
582 begin
583 if Present (Addr) then
584 Expr := Expression (Addr);
586 if Needs_Constant_Address (Decl, Typ) then
587 Check_Constant_Address_Clause (Expr, E);
589 -- Has_Delayed_Freeze was set on E when the address clause was
590 -- analyzed, and must remain set because we want the address
591 -- clause to be elaborated only after any entity it references
592 -- has been elaborated.
593 end if;
595 -- If Rep_Clauses are to be ignored, remove address clause from
596 -- list attached to entity, because it may be illegal for gigi,
597 -- for example by breaking order of elaboration..
599 if Ignore_Rep_Clauses then
600 declare
601 Rep : Node_Id;
603 begin
604 Rep := First_Rep_Item (E);
606 if Rep = Addr then
607 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
609 else
610 while Present (Rep)
611 and then Next_Rep_Item (Rep) /= Addr
612 loop
613 Rep := Next_Rep_Item (Rep);
614 end loop;
615 end if;
617 if Present (Rep) then
618 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
619 end if;
620 end;
622 -- And now remove the address clause
624 Kill_Rep_Clause (Addr);
626 elsif not Error_Posted (Expr)
627 and then not Needs_Finalization (Typ)
628 then
629 Warn_Overlay (Expr, Typ, Name (Addr));
630 end if;
632 if Present (Expression (Decl)) then
634 -- Capture initialization value at point of declaration
636 Remove_Side_Effects (Expression (Decl));
638 -- Move initialization to freeze actions (once the object has
639 -- been frozen, and the address clause alignment check has been
640 -- performed.
642 Append_Freeze_Action (E,
643 Make_Assignment_Statement (Loc,
644 Name => New_Occurrence_Of (E, Loc),
645 Expression => Expression (Decl)));
647 Set_No_Initialization (Decl);
648 end if;
649 end if;
650 end Check_Address_Clause;
652 -----------------------------
653 -- Check_Compile_Time_Size --
654 -----------------------------
656 procedure Check_Compile_Time_Size (T : Entity_Id) is
658 procedure Set_Small_Size (T : Entity_Id; S : Uint);
659 -- Sets the compile time known size (32 bits or less) in the Esize
660 -- field, of T checking for a size clause that was given which attempts
661 -- to give a smaller size, and also checking for an alignment clause.
663 function Size_Known (T : Entity_Id) return Boolean;
664 -- Recursive function that does all the work
666 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
667 -- If T is a constrained subtype, its size is not known if any of its
668 -- discriminant constraints is not static and it is not a null record.
669 -- The test is conservative and doesn't check that the components are
670 -- in fact constrained by non-static discriminant values. Could be made
671 -- more precise ???
673 --------------------
674 -- Set_Small_Size --
675 --------------------
677 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
678 begin
679 if S > 32 then
680 return;
682 -- Check for bad size clause given
684 elsif Has_Size_Clause (T) then
685 if RM_Size (T) < S then
686 Error_Msg_Uint_1 := S;
687 Error_Msg_NE
688 ("size for& too small, minimum allowed is ^",
689 Size_Clause (T), T);
690 end if;
692 -- Set size if not set already
694 elsif Unknown_RM_Size (T) then
695 Set_RM_Size (T, S);
696 end if;
697 end Set_Small_Size;
699 ----------------
700 -- Size_Known --
701 ----------------
703 function Size_Known (T : Entity_Id) return Boolean is
704 Index : Entity_Id;
705 Comp : Entity_Id;
706 Ctyp : Entity_Id;
707 Low : Node_Id;
708 High : Node_Id;
710 begin
711 if Size_Known_At_Compile_Time (T) then
712 return True;
714 -- Always True for scalar types. This is true even for generic formal
715 -- scalar types. We used to return False in the latter case, but the
716 -- size is known at compile time, even in the template, we just do
717 -- not know the exact size but that's not the point of this routine.
719 elsif Is_Scalar_Type (T)
720 or else Is_Task_Type (T)
721 then
722 return True;
724 -- Array types
726 elsif Is_Array_Type (T) then
728 -- String literals always have known size, and we can set it
730 if Ekind (T) = E_String_Literal_Subtype then
731 Set_Small_Size (T, Component_Size (T)
732 * String_Literal_Length (T));
733 return True;
735 -- Unconstrained types never have known at compile time size
737 elsif not Is_Constrained (T) then
738 return False;
740 -- Don't do any recursion on type with error posted, since we may
741 -- have a malformed type that leads us into a loop.
743 elsif Error_Posted (T) then
744 return False;
746 -- Otherwise if component size unknown, then array size unknown
748 elsif not Size_Known (Component_Type (T)) then
749 return False;
750 end if;
752 -- Check for all indexes static, and also compute possible size
753 -- (in case it is less than 32 and may be packable).
755 declare
756 Esiz : Uint := Component_Size (T);
757 Dim : Uint;
759 begin
760 Index := First_Index (T);
761 while Present (Index) loop
762 if Nkind (Index) = N_Range then
763 Get_Index_Bounds (Index, Low, High);
765 elsif Error_Posted (Scalar_Range (Etype (Index))) then
766 return False;
768 else
769 Low := Type_Low_Bound (Etype (Index));
770 High := Type_High_Bound (Etype (Index));
771 end if;
773 if not Compile_Time_Known_Value (Low)
774 or else not Compile_Time_Known_Value (High)
775 or else Etype (Index) = Any_Type
776 then
777 return False;
779 else
780 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
782 if Dim >= 0 then
783 Esiz := Esiz * Dim;
784 else
785 Esiz := Uint_0;
786 end if;
787 end if;
789 Next_Index (Index);
790 end loop;
792 Set_Small_Size (T, Esiz);
793 return True;
794 end;
796 -- Access types always have known at compile time sizes
798 elsif Is_Access_Type (T) then
799 return True;
801 -- For non-generic private types, go to underlying type if present
803 elsif Is_Private_Type (T)
804 and then not Is_Generic_Type (T)
805 and then Present (Underlying_Type (T))
806 then
807 -- Don't do any recursion on type with error posted, since we may
808 -- have a malformed type that leads us into a loop.
810 if Error_Posted (T) then
811 return False;
812 else
813 return Size_Known (Underlying_Type (T));
814 end if;
816 -- Record types
818 elsif Is_Record_Type (T) then
820 -- A class-wide type is never considered to have a known size
822 if Is_Class_Wide_Type (T) then
823 return False;
825 -- A subtype of a variant record must not have non-static
826 -- discriminated components.
828 elsif T /= Base_Type (T)
829 and then not Static_Discriminated_Components (T)
830 then
831 return False;
833 -- Don't do any recursion on type with error posted, since we may
834 -- have a malformed type that leads us into a loop.
836 elsif Error_Posted (T) then
837 return False;
838 end if;
840 -- Now look at the components of the record
842 declare
843 -- The following two variables are used to keep track of the
844 -- size of packed records if we can tell the size of the packed
845 -- record in the front end. Packed_Size_Known is True if so far
846 -- we can figure out the size. It is initialized to True for a
847 -- packed record, unless the record has discriminants or atomic
848 -- components or independent components.
850 -- The reason we eliminate the discriminated case is that
851 -- we don't know the way the back end lays out discriminated
852 -- packed records. If Packed_Size_Known is True, then
853 -- Packed_Size is the size in bits so far.
855 Packed_Size_Known : Boolean :=
856 Is_Packed (T)
857 and then not Has_Discriminants (T)
858 and then not Has_Atomic_Components (T)
859 and then not Has_Independent_Components (T);
861 Packed_Size : Uint := Uint_0;
862 -- Size in bits so far
864 begin
865 -- Test for variant part present
867 if Has_Discriminants (T)
868 and then Present (Parent (T))
869 and then Nkind (Parent (T)) = N_Full_Type_Declaration
870 and then Nkind (Type_Definition (Parent (T))) =
871 N_Record_Definition
872 and then not Null_Present (Type_Definition (Parent (T)))
873 and then
874 Present (Variant_Part
875 (Component_List (Type_Definition (Parent (T)))))
876 then
877 -- If variant part is present, and type is unconstrained,
878 -- then we must have defaulted discriminants, or a size
879 -- clause must be present for the type, or else the size
880 -- is definitely not known at compile time.
882 if not Is_Constrained (T)
883 and then
884 No (Discriminant_Default_Value (First_Discriminant (T)))
885 and then Unknown_RM_Size (T)
886 then
887 return False;
888 end if;
889 end if;
891 -- Loop through components
893 Comp := First_Component_Or_Discriminant (T);
894 while Present (Comp) loop
895 Ctyp := Etype (Comp);
897 -- We do not know the packed size if there is a component
898 -- clause present (we possibly could, but this would only
899 -- help in the case of a record with partial rep clauses.
900 -- That's because in the case of full rep clauses, the
901 -- size gets figured out anyway by a different circuit).
903 if Present (Component_Clause (Comp)) then
904 Packed_Size_Known := False;
905 end if;
907 -- We do not know the packed size if we have a by reference
908 -- type, or an atomic type or an atomic component, or an
909 -- aliased component (because packing does not touch these).
911 if Is_Atomic (Ctyp)
912 or else Is_Atomic (Comp)
913 or else Is_By_Reference_Type (Ctyp)
914 or else Is_Aliased (Comp)
915 then
916 Packed_Size_Known := False;
917 end if;
919 -- We need to identify a component that is an array where
920 -- the index type is an enumeration type with non-standard
921 -- representation, and some bound of the type depends on a
922 -- discriminant.
924 -- This is because gigi computes the size by doing a
925 -- substitution of the appropriate discriminant value in
926 -- the size expression for the base type, and gigi is not
927 -- clever enough to evaluate the resulting expression (which
928 -- involves a call to rep_to_pos) at compile time.
930 -- It would be nice if gigi would either recognize that
931 -- this expression can be computed at compile time, or
932 -- alternatively figured out the size from the subtype
933 -- directly, where all the information is at hand ???
935 if Is_Array_Type (Etype (Comp))
936 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
937 then
938 declare
939 Ocomp : constant Entity_Id :=
940 Original_Record_Component (Comp);
941 OCtyp : constant Entity_Id := Etype (Ocomp);
942 Ind : Node_Id;
943 Indtyp : Entity_Id;
944 Lo, Hi : Node_Id;
946 begin
947 Ind := First_Index (OCtyp);
948 while Present (Ind) loop
949 Indtyp := Etype (Ind);
951 if Is_Enumeration_Type (Indtyp)
952 and then Has_Non_Standard_Rep (Indtyp)
953 then
954 Lo := Type_Low_Bound (Indtyp);
955 Hi := Type_High_Bound (Indtyp);
957 if Is_Entity_Name (Lo)
958 and then Ekind (Entity (Lo)) = E_Discriminant
959 then
960 return False;
962 elsif Is_Entity_Name (Hi)
963 and then Ekind (Entity (Hi)) = E_Discriminant
964 then
965 return False;
966 end if;
967 end if;
969 Next_Index (Ind);
970 end loop;
971 end;
972 end if;
974 -- Clearly size of record is not known if the size of one of
975 -- the components is not known.
977 if not Size_Known (Ctyp) then
978 return False;
979 end if;
981 -- Accumulate packed size if possible
983 if Packed_Size_Known then
985 -- We can only deal with elementary types, since for
986 -- non-elementary components, alignment enters into the
987 -- picture, and we don't know enough to handle proper
988 -- alignment in this context. Packed arrays count as
989 -- elementary if the representation is a modular type.
991 if Is_Elementary_Type (Ctyp)
992 or else (Is_Array_Type (Ctyp)
993 and then Present
994 (Packed_Array_Impl_Type (Ctyp))
995 and then Is_Modular_Integer_Type
996 (Packed_Array_Impl_Type (Ctyp)))
997 then
998 -- Packed size unknown if we have an atomic type
999 -- or a by reference type, since the back end
1000 -- knows how these are layed out.
1002 if Is_Atomic (Ctyp)
1003 or else Is_By_Reference_Type (Ctyp)
1004 then
1005 Packed_Size_Known := False;
1007 -- If RM_Size is known and static, then we can keep
1008 -- accumulating the packed size
1010 elsif Known_Static_RM_Size (Ctyp) then
1012 -- A little glitch, to be removed sometime ???
1013 -- gigi does not understand zero sizes yet.
1015 if RM_Size (Ctyp) = Uint_0 then
1016 Packed_Size_Known := False;
1018 -- Normal case where we can keep accumulating the
1019 -- packed array size.
1021 else
1022 Packed_Size := Packed_Size + RM_Size (Ctyp);
1023 end if;
1025 -- If we have a field whose RM_Size is not known then
1026 -- we can't figure out the packed size here.
1028 else
1029 Packed_Size_Known := False;
1030 end if;
1032 -- If we have a non-elementary type we can't figure out
1033 -- the packed array size (alignment issues).
1035 else
1036 Packed_Size_Known := False;
1037 end if;
1038 end if;
1040 Next_Component_Or_Discriminant (Comp);
1041 end loop;
1043 if Packed_Size_Known then
1044 Set_Small_Size (T, Packed_Size);
1045 end if;
1047 return True;
1048 end;
1050 -- All other cases, size not known at compile time
1052 else
1053 return False;
1054 end if;
1055 end Size_Known;
1057 -------------------------------------
1058 -- Static_Discriminated_Components --
1059 -------------------------------------
1061 function Static_Discriminated_Components
1062 (T : Entity_Id) return Boolean
1064 Constraint : Elmt_Id;
1066 begin
1067 if Has_Discriminants (T)
1068 and then Present (Discriminant_Constraint (T))
1069 and then Present (First_Component (T))
1070 then
1071 Constraint := First_Elmt (Discriminant_Constraint (T));
1072 while Present (Constraint) loop
1073 if not Compile_Time_Known_Value (Node (Constraint)) then
1074 return False;
1075 end if;
1077 Next_Elmt (Constraint);
1078 end loop;
1079 end if;
1081 return True;
1082 end Static_Discriminated_Components;
1084 -- Start of processing for Check_Compile_Time_Size
1086 begin
1087 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1088 end Check_Compile_Time_Size;
1090 -----------------------------------
1091 -- Check_Component_Storage_Order --
1092 -----------------------------------
1094 procedure Check_Component_Storage_Order
1095 (Encl_Type : Entity_Id;
1096 Comp : Entity_Id;
1097 ADC : Node_Id;
1098 Comp_ADC_Present : out Boolean)
1100 Comp_Type : Entity_Id;
1101 Comp_ADC : Node_Id;
1102 Err_Node : Node_Id;
1104 Comp_Byte_Aligned : Boolean;
1105 -- Set for the record case, True if Comp starts on a byte boundary
1106 -- (in which case it is allowed to have different storage order).
1108 Comp_SSO_Differs : Boolean;
1109 -- Set True when the component is a nested composite, and it does not
1110 -- have the same scalar storage order as Encl_Type.
1112 Component_Aliased : Boolean;
1114 begin
1115 -- Record case
1117 if Present (Comp) then
1118 Err_Node := Comp;
1119 Comp_Type := Etype (Comp);
1121 if Is_Tag (Comp) then
1122 Comp_Byte_Aligned := True;
1123 Component_Aliased := False;
1125 else
1126 -- If a component clause is present, check if the component starts
1127 -- on a storage element boundary. Otherwise conservatively assume
1128 -- it does so only in the case where the record is not packed.
1130 if Present (Component_Clause (Comp)) then
1131 Comp_Byte_Aligned :=
1132 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1133 else
1134 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1135 end if;
1137 Component_Aliased := Is_Aliased (Comp);
1138 end if;
1140 -- Array case
1142 else
1143 Err_Node := Encl_Type;
1144 Comp_Type := Component_Type (Encl_Type);
1146 Component_Aliased := Has_Aliased_Components (Encl_Type);
1147 end if;
1149 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1150 -- the attribute definition clause is attached to the first subtype.
1152 Comp_Type := Base_Type (Comp_Type);
1153 Comp_ADC := Get_Attribute_Definition_Clause
1154 (First_Subtype (Comp_Type),
1155 Attribute_Scalar_Storage_Order);
1156 Comp_ADC_Present := Present (Comp_ADC);
1158 -- Case of record or array component: check storage order compatibility
1160 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1161 Comp_SSO_Differs :=
1162 Reverse_Storage_Order (Encl_Type)
1164 Reverse_Storage_Order (Comp_Type);
1166 -- Parent and extension must have same storage order
1168 if Present (Comp) and then Chars (Comp) = Name_uParent then
1169 if Comp_SSO_Differs then
1170 Error_Msg_N
1171 ("record extension must have same scalar storage order as "
1172 & "parent", Err_Node);
1173 end if;
1175 -- If enclosing composite has explicit SSO then nested composite must
1176 -- have explicit SSO as well.
1178 elsif Present (ADC) and then No (Comp_ADC) then
1179 Error_Msg_N ("nested composite must have explicit scalar "
1180 & "storage order", Err_Node);
1182 -- If component and composite SSO differs, check that component
1183 -- falls on byte boundaries and isn't packed.
1185 elsif Comp_SSO_Differs then
1187 -- Component SSO differs from enclosing composite:
1189 -- Reject if component is a packed array, as it may be represented
1190 -- as a scalar internally.
1192 if Is_Packed_Array (Comp_Type) then
1193 Error_Msg_N
1194 ("type of packed component must have same scalar "
1195 & "storage order as enclosing composite", Err_Node);
1197 -- Reject if composite is a packed array, as it may be rewritten
1198 -- into an array of scalars.
1200 elsif Is_Packed_Array (Encl_Type) then
1201 Error_Msg_N ("type of packed array must have same scalar "
1202 & "storage order as component", Err_Node);
1204 -- Reject if not byte aligned
1206 elsif Is_Record_Type (Encl_Type)
1207 and then not Comp_Byte_Aligned
1208 then
1209 Error_Msg_N
1210 ("type of non-byte-aligned component must have same scalar "
1211 & "storage order as enclosing composite", Err_Node);
1212 end if;
1213 end if;
1215 -- Enclosing type has explicit SSO: non-composite component must not
1216 -- be aliased.
1218 elsif Present (ADC) and then Component_Aliased then
1219 Error_Msg_N
1220 ("aliased component not permitted for type with "
1221 & "explicit Scalar_Storage_Order", Err_Node);
1222 end if;
1223 end Check_Component_Storage_Order;
1225 -----------------------------
1226 -- Check_Debug_Info_Needed --
1227 -----------------------------
1229 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1230 begin
1231 if Debug_Info_Off (T) then
1232 return;
1234 elsif Comes_From_Source (T)
1235 or else Debug_Generated_Code
1236 or else Debug_Flag_VV
1237 or else Needs_Debug_Info (T)
1238 then
1239 Set_Debug_Info_Needed (T);
1240 end if;
1241 end Check_Debug_Info_Needed;
1243 -------------------------------
1244 -- Check_Expression_Function --
1245 -------------------------------
1247 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1248 Decl : Node_Id;
1250 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1251 -- Function to search for deferred constant
1253 -------------------
1254 -- Find_Constant --
1255 -------------------
1257 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1258 begin
1259 -- When a constant is initialized with the result of a dispatching
1260 -- call, the constant declaration is rewritten as a renaming of the
1261 -- displaced function result. This scenario is not a premature use of
1262 -- a constant even though the Has_Completion flag is not set.
1264 if Is_Entity_Name (Nod)
1265 and then Present (Entity (Nod))
1266 and then Ekind (Entity (Nod)) = E_Constant
1267 and then Scope (Entity (Nod)) = Current_Scope
1268 and then Nkind (Declaration_Node (Entity (Nod))) =
1269 N_Object_Declaration
1270 and then not Is_Imported (Entity (Nod))
1271 and then not Has_Completion (Entity (Nod))
1272 then
1273 Error_Msg_NE
1274 ("premature use of& in call or instance", N, Entity (Nod));
1275 end if;
1277 return OK;
1278 end Find_Constant;
1280 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1282 -- Start of processing for Check_Expression_Function
1284 begin
1285 Decl := Original_Node (Unit_Declaration_Node (Nam));
1287 if Scope (Nam) = Current_Scope
1288 and then Nkind (Decl) = N_Expression_Function
1289 then
1290 Check_Deferred (Expression (Decl));
1291 end if;
1292 end Check_Expression_Function;
1294 ----------------------------
1295 -- Check_Strict_Alignment --
1296 ----------------------------
1298 procedure Check_Strict_Alignment (E : Entity_Id) is
1299 Comp : Entity_Id;
1301 begin
1302 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1303 Set_Strict_Alignment (E);
1305 elsif Is_Array_Type (E) then
1306 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1308 elsif Is_Record_Type (E) then
1309 if Is_Limited_Record (E) then
1310 Set_Strict_Alignment (E);
1311 return;
1312 end if;
1314 Comp := First_Component (E);
1315 while Present (Comp) loop
1316 if not Is_Type (Comp)
1317 and then (Strict_Alignment (Etype (Comp))
1318 or else Is_Aliased (Comp))
1319 then
1320 Set_Strict_Alignment (E);
1321 return;
1322 end if;
1324 Next_Component (Comp);
1325 end loop;
1326 end if;
1327 end Check_Strict_Alignment;
1329 -------------------------
1330 -- Check_Unsigned_Type --
1331 -------------------------
1333 procedure Check_Unsigned_Type (E : Entity_Id) is
1334 Ancestor : Entity_Id;
1335 Lo_Bound : Node_Id;
1336 Btyp : Entity_Id;
1338 begin
1339 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1340 return;
1341 end if;
1343 -- Do not attempt to analyze case where range was in error
1345 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1346 return;
1347 end if;
1349 -- The situation that is non trivial is something like
1351 -- subtype x1 is integer range -10 .. +10;
1352 -- subtype x2 is x1 range 0 .. V1;
1353 -- subtype x3 is x2 range V2 .. V3;
1354 -- subtype x4 is x3 range V4 .. V5;
1356 -- where Vn are variables. Here the base type is signed, but we still
1357 -- know that x4 is unsigned because of the lower bound of x2.
1359 -- The only way to deal with this is to look up the ancestor chain
1361 Ancestor := E;
1362 loop
1363 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1364 return;
1365 end if;
1367 Lo_Bound := Type_Low_Bound (Ancestor);
1369 if Compile_Time_Known_Value (Lo_Bound) then
1370 if Expr_Rep_Value (Lo_Bound) >= 0 then
1371 Set_Is_Unsigned_Type (E, True);
1372 end if;
1374 return;
1376 else
1377 Ancestor := Ancestor_Subtype (Ancestor);
1379 -- If no ancestor had a static lower bound, go to base type
1381 if No (Ancestor) then
1383 -- Note: the reason we still check for a compile time known
1384 -- value for the base type is that at least in the case of
1385 -- generic formals, we can have bounds that fail this test,
1386 -- and there may be other cases in error situations.
1388 Btyp := Base_Type (E);
1390 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1391 return;
1392 end if;
1394 Lo_Bound := Type_Low_Bound (Base_Type (E));
1396 if Compile_Time_Known_Value (Lo_Bound)
1397 and then Expr_Rep_Value (Lo_Bound) >= 0
1398 then
1399 Set_Is_Unsigned_Type (E, True);
1400 end if;
1402 return;
1403 end if;
1404 end if;
1405 end loop;
1406 end Check_Unsigned_Type;
1408 -------------------------
1409 -- Is_Atomic_Aggregate --
1410 -------------------------
1412 function Is_Atomic_Aggregate
1413 (E : Entity_Id;
1414 Typ : Entity_Id) return Boolean
1416 Loc : constant Source_Ptr := Sloc (E);
1417 New_N : Node_Id;
1418 Par : Node_Id;
1419 Temp : Entity_Id;
1421 begin
1422 Par := Parent (E);
1424 -- Array may be qualified, so find outer context
1426 if Nkind (Par) = N_Qualified_Expression then
1427 Par := Parent (Par);
1428 end if;
1430 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1431 and then Comes_From_Source (Par)
1432 then
1433 Temp := Make_Temporary (Loc, 'T', E);
1434 New_N :=
1435 Make_Object_Declaration (Loc,
1436 Defining_Identifier => Temp,
1437 Object_Definition => New_Occurrence_Of (Typ, Loc),
1438 Expression => Relocate_Node (E));
1439 Insert_Before (Par, New_N);
1440 Analyze (New_N);
1442 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1443 return True;
1445 else
1446 return False;
1447 end if;
1448 end Is_Atomic_Aggregate;
1450 -----------------------------------------------
1451 -- Explode_Initialization_Compound_Statement --
1452 -----------------------------------------------
1454 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1455 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1457 begin
1458 if Present (Init_Stmts)
1459 and then Nkind (Init_Stmts) = N_Compound_Statement
1460 then
1461 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1463 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1464 -- just removing it, because Freeze_All may rely on this particular
1465 -- Node_Id still being present in the enclosing list to know where to
1466 -- stop freezing.
1468 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1470 Set_Initialization_Statements (E, Empty);
1471 end if;
1472 end Explode_Initialization_Compound_Statement;
1474 ----------------
1475 -- Freeze_All --
1476 ----------------
1478 -- Note: the easy coding for this procedure would be to just build a
1479 -- single list of freeze nodes and then insert them and analyze them
1480 -- all at once. This won't work, because the analysis of earlier freeze
1481 -- nodes may recursively freeze types which would otherwise appear later
1482 -- on in the freeze list. So we must analyze and expand the freeze nodes
1483 -- as they are generated.
1485 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1486 E : Entity_Id;
1487 Decl : Node_Id;
1489 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1490 -- This is the internal recursive routine that does freezing of entities
1491 -- (but NOT the analysis of default expressions, which should not be
1492 -- recursive, we don't want to analyze those till we are sure that ALL
1493 -- the types are frozen).
1495 --------------------
1496 -- Freeze_All_Ent --
1497 --------------------
1499 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1500 E : Entity_Id;
1501 Flist : List_Id;
1502 Lastn : Node_Id;
1504 procedure Process_Flist;
1505 -- If freeze nodes are present, insert and analyze, and reset cursor
1506 -- for next insertion.
1508 -------------------
1509 -- Process_Flist --
1510 -------------------
1512 procedure Process_Flist is
1513 begin
1514 if Is_Non_Empty_List (Flist) then
1515 Lastn := Next (After);
1516 Insert_List_After_And_Analyze (After, Flist);
1518 if Present (Lastn) then
1519 After := Prev (Lastn);
1520 else
1521 After := Last (List_Containing (After));
1522 end if;
1523 end if;
1524 end Process_Flist;
1526 -- Start or processing for Freeze_All_Ent
1528 begin
1529 E := From;
1530 while Present (E) loop
1532 -- If the entity is an inner package which is not a package
1533 -- renaming, then its entities must be frozen at this point. Note
1534 -- that such entities do NOT get frozen at the end of the nested
1535 -- package itself (only library packages freeze).
1537 -- Same is true for task declarations, where anonymous records
1538 -- created for entry parameters must be frozen.
1540 if Ekind (E) = E_Package
1541 and then No (Renamed_Object (E))
1542 and then not Is_Child_Unit (E)
1543 and then not Is_Frozen (E)
1544 then
1545 Push_Scope (E);
1546 Install_Visible_Declarations (E);
1547 Install_Private_Declarations (E);
1549 Freeze_All (First_Entity (E), After);
1551 End_Package_Scope (E);
1553 if Is_Generic_Instance (E)
1554 and then Has_Delayed_Freeze (E)
1555 then
1556 Set_Has_Delayed_Freeze (E, False);
1557 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1558 end if;
1560 elsif Ekind (E) in Task_Kind
1561 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1562 N_Single_Task_Declaration)
1563 then
1564 Push_Scope (E);
1565 Freeze_All (First_Entity (E), After);
1566 End_Scope;
1568 -- For a derived tagged type, we must ensure that all the
1569 -- primitive operations of the parent have been frozen, so that
1570 -- their addresses will be in the parent's dispatch table at the
1571 -- point it is inherited.
