Remove not needed __builtin_expect due to malloc predictor.
[official-gcc.git] / gcc / config / mips / mips.h
blob6804b792ff1041c106bfe719d34857ffb78180af
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "config/vxworks-dummy.h"
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
33 /* MIPS external variables defined in mips.c. */
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
45 /* Masks that affect tuning.
47 PTF_AVOID_BRANCHLIKELY_SPEED
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target when optimizing code for speed, typically because
50 the branches are always predicted taken and so incur a large overhead
51 when not taken.
53 PTF_AVOID_BRANCHLIKELY_SIZE
54 As above but when optimizing for size.
56 PTF_AVOID_BRANCHLIKELY_ALWAYS
57 As above but regardless of whether we optimize for speed or size.
59 PTF_AVOID_IMADD
60 Set if it is usually not profitable to use the integer MADD or MSUB
61 instructions because of the overhead of getting the result out of
62 the HI/LO registers. */
64 #define PTF_AVOID_BRANCHLIKELY_SPEED 0x1
65 #define PTF_AVOID_BRANCHLIKELY_SIZE 0x2
66 #define PTF_AVOID_BRANCHLIKELY_ALWAYS (PTF_AVOID_BRANCHLIKELY_SPEED | \
67 PTF_AVOID_BRANCHLIKELY_SIZE)
68 #define PTF_AVOID_IMADD 0x4
70 /* Information about one recognized processor. Defined here for the
71 benefit of TARGET_CPU_CPP_BUILTINS. */
72 struct mips_cpu_info {
73 /* The 'canonical' name of the processor as far as GCC is concerned.
74 It's typically a manufacturer's prefix followed by a numerical
75 designation. It should be lowercase. */
76 const char *name;
78 /* The internal processor number that most closely matches this
79 entry. Several processors can have the same value, if there's no
80 difference between them from GCC's point of view. */
81 enum processor cpu;
83 /* The ISA level that the processor implements. */
84 int isa;
86 /* A mask of PTF_* values. */
87 unsigned int tune_flags;
90 #include "config/mips/mips-opts.h"
92 /* Macros to silence warnings about numbers being signed in traditional
93 C and unsigned in ISO C when compiled on 32-bit hosts. */
95 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
96 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
97 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
100 /* Run-time compilation parameters selecting different hardware subsets. */
102 /* True if we are generating position-independent VxWorks RTP code. */
103 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
105 /* Compact branches must not be used if the user either selects the
106 'never' policy or the 'optimal' policy on a core that lacks
107 compact branch instructions. */
108 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \
109 || (mips_cb == MIPS_CB_OPTIMAL \
110 && !ISA_HAS_COMPACT_BRANCHES))
112 /* Compact branches may be used if the user either selects the
113 'always' policy or the 'optimal' policy on a core that supports
114 compact branch instructions. */
115 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \
116 || (mips_cb == MIPS_CB_OPTIMAL \
117 && ISA_HAS_COMPACT_BRANCHES))
119 /* Compact branches must always be generated if the user selects
120 the 'always' policy or the 'optimal' policy om a core that
121 lacks delay slot branch instructions. */
122 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \
123 || (mips_cb == MIPS_CB_OPTIMAL \
124 && !ISA_HAS_DELAY_SLOTS))
126 /* Special handling for JRC that exists in microMIPSR3 as well as R6
127 ISAs with full compact branch support. */
128 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \
129 || TARGET_MICROMIPS) \
130 && mips_cb != MIPS_CB_NEVER)
132 /* True if the output file is marked as ".abicalls; .option pic0"
133 (-call_nonpic). */
134 #define TARGET_ABICALLS_PIC0 \
135 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
137 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
138 #define TARGET_ABICALLS_PIC2 \
139 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
141 /* True if the call patterns should be split into a jalr followed by
142 an instruction to restore $gp. It is only safe to split the load
143 from the call when every use of $gp is explicit.
145 See mips_must_initialize_gp_p for details about how we manage the
146 global pointer. */
148 #define TARGET_SPLIT_CALLS \
149 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
151 /* True if we're generating a form of -mabicalls in which we can use
152 operators like %hi and %lo to refer to locally-binding symbols.
153 We can only do this for -mno-shared, and only then if we can use
154 relocation operations instead of assembly macros. It isn't really
155 worth using absolute sequences for 64-bit symbols because GOT
156 accesses are so much shorter. */
158 #define TARGET_ABSOLUTE_ABICALLS \
159 (TARGET_ABICALLS \
160 && !TARGET_SHARED \
161 && TARGET_EXPLICIT_RELOCS \
162 && !ABI_HAS_64BIT_SYMBOLS)
164 /* True if we can optimize sibling calls. For simplicity, we only
165 handle cases in which call_insn_operand will reject invalid
166 sibcall addresses. There are two cases in which this isn't true:
168 - TARGET_MIPS16. call_insn_operand accepts constant addresses
169 but there is no direct jump instruction. It isn't worth
170 using sibling calls in this case anyway; they would usually
171 be longer than normal calls.
173 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
174 accepts global constants, but all sibcalls must be indirect. */
175 #define TARGET_SIBCALLS \
176 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
178 /* True if we need to use a global offset table to access some symbols. */
179 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
181 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
182 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
184 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
185 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
187 /* True if we should use .cprestore to store to the cprestore slot.
189 We continue to use .cprestore for explicit-reloc code so that JALs
190 inside inline asms will work correctly. */
191 #define TARGET_CPRESTORE_DIRECTIVE \
192 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
194 /* True if we can use the J and JAL instructions. */
195 #define TARGET_ABSOLUTE_JUMPS \
196 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
198 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
199 This is true for both the PIC and non-PIC VxWorks RTP modes. */
200 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
202 /* True if .gpword or .gpdword should be used for switch tables. */
203 #define TARGET_GPWORD \
204 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
206 /* True if the output must have a writable .eh_frame.
207 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
208 #ifdef HAVE_LD_PERSONALITY_RELAXATION
209 #define TARGET_WRITABLE_EH_FRAME 0
210 #else
211 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
212 #endif
214 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
215 #ifdef HAVE_AS_DSPR1_MULT
216 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
217 #else
218 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
219 #endif
221 /* ISA has LSA available. */
222 #define ISA_HAS_LSA (mips_isa_rev >= 6 || ISA_HAS_MSA)
224 /* ISA has DLSA available. */
225 #define ISA_HAS_DLSA (TARGET_64BIT \
226 && (mips_isa_rev >= 6 \
227 || ISA_HAS_MSA))
229 /* The ISA compression flags that are currently in effect. */
230 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
232 /* Generate mips16 code */
233 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
234 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
235 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
236 /* Generate mips16e register save/restore sequences. */
237 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
239 /* True if we're generating a form of MIPS16 code in which general
240 text loads are allowed. */
241 #define TARGET_MIPS16_TEXT_LOADS \
242 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
244 /* True if we're generating a form of MIPS16 code in which PC-relative
245 loads are allowed. */
246 #define TARGET_MIPS16_PCREL_LOADS \
247 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
249 /* Generic ISA defines. */
250 #define ISA_MIPS1 (mips_isa == 1)
251 #define ISA_MIPS2 (mips_isa == 2)
252 #define ISA_MIPS3 (mips_isa == 3)
253 #define ISA_MIPS4 (mips_isa == 4)
254 #define ISA_MIPS32 (mips_isa == 32)
255 #define ISA_MIPS32R2 (mips_isa == 33)
256 #define ISA_MIPS32R3 (mips_isa == 34)
257 #define ISA_MIPS32R5 (mips_isa == 36)
258 #define ISA_MIPS32R6 (mips_isa == 37)
259 #define ISA_MIPS64 (mips_isa == 64)
260 #define ISA_MIPS64R2 (mips_isa == 65)
261 #define ISA_MIPS64R3 (mips_isa == 66)
262 #define ISA_MIPS64R5 (mips_isa == 68)
263 #define ISA_MIPS64R6 (mips_isa == 69)
265 /* Architecture target defines. */
266 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
267 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
268 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
269 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
270 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
271 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
272 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
273 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
274 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
275 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
276 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
277 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
278 #define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000)
279 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
280 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
281 || mips_arch == PROCESSOR_OCTEON2 \
282 || mips_arch == PROCESSOR_OCTEON3)
283 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
284 || mips_arch == PROCESSOR_OCTEON3)
285 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
286 || mips_arch == PROCESSOR_SB1A)
287 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
288 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
290 /* Scheduling target defines. */
291 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
292 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
293 || mips_tune == PROCESSOR_24KF2_1 \
294 || mips_tune == PROCESSOR_24KF1_1)
295 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
296 || mips_tune == PROCESSOR_74KF2_1 \
297 || mips_tune == PROCESSOR_74KF1_1 \
298 || mips_tune == PROCESSOR_74KF3_2)
299 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
300 || mips_tune == PROCESSOR_LOONGSON_2F)
301 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
302 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
303 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
304 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
305 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
306 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
307 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
308 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
309 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
310 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
311 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
312 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
313 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
314 || mips_tune == PROCESSOR_OCTEON2 \
315 || mips_tune == PROCESSOR_OCTEON3)
316 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
317 || mips_tune == PROCESSOR_SB1A)
318 #define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
319 #define TUNE_I6400 (mips_tune == PROCESSOR_I6400)
320 #define TUNE_P6600 (mips_tune == PROCESSOR_P6600)
322 /* Whether vector modes and intrinsics for ST Microelectronics
323 Loongson-2E/2F processors should be enabled. In o32 pairs of
324 floating-point registers provide 64-bit values. */
325 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
326 && (TARGET_LOONGSON_2EF \
327 || TARGET_LOONGSON_3A))
329 /* True if the pre-reload scheduler should try to create chains of
330 multiply-add or multiply-subtract instructions. For example,
331 suppose we have:
333 t1 = a * b
334 t2 = t1 + c * d
335 t3 = e * f
336 t4 = t3 - g * h
338 t1 will have a higher priority than t2 and t3 will have a higher
339 priority than t4. However, before reload, there is no dependence
340 between t1 and t3, and they can often have similar priorities.
341 The scheduler will then tend to prefer:
343 t1 = a * b
344 t3 = e * f
345 t2 = t1 + c * d
346 t4 = t3 - g * h
348 which stops us from making full use of macc/madd-style instructions.
349 This sort of situation occurs frequently in Fourier transforms and
350 in unrolled loops.
352 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
353 queue so that chained multiply-add and multiply-subtract instructions
354 appear ahead of any other instruction that is likely to clobber lo.
355 In the example above, if t2 and t3 become ready at the same time,
356 the code ensures that t2 is scheduled first.
358 Multiply-accumulate instructions are a bigger win for some targets
359 than others, so this macro is defined on an opt-in basis. */
360 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
361 || TUNE_MIPS4120 \
362 || TUNE_MIPS4130 \
363 || TUNE_24K \
364 || TUNE_P5600)
366 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
367 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
369 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
370 directly accessible, while the command-line options select
371 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
372 in use. */
373 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
374 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
376 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
377 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
378 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
380 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
381 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
382 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
383 && !TARGET_ODD_SPREG)
385 /* False if SC acts as a memory barrier with respect to itself,
386 otherwise a SYNC will be emitted after SC for atomic operations
387 that require ordering between the SC and following loads and
388 stores. It does not tell anything about ordering of loads and
389 stores prior to and following the SC, only about the SC itself and
390 those loads and stores follow it. */
391 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
393 /* Define preprocessor macros for the -march and -mtune options.