1573 elsif Ekind (E) = E_Record_Type
1574 and then Is_Tagged_Type (E)
1575 and then Is_Tagged_Type (Etype (E))
1576 and then Is_Derived_Type (E)
1577 then
1578 declare
1579 Prim_List : constant Elist_Id :=
1580 Primitive_Operations (Etype (E));
1582 Prim : Elmt_Id;
1583 Subp : Entity_Id;
1585 begin
1586 Prim := First_Elmt (Prim_List);
1587 while Present (Prim) loop
1588 Subp := Node (Prim);
1590 if Comes_From_Source (Subp)
1591 and then not Is_Frozen (Subp)
1592 then
1593 Flist := Freeze_Entity (Subp, After);
1594 Process_Flist;
1595 end if;
1597 Next_Elmt (Prim);
1598 end loop;
1599 end;
1600 end if;
1602 if not Is_Frozen (E) then
1603 Flist := Freeze_Entity (E, After);
1604 Process_Flist;
1606 -- If already frozen, and there are delayed aspects, this is where
1607 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1608 -- for a description of how we handle aspect visibility).
1610 elsif Has_Delayed_Aspects (E) then
1612 -- Retrieve the visibility to the discriminants in order to
1613 -- analyze properly the aspects.
1615 Push_Scope_And_Install_Discriminants (E);
1617 declare
1618 Ritem : Node_Id;
1620 begin
1621 Ritem := First_Rep_Item (E);
1622 while Present (Ritem) loop
1623 if Nkind (Ritem) = N_Aspect_Specification
1624 and then Entity (Ritem) = E
1625 and then Is_Delayed_Aspect (Ritem)
1626 then
1627 Check_Aspect_At_End_Of_Declarations (Ritem);
1628 end if;
1630 Ritem := Next_Rep_Item (Ritem);
1631 end loop;
1632 end;
1634 Uninstall_Discriminants_And_Pop_Scope (E);
1635 end if;
1637 -- If an incomplete type is still not frozen, this may be a
1638 -- premature freezing because of a body declaration that follows.
1639 -- Indicate where the freezing took place. Freezing will happen
1640 -- if the body comes from source, but not if it is internally
1641 -- generated, for example as the body of a type invariant.
1643 -- If the freezing is caused by the end of the current declarative
1644 -- part, it is a Taft Amendment type, and there is no error.
1646 if not Is_Frozen (E)
1647 and then Ekind (E) = E_Incomplete_Type
1648 then
1649 declare
1650 Bod : constant Node_Id := Next (After);
1652 begin
1653 -- The presence of a body freezes all entities previously
1654 -- declared in the current list of declarations, but this
1655 -- does not apply if the body does not come from source.
1656 -- A type invariant is transformed into a subprogram body
1657 -- which is placed at the end of the private part of the
1658 -- current package, but this body does not freeze incomplete
1659 -- types that may be declared in this private part.
1661 if (Nkind_In (Bod, N_Subprogram_Body,
1662 N_Entry_Body,
1663 N_Package_Body,
1664 N_Protected_Body,
1665 N_Task_Body)
1666 or else Nkind (Bod) in N_Body_Stub)
1667 and then
1668 List_Containing (After) = List_Containing (Parent (E))
1669 and then Comes_From_Source (Bod)
1670 then
1671 Error_Msg_Sloc := Sloc (Next (After));
1672 Error_Msg_NE
1673 ("type& is frozen# before its full declaration",
1674 Parent (E), E);
1675 end if;
1676 end;
1677 end if;
1679 Next_Entity (E);
1680 end loop;
1681 end Freeze_All_Ent;
1683 -- Start of processing for Freeze_All
1685 begin
1686 Freeze_All_Ent (From, After);
1688 -- Now that all types are frozen, we can deal with default expressions
1689 -- that require us to build a default expression functions. This is the
1690 -- point at which such functions are constructed (after all types that
1691 -- might be used in such expressions have been frozen).
1693 -- For subprograms that are renaming_as_body, we create the wrapper
1694 -- bodies as needed.
1696 -- We also add finalization chains to access types whose designated
1697 -- types are controlled. This is normally done when freezing the type,
1698 -- but this misses recursive type definitions where the later members
1699 -- of the recursion introduce controlled components.
1701 -- Loop through entities
1703 E := From;
1704 while Present (E) loop
1705 if Is_Subprogram (E) then
1707 if not Default_Expressions_Processed (E) then
1708 Process_Default_Expressions (E, After);
1709 end if;
1711 if not Has_Completion (E) then
1712 Decl := Unit_Declaration_Node (E);
1714 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1715 if Error_Posted (Decl) then
1716 Set_Has_Completion (E);
1717 else
1718 Build_And_Analyze_Renamed_Body (Decl, E, After);
1719 end if;
1721 elsif Nkind (Decl) = N_Subprogram_Declaration
1722 and then Present (Corresponding_Body (Decl))
1723 and then
1724 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1725 = N_Subprogram_Renaming_Declaration
1726 then
1727 Build_And_Analyze_Renamed_Body
1728 (Decl, Corresponding_Body (Decl), After);
1729 end if;
1730 end if;
1732 elsif Ekind (E) in Task_Kind
1733 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1734 N_Single_Task_Declaration)
1735 then
1736 declare
1737 Ent : Entity_Id;
1739 begin
1740 Ent := First_Entity (E);
1741 while Present (Ent) loop
1742 if Is_Entry (Ent)
1743 and then not Default_Expressions_Processed (Ent)
1744 then
1745 Process_Default_Expressions (Ent, After);
1746 end if;
1748 Next_Entity (Ent);
1749 end loop;
1750 end;
1752 -- We add finalization masters to access types whose designated types
1753 -- require finalization. This is normally done when freezing the
1754 -- type, but this misses recursive type definitions where the later
1755 -- members of the recursion introduce controlled components (such as
1756 -- can happen when incomplete types are involved), as well cases
1757 -- where a component type is private and the controlled full type
1758 -- occurs after the access type is frozen. Cases that don't need a
1759 -- finalization master are generic formal types (the actual type will
1760 -- have it) and types derived from them, and types with Java and CIL
1761 -- conventions, since those are used for API bindings.
1762 -- (Are there any other cases that should be excluded here???)
1764 elsif Is_Access_Type (E)
1765 and then Comes_From_Source (E)
1766 and then not Is_Generic_Type (Root_Type (E))
1767 and then Needs_Finalization (Designated_Type (E))
1768 then
1769 Build_Finalization_Master (E);
1770 end if;
1772 Next_Entity (E);
1773 end loop;
1774 end Freeze_All;
1776 -----------------------
1777 -- Freeze_And_Append --
1778 -----------------------
1780 procedure Freeze_And_Append
1781 (Ent : Entity_Id;
1782 N : Node_Id;
1783 Result : in out List_Id)
1785 L : constant List_Id := Freeze_Entity (Ent, N);
1786 begin
1787 if Is_Non_Empty_List (L) then
1788 if Result = No_List then
1789 Result := L;
1790 else
1791 Append_List (L, Result);
1792 end if;
1793 end if;
1794 end Freeze_And_Append;
1796 -------------------
1797 -- Freeze_Before --
1798 -------------------
1800 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1801 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1803 begin
1804 if Ekind (T) = E_Function then
1805 Check_Expression_Function (N, T);
1806 end if;
1808 if Is_Non_Empty_List (Freeze_Nodes) then
1809 Insert_Actions (N, Freeze_Nodes);
1810 end if;
1811 end Freeze_Before;
1813 -------------------
1814 -- Freeze_Entity --
1815 -------------------
1817 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1818 Loc : constant Source_Ptr := Sloc (N);
1819 Comp : Entity_Id;
1820 F_Node : Node_Id;
1821 Indx : Node_Id;
1822 Formal : Entity_Id;
1823 Atype : Entity_Id;
1825 Test_E : Entity_Id := E;
1826 -- This could use a comment ???
1828 Late_Freezing : Boolean := False;
1829 -- Used to detect attempt to freeze function declared in another unit
1831 Result : List_Id := No_List;
1832 -- List of freezing actions, left at No_List if none
1834 Has_Default_Initialization : Boolean := False;
1835 -- This flag gets set to true for a variable with default initialization
1837 procedure Add_To_Result (N : Node_Id);
1838 -- N is a freezing action to be appended to the Result
1840 function After_Last_Declaration return Boolean;
1841 -- If Loc is a freeze_entity that appears after the last declaration
1842 -- in the scope, inhibit error messages on late completion.
1844 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1845 -- Check that an Access or Unchecked_Access attribute with a prefix
1846 -- which is the current instance type can only be applied when the type
1847 -- is limited.
1849 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1850 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1851 -- integer literal without an explicit corresponding size clause. The
1852 -- caller has checked that Utype is a modular integer type.
1854 procedure Freeze_Array_Type (Arr : Entity_Id);
1855 -- Freeze array type, including freezing index and component types
1857 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1858 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1859 -- package. Recurse on inner generic packages.
1861 procedure Freeze_Record_Type (Rec : Entity_Id);
1862 -- Freeze record type, including freezing component types, and freezing
1863 -- primitive operations if this is a tagged type.
1865 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1866 -- Determine whether an arbitrary entity is subject to Boolean aspect
1867 -- Import and its value is specified as True.
1869 procedure Late_Freeze_Subprogram (E : Entity_Id);
1870 -- Following AI05-151, a function can return a limited view of a type
1871 -- declared elsewhere. In that case the function cannot be frozen at
1872 -- the end of its enclosing package. If its first use is in a different
1873 -- unit, it cannot be frozen there, but if the call is legal the full
1874 -- view of the return type is available and the subprogram can now be
1875 -- frozen. However the freeze node cannot be inserted at the point of
1876 -- call, but rather must go in the package holding the function, so that
1877 -- the backend can process it in the proper context.
1879 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1880 -- If E is an entity for an imported subprogram with pre/post-conditions
1881 -- then this procedure will create a wrapper to ensure that proper run-
1882 -- time checking of the pre/postconditions. See body for details.
1884 -------------------
1885 -- Add_To_Result --
1886 -------------------
1888 procedure Add_To_Result (N : Node_Id) is
1889 begin
1890 if No (Result) then
1891 Result := New_List (N);
1892 else
1893 Append (N, Result);
1894 end if;
1895 end Add_To_Result;
1897 ----------------------------
1898 -- After_Last_Declaration --
1899 ----------------------------
1901 function After_Last_Declaration return Boolean is
1902 Spec : constant Node_Id := Parent (Current_Scope);
1904 begin
1905 if Nkind (Spec) = N_Package_Specification then
1906 if Present (Private_Declarations (Spec)) then
1907 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1908 elsif Present (Visible_Declarations (Spec)) then
1909 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1910 else
1911 return False;
1912 end if;
1914 else
1915 return False;
1916 end if;
1917 end After_Last_Declaration;
1919 ----------------------------
1920 -- Check_Current_Instance --
1921 ----------------------------
1923 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1925 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1926 -- Determine whether Typ is compatible with the rules for aliased
1927 -- views of types as defined in RM 3.10 in the various dialects.
1929 function Process (N : Node_Id) return Traverse_Result;
1930 -- Process routine to apply check to given node
1932 -----------------------------
1933 -- Is_Aliased_View_Of_Type --
1934 -----------------------------
1936 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1937 Typ_Decl : constant Node_Id := Parent (Typ);
1939 begin
1940 -- Common case
1942 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1943 and then Limited_Present (Type_Definition (Typ_Decl))
1944 then
1945 return True;
1947 -- The following paragraphs describe what a legal aliased view of
1948 -- a type is in the various dialects of Ada.
1950 -- Ada 95
1952 -- The current instance of a limited type, and a formal parameter
1953 -- or generic formal object of a tagged type.
1955 -- Ada 95 limited type
1956 -- * Type with reserved word "limited"
1957 -- * A protected or task type
1958 -- * A composite type with limited component
1960 elsif Ada_Version <= Ada_95 then
1961 return Is_Limited_Type (Typ);
1963 -- Ada 2005
1965 -- The current instance of a limited tagged type, a protected
1966 -- type, a task type, or a type that has the reserved word
1967 -- "limited" in its full definition ... a formal parameter or
1968 -- generic formal object of a tagged type.
1970 -- Ada 2005 limited type
1971 -- * Type with reserved word "limited", "synchronized", "task"
1972 -- or "protected"
1973 -- * A composite type with limited component
1974 -- * A derived type whose parent is a non-interface limited type
1976 elsif Ada_Version = Ada_2005 then
1977 return
1978 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1979 or else
1980 (Is_Derived_Type (Typ)
1981 and then not Is_Interface (Etype (Typ))
1982 and then Is_Limited_Type (Etype (Typ)));
1984 -- Ada 2012 and beyond
1986 -- The current instance of an immutably limited type ... a formal
1987 -- parameter or generic formal object of a tagged type.
1989 -- Ada 2012 limited type
1990 -- * Type with reserved word "limited", "synchronized", "task"
1991 -- or "protected"
1992 -- * A composite type with limited component
1993 -- * A derived type whose parent is a non-interface limited type
1994 -- * An incomplete view
1996 -- Ada 2012 immutably limited type
1997 -- * Explicitly limited record type
1998 -- * Record extension with "limited" present
1999 -- * Non-formal limited private type that is either tagged
2000 -- or has at least one access discriminant with a default
2001 -- expression
2002 -- * Task type, protected type or synchronized interface
2003 -- * Type derived from immutably limited type
2005 else
2006 return
2007 Is_Immutably_Limited_Type (Typ)
2008 or else Is_Incomplete_Type (Typ);
2009 end if;
2010 end Is_Aliased_View_Of_Type;
2012 -------------
2013 -- Process --
2014 -------------
2016 function Process (N : Node_Id) return Traverse_Result is
2017 begin
2018 case Nkind (N) is
2019 when N_Attribute_Reference =>
2020 if Nam_In (Attribute_Name (N), Name_Access,
2021 Name_Unchecked_Access)
2022 and then Is_Entity_Name (Prefix (N))
2023 and then Is_Type (Entity (Prefix (N)))
2024 and then Entity (Prefix (N)) = E
2025 then
2026 if Ada_Version < Ada_2012 then
2027 Error_Msg_N
2028 ("current instance must be a limited type",
2029 Prefix (N));
2030 else
2031 Error_Msg_N
2032 ("current instance must be an immutably limited "
2033 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2034 end if;
2036 return Abandon;
2038 else
2039 return OK;
2040 end if;
2042 when others => return OK;
2043 end case;
2044 end Process;
2046 procedure Traverse is new Traverse_Proc (Process);
2048 -- Local variables
2050 Rec_Type : constant Entity_Id :=
2051 Scope (Defining_Identifier (Comp_Decl));
2053 -- Start of processing for Check_Current_Instance
2055 begin
2056 if not Is_Aliased_View_Of_Type (Rec_Type) then
2057 Traverse (Comp_Decl);
2058 end if;
2059 end Check_Current_Instance;
2061 ------------------------------
2062 -- Check_Suspicious_Modulus --
2063 ------------------------------
2065 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2066 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2068 begin
2069 if not Warn_On_Suspicious_Modulus_Value then
2070 return;
2071 end if;
2073 if Nkind (Decl) = N_Full_Type_Declaration then
2074 declare
2075 Tdef : constant Node_Id := Type_Definition (Decl);
2077 begin
2078 if Nkind (Tdef) = N_Modular_Type_Definition then
2079 declare
2080 Modulus : constant Node_Id :=
2081 Original_Node (Expression (Tdef));
2083 begin
2084 if Nkind (Modulus) = N_Integer_Literal then
2085 declare
2086 Modv : constant Uint := Intval (Modulus);
2087 Sizv : constant Uint := RM_Size (Utype);
2089 begin
2090 -- First case, modulus and size are the same. This
2091 -- happens if you have something like mod 32, with
2092 -- an explicit size of 32, this is for sure a case
2093 -- where the warning is given, since it is seems
2094 -- very unlikely that someone would want e.g. a
2095 -- five bit type stored in 32 bits. It is much
2096 -- more likely they wanted a 32-bit type.
2098 if Modv = Sizv then
2099 null;
2101 -- Second case, the modulus is 32 or 64 and no
2102 -- size clause is present. This is a less clear
2103 -- case for giving the warning, but in the case
2104 -- of 32/64 (5-bit or 6-bit types) these seem rare
2105 -- enough that it is a likely error (and in any
2106 -- case using 2**5 or 2**6 in these cases seems
2107 -- clearer. We don't include 8 or 16 here, simply
2108 -- because in practice 3-bit and 4-bit types are
2109 -- more common and too many false positives if
2110 -- we warn in these cases.
2112 elsif not Has_Size_Clause (Utype)
2113 and then (Modv = Uint_32 or else Modv = Uint_64)
2114 then
2115 null;
2117 -- No warning needed
2119 else
2120 return;
2121 end if;
2123 -- If we fall through, give warning
2125 Error_Msg_Uint_1 := Modv;
2126 Error_Msg_N
2127 ("?M?2 '*'*^' may have been intended here",
2128 Modulus);
2129 end;
2130 end if;
2131 end;
2132 end if;
2133 end;
2134 end if;
2135 end Check_Suspicious_Modulus;
2137 -----------------------
2138 -- Freeze_Array_Type --
2139 -----------------------
2141 procedure Freeze_Array_Type (Arr : Entity_Id) is
2142 FS : constant Entity_Id := First_Subtype (Arr);
2143 Ctyp : constant Entity_Id := Component_Type (Arr);
2144 Clause : Entity_Id;
2146 Non_Standard_Enum : Boolean := False;
2147 -- Set true if any of the index types is an enumeration type with a
2148 -- non-standard representation.
2150 begin
2151 Freeze_And_Append (Ctyp, N, Result);
2153 Indx := First_Index (Arr);
2154 while Present (Indx) loop
2155 Freeze_And_Append (Etype (Indx), N, Result);
2157 if Is_Enumeration_Type (Etype (Indx))
2158 and then Has_Non_Standard_Rep (Etype (Indx))
2159 then
2160 Non_Standard_Enum := True;
2161 end if;
2163 Next_Index (Indx);
2164 end loop;
2166 -- Processing that is done only for base types
2168 if Ekind (Arr) = E_Array_Type then
2170 -- Deal with default setting of reverse storage order
2172 Set_SSO_From_Default (Arr);
2174 -- Propagate flags for component type
2176 if Is_Controlled (Component_Type (Arr))
2177 or else Has_Controlled_Component (Ctyp)
2178 then
2179 Set_Has_Controlled_Component (Arr);
2180 end if;
2182 if Has_Unchecked_Union (Component_Type (Arr)) then
2183 Set_Has_Unchecked_Union (Arr);
2184 end if;
2186 -- Warn for pragma Pack overriding foreign convention
2188 if Has_Foreign_Convention (Ctyp)
2189 and then Has_Pragma_Pack (Arr)
2190 then
2191 declare
2192 CN : constant Name_Id :=
2193 Get_Convention_Name (Convention (Ctyp));
2194 PP : constant Node_Id :=
2195 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2196 begin
2197 if Present (PP) then
2198 Error_Msg_Name_1 := CN;
2199 Error_Msg_Sloc := Sloc (Arr);
2200 Error_Msg_N
2201 ("pragma Pack affects convention % components #??", PP);
2202 Error_Msg_Name_1 := CN;
2203 Error_Msg_N
2204 ("\array components may not have % compatible "
2205 & "representation??", PP);
2206 end if;
2207 end;
2208 end if;
2210 -- If packing was requested or if the component size was
2211 -- set explicitly, then see if bit packing is required. This
2212 -- processing is only done for base types, since all of the
2213 -- representation aspects involved are type-related.
2215 -- This is not just an optimization, if we start processing the
2216 -- subtypes, they interfere with the settings on the base type
2217 -- (this is because Is_Packed has a slightly different meaning
2218 -- before and after freezing).
2220 declare
2221 Csiz : Uint;
2222 Esiz : Uint;
2224 begin
2225 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2226 and then Known_Static_RM_Size (Ctyp)
2227 and then not Has_Component_Size_Clause (Arr)
2228 then
2229 Csiz := UI_Max (RM_Size (Ctyp), 1);
2231 elsif Known_Component_Size (Arr) then
2232 Csiz := Component_Size (Arr);
2234 elsif not Known_Static_Esize (Ctyp) then
2235 Csiz := Uint_0;
2237 else
2238 Esiz := Esize (Ctyp);
2240 -- We can set the component size if it is less than 16,
2241 -- rounding it up to the next storage unit size.
2243 if Esiz <= 8 then
2244 Csiz := Uint_8;
2245 elsif Esiz <= 16 then
2246 Csiz := Uint_16;
2247 else
2248 Csiz := Uint_0;
2249 end if;
2251 -- Set component size up to match alignment if it would
2252 -- otherwise be less than the alignment. This deals with
2253 -- cases of types whose alignment exceeds their size (the
2254 -- padded type cases).
2256 if Csiz /= 0 then
2257 declare
2258 A : constant Uint := Alignment_In_Bits (Ctyp);
2259 begin
2260 if Csiz < A then
2261 Csiz := A;
2262 end if;
2263 end;
2264 end if;
2265 end if;
2267 -- Case of component size that may result in packing
2269 if 1 <= Csiz and then Csiz <= 64 then
2270 declare
2271 Ent : constant Entity_Id :=
2272 First_Subtype (Arr);
2273 Pack_Pragma : constant Node_Id :=
2274 Get_Rep_Pragma (Ent, Name_Pack);
2275 Comp_Size_C : constant Node_Id :=
2276 Get_Attribute_Definition_Clause
2277 (Ent, Attribute_Component_Size);
2279 begin
2280 -- Warn if we have pack and component size so that the
2281 -- pack is ignored.
2283 -- Note: here we must check for the presence of a
2284 -- component size before checking for a Pack pragma to
2285 -- deal with the case where the array type is a derived
2286 -- type whose parent is currently private.
2288 if Present (Comp_Size_C)
2289 and then Has_Pragma_Pack (Ent)
2290 and then Warn_On_Redundant_Constructs
2291 then
2292 Error_Msg_Sloc := Sloc (Comp_Size_C);
2293 Error_Msg_NE
2294 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2295 Error_Msg_N
2296 ("\?r?explicit component size given#!", Pack_Pragma);
2297 Set_Is_Packed (Base_Type (Ent), False);
2298 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2299 end if;
2301 -- Set component size if not already set by a component
2302 -- size clause.
2304 if not Present (Comp_Size_C) then
2305 Set_Component_Size (Arr, Csiz);
2306 end if;
2308 -- Check for base type of 8, 16, 32 bits, where an
2309 -- unsigned subtype has a length one less than the
2310 -- base type (e.g. Natural subtype of Integer).
2312 -- In such cases, if a component size was not set
2313 -- explicitly, then generate a warning.
2315 if Has_Pragma_Pack (Arr)
2316 and then not Present (Comp_Size_C)
2317 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2318 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2319 then
2320 Error_Msg_Uint_1 := Csiz;
2322 if Present (Pack_Pragma) then
2323 Error_Msg_N
2324 ("??pragma Pack causes component size to be ^!",
2325 Pack_Pragma);
2326 Error_Msg_N
2327 ("\??use Component_Size to set desired value!",
2328 Pack_Pragma);
2329 end if;
2330 end if;
2332 -- Actual packing is not needed for 8, 16, 32, 64. Also
2333 -- not needed for 24 if alignment is 1.
2335 if Csiz = 8
2336 or else Csiz = 16
2337 or else Csiz = 32
2338 or else Csiz = 64
2339 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2340 then
2341 -- Here the array was requested to be packed, but
2342 -- the packing request had no effect, so Is_Packed
2343 -- is reset.
2345 -- Note: semantically this means that we lose track
2346 -- of the fact that a derived type inherited a pragma
2347 -- Pack that was non- effective, but that seems fine.
2349 -- We regard a Pack pragma as a request to set a
2350 -- representation characteristic, and this request
2351 -- may be ignored.
2353 Set_Is_Packed (Base_Type (Arr), False);
2354 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2356 if Known_Static_Esize (Component_Type (Arr))
2357 and then Esize (Component_Type (Arr)) = Csiz
2358 then
2359 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2360 end if;
2362 -- In all other cases, packing is indeed needed
2364 else
2365 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2366 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2367 Set_Is_Packed (Base_Type (Arr), True);
2368 end if;
2369 end;
2370 end if;
2371 end;
2373 -- Check for Atomic_Components or Aliased with unsuitable packing
2374 -- or explicit component size clause given.
2376 if (Has_Atomic_Components (Arr)
2377 or else
2378 Has_Aliased_Components (Arr))
2379 and then
2380 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2381 then
2382 Alias_Atomic_Check : declare
2384 procedure Complain_CS (T : String);
2385 -- Outputs error messages for incorrect CS clause or pragma
2386 -- Pack for aliased or atomic components (T is "aliased" or
2387 -- "atomic");
2389 -----------------
2390 -- Complain_CS --
2391 -----------------
2393 procedure Complain_CS (T : String) is
2394 begin
2395 if Has_Component_Size_Clause (Arr) then
2396 Clause :=
2397 Get_Attribute_Definition_Clause
2398 (FS, Attribute_Component_Size);
2400 if Known_Static_Esize (Ctyp) then
2401 Error_Msg_N
2402 ("incorrect component size for "
2403 & T & " components", Clause);
2404 Error_Msg_Uint_1 := Esize (Ctyp);
2405 Error_Msg_N
2406 ("\only allowed value is^", Clause);
2408 else
2409 Error_Msg_N
2410 ("component size cannot be given for "
2411 & T & " components", Clause);
2412 end if;
2414 else
2415 Error_Msg_N
2416 ("cannot pack " & T & " components",
2417 Get_Rep_Pragma (FS, Name_Pack));
2418 end if;
2420 return;
2421 end Complain_CS;
2423 -- Start of processing for Alias_Atomic_Check
2425 begin
2426 -- If object size of component type isn't known, we cannot
2427 -- be sure so we defer to the back end.
2429 if not Known_Static_Esize (Ctyp) then
2430 null;
2432 -- Case where component size has no effect. First check for
2433 -- object size of component type multiple of the storage
2434 -- unit size.
2436 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2438 -- OK in both packing case and component size case if RM
2439 -- size is known and static and same as the object size.
2441 and then
2442 ((Known_Static_RM_Size (Ctyp)
2443 and then Esize (Ctyp) = RM_Size (Ctyp))
2445 -- Or if we have an explicit component size clause and
2446 -- the component size and object size are equal.
2448 or else
2449 (Has_Component_Size_Clause (Arr)
2450 and then Component_Size (Arr) = Esize (Ctyp)))
2451 then
2452 null;
2454 elsif Has_Aliased_Components (Arr)
2455 or else Is_Aliased (Ctyp)
2456 then
2457 Complain_CS ("aliased");
2459 elsif Has_Atomic_Components (Arr)
2460 or else Is_Atomic (Ctyp)
2461 then
2462 Complain_CS ("atomic");
2463 end if;
2464 end Alias_Atomic_Check;
2465 end if;
2467 -- Warn for case of atomic type
2469 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2471 if Present (Clause)
2472 and then not Addressable (Component_Size (FS))
2473 then
2474 Error_Msg_NE
2475 ("non-atomic components of type& may not be "
2476 & "accessible by separate tasks??", Clause, Arr);
2478 if Has_Component_Size_Clause (Arr) then
2479 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2480 (FS, Attribute_Component_Size));
2481 Error_Msg_N ("\because of component size clause#??", Clause);
2483 elsif Has_Pragma_Pack (Arr) then
2484 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2485 Error_Msg_N ("\because of pragma Pack#??", Clause);
2486 end if;
2487 end if;
2489 -- Check for scalar storage order
2491 declare
2492 Dummy : Boolean;
2493 begin
2494 Check_Component_Storage_Order
2495 (Encl_Type => Arr,
2496 Comp => Empty,
2497 ADC => Get_Attribute_Definition_Clause
2498 (First_Subtype (Arr),
2499 Attribute_Scalar_Storage_Order),
2500 Comp_ADC_Present => Dummy);
2501 end;
2503 -- Processing that is done only for subtypes
2505 else
2506 -- Acquire alignment from base type
2508 if Unknown_Alignment (Arr) then
2509 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2510 Adjust_Esize_Alignment (Arr);
2511 end if;
2512 end if;
2514 -- Specific checks for bit-packed arrays
2516 if Is_Bit_Packed_Array (Arr) then
2518 -- Check number of elements for bit packed arrays that come from
2519 -- source and have compile time known ranges. The bit-packed
2520 -- arrays circuitry does not support arrays with more than
2521 -- Integer'Last + 1 elements, and when this restriction is
2522 -- violated, causes incorrect data access.