394 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
395 processor. If INFO's canonical name is "foo", define PREFIX to
396 be "foo", and define an additional macro PREFIX_FOO. */
397 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
398 do \
400 char *macro, *p; \
402 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
403 for (p = macro; *p != 0; p++) \
404 if (*p == '+') \
405 *p = 'P'; \
406 else \
407 *p = TOUPPER (*p); \
409 builtin_define (macro); \
410 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
411 free (macro); \
413 while (0)
415 /* Target CPU builtins. */
416 #define TARGET_CPU_CPP_BUILTINS() \
417 do \
419 builtin_assert ("machine=mips"); \
420 builtin_assert ("cpu=mips"); \
421 builtin_define ("__mips__"); \
422 builtin_define ("_mips"); \
424 /* We do this here because __mips is defined below and so we \
425 can't use builtin_define_std. We don't ever want to define \
426 "mips" for VxWorks because some of the VxWorks headers \
427 construct include filenames from a root directory macro, \
428 an architecture macro and a filename, where the architecture \
429 macro expands to 'mips'. If we define 'mips' to 1, the \
430 architecture macro expands to 1 as well. */ \
431 if (!flag_iso && !TARGET_VXWORKS) \
432 builtin_define ("mips"); \
434 if (TARGET_64BIT) \
435 builtin_define ("__mips64"); \
437 /* Treat _R3000 and _R4000 like register-size \
438 defines, which is how they've historically \
439 been used. */ \
440 if (TARGET_64BIT) \
442 builtin_define_std ("R4000"); \
443 builtin_define ("_R4000"); \
445 else \
447 builtin_define_std ("R3000"); \
448 builtin_define ("_R3000"); \
451 if (TARGET_FLOAT64) \
452 builtin_define ("__mips_fpr=64"); \
453 else if (TARGET_FLOATXX) \
454 builtin_define ("__mips_fpr=0"); \
455 else \
456 builtin_define ("__mips_fpr=32"); \
458 if (mips_base_compression_flags & MASK_MIPS16) \
459 builtin_define ("__mips16"); \
461 if (TARGET_MIPS3D) \
462 builtin_define ("__mips3d"); \
464 if (TARGET_SMARTMIPS) \
465 builtin_define ("__mips_smartmips"); \
467 if (mips_base_compression_flags & MASK_MICROMIPS) \
468 builtin_define ("__mips_micromips"); \
470 if (TARGET_MCU) \
471 builtin_define ("__mips_mcu"); \
473 if (TARGET_EVA) \
474 builtin_define ("__mips_eva"); \
476 if (TARGET_DSP) \
478 builtin_define ("__mips_dsp"); \
479 if (TARGET_DSPR2) \
481 builtin_define ("__mips_dspr2"); \
482 builtin_define ("__mips_dsp_rev=2"); \
484 else \
485 builtin_define ("__mips_dsp_rev=1"); \
488 if (ISA_HAS_MSA) \
490 builtin_define ("__mips_msa"); \
491 builtin_define ("__mips_msa_width=128"); \
494 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
495 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
497 if (ISA_MIPS1) \
499 builtin_define ("__mips=1"); \
500 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
502 else if (ISA_MIPS2) \
504 builtin_define ("__mips=2"); \
505 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
507 else if (ISA_MIPS3) \
509 builtin_define ("__mips=3"); \
510 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
512 else if (ISA_MIPS4) \
514 builtin_define ("__mips=4"); \
515 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
517 else if (mips_isa >= 32 && mips_isa < 64) \
519 builtin_define ("__mips=32"); \
520 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
522 else if (mips_isa >= 64) \
524 builtin_define ("__mips=64"); \
525 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
527 if (mips_isa_rev > 0) \
528 builtin_define_with_int_value ("__mips_isa_rev", \
529 mips_isa_rev); \
531 switch (mips_abi) \
533 case ABI_32: \
534 builtin_define ("_ABIO32=1"); \
535 builtin_define ("_MIPS_SIM=_ABIO32"); \
536 break; \
538 case ABI_N32: \
539 builtin_define ("_ABIN32=2"); \
540 builtin_define ("_MIPS_SIM=_ABIN32"); \
541 break; \
543 case ABI_64: \
544 builtin_define ("_ABI64=3"); \
545 builtin_define ("_MIPS_SIM=_ABI64"); \
546 break; \
548 case ABI_O64: \
549 builtin_define ("_ABIO64=4"); \
550 builtin_define ("_MIPS_SIM=_ABIO64"); \
551 break; \
554 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
555 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
556 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
557 builtin_define_with_int_value ("_MIPS_FPSET", \
558 32 / MAX_FPRS_PER_FMT); \
559 builtin_define_with_int_value ("_MIPS_SPFPSET", \
560 TARGET_ODD_SPREG ? 32 : 16); \
562 /* These defines reflect the ABI in use, not whether the \
563 FPU is directly accessible. */ \
564 if (TARGET_NO_FLOAT) \
565 builtin_define ("__mips_no_float"); \
566 else if (TARGET_HARD_FLOAT_ABI) \
567 builtin_define ("__mips_hard_float"); \
568 else \
569 builtin_define ("__mips_soft_float"); \
571 if (TARGET_SINGLE_FLOAT) \
572 builtin_define ("__mips_single_float"); \
574 if (TARGET_PAIRED_SINGLE_FLOAT) \
575 builtin_define ("__mips_paired_single_float"); \
577 if (mips_abs == MIPS_IEEE_754_2008) \
578 builtin_define ("__mips_abs2008"); \
580 if (mips_nan == MIPS_IEEE_754_2008) \
581 builtin_define ("__mips_nan2008"); \
583 if (TARGET_BIG_ENDIAN) \
585 builtin_define_std ("MIPSEB"); \
586 builtin_define ("_MIPSEB"); \
588 else \
590 builtin_define_std ("MIPSEL"); \
591 builtin_define ("_MIPSEL"); \
594 /* Whether calls should go through $25. The separate __PIC__ \
595 macro indicates whether abicalls code might use a GOT. */ \
596 if (TARGET_ABICALLS) \
597 builtin_define ("__mips_abicalls"); \
599 /* Whether Loongson vector modes are enabled. */ \
600 if (TARGET_LOONGSON_VECTORS) \
601 builtin_define ("__mips_loongson_vector_rev"); \
603 /* Historical Octeon macro. */ \
604 if (TARGET_OCTEON) \
605 builtin_define ("__OCTEON__"); \
607 if (TARGET_SYNCI) \
608 builtin_define ("__mips_synci"); \
610 /* Macros dependent on the C dialect. */ \
611 if (preprocessing_asm_p ()) \
613 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
614 builtin_define ("_LANGUAGE_ASSEMBLY"); \
616 else if (c_dialect_cxx ()) \
618 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
619 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
620 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
622 else \
624 builtin_define_std ("LANGUAGE_C"); \
625 builtin_define ("_LANGUAGE_C"); \
627 if (c_dialect_objc ()) \
629 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
630 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
631 /* Bizarre, but retained for backwards compatibility. */ \
632 builtin_define_std ("LANGUAGE_C"); \
633 builtin_define ("_LANGUAGE_C"); \
636 if (mips_abi == ABI_EABI) \
637 builtin_define ("__mips_eabi"); \
639 if (TARGET_CACHE_BUILTIN) \
640 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
641 if (!ISA_HAS_LXC1_SXC1) \
642 builtin_define ("__mips_no_lxc1_sxc1"); \
643 if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4) \
644 builtin_define ("__mips_no_madd4"); \
646 while (0)
648 /* Default target_flags if no switches are specified */
650 #ifndef TARGET_DEFAULT
651 #define TARGET_DEFAULT 0
652 #endif
654 #ifndef TARGET_CPU_DEFAULT
655 #define TARGET_CPU_DEFAULT 0
656 #endif
658 #ifndef TARGET_ENDIAN_DEFAULT
659 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
660 #endif
662 #ifdef IN_LIBGCC2
663 #undef TARGET_64BIT
664 /* Make this compile time constant for libgcc2 */
665 #ifdef __mips64
666 #define TARGET_64BIT 1
667 #else
668 #define TARGET_64BIT 0
669 #endif
670 #endif /* IN_LIBGCC2 */
672 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
673 when compiled with hardware floating point. This is because MIPS16
674 code cannot save and restore the floating-point registers, which is
675 important if in a mixed MIPS16/non-MIPS16 environment. */
677 #ifdef IN_LIBGCC2
678 #if __mips_hard_float
679 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
680 #endif
681 #endif /* IN_LIBGCC2 */
683 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
685 #ifndef MULTILIB_ENDIAN_DEFAULT
686 #if TARGET_ENDIAN_DEFAULT == 0
687 #define MULTILIB_ENDIAN_DEFAULT "EL"
688 #else
689 #define MULTILIB_ENDIAN_DEFAULT "EB"
690 #endif
691 #endif
693 #ifndef MULTILIB_ISA_DEFAULT
694 #if MIPS_ISA_DEFAULT == 1
695 #define MULTILIB_ISA_DEFAULT "mips1"
696 #elif MIPS_ISA_DEFAULT == 2
697 #define MULTILIB_ISA_DEFAULT "mips2"
698 #elif MIPS_ISA_DEFAULT == 3
699 #define MULTILIB_ISA_DEFAULT "mips3"
700 #elif MIPS_ISA_DEFAULT == 4
701 #define MULTILIB_ISA_DEFAULT "mips4"
702 #elif MIPS_ISA_DEFAULT == 32
703 #define MULTILIB_ISA_DEFAULT "mips32"
704 #elif MIPS_ISA_DEFAULT == 33
705 #define MULTILIB_ISA_DEFAULT "mips32r2"
706 #elif MIPS_ISA_DEFAULT == 37
707 #define MULTILIB_ISA_DEFAULT "mips32r6"
708 #elif MIPS_ISA_DEFAULT == 64
709 #define MULTILIB_ISA_DEFAULT "mips64"
710 #elif MIPS_ISA_DEFAULT == 65
711 #define MULTILIB_ISA_DEFAULT "mips64r2"
712 #elif MIPS_ISA_DEFAULT == 69
713 #define MULTILIB_ISA_DEFAULT "mips64r6"
714 #else
715 #define MULTILIB_ISA_DEFAULT "mips1"
716 #endif
717 #endif
719 #ifndef MIPS_ABI_DEFAULT
720 #define MIPS_ABI_DEFAULT ABI_32
721 #endif
723 /* Use the most portable ABI flag for the ASM specs. */
725 #if MIPS_ABI_DEFAULT == ABI_32
726 #define MULTILIB_ABI_DEFAULT "mabi=32"
727 #elif MIPS_ABI_DEFAULT == ABI_O64
728 #define MULTILIB_ABI_DEFAULT "mabi=o64"
729 #elif MIPS_ABI_DEFAULT == ABI_N32
730 #define MULTILIB_ABI_DEFAULT "mabi=n32"
731 #elif MIPS_ABI_DEFAULT == ABI_64
732 #define MULTILIB_ABI_DEFAULT "mabi=64"
733 #elif MIPS_ABI_DEFAULT == ABI_EABI
734 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
735 #endif
737 #ifndef MULTILIB_DEFAULTS
738 #define MULTILIB_DEFAULTS \
739 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
740 #endif
742 /* We must pass -EL to the linker by default for little endian embedded
743 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
744 linker will default to using big-endian output files. The OUTPUT_FORMAT
745 line must be in the linker script, otherwise -EB/-EL will not work. */
747 #ifndef ENDIAN_SPEC
748 #if TARGET_ENDIAN_DEFAULT == 0
749 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
750 #else
751 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
752 #endif
753 #endif
755 /* A spec condition that matches all non-mips16 -mips arguments. */
757 #define MIPS_ISA_LEVEL_OPTION_SPEC \
758 "mips1|mips2|mips3|mips4|mips32*|mips64*"
760 /* A spec condition that matches all non-mips16 architecture arguments. */
762 #define MIPS_ARCH_OPTION_SPEC \
763 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
765 /* A spec that infers a -mips argument from an -march argument. */
767 #define MIPS_ISA_LEVEL_SPEC \
768 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
769 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
770 %{march=mips2|march=r6000:-mips2} \
771 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
772 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
773 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
774 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
775 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
776 |march=34k*|march=74k*|march=m14k*|march=1004k* \
777 |march=interaptiv: -mips32r2} \
778 %{march=mips32r3: -mips32r3} \
779 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
780 %{march=mips32r6: -mips32r6} \
781 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
782 |march=xlr: -mips64} \
783 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
784 %{march=mips64r3: -mips64r3} \
785 %{march=mips64r5: -mips64r5} \
786 %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
788 /* A spec that injects the default multilib ISA if no architecture is
789 specified. */
791 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
792 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
793 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
795 /* A spec that infers a -mhard-float or -msoft-float setting from an
796 -march argument. Note that soft-float and hard-float code are not
797 link-compatible. */
799 #define MIPS_ARCH_FLOAT_SPEC \
800 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
801 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
802 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
803 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
804 march=*: -mhard-float}"
806 /* A spec condition that matches 32-bit options. It only works if
807 MIPS_ISA_LEVEL_SPEC has been applied. */
809 #define MIPS_32BIT_OPTION_SPEC \
810 "mips1|mips2|mips32*|mgp32"
812 /* A spec condition that matches architectures should be targeted with
813 o32 FPXX for compatibility reasons. */
814 #define MIPS_FPXX_OPTION_SPEC \
815 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
816 mips64|mips64r2|mips64r3|mips64r5"
818 /* Infer a -msynci setting from a -mips argument, on the assumption that
819 -msynci is desired where possible. */
820 #define MIPS_ISA_SYNCI_SPEC \
821 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
822 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
824 /* Infer a -mnan=2008 setting from a -mips argument. */
825 #define MIPS_ISA_NAN2008_SPEC \
826 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
827 %{!msoft-float:-mnan=2008}}"
829 #if (MIPS_ABI_DEFAULT == ABI_O64 \
830 || MIPS_ABI_DEFAULT == ABI_N32 \
831 || MIPS_ABI_DEFAULT == ABI_64)
832 #define OPT_ARCH64 "mabi=32|mgp32:;"
833 #define OPT_ARCH32 "mabi=32|mgp32"
834 #else
835 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
836 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
837 #endif
839 /* Support for a compile-time default CPU, et cetera. The rules are:
840 --with-arch is ignored if -march is specified or a -mips is specified
841 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
842 --with-tune is ignored if -mtune is specified; likewise
843 --with-tune-32 and --with-tune-64.