2524 -- For the case where this is not compile time known, a run-time
2525 -- check should be generated???
2527 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2528 declare
2529 Elmts : Uint;
2530 Index : Node_Id;
2531 Ilen : Node_Id;
2532 Ityp : Entity_Id;
2534 begin
2535 Elmts := Uint_1;
2536 Index := First_Index (Arr);
2537 while Present (Index) loop
2538 Ityp := Etype (Index);
2540 -- Never generate an error if any index is of a generic
2541 -- type. We will check this in instances.
2543 if Is_Generic_Type (Ityp) then
2544 Elmts := Uint_0;
2545 exit;
2546 end if;
2548 Ilen :=
2549 Make_Attribute_Reference (Loc,
2550 Prefix => New_Occurrence_Of (Ityp, Loc),
2551 Attribute_Name => Name_Range_Length);
2552 Analyze_And_Resolve (Ilen);
2554 -- No attempt is made to check number of elements
2555 -- if not compile time known.
2557 if Nkind (Ilen) /= N_Integer_Literal then
2558 Elmts := Uint_0;
2559 exit;
2560 end if;
2562 Elmts := Elmts * Intval (Ilen);
2563 Next_Index (Index);
2564 end loop;
2566 if Elmts > Intval (High_Bound
2567 (Scalar_Range (Standard_Integer))) + 1
2568 then
2569 Error_Msg_N
2570 ("bit packed array type may not have "
2571 & "more than Integer''Last+1 elements", Arr);
2572 end if;
2573 end;
2574 end if;
2576 -- Check size
2578 if Known_RM_Size (Arr) then
2579 declare
2580 SizC : constant Node_Id := Size_Clause (Arr);
2581 Discard : Boolean;
2583 begin
2584 -- It is not clear if it is possible to have no size clause
2585 -- at this stage, but it is not worth worrying about. Post
2586 -- error on the entity name in the size clause if present,
2587 -- else on the type entity itself.
2589 if Present (SizC) then
2590 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2591 else
2592 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2593 end if;
2594 end;
2595 end if;
2596 end if;
2598 -- If any of the index types was an enumeration type with a
2599 -- non-standard rep clause, then we indicate that the array type
2600 -- is always packed (even if it is not bit packed).
2602 if Non_Standard_Enum then
2603 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2604 Set_Is_Packed (Base_Type (Arr));
2605 end if;
2607 Set_Component_Alignment_If_Not_Set (Arr);
2609 -- If the array is packed, we must create the packed array type to be
2610 -- used to actually implement the type. This is only needed for real
2611 -- array types (not for string literal types, since they are present
2612 -- only for the front end).
2614 if Is_Packed (Arr)
2615 and then Ekind (Arr) /= E_String_Literal_Subtype
2616 then
2617 Create_Packed_Array_Impl_Type (Arr);
2618 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2620 -- Size information of packed array type is copied to the array
2621 -- type, since this is really the representation. But do not
2622 -- override explicit existing size values. If the ancestor subtype
2623 -- is constrained the Packed_Array_Impl_Type will be inherited
2624 -- from it, but the size may have been provided already, and
2625 -- must not be overridden either.
2627 if not Has_Size_Clause (Arr)
2628 and then
2629 (No (Ancestor_Subtype (Arr))
2630 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2631 then
2632 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2633 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2634 end if;
2636 if not Has_Alignment_Clause (Arr) then
2637 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2638 end if;
2639 end if;
2641 -- For non-packed arrays set the alignment of the array to the
2642 -- alignment of the component type if it is unknown. Skip this
2643 -- in atomic case (atomic arrays may need larger alignments).
2645 if not Is_Packed (Arr)
2646 and then Unknown_Alignment (Arr)
2647 and then Known_Alignment (Ctyp)
2648 and then Known_Static_Component_Size (Arr)
2649 and then Known_Static_Esize (Ctyp)
2650 and then Esize (Ctyp) = Component_Size (Arr)
2651 and then not Is_Atomic (Arr)
2652 then
2653 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2654 end if;
2655 end Freeze_Array_Type;
2657 -----------------------------
2658 -- Freeze_Generic_Entities --
2659 -----------------------------
2661 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
2662 E : Entity_Id;
2663 F : Node_Id;
2664 Flist : List_Id;
2666 begin
2667 Flist := New_List;
2668 E := First_Entity (Pack);
2669 while Present (E) loop
2670 if Is_Type (E) and then not Is_Generic_Type (E) then
2671 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2672 Set_Entity (F, E);
2673 Append_To (Flist, F);
2675 elsif Ekind (E) = E_Generic_Package then
2676 Append_List_To (Flist, Freeze_Generic_Entities (E));
2677 end if;
2679 Next_Entity (E);
2680 end loop;
2682 return Flist;
2683 end Freeze_Generic_Entities;
2685 ------------------------
2686 -- Freeze_Record_Type --
2687 ------------------------
2689 procedure Freeze_Record_Type (Rec : Entity_Id) is
2690 ADC : Node_Id;
2691 Comp : Entity_Id;
2692 IR : Node_Id;
2693 Prev : Entity_Id;
2695 Junk : Boolean;
2696 pragma Warnings (Off, Junk);
2698 Rec_Pushed : Boolean := False;
2699 -- Set True if the record type scope Rec has been pushed on the scope
2700 -- stack. Needed for the analysis of delayed aspects specified to the
2701 -- components of Rec.
2703 SSO_ADC : Node_Id;
2704 -- Scalar_Storage_Order attribute definition clause for the record
2706 Unplaced_Component : Boolean := False;
2707 -- Set True if we find at least one component with no component
2708 -- clause (used to warn about useless Pack pragmas).
2710 Placed_Component : Boolean := False;
2711 -- Set True if we find at least one component with a component
2712 -- clause (used to warn about useless Bit_Order pragmas, and also
2713 -- to detect cases where Implicit_Packing may have an effect).
2715 Aliased_Component : Boolean := False;
2716 -- Set True if we find at least one component which is aliased. This
2717 -- is used to prevent Implicit_Packing of the record, since packing
2718 -- cannot modify the size of alignment of an aliased component.
2720 SSO_ADC_Component : Boolean := False;
2721 -- Set True if we find at least one component whose type has a
2722 -- Scalar_Storage_Order attribute definition clause.
2724 All_Scalar_Components : Boolean := True;
2725 -- Set False if we encounter a component of a non-scalar type
2727 Scalar_Component_Total_RM_Size : Uint := Uint_0;
2728 Scalar_Component_Total_Esize : Uint := Uint_0;
2729 -- Accumulates total RM_Size values and total Esize values of all
2730 -- scalar components. Used for processing of Implicit_Packing.
2732 function Check_Allocator (N : Node_Id) return Node_Id;
2733 -- If N is an allocator, possibly wrapped in one or more level of
2734 -- qualified expression(s), return the inner allocator node, else
2735 -- return Empty.
2737 procedure Check_Itype (Typ : Entity_Id);
2738 -- If the component subtype is an access to a constrained subtype of
2739 -- an already frozen type, make the subtype frozen as well. It might
2740 -- otherwise be frozen in the wrong scope, and a freeze node on
2741 -- subtype has no effect. Similarly, if the component subtype is a
2742 -- regular (not protected) access to subprogram, set the anonymous
2743 -- subprogram type to frozen as well, to prevent an out-of-scope
2744 -- freeze node at some eventual point of call. Protected operations
2745 -- are handled elsewhere.
2747 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
2748 -- Make sure that all types mentioned in Discrete_Choices of the
2749 -- variants referenceed by the Variant_Part VP are frozen. This is
2750 -- a recursive routine to deal with nested variants.
2752 ---------------------
2753 -- Check_Allocator --
2754 ---------------------
2756 function Check_Allocator (N : Node_Id) return Node_Id is
2757 Inner : Node_Id;
2758 begin
2759 Inner := N;
2760 loop
2761 if Nkind (Inner) = N_Allocator then
2762 return Inner;
2763 elsif Nkind (Inner) = N_Qualified_Expression then
2764 Inner := Expression (Inner);
2765 else
2766 return Empty;
2767 end if;
2768 end loop;
2769 end Check_Allocator;
2771 -----------------
2772 -- Check_Itype --
2773 -----------------
2775 procedure Check_Itype (Typ : Entity_Id) is
2776 Desig : constant Entity_Id := Designated_Type (Typ);
2778 begin
2779 if not Is_Frozen (Desig)
2780 and then Is_Frozen (Base_Type (Desig))
2781 then
2782 Set_Is_Frozen (Desig);
2784 -- In addition, add an Itype_Reference to ensure that the
2785 -- access subtype is elaborated early enough. This cannot be
2786 -- done if the subtype may depend on discriminants.
2788 if Ekind (Comp) = E_Component
2789 and then Is_Itype (Etype (Comp))
2790 and then not Has_Discriminants (Rec)
2791 then
2792 IR := Make_Itype_Reference (Sloc (Comp));
2793 Set_Itype (IR, Desig);
2794 Add_To_Result (IR);
2795 end if;
2797 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
2798 and then Convention (Desig) /= Convention_Protected
2799 then
2800 Set_Is_Frozen (Desig);
2801 end if;
2802 end Check_Itype;
2804 ------------------------------------
2805 -- Freeze_Choices_In_Variant_Part --
2806 ------------------------------------
2808 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
2809 pragma Assert (Nkind (VP) = N_Variant_Part);
2811 Variant : Node_Id;
2812 Choice : Node_Id;
2813 CL : Node_Id;
2815 begin
2816 -- Loop through variants
2818 Variant := First_Non_Pragma (Variants (VP));
2819 while Present (Variant) loop
2821 -- Loop through choices, checking that all types are frozen
2823 Choice := First_Non_Pragma (Discrete_Choices (Variant));
2824 while Present (Choice) loop
2825 if Nkind (Choice) in N_Has_Etype
2826 and then Present (Etype (Choice))
2827 then
2828 Freeze_And_Append (Etype (Choice), N, Result);
2829 end if;
2831 Next_Non_Pragma (Choice);
2832 end loop;
2834 -- Check for nested variant part to process
2836 CL := Component_List (Variant);
2838 if not Null_Present (CL) then
2839 if Present (Variant_Part (CL)) then
2840 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
2841 end if;
2842 end if;
2844 Next_Non_Pragma (Variant);
2845 end loop;
2846 end Freeze_Choices_In_Variant_Part;
2848 -- Start of processing for Freeze_Record_Type
2850 begin
2851 -- Deal with delayed aspect specifications for components. The
2852 -- analysis of the aspect is required to be delayed to the freeze
2853 -- point, thus we analyze the pragma or attribute definition
2854 -- clause in the tree at this point. We also analyze the aspect
2855 -- specification node at the freeze point when the aspect doesn't
2856 -- correspond to pragma/attribute definition clause.
2858 Comp := First_Entity (Rec);
2859 while Present (Comp) loop
2860 if Ekind (Comp) = E_Component
2861 and then Has_Delayed_Aspects (Comp)
2862 then
2863 if not Rec_Pushed then
2864 Push_Scope (Rec);
2865 Rec_Pushed := True;
2867 -- The visibility to the discriminants must be restored in
2868 -- order to properly analyze the aspects.
2870 if Has_Discriminants (Rec) then
2871 Install_Discriminants (Rec);
2872 end if;
2873 end if;
2875 Analyze_Aspects_At_Freeze_Point (Comp);
2876 end if;
2878 Next_Entity (Comp);
2879 end loop;
2881 -- Pop the scope if Rec scope has been pushed on the scope stack
2882 -- during the delayed aspect analysis process.
2884 if Rec_Pushed then
2885 if Has_Discriminants (Rec) then
2886 Uninstall_Discriminants (Rec);
2887 end if;
2889 Pop_Scope;
2890 end if;
2892 -- Freeze components and embedded subtypes
2894 Comp := First_Entity (Rec);
2895 Prev := Empty;
2896 while Present (Comp) loop
2897 if Is_Aliased (Comp) then
2898 Aliased_Component := True;
2899 end if;
2901 -- Handle the component and discriminant case
2903 if Ekind_In (Comp, E_Component, E_Discriminant) then
2904 declare
2905 CC : constant Node_Id := Component_Clause (Comp);
2907 begin
2908 -- Freezing a record type freezes the type of each of its
2909 -- components. However, if the type of the component is
2910 -- part of this record, we do not want or need a separate
2911 -- Freeze_Node. Note that Is_Itype is wrong because that's
2912 -- also set in private type cases. We also can't check for
2913 -- the Scope being exactly Rec because of private types and
2914 -- record extensions.
2916 if Is_Itype (Etype (Comp))
2917 and then Is_Record_Type (Underlying_Type
2918 (Scope (Etype (Comp))))
2919 then
2920 Undelay_Type (Etype (Comp));
2921 end if;
2923 Freeze_And_Append (Etype (Comp), N, Result);
2925 -- Warn for pragma Pack overriding foreign convention
2927 if Has_Foreign_Convention (Etype (Comp))
2928 and then Has_Pragma_Pack (Rec)
2930 -- Don't warn for aliased components, since override
2931 -- cannot happen in that case.
2933 and then not Is_Aliased (Comp)
2934 then
2935 declare
2936 CN : constant Name_Id :=
2937 Get_Convention_Name (Convention (Etype (Comp)));
2938 PP : constant Node_Id :=
2939 Get_Pragma (Rec, Pragma_Pack);
2940 begin
2941 if Present (PP) then
2942 Error_Msg_Name_1 := CN;
2943 Error_Msg_Sloc := Sloc (Comp);
2944 Error_Msg_N
2945 ("pragma Pack affects convention % component#??",
2946 PP);
2947 Error_Msg_Name_1 := CN;
2948 Error_Msg_NE
2949 ("\component & may not have % compatible "
2950 & "representation??", PP, Comp);
2951 end if;
2952 end;
2953 end if;
2955 -- Check for error of component clause given for variable
2956 -- sized type. We have to delay this test till this point,
2957 -- since the component type has to be frozen for us to know
2958 -- if it is variable length.
2960 if Present (CC) then
2961 Placed_Component := True;
2963 -- We omit this test in a generic context, it will be
2964 -- applied at instantiation time.
2966 if Inside_A_Generic then
2967 null;
2969 -- Also omit this test in CodePeer mode, since we do not
2970 -- have sufficient info on size and rep clauses.
2972 elsif CodePeer_Mode then
2973 null;
2975 -- Do the check
2977 elsif not
2978 Size_Known_At_Compile_Time
2979 (Underlying_Type (Etype (Comp)))
2980 then
2981 Error_Msg_N
2982 ("component clause not allowed for variable " &
2983 "length component", CC);
2984 end if;
2986 else
2987 Unplaced_Component := True;
2988 end if;
2990 -- Case of component requires byte alignment
2992 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
2994 -- Set the enclosing record to also require byte align
2996 Set_Must_Be_On_Byte_Boundary (Rec);
2998 -- Check for component clause that is inconsistent with
2999 -- the required byte boundary alignment.
3001 if Present (CC)
3002 and then Normalized_First_Bit (Comp) mod
3003 System_Storage_Unit /= 0
3004 then
3005 Error_Msg_N
3006 ("component & must be byte aligned",
3007 Component_Name (Component_Clause (Comp)));
3008 end if;
3009 end if;
3010 end;
3011 end if;
3013 -- Gather data for possible Implicit_Packing later. Note that at
3014 -- this stage we might be dealing with a real component, or with
3015 -- an implicit subtype declaration.
3017 if not Is_Scalar_Type (Etype (Comp)) then
3018 All_Scalar_Components := False;
3019 else
3020 Scalar_Component_Total_RM_Size :=
3021 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3022 Scalar_Component_Total_Esize :=
3023 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3024 end if;
3026 -- If the component is an Itype with Delayed_Freeze and is either
3027 -- a record or array subtype and its base type has not yet been
3028 -- frozen, we must remove this from the entity list of this record
3029 -- and put it on the entity list of the scope of its base type.
3030 -- Note that we know that this is not the type of a component
3031 -- since we cleared Has_Delayed_Freeze for it in the previous
3032 -- loop. Thus this must be the Designated_Type of an access type,
3033 -- which is the type of a component.
3035 if Is_Itype (Comp)
3036 and then Is_Type (Scope (Comp))
3037 and then Is_Composite_Type (Comp)
3038 and then Base_Type (Comp) /= Comp
3039 and then Has_Delayed_Freeze (Comp)
3040 and then not Is_Frozen (Base_Type (Comp))
3041 then
3042 declare
3043 Will_Be_Frozen : Boolean := False;
3044 S : Entity_Id;
3046 begin
3047 -- We have a difficult case to handle here. Suppose Rec is
3048 -- subtype being defined in a subprogram that's created as
3049 -- part of the freezing of Rec'Base. In that case, we know
3050 -- that Comp'Base must have already been frozen by the time
3051 -- we get to elaborate this because Gigi doesn't elaborate
3052 -- any bodies until it has elaborated all of the declarative
3053 -- part. But Is_Frozen will not be set at this point because
3054 -- we are processing code in lexical order.
3056 -- We detect this case by going up the Scope chain of Rec
3057 -- and seeing if we have a subprogram scope before reaching
3058 -- the top of the scope chain or that of Comp'Base. If we
3059 -- do, then mark that Comp'Base will actually be frozen. If
3060 -- so, we merely undelay it.
3062 S := Scope (Rec);
3063 while Present (S) loop
3064 if Is_Subprogram (S) then
3065 Will_Be_Frozen := True;
3066 exit;
3067 elsif S = Scope (Base_Type (Comp)) then
3068 exit;
3069 end if;
3071 S := Scope (S);
3072 end loop;
3074 if Will_Be_Frozen then
3075 Undelay_Type (Comp);
3077 else
3078 if Present (Prev) then
3079 Set_Next_Entity (Prev, Next_Entity (Comp));
3080 else
3081 Set_First_Entity (Rec, Next_Entity (Comp));
3082 end if;
3084 -- Insert in entity list of scope of base type (which
3085 -- must be an enclosing scope, because still unfrozen).
3087 Append_Entity (Comp, Scope (Base_Type (Comp)));
3088 end if;
3089 end;
3091 -- If the component is an access type with an allocator as default
3092 -- value, the designated type will be frozen by the corresponding
3093 -- expression in init_proc. In order to place the freeze node for
3094 -- the designated type before that for the current record type,
3095 -- freeze it now.
3097 -- Same process if the component is an array of access types,
3098 -- initialized with an aggregate. If the designated type is
3099 -- private, it cannot contain allocators, and it is premature
3100 -- to freeze the type, so we check for this as well.
3102 elsif Is_Access_Type (Etype (Comp))
3103 and then Present (Parent (Comp))
3104 and then Present (Expression (Parent (Comp)))
3105 then
3106 declare
3107 Alloc : constant Node_Id :=
3108 Check_Allocator (Expression (Parent (Comp)));
3110 begin
3111 if Present (Alloc) then
3113 -- If component is pointer to a class-wide type, freeze
3114 -- the specific type in the expression being allocated.
3115 -- The expression may be a subtype indication, in which
3116 -- case freeze the subtype mark.
3118 if Is_Class_Wide_Type
3119 (Designated_Type (Etype (Comp)))
3120 then
3121 if Is_Entity_Name (Expression (Alloc)) then
3122 Freeze_And_Append
3123 (Entity (Expression (Alloc)), N, Result);
3125 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
3126 then
3127 Freeze_And_Append
3128 (Entity (Subtype_Mark (Expression (Alloc))),
3129 N, Result);
3130 end if;
3132 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3133 Check_Itype (Etype (Comp));
3135 else
3136 Freeze_And_Append
3137 (Designated_Type (Etype (Comp)), N, Result);
3138 end if;
3139 end if;
3140 end;
3142 elsif Is_Access_Type (Etype (Comp))
3143 and then Is_Itype (Designated_Type (Etype (Comp)))
3144 then
3145 Check_Itype (Etype (Comp));
3147 -- Freeze the designated type when initializing a component with
3148 -- an aggregate in case the aggregate contains allocators.
3150 -- type T is ...;
3151 -- type T_Ptr is access all T;
3152 -- type T_Array is array ... of T_Ptr;
3154 -- type Rec is record
3155 -- Comp : T_Array := (others => ...);
3156 -- end record;
3158 elsif Is_Array_Type (Etype (Comp))
3159 and then Is_Access_Type (Component_Type (Etype (Comp)))
3160 then
3161 declare
3162 Comp_Par : constant Node_Id := Parent (Comp);
3163 Desig_Typ : constant Entity_Id :=
3164 Designated_Type
3165 (Component_Type (Etype (Comp)));
3167 begin
3168 -- The only case when this sort of freezing is not done is
3169 -- when the designated type is class-wide and the root type
3170 -- is the record owning the component. This scenario results
3171 -- in a circularity because the class-wide type requires
3172 -- primitives that have not been created yet as the root
3173 -- type is in the process of being frozen.
3175 -- type Rec is tagged;
3176 -- type Rec_Ptr is access all Rec'Class;
3177 -- type Rec_Array is array ... of Rec_Ptr;
3179 -- type Rec is record
3180 -- Comp : Rec_Array := (others => ...);
3181 -- end record;
3183 if Is_Class_Wide_Type (Desig_Typ)
3184 and then Root_Type (Desig_Typ) = Rec
3185 then
3186 null;
3188 elsif Is_Fully_Defined (Desig_Typ)
3189 and then Present (Comp_Par)
3190 and then Nkind (Comp_Par) = N_Component_Declaration
3191 and then Present (Expression (Comp_Par))
3192 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3193 then
3194 Freeze_And_Append (Desig_Typ, N, Result);
3195 end if;
3196 end;
3197 end if;
3199 Prev := Comp;
3200 Next_Entity (Comp);
3201 end loop;
3203 SSO_ADC := Get_Attribute_Definition_Clause
3204 (Rec, Attribute_Scalar_Storage_Order);
3206 -- Check consistent attribute setting on component types
3208 declare
3209 Comp_ADC_Present : Boolean;
3210 begin
3211 Comp := First_Component (Rec);
3212 while Present (Comp) loop
3213 Check_Component_Storage_Order
3214 (Encl_Type => Rec,
3215 Comp => Comp,
3216 ADC => SSO_ADC,
3217 Comp_ADC_Present => Comp_ADC_Present);
3218 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3219 Next_Component (Comp);
3220 end loop;
3221 end;
3223 -- Deal with default setting of reverse storage order
3225 Set_SSO_From_Default (Rec);
3227 -- Now deal with reverse storage order/bit order issues
3229 if Present (SSO_ADC) then
3231 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3232 -- the former is specified.
3234 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3236 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3237 -- to some ancestor type.
3239 Error_Msg_Sloc := Sloc (SSO_ADC);
3240 Error_Msg_N
3241 ("scalar storage order for& specified# inconsistent with "
3242 & "bit order", Rec);
3243 end if;
3245 -- Warn if there is an Scalar_Storage_Order attribute definition
3246 -- clause but no component clause, no component that itself has
3247 -- such an attribute definition, and no pragma Pack.
3249 if not (Placed_Component
3250 or else
3251 SSO_ADC_Component
3252 or else
3253 Is_Packed (Rec))
3254 then
3255 Error_Msg_N
3256 ("??scalar storage order specified but no component clause",
3257 SSO_ADC);
3258 end if;
3259 end if;
3261 -- Deal with Bit_Order aspect
3263 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3265 if Present (ADC) and then Base_Type (Rec) = Rec then
3266 if not (Placed_Component
3267 or else Present (SSO_ADC)
3268 or else Is_Packed (Rec))
3269 then
3270 -- Warn if clause has no effect when no component clause is
3271 -- present, but suppress warning if the Bit_Order is required
3272 -- due to the presence of a Scalar_Storage_Order attribute.
3274 Error_Msg_N
3275 ("??bit order specification has no effect", ADC);
3276 Error_Msg_N
3277 ("\??since no component clauses were specified", ADC);
3279 -- Here is where we do the processing to adjust component clauses
3280 -- for reversed bit order, when not using reverse SSO.
3282 elsif Reverse_Bit_Order (Rec)
3283 and then not Reverse_Storage_Order (Rec)
3284 then
3285 Adjust_Record_For_Reverse_Bit_Order (Rec);
3287 -- Case where we have both an explicit Bit_Order and the same
3288 -- Scalar_Storage_Order: leave record untouched, the back-end
3289 -- will take care of required layout conversions.
3291 else
3292 null;
3294 end if;
3295 end if;
3297 -- Complete error checking on record representation clause (e.g.
3298 -- overlap of components). This is called after adjusting the
3299 -- record for reverse bit order.
3301 declare
3302 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3303 begin
3304 if Present (RRC) then
3305 Check_Record_Representation_Clause (RRC);
3306 end if;
3307 end;
3309 -- Set OK_To_Reorder_Components depending on debug flags
3311 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
3312 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
3313 or else
3314 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
3315 then
3316 Set_OK_To_Reorder_Components (Rec);
3317 end if;
3318 end if;
3320 -- Check for useless pragma Pack when all components placed. We only
3321 -- do this check for record types, not subtypes, since a subtype may
3322 -- have all its components placed, and it still makes perfectly good
3323 -- sense to pack other subtypes or the parent type. We do not give
3324 -- this warning if Optimize_Alignment is set to Space, since the
3325 -- pragma Pack does have an effect in this case (it always resets
3326 -- the alignment to one).
3328 if Ekind (Rec) = E_Record_Type
3329 and then Is_Packed (Rec)
3330 and then not Unplaced_Component
3331 and then Optimize_Alignment /= 'S'
3332 then
3333 -- Reset packed status. Probably not necessary, but we do it so
3334 -- that there is no chance of the back end doing something strange
3335 -- with this redundant indication of packing.
3337 Set_Is_Packed (Rec, False);
3339 -- Give warning if redundant constructs warnings on
3341 if Warn_On_Redundant_Constructs then
3342 Error_Msg_N -- CODEFIX
3343 ("??pragma Pack has no effect, no unplaced components",
3344 Get_Rep_Pragma (Rec, Name_Pack));
3345 end if;
3346 end if;
3348 -- If this is the record corresponding to a remote type, freeze the
3349 -- remote type here since that is what we are semantically freezing.
3350 -- This prevents the freeze node for that type in an inner scope.
3352 if Ekind (Rec) = E_Record_Type then
3353 if Present (Corresponding_Remote_Type (Rec)) then
3354 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
3355 end if;
3357 -- Check for controlled components and unchecked unions.
3359 Comp := First_Component (Rec);
3360 while Present (Comp) loop
3362 -- Do not set Has_Controlled_Component on a class-wide
3363 -- equivalent type. See Make_CW_Equivalent_Type.
3365 if not Is_Class_Wide_Equivalent_Type (Rec)
3366 and then
3367 (Has_Controlled_Component (Etype (Comp))
3368 or else
3369 (Chars (Comp) /= Name_uParent
3370 and then Is_Controlled (Etype (Comp)))
3371 or else
3372 (Is_Protected_Type (Etype (Comp))
3373 and then
3374 Present (Corresponding_Record_Type (Etype (Comp)))
3375 and then
3376 Has_Controlled_Component
3377 (Corresponding_Record_Type (Etype (Comp)))))
3378 then
3379 Set_Has_Controlled_Component (Rec);
3380 end if;
3382 if Has_Unchecked_Union (Etype (Comp)) then
3383 Set_Has_Unchecked_Union (Rec);
3384 end if;
3386 -- Scan component declaration for likely misuses of current
3387 -- instance, either in a constraint or a default expression.
3389 if Has_Per_Object_Constraint (Comp) then
3390 Check_Current_Instance (Parent (Comp));
3391 end if;
3393 Next_Component (Comp);
3394 end loop;
3395 end if;
3397 -- Enforce the restriction that access attributes with a current
3398 -- instance prefix can only apply to limited types. This comment
3399 -- is floating here, but does not seem to belong here???
3401 -- Set component alignment if not otherwise already set
3403 Set_Component_Alignment_If_Not_Set (Rec);
3405 -- For first subtypes, check if there are any fixed-point fields with
3406 -- component clauses, where we must check the size. This is not done
3407 -- till the freeze point since for fixed-point types, we do not know
3408 -- the size until the type is frozen. Similar processing applies to
3409 -- bit packed arrays.