844 --with-abi is ignored if -mabi is specified.
845 --with-float is ignored if -mhard-float or -msoft-float are
846 specified.
847 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
848 specified.
849 --with-nan is ignored if -mnan is specified.
850 --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
851 specified.
852 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
853 or -mno-odd-spreg are specified.
854 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
855 specified. */
856 #define OPTION_DEFAULT_SPECS \
857 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
858 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
859 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
860 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
861 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
862 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
863 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
864 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
865 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
866 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
867 {"fp_32", "%{" OPT_ARCH32 \
868 ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
869 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
870 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
871 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
872 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
873 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
874 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }, \
875 {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
876 {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
878 /* A spec that infers the:
879 -mnan=2008 setting from a -mips argument,
880 -mdsp setting from a -march argument. */
881 #define BASE_DRIVER_SELF_SPECS \
882 MIPS_ISA_NAN2008_SPEC, \
883 "%{!mno-dsp: \
884 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
885 |march=interaptiv: -mdsp} \
886 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
888 #define DRIVER_SELF_SPECS \
889 MIPS_ISA_LEVEL_SPEC, \
890 BASE_DRIVER_SELF_SPECS
892 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
893 && ISA_HAS_COND_TRAP)
895 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
897 /* True if the ABI can only work with 64-bit integer registers. We
898 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
899 otherwise floating-point registers must also be 64-bit. */
900 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
902 /* Likewise for 32-bit regs. */
903 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
905 /* True if the file format uses 64-bit symbols. At present, this is
906 only true for n64, which uses 64-bit ELF. */
907 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
909 /* True if symbols are 64 bits wide. This is usually determined by
910 the ABI's file format, but it can be overridden by -msym32. Note that
911 overriding the size with -msym32 changes the ABI of relocatable objects,
912 although it doesn't change the ABI of a fully-linked object. */
913 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
914 && Pmode == DImode \
915 && !TARGET_SYM32)
917 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
918 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
919 || ISA_MIPS4 \
920 || ISA_MIPS64 \
921 || ISA_MIPS64R2 \
922 || ISA_MIPS64R3 \
923 || ISA_MIPS64R5 \
924 || ISA_MIPS64R6)
926 #define ISA_HAS_JR (mips_isa_rev <= 5)
928 #define ISA_HAS_DELAY_SLOTS 1
930 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
932 /* ISA has branch likely instructions (e.g. mips2). */
933 /* Disable branchlikely for tx39 until compare rewrite. They haven't
934 been generated up to this point. */
935 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
937 /* ISA has 32 single-precision registers. */
938 #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
939 && !TARGET_LOONGSON_3A) \
940 || TARGET_FLOAT64 \
941 || TARGET_MIPS5900)
943 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
944 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
945 || TARGET_MIPS5400 \
946 || TARGET_MIPS5500 \
947 || TARGET_MIPS5900 \
948 || TARGET_MIPS7000 \
949 || TARGET_MIPS9000 \
950 || TARGET_MAD \
951 || (mips_isa_rev >= 1 \
952 && mips_isa_rev <= 5)) \
953 && !TARGET_MIPS16)
955 /* ISA has a three-operand multiplication instruction. */
956 #define ISA_HAS_DMUL3 (TARGET_64BIT \
957 && TARGET_OCTEON \
958 && !TARGET_MIPS16)
960 /* ISA has HI and LO registers. */
961 #define ISA_HAS_HILO (mips_isa_rev <= 5)
963 /* ISA supports instructions DMULT and DMULTU. */
964 #define ISA_HAS_DMULT (TARGET_64BIT \
965 && !TARGET_MIPS5900 \
966 && mips_isa_rev <= 5)
968 /* ISA supports instructions MULT and MULTU. */
969 #define ISA_HAS_MULT (mips_isa_rev <= 5)
971 /* ISA supports instructions MUL, MULU, MUH, MUHU. */
972 #define ISA_HAS_R6MUL (mips_isa_rev >= 6)
974 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
975 #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
977 /* For Loongson, it is preferable to use the Loongson-specific division and
978 modulo instructions instead of the regular (D)DIV(U) instruction,
979 because the former are faster and can also have the effect of reducing
980 code size. */
981 #define ISA_AVOID_DIV_HILO ((TARGET_LOONGSON_2EF \
982 || TARGET_LOONGSON_3A) \
983 && !TARGET_MIPS16)
985 /* ISA supports instructions DDIV and DDIVU. */
986 #define ISA_HAS_DDIV (TARGET_64BIT \
987 && !TARGET_MIPS5900 \
988 && !ISA_AVOID_DIV_HILO \
989 && mips_isa_rev <= 5)
991 /* ISA supports instructions DIV and DIVU.
992 This is always true, but the macro is needed for ISA_HAS_<D>DIV
993 in mips.md. */
994 #define ISA_HAS_DIV (!ISA_AVOID_DIV_HILO \
995 && mips_isa_rev <= 5)
997 /* ISA supports instructions DIV, DIVU, MOD and MODU. */
998 #define ISA_HAS_R6DIV (mips_isa_rev >= 6)
1000 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
1001 #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
1003 /* ISA has the floating-point conditional move instructions introduced
1004 in mips4. */
1005 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
1006 || (mips_isa_rev >= 1 \
1007 && mips_isa_rev <= 5)) \
1008 && !TARGET_MIPS5500 \
1009 && !TARGET_MIPS16)
1011 /* ISA has the integer conditional move instructions introduced in mips4 and
1012 ST Loongson 2E/2F. */
1013 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
1014 || TARGET_MIPS5900 \
1015 || TARGET_LOONGSON_2EF)
1017 /* ISA has LDC1 and SDC1. */
1018 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
1019 && !TARGET_MIPS5900 \
1020 && !TARGET_MIPS16)
1022 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
1023 branch on CC, and move (both FP and non-FP) on CC. */
1024 #define ISA_HAS_8CC (ISA_MIPS4 \
1025 || (mips_isa_rev >= 1 \
1026 && mips_isa_rev <= 5))
1028 /* ISA has the FP condition code instructions that store the flag in an
1029 FP register. */
1030 #define ISA_HAS_CCF (mips_isa_rev >= 6)
1032 #define ISA_HAS_SEL (mips_isa_rev >= 6)
1034 /* This is a catch all for other mips4 instructions: indexed load, the
1035 FP madd and msub instructions, and the FP recip and recip sqrt
1036 instructions. Note that this macro should only be used by other
1037 ISA_HAS_* macros. */
1038 #define ISA_HAS_FP4 ((ISA_MIPS4 \
1039 || ISA_MIPS64 \
1040 || (mips_isa_rev >= 2 \
1041 && mips_isa_rev <= 5)) \
1042 && !TARGET_MIPS16)
1044 /* ISA has floating-point indexed load and store instructions
1045 (LWXC1, LDXC1, SWXC1 and SDXC1). */
1046 #define ISA_HAS_LXC1_SXC1 (ISA_HAS_FP4 \
1047 && mips_lxc1_sxc1)
1049 /* ISA has paired-single instructions. */
1050 #define ISA_HAS_PAIRED_SINGLE ((ISA_MIPS64 \
1051 || (mips_isa_rev >= 2 \
1052 && mips_isa_rev <= 5)) \
1053 && !TARGET_OCTEON)
1055 /* ISA has conditional trap instructions. */
1056 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
1057 && !TARGET_MIPS16)
1059 /* ISA has conditional trap with immediate instructions. */
1060 #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
1061 && mips_isa_rev <= 5 \
1062 && !TARGET_MIPS16)
1064 /* ISA has integer multiply-accumulate instructions, madd and msub. */
1065 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
1066 && mips_isa_rev <= 5)
1068 /* Integer multiply-accumulate instructions should be generated. */
1069 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
1071 /* ISA has 4 operand fused madd instructions of the form
1072 'd = [+-] (a * b [+-] c)'. */
1073 #define ISA_HAS_FUSED_MADD4 (mips_madd4 \
1074 && (TARGET_MIPS8000 \
1075 || TARGET_LOONGSON_3A))
1077 /* ISA has 4 operand unfused madd instructions of the form
1078 'd = [+-] (a * b [+-] c)'. */
1079 #define ISA_HAS_UNFUSED_MADD4 (mips_madd4 \
1080 && ISA_HAS_FP4 \
1081 && !TARGET_MIPS8000 \
1082 && !TARGET_LOONGSON_3A)
1084 /* ISA has 3 operand r6 fused madd instructions of the form
1085 'c = c [+-] (a * b)'. */
1086 #define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6)
1088 /* ISA has 3 operand loongson fused madd instructions of the form
1089 'c = [+-] (a * b [+-] c)'. */
1090 #define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF
1092 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1093 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1094 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1095 this restriction to the MIPS IV ISA too. */
1096 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
1097 (((ISA_HAS_FP4 \
1098 && ((MODE) == SFmode \
1099 || ((TARGET_FLOAT64 \
1100 || mips_isa_rev >= 2) \
1101 && (MODE) == DFmode))) \
1102 || (((MODE) == SFmode \
1103 || (MODE) == DFmode) \
1104 && (mips_isa_rev >= 6)) \
1105 || (TARGET_SB1 \
1106 && (MODE) == V2SFmode)) \
1107 && !TARGET_MIPS16)
1109 #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1111 #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1113 #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1115 /* ISA has count leading zeroes/ones instruction (not implemented). */
1116 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
1118 /* ISA has three operand multiply instructions that put
1119 the high part in an accumulator: mulhi or mulhiu. */
1120 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1121 || TARGET_MIPS5500 \
1122 || TARGET_SR71K) \
1123 && !TARGET_MIPS16)
1125 /* ISA has three operand multiply instructions that negate the
1126 result and put the result in an accumulator. */
1127 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
1128 || TARGET_MIPS5500 \
1129 || TARGET_SR71K) \
1130 && !TARGET_MIPS16)
1132 /* ISA has three operand multiply instructions that subtract the
1133 result from a 4th operand and put the result in an accumulator. */
1134 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1135 || TARGET_MIPS5500 \
1136 || TARGET_SR71K) \
1137 && !TARGET_MIPS16)
1139 /* ISA has three operand multiply instructions that add the result
1140 to a 4th operand and put the result in an accumulator. */
1141 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
1142 || TARGET_MIPS4130 \
1143 || TARGET_MIPS5400 \
1144 || TARGET_MIPS5500 \
1145 || TARGET_SR71K) \
1146 && !TARGET_MIPS16)
1148 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
1149 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1150 || TARGET_MIPS4130) \
1151 && !TARGET_MIPS16)
1153 /* ISA has the "ror" (rotate right) instructions. */
1154 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
1155 || TARGET_MIPS5400 \
1156 || TARGET_MIPS5500 \
1157 || TARGET_SR71K \
1158 || TARGET_SMARTMIPS) \
1159 && !TARGET_MIPS16)
1161 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1162 64-bit targets also provide DSBH and DSHD. */
1163 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1165 /* ISA has data prefetch instructions. This controls use of 'pref'. */
1166 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1167 || TARGET_LOONGSON_2EF \
1168 || TARGET_MIPS5900 \
1169 || mips_isa_rev >= 1) \
1170 && !TARGET_MIPS16)
1172 /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1173 #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
1175 /* ISA has data indexed prefetch instructions. This controls use of
1176 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1177 (prefx is a cop1x instruction, so can only be used if FP is
1178 enabled.) */
1179 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
1181 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1182 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1183 also requires TARGET_DOUBLE_FLOAT. */
1184 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1186 /* ISA includes the MIPS32r2 seb and seh instructions. */
1187 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1189 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1190 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
1192 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1193 #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1194 && mips_isa_rev >= 2)
1196 /* ISA has lwxs instruction (load w/scaled index address. */
1197 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1198 && !TARGET_MIPS16)
1200 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1201 #define ISA_HAS_LBX (TARGET_OCTEON2)
1202 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1203 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1204 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1205 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1206 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1207 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1208 && TARGET_64BIT)
1210 /* The DSP ASE is available. */
1211 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1213 /* Revision 2 of the DSP ASE is available. */
1214 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1216 /* The MSA ASE is available. */
1217 #define ISA_HAS_MSA (TARGET_MSA && !TARGET_MIPS16)
1219 /* True if the result of a load is not available to the next instruction.
1220 A nop will then be needed between instructions like "lw $4,..."
1221 and "addiu $4,$4,1". */
1222 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1223 && !TARGET_MIPS3900 \
1224 && !TARGET_MIPS5900 \
1225 && !TARGET_MIPS16 \
1226 && !TARGET_MICROMIPS)
1228 /* Likewise mtc1 and mfc1. */
1229 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1230 && !TARGET_MIPS5900 \
1231 && !TARGET_LOONGSON_2EF)
1233 /* Likewise floating-point comparisons. */
1234 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1235 && !TARGET_MIPS5900 \
1236 && !TARGET_LOONGSON_2EF)
1238 /* True if mflo and mfhi can be immediately followed by instructions
1239 which write to the HI and LO registers.
1241 According to MIPS specifications, MIPS ISAs I, II, and III need
1242 (at least) two instructions between the reads of HI/LO and
1243 instructions which write them, and later ISAs do not. Contradicting
1244 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1245 the UM for the NEC Vr5000) document needing the instructions between
1246 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1247 MIPS64 and later ISAs to have the interlocks, plus any specific
1248 earlier-ISA CPUs for which CPU documentation declares that the
1249 instructions are really interlocked. */
1250 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
1251 || TARGET_MIPS5500 \
1252 || TARGET_MIPS5900 \
1253 || TARGET_LOONGSON_2EF)
1255 /* ISA includes synci, jr.hb and jalr.hb. */
1256 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1258 /* ISA includes sync. */
1259 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1260 #define GENERATE_SYNC \
1261 (target_flags_explicit & MASK_LLSC \
1262 ? TARGET_LLSC && !TARGET_MIPS16 \
1263 : ISA_HAS_SYNC)
1265 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1266 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1267 instructions. */
1268 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1269 #define GENERATE_LL_SC \
1270 (target_flags_explicit & MASK_LLSC \
1271 ? TARGET_LLSC && !TARGET_MIPS16 \
1272 : ISA_HAS_LL_SC)
1274 #define ISA_HAS_SWAP (TARGET_XLP)
1275 #define ISA_HAS_LDADD (TARGET_XLP)
1277 /* ISA includes the baddu instruction. */
1278 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1280 /* ISA includes the bbit* instructions. */
1281 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1283 /* ISA includes the cins instruction. */
1284 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1286 /* ISA includes the exts instruction. */
1287 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1289 /* ISA includes the seq and sne instructions. */
1290 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1292 /* ISA includes the pop instruction. */
1293 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1295 /* The CACHE instruction is available in non-MIPS16 code. */
1296 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1298 /* The CACHE instruction is available. */
1299 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1301 /* Tell collect what flags to pass to nm. */
1302 #ifndef NM_FLAGS
1303 #define NM_FLAGS "-Bn"
1304 #endif
1307 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1308 the assembler. It may be overridden by subtargets.
1310 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1311 COFF debugging info. */
1313 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1314 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1315 %{g} %{g0} %{g1} %{g2} %{g3} \
1316 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1317 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1318 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}"
1319 #endif
1321 /* FP_ASM_SPEC represents the floating-point options that must be passed
1322 to the assembler when FPXX support exists. Prior to that point the
1323 assembler could accept the options but were not required for
1324 correctness. We only add the options when absolutely necessary
1325 because passing -msoft-float to the assembler will cause it to reject
1326 all hard-float instructions which may require some user code to be
1327 updated. */
1329 #ifdef HAVE_AS_DOT_MODULE
1330 #define FP_ASM_SPEC "\
1331 %{mhard-float} %{msoft-float} \
1332 %{msingle-float} %{mdouble-float}"
1333 #else
1334 #define FP_ASM_SPEC
1335 #endif
1337 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1338 overridden by subtargets. */
1340 #ifndef SUBTARGET_ASM_SPEC
1341 #define SUBTARGET_ASM_SPEC ""
1342 #endif
1344 #undef ASM_SPEC
1345 #define ASM_SPEC "\
1346 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1347 %{mips32*} %{mips64*} \
1348 %{mips16} %{mno-mips16:-no-mips16} \
1349 %{mmicromips} %{mno-micromips} \
1350 %{mips3d} %{mno-mips3d:-no-mips3d} \
1351 %{mdmx} %{mno-mdmx:-no-mdmx} \
1352 %{mdsp} %{mno-dsp} \
1353 %{mdspr2} %{mno-dspr2} \
1354 %{mmcu} %{mno-mcu} \
1355 %{meva} %{mno-eva} \
1356 %{mvirt} %{mno-virt} \
1357 %{mxpa} %{mno-xpa} \
1358 %{mcrc} %{mno-crc} \
1359 %{mginv} %{mno-ginv} \
1360 %{mmsa} %{mno-msa} \
1361 %{msmartmips} %{mno-smartmips} \
1362 %{mmt} %{mno-mt} \
1363 %{mfix-rm7000} %{mno-fix-rm7000} \
1364 %{mfix-vr4120} %{mfix-vr4130} \
1365 %{mfix-24k} \
1366 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1367 %(subtarget_asm_debugging_spec) \
1368 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1369 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1370 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1371 %{modd-spreg} %{mno-odd-spreg} \
1372 %{mshared} %{mno-shared} \
1373 %{msym32} %{mno-sym32} \
1374 %{mtune=*}" \
1375 FP_ASM_SPEC "\
1376 %(subtarget_asm_spec)"
1378 /* Extra switches sometimes passed to the linker. */
1380 #ifndef LINK_SPEC
1381 #define LINK_SPEC "\
1382 %(endian_spec) \
1383 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1384 %{shared}"
1385 #endif /* LINK_SPEC defined */
1388 /* Specs for the compiler proper */
1390 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1391 overridden by subtargets. */
1392 #ifndef SUBTARGET_CC1_SPEC
1393 #define SUBTARGET_CC1_SPEC ""
1394 #endif
1396 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1398 #undef CC1_SPEC
1399 #define CC1_SPEC "\
1400 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1401 %(subtarget_cc1_spec)"
1403 /* Preprocessor specs. */
1405 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1406 overridden by subtargets. */
1407 #ifndef SUBTARGET_CPP_SPEC
1408 #define SUBTARGET_CPP_SPEC ""
1409 #endif
1411 #define CPP_SPEC "%(subtarget_cpp_spec)"
1413 /* This macro defines names of additional specifications to put in the specs
1414 that can be used in various specifications like CC1_SPEC. Its definition
1415 is an initializer with a subgrouping for each command option.
1417 Each subgrouping contains a string constant, that defines the
1418 specification name, and a string constant that used by the GCC driver
1419 program.
1421 Do not define this macro if it does not need to do anything. */
1423 #define EXTRA_SPECS \
1424 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1425 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1426 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1427 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1428 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1429 { "endian_spec", ENDIAN_SPEC }, \
1430 SUBTARGET_EXTRA_SPECS
1432 #ifndef SUBTARGET_EXTRA_SPECS
1433 #define SUBTARGET_EXTRA_SPECS
1434 #endif
1436 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1437 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1439 #ifndef PREFERRED_DEBUGGING_TYPE
1440 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1441 #endif
1443 /* The size of DWARF addresses should be the same as the size of symbols
1444 in the target file format. They shouldn't depend on things like -msym32,
1445 because many DWARF consumers do not allow the mixture of address sizes
1446 that one would then get from linking -msym32 code with -msym64 code.