3411 if Is_First_Subtype (Rec) then
3412 Comp := First_Component (Rec);
3413 while Present (Comp) loop
3414 if Present (Component_Clause (Comp))
3415 and then (Is_Fixed_Point_Type (Etype (Comp))
3416 or else Is_Bit_Packed_Array (Etype (Comp)))
3417 then
3418 Check_Size
3419 (Component_Name (Component_Clause (Comp)),
3420 Etype (Comp),
3421 Esize (Comp),
3422 Junk);
3423 end if;
3425 Next_Component (Comp);
3426 end loop;
3427 end if;
3429 -- Generate warning for applying C or C++ convention to a record
3430 -- with discriminants. This is suppressed for the unchecked union
3431 -- case, since the whole point in this case is interface C. We also
3432 -- do not generate this within instantiations, since we will have
3433 -- generated a message on the template.
3435 if Has_Discriminants (E)
3436 and then not Is_Unchecked_Union (E)
3437 and then (Convention (E) = Convention_C
3438 or else
3439 Convention (E) = Convention_CPP)
3440 and then Comes_From_Source (E)
3441 and then not In_Instance
3442 and then not Has_Warnings_Off (E)
3443 and then not Has_Warnings_Off (Base_Type (E))
3444 then
3445 declare
3446 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3447 A2 : Node_Id;
3449 begin
3450 if Present (Cprag) then
3451 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3453 if Convention (E) = Convention_C then
3454 Error_Msg_N
3455 ("?x?variant record has no direct equivalent in C",
3456 A2);
3457 else
3458 Error_Msg_N
3459 ("?x?variant record has no direct equivalent in C++",
3460 A2);
3461 end if;
3463 Error_Msg_NE
3464 ("\?x?use of convention for type& is dubious", A2, E);
3465 end if;
3466 end;
3467 end if;
3469 -- See if Size is too small as is (and implicit packing might help)
3471 if not Is_Packed (Rec)
3473 -- No implicit packing if even one component is explicitly placed
3475 and then not Placed_Component
3477 -- Or even one component is aliased
3479 and then not Aliased_Component
3481 -- Must have size clause and all scalar components
3483 and then Has_Size_Clause (Rec)
3484 and then All_Scalar_Components
3486 -- Do not try implicit packing on records with discriminants, too
3487 -- complicated, especially in the variant record case.
3489 and then not Has_Discriminants (Rec)
3491 -- We can implicitly pack if the specified size of the record is
3492 -- less than the sum of the object sizes (no point in packing if
3493 -- this is not the case).
3495 and then RM_Size (Rec) < Scalar_Component_Total_Esize
3497 -- And the total RM size cannot be greater than the specified size
3498 -- since otherwise packing will not get us where we have to be.
3500 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
3502 -- Never do implicit packing in CodePeer or SPARK modes since
3503 -- we don't do any packing in these modes, since this generates
3504 -- over-complex code that confuses static analysis, and in
3505 -- general, neither CodePeer not GNATprove care about the
3506 -- internal representation of objects.
3508 and then not (CodePeer_Mode or GNATprove_Mode)
3509 then
3510 -- If implicit packing enabled, do it
3512 if Implicit_Packing then
3513 Set_Is_Packed (Rec);
3515 -- Otherwise flag the size clause
3517 else
3518 declare
3519 Sz : constant Node_Id := Size_Clause (Rec);
3520 begin
3521 Error_Msg_NE -- CODEFIX
3522 ("size given for& too small", Sz, Rec);
3523 Error_Msg_N -- CODEFIX
3524 ("\use explicit pragma Pack "
3525 & "or use pragma Implicit_Packing", Sz);
3526 end;
3527 end if;
3528 end if;
3530 -- The following checks are only relevant when SPARK_Mode is on as
3531 -- they are not standard Ada legality rules.
3533 if SPARK_Mode = On then
3534 if Is_Effectively_Volatile (Rec) then
3536 -- A discriminated type cannot be effectively volatile
3537 -- (SPARK RM C.6(4)).
3539 if Has_Discriminants (Rec) then
3540 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
3542 -- A tagged type cannot be effectively volatile
3543 -- (SPARK RM C.6(5)).
3545 elsif Is_Tagged_Type (Rec) then
3546 Error_Msg_N ("tagged type & cannot be volatile", Rec);
3547 end if;
3549 -- A non-effectively volatile record type cannot contain
3550 -- effectively volatile components (SPARK RM C.6(2)).
3552 else
3553 Comp := First_Component (Rec);
3554 while Present (Comp) loop
3555 if Comes_From_Source (Comp)
3556 and then Is_Effectively_Volatile (Etype (Comp))
3557 then
3558 Error_Msg_Name_1 := Chars (Rec);
3559 Error_Msg_N
3560 ("component & of non-volatile type % cannot be "
3561 & "volatile", Comp);
3562 end if;
3564 Next_Component (Comp);
3565 end loop;
3566 end if;
3567 end if;
3569 -- All done if not a full record definition
3571 if Ekind (Rec) /= E_Record_Type then
3572 return;
3573 end if;
3575 -- Finally we need to check the variant part to make sure that
3576 -- all types within choices are properly frozen as part of the
3577 -- freezing of the record type.
3579 Check_Variant_Part : declare
3580 D : constant Node_Id := Declaration_Node (Rec);
3581 T : Node_Id;
3582 C : Node_Id;
3584 begin
3585 -- Find component list
3587 C := Empty;
3589 if Nkind (D) = N_Full_Type_Declaration then
3590 T := Type_Definition (D);
3592 if Nkind (T) = N_Record_Definition then
3593 C := Component_List (T);
3595 elsif Nkind (T) = N_Derived_Type_Definition
3596 and then Present (Record_Extension_Part (T))
3597 then
3598 C := Component_List (Record_Extension_Part (T));
3599 end if;
3600 end if;
3602 -- Case of variant part present
3604 if Present (C) and then Present (Variant_Part (C)) then
3605 Freeze_Choices_In_Variant_Part (Variant_Part (C));
3606 end if;
3608 -- Note: we used to call Check_Choices here, but it is too early,
3609 -- since predicated subtypes are frozen here, but their freezing
3610 -- actions are in Analyze_Freeze_Entity, which has not been called
3611 -- yet for entities frozen within this procedure, so we moved that
3612 -- call to the Analyze_Freeze_Entity for the record type.
3614 end Check_Variant_Part;
3615 end Freeze_Record_Type;
3617 -------------------------------
3618 -- Has_Boolean_Aspect_Import --
3619 -------------------------------
3621 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
3622 Decl : constant Node_Id := Declaration_Node (E);
3623 Asp : Node_Id;
3624 Expr : Node_Id;
3626 begin
3627 if Has_Aspects (Decl) then
3628 Asp := First (Aspect_Specifications (Decl));
3629 while Present (Asp) loop
3630 Expr := Expression (Asp);
3632 -- The value of aspect Import is True when the expression is
3633 -- either missing or it is explicitly set to True.
3635 if Get_Aspect_Id (Asp) = Aspect_Import
3636 and then (No (Expr)
3637 or else (Compile_Time_Known_Value (Expr)
3638 and then Is_True (Expr_Value (Expr))))
3639 then
3640 return True;
3641 end if;
3643 Next (Asp);
3644 end loop;
3645 end if;
3647 return False;
3648 end Has_Boolean_Aspect_Import;
3650 ----------------------------
3651 -- Late_Freeze_Subprogram --
3652 ----------------------------
3654 procedure Late_Freeze_Subprogram (E : Entity_Id) is
3655 Spec : constant Node_Id :=
3656 Specification (Unit_Declaration_Node (Scope (E)));
3657 Decls : List_Id;
3659 begin
3660 if Present (Private_Declarations (Spec)) then
3661 Decls := Private_Declarations (Spec);
3662 else
3663 Decls := Visible_Declarations (Spec);
3664 end if;
3666 Append_List (Result, Decls);
3667 end Late_Freeze_Subprogram;
3669 ------------------------------
3670 -- Wrap_Imported_Subprogram --
3671 ------------------------------
3673 -- The issue here is that our normal approach of checking preconditions
3674 -- and postconditions does not work for imported procedures, since we
3675 -- are not generating code for the body. To get around this we create
3676 -- a wrapper, as shown by the following example:
3678 -- procedure K (A : Integer);
3679 -- pragma Import (C, K);
3681 -- The spec is rewritten by removing the effects of pragma Import, but
3682 -- leaving the convention unchanged, as though the source had said:
3684 -- procedure K (A : Integer);
3685 -- pragma Convention (C, K);
3687 -- and we create a body, added to the entity K freeze actions, which
3688 -- looks like:
3690 -- procedure K (A : Integer) is
3691 -- procedure K (A : Integer);
3692 -- pragma Import (C, K);
3693 -- begin
3694 -- K (A);
3695 -- end K;
3697 -- Now the contract applies in the normal way to the outer procedure,
3698 -- and the inner procedure has no contracts, so there is no problem
3699 -- in just calling it to get the original effect.
3701 -- In the case of a function, we create an appropriate return statement
3702 -- for the subprogram body that calls the inner procedure.
3704 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
3705 Loc : constant Source_Ptr := Sloc (E);
3706 CE : constant Name_Id := Chars (E);
3707 Spec : Node_Id;
3708 Parms : List_Id;
3709 Stmt : Node_Id;
3710 Iprag : Node_Id;
3711 Bod : Node_Id;
3712 Forml : Entity_Id;
3714 begin
3715 -- Nothing to do if not imported
3717 if not Is_Imported (E) then
3718 return;
3720 -- Test enabling conditions for wrapping
3722 elsif Is_Subprogram (E)
3723 and then Present (Contract (E))
3724 and then Present (Pre_Post_Conditions (Contract (E)))
3725 and then not GNATprove_Mode
3726 then
3727 -- Here we do the wrap
3729 -- Note on calls to Copy_Separate_Tree. The trees we are copying
3730 -- here are fully analyzed, but we definitely want fully syntactic
3731 -- unanalyzed trees in the body we construct, so that the analysis
3732 -- generates the right visibility, and that is exactly what the
3733 -- calls to Copy_Separate_Tree give us.
3735 -- Acquire copy of Inline pragma
3737 Iprag := Copy_Separate_Tree (Import_Pragma (E));
3739 -- Fix up spec to be not imported any more
3741 Set_Is_Imported (E, False);
3742 Set_Interface_Name (E, Empty);
3743 Set_Has_Completion (E, False);
3744 Set_Import_Pragma (E, Empty);
3746 -- Grab the subprogram declaration and specification
3748 Spec := Declaration_Node (E);
3750 -- Build parameter list that we need
3752 Parms := New_List;
3753 Forml := First_Formal (E);
3754 while Present (Forml) loop
3755 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
3756 Next_Formal (Forml);
3757 end loop;
3759 -- Build the call
3761 if Ekind_In (E, E_Function, E_Generic_Function) then
3762 Stmt :=
3763 Make_Simple_Return_Statement (Loc,
3764 Expression =>
3765 Make_Function_Call (Loc,
3766 Name => Make_Identifier (Loc, CE),
3767 Parameter_Associations => Parms));
3769 else
3770 Stmt :=
3771 Make_Procedure_Call_Statement (Loc,
3772 Name => Make_Identifier (Loc, CE),
3773 Parameter_Associations => Parms);
3774 end if;
3776 -- Now build the body
3778 Bod :=
3779 Make_Subprogram_Body (Loc,
3780 Specification =>
3781 Copy_Separate_Tree (Spec),
3782 Declarations => New_List (
3783 Make_Subprogram_Declaration (Loc,
3784 Specification =>
3785 Copy_Separate_Tree (Spec)),
3786 Iprag),
3787 Handled_Statement_Sequence =>
3788 Make_Handled_Sequence_Of_Statements (Loc,
3789 Statements => New_List (Stmt),
3790 End_Label => Make_Identifier (Loc, CE)));
3792 -- Append the body to freeze result
3794 Add_To_Result (Bod);
3795 return;
3797 -- Case of imported subprogram that does not get wrapped
3799 else
3800 -- Set Is_Public. All imported entities need an external symbol
3801 -- created for them since they are always referenced from another
3802 -- object file. Note this used to be set when we set Is_Imported
3803 -- back in Sem_Prag, but now we delay it to this point, since we
3804 -- don't want to set this flag if we wrap an imported subprogram.
3806 Set_Is_Public (E);
3807 end if;
3808 end Wrap_Imported_Subprogram;
3810 -- Start of processing for Freeze_Entity
3812 begin
3813 -- We are going to test for various reasons why this entity need not be
3814 -- frozen here, but in the case of an Itype that's defined within a
3815 -- record, that test actually applies to the record.
3817 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
3818 Test_E := Scope (E);
3819 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
3820 and then Is_Record_Type (Underlying_Type (Scope (E)))
3821 then
3822 Test_E := Underlying_Type (Scope (E));
3823 end if;
3825 -- Do not freeze if already frozen since we only need one freeze node
3827 if Is_Frozen (E) then
3828 return No_List;
3830 -- It is improper to freeze an external entity within a generic because
3831 -- its freeze node will appear in a non-valid context. The entity will
3832 -- be frozen in the proper scope after the current generic is analyzed.
3833 -- However, aspects must be analyzed because they may be queried later
3834 -- within the generic itself, and the corresponding pragma or attribute
3835 -- definition has not been analyzed yet.
3837 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
3838 if Has_Delayed_Aspects (E) then
3839 Analyze_Aspects_At_Freeze_Point (E);
3840 end if;
3842 return No_List;
3844 -- AI05-0213: A formal incomplete type does not freeze the actual. In
3845 -- the instance, the same applies to the subtype renaming the actual.
3847 elsif Is_Private_Type (E)
3848 and then Is_Generic_Actual_Type (E)
3849 and then No (Full_View (Base_Type (E)))
3850 and then Ada_Version >= Ada_2012
3851 then
3852 return No_List;
3854 -- Formal subprograms are never frozen
3856 elsif Is_Formal_Subprogram (E) then
3857 return No_List;
3859 -- Generic types are never frozen as they lack delayed semantic checks
3861 elsif Is_Generic_Type (E) then
3862 return No_List;
3864 -- Do not freeze a global entity within an inner scope created during
3865 -- expansion. A call to subprogram E within some internal procedure
3866 -- (a stream attribute for example) might require freezing E, but the
3867 -- freeze node must appear in the same declarative part as E itself.
3868 -- The two-pass elaboration mechanism in gigi guarantees that E will
3869 -- be frozen before the inner call is elaborated. We exclude constants
3870 -- from this test, because deferred constants may be frozen early, and
3871 -- must be diagnosed (e.g. in the case of a deferred constant being used
3872 -- in a default expression). If the enclosing subprogram comes from
3873 -- source, or is a generic instance, then the freeze point is the one
3874 -- mandated by the language, and we freeze the entity. A subprogram that
3875 -- is a child unit body that acts as a spec does not have a spec that
3876 -- comes from source, but can only come from source.
3878 elsif In_Open_Scopes (Scope (Test_E))
3879 and then Scope (Test_E) /= Current_Scope
3880 and then Ekind (Test_E) /= E_Constant
3881 then
3882 declare
3883 S : Entity_Id;
3885 begin
3886 S := Current_Scope;
3887 while Present (S) loop
3888 if Is_Overloadable (S) then
3889 if Comes_From_Source (S)
3890 or else Is_Generic_Instance (S)
3891 or else Is_Child_Unit (S)
3892 then
3893 exit;
3894 else
3895 return No_List;
3896 end if;
3897 end if;
3899 S := Scope (S);
3900 end loop;
3901 end;
3903 -- Similarly, an inlined instance body may make reference to global
3904 -- entities, but these references cannot be the proper freezing point
3905 -- for them, and in the absence of inlining freezing will take place in
3906 -- their own scope. Normally instance bodies are analyzed after the
3907 -- enclosing compilation, and everything has been frozen at the proper
3908 -- place, but with front-end inlining an instance body is compiled
3909 -- before the end of the enclosing scope, and as a result out-of-order
3910 -- freezing must be prevented.
3912 elsif Front_End_Inlining
3913 and then In_Instance_Body
3914 and then Present (Scope (Test_E))
3915 then
3916 declare
3917 S : Entity_Id;
3919 begin
3920 S := Scope (Test_E);
3921 while Present (S) loop
3922 if Is_Generic_Instance (S) then
3923 exit;
3924 else
3925 S := Scope (S);
3926 end if;
3927 end loop;
3929 if No (S) then
3930 return No_List;
3931 end if;
3932 end;
3934 elsif Ekind (E) = E_Generic_Package then
3935 return Freeze_Generic_Entities (E);
3936 end if;
3938 -- Add checks to detect proper initialization of scalars that may appear
3939 -- as subprogram parameters.
3941 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
3942 Apply_Parameter_Validity_Checks (E);
3943 end if;
3945 -- Deal with delayed aspect specifications. The analysis of the aspect
3946 -- is required to be delayed to the freeze point, thus we analyze the
3947 -- pragma or attribute definition clause in the tree at this point. We
3948 -- also analyze the aspect specification node at the freeze point when
3949 -- the aspect doesn't correspond to pragma/attribute definition clause.
3951 if Has_Delayed_Aspects (E) then
3952 Analyze_Aspects_At_Freeze_Point (E);
3953 end if;
3955 -- Here to freeze the entity
3957 Set_Is_Frozen (E);
3959 -- Case of entity being frozen is other than a type
3961 if not Is_Type (E) then
3963 -- If entity is exported or imported and does not have an external
3964 -- name, now is the time to provide the appropriate default name.
3965 -- Skip this if the entity is stubbed, since we don't need a name
3966 -- for any stubbed routine. For the case on intrinsics, if no
3967 -- external name is specified, then calls will be handled in
3968 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
3969 -- external name is provided, then Expand_Intrinsic_Call leaves
3970 -- calls in place for expansion by GIGI.
3972 if (Is_Imported (E) or else Is_Exported (E))
3973 and then No (Interface_Name (E))
3974 and then Convention (E) /= Convention_Stubbed
3975 and then Convention (E) /= Convention_Intrinsic
3976 then
3977 Set_Encoded_Interface_Name
3978 (E, Get_Default_External_Name (E));
3980 -- If entity is an atomic object appearing in a declaration and
3981 -- the expression is an aggregate, assign it to a temporary to
3982 -- ensure that the actual assignment is done atomically rather
3983 -- than component-wise (the assignment to the temp may be done
3984 -- component-wise, but that is harmless).
3986 elsif Is_Atomic (E)
3987 and then Nkind (Parent (E)) = N_Object_Declaration
3988 and then Present (Expression (Parent (E)))
3989 and then Nkind (Expression (Parent (E))) = N_Aggregate
3990 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
3991 then
3992 null;
3993 end if;
3995 -- Subprogram case
3997 if Is_Subprogram (E) then
3999 -- Check for needing to wrap imported subprogram
4001 Wrap_Imported_Subprogram (E);
4003 -- Freeze all parameter types and the return type (RM 13.14(14)).
4004 -- However skip this for internal subprograms. This is also where
4005 -- any extra formal parameters are created since we now know
4006 -- whether the subprogram will use a foreign convention.
4008 if not Is_Internal (E) then
4009 declare
4010 F_Type : Entity_Id;
4011 R_Type : Entity_Id;
4012 Warn_Node : Node_Id;
4014 begin
4015 -- Loop through formals
4017 Formal := First_Formal (E);
4018 while Present (Formal) loop
4019 F_Type := Etype (Formal);
4021 -- AI05-0151: incomplete types can appear in a profile.
4022 -- By the time the entity is frozen, the full view must
4023 -- be available, unless it is a limited view.
4025 if Is_Incomplete_Type (F_Type)
4026 and then Present (Full_View (F_Type))
4027 and then not From_Limited_With (F_Type)
4028 then
4029 F_Type := Full_View (F_Type);
4030 Set_Etype (Formal, F_Type);
4031 end if;
4033 Freeze_And_Append (F_Type, N, Result);
4035 if Is_Private_Type (F_Type)
4036 and then Is_Private_Type (Base_Type (F_Type))
4037 and then No (Full_View (Base_Type (F_Type)))
4038 and then not Is_Generic_Type (F_Type)
4039 and then not Is_Derived_Type (F_Type)
4040 then
4041 -- If the type of a formal is incomplete, subprogram
4042 -- is being frozen prematurely. Within an instance
4043 -- (but not within a wrapper package) this is an
4044 -- artifact of our need to regard the end of an
4045 -- instantiation as a freeze point. Otherwise it is
4046 -- a definite error.
4048 if In_Instance then
4049 Set_Is_Frozen (E, False);
4050 return No_List;
4052 elsif not After_Last_Declaration
4053 and then not Freezing_Library_Level_Tagged_Type
4054 then
4055 Error_Msg_Node_1 := F_Type;
4056 Error_Msg
4057 ("type& must be fully defined before this point",
4058 Loc);
4059 end if;
4060 end if;
4062 -- Check suspicious parameter for C function. These tests
4063 -- apply only to exported/imported subprograms.
4065 if Warn_On_Export_Import
4066 and then Comes_From_Source (E)
4067 and then (Convention (E) = Convention_C
4068 or else
4069 Convention (E) = Convention_CPP)
4070 and then (Is_Imported (E) or else Is_Exported (E))
4071 and then Convention (E) /= Convention (Formal)
4072 and then not Has_Warnings_Off (E)
4073 and then not Has_Warnings_Off (F_Type)
4074 and then not Has_Warnings_Off (Formal)
4075 then
4076 -- Qualify mention of formals with subprogram name
4078 Error_Msg_Qual_Level := 1;
4080 -- Check suspicious use of fat C pointer
4082 if Is_Access_Type (F_Type)
4083 and then Esize (F_Type) > Ttypes.System_Address_Size
4084 then
4085 Error_Msg_N
4086 ("?x?type of & does not correspond to C pointer!",
4087 Formal);
4089 -- Check suspicious return of boolean
4091 elsif Root_Type (F_Type) = Standard_Boolean
4092 and then Convention (F_Type) = Convention_Ada
4093 and then not Has_Warnings_Off (F_Type)
4094 and then not Has_Size_Clause (F_Type)
4095 and then VM_Target = No_VM
4096 then
4097 Error_Msg_N
4098 ("& is an 8-bit Ada Boolean?x?", Formal);
4099 Error_Msg_N
4100 ("\use appropriate corresponding type in C "
4101 & "(e.g. char)?x?", Formal);
4103 -- Check suspicious tagged type
4105 elsif (Is_Tagged_Type (F_Type)
4106 or else (Is_Access_Type (F_Type)
4107 and then
4108 Is_Tagged_Type
4109 (Designated_Type (F_Type))))
4110 and then Convention (E) = Convention_C
4111 then
4112 Error_Msg_N
4113 ("?x?& involves a tagged type which does not "
4114 & "correspond to any C type!", Formal);
4116 -- Check wrong convention subprogram pointer
4118 elsif Ekind (F_Type) = E_Access_Subprogram_Type
4119 and then not Has_Foreign_Convention (F_Type)
4120 then
4121 Error_Msg_N
4122 ("?x?subprogram pointer & should "
4123 & "have foreign convention!", Formal);
4124 Error_Msg_Sloc := Sloc (F_Type);
4125 Error_Msg_NE
4126 ("\?x?add Convention pragma to declaration of &#",
4127 Formal, F_Type);
4128 end if;
4130 -- Turn off name qualification after message output
4132 Error_Msg_Qual_Level := 0;
4133 end if;
4135 -- Check for unconstrained array in exported foreign
4136 -- convention case.
4138 if Has_Foreign_Convention (E)
4139 and then not Is_Imported (E)
4140 and then Is_Array_Type (F_Type)
4141 and then not Is_Constrained (F_Type)
4142 and then Warn_On_Export_Import
4144 -- Exclude VM case, since both .NET and JVM can handle
4145 -- unconstrained arrays without a problem.
4147 and then VM_Target = No_VM
4148 then
4149 Error_Msg_Qual_Level := 1;
4151 -- If this is an inherited operation, place the
4152 -- warning on the derived type declaration, rather
4153 -- than on the original subprogram.
4155 if Nkind (Original_Node (Parent (E))) =
4156 N_Full_Type_Declaration
4157 then
4158 Warn_Node := Parent (E);
4160 if Formal = First_Formal (E) then
4161 Error_Msg_NE
4162 ("??in inherited operation&", Warn_Node, E);
4163 end if;
4164 else
4165 Warn_Node := Formal;
4166 end if;
4168 Error_Msg_NE
4169 ("?x?type of argument& is unconstrained array",
4170 Warn_Node, Formal);
4171 Error_Msg_NE
4172 ("?x?foreign caller must pass bounds explicitly",
4173 Warn_Node, Formal);
4174 Error_Msg_Qual_Level := 0;
4175 end if;
4177 if not From_Limited_With (F_Type) then
4178 if Is_Access_Type (F_Type) then
4179 F_Type := Designated_Type (F_Type);
4180 end if;
4182 -- If the formal is an anonymous_access_to_subprogram
4183 -- freeze the subprogram type as well, to prevent
4184 -- scope anomalies in gigi, because there is no other
4185 -- clear point at which it could be frozen.
4187 if Is_Itype (Etype (Formal))
4188 and then Ekind (F_Type) = E_Subprogram_Type
4189 then
4190 Freeze_And_Append (F_Type, N, Result);
4191 end if;
4192 end if;
4194 Next_Formal (Formal);
4195 end loop;
4197 -- Case of function: similar checks on return type
4199 if Ekind (E) = E_Function then
4201 -- Check whether function is declared elsewhere.
4203 Late_Freezing :=
4204 Get_Source_Unit (E) /= Get_Source_Unit (N)
4205 and then Returns_Limited_View (E)
4206 and then not In_Open_Scopes (Scope (E));
4208 -- Freeze return type
4210 R_Type := Etype (E);
4212 -- AI05-0151: the return type may have been incomplete
4213 -- at the point of declaration. Replace it with the full
4214 -- view, unless the current type is a limited view. In
4215 -- that case the full view is in a different unit, and
4216 -- gigi finds the non-limited view after the other unit
4217 -- is elaborated.
4219 if Ekind (R_Type) = E_Incomplete_Type
4220 and then Present (Full_View (R_Type))
4221 and then not From_Limited_With (R_Type)
4222 then
4223 R_Type := Full_View (R_Type);
4224 Set_Etype (E, R_Type);
4226 -- If the return type is a limited view and the non-
4227 -- limited view is still incomplete, the function has
4228 -- to be frozen at a later time.
4230 elsif Ekind (R_Type) = E_Incomplete_Type
4231 and then From_Limited_With (R_Type)
4232 and then
4233 Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
4234 then
4235 Set_Is_Frozen (E, False);
4236 Set_Returns_Limited_View (E);
4237 return Result;
4238 end if;
4240 Freeze_And_Append (R_Type, N, Result);
4242 -- Check suspicious return type for C function
4244 if Warn_On_Export_Import
4245 and then (Convention (E) = Convention_C
4246 or else
4247 Convention (E) = Convention_CPP)
4248 and then (Is_Imported (E) or else Is_Exported (E))
4249 then
4250 -- Check suspicious return of fat C pointer
4252 if Is_Access_Type (R_Type)
4253 and then Esize (R_Type) > Ttypes.System_Address_Size
4254 and then not Has_Warnings_Off (E)
4255 and then not Has_Warnings_Off (R_Type)
4256 then
4257 Error_Msg_N
4258 ("?x?return type of& does not "
4259 & "correspond to C pointer!", E);
4261 -- Check suspicious return of boolean
4263 elsif Root_Type (R_Type) = Standard_Boolean
4264 and then Convention (R_Type) = Convention_Ada
4265 and then VM_Target = No_VM
4266 and then not Has_Warnings_Off (E)
4267 and then not Has_Warnings_Off (R_Type)
4268 and then not Has_Size_Clause (R_Type)
4269 then
4270 declare
4271 N : constant Node_Id :=
4272 Result_Definition (Declaration_Node (E));
4273 begin
4274 Error_Msg_NE
4275 ("return type of & is an 8-bit Ada Boolean?x?",
4276 N, E);
4277 Error_Msg_NE
4278 ("\use appropriate corresponding type in C "
4279 & "(e.g. char)?x?", N, E);
4280 end;
4282 -- Check suspicious return tagged type
4284 elsif (Is_Tagged_Type (R_Type)
4285 or else (Is_Access_Type (R_Type)
4286 and then
4287 Is_Tagged_Type
4288 (Designated_Type (R_Type))))
4289 and then Convention (E) = Convention_C
4290 and then not Has_Warnings_Off (E)
4291 and then not Has_Warnings_Off (R_Type)
4292 then
4293 Error_Msg_N
4294 ("?x?return type of & does not "
4295 & "correspond to C type!", E);
4297 -- Check return of wrong convention subprogram pointer
4299 elsif Ekind (R_Type) = E_Access_Subprogram_Type
4300 and then not Has_Foreign_Convention (R_Type)
4301 and then not Has_Warnings_Off (E)
4302 and then not Has_Warnings_Off (R_Type)
4303 then
4304 Error_Msg_N
4305 ("?x?& should return a foreign "
4306 & "convention subprogram pointer", E);
4307 Error_Msg_Sloc := Sloc (R_Type);
4308 Error_Msg_NE
4309 ("\?x?add Convention pragma to declaration of& #",
4310 E, R_Type);
4311 end if;
4312 end if;
4314 -- Give warning for suspicious return of a result of an
4315 -- unconstrained array type in a foreign convention
4316 -- function.