1448 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1449 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1450 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1452 /* By default, turn on GDB extensions. */
1453 #define DEFAULT_GDB_EXTENSIONS 1
1455 /* Registers may have a prefix which can be ignored when matching
1456 user asm and register definitions. */
1457 #ifndef REGISTER_PREFIX
1458 #define REGISTER_PREFIX "$"
1459 #endif
1461 /* Local compiler-generated symbols must have a prefix that the assembler
1462 understands. By default, this is $, although some targets (e.g.,
1463 NetBSD-ELF) need to override this. */
1465 #ifndef LOCAL_LABEL_PREFIX
1466 #define LOCAL_LABEL_PREFIX "$"
1467 #endif
1469 /* By default on the mips, external symbols do not have an underscore
1470 prepended, but some targets (e.g., NetBSD) require this. */
1472 #ifndef USER_LABEL_PREFIX
1473 #define USER_LABEL_PREFIX ""
1474 #endif
1476 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1477 since the length can run past this up to a continuation point. */
1478 #undef DBX_CONTIN_LENGTH
1479 #define DBX_CONTIN_LENGTH 1500
1481 /* How to renumber registers for dbx and gdb. */
1482 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1484 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1485 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1487 /* The DWARF 2 CFA column which tracks the return address. */
1488 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1490 /* Before the prologue, RA lives in r31. */
1491 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
1493 /* Describe how we implement __builtin_eh_return. */
1494 #define EH_RETURN_DATA_REGNO(N) \
1495 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1497 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1499 #define EH_USES(N) mips_eh_uses (N)
1501 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1502 The default for this in 64-bit mode is 8, which causes problems with
1503 SFmode register saves. */
1504 #define DWARF_CIE_DATA_ALIGNMENT -4
1506 /* Correct the offset of automatic variables and arguments. Note that
1507 the MIPS debug format wants all automatic variables and arguments
1508 to be in terms of the virtual frame pointer (stack pointer before
1509 any adjustment in the function), while the MIPS 3.0 linker wants
1510 the frame pointer to be the stack pointer after the initial
1511 adjustment. */
1513 #define DEBUGGER_AUTO_OFFSET(X) \
1514 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1515 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1516 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1518 /* Target machine storage layout */
1520 #define BITS_BIG_ENDIAN 0
1521 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1522 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1524 #define MAX_BITS_PER_WORD 64
1526 /* Width of a word, in units (bytes). */
1527 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1528 #ifndef IN_LIBGCC2
1529 #define MIN_UNITS_PER_WORD 4
1530 #endif
1532 /* Width of a MSA vector register in bytes. */
1533 #define UNITS_PER_MSA_REG 16
1534 /* Width of a MSA vector register in bits. */
1535 #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1537 /* For MIPS, width of a floating point register. */
1538 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1540 /* The number of consecutive floating-point registers needed to store the
1541 largest format supported by the FPU. */
1542 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1544 /* The number of consecutive floating-point registers needed to store the
1545 smallest format supported by the FPU. */
1546 #define MIN_FPRS_PER_FMT \
1547 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1549 /* The largest size of value that can be held in floating-point
1550 registers and moved with a single instruction. */
1551 #define UNITS_PER_HWFPVALUE \
1552 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1554 /* The largest size of value that can be held in floating-point
1555 registers. */
1556 #define UNITS_PER_FPVALUE \
1557 (TARGET_SOFT_FLOAT_ABI ? 0 \
1558 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1559 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1561 /* The number of bytes in a double. */
1562 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1564 /* Set the sizes of the core types. */
1565 #define SHORT_TYPE_SIZE 16
1566 #define INT_TYPE_SIZE 32
1567 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1568 #define LONG_LONG_TYPE_SIZE 64
1570 #define FLOAT_TYPE_SIZE 32
1571 #define DOUBLE_TYPE_SIZE 64
1572 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1574 /* Define the sizes of fixed-point types. */
1575 #define SHORT_FRACT_TYPE_SIZE 8
1576 #define FRACT_TYPE_SIZE 16
1577 #define LONG_FRACT_TYPE_SIZE 32
1578 #define LONG_LONG_FRACT_TYPE_SIZE 64
1580 #define SHORT_ACCUM_TYPE_SIZE 16
1581 #define ACCUM_TYPE_SIZE 32
1582 #define LONG_ACCUM_TYPE_SIZE 64
1583 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1584 doesn't support 128-bit integers for MIPS32 currently. */
1585 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1587 /* long double is not a fixed mode, but the idea is that, if we
1588 support long double, we also want a 128-bit integer type. */
1589 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1591 /* Width in bits of a pointer. */
1592 #ifndef POINTER_SIZE
1593 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1594 #endif
1596 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1597 #define PARM_BOUNDARY BITS_PER_WORD
1599 /* Allocation boundary (in *bits*) for the code of a function. */
1600 #define FUNCTION_BOUNDARY 32
1602 /* Alignment of field after `int : 0' in a structure. */
1603 #define EMPTY_FIELD_BOUNDARY 32
1605 /* Every structure's size must be a multiple of this. */
1606 /* 8 is observed right on a DECstation and on riscos 4.02. */
1607 #define STRUCTURE_SIZE_BOUNDARY 8
1609 /* There is no point aligning anything to a rounder boundary than
1610 LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1611 BITS_PER_MSA_REG. */
1612 #define BIGGEST_ALIGNMENT \
1613 (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
1615 /* All accesses must be aligned. */
1616 #define STRICT_ALIGNMENT 1
1618 /* Define this if you wish to imitate the way many other C compilers
1619 handle alignment of bitfields and the structures that contain
1620 them.
1622 The behavior is that the type written for a bit-field (`int',
1623 `short', or other integer type) imposes an alignment for the
1624 entire structure, as if the structure really did contain an
1625 ordinary field of that type. In addition, the bit-field is placed
1626 within the structure so that it would fit within such a field,
1627 not crossing a boundary for it.
1629 Thus, on most machines, a bit-field whose type is written as `int'
1630 would not cross a four-byte boundary, and would force four-byte
1631 alignment for the whole structure. (The alignment used may not
1632 be four bytes; it is controlled by the other alignment
1633 parameters.)
1635 If the macro is defined, its definition should be a C expression;
1636 a nonzero value for the expression enables this behavior. */
1638 #define PCC_BITFIELD_TYPE_MATTERS 1
1640 /* If defined, a C expression to compute the alignment for a static
1641 variable. TYPE is the data type, and ALIGN is the alignment that
1642 the object would ordinarily have. The value of this macro is used
1643 instead of that alignment to align the object.
1645 If this macro is not defined, then ALIGN is used.
1647 One use of this macro is to increase alignment of medium-size
1648 data to make it all fit in fewer cache lines. Another is to
1649 cause character arrays to be word-aligned so that `strcpy' calls
1650 that copy constants to character arrays can be done inline. */
1652 #undef DATA_ALIGNMENT
1653 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1654 ((((ALIGN) < BITS_PER_WORD) \
1655 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1656 || TREE_CODE (TYPE) == UNION_TYPE \
1657 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1659 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1660 character arrays to be word-aligned so that `strcpy' calls that copy
1661 constants to character arrays can be done inline, and 'strcmp' can be
1662 optimised to use word loads. */
1663 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1664 DATA_ALIGNMENT (TYPE, ALIGN)
1666 #define PAD_VARARGS_DOWN \
1667 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1669 /* Define if operations between registers always perform the operation
1670 on the full register even if a narrower mode is specified. */
1671 #define WORD_REGISTER_OPERATIONS 1
1673 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1674 moves. All other references are zero extended. */
1675 #define LOAD_EXTEND_OP(MODE) \
1676 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1677 ? SIGN_EXTEND : ZERO_EXTEND)
1679 /* Define this macro if it is advisable to hold scalars in registers
1680 in a wider mode than that declared by the program. In such cases,
1681 the value is constrained to be within the bounds of the declared
1682 type, but kept valid in the wider mode. The signedness of the
1683 extension may differ from that of the type. */
1685 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1686 if (GET_MODE_CLASS (MODE) == MODE_INT \
1687 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1689 if ((MODE) == SImode) \
1690 (UNSIGNEDP) = 0; \
1691 (MODE) = Pmode; \
1694 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1695 Extensions of pointers to word_mode must be signed. */
1696 #define POINTERS_EXTEND_UNSIGNED false
1698 /* Define if loading short immediate values into registers sign extends. */
1699 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1701 /* The [d]clz instructions have the natural values at 0. */
1703 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1704 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1706 /* Standard register usage. */
1708 /* Number of hardware registers. We have:
1710 - 32 integer registers
1711 - 32 floating point registers
1712 - 8 condition code registers
1713 - 2 accumulator registers (hi and lo)
1714 - 32 registers each for coprocessors 0, 2 and 3
1715 - 4 fake registers:
1716 - ARG_POINTER_REGNUM
1717 - FRAME_POINTER_REGNUM
1718 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1719 - CPRESTORE_SLOT_REGNUM
1720 - 2 dummy entries that were used at various times in the past.
1721 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1722 - 6 DSP control registers */
1724 #define FIRST_PSEUDO_REGISTER 188
1726 /* By default, fix the kernel registers ($26 and $27), the global
1727 pointer ($28) and the stack pointer ($29). This can change
1728 depending on the command-line options.
1730 Regarding coprocessor registers: without evidence to the contrary,
1731 it's best to assume that each coprocessor register has a unique
1732 use. This can be overridden, in, e.g., mips_option_override or
1733 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1734 inappropriate for a particular target. */
1736 #define FIXED_REGISTERS \
1738 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1742 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1743 /* COP0 registers */ \
1744 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1745 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1746 /* COP2 registers */ \
1747 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1748 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1749 /* COP3 registers */ \
1750 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1751 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1752 /* 6 DSP accumulator registers & 6 control registers */ \
1753 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1757 /* Set up this array for o32 by default.
1759 Note that we don't mark $31 as a call-clobbered register. The idea is
1760 that it's really the call instructions themselves which clobber $31.
1761 We don't care what the called function does with it afterwards.
1763 This approach makes it easier to implement sibcalls. Unlike normal
1764 calls, sibcalls don't clobber $31, so the register reaches the
1765 called function in tact. EPILOGUE_USES says that $31 is useful
1766 to the called function. */
1768 #define CALL_USED_REGISTERS \
1770 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1771 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1772 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1773 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1774 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1775 /* COP0 registers */ \
1776 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1777 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1778 /* COP2 registers */ \
1779 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1780 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1781 /* COP3 registers */ \
1782 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1783 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1784 /* 6 DSP accumulator registers & 6 control registers */ \
1785 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1789 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1791 #define CALL_REALLY_USED_REGISTERS \
1792 { /* General registers. */ \
1793 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1794 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1795 /* Floating-point registers. */ \
1796 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1797 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1798 /* Others. */ \
1799 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1800 /* COP0 registers */ \
1801 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1803 /* COP2 registers */ \
1804 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1805 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1806 /* COP3 registers */ \
1807 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1808 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1809 /* 6 DSP accumulator registers & 6 control registers */ \
1810 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1813 /* Internal macros to classify a register number as to whether it's a
1814 general purpose register, a floating point register, a
1815 multiply/divide register, or a status register. */
1817 #define GP_REG_FIRST 0
1818 #define GP_REG_LAST 31
1819 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1820 #define GP_DBX_FIRST 0
1821 #define K0_REG_NUM (GP_REG_FIRST + 26)
1822 #define K1_REG_NUM (GP_REG_FIRST + 27)
1823 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1825 #define FP_REG_FIRST 32
1826 #define FP_REG_LAST 63
1827 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1828 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1830 #define MD_REG_FIRST 64
1831 #define MD_REG_LAST 65
1832 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1833 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1835 #define MSA_REG_FIRST FP_REG_FIRST
1836 #define MSA_REG_LAST FP_REG_LAST
1837 #define MSA_REG_NUM FP_REG_NUM
1839 /* The DWARF 2 CFA column which tracks the return address from a
1840 signal handler context. This means that to maintain backwards
1841 compatibility, no hard register can be assigned this column if it
1842 would need to be handled by the DWARF unwinder. */
1843 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1845 #define ST_REG_FIRST 67
1846 #define ST_REG_LAST 74
1847 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1850 /* FIXME: renumber. */
1851 #define COP0_REG_FIRST 80
1852 #define COP0_REG_LAST 111
1853 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1855 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1856 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1857 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1859 #define COP2_REG_FIRST 112
1860 #define COP2_REG_LAST 143
1861 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1863 #define COP3_REG_FIRST 144
1864 #define COP3_REG_LAST 175
1865 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1867 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1868 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1869 #define ALL_COP_REG_LAST COP3_REG_LAST
1870 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1872 #define DSP_ACC_REG_FIRST 176
1873 #define DSP_ACC_REG_LAST 181
1874 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1876 #define AT_REGNUM (GP_REG_FIRST + 1)
1877 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1878 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1880 /* A few bitfield locations for the coprocessor registers. */
1881 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1882 the cause register for the EIC interrupt mode. */
1883 #define CAUSE_IPL 10
1884 /* COP1 Enable is at bit 29 of the status register. */
1885 #define SR_COP1 29
1886 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1887 #define SR_IPL 10
1888 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1889 register. */
1890 #define SR_IM0 8
1891 /* Exception Level is at bit 1 of the status register. */
1892 #define SR_EXL 1
1893 /* Interrupt Enable is at bit 0 of the status register. */
1894 #define SR_IE 0
1896 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1897 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1898 should be used instead. */
1899 #define FPSW_REGNUM ST_REG_FIRST
1901 #define GP_REG_P(REGNO) \
1902 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1903 #define M16_REG_P(REGNO) \
1904 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1905 #define M16STORE_REG_P(REGNO) \
1906 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1907 #define FP_REG_P(REGNO) \
1908 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1909 #define MD_REG_P(REGNO) \
1910 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1911 #define ST_REG_P(REGNO) \
1912 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1913 #define COP0_REG_P(REGNO) \
1914 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1915 #define COP2_REG_P(REGNO) \
1916 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1917 #define COP3_REG_P(REGNO) \
1918 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1919 #define ALL_COP_REG_P(REGNO) \
1920 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1921 /* Test if REGNO is one of the 6 new DSP accumulators. */
1922 #define DSP_ACC_REG_P(REGNO) \
1923 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1924 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1925 #define ACC_REG_P(REGNO) \
1926 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1927 #define MSA_REG_P(REGNO) \
1928 ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
1930 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1931 #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
1933 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1934 to initialize the mips16 gp pseudo register. */
1935 #define CONST_GP_P(X) \
1936 (GET_CODE (X) == CONST \
1937 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1938 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1940 /* Return coprocessor number from register number. */
1942 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1943 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1944 : COP3_REG_P (REGNO) ? '3' : '?')
1947 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1948 mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1950 /* Select a register mode required for caller save of hard regno REGNO. */
1951 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1952 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1954 /* Register to use for pushing function arguments. */
1955 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1957 /* These two registers don't really exist: they get eliminated to either
1958 the stack or hard frame pointer. */
1959 #define ARG_POINTER_REGNUM 77
1960 #define FRAME_POINTER_REGNUM 78
1962 /* $30 is not available on the mips16, so we use $17 as the frame
1963 pointer. */
1964 #define HARD_FRAME_POINTER_REGNUM \
1965 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1967 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1968 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1970 /* Register in which static-chain is passed to a function. */
1971 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1973 /* Registers used as temporaries in prologue/epilogue code:
1975 - If a MIPS16 PIC function needs access to _gp, it first loads
1976 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1978 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1979 register. The register must not conflict with MIPS16_PIC_TEMP.
1981 - If we aren't generating MIPS16 code, the prologue can also use
1982 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1984 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1985 register.
1987 If we're generating MIPS16 code, these registers must come from the
1988 core set of 8. The prologue registers mustn't conflict with any
1989 incoming arguments, the static chain pointer, or the frame pointer.
1990 The epilogue temporary mustn't conflict with the return registers,
1991 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1992 or the EH data registers.
1994 If we're generating interrupt handlers, we use K0 as a temporary register
1995 in prologue/epilogue code. */
1997 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1998 #define MIPS_PROLOGUE_TEMP_REGNUM \
1999 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
2000 #define MIPS_PROLOGUE_TEMP2_REGNUM \
2001 (TARGET_MIPS16 \
2002 ? (gcc_unreachable (), INVALID_REGNUM) \
2003 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
2004 #define MIPS_EPILOGUE_TEMP_REGNUM \
2005 (cfun->machine->interrupt_handler_p \
2006 ? K0_REG_NUM \
2007 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
2009 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
2010 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
2011 #define MIPS_PROLOGUE_TEMP2(MODE) \
2012 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
2013 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
2015 /* Define this macro if it is as good or better to call a constant
2016 function address than to call an address kept in a register. */
2017 #define NO_FUNCTION_CSE 1
2019 /* The ABI-defined global pointer. Sometimes we use a different
2020 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
2021 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2023 /* We normally use $28 as the global pointer. However, when generating
2024 n32/64 PIC, it is better for leaf functions to use a call-clobbered
2025 register instead. They can then avoid saving and restoring $28
2026 and perhaps avoid using a frame at all.
2028 When a leaf function uses something other than $28, mips_expand_prologue
2029 will modify pic_offset_table_rtx in place. Take the register number
2030 from there after reload. */
2031 #define PIC_OFFSET_TABLE_REGNUM \
2032 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
2034 /* Define the classes of registers for register constraints in the
2035 machine description. Also define ranges of constants.
2037 One of the classes must always be named ALL_REGS and include all hard regs.
2038 If there is more than one class, another class must be named NO_REGS
2039 and contain no registers.
2041 The name GENERAL_REGS must be the name of a class (or an alias for
2042 another name such as ALL_REGS). This is the class of registers
2043 that is allowed by "g" or "r" in a register constraint.
2044 Also, registers outside this class are allocated only when
2045 instructions express preferences for them.
2047 The classes must be numbered in nondecreasing order; that is,
2048 a larger-numbered class must never be contained completely
2049 in a smaller-numbered class.
2051 For any two classes, it is very desirable that there be another
2052 class that represents their union. */
2054 enum reg_class
2056 NO_REGS, /* no registers in set */
2057 M16_STORE_REGS, /* microMIPS store registers */
2058 M16_REGS, /* mips16 directly accessible registers */
2059 M16_SP_REGS, /* mips16 + $sp */
2060 T_REG, /* mips16 T register ($24) */
2061 M16_T_REGS, /* mips16 registers plus T register */
2062 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
2063 V1_REG, /* Register $v1 ($3) used for TLS access. */
2064 SPILL_REGS, /* All but $sp and call preserved regs are in here */
2065 LEA_REGS, /* Every GPR except $25 */
2066 GR_REGS, /* integer registers */
2067 FP_REGS, /* floating point registers */
2068 MD0_REG, /* first multiply/divide register */
2069 MD1_REG, /* second multiply/divide register */
2070 MD_REGS, /* multiply/divide registers (hi/lo) */
2071 COP0_REGS, /* generic coprocessor classes */
2072 COP2_REGS,
2073 COP3_REGS,
2074 ST_REGS, /* status registers (fp status) */
2075 DSP_ACC_REGS, /* DSP accumulator registers */
2076 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
2077 FRAME_REGS, /* $arg and $frame */
2078 GR_AND_MD0_REGS, /* union classes */
2079 GR_AND_MD1_REGS,
2080 GR_AND_MD_REGS,
2081 GR_AND_ACC_REGS,
2082 ALL_REGS, /* all registers */
2083 LIM_REG_CLASSES /* max value + 1 */
2086 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2088 #define GENERAL_REGS GR_REGS
2090 /* An initializer containing the names of the register classes as C
2091 string constants. These names are used in writing some of the
2092 debugging dumps. */
2094 #define REG_CLASS_NAMES \
2096 "NO_REGS", \
2097 "M16_STORE_REGS", \
2098 "M16_REGS", \
2099 "M16_SP_REGS", \
2100 "T_REG", \
2101 "M16_T_REGS", \
2102 "PIC_FN_ADDR_REG", \
2103 "V1_REG", \
2104 "SPILL_REGS", \
2105 "LEA_REGS", \
2106 "GR_REGS", \
2107 "FP_REGS", \
2108 "MD0_REG", \
2109 "MD1_REG", \
2110 "MD_REGS", \
2111 /* coprocessor registers */ \
2112 "COP0_REGS", \
2113 "COP2_REGS", \
2114 "COP3_REGS", \
2115 "ST_REGS", \
2116 "DSP_ACC_REGS", \
2117 "ACC_REGS", \
2118 "FRAME_REGS", \
2119 "GR_AND_MD0_REGS", \
2120 "GR_AND_MD1_REGS", \
2121 "GR_AND_MD_REGS", \
2122 "GR_AND_ACC_REGS", \
2123 "ALL_REGS" \
2126 /* An initializer containing the contents of the register classes,
2127 as integers which are bit masks. The Nth integer specifies the
2128 contents of class N. The way the integer MASK is interpreted is
2129 that register R is in the class if `MASK & (1 << R)' is 1.
2131 When the machine has more than 32 registers, an integer does not
2132 suffice. Then the integers are replaced by sub-initializers,
2133 braced groupings containing several integers. Each
2134 sub-initializer must be suitable as an initializer for the type
2135 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2137 #define REG_CLASS_CONTENTS \
2139 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
2140 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
2141 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
2142 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
2143 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2144 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2145 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2146 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
2147 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
2148 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2149 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2150 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2151 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2152 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2153 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2154 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2155 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2156 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2157 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2158 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2159 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2160 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2161 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2162 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2163 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2164 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2165 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
2169 /* A C expression whose value is a register class containing hard
2170 register REGNO. In general there is more that one such class;
2171 choose a class which is "minimal", meaning that no smaller class
2172 also contains the register. */
2174 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2176 /* A macro whose definition is the name of the class to which a
2177 valid base register must belong. A base register is one used in
2178 an address which is the register value plus a displacement. */
2180 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2182 /* A macro whose definition is the name of the class to which a
2183 valid index register must belong. An index register is one used
2184 in an address where its value is either multiplied by a scale
2185 factor or added to another register (as well as added to a
2186 displacement). */
2188 #define INDEX_REG_CLASS NO_REGS
2190 /* We generally want to put call-clobbered registers ahead of
2191 call-saved ones. (IRA expects this.) */
2193 #define REG_ALLOC_ORDER \
2194 { /* Accumulator registers. When GPRs and accumulators have equal \
2195 cost, we generally prefer to use accumulators. For example, \
2196 a division of multiplication result is better allocated to LO, \
2197 so that we put the MFLO at the point of use instead of at the \
2198 point of definition. It's also needed if we're to take advantage \
2199 of the extra accumulators available with -mdspr2. In some cases, \
2200 it can also help to reduce register pressure. */ \
2201 64, 65,176,177,178,179,180,181, \
2202 /* Call-clobbered GPRs. */ \
2203 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2204 24, 25, 31, \
2205 /* The global pointer. This is call-clobbered for o32 and o64 \
2206 abicalls, call-saved for n32 and n64 abicalls, and a program \
2207 invariant otherwise. Putting it between the call-clobbered \
2208 and call-saved registers should cope with all eventualities. */ \
2209 28, \
2210 /* Call-saved GPRs. */ \
2211 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2212 /* GPRs that can never be exposed to the register allocator. */ \
2213 0, 26, 27, 29, \
2214 /* Call-clobbered FPRs. */ \
2215 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2216 48, 49, 50, 51, \
2217 /* FPRs that are usually call-saved. The odd ones are actually \
2218 call-clobbered for n32, but listing them ahead of the even \
2219 registers might encourage the register allocator to fragment \
2220 the available FPR pairs. We need paired FPRs to store long \
2221 doubles, so it isn't clear that using a different order \
2222 for n32 would be a win. */ \
2223 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2224 /* None of the remaining classes have defined call-saved \
2225 registers. */ \
2226 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2227 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2228 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2229 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2230 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2231 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2232 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2233 182,183,184,185,186,187 \
2236 /* True if VALUE is an unsigned 6-bit number. */
2238 #define UIMM6_OPERAND(VALUE) \
2239 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2241 /* True if VALUE is a signed 10-bit number. */
2243 #define IMM10_OPERAND(VALUE) \
2244 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2246 /* True if VALUE is a signed 16-bit number. */
2248 #define SMALL_OPERAND(VALUE) \
2249 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2251 /* True if VALUE is an unsigned 16-bit number. */
2253 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2254 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2256 /* True if VALUE can be loaded into a register using LUI. */
2258 #define LUI_OPERAND(VALUE) \
2259 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2260 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2262 /* Return a value X with the low 16 bits clear, and such that
2263 VALUE - X is a signed 16-bit value. */
2265 #define CONST_HIGH_PART(VALUE) \
2266 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2268 #define CONST_LOW_PART(VALUE) \
2269 ((VALUE) - CONST_HIGH_PART (VALUE))
2271 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2272 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2273 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2274 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2275 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2277 /* The HI and LO registers can only be reloaded via the general
2278 registers. Condition code registers can only be loaded to the
2279 general registers, and from the floating point registers. */
2281 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2282 mips_secondary_reload_class (CLASS, MODE, X, true)
2283 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2284 mips_secondary_reload_class (CLASS, MODE, X, false)
2286 /* Return the maximum number of consecutive registers
2287 needed to represent mode MODE in a register of class CLASS. */
2289 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2291 /* Stack layout; function entry, exit and calling. */
2293 #define STACK_GROWS_DOWNWARD 1
2295 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
2296 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
2298 /* Size of the area allocated in the frame to save the GP. */
2300 #define MIPS_GP_SAVE_AREA_SIZE \
2301 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2303 #define RETURN_ADDR_RTX mips_return_addr
2305 /* Mask off the MIPS16 ISA bit in unwind addresses.