4318 if Has_Foreign_Convention (E)
4320 -- We are looking for a return of unconstrained array
4322 and then Is_Array_Type (R_Type)
4323 and then not Is_Constrained (R_Type)
4325 -- Exclude imported routines, the warning does not
4326 -- belong on the import, but rather on the routine
4327 -- definition.
4329 and then not Is_Imported (E)
4331 -- Exclude VM case, since both .NET and JVM can handle
4332 -- return of unconstrained arrays without a problem.
4334 and then VM_Target = No_VM
4336 -- Check that general warning is enabled, and that it
4337 -- is not suppressed for this particular case.
4339 and then Warn_On_Export_Import
4340 and then not Has_Warnings_Off (E)
4341 and then not Has_Warnings_Off (R_Type)
4342 then
4343 Error_Msg_N
4344 ("?x?foreign convention function& should not " &
4345 "return unconstrained array!", E);
4346 end if;
4347 end if;
4348 end;
4349 end if;
4351 -- Must freeze its parent first if it is a derived subprogram
4353 if Present (Alias (E)) then
4354 Freeze_And_Append (Alias (E), N, Result);
4355 end if;
4357 -- We don't freeze internal subprograms, because we don't normally
4358 -- want addition of extra formals or mechanism setting to happen
4359 -- for those. However we do pass through predefined dispatching
4360 -- cases, since extra formals may be needed in some cases, such as
4361 -- for the stream 'Input function (build-in-place formals).
4363 if not Is_Internal (E)
4364 or else Is_Predefined_Dispatching_Operation (E)
4365 then
4366 Freeze_Subprogram (E);
4367 end if;
4369 if Late_Freezing then
4370 Late_Freeze_Subprogram (E);
4371 return No_List;
4372 end if;
4374 -- If warning on suspicious contracts then check for the case of
4375 -- a postcondition other than False for a No_Return subprogram.
4377 if No_Return (E)
4378 and then Warn_On_Suspicious_Contract
4379 and then Present (Contract (E))
4380 then
4381 declare
4382 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4383 Exp : Node_Id;
4385 begin
4386 while Present (Prag) loop
4387 if Nam_In (Pragma_Name (Prag), Name_Post,
4388 Name_Postcondition,
4389 Name_Refined_Post)
4390 then
4391 Exp :=
4392 Expression
4393 (First (Pragma_Argument_Associations (Prag)));
4395 if Nkind (Exp) /= N_Identifier
4396 or else Chars (Exp) /= Name_False
4397 then
4398 Error_Msg_NE
4399 ("useless postcondition, & is marked "
4400 & "No_Return?T?", Exp, E);
4401 end if;
4402 end if;
4404 Prag := Next_Pragma (Prag);
4405 end loop;
4406 end;
4407 end if;
4409 -- Here for other than a subprogram or type
4411 else
4412 -- If entity has a type, and it is not a generic unit, then
4413 -- freeze it first (RM 13.14(10)).
4415 if Present (Etype (E))
4416 and then Ekind (E) /= E_Generic_Function
4417 then
4418 Freeze_And_Append (Etype (E), N, Result);
4419 end if;
4421 -- Special processing for objects created by object declaration
4423 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
4425 -- Abstract type allowed only for C++ imported variables or
4426 -- constants.
4428 -- Note: we inhibit this check for objects that do not come
4429 -- from source because there is at least one case (the
4430 -- expansion of x'Class'Input where x is abstract) where we
4431 -- legitimately generate an abstract object.
4433 if Is_Abstract_Type (Etype (E))
4434 and then Comes_From_Source (Parent (E))
4435 and then not (Is_Imported (E)
4436 and then Is_CPP_Class (Etype (E)))
4437 then
4438 Error_Msg_N ("type of object cannot be abstract",
4439 Object_Definition (Parent (E)));
4441 if Is_CPP_Class (Etype (E)) then
4442 Error_Msg_NE
4443 ("\} may need a cpp_constructor",
4444 Object_Definition (Parent (E)), Etype (E));
4445 end if;
4446 end if;
4448 -- For object created by object declaration, perform required
4449 -- categorization (preelaborate and pure) checks. Defer these
4450 -- checks to freeze time since pragma Import inhibits default
4451 -- initialization and thus pragma Import affects these checks.
4453 Validate_Object_Declaration (Declaration_Node (E));
4455 -- If there is an address clause, check that it is valid
4457 Check_Address_Clause (E);
4459 -- Reset Is_True_Constant for aliased object. We consider that
4460 -- the fact that something is aliased may indicate that some
4461 -- funny business is going on, e.g. an aliased object is passed
4462 -- by reference to a procedure which captures the address of
4463 -- the object, which is later used to assign a new value. Such
4464 -- code is highly dubious, but we choose to make it "work" for
4465 -- aliased objects.
4467 -- However, we don't do that for internal entities. We figure
4468 -- that if we deliberately set Is_True_Constant for an internal
4469 -- entity, e.g. a dispatch table entry, then we mean it.
4471 if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
4472 and then not Is_Internal_Name (Chars (E))
4473 then
4474 Set_Is_True_Constant (E, False);
4475 end if;
4477 -- If the object needs any kind of default initialization, an
4478 -- error must be issued if No_Default_Initialization applies.
4479 -- The check doesn't apply to imported objects, which are not
4480 -- ever default initialized, and is why the check is deferred
4481 -- until freezing, at which point we know if Import applies.
4482 -- Deferred constants are also exempted from this test because
4483 -- their completion is explicit, or through an import pragma.
4485 if Ekind (E) = E_Constant
4486 and then Present (Full_View (E))
4487 then
4488 null;
4490 elsif Comes_From_Source (E)
4491 and then not Is_Imported (E)
4492 and then not Has_Init_Expression (Declaration_Node (E))
4493 and then
4494 ((Has_Non_Null_Base_Init_Proc (Etype (E))
4495 and then not No_Initialization (Declaration_Node (E))
4496 and then not Is_Value_Type (Etype (E))
4497 and then not Initialization_Suppressed (Etype (E)))
4498 or else
4499 (Needs_Simple_Initialization (Etype (E))
4500 and then not Is_Internal (E)))
4501 then
4502 Has_Default_Initialization := True;
4503 Check_Restriction
4504 (No_Default_Initialization, Declaration_Node (E));
4505 end if;
4507 -- Check that a Thread_Local_Storage variable does not have
4508 -- default initialization, and any explicit initialization must
4509 -- either be the null constant or a static constant.
4511 if Has_Pragma_Thread_Local_Storage (E) then
4512 declare
4513 Decl : constant Node_Id := Declaration_Node (E);
4514 begin
4515 if Has_Default_Initialization
4516 or else
4517 (Has_Init_Expression (Decl)
4518 and then
4519 (No (Expression (Decl))
4520 or else not
4521 (Is_OK_Static_Expression (Expression (Decl))
4522 or else
4523 Nkind (Expression (Decl)) = N_Null)))
4524 then
4525 Error_Msg_NE
4526 ("Thread_Local_Storage variable& is "
4527 & "improperly initialized", Decl, E);
4528 Error_Msg_NE
4529 ("\only allowed initialization is explicit "
4530 & "NULL or static expression", Decl, E);
4531 end if;
4532 end;
4533 end if;
4535 -- For imported objects, set Is_Public unless there is also an
4536 -- address clause, which means that there is no external symbol
4537 -- needed for the Import (Is_Public may still be set for other
4538 -- unrelated reasons). Note that we delayed this processing
4539 -- till freeze time so that we can be sure not to set the flag
4540 -- if there is an address clause. If there is such a clause,
4541 -- then the only purpose of the Import pragma is to suppress
4542 -- implicit initialization.
4544 if Is_Imported (E) and then No (Address_Clause (E)) then
4545 Set_Is_Public (E);
4546 end if;
4548 -- For source objects that are not Imported and are library
4549 -- level, if no linker section pragma was given inherit the
4550 -- appropriate linker section from the corresponding type.
4552 if Comes_From_Source (E)
4553 and then not Is_Imported (E)
4554 and then Is_Library_Level_Entity (E)
4555 and then No (Linker_Section_Pragma (E))
4556 then
4557 Set_Linker_Section_Pragma
4558 (E, Linker_Section_Pragma (Etype (E)));
4559 end if;
4561 -- For convention C objects of an enumeration type, warn if
4562 -- the size is not integer size and no explicit size given.
4563 -- Skip warning for Boolean, and Character, assume programmer
4564 -- expects 8-bit sizes for these cases.
4566 if (Convention (E) = Convention_C
4567 or else
4568 Convention (E) = Convention_CPP)
4569 and then Is_Enumeration_Type (Etype (E))
4570 and then not Is_Character_Type (Etype (E))
4571 and then not Is_Boolean_Type (Etype (E))
4572 and then Esize (Etype (E)) < Standard_Integer_Size
4573 and then not Has_Size_Clause (E)
4574 then
4575 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4576 Error_Msg_N
4577 ("??convention C enumeration object has size less than ^",
4579 Error_Msg_N ("\??use explicit size clause to set size", E);
4580 end if;
4581 end if;
4583 -- Check that a constant which has a pragma Volatile[_Components]
4584 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4586 -- Note: Atomic[_Components] also sets Volatile[_Components]
4588 if Ekind (E) = E_Constant
4589 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4590 and then not Is_Imported (E)
4591 and then not Has_Boolean_Aspect_Import (E)
4592 then
4593 -- Make sure we actually have a pragma, and have not merely
4594 -- inherited the indication from elsewhere (e.g. an address
4595 -- clause, which is not good enough in RM terms).
4597 if Has_Rep_Pragma (E, Name_Atomic)
4598 or else
4599 Has_Rep_Pragma (E, Name_Atomic_Components)
4600 then
4601 Error_Msg_N
4602 ("stand alone atomic constant must be " &
4603 "imported (RM C.6(13))", E);
4605 elsif Has_Rep_Pragma (E, Name_Volatile)
4606 or else
4607 Has_Rep_Pragma (E, Name_Volatile_Components)
4608 then
4609 Error_Msg_N
4610 ("stand alone volatile constant must be " &
4611 "imported (RM C.6(13))", E);
4612 end if;
4613 end if;
4615 -- Static objects require special handling
4617 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4618 and then Is_Statically_Allocated (E)
4619 then
4620 Freeze_Static_Object (E);
4621 end if;
4623 -- Remaining step is to layout objects
4625 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4626 or else Is_Formal (E)
4627 then
4628 Layout_Object (E);
4629 end if;
4631 -- For an object that does not have delayed freezing, and whose
4632 -- initialization actions have been captured in a compound
4633 -- statement, move them back now directly within the enclosing
4634 -- statement sequence.
4636 if Ekind_In (E, E_Constant, E_Variable)
4637 and then not Has_Delayed_Freeze (E)
4638 then
4639 Explode_Initialization_Compound_Statement (E);
4640 end if;
4641 end if;
4643 -- Case of a type or subtype being frozen
4645 else
4646 -- We used to check here that a full type must have preelaborable
4647 -- initialization if it completes a private type specified with
4648 -- pragma Preelaborable_Initialization, but that missed cases where
4649 -- the types occur within a generic package, since the freezing
4650 -- that occurs within a containing scope generally skips traversal
4651 -- of a generic unit's declarations (those will be frozen within
4652 -- instances). This check was moved to Analyze_Package_Specification.
4654 -- The type may be defined in a generic unit. This can occur when
4655 -- freezing a generic function that returns the type (which is
4656 -- defined in a parent unit). It is clearly meaningless to freeze
4657 -- this type. However, if it is a subtype, its size may be determi-
4658 -- nable and used in subsequent checks, so might as well try to
4659 -- compute it.
4661 -- In Ada 2012, Freeze_Entities is also used in the front end to
4662 -- trigger the analysis of aspect expressions, so in this case we
4663 -- want to continue the freezing process.
4665 if Present (Scope (E))
4666 and then Is_Generic_Unit (Scope (E))
4667 and then
4668 (not Has_Predicates (E)
4669 and then not Has_Delayed_Freeze (E))
4670 then
4671 Check_Compile_Time_Size (E);
4672 return No_List;
4673 end if;
4675 -- Check for error of Type_Invariant'Class applied to an untagged
4676 -- type (check delayed to freeze time when full type is available).
4678 declare
4679 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
4680 begin
4681 if Present (Prag)
4682 and then Class_Present (Prag)
4683 and then not Is_Tagged_Type (E)
4684 then
4685 Error_Msg_NE
4686 ("Type_Invariant''Class cannot be specified for &",
4687 Prag, E);
4688 Error_Msg_N
4689 ("\can only be specified for a tagged type", Prag);
4690 end if;
4691 end;
4693 -- Deal with special cases of freezing for subtype
4695 if E /= Base_Type (E) then
4697 -- Before we do anything else, a specialized test for the case of
4698 -- a size given for an array where the array needs to be packed,
4699 -- but was not so the size cannot be honored. This is the case
4700 -- where implicit packing may apply. The reason we do this so
4701 -- early is that if we have implicit packing, the layout of the
4702 -- base type is affected, so we must do this before we freeze
4703 -- the base type.
4705 -- We could do this processing only if implicit packing is enabled
4706 -- since in all other cases, the error would be caught by the back
4707 -- end. However, we choose to do the check even if we do not have
4708 -- implicit packing enabled, since this allows us to give a more
4709 -- useful error message (advising use of pragmas Implicit_Packing
4710 -- or Pack).
4712 if Is_Array_Type (E) then
4713 declare
4714 Ctyp : constant Entity_Id := Component_Type (E);
4715 Rsiz : constant Uint := RM_Size (Ctyp);
4716 SZ : constant Node_Id := Size_Clause (E);
4717 Btyp : constant Entity_Id := Base_Type (E);
4719 Lo : Node_Id;
4720 Hi : Node_Id;
4721 Indx : Node_Id;
4723 Num_Elmts : Uint;
4724 -- Number of elements in array
4726 begin
4727 -- Check enabling conditions. These are straightforward
4728 -- except for the test for a limited composite type. This
4729 -- eliminates the rare case of a array of limited components
4730 -- where there are issues of whether or not we can go ahead
4731 -- and pack the array (since we can't freely pack and unpack
4732 -- arrays if they are limited).
4734 -- Note that we check the root type explicitly because the
4735 -- whole point is we are doing this test before we have had
4736 -- a chance to freeze the base type (and it is that freeze
4737 -- action that causes stuff to be inherited).
4739 if Has_Size_Clause (E)
4740 and then Known_Static_RM_Size (E)
4741 and then not Is_Packed (E)
4742 and then not Has_Pragma_Pack (E)
4743 and then not Has_Component_Size_Clause (E)
4744 and then Known_Static_RM_Size (Ctyp)
4745 and then RM_Size (Ctyp) < 64
4746 and then not Is_Limited_Composite (E)
4747 and then not Is_Packed (Root_Type (E))
4748 and then not Has_Component_Size_Clause (Root_Type (E))
4749 and then not (CodePeer_Mode or GNATprove_Mode)
4750 then
4751 -- Compute number of elements in array
4753 Num_Elmts := Uint_1;
4754 Indx := First_Index (E);
4755 while Present (Indx) loop
4756 Get_Index_Bounds (Indx, Lo, Hi);
4758 if not (Compile_Time_Known_Value (Lo)
4759 and then
4760 Compile_Time_Known_Value (Hi))
4761 then
4762 goto No_Implicit_Packing;
4763 end if;
4765 Num_Elmts :=
4766 Num_Elmts *
4767 UI_Max (Uint_0,
4768 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4769 Next_Index (Indx);
4770 end loop;
4772 -- What we are looking for here is the situation where
4773 -- the RM_Size given would be exactly right if there was
4774 -- a pragma Pack (resulting in the component size being
4775 -- the same as the RM_Size). Furthermore, the component
4776 -- type size must be an odd size (not a multiple of
4777 -- storage unit). If the component RM size is an exact
4778 -- number of storage units that is a power of two, the
4779 -- array is not packed and has a standard representation.
4781 if RM_Size (E) = Num_Elmts * Rsiz
4782 and then Rsiz mod System_Storage_Unit /= 0
4783 then
4784 -- For implicit packing mode, just set the component
4785 -- size silently.
4787 if Implicit_Packing then
4788 Set_Component_Size (Btyp, Rsiz);
4789 Set_Is_Bit_Packed_Array (Btyp);
4790 Set_Is_Packed (Btyp);
4791 Set_Has_Non_Standard_Rep (Btyp);
4793 -- Otherwise give an error message
4795 else
4796 Error_Msg_NE
4797 ("size given for& too small", SZ, E);
4798 Error_Msg_N -- CODEFIX
4799 ("\use explicit pragma Pack "
4800 & "or use pragma Implicit_Packing", SZ);
4801 end if;
4803 elsif RM_Size (E) = Num_Elmts * Rsiz
4804 and then Implicit_Packing
4805 and then
4806 (Rsiz / System_Storage_Unit = 1
4807 or else
4808 Rsiz / System_Storage_Unit = 2
4809 or else
4810 Rsiz / System_Storage_Unit = 4)
4811 then
4812 -- Not a packed array, but indicate the desired
4813 -- component size, for the back-end.
4815 Set_Component_Size (Btyp, Rsiz);
4816 end if;
4817 end if;
4818 end;
4819 end if;
4821 <<No_Implicit_Packing>>
4823 -- If ancestor subtype present, freeze that first. Note that this
4824 -- will also get the base type frozen. Need RM reference ???
4826 Atype := Ancestor_Subtype (E);
4828 if Present (Atype) then
4829 Freeze_And_Append (Atype, N, Result);
4831 -- No ancestor subtype present
4833 else
4834 -- See if we have a nearest ancestor that has a predicate.
4835 -- That catches the case of derived type with a predicate.
4836 -- Need RM reference here ???
4838 Atype := Nearest_Ancestor (E);
4840 if Present (Atype) and then Has_Predicates (Atype) then
4841 Freeze_And_Append (Atype, N, Result);
4842 end if;
4844 -- Freeze base type before freezing the entity (RM 13.14(15))
4846 if E /= Base_Type (E) then
4847 Freeze_And_Append (Base_Type (E), N, Result);
4848 end if;
4849 end if;
4851 -- A subtype inherits all the type-related representation aspects
4852 -- from its parents (RM 13.1(8)).
4854 Inherit_Aspects_At_Freeze_Point (E);
4856 -- For a derived type, freeze its parent type first (RM 13.14(15))
4858 elsif Is_Derived_Type (E) then
4859 Freeze_And_Append (Etype (E), N, Result);
4860 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
4862 -- A derived type inherits each type-related representation aspect
4863 -- of its parent type that was directly specified before the
4864 -- declaration of the derived type (RM 13.1(15)).
4866 Inherit_Aspects_At_Freeze_Point (E);
4867 end if;
4869 -- Check for incompatible size and alignment for record type
4871 if Warn_On_Size_Alignment
4872 and then Is_Record_Type (E)
4873 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
4875 -- If explicit Object_Size clause given assume that the programmer
4876 -- knows what he is doing, and expects the compiler behavior.
4878 and then not Has_Object_Size_Clause (E)
4880 -- Check for size not a multiple of alignment
4882 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
4883 then
4884 declare
4885 SC : constant Node_Id := Size_Clause (E);
4886 AC : constant Node_Id := Alignment_Clause (E);
4887 Loc : Node_Id;
4888 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
4890 begin
4891 if Present (SC) and then Present (AC) then
4893 -- Give a warning
4895 if Sloc (SC) > Sloc (AC) then
4896 Loc := SC;
4897 Error_Msg_NE
4898 ("??size is not a multiple of alignment for &", Loc, E);
4899 Error_Msg_Sloc := Sloc (AC);
4900 Error_Msg_Uint_1 := Alignment (E);
4901 Error_Msg_N ("\??alignment of ^ specified #", Loc);
4903 else
4904 Loc := AC;
4905 Error_Msg_NE
4906 ("??size is not a multiple of alignment for &", Loc, E);
4907 Error_Msg_Sloc := Sloc (SC);
4908 Error_Msg_Uint_1 := RM_Size (E);
4909 Error_Msg_N ("\??size of ^ specified #", Loc);
4910 end if;
4912 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
4913 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
4914 end if;
4915 end;
4916 end if;
4918 -- Array type
4920 if Is_Array_Type (E) then
4921 Freeze_Array_Type (E);
4923 -- For a class-wide type, the corresponding specific type is
4924 -- frozen as well (RM 13.14(15))
4926 elsif Is_Class_Wide_Type (E) then
4927 Freeze_And_Append (Root_Type (E), N, Result);
4929 -- If the base type of the class-wide type is still incomplete,
4930 -- the class-wide remains unfrozen as well. This is legal when
4931 -- E is the formal of a primitive operation of some other type
4932 -- which is being frozen.
4934 if not Is_Frozen (Root_Type (E)) then
4935 Set_Is_Frozen (E, False);
4936 return Result;
4937 end if;
4939 -- The equivalent type associated with a class-wide subtype needs
4940 -- to be frozen to ensure that its layout is done.
4942 if Ekind (E) = E_Class_Wide_Subtype
4943 and then Present (Equivalent_Type (E))
4944 then
4945 Freeze_And_Append (Equivalent_Type (E), N, Result);
4946 end if;
4948 -- Generate an itype reference for a library-level class-wide type
4949 -- at the freeze point. Otherwise the first explicit reference to
4950 -- the type may appear in an inner scope which will be rejected by
4951 -- the back-end.
4953 if Is_Itype (E)
4954 and then Is_Compilation_Unit (Scope (E))
4955 then
4956 declare
4957 Ref : constant Node_Id := Make_Itype_Reference (Loc);
4959 begin
4960 Set_Itype (Ref, E);
4962 -- From a gigi point of view, a class-wide subtype derives
4963 -- from its record equivalent type. As a result, the itype
4964 -- reference must appear after the freeze node of the
4965 -- equivalent type or gigi will reject the reference.
4967 if Ekind (E) = E_Class_Wide_Subtype
4968 and then Present (Equivalent_Type (E))
4969 then
4970 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
4971 else
4972 Add_To_Result (Ref);
4973 end if;
4974 end;
4975 end if;
4977 -- For a record type or record subtype, freeze all component types
4978 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
4979 -- using Is_Record_Type, because we don't want to attempt the freeze
4980 -- for the case of a private type with record extension (we will do
4981 -- that later when the full type is frozen).
4983 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
4984 and then not Is_Generic_Unit (Scope (E))
4985 then
4986 Freeze_Record_Type (E);
4988 -- For a concurrent type, freeze corresponding record type. This does
4989 -- not correspond to any specific rule in the RM, but the record type
4990 -- is essentially part of the concurrent type. Also freeze all local
4991 -- entities. This includes record types created for entry parameter
4992 -- blocks and whatever local entities may appear in the private part.
4994 elsif Is_Concurrent_Type (E) then
4995 if Present (Corresponding_Record_Type (E)) then
4996 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
4997 end if;
4999 Comp := First_Entity (E);
5000 while Present (Comp) loop
5001 if Is_Type (Comp) then
5002 Freeze_And_Append (Comp, N, Result);
5004 elsif (Ekind (Comp)) /= E_Function then
5006 -- The guard on the presence of the Etype seems to be needed
5007 -- for some CodePeer (-gnatcC) cases, but not clear why???
5009 if Present (Etype (Comp)) then
5010 if Is_Itype (Etype (Comp))
5011 and then Underlying_Type (Scope (Etype (Comp))) = E
5012 then
5013 Undelay_Type (Etype (Comp));
5014 end if;
5016 Freeze_And_Append (Etype (Comp), N, Result);
5017 end if;
5018 end if;
5020 Next_Entity (Comp);
5021 end loop;
5023 -- Private types are required to point to the same freeze node as
5024 -- their corresponding full views. The freeze node itself has to
5025 -- point to the partial view of the entity (because from the partial
5026 -- view, we can retrieve the full view, but not the reverse).
5027 -- However, in order to freeze correctly, we need to freeze the full
5028 -- view. If we are freezing at the end of a scope (or within the
5029 -- scope) of the private type, the partial and full views will have
5030 -- been swapped, the full view appears first in the entity chain and
5031 -- the swapping mechanism ensures that the pointers are properly set
5032 -- (on scope exit).
5034 -- If we encounter the partial view before the full view (e.g. when
5035 -- freezing from another scope), we freeze the full view, and then
5036 -- set the pointers appropriately since we cannot rely on swapping to
5037 -- fix things up (subtypes in an outer scope might not get swapped).
5039 -- If the full view is itself private, the above requirements apply
5040 -- to the underlying full view instead of the full view. But there is
5041 -- no swapping mechanism for the underlying full view so we need to
5042 -- set the pointers appropriately in both cases.
5044 elsif Is_Incomplete_Or_Private_Type (E)
5045 and then not Is_Generic_Type (E)
5046 then
5047 -- The construction of the dispatch table associated with library
5048 -- level tagged types forces freezing of all the primitives of the
5049 -- type, which may cause premature freezing of the partial view.
5050 -- For example:
5052 -- package Pkg is
5053 -- type T is tagged private;
5054 -- type DT is new T with private;
5055 -- procedure Prim (X : in out T; Y : in out DT'Class);
5056 -- private
5057 -- type T is tagged null record;
5058 -- Obj : T;
5059 -- type DT is new T with null record;
5060 -- end;
5062 -- In this case the type will be frozen later by the usual
5063 -- mechanism: an object declaration, an instantiation, or the
5064 -- end of a declarative part.
5066 if Is_Library_Level_Tagged_Type (E)
5067 and then not Present (Full_View (E))
5068 then
5069 Set_Is_Frozen (E, False);
5070 return Result;
5072 -- Case of full view present
5074 elsif Present (Full_View (E)) then
5076 -- If full view has already been frozen, then no further
5077 -- processing is required
5079 if Is_Frozen (Full_View (E)) then
5080 Set_Has_Delayed_Freeze (E, False);
5081 Set_Freeze_Node (E, Empty);
5083 -- Otherwise freeze full view and patch the pointers so that
5084 -- the freeze node will elaborate both views in the back end.
5085 -- However, if full view is itself private, freeze underlying
5086 -- full view instead and patch the pointers so that the freeze
5087 -- node will elaborate the three views in the back end.
5089 else
5090 declare
5091 Full : Entity_Id := Full_View (E);
5093 begin
5094 if Is_Private_Type (Full)
5095 and then Present (Underlying_Full_View (Full))
5096 then
5097 Full := Underlying_Full_View (Full);
5098 end if;
5100 Freeze_And_Append (Full, N, Result);
5102 if Full /= Full_View (E)
5103 and then Has_Delayed_Freeze (Full_View (E))
5104 then
5105 F_Node := Freeze_Node (Full);
5107 if Present (F_Node) then
5108 Set_Freeze_Node (Full_View (E), F_Node);
5109 Set_Entity (F_Node, Full_View (E));
5111 else
5112 Set_Has_Delayed_Freeze (Full_View (E), False);
5113 Set_Freeze_Node (Full_View (E), Empty);
5114 end if;
5115 end if;
5117 if Has_Delayed_Freeze (E) then
5118 F_Node := Freeze_Node (Full_View (E));
5120 if Present (F_Node) then
5121 Set_Freeze_Node (E, F_Node);
5122 Set_Entity (F_Node, E);
5124 else
5125 -- {Incomplete,Private}_Subtypes with Full_Views
5126 -- constrained by discriminants.
5128 Set_Has_Delayed_Freeze (E, False);
5129 Set_Freeze_Node (E, Empty);
5130 end if;
5131 end if;
5132 end;
5133 end if;
5135 Check_Debug_Info_Needed (E);
5137 -- AI-117 requires that the convention of a partial view be the
5138 -- same as the convention of the full view. Note that this is a
5139 -- recognized breach of privacy, but it's essential for logical
5140 -- consistency of representation, and the lack of a rule in
5141 -- RM95 was an oversight.
5143 Set_Convention (E, Convention (Full_View (E)));
5145 Set_Size_Known_At_Compile_Time (E,
5146 Size_Known_At_Compile_Time (Full_View (E)));
5148 -- Size information is copied from the full view to the
5149 -- incomplete or private view for consistency.
5151 -- We skip this is the full view is not a type. This is very
5152 -- strange of course, and can only happen as a result of
5153 -- certain illegalities, such as a premature attempt to derive
5154 -- from an incomplete type.
5156 if Is_Type (Full_View (E)) then
5157 Set_Size_Info (E, Full_View (E));
5158 Set_RM_Size (E, RM_Size (Full_View (E)));
5159 end if;
5161 return Result;
5163 -- Case of underlying full view present
5165 elsif Is_Private_Type (E)
5166 and then Present (Underlying_Full_View (E))
5167 then
5168 if not Is_Frozen (Underlying_Full_View (E)) then
5169 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5170 end if;
5172 -- Patch the pointers so that the freeze node will elaborate
5173 -- both views in the back end.
5175 if Has_Delayed_Freeze (E) then
5176 F_Node := Freeze_Node (Underlying_Full_View (E));
5178 if Present (F_Node) then
5179 Set_Freeze_Node (E, F_Node);
5180 Set_Entity (F_Node, E);
5182 else
5183 Set_Has_Delayed_Freeze (E, False);
5184 Set_Freeze_Node (E, Empty);
5185 end if;
5186 end if;
5188 Check_Debug_Info_Needed (E);
5190 return Result;
5192 -- Case of no full view present. If entity is derived or subtype,
5193 -- it is safe to freeze, correctness depends on the frozen status
5194 -- of parent. Otherwise it is either premature usage, or a Taft
5195 -- amendment type, so diagnosis is at the point of use and the
5196 -- type might be frozen later.
5198 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5199 null;
5201 else
5202 Set_Is_Frozen (E, False);
5203 return No_List;
5204 end if;
5206 -- For access subprogram, freeze types of all formals, the return
5207 -- type was already frozen, since it is the Etype of the function.
5208 -- Formal types can be tagged Taft amendment types, but otherwise
5209 -- they cannot be incomplete.
5211 elsif Ekind (E) = E_Subprogram_Type then
5212 Formal := First_Formal (E);
5213 while Present (Formal) loop
5214 if Ekind (Etype (Formal)) = E_Incomplete_Type
5215 and then No (Full_View (Etype (Formal)))
5216 and then not Is_Value_Type (Etype (Formal))
5217 then
5218 if Is_Tagged_Type (Etype (Formal)) then
5219 null;
5221 -- AI05-151: Incomplete types are allowed in access to
5222 -- subprogram specifications.
5224 elsif Ada_Version < Ada_2012 then
5225 Error_Msg_NE
5226 ("invalid use of incomplete type&", E, Etype (Formal));
5227 end if;
5228 end if;
5230 Freeze_And_Append (Etype (Formal), N, Result);
5231 Next_Formal (Formal);
5232 end loop;
5234 Freeze_Subprogram (E);
5236 -- For access to a protected subprogram, freeze the equivalent type
5237 -- (however this is not set if we are not generating code or if this
5238 -- is an anonymous type used just for resolution).
5240 elsif Is_Access_Protected_Subprogram_Type (E) then
5241 if Present (Equivalent_Type (E)) then
5242 Freeze_And_Append (Equivalent_Type (E), N, Result);
5243 end if;
5244 end if;
5246 -- Generic types are never seen by the back-end, and are also not
5247 -- processed by the expander (since the expander is turned off for
5248 -- generic processing), so we never need freeze nodes for them.
5250 if Is_Generic_Type (E) then
5251 return Result;
5252 end if;
5254 -- Some special processing for non-generic types to complete
5255 -- representation details not known till the freeze point.
5257 if Is_Fixed_Point_Type (E) then
5258 Freeze_Fixed_Point_Type (E);
5260 -- Some error checks required for ordinary fixed-point type. Defer
5261 -- these till the freeze-point since we need the small and range
5262 -- values. We only do these checks for base types
5264 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5265 if Small_Value (E) < Ureal_2_M_80 then
5266 Error_Msg_Name_1 := Name_Small;
5267 Error_Msg_N
5268 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5270 elsif Small_Value (E) > Ureal_2_80 then
5271 Error_Msg_Name_1 := Name_Small;
5272 Error_Msg_N
5273 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5274 end if;
5276 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5277 Error_Msg_Name_1 := Name_First;
5278 Error_Msg_N
5279 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5280 end if;
5282 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5283 Error_Msg_Name_1 := Name_Last;
5284 Error_Msg_N
5285 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5286 end if;
5287 end if;
5289 elsif Is_Enumeration_Type (E) then
5290 Freeze_Enumeration_Type (E);
5292 elsif Is_Integer_Type (E) then
5293 Adjust_Esize_For_Alignment (E);
5295 if Is_Modular_Integer_Type (E)
5296 and then Warn_On_Suspicious_Modulus_Value
5297 then
5298 Check_Suspicious_Modulus (E);
5299 end if;
5301 elsif Is_Access_Type (E)
5302 and then not Is_Access_Subprogram_Type (E)
5303 then
5304 -- If a pragma Default_Storage_Pool applies, and this type has no
5305 -- Storage_Pool or Storage_Size clause (which must have occurred
5306 -- before the freezing point), then use the default. This applies
5307 -- only to base types.
5309 -- None of this applies to access to subprograms, for which there
5310 -- are clearly no pools.
5312 if Present (Default_Pool)
5313 and then Is_Base_Type (E)
5314 and then not Has_Storage_Size_Clause (E)
5315 and then No (Associated_Storage_Pool (E))
5316 then
5317 -- Case of pragma Default_Storage_Pool (null)
5319 if Nkind (Default_Pool) = N_Null then
5320 Set_No_Pool_Assigned (E);
5322 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5324 else
5325 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5326 end if;
5327 end if;
5329 -- Check restriction for standard storage pool
5331 if No (Associated_Storage_Pool (E)) then
5332 Check_Restriction (No_Standard_Storage_Pools, E);
5333 end if;
5335 -- Deal with error message for pure access type. This is not an
5336 -- error in Ada 2005 if there is no pool (see AI-366).
5338 if Is_Pure_Unit_Access_Type (E)
5339 and then (Ada_Version < Ada_2005
5340 or else not No_Pool_Assigned (E))
5341 and then not Is_Generic_Unit (Scope (E))
5342 then
5343 Error_Msg_N ("named access type not allowed in pure unit", E);
5345 if Ada_Version >= Ada_2005 then
5346 Error_Msg_N
5347 ("\would be legal if Storage_Size of 0 given??", E);
5349 elsif No_Pool_Assigned (E) then
5350 Error_Msg_N
5351 ("\would be legal in Ada 2005??", E);
5353 else
5354 Error_Msg_N
5355 ("\would be legal in Ada 2005 if "
5356 & "Storage_Size of 0 given??", E);
5357 end if;
5358 end if;
5359 end if;
5361 -- Case of composite types
5363 if Is_Composite_Type (E) then
5365 -- AI-117 requires that all new primitives of a tagged type must
5366 -- inherit the convention of the full view of the type. Inherited
5367 -- and overriding operations are defined to inherit the convention
5368 -- of their parent or overridden subprogram (also specified in
5369 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5370 -- and New_Overloaded_Entity). Here we set the convention of
5371 -- primitives that are still convention Ada, which will ensure
5372 -- that any new primitives inherit the type's convention. Class-
5373 -- wide types can have a foreign convention inherited from their
5374 -- specific type, but are excluded from this since they don't have
5375 -- any associated primitives.
5377 if Is_Tagged_Type (E)
5378 and then not Is_Class_Wide_Type (E)
5379 and then Convention (E) /= Convention_Ada
5380 then
5381 declare
5382 Prim_List : constant Elist_Id := Primitive_Operations (E);
5383 Prim : Elmt_Id;
5385 begin
5386 Prim := First_Elmt (Prim_List);
5387 while Present (Prim) loop
5388 if Convention (Node (Prim)) = Convention_Ada then
5389 Set_Convention (Node (Prim), Convention (E));
5390 end if;
5392 Next_Elmt (Prim);
5393 end loop;
5394 end;
5395 end if;
5397 -- If the type is a simple storage pool type, then this is where
5398 -- we attempt to locate and validate its Allocate, Deallocate, and
5399 -- Storage_Size operations (the first is required, and the latter
5400 -- two are optional). We also verify that the full type for a
5401 -- private type is allowed to be a simple storage pool type.
5403 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5404 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5405 then
5406 -- If the type is marked Has_Private_Declaration, then this is
5407 -- a full type for a private type that was specified with the
5408 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5409 -- pragma is allowed for the full type (for example, it can't
5410 -- be an array type, or a nonlimited record type).
5412 if Has_Private_Declaration (E) then
5413 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5414 and then not Is_Private_Type (E)
5415 then
5416 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5417 Error_Msg_N
5418 ("pragma% can only apply to full type that is an " &
5419 "explicitly limited type", E);
5420 end if;
5421 end if;
5423 Validate_Simple_Pool_Ops : declare
5424 Pool_Type : Entity_Id renames E;
5425 Address_Type : constant Entity_Id := RTE (RE_Address);
5426 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5428 procedure Validate_Simple_Pool_Op_Formal
5429 (Pool_Op : Entity_Id;
5430 Pool_Op_Formal : in out Entity_Id;
5431 Expected_Mode : Formal_Kind;
5432 Expected_Type : Entity_Id;
5433 Formal_Name : String;
5434 OK_Formal : in out Boolean);
5435 -- Validate one formal Pool_Op_Formal of the candidate pool
5436 -- operation Pool_Op. The formal must be of Expected_Type
5437 -- and have mode Expected_Mode. OK_Formal will be set to
5438 -- False if the formal doesn't match. If OK_Formal is False
5439 -- on entry, then the formal will effectively be ignored
5440 -- (because validation of the pool op has already failed).
5441 -- Upon return, Pool_Op_Formal will be updated to the next
5442 -- formal, if any.
5444 procedure Validate_Simple_Pool_Operation
5445 (Op_Name : Name_Id);
5446 -- Search for and validate a simple pool operation with the
5447 -- name Op_Name. If the name is Allocate, then there must be
5448 -- exactly one such primitive operation for the simple pool
5449 -- type. If the name is Deallocate or Storage_Size, then
5450 -- there can be at most one such primitive operation. The
5451 -- profile of the located primitive must conform to what
5452 -- is expected for each operation.
5454 ------------------------------------
5455 -- Validate_Simple_Pool_Op_Formal --
5456 ------------------------------------
5458 procedure Validate_Simple_Pool_Op_Formal
5459 (Pool_Op : Entity_Id;
5460 Pool_Op_Formal : in out Entity_Id;
5461 Expected_Mode : Formal_Kind;
5462 Expected_Type : Entity_Id;
5463 Formal_Name : String;
5464 OK_Formal : in out Boolean)
5466 begin
5467 -- If OK_Formal is False on entry, then simply ignore
5468 -- the formal, because an earlier formal has already
5469 -- been flagged.
5471 if not OK_Formal then
5472 return;
5474 -- If no formal is passed in, then issue an error for a
5475 -- missing formal.
5477 elsif not Present (Pool_Op_Formal) then
5478 Error_Msg_NE
5479 ("simple storage pool op missing formal " &
5480 Formal_Name & " of type&", Pool_Op, Expected_Type);
5481 OK_Formal := False;
5483 return;
5484 end if;
5486 if Etype (Pool_Op_Formal) /= Expected_Type then
5488 -- If the pool type was expected for this formal, then
5489 -- this will not be considered a candidate operation
5490 -- for the simple pool, so we unset OK_Formal so that
5491 -- the op and any later formals will be ignored.
5493 if Expected_Type = Pool_Type then
5494 OK_Formal := False;
5496 return;
5498 else
5499 Error_Msg_NE
5500 ("wrong type for formal " & Formal_Name &
5501 " of simple storage pool op; expected type&",
5502 Pool_Op_Formal, Expected_Type);
5503 end if;
5504 end if;
5506 -- Issue error if formal's mode is not the expected one
5508 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5509 Error_Msg_N
5510 ("wrong mode for formal of simple storage pool op",
5511 Pool_Op_Formal);
5512 end if;
5514 -- Advance to the next formal
5516 Next_Formal (Pool_Op_Formal);
5517 end Validate_Simple_Pool_Op_Formal;
5519 ------------------------------------
5520 -- Validate_Simple_Pool_Operation --
5521 ------------------------------------
5523 procedure Validate_Simple_Pool_Operation
5524 (Op_Name : Name_Id)
5526 Op : Entity_Id;
5527 Found_Op : Entity_Id := Empty;
5528 Formal : Entity_Id;
5529 Is_OK : Boolean;
5531 begin
5532 pragma Assert
5533 (Nam_In (Op_Name, Name_Allocate,
5534 Name_Deallocate,
5535 Name_Storage_Size));
5537 Error_Msg_Name_1 := Op_Name;
5539 -- For each homonym declared immediately in the scope
5540 -- of the simple storage pool type, determine whether
5541 -- the homonym is an operation of the pool type, and,
5542 -- if so, check that its profile is as expected for
5543 -- a simple pool operation of that name.
5545 Op := Get_Name_Entity_Id (Op_Name);
5546 while Present (Op) loop
5547 if Ekind_In (Op, E_Function, E_Procedure)
5548 and then Scope (Op) = Current_Scope
5549 then
5550 Formal := First_Entity (Op);
5552 Is_OK := True;
5554 -- The first parameter must be of the pool type
5555 -- in order for the operation to qualify.
5557 if Op_Name = Name_Storage_Size then
5558 Validate_Simple_Pool_Op_Formal
5559 (Op, Formal, E_In_Parameter, Pool_Type,
5560 "Pool", Is_OK);
5561 else
5562 Validate_Simple_Pool_Op_Formal
5563 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5564 "Pool", Is_OK);
5565 end if;
5567 -- If another operation with this name has already
5568 -- been located for the type, then flag an error,
5569 -- since we only allow the type to have a single
5570 -- such primitive.
5572 if Present (Found_Op) and then Is_OK then
5573 Error_Msg_NE
5574 ("only one % operation allowed for " &
5575 "simple storage pool type&", Op, Pool_Type);
5576 end if;
5578 -- In the case of Allocate and Deallocate, a formal
5579 -- of type System.Address is required.
5581 if Op_Name = Name_Allocate then
5582 Validate_Simple_Pool_Op_Formal
5583 (Op, Formal, E_Out_Parameter,
5584 Address_Type, "Storage_Address", Is_OK);
5586 elsif Op_Name = Name_Deallocate then
5587 Validate_Simple_Pool_Op_Formal
5588 (Op, Formal, E_In_Parameter,
5589 Address_Type, "Storage_Address", Is_OK);
5590 end if;
5592 -- In the case of Allocate and Deallocate, formals
5593 -- of type Storage_Count are required as the third
5594 -- and fourth parameters.
5596 if Op_Name /= Name_Storage_Size then
5597 Validate_Simple_Pool_Op_Formal
5598 (Op, Formal, E_In_Parameter,
5599 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
5600 Validate_Simple_Pool_Op_Formal
5601 (Op, Formal, E_In_Parameter,
5602 Stg_Cnt_Type, "Alignment", Is_OK);
5603 end if;
5605 -- If no mismatched formals have been found (Is_OK)
5606 -- and no excess formals are present, then this
5607 -- operation has been validated, so record it.
5609 if not Present (Formal) and then Is_OK then
5610 Found_Op := Op;
5611 end if;
5612 end if;
5614 Op := Homonym (Op);
5615 end loop;
5617 -- There must be a valid Allocate operation for the type,
5618 -- so issue an error if none was found.
5620 if Op_Name = Name_Allocate
5621 and then not Present (Found_Op)
5622 then
5623 Error_Msg_N ("missing % operation for simple " &
5624 "storage pool type", Pool_Type);
5626 elsif Present (Found_Op) then
5628 -- Simple pool operations can't be abstract
5630 if Is_Abstract_Subprogram (Found_Op) then
5631 Error_Msg_N
5632 ("simple storage pool operation must not be " &
5633 "abstract", Found_Op);
5634 end if;
5636 -- The Storage_Size operation must be a function with
5637 -- Storage_Count as its result type.
5639 if Op_Name = Name_Storage_Size then
5640 if Ekind (Found_Op) = E_Procedure then
5641 Error_Msg_N
5642 ("% operation must be a function", Found_Op);
5644 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5645 Error_Msg_NE
5646 ("wrong result type for%, expected type&",
5647 Found_Op, Stg_Cnt_Type);
5648 end if;
5650 -- Allocate and Deallocate must be procedures
5652 elsif Ekind (Found_Op) = E_Function then
5653 Error_Msg_N
5654 ("% operation must be a procedure", Found_Op);
5655 end if;
5656 end if;
5657 end Validate_Simple_Pool_Operation;
5659 -- Start of processing for Validate_Simple_Pool_Ops
5661 begin
5662 Validate_Simple_Pool_Operation (Name_Allocate);
5663 Validate_Simple_Pool_Operation (Name_Deallocate);
5664 Validate_Simple_Pool_Operation (Name_Storage_Size);
5665 end Validate_Simple_Pool_Ops;
5666 end if;
5667 end if;
5669 -- Now that all types from which E may depend are frozen, see if the
5670 -- size is known at compile time, if it must be unsigned, or if
5671 -- strict alignment is required
5673 Check_Compile_Time_Size (E);
5674 Check_Unsigned_Type (E);
5676 if Base_Type (E) = E then
5677 Check_Strict_Alignment (E);
5678 end if;
5680 -- Do not allow a size clause for a type which does not have a size
5681 -- that is known at compile time
5683 if Has_Size_Clause (E)
5684 and then not Size_Known_At_Compile_Time (E)
5685 then
5686 -- Suppress this message if errors posted on E, even if we are
5687 -- in all errors mode, since this is often a junk message
5689 if not Error_Posted (E) then
5690 Error_Msg_N
5691 ("size clause not allowed for variable length type",
5692 Size_Clause (E));
5693 end if;
5694 end if;
5696 -- Now we set/verify the representation information, in particular
5697 -- the size and alignment values. This processing is not required for
5698 -- generic types, since generic types do not play any part in code
5699 -- generation, and so the size and alignment values for such types
5700 -- are irrelevant. Ditto for types declared within a generic unit,
5701 -- which may have components that depend on generic parameters, and
5702 -- that will be recreated in an instance.
5704 if Inside_A_Generic then
5705 null;
5707 -- Otherwise we call the layout procedure
5709 else
5710 Layout_Type (E);
5711 end if;
5713 -- If this is an access to subprogram whose designated type is itself
5714 -- a subprogram type, the return type of this anonymous subprogram
5715 -- type must be decorated as well.
5717 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5718 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5719 then
5720 Layout_Type (Etype (Designated_Type (E)));
5721 end if;
5723 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5724 -- this is where we analye the expression (after the type is frozen,
5725 -- since in the case of Default_Value, we are analyzing with the
5726 -- type itself, and we treat Default_Component_Value similarly for
5727 -- the sake of uniformity).
5729 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5730 declare
5731 Nam : Name_Id;
5732 Exp : Node_Id;
5733 Typ : Entity_Id;
5735 begin
5736 if Is_Scalar_Type (E) then
5737 Nam := Name_Default_Value;
5738 Typ := E;
5739 Exp := Default_Aspect_Value (Typ);
5740 else
5741 Nam := Name_Default_Component_Value;
5742 Typ := Component_Type (E);
5743 Exp := Default_Aspect_Component_Value (E);
5744 end if;
5746 Analyze_And_Resolve (Exp, Typ);
5748 if Etype (Exp) /= Any_Type then
5749 if not Is_OK_Static_Expression (Exp) then
5750 Error_Msg_Name_1 := Nam;
5751 Flag_Non_Static_Expr
5752 ("aspect% requires static expression", Exp);
5753 end if;
5754 end if;
5755 end;
5756 end if;
5758 -- End of freeze processing for type entities
5759 end if;
5761 -- Here is where we logically freeze the current entity. If it has a
5762 -- freeze node, then this is the point at which the freeze node is
5763 -- linked into the result list.
5765 if Has_Delayed_Freeze (E) then
5767 -- If a freeze node is already allocated, use it, otherwise allocate
5768 -- a new one. The preallocation happens in the case of anonymous base
5769 -- types, where we preallocate so that we can set First_Subtype_Link.
5770 -- Note that we reset the Sloc to the current freeze location.
5772 if Present (Freeze_Node (E)) then
5773 F_Node := Freeze_Node (E);
5774 Set_Sloc (F_Node, Loc);
5776 else
5777 F_Node := New_Node (N_Freeze_Entity, Loc);
5778 Set_Freeze_Node (E, F_Node);
5779 Set_Access_Types_To_Process (F_Node, No_Elist);
5780 Set_TSS_Elist (F_Node, No_Elist);
5781 Set_Actions (F_Node, No_List);
5782 end if;
5784 Set_Entity (F_Node, E);
5785 Add_To_Result (F_Node);
5787 -- A final pass over record types with discriminants. If the type
5788 -- has an incomplete declaration, there may be constrained access
5789 -- subtypes declared elsewhere, which do not depend on the discrimi-
5790 -- nants of the type, and which are used as component types (i.e.
5791 -- the full view is a recursive type). The designated types of these
5792 -- subtypes can only be elaborated after the type itself, and they
5793 -- need an itype reference.
5795 if Ekind (E) = E_Record_Type
5796 and then Has_Discriminants (E)
5797 then
5798 declare
5799 Comp : Entity_Id;
5800 IR : Node_Id;
5801 Typ : Entity_Id;
5803 begin
5804 Comp := First_Component (E);
5805 while Present (Comp) loop
5806 Typ := Etype (Comp);
5808 if Ekind (Comp) = E_Component
5809 and then Is_Access_Type (Typ)
5810 and then Scope (Typ) /= E
5811 and then Base_Type (Designated_Type (Typ)) = E
5812 and then Is_Itype (Designated_Type (Typ))
5813 then
5814 IR := Make_Itype_Reference (Sloc (Comp));
5815 Set_Itype (IR, Designated_Type (Typ));
5816 Append (IR, Result);
5817 end if;
5819 Next_Component (Comp);
5820 end loop;
5821 end;
5822 end if;
5823 end if;
5825 -- When a type is frozen, the first subtype of the type is frozen as
5826 -- well (RM 13.14(15)). This has to be done after freezing the type,
5827 -- since obviously the first subtype depends on its own base type.
5829 if Is_Type (E) then
5830 Freeze_And_Append (First_Subtype (E), N, Result);
5832 -- If we just froze a tagged non-class wide record, then freeze the
5833 -- corresponding class-wide type. This must be done after the tagged
5834 -- type itself is frozen, because the class-wide type refers to the
5835 -- tagged type which generates the class.
5837 if Is_Tagged_Type (E)
5838 and then not Is_Class_Wide_Type (E)
5839 and then Present (Class_Wide_Type (E))
5840 then
5841 Freeze_And_Append (Class_Wide_Type (E), N, Result);
5842 end if;
5843 end if;
5845 Check_Debug_Info_Needed (E);
5847 -- Special handling for subprograms
5849 if Is_Subprogram (E) then
5851 -- If subprogram has address clause then reset Is_Public flag, since
5852 -- we do not want the backend to generate external references.
5854 if Present (Address_Clause (E))
5855 and then not Is_Library_Level_Entity (E)
5856 then
5857 Set_Is_Public (E, False);
5858 end if;
5859 end if;
5861 return Result;
5862 end Freeze_Entity;
5864 -----------------------------
5865 -- Freeze_Enumeration_Type --
5866 -----------------------------
5868 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
5869 begin
5870 -- By default, if no size clause is present, an enumeration type with
5871 -- Convention C is assumed to interface to a C enum, and has integer
5872 -- size. This applies to types. For subtypes, verify that its base
5873 -- type has no size clause either. Treat other foreign conventions
5874 -- in the same way, and also make sure alignment is set right.
5876 if Has_Foreign_Convention (Typ)
5877 and then not Has_Size_Clause (Typ)
5878 and then not Has_Size_Clause (Base_Type (Typ))
5879 and then Esize (Typ) < Standard_Integer_Size
5881 -- Don't do this if Short_Enums on target
5883 and then not Target_Short_Enums
5884 then
5885 Init_Esize (Typ, Standard_Integer_Size);
5886 Set_Alignment (Typ, Alignment (Standard_Integer));
5888 -- Normal Ada case or size clause present or not Long_C_Enums on target
5890 else
5891 -- If the enumeration type interfaces to C, and it has a size clause
5892 -- that specifies less than int size, it warrants a warning. The
5893 -- user may intend the C type to be an enum or a char, so this is
5894 -- not by itself an error that the Ada compiler can detect, but it
5895 -- it is a worth a heads-up. For Boolean and Character types we
5896 -- assume that the programmer has the proper C type in mind.
5898 if Convention (Typ) = Convention_C
5899 and then Has_Size_Clause (Typ)
5900 and then Esize (Typ) /= Esize (Standard_Integer)
5901 and then not Is_Boolean_Type (Typ)
5902 and then not Is_Character_Type (Typ)
5904 -- Don't do this if Short_Enums on target
5906 and then not Target_Short_Enums
5907 then
5908 Error_Msg_N
5909 ("C enum types have the size of a C int??", Size_Clause (Typ));
5910 end if;
5912 Adjust_Esize_For_Alignment (Typ);
5913 end if;
5914 end Freeze_Enumeration_Type;
5916 -----------------------
5917 -- Freeze_Expression --
5918 -----------------------
5920 procedure Freeze_Expression (N : Node_Id) is
5921 In_Spec_Exp : constant Boolean := In_Spec_Expression;
5922 Typ : Entity_Id;
5923 Nam : Entity_Id;
5924 Desig_Typ : Entity_Id;
5925 P : Node_Id;
5926 Parent_P : Node_Id;
5928 Freeze_Outside : Boolean := False;
5929 -- This flag is set true if the entity must be frozen outside the
5930 -- current subprogram. This happens in the case of expander generated
5931 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
5932 -- not freeze all entities like other bodies, but which nevertheless
5933 -- may reference entities that have to be frozen before the body and
5934 -- obviously cannot be frozen inside the body.
5936 function In_Exp_Body (N : Node_Id) return Boolean;
5937 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
5938 -- it is the handled statement sequence of an expander-generated
5939 -- subprogram (init proc, stream subprogram, or renaming as body).
5940 -- If so, this is not a freezing context.
5942 -----------------
5943 -- In_Exp_Body --
5944 -----------------
5946 function In_Exp_Body (N : Node_Id) return Boolean is
5947 P : Node_Id;
5948 Id : Entity_Id;
5950 begin
5951 if Nkind (N) = N_Subprogram_Body then
5952 P := N;
5953 else
5954 P := Parent (N);
5955 end if;
5957 if Nkind (P) /= N_Subprogram_Body then
5958 return False;
5960 else
5961 Id := Defining_Unit_Name (Specification (P));
5963 -- Following complex conditional could use comments ???