2307 The reason for this is a little subtle. When unwinding a call,
2308 we are given the call's return address, which on most targets
2309 is the address of the following instruction. However, what we
2310 actually want to find is the EH region for the call itself.
2311 The target-independent unwind code therefore searches for "RA - 1".
2313 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2314 RA - 1 is therefore the real (even-valued) start of the return
2315 instruction. EH region labels are usually odd-valued MIPS16 symbols
2316 too, so a search for an even address within a MIPS16 region would
2317 usually work.
2319 However, there is an exception. If the end of an EH region is also
2320 the end of a function, the end label is allowed to be even. This is
2321 necessary because a following non-MIPS16 function may also need EH
2322 information for its first instruction.
2324 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2325 non-ISA-encoded address. This probably isn't ideal, but it is
2326 the traditional (legacy) behavior. It is therefore only safe
2327 to search MIPS EH regions for an _odd-valued_ address.
2329 Masking off the ISA bit means that the target-independent code
2330 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2331 #define MASK_RETURN_ADDR GEN_INT (-2)
2334 /* Similarly, don't use the least-significant bit to tell pointers to
2335 code from vtable index. */
2337 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2339 /* The eliminations to $17 are only used for mips16 code. See the
2340 definition of HARD_FRAME_POINTER_REGNUM. */
2342 #define ELIMINABLE_REGS \
2343 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2344 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2345 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2346 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2347 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2348 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2350 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2351 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2353 /* Allocate stack space for arguments at the beginning of each function. */
2354 #define ACCUMULATE_OUTGOING_ARGS 1
2356 /* The argument pointer always points to the first argument. */
2357 #define FIRST_PARM_OFFSET(FNDECL) 0
2359 /* o32 and o64 reserve stack space for all argument registers. */
2360 #define REG_PARM_STACK_SPACE(FNDECL) \
2361 (TARGET_OLDABI \
2362 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2363 : 0)
2365 /* Define this if it is the responsibility of the caller to
2366 allocate the area reserved for arguments passed in registers.
2367 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2368 of this macro is to determine whether the space is included in
2369 `crtl->outgoing_args_size'. */
2370 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2372 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2374 /* Symbolic macros for the registers used to return integer and floating
2375 point values. */
2377 #define GP_RETURN (GP_REG_FIRST + 2)
2378 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2380 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2382 /* Symbolic macros for the first/last argument registers. */
2384 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2385 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2386 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2387 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2389 /* True if MODE is vector and supported in a MSA vector register. */
2390 #define MSA_SUPPORTED_MODE_P(MODE) \
2391 (ISA_HAS_MSA \
2392 && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG \
2393 && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
2394 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2396 /* Temporary register that is used when restoring $gp after a call. $4 and $5
2397 are used for returning complex double values in soft-float code, so $6 is the
2398 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2399 $gp itself as the temporary. */
2400 #define POST_CALL_TMP_REG \
2401 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2403 /* 1 if N is a possible register number for function argument passing.
2404 We have no FP argument registers when soft-float. Special handling
2405 is required for O32 where only even numbered registers are used for
2406 O32-FPXX and O32-FP64. */
2408 #define FUNCTION_ARG_REGNO_P(N) \
2409 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2410 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2411 && (mips_abi != ABI_32 \
2412 || TARGET_FLOAT32 \
2413 || ((N) % 2 == 0)))) \
2414 && !fixed_regs[N])
2416 /* This structure has to cope with two different argument allocation
2417 schemes. Most MIPS ABIs view the arguments as a structure, of which
2418 the first N words go in registers and the rest go on the stack. If I
2419 < N, the Ith word might go in Ith integer argument register or in a
2420 floating-point register. For these ABIs, we only need to remember
2421 the offset of the current argument into the structure.
2423 The EABI instead allocates the integer and floating-point arguments
2424 separately. The first N words of FP arguments go in FP registers,
2425 the rest go on the stack. Likewise, the first N words of the other
2426 arguments go in integer registers, and the rest go on the stack. We
2427 need to maintain three counts: the number of integer registers used,
2428 the number of floating-point registers used, and the number of words
2429 passed on the stack.
2431 We could keep separate information for the two ABIs (a word count for
2432 the standard ABIs, and three separate counts for the EABI). But it
2433 seems simpler to view the standard ABIs as forms of EABI that do not
2434 allocate floating-point registers.
2436 So for the standard ABIs, the first N words are allocated to integer
2437 registers, and mips_function_arg decides on an argument-by-argument
2438 basis whether that argument should really go in an integer register,
2439 or in a floating-point one. */
2441 typedef struct mips_args {
2442 /* Always true for varargs functions. Otherwise true if at least
2443 one argument has been passed in an integer register. */
2444 int gp_reg_found;
2446 /* The number of arguments seen so far. */
2447 unsigned int arg_number;
2449 /* The number of integer registers used so far. For all ABIs except
2450 EABI, this is the number of words that have been added to the
2451 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2452 unsigned int num_gprs;
2454 /* For EABI, the number of floating-point registers used so far. */
2455 unsigned int num_fprs;
2457 /* The number of words passed on the stack. */
2458 unsigned int stack_words;
2460 /* On the mips16, we need to keep track of which floating point
2461 arguments were passed in general registers, but would have been
2462 passed in the FP regs if this were a 32-bit function, so that we
2463 can move them to the FP regs if we wind up calling a 32-bit
2464 function. We record this information in fp_code, encoded in base
2465 four. A zero digit means no floating point argument, a one digit
2466 means an SFmode argument, and a two digit means a DFmode argument,
2467 and a three digit is not used. The low order digit is the first
2468 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2469 an SFmode argument. ??? A more sophisticated approach will be
2470 needed if MIPS_ABI != ABI_32. */
2471 int fp_code;
2473 /* True if the function has a prototype. */
2474 int prototype;
2475 } CUMULATIVE_ARGS;
2477 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2478 for a call to a function whose data type is FNTYPE.
2479 For a library call, FNTYPE is 0. */
2481 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2482 mips_init_cumulative_args (&CUM, FNTYPE)
2484 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2485 (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
2487 /* True if using EABI and varargs can be passed in floating-point
2488 registers. Under these conditions, we need a more complex form
2489 of va_list, which tracks GPR, FPR and stack arguments separately. */
2490 #define EABI_FLOAT_VARARGS_P \
2491 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2494 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2496 /* Treat LOC as a byte offset from the stack pointer and round it up
2497 to the next fully-aligned offset. */
2498 #define MIPS_STACK_ALIGN(LOC) \
2499 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
2502 /* Output assembler code to FILE to increment profiler label # LABELNO
2503 for profiling a function entry. */
2505 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2507 /* The profiler preserves all interesting registers, including $31. */
2508 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2510 /* No mips port has ever used the profiler counter word, so don't emit it
2511 or the label for it. */
2513 #define NO_PROFILE_COUNTERS 1
2515 /* Define this macro if the code for function profiling should come
2516 before the function prologue. Normally, the profiling code comes
2517 after. */
2519 /* #define PROFILE_BEFORE_PROLOGUE */
2521 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2522 the stack pointer does not matter. The value is tested only in
2523 functions that have frame pointers.
2524 No definition is equivalent to always zero. */
2526 #define EXIT_IGNORE_STACK 1
2529 /* Trampolines are a block of code followed by two pointers. */
2531 #define TRAMPOLINE_SIZE \
2532 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2534 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2535 pointers from a single LUI base. */
2537 #define TRAMPOLINE_ALIGNMENT 64
2539 /* mips_trampoline_init calls this library function to flush
2540 program and data caches. */
2542 #ifndef CACHE_FLUSH_FUNC
2543 #define CACHE_FLUSH_FUNC "_flush_cache"
2544 #endif
2546 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2547 /* Flush both caches. We need to flush the data cache in case \
2548 the system has a write-back cache. */ \
2549 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2550 LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode, \
2551 GEN_INT (3), TYPE_MODE (integer_type_node))
2554 /* Addressing modes, and classification of registers for them. */
2556 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2557 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2558 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2560 /* Maximum number of registers that can appear in a valid memory address. */
2562 #define MAX_REGS_PER_ADDRESS 1
2564 /* Check for constness inline but use mips_legitimate_address_p
2565 to check whether a constant really is an address. */
2567 #define CONSTANT_ADDRESS_P(X) \
2568 (CONSTANT_P (X) && memory_address_p (SImode, X))
2570 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2571 'the start of the function that this code is output in'. */
2573 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2574 do { \
2575 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2576 asm_fprintf ((FILE), "%U%s", \
2577 XSTR (XEXP (DECL_RTL (current_function_decl), \
2578 0), 0)); \
2579 else \
2580 asm_fprintf ((FILE), "%U%s", (NAME)); \
2581 } while (0)
2583 /* Flag to mark a function decl symbol that requires a long call. */
2584 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2585 #define SYMBOL_REF_LONG_CALL_P(X) \
2586 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2588 /* This flag marks functions that cannot be lazily bound. */
2589 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2590 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2591 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2593 /* True if we're generating a form of MIPS16 code in which jump tables
2594 are stored in the text section and encoded as 16-bit PC-relative
2595 offsets. This is only possible when general text loads are allowed,
2596 since the table access itself will be an "lh" instruction. If the
2597 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2598 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2600 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2602 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2604 /* Only use short offsets if their range will not overflow. */
2605 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2606 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2607 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2608 : SImode)
2610 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2612 /* Define this as 1 if `char' should by default be signed; else as 0. */
2613 #ifndef DEFAULT_SIGNED_CHAR
2614 #define DEFAULT_SIGNED_CHAR 1
2615 #endif
2617 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2618 we generally don't want to use them for copying arbitrary data.
2619 A single N-word move is usually the same cost as N single-word moves. */
2620 #define MOVE_MAX UNITS_PER_WORD
2621 /* We don't modify it for MSA as it is only used by the classic reload. */
2622 #define MAX_MOVE_MAX 8
2624 /* Define this macro as a C expression which is nonzero if
2625 accessing less than a word of memory (i.e. a `char' or a
2626 `short') is no faster than accessing a word of memory, i.e., if
2627 such access require more than one instruction or if there is no
2628 difference in cost between byte and (aligned) word loads.
2630 On RISC machines, it tends to generate better code to define
2631 this as 1, since it avoids making a QI or HI mode register.
2633 But, generating word accesses for -mips16 is generally bad as shifts
2634 (often extended) would be needed for byte accesses. */
2635 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2637 /* Standard MIPS integer shifts truncate the shift amount to the
2638 width of the shifted operand. However, Loongson vector shifts
2639 do not truncate the shift amount at all. */
2640 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2643 /* Specify the machine mode that pointers have.
2644 After generation of rtl, the compiler makes no further distinction
2645 between pointers and any other objects of this machine mode. */
2647 #ifndef Pmode
2648 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2649 #endif
2651 /* Give call MEMs SImode since it is the "most permissive" mode
2652 for both 32-bit and 64-bit targets. */
2654 #define FUNCTION_MODE SImode
2657 /* We allocate $fcc registers by hand and can't cope with moves of
2658 CCmode registers to and from pseudos (or memory). */
2659 #define AVOID_CCMODE_COPIES
2661 /* A C expression for the cost of a branch instruction. A value of
2662 1 is the default; other values are interpreted relative to that. */
2664 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2665 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2667 /* The MIPS port has several functions that return an instruction count.