5965 if Nkind (Id) = N_Defining_Identifier
5966 and then (Is_Init_Proc (Id)
5967 or else Is_TSS (Id, TSS_Stream_Input)
5968 or else Is_TSS (Id, TSS_Stream_Output)
5969 or else Is_TSS (Id, TSS_Stream_Read)
5970 or else Is_TSS (Id, TSS_Stream_Write)
5971 or else Nkind_In (Original_Node (P),
5972 N_Subprogram_Renaming_Declaration,
5973 N_Expression_Function))
5974 then
5975 return True;
5976 else
5977 return False;
5978 end if;
5979 end if;
5980 end In_Exp_Body;
5982 -- Start of processing for Freeze_Expression
5984 begin
5985 -- Immediate return if freezing is inhibited. This flag is set by the
5986 -- analyzer to stop freezing on generated expressions that would cause
5987 -- freezing if they were in the source program, but which are not
5988 -- supposed to freeze, since they are created.
5990 if Must_Not_Freeze (N) then
5991 return;
5992 end if;
5994 -- If expression is non-static, then it does not freeze in a default
5995 -- expression, see section "Handling of Default Expressions" in the
5996 -- spec of package Sem for further details. Note that we have to make
5997 -- sure that we actually have a real expression (if we have a subtype
5998 -- indication, we can't test Is_OK_Static_Expression). However, we
5999 -- exclude the case of the prefix of an attribute of a static scalar
6000 -- subtype from this early return, because static subtype attributes
6001 -- should always cause freezing, even in default expressions, but
6002 -- the attribute may not have been marked as static yet (because in
6003 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6004 -- Freeze_Expression on the prefix).
6006 if In_Spec_Exp
6007 and then Nkind (N) in N_Subexpr
6008 and then not Is_OK_Static_Expression (N)
6009 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6010 or else not (Is_Entity_Name (N)
6011 and then Is_Type (Entity (N))
6012 and then Is_OK_Static_Subtype (Entity (N))))
6013 then
6014 return;
6015 end if;
6017 -- Freeze type of expression if not frozen already
6019 Typ := Empty;
6021 if Nkind (N) in N_Has_Etype then
6022 if not Is_Frozen (Etype (N)) then
6023 Typ := Etype (N);
6025 -- Base type may be an derived numeric type that is frozen at
6026 -- the point of declaration, but first_subtype is still unfrozen.
6028 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6029 Typ := First_Subtype (Etype (N));
6030 end if;
6031 end if;
6033 -- For entity name, freeze entity if not frozen already. A special
6034 -- exception occurs for an identifier that did not come from source.
6035 -- We don't let such identifiers freeze a non-internal entity, i.e.
6036 -- an entity that did come from source, since such an identifier was
6037 -- generated by the expander, and cannot have any semantic effect on
6038 -- the freezing semantics. For example, this stops the parameter of
6039 -- an initialization procedure from freezing the variable.
6041 if Is_Entity_Name (N)
6042 and then not Is_Frozen (Entity (N))
6043 and then (Nkind (N) /= N_Identifier
6044 or else Comes_From_Source (N)
6045 or else not Comes_From_Source (Entity (N)))
6046 then
6047 Nam := Entity (N);
6049 if Present (Nam) and then Ekind (Nam) = E_Function then
6050 Check_Expression_Function (N, Nam);
6051 end if;
6053 else
6054 Nam := Empty;
6055 end if;
6057 -- For an allocator freeze designated type if not frozen already
6059 -- For an aggregate whose component type is an access type, freeze the
6060 -- designated type now, so that its freeze does not appear within the
6061 -- loop that might be created in the expansion of the aggregate. If the
6062 -- designated type is a private type without full view, the expression
6063 -- cannot contain an allocator, so the type is not frozen.
6065 -- For a function, we freeze the entity when the subprogram declaration
6066 -- is frozen, but a function call may appear in an initialization proc.
6067 -- before the declaration is frozen. We need to generate the extra
6068 -- formals, if any, to ensure that the expansion of the call includes
6069 -- the proper actuals. This only applies to Ada subprograms, not to
6070 -- imported ones.
6072 Desig_Typ := Empty;
6074 case Nkind (N) is
6075 when N_Allocator =>
6076 Desig_Typ := Designated_Type (Etype (N));
6078 when N_Aggregate =>
6079 if Is_Array_Type (Etype (N))
6080 and then Is_Access_Type (Component_Type (Etype (N)))
6081 then
6082 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
6083 end if;
6085 when N_Selected_Component |
6086 N_Indexed_Component |
6087 N_Slice =>
6089 if Is_Access_Type (Etype (Prefix (N))) then
6090 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6091 end if;
6093 when N_Identifier =>
6094 if Present (Nam)
6095 and then Ekind (Nam) = E_Function
6096 and then Nkind (Parent (N)) = N_Function_Call
6097 and then Convention (Nam) = Convention_Ada
6098 then
6099 Create_Extra_Formals (Nam);
6100 end if;
6102 when others =>
6103 null;
6104 end case;
6106 if Desig_Typ /= Empty
6107 and then (Is_Frozen (Desig_Typ)
6108 or else (not Is_Fully_Defined (Desig_Typ)))
6109 then
6110 Desig_Typ := Empty;
6111 end if;
6113 -- All done if nothing needs freezing
6115 if No (Typ)
6116 and then No (Nam)
6117 and then No (Desig_Typ)
6118 then
6119 return;
6120 end if;
6122 -- Examine the enclosing context by climbing the parent chain. The
6123 -- traversal serves two purposes - to detect scenarios where freezeing
6124 -- is not needed and to find the proper insertion point for the freeze
6125 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6126 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6127 -- the tree may result in types being frozen too early.
6129 P := N;
6130 loop
6131 Parent_P := Parent (P);
6133 -- If we don't have a parent, then we are not in a well-formed tree.
6134 -- This is an unusual case, but there are some legitimate situations
6135 -- in which this occurs, notably when the expressions in the range of
6136 -- a type declaration are resolved. We simply ignore the freeze
6137 -- request in this case. Is this right ???
6139 if No (Parent_P) then
6140 return;
6141 end if;
6143 -- See if we have got to an appropriate point in the tree
6145 case Nkind (Parent_P) is
6147 -- A special test for the exception of (RM 13.14(8)) for the case
6148 -- of per-object expressions (RM 3.8(18)) occurring in component
6149 -- definition or a discrete subtype definition. Note that we test
6150 -- for a component declaration which includes both cases we are
6151 -- interested in, and furthermore the tree does not have explicit
6152 -- nodes for either of these two constructs.
6154 when N_Component_Declaration =>
6156 -- The case we want to test for here is an identifier that is
6157 -- a per-object expression, this is either a discriminant that
6158 -- appears in a context other than the component declaration
6159 -- or it is a reference to the type of the enclosing construct.
6161 -- For either of these cases, we skip the freezing
6163 if not In_Spec_Expression
6164 and then Nkind (N) = N_Identifier
6165 and then (Present (Entity (N)))
6166 then
6167 -- We recognize the discriminant case by just looking for
6168 -- a reference to a discriminant. It can only be one for
6169 -- the enclosing construct. Skip freezing in this case.
6171 if Ekind (Entity (N)) = E_Discriminant then
6172 return;
6174 -- For the case of a reference to the enclosing record,
6175 -- (or task or protected type), we look for a type that
6176 -- matches the current scope.
6178 elsif Entity (N) = Current_Scope then
6179 return;
6180 end if;
6181 end if;
6183 -- If we have an enumeration literal that appears as the choice in
6184 -- the aggregate of an enumeration representation clause, then
6185 -- freezing does not occur (RM 13.14(10)).
6187 when N_Enumeration_Representation_Clause =>
6189 -- The case we are looking for is an enumeration literal
6191 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6192 and then Is_Enumeration_Type (Etype (N))
6193 then
6194 -- If enumeration literal appears directly as the choice,
6195 -- do not freeze (this is the normal non-overloaded case)
6197 if Nkind (Parent (N)) = N_Component_Association
6198 and then First (Choices (Parent (N))) = N
6199 then
6200 return;
6202 -- If enumeration literal appears as the name of function
6203 -- which is the choice, then also do not freeze. This
6204 -- happens in the overloaded literal case, where the
6205 -- enumeration literal is temporarily changed to a function
6206 -- call for overloading analysis purposes.
6208 elsif Nkind (Parent (N)) = N_Function_Call
6209 and then
6210 Nkind (Parent (Parent (N))) = N_Component_Association
6211 and then
6212 First (Choices (Parent (Parent (N)))) = Parent (N)
6213 then
6214 return;
6215 end if;
6216 end if;
6218 -- Normally if the parent is a handled sequence of statements,
6219 -- then the current node must be a statement, and that is an
6220 -- appropriate place to insert a freeze node.
6222 when N_Handled_Sequence_Of_Statements =>
6224 -- An exception occurs when the sequence of statements is for
6225 -- an expander generated body that did not do the usual freeze
6226 -- all operation. In this case we usually want to freeze
6227 -- outside this body, not inside it, and we skip past the
6228 -- subprogram body that we are inside.
6230 if In_Exp_Body (Parent_P) then
6231 declare
6232 Subp : constant Node_Id := Parent (Parent_P);
6233 Spec : Entity_Id;
6235 begin
6236 -- Freeze the entity only when it is declared inside the
6237 -- body of the expander generated procedure. This case
6238 -- is recognized by the scope of the entity or its type,
6239 -- which is either the spec for some enclosing body, or
6240 -- (in the case of init_procs, for which there are no
6241 -- separate specs) the current scope.
6243 if Nkind (Subp) = N_Subprogram_Body then
6244 Spec := Corresponding_Spec (Subp);
6246 if (Present (Typ) and then Scope (Typ) = Spec)
6247 or else
6248 (Present (Nam) and then Scope (Nam) = Spec)
6249 then
6250 exit;
6252 elsif Present (Typ)
6253 and then Scope (Typ) = Current_Scope
6254 and then Defining_Entity (Subp) = Current_Scope
6255 then
6256 exit;
6257 end if;
6258 end if;
6260 -- An expression function may act as a completion of
6261 -- a function declaration. As such, it can reference
6262 -- entities declared between the two views:
6264 -- Hidden []; -- 1
6265 -- function F return ...;
6266 -- private
6267 -- function Hidden return ...;
6268 -- function F return ... is (Hidden); -- 2
6270 -- Refering to the example above, freezing the expression
6271 -- of F (2) would place Hidden's freeze node (1) in the
6272 -- wrong place. Avoid explicit freezing and let the usual
6273 -- scenarios do the job - for example, reaching the end
6274 -- of the private declarations.
6276 if Nkind (Original_Node (Subp)) =
6277 N_Expression_Function
6278 then
6279 null;
6281 -- Freeze outside the body
6283 else
6284 Parent_P := Parent (Parent_P);
6285 Freeze_Outside := True;
6286 end if;
6287 end;
6289 -- Here if normal case where we are in handled statement
6290 -- sequence and want to do the insertion right there.
6292 else
6293 exit;
6294 end if;
6296 -- If parent is a body or a spec or a block, then the current node
6297 -- is a statement or declaration and we can insert the freeze node
6298 -- before it.
6300 when N_Block_Statement |
6301 N_Entry_Body |
6302 N_Package_Body |
6303 N_Package_Specification |
6304 N_Protected_Body |
6305 N_Subprogram_Body |
6306 N_Task_Body => exit;
6308 -- The expander is allowed to define types in any statements list,
6309 -- so any of the following parent nodes also mark a freezing point
6310 -- if the actual node is in a list of statements or declarations.
6312 when N_Abortable_Part |
6313 N_Accept_Alternative |
6314 N_And_Then |
6315 N_Case_Statement_Alternative |
6316 N_Compilation_Unit_Aux |
6317 N_Conditional_Entry_Call |
6318 N_Delay_Alternative |
6319 N_Elsif_Part |
6320 N_Entry_Call_Alternative |
6321 N_Exception_Handler |
6322 N_Extended_Return_Statement |
6323 N_Freeze_Entity |
6324 N_If_Statement |
6325 N_Or_Else |
6326 N_Selective_Accept |
6327 N_Triggering_Alternative =>
6329 exit when Is_List_Member (P);
6331 -- Freeze nodes produced by an expression coming from the Actions
6332 -- list of a N_Expression_With_Actions node must remain within the
6333 -- Actions list. Inserting the freeze nodes further up the tree
6334 -- may lead to use before declaration issues in the case of array
6335 -- types.
6337 when N_Expression_With_Actions =>
6338 if Is_List_Member (P)
6339 and then List_Containing (P) = Actions (Parent_P)
6340 then
6341 exit;
6342 end if;
6344 -- Note: N_Loop_Statement is a special case. A type that appears
6345 -- in the source can never be frozen in a loop (this occurs only
6346 -- because of a loop expanded by the expander), so we keep on
6347 -- going. Otherwise we terminate the search. Same is true of any
6348 -- entity which comes from source. (if they have predefined type,
6349 -- that type does not appear to come from source, but the entity
6350 -- should not be frozen here).
6352 when N_Loop_Statement =>
6353 exit when not Comes_From_Source (Etype (N))
6354 and then (No (Nam) or else not Comes_From_Source (Nam));
6356 -- For all other cases, keep looking at parents
6358 when others =>
6359 null;
6360 end case;
6362 -- We fall through the case if we did not yet find the proper
6363 -- place in the free for inserting the freeze node, so climb.
6365 P := Parent_P;
6366 end loop;
6368 -- If the expression appears in a record or an initialization procedure,
6369 -- the freeze nodes are collected and attached to the current scope, to
6370 -- be inserted and analyzed on exit from the scope, to insure that
6371 -- generated entities appear in the correct scope. If the expression is
6372 -- a default for a discriminant specification, the scope is still void.
6373 -- The expression can also appear in the discriminant part of a private
6374 -- or concurrent type.
6376 -- If the expression appears in a constrained subcomponent of an
6377 -- enclosing record declaration, the freeze nodes must be attached to
6378 -- the outer record type so they can eventually be placed in the
6379 -- enclosing declaration list.
6381 -- The other case requiring this special handling is if we are in a
6382 -- default expression, since in that case we are about to freeze a
6383 -- static type, and the freeze scope needs to be the outer scope, not
6384 -- the scope of the subprogram with the default parameter.
6386 -- For default expressions and other spec expressions in generic units,
6387 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6388 -- placing them at the proper place, after the generic unit.
6390 if (In_Spec_Exp and not Inside_A_Generic)
6391 or else Freeze_Outside
6392 or else (Is_Type (Current_Scope)
6393 and then (not Is_Concurrent_Type (Current_Scope)
6394 or else not Has_Completion (Current_Scope)))
6395 or else Ekind (Current_Scope) = E_Void
6396 then
6397 declare
6398 N : constant Node_Id := Current_Scope;
6399 Freeze_Nodes : List_Id := No_List;
6400 Pos : Int := Scope_Stack.Last;
6402 begin
6403 if Present (Desig_Typ) then
6404 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6405 end if;
6407 if Present (Typ) then
6408 Freeze_And_Append (Typ, N, Freeze_Nodes);
6409 end if;
6411 if Present (Nam) then
6412 Freeze_And_Append (Nam, N, Freeze_Nodes);
6413 end if;
6415 -- The current scope may be that of a constrained component of
6416 -- an enclosing record declaration, or of a loop of an enclosing
6417 -- quantified expression, which is above the current scope in the
6418 -- scope stack. Indeed in the context of a quantified expression,
6419 -- a scope is created and pushed above the current scope in order
6420 -- to emulate the loop-like behavior of the quantified expression.
6421 -- If the expression is within a top-level pragma, as for a pre-
6422 -- condition on a library-level subprogram, nothing to do.
6424 if not Is_Compilation_Unit (Current_Scope)
6425 and then (Is_Record_Type (Scope (Current_Scope))
6426 or else Nkind (Parent (Current_Scope)) =
6427 N_Quantified_Expression)
6428 then
6429 Pos := Pos - 1;
6430 end if;
6432 if Is_Non_Empty_List (Freeze_Nodes) then
6433 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6434 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6435 Freeze_Nodes;
6436 else
6437 Append_List (Freeze_Nodes,
6438 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6439 end if;
6440 end if;
6441 end;
6443 return;
6444 end if;
6446 -- Now we have the right place to do the freezing. First, a special
6447 -- adjustment, if we are in spec-expression analysis mode, these freeze
6448 -- actions must not be thrown away (normally all inserted actions are
6449 -- thrown away in this mode. However, the freeze actions are from static
6450 -- expressions and one of the important reasons we are doing this
6451 -- special analysis is to get these freeze actions. Therefore we turn
6452 -- off the In_Spec_Expression mode to propagate these freeze actions.
6453 -- This also means they get properly analyzed and expanded.
6455 In_Spec_Expression := False;
6457 -- Freeze the designated type of an allocator (RM 13.14(13))
6459 if Present (Desig_Typ) then
6460 Freeze_Before (P, Desig_Typ);
6461 end if;
6463 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6464 -- the enumeration representation clause exception in the loop above.
6466 if Present (Typ) then
6467 Freeze_Before (P, Typ);
6468 end if;
6470 -- Freeze name if one is present (RM 13.14(11))
6472 if Present (Nam) then
6473 Freeze_Before (P, Nam);
6474 end if;
6476 -- Restore In_Spec_Expression flag
6478 In_Spec_Expression := In_Spec_Exp;
6479 end Freeze_Expression;
6481 -----------------------------
6482 -- Freeze_Fixed_Point_Type --
6483 -----------------------------
6485 -- Certain fixed-point types and subtypes, including implicit base types
6486 -- and declared first subtypes, have not yet set up a range. This is
6487 -- because the range cannot be set until the Small and Size values are
6488 -- known, and these are not known till the type is frozen.
6490 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6491 -- whose bounds are unanalyzed real literals. This routine will recognize
6492 -- this case, and transform this range node into a properly typed range
6493 -- with properly analyzed and resolved values.
6495 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6496 Rng : constant Node_Id := Scalar_Range (Typ);
6497 Lo : constant Node_Id := Low_Bound (Rng);
6498 Hi : constant Node_Id := High_Bound (Rng);
6499 Btyp : constant Entity_Id := Base_Type (Typ);
6500 Brng : constant Node_Id := Scalar_Range (Btyp);
6501 BLo : constant Node_Id := Low_Bound (Brng);
6502 BHi : constant Node_Id := High_Bound (Brng);
6503 Small : constant Ureal := Small_Value (Typ);
6504 Loval : Ureal;
6505 Hival : Ureal;
6506 Atype : Entity_Id;
6508 Actual_Size : Nat;
6510 function Fsize (Lov, Hiv : Ureal) return Nat;
6511 -- Returns size of type with given bounds. Also leaves these
6512 -- bounds set as the current bounds of the Typ.
6514 -----------
6515 -- Fsize --
6516 -----------
6518 function Fsize (Lov, Hiv : Ureal) return Nat is
6519 begin
6520 Set_Realval (Lo, Lov);
6521 Set_Realval (Hi, Hiv);
6522 return Minimum_Size (Typ);
6523 end Fsize;
6525 -- Start of processing for Freeze_Fixed_Point_Type
6527 begin
6528 -- If Esize of a subtype has not previously been set, set it now
6530 if Unknown_Esize (Typ) then
6531 Atype := Ancestor_Subtype (Typ);
6533 if Present (Atype) then
6534 Set_Esize (Typ, Esize (Atype));
6535 else
6536 Set_Esize (Typ, Esize (Base_Type (Typ)));
6537 end if;
6538 end if;
6540 -- Immediate return if the range is already analyzed. This means that
6541 -- the range is already set, and does not need to be computed by this
6542 -- routine.
6544 if Analyzed (Rng) then
6545 return;
6546 end if;
6548 -- Immediate return if either of the bounds raises Constraint_Error
6550 if Raises_Constraint_Error (Lo)
6551 or else Raises_Constraint_Error (Hi)
6552 then
6553 return;
6554 end if;
6556 Loval := Realval (Lo);
6557 Hival := Realval (Hi);
6559 -- Ordinary fixed-point case
6561 if Is_Ordinary_Fixed_Point_Type (Typ) then
6563 -- For the ordinary fixed-point case, we are allowed to fudge the
6564 -- end-points up or down by small. Generally we prefer to fudge up,
6565 -- i.e. widen the bounds for non-model numbers so that the end points
6566 -- are included. However there are cases in which this cannot be
6567 -- done, and indeed cases in which we may need to narrow the bounds.
6568 -- The following circuit makes the decision.
6570 -- Note: our terminology here is that Incl_EP means that the bounds
6571 -- are widened by Small if necessary to include the end points, and
6572 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6573 -- end-points if this reduces the size.
6575 -- Note that in the Incl case, all we care about is including the
6576 -- end-points. In the Excl case, we want to narrow the bounds as
6577 -- much as permitted by the RM, to give the smallest possible size.
6579 Fudge : declare
6580 Loval_Incl_EP : Ureal;
6581 Hival_Incl_EP : Ureal;
6583 Loval_Excl_EP : Ureal;
6584 Hival_Excl_EP : Ureal;
6586 Size_Incl_EP : Nat;
6587 Size_Excl_EP : Nat;
6589 Model_Num : Ureal;
6590 First_Subt : Entity_Id;
6591 Actual_Lo : Ureal;
6592 Actual_Hi : Ureal;
6594 begin
6595 -- First step. Base types are required to be symmetrical. Right
6596 -- now, the base type range is a copy of the first subtype range.
6597 -- This will be corrected before we are done, but right away we
6598 -- need to deal with the case where both bounds are non-negative.
6599 -- In this case, we set the low bound to the negative of the high
6600 -- bound, to make sure that the size is computed to include the
6601 -- required sign. Note that we do not need to worry about the
6602 -- case of both bounds negative, because the sign will be dealt
6603 -- with anyway. Furthermore we can't just go making such a bound
6604 -- symmetrical, since in a twos-complement system, there is an
6605 -- extra negative value which could not be accommodated on the
6606 -- positive side.
6608 if Typ = Btyp
6609 and then not UR_Is_Negative (Loval)
6610 and then Hival > Loval
6611 then
6612 Loval := -Hival;
6613 Set_Realval (Lo, Loval);
6614 end if;
6616 -- Compute the fudged bounds. If the number is a model number,
6617 -- then we do nothing to include it, but we are allowed to backoff
6618 -- to the next adjacent model number when we exclude it. If it is
6619 -- not a model number then we straddle the two values with the
6620 -- model numbers on either side.
6622 Model_Num := UR_Trunc (Loval / Small) * Small;
6624 if Loval = Model_Num then
6625 Loval_Incl_EP := Model_Num;
6626 else
6627 Loval_Incl_EP := Model_Num - Small;
6628 end if;
6630 -- The low value excluding the end point is Small greater, but
6631 -- we do not do this exclusion if the low value is positive,
6632 -- since it can't help the size and could actually hurt by
6633 -- crossing the high bound.
6635 if UR_Is_Negative (Loval_Incl_EP) then
6636 Loval_Excl_EP := Loval_Incl_EP + Small;
6638 -- If the value went from negative to zero, then we have the
6639 -- case where Loval_Incl_EP is the model number just below
6640 -- zero, so we want to stick to the negative value for the
6641 -- base type to maintain the condition that the size will
6642 -- include signed values.
6644 if Typ = Btyp
6645 and then UR_Is_Zero (Loval_Excl_EP)
6646 then
6647 Loval_Excl_EP := Loval_Incl_EP;
6648 end if;
6650 else
6651 Loval_Excl_EP := Loval_Incl_EP;
6652 end if;
6654 -- Similar processing for upper bound and high value
6656 Model_Num := UR_Trunc (Hival / Small) * Small;
6658 if Hival = Model_Num then
6659 Hival_Incl_EP := Model_Num;
6660 else
6661 Hival_Incl_EP := Model_Num + Small;
6662 end if;
6664 if UR_Is_Positive (Hival_Incl_EP) then
6665 Hival_Excl_EP := Hival_Incl_EP - Small;
6666 else
6667 Hival_Excl_EP := Hival_Incl_EP;
6668 end if;
6670 -- One further adjustment is needed. In the case of subtypes, we
6671 -- cannot go outside the range of the base type, or we get
6672 -- peculiarities, and the base type range is already set. This
6673 -- only applies to the Incl values, since clearly the Excl values
6674 -- are already as restricted as they are allowed to be.
6676 if Typ /= Btyp then
6677 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6678 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6679 end if;
6681 -- Get size including and excluding end points
6683 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6684 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6686 -- No need to exclude end-points if it does not reduce size
6688 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6689 Loval_Excl_EP := Loval_Incl_EP;
6690 end if;
6692 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6693 Hival_Excl_EP := Hival_Incl_EP;
6694 end if;
6696 -- Now we set the actual size to be used. We want to use the
6697 -- bounds fudged up to include the end-points but only if this
6698 -- can be done without violating a specifically given size
6699 -- size clause or causing an unacceptable increase in size.
6701 -- Case of size clause given
6703 if Has_Size_Clause (Typ) then
6705 -- Use the inclusive size only if it is consistent with
6706 -- the explicitly specified size.
6708 if Size_Incl_EP <= RM_Size (Typ) then
6709 Actual_Lo := Loval_Incl_EP;
6710 Actual_Hi := Hival_Incl_EP;
6711 Actual_Size := Size_Incl_EP;
6713 -- If the inclusive size is too large, we try excluding
6714 -- the end-points (will be caught later if does not work).
6716 else
6717 Actual_Lo := Loval_Excl_EP;
6718 Actual_Hi := Hival_Excl_EP;
6719 Actual_Size := Size_Excl_EP;
6720 end if;
6722 -- Case of size clause not given
6724 else
6725 -- If we have a base type whose corresponding first subtype
6726 -- has an explicit size that is large enough to include our
6727 -- end-points, then do so. There is no point in working hard
6728 -- to get a base type whose size is smaller than the specified
6729 -- size of the first subtype.
6731 First_Subt := First_Subtype (Typ);
6733 if Has_Size_Clause (First_Subt)
6734 and then Size_Incl_EP <= Esize (First_Subt)
6735 then
6736 Actual_Size := Size_Incl_EP;
6737 Actual_Lo := Loval_Incl_EP;
6738 Actual_Hi := Hival_Incl_EP;
6740 -- If excluding the end-points makes the size smaller and
6741 -- results in a size of 8,16,32,64, then we take the smaller
6742 -- size. For the 64 case, this is compulsory. For the other
6743 -- cases, it seems reasonable. We like to include end points
6744 -- if we can, but not at the expense of moving to the next
6745 -- natural boundary of size.
6747 elsif Size_Incl_EP /= Size_Excl_EP
6748 and then Addressable (Size_Excl_EP)
6749 then
6750 Actual_Size := Size_Excl_EP;
6751 Actual_Lo := Loval_Excl_EP;
6752 Actual_Hi := Hival_Excl_EP;
6754 -- Otherwise we can definitely include the end points
6756 else
6757 Actual_Size := Size_Incl_EP;
6758 Actual_Lo := Loval_Incl_EP;
6759 Actual_Hi := Hival_Incl_EP;
6760 end if;
6762 -- One pathological case: normally we never fudge a low bound
6763 -- down, since it would seem to increase the size (if it has
6764 -- any effect), but for ranges containing single value, or no
6765 -- values, the high bound can be small too large. Consider:
6767 -- type t is delta 2.0**(-14)
6768 -- range 131072.0 .. 0;
6770 -- That lower bound is *just* outside the range of 32 bits, and
6771 -- does need fudging down in this case. Note that the bounds
6772 -- will always have crossed here, since the high bound will be
6773 -- fudged down if necessary, as in the case of:
6775 -- type t is delta 2.0**(-14)
6776 -- range 131072.0 .. 131072.0;
6778 -- So we detect the situation by looking for crossed bounds,
6779 -- and if the bounds are crossed, and the low bound is greater
6780 -- than zero, we will always back it off by small, since this
6781 -- is completely harmless.
6783 if Actual_Lo > Actual_Hi then
6784 if UR_Is_Positive (Actual_Lo) then
6785 Actual_Lo := Loval_Incl_EP - Small;
6786 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6788 -- And of course, we need to do exactly the same parallel
6789 -- fudge for flat ranges in the negative region.
6791 elsif UR_Is_Negative (Actual_Hi) then
6792 Actual_Hi := Hival_Incl_EP + Small;
6793 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6794 end if;
6795 end if;
6796 end if;
6798 Set_Realval (Lo, Actual_Lo);
6799 Set_Realval (Hi, Actual_Hi);
6800 end Fudge;
6802 -- For the decimal case, none of this fudging is required, since there
6803 -- are no end-point problems in the decimal case (the end-points are
6804 -- always included).
6806 else
6807 Actual_Size := Fsize (Loval, Hival);
6808 end if;
6810 -- At this stage, the actual size has been calculated and the proper
6811 -- required bounds are stored in the low and high bounds.
6813 if Actual_Size > 64 then
6814 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
6815 Error_Msg_N
6816 ("size required (^) for type& too large, maximum allowed is 64",
6817 Typ);
6818 Actual_Size := 64;
6819 end if;
6821 -- Check size against explicit given size
6823 if Has_Size_Clause (Typ) then
6824 if Actual_Size > RM_Size (Typ) then
6825 Error_Msg_Uint_1 := RM_Size (Typ);
6826 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
6827 Error_Msg_NE
6828 ("size given (^) for type& too small, minimum allowed is ^",
6829 Size_Clause (Typ), Typ);
6831 else
6832 Actual_Size := UI_To_Int (Esize (Typ));
6833 end if;
6835 -- Increase size to next natural boundary if no size clause given
6837 else
6838 if Actual_Size <= 8 then
6839 Actual_Size := 8;
6840 elsif Actual_Size <= 16 then
6841 Actual_Size := 16;
6842 elsif Actual_Size <= 32 then
6843 Actual_Size := 32;
6844 else
6845 Actual_Size := 64;
6846 end if;
6848 Init_Esize (Typ, Actual_Size);
6849 Adjust_Esize_For_Alignment (Typ);
6850 end if;
6852 -- If we have a base type, then expand the bounds so that they extend to
6853 -- the full width of the allocated size in bits, to avoid junk range
6854 -- checks on intermediate computations.
6856 if Base_Type (Typ) = Typ then
6857 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
6858 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
6859 end if;
6861 -- Final step is to reanalyze the bounds using the proper type
6862 -- and set the Corresponding_Integer_Value fields of the literals.
6864 Set_Etype (Lo, Empty);
6865 Set_Analyzed (Lo, False);
6866 Analyze (Lo);
6868 -- Resolve with universal fixed if the base type, and the base type if
6869 -- it is a subtype. Note we can't resolve the base type with itself,
6870 -- that would be a reference before definition.
6872 if Typ = Btyp then
6873 Resolve (Lo, Universal_Fixed);
6874 else
6875 Resolve (Lo, Btyp);
6876 end if;
6878 -- Set corresponding integer value for bound
6880 Set_Corresponding_Integer_Value
6881 (Lo, UR_To_Uint (Realval (Lo) / Small));
6883 -- Similar processing for high bound
6885 Set_Etype (Hi, Empty);
6886 Set_Analyzed (Hi, False);
6887 Analyze (Hi);
6889 if Typ = Btyp then
6890 Resolve (Hi, Universal_Fixed);
6891 else
6892 Resolve (Hi, Btyp);
6893 end if;
6895 Set_Corresponding_Integer_Value
6896 (Hi, UR_To_Uint (Realval (Hi) / Small));
6898 -- Set type of range to correspond to bounds
6900 Set_Etype (Rng, Etype (Lo));
6902 -- Set Esize to calculated size if not set already
6904 if Unknown_Esize (Typ) then
6905 Init_Esize (Typ, Actual_Size);
6906 end if;
6908 -- Set RM_Size if not already set. If already set, check value
6910 declare
6911 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
6913 begin
6914 if RM_Size (Typ) /= Uint_0 then
6915 if RM_Size (Typ) < Minsiz then
6916 Error_Msg_Uint_1 := RM_Size (Typ);
6917 Error_Msg_Uint_2 := Minsiz;
6918 Error_Msg_NE
6919 ("size given (^) for type& too small, minimum allowed is ^",
6920 Size_Clause (Typ), Typ);
6921 end if;
6923 else
6924 Set_RM_Size (Typ, Minsiz);
6925 end if;
6926 end;
6927 end Freeze_Fixed_Point_Type;
6929 ------------------
6930 -- Freeze_Itype --
6931 ------------------
6933 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
6934 L : List_Id;
6936 begin
6937 Set_Has_Delayed_Freeze (T);
6938 L := Freeze_Entity (T, N);
6940 if Is_Non_Empty_List (L) then
6941 Insert_Actions (N, L);
6942 end if;
6943 end Freeze_Itype;
6945 --------------------------
6946 -- Freeze_Static_Object --
6947 --------------------------
6949 procedure Freeze_Static_Object (E : Entity_Id) is
6951 Cannot_Be_Static : exception;
6952 -- Exception raised if the type of a static object cannot be made
6953 -- static. This happens if the type depends on non-global objects.
6955 procedure Ensure_Expression_Is_SA (N : Node_Id);
6956 -- Called to ensure that an expression used as part of a type definition
6957 -- is statically allocatable, which means that the expression type is
6958 -- statically allocatable, and the expression is either static, or a
6959 -- reference to a library level constant.
6961 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
6962 -- Called to mark a type as static, checking that it is possible
6963 -- to set the type as static. If it is not possible, then the
6964 -- exception Cannot_Be_Static is raised.
6966 -----------------------------
6967 -- Ensure_Expression_Is_SA --
6968 -----------------------------
6970 procedure Ensure_Expression_Is_SA (N : Node_Id) is
6971 Ent : Entity_Id;
6973 begin
6974 Ensure_Type_Is_SA (Etype (N));
6976 if Is_OK_Static_Expression (N) then
6977 return;
6979 elsif Nkind (N) = N_Identifier then
6980 Ent := Entity (N);
6982 if Present (Ent)
6983 and then Ekind (Ent) = E_Constant
6984 and then Is_Library_Level_Entity (Ent)
6985 then
6986 return;
6987 end if;
6988 end if;
6990 raise Cannot_Be_Static;
6991 end Ensure_Expression_Is_SA;
6993 -----------------------
6994 -- Ensure_Type_Is_SA --
6995 -----------------------
6997 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
6998 N : Node_Id;
6999 C : Entity_Id;
7001 begin
7002 -- If type is library level, we are all set
7004 if Is_Library_Level_Entity (Typ) then
7005 return;
7006 end if;
7008 -- We are also OK if the type already marked as statically allocated,
7009 -- which means we processed it before.
7011 if Is_Statically_Allocated (Typ) then
7012 return;
7013 end if;
7015 -- Mark type as statically allocated
7017 Set_Is_Statically_Allocated (Typ);
7019 -- Check that it is safe to statically allocate this type
7021 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7022 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7023 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7025 elsif Is_Array_Type (Typ) then
7026 N := First_Index (Typ);
7027 while Present (N) loop
7028 Ensure_Type_Is_SA (Etype (N));
7029 Next_Index (N);
7030 end loop;
7032 Ensure_Type_Is_SA (Component_Type (Typ));
7034 elsif Is_Access_Type (Typ) then
7035 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7037 declare
7038 F : Entity_Id;
7039 T : constant Entity_Id := Etype (Designated_Type (Typ));
7041 begin
7042 if T /= Standard_Void_Type then
7043 Ensure_Type_Is_SA (T);
7044 end if;
7046 F := First_Formal (Designated_Type (Typ));
7047 while Present (F) loop
7048 Ensure_Type_Is_SA (Etype (F));
7049 Next_Formal (F);
7050 end loop;
7051 end;
7053 else
7054 Ensure_Type_Is_SA (Designated_Type (Typ));
7055 end if;
7057 elsif Is_Record_Type (Typ) then
7058 C := First_Entity (Typ);
7059 while Present (C) loop
7060 if Ekind (C) = E_Discriminant
7061 or else Ekind (C) = E_Component
7062 then
7063 Ensure_Type_Is_SA (Etype (C));
7065 elsif Is_Type (C) then
7066 Ensure_Type_Is_SA (C);
7067 end if;
7069 Next_Entity (C);
7070 end loop;
7072 elsif Ekind (Typ) = E_Subprogram_Type then
7073 Ensure_Type_Is_SA (Etype (Typ));
7075 C := First_Formal (Typ);
7076 while Present (C) loop
7077 Ensure_Type_Is_SA (Etype (C));
7078 Next_Formal (C);
7079 end loop;
7081 else
7082 raise Cannot_Be_Static;
7083 end if;
7084 end Ensure_Type_Is_SA;
7086 -- Start of processing for Freeze_Static_Object
7088 begin
7089 Ensure_Type_Is_SA (Etype (E));
7091 exception
7092 when Cannot_Be_Static =>
7094 -- If the object that cannot be static is imported or exported, then
7095 -- issue an error message saying that this object cannot be imported
7096 -- or exported. If it has an address clause it is an overlay in the
7097 -- current partition and the static requirement is not relevant.
7098 -- Do not issue any error message when ignoring rep clauses.
7100 if Ignore_Rep_Clauses then
7101 null;
7103 elsif Is_Imported (E) then
7104 if No (Address_Clause (E)) then
7105 Error_Msg_N
7106 ("& cannot be imported (local type is not constant)", E);
7107 end if;
7109 -- Otherwise must be exported, something is wrong if compiler
7110 -- is marking something as statically allocated which cannot be).
7112 else pragma Assert (Is_Exported (E));
7113 Error_Msg_N
7114 ("& cannot be exported (local type is not constant)", E);
7115 end if;
7116 end Freeze_Static_Object;
7118 -----------------------
7119 -- Freeze_Subprogram --
7120 -----------------------
7122 procedure Freeze_Subprogram (E : Entity_Id) is
7123 Retype : Entity_Id;
7124 F : Entity_Id;
7126 begin
7127 -- Subprogram may not have an address clause unless it is imported
7129 if Present (Address_Clause (E)) then
7130 if not Is_Imported (E) then
7131 Error_Msg_N
7132 ("address clause can only be given " &
7133 "for imported subprogram",
7134 Name (Address_Clause (E)));
7135 end if;
7136 end if;
7138 -- Reset the Pure indication on an imported subprogram unless an
7139 -- explicit Pure_Function pragma was present or the subprogram is an
7140 -- intrinsic. We do this because otherwise it is an insidious error
7141 -- to call a non-pure function from pure unit and have calls
7142 -- mysteriously optimized away. What happens here is that the Import
7143 -- can bypass the normal check to ensure that pure units call only pure
7144 -- subprograms.
7146 -- The reason for the intrinsic exception is that in general, intrinsic
7147 -- functions (such as shifts) are pure anyway. The only exceptions are
7148 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7149 -- in any case, so no problem arises.
7151 if Is_Imported (E)
7152 and then Is_Pure (E)
7153 and then not Has_Pragma_Pure_Function (E)
7154 and then not Is_Intrinsic_Subprogram (E)
7155 then
7156 Set_Is_Pure (E, False);
7157 end if;
7159 -- For non-foreign convention subprograms, this is where we create
7160 -- the extra formals (for accessibility level and constrained bit
7161 -- information). We delay this till the freeze point precisely so
7162 -- that we know the convention.
7164 if not Has_Foreign_Convention (E) then
7165 Create_Extra_Formals (E);
7166 Set_Mechanisms (E);
7168 -- If this is convention Ada and a Valued_Procedure, that's odd
7170 if Ekind (E) = E_Procedure
7171 and then Is_Valued_Procedure (E)
7172 and then Convention (E) = Convention_Ada
7173 and then Warn_On_Export_Import
7174 then
7175 Error_Msg_N
7176 ("??Valued_Procedure has no effect for convention Ada", E);
7177 Set_Is_Valued_Procedure (E, False);
7178 end if;
7180 -- Case of foreign convention
7182 else
7183 Set_Mechanisms (E);
7185 -- For foreign conventions, warn about return of unconstrained array
7187 if Ekind (E) = E_Function then
7188 Retype := Underlying_Type (Etype (E));
7190 -- If no return type, probably some other error, e.g. a
7191 -- missing full declaration, so ignore.
7193 if No (Retype) then
7194 null;
7196 -- If the return type is generic, we have emitted a warning
7197 -- earlier on, and there is nothing else to check here. Specific
7198 -- instantiations may lead to erroneous behavior.
7200 elsif Is_Generic_Type (Etype (E)) then
7201 null;
7203 -- Display warning if returning unconstrained array
7205 elsif Is_Array_Type (Retype)
7206 and then not Is_Constrained (Retype)
7208 -- Check appropriate warning is enabled (should we check for
7209 -- Warnings (Off) on specific entities here, probably so???)
7211 and then Warn_On_Export_Import
7213 -- Exclude the VM case, since return of unconstrained arrays
7214 -- is properly handled in both the JVM and .NET cases.
7216 and then VM_Target = No_VM
7217 then
7218 Error_Msg_N
7219 ("?x?foreign convention function& should not return " &
7220 "unconstrained array", E);
7221 return;
7222 end if;
7223 end if;
7225 -- If any of the formals for an exported foreign convention
7226 -- subprogram have defaults, then emit an appropriate warning since
7227 -- this is odd (default cannot be used from non-Ada code)
7229 if Is_Exported (E) then
7230 F := First_Formal (E);
7231 while Present (F) loop
7232 if Warn_On_Export_Import
7233 and then Present (Default_Value (F))
7234 then
7235 Error_Msg_N
7236 ("?x?parameter cannot be defaulted in non-Ada call",
7237 Default_Value (F));
7238 end if;
7240 Next_Formal (F);
7241 end loop;
7242 end if;
7243 end if;
7245 -- Pragma Inline_Always is disallowed for dispatching subprograms
7246 -- because the address of such subprograms is saved in the dispatch
7247 -- table to support dispatching calls, and dispatching calls cannot
7248 -- be inlined. This is consistent with the restriction against using
7249 -- 'Access or 'Address on an Inline_Always subprogram.
7251 if Is_Dispatching_Operation (E)
7252 and then Has_Pragma_Inline_Always (E)
7253 then
7254 Error_Msg_N
7255 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7256 end if;
7258 -- Because of the implicit representation of inherited predefined
7259 -- operators in the front-end, the overriding status of the operation
7260 -- may be affected when a full view of a type is analyzed, and this is
7261 -- not captured by the analysis of the corresponding type declaration.
7262 -- Therefore the correctness of a not-overriding indicator must be
7263 -- rechecked when the subprogram is frozen.
7265 if Nkind (E) = N_Defining_Operator_Symbol
7266 and then not Error_Posted (Parent (E))
7267 then
7268 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7269 end if;
7270 end Freeze_Subprogram;
7272 ----------------------
7273 -- Is_Fully_Defined --
7274 ----------------------
7276 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7277 begin
7278 if Ekind (T) = E_Class_Wide_Type then
7279 return Is_Fully_Defined (Etype (T));
7281 elsif Is_Array_Type (T) then
7282 return Is_Fully_Defined (Component_Type (T));
7284 elsif Is_Record_Type (T)
7285 and not Is_Private_Type (T)
7286 then
7287 -- Verify that the record type has no components with private types
7288 -- without completion.
7290 declare
7291 Comp : Entity_Id;
7293 begin
7294 Comp := First_Component (T);
7295 while Present (Comp) loop
7296 if not Is_Fully_Defined (Etype (Comp)) then
7297 return False;
7298 end if;
7300 Next_Component (Comp);
7301 end loop;
7302 return True;
7303 end;
7305 -- For the designated type of an access to subprogram, all types in
7306 -- the profile must be fully defined.
7308 elsif Ekind (T) = E_Subprogram_Type then
7309 declare
7310 F : Entity_Id;
7312 begin
7313 F := First_Formal (T);
7314 while Present (F) loop
7315 if not Is_Fully_Defined (Etype (F)) then
7316 return False;
7317 end if;
7319 Next_Formal (F);
7320 end loop;
7322 return Is_Fully_Defined (Etype (T));
7323 end;
7325 else
7326 return not Is_Private_Type (T)
7327 or else Present (Full_View (Base_Type (T)));
7328 end if;
7329 end Is_Fully_Defined;
7331 ---------------------------------
7332 -- Process_Default_Expressions --
7333 ---------------------------------
7335 procedure Process_Default_Expressions
7336 (E : Entity_Id;
7337 After : in out Node_Id)
7339 Loc : constant Source_Ptr := Sloc (E);
7340 Dbody : Node_Id;
7341 Formal : Node_Id;
7342 Dcopy : Node_Id;
7343 Dnam : Entity_Id;
7345 begin
7346 Set_Default_Expressions_Processed (E);
7348 -- A subprogram instance and its associated anonymous subprogram share
7349 -- their signature. The default expression functions are defined in the
7350 -- wrapper packages for the anonymous subprogram, and should not be
7351 -- generated again for the instance.
7353 if Is_Generic_Instance (E)
7354 and then Present (Alias (E))
7355 and then Default_Expressions_Processed (Alias (E))
7356 then
7357 return;
7358 end if;
7360 Formal := First_Formal (E);
7361 while Present (Formal) loop
7362 if Present (Default_Value (Formal)) then
7364 -- We work with a copy of the default expression because we
7365 -- do not want to disturb the original, since this would mess
7366 -- up the conformance checking.
7368 Dcopy := New_Copy_Tree (Default_Value (Formal));
7370 -- The analysis of the expression may generate insert actions,
7371 -- which of course must not be executed. We wrap those actions
7372 -- in a procedure that is not called, and later on eliminated.
7373 -- The following cases have no side-effects, and are analyzed
7374 -- directly.
7376 if Nkind (Dcopy) = N_Identifier
7377 or else Nkind_In (Dcopy, N_Expanded_Name,
7378 N_Integer_Literal,
7379 N_Character_Literal,
7380 N_String_Literal,
7381 N_Real_Literal)
7382 or else (Nkind (Dcopy) = N_Attribute_Reference
7383 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7384 or else Known_Null (Dcopy)
7385 then
7386 -- If there is no default function, we must still do a full
7387 -- analyze call on the default value, to ensure that all error
7388 -- checks are performed, e.g. those associated with static
7389 -- evaluation. Note: this branch will always be taken if the
7390 -- analyzer is turned off (but we still need the error checks).
7392 -- Note: the setting of parent here is to meet the requirement
7393 -- that we can only analyze the expression while attached to
7394 -- the tree. Really the requirement is that the parent chain
7395 -- be set, we don't actually need to be in the tree.
7397 Set_Parent (Dcopy, Declaration_Node (Formal));
7398 Analyze (Dcopy);
7400 -- Default expressions are resolved with their own type if the
7401 -- context is generic, to avoid anomalies with private types.
7403 if Ekind (Scope (E)) = E_Generic_Package then
7404 Resolve (Dcopy);
7405 else
7406 Resolve (Dcopy, Etype (Formal));
7407 end if;
7409 -- If that resolved expression will raise constraint error,
7410 -- then flag the default value as raising constraint error.
7411 -- This allows a proper error message on the calls.
7413 if Raises_Constraint_Error (Dcopy) then
7414 Set_Raises_Constraint_Error (Default_Value (Formal));
7415 end if;
7417 -- If the default is a parameterless call, we use the name of
7418 -- the called function directly, and there is no body to build.
7420 elsif Nkind (Dcopy) = N_Function_Call
7421 and then No (Parameter_Associations (Dcopy))
7422 then
7423 null;
7425 -- Else construct and analyze the body of a wrapper procedure
7426 -- that contains an object declaration to hold the expression.
7427 -- Given that this is done only to complete the analysis, it
7428 -- simpler to build a procedure than a function which might
7429 -- involve secondary stack expansion.
7431 else
7432 Dnam := Make_Temporary (Loc, 'D');
7434 Dbody :=
7435 Make_Subprogram_Body (Loc,
7436 Specification =>
7437 Make_Procedure_Specification (Loc,
7438 Defining_Unit_Name => Dnam),
7440 Declarations => New_List (
7441 Make_Object_Declaration (Loc,
7442 Defining_Identifier => Make_Temporary (Loc, 'T'),
7443 Object_Definition =>
7444 New_Occurrence_Of (Etype (Formal), Loc),
7445 Expression => New_Copy_Tree (Dcopy))),
7447 Handled_Statement_Sequence =>
7448 Make_Handled_Sequence_Of_Statements (Loc,
7449 Statements => Empty_List));
7451 Set_Scope (Dnam, Scope (E));
7452 Set_Assignment_OK (First (Declarations (Dbody)));
7453 Set_Is_Eliminated (Dnam);
7454 Insert_After (After, Dbody);
7455 Analyze (Dbody);
7456 After := Dbody;
7457 end if;
7458 end if;
7460 Next_Formal (Formal);
7461 end loop;
7462 end Process_Default_Expressions;
7464 ----------------------------------------
7465 -- Set_Component_Alignment_If_Not_Set --
7466 ----------------------------------------
7468 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7469 begin
7470 -- Ignore if not base type, subtypes don't need anything
7472 if Typ /= Base_Type (Typ) then
7473 return;
7474 end if;
7476 -- Do not override existing representation
7478 if Is_Packed (Typ) then
7479 return;
7481 elsif Has_Specified_Layout (Typ) then
7482 return;
7484 elsif Component_Alignment (Typ) /= Calign_Default then
7485 return;
7487 else
7488 Set_Component_Alignment
7489 (Typ, Scope_Stack.Table
7490 (Scope_Stack.Last).Component_Alignment_Default);
7491 end if;
7492 end Set_Component_Alignment_If_Not_Set;
7494 --------------------------
7495 -- Set_SSO_From_Default --
7496 --------------------------
7498 procedure Set_SSO_From_Default (T : Entity_Id) is
7499 begin
7500 if (Is_Record_Type (T) or else Is_Array_Type (T))
7501 and then Is_Base_Type (T)
7502 then
7503 if ((Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7504 or else
7505 ((not Bytes_Big_Endian) and then SSO_Set_High_By_Default (T)))
7507 -- For a record type, if native bit order is specified explicitly,
7508 -- then never set reverse SSO from default.
7510 and then not
7511 (Is_Record_Type (T)
7512 and then Has_Rep_Item (T, Name_Bit_Order)
7513 and then not Reverse_Bit_Order (T))
7514 then
7515 -- If flags cause reverse storage order, then set the result. Note
7516 -- that we would have ignored the pragma setting the non default
7517 -- storage order in any case, hence the assertion at this point.
7519 pragma Assert (Support_Nondefault_SSO_On_Target);
7520 Set_Reverse_Storage_Order (T);
7522 -- For a record type, also set reversed bit order. Note that if
7523 -- a bit order has been specified explicitly, then this is a
7524 -- no-op, as per the guard above.
7526 if Is_Record_Type (T) then
7527 Set_Reverse_Bit_Order (T);
7528 end if;
7529 end if;
7530 end if;
7531 end Set_SSO_From_Default;
7533 ------------------
7534 -- Undelay_Type --
7535 ------------------
7537 procedure Undelay_Type (T : Entity_Id) is
7538 begin
7539 Set_Has_Delayed_Freeze (T, False);
7540 Set_Freeze_Node (T, Empty);
7542 -- Since we don't want T to have a Freeze_Node, we don't want its
7543 -- Full_View or Corresponding_Record_Type to have one either.
7545 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7546 -- want is to be sure that for an Itype that's part of record R and is a
7547 -- subtype of type T, that it's frozen after the later of the freeze
7548 -- points of R and T. We have no way of doing that directly, so what we
7549 -- do is force most such Itypes to be frozen as part of freezing R via
7550 -- this procedure and only delay the ones that need to be delayed
7551 -- (mostly the designated types of access types that are defined as part
7552 -- of the record).
7554 if Is_Private_Type (T)
7555 and then Present (Full_View (T))
7556 and then Is_Itype (Full_View (T))
7557 and then Is_Record_Type (Scope (Full_View (T)))
7558 then
7559 Undelay_Type (Full_View (T));
7560 end if;
7562 if Is_Concurrent_Type (T)
7563 and then Present (Corresponding_Record_Type (T))
7564 and then Is_Itype (Corresponding_Record_Type (T))
7565 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7566 then
7567 Undelay_Type (Corresponding_Record_Type (T));
7568 end if;
7569 end Undelay_Type;
7571 ------------------
7572 -- Warn_Overlay --
7573 ------------------
7575 procedure Warn_Overlay
7576 (Expr : Node_Id;
7577 Typ : Entity_Id;
7578 Nam : Entity_Id)
7580 Ent : constant Entity_Id := Entity (Nam);
7581 -- The object to which the address clause applies
7583 Init : Node_Id;
7584 Old : Entity_Id := Empty;
7585 Decl : Node_Id;
7587 begin
7588 -- No warning if address clause overlay warnings are off
7590 if not Address_Clause_Overlay_Warnings then
7591 return;
7592 end if;
7594 -- No warning if there is an explicit initialization
7596 Init := Original_Node (Expression (Declaration_Node (Ent)));
7598 if Present (Init) and then Comes_From_Source (Init) then
7599 return;
7600 end if;
7602 -- We only give the warning for non-imported entities of a type for
7603 -- which a non-null base init proc is defined, or for objects of access
7604 -- types with implicit null initialization, or when Normalize_Scalars
7605 -- applies and the type is scalar or a string type (the latter being
7606 -- tested for because predefined String types are initialized by inline
7607 -- code rather than by an init_proc). Note that we do not give the
7608 -- warning for Initialize_Scalars, since we suppressed initialization
7609 -- in this case. Also, do not warn if Suppress_Initialization is set.
7611 if Present (Expr)
7612 and then not Is_Imported (Ent)
7613 and then not Initialization_Suppressed (Typ)
7614 and then (Has_Non_Null_Base_Init_Proc (Typ)
7615 or else Is_Access_Type (Typ)
7616 or else (Normalize_Scalars
7617 and then (Is_Scalar_Type (Typ)
7618 or else Is_String_Type (Typ))))
7619 then
7620 if Nkind (Expr) = N_Attribute_Reference
7621 and then Is_Entity_Name (Prefix (Expr))
7622 then
7623 Old := Entity (Prefix (Expr));
7625 elsif Is_Entity_Name (Expr)
7626 and then Ekind (Entity (Expr)) = E_Constant
7627 then
7628 Decl := Declaration_Node (Entity (Expr));
7630 if Nkind (Decl) = N_Object_Declaration
7631 and then Present (Expression (Decl))
7632 and then Nkind (Expression (Decl)) = N_Attribute_Reference
7633 and then Is_Entity_Name (Prefix (Expression (Decl)))
7634 then
7635 Old := Entity (Prefix (Expression (Decl)));
7637 elsif Nkind (Expr) = N_Function_Call then
7638 return;
7639 end if;
7641 -- A function call (most likely to To_Address) is probably not an
7642 -- overlay, so skip warning. Ditto if the function call was inlined
7643 -- and transformed into an entity.
7645 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7646 return;
7647 end if;
7649 Decl := Next (Parent (Expr));
7651 -- If a pragma Import follows, we assume that it is for the current
7652 -- target of the address clause, and skip the warning.
7654 if Present (Decl)
7655 and then Nkind (Decl) = N_Pragma
7656 and then Pragma_Name (Decl) = Name_Import
7657 then
7658 return;
7659 end if;
7661 if Present (Old) then
7662 Error_Msg_Node_2 := Old;
7663 Error_Msg_N
7664 ("default initialization of & may modify &??",
7665 Nam);
7666 else
7667 Error_Msg_N
7668 ("default initialization of & may modify overlaid storage??",
7669 Nam);
7670 end if;
7672 -- Add friendly warning if initialization comes from a packed array
7673 -- component.
7675 if Is_Record_Type (Typ) then
7676 declare
7677 Comp : Entity_Id;
7679 begin
7680 Comp := First_Component (Typ);
7681 while Present (Comp) loop
7682 if Nkind (Parent (Comp)) = N_Component_Declaration
7683 and then Present (Expression (Parent (Comp)))
7684 then
7685 exit;
7686 elsif Is_Array_Type (Etype (Comp))
7687 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
7688 then
7689 Error_Msg_NE
7690 ("\packed array component& " &
7691 "will be initialized to zero??",
7692 Nam, Comp);
7693 exit;
7694 else
7695 Next_Component (Comp);
7696 end if;
7697 end loop;
7698 end;
7699 end if;
7701 Error_Msg_N
7702 ("\use pragma Import for & to " &
7703 "suppress initialization (RM B.1(24))??",
7704 Nam);
7705 end if;
7706 end Warn_Overlay;
7708 end Freeze;