2668 Multiplying the count by this value gives the number of bytes that
2669 the instructions occupy. */
2670 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2672 /* The length of a NOP in bytes. */
2673 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2675 /* If defined, modifies the length assigned to instruction INSN as a
2676 function of the context in which it is used. LENGTH is an lvalue
2677 that contains the initially computed length of the insn and should
2678 be updated with the correct length of the insn. */
2679 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2680 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2682 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2683 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2684 its operands. */
2685 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2686 "%*" OPCODE "%?\t" OPERANDS "%/"
2688 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2689 "%*" OPCODE "%:\t" OPERANDS
2691 /* Return an asm string that forces INSN to be treated as an absolute
2692 J or JAL instruction instead of an assembler macro. */
2693 #define MIPS_ABSOLUTE_JUMP(INSN) \
2694 (TARGET_ABICALLS_PIC2 \
2695 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2696 : INSN)
2699 /* Control the assembler format that we output. */
2701 /* Output to assembler file text saying following lines
2702 may contain character constants, extra white space, comments, etc. */
2704 #ifndef ASM_APP_ON
2705 #define ASM_APP_ON " #APP\n"
2706 #endif
2708 /* Output to assembler file text saying following lines
2709 no longer contain unusual constructs. */
2711 #ifndef ASM_APP_OFF
2712 #define ASM_APP_OFF " #NO_APP\n"
2713 #endif
2715 #define REGISTER_NAMES \
2716 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2717 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2718 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2719 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2720 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2721 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2722 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2723 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2724 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2725 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2726 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2727 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2728 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2729 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2730 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2731 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2732 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2733 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2734 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2735 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2736 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2737 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2738 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2739 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2741 /* List the "software" names for each register. Also list the numerical
2742 names for $fp and $sp. */
2744 #define ADDITIONAL_REGISTER_NAMES \
2746 { "$29", 29 + GP_REG_FIRST }, \
2747 { "$30", 30 + GP_REG_FIRST }, \
2748 { "at", 1 + GP_REG_FIRST }, \
2749 { "v0", 2 + GP_REG_FIRST }, \
2750 { "v1", 3 + GP_REG_FIRST }, \
2751 { "a0", 4 + GP_REG_FIRST }, \
2752 { "a1", 5 + GP_REG_FIRST }, \
2753 { "a2", 6 + GP_REG_FIRST }, \
2754 { "a3", 7 + GP_REG_FIRST }, \
2755 { "t0", 8 + GP_REG_FIRST }, \
2756 { "t1", 9 + GP_REG_FIRST }, \
2757 { "t2", 10 + GP_REG_FIRST }, \
2758 { "t3", 11 + GP_REG_FIRST }, \
2759 { "t4", 12 + GP_REG_FIRST }, \
2760 { "t5", 13 + GP_REG_FIRST }, \
2761 { "t6", 14 + GP_REG_FIRST }, \
2762 { "t7", 15 + GP_REG_FIRST }, \
2763 { "s0", 16 + GP_REG_FIRST }, \
2764 { "s1", 17 + GP_REG_FIRST }, \
2765 { "s2", 18 + GP_REG_FIRST }, \
2766 { "s3", 19 + GP_REG_FIRST }, \
2767 { "s4", 20 + GP_REG_FIRST }, \
2768 { "s5", 21 + GP_REG_FIRST }, \
2769 { "s6", 22 + GP_REG_FIRST }, \
2770 { "s7", 23 + GP_REG_FIRST }, \
2771 { "t8", 24 + GP_REG_FIRST }, \
2772 { "t9", 25 + GP_REG_FIRST }, \
2773 { "k0", 26 + GP_REG_FIRST }, \
2774 { "k1", 27 + GP_REG_FIRST }, \
2775 { "gp", 28 + GP_REG_FIRST }, \
2776 { "sp", 29 + GP_REG_FIRST }, \
2777 { "fp", 30 + GP_REG_FIRST }, \
2778 { "ra", 31 + GP_REG_FIRST }, \
2779 { "$w0", 0 + FP_REG_FIRST }, \
2780 { "$w1", 1 + FP_REG_FIRST }, \
2781 { "$w2", 2 + FP_REG_FIRST }, \
2782 { "$w3", 3 + FP_REG_FIRST }, \
2783 { "$w4", 4 + FP_REG_FIRST }, \
2784 { "$w5", 5 + FP_REG_FIRST }, \
2785 { "$w6", 6 + FP_REG_FIRST }, \
2786 { "$w7", 7 + FP_REG_FIRST }, \
2787 { "$w8", 8 + FP_REG_FIRST }, \
2788 { "$w9", 9 + FP_REG_FIRST }, \
2789 { "$w10", 10 + FP_REG_FIRST }, \
2790 { "$w11", 11 + FP_REG_FIRST }, \
2791 { "$w12", 12 + FP_REG_FIRST }, \
2792 { "$w13", 13 + FP_REG_FIRST }, \
2793 { "$w14", 14 + FP_REG_FIRST }, \
2794 { "$w15", 15 + FP_REG_FIRST }, \
2795 { "$w16", 16 + FP_REG_FIRST }, \
2796 { "$w17", 17 + FP_REG_FIRST }, \
2797 { "$w18", 18 + FP_REG_FIRST }, \
2798 { "$w19", 19 + FP_REG_FIRST }, \
2799 { "$w20", 20 + FP_REG_FIRST }, \
2800 { "$w21", 21 + FP_REG_FIRST }, \
2801 { "$w22", 22 + FP_REG_FIRST }, \
2802 { "$w23", 23 + FP_REG_FIRST }, \
2803 { "$w24", 24 + FP_REG_FIRST }, \
2804 { "$w25", 25 + FP_REG_FIRST }, \
2805 { "$w26", 26 + FP_REG_FIRST }, \
2806 { "$w27", 27 + FP_REG_FIRST }, \
2807 { "$w28", 28 + FP_REG_FIRST }, \
2808 { "$w29", 29 + FP_REG_FIRST }, \
2809 { "$w30", 30 + FP_REG_FIRST }, \
2810 { "$w31", 31 + FP_REG_FIRST } \
2813 #define DBR_OUTPUT_SEQEND(STREAM) \
2814 do \
2816 /* Undo the effect of '%*'. */ \
2817 mips_pop_asm_switch (&mips_nomacro); \
2818 mips_pop_asm_switch (&mips_noreorder); \
2819 /* Emit a blank line after the delay slot for emphasis. */ \
2820 fputs ("\n", STREAM); \
2822 while (0)
2824 /* The MIPS implementation uses some labels for its own purpose. The
2825 following lists what labels are created, and are all formed by the
2826 pattern $L[a-z].*. The machine independent portion of GCC creates
2827 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2829 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2830 $Lb[0-9]+ Begin blocks for MIPS debug support
2831 $Lc[0-9]+ Label for use in s<xx> operation.
2832 $Le[0-9]+ End blocks for MIPS debug support */
2834 #undef ASM_DECLARE_OBJECT_NAME
2835 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2836 mips_declare_object (STREAM, NAME, "", ":\n")
2838 /* Globalizing directive for a label. */
2839 #define GLOBAL_ASM_OP "\t.globl\t"
2841 /* This says how to define a global common symbol. */
2843 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2845 /* This says how to define a local common symbol (i.e., not visible to
2846 linker). */
2848 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2849 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2850 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2851 #endif
2853 /* This says how to output an external. It would be possible not to
2854 output anything and let undefined symbol become external. However
2855 the assembler uses length information on externals to allocate in
2856 data/sdata bss/sbss, thereby saving exec time. */
2858 #undef ASM_OUTPUT_EXTERNAL
2859 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2860 mips_output_external(STREAM,DECL,NAME)
2862 /* This is how to declare a function name. The actual work of
2863 emitting the label is moved to function_prologue, so that we can
2864 get the line number correctly emitted before the .ent directive,
2865 and after any .file directives. Define as empty so that the function
2866 is not declared before the .ent directive elsewhere. */
2868 #undef ASM_DECLARE_FUNCTION_NAME
2869 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2871 /* This is how to store into the string LABEL
2872 the symbol_ref name of an internal numbered label where
2873 PREFIX is the class of label and NUM is the number within the class.
2874 This is suitable for output with `assemble_name'. */
2876 #undef ASM_GENERATE_INTERNAL_LABEL
2877 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2878 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2880 /* Print debug labels as "foo = ." rather than "foo:" because they should
2881 represent a byte pointer rather than an ISA-encoded address. This is
2882 particularly important for code like:
2884 $LFBxxx = .
2885 .cfi_startproc
2887 .section .gcc_except_table,...
2889 .uleb128 foo-$LFBxxx
2891 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2892 likewise a byte pointer rather than an ISA-encoded address.
2894 At the time of writing, this hook is not used for the function end
2895 label:
2897 $LFExxx:
2898 .end foo
2900 But this doesn't matter, because GAS doesn't treat a pre-.end label
2901 as a MIPS16 one anyway. */
2903 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2904 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2906 /* This is how to output an element of a case-vector that is absolute. */
2908 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2909 fprintf (STREAM, "\t%s\t%sL%d\n", \
2910 ptr_mode == DImode ? ".dword" : ".word", \
2911 LOCAL_LABEL_PREFIX, \
2912 VALUE)
2914 /* This is how to output an element of a case-vector. We can make the
2915 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2916 is supported. */
2918 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2919 do { \
2920 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2922 if (GET_MODE (BODY) == HImode) \
2923 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2924 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2925 else \
2926 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2927 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2929 else if (TARGET_GPWORD) \
2930 fprintf (STREAM, "\t%s\t%sL%d\n", \
2931 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2932 LOCAL_LABEL_PREFIX, VALUE); \
2933 else if (TARGET_RTP_PIC) \
2935 /* Make the entry relative to the start of the function. */ \
2936 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2937 fprintf (STREAM, "\t%s\t%sL%d-", \
2938 Pmode == DImode ? ".dword" : ".word", \
2939 LOCAL_LABEL_PREFIX, VALUE); \
2940 assemble_name (STREAM, XSTR (fnsym, 0)); \
2941 fprintf (STREAM, "\n"); \
2943 else \
2944 fprintf (STREAM, "\t%s\t%sL%d\n", \
2945 ptr_mode == DImode ? ".dword" : ".word", \
2946 LOCAL_LABEL_PREFIX, VALUE); \
2947 } while (0)
2949 /* Mark inline jump tables as data for the purpose of disassembly. For
2950 simplicity embed the jump table's label number in the local symbol
2951 produced so that multiple jump tables within a single function end
2952 up marked with unique symbols. Retain the alignment setting from
2953 `elfos.h' as we are replacing the definition from there. */
2955 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2956 #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
2957 do \
2959 ASM_OUTPUT_ALIGN ((STREAM), 2); \
2960 if (JUMP_TABLES_IN_TEXT_SECTION) \
2961 mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE); \
2963 while (0)
2965 /* Reset text marking to code after an inline jump table. Like with
2966 the beginning of a jump table use the label number to keep symbols
2967 unique. */
2969 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
2970 do \
2971 if (JUMP_TABLES_IN_TEXT_SECTION) \
2972 mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE); \
2973 while (0)
2975 /* This is how to output an assembler line
2976 that says to advance the location counter
2977 to a multiple of 2**LOG bytes. */
2979 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2980 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2982 /* This is how to output an assembler line to advance the location
2983 counter by SIZE bytes. */
2985 #undef ASM_OUTPUT_SKIP
2986 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2987 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2989 /* This is how to output a string. */
2990 #undef ASM_OUTPUT_ASCII
2991 #define ASM_OUTPUT_ASCII mips_output_ascii
2994 /* Default to -G 8 */
2995 #ifndef MIPS_DEFAULT_GVALUE
2996 #define MIPS_DEFAULT_GVALUE 8
2997 #endif
2999 /* Define the strings to put out for each section in the object file. */
3000 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3001 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3003 #undef READONLY_DATA_SECTION_ASM_OP
3004 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3006 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3007 do \
3009 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
3010 TARGET_64BIT ? "daddiu" : "addiu", \
3011 reg_names[STACK_POINTER_REGNUM], \
3012 reg_names[STACK_POINTER_REGNUM], \
3013 TARGET_64BIT ? "sd" : "sw", \
3014 reg_names[REGNO], \
3015 reg_names[STACK_POINTER_REGNUM]); \
3017 while (0)
3019 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3020 do \
3022 mips_push_asm_switch (&mips_noreorder); \
3023 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3024 TARGET_64BIT ? "ld" : "lw", \
3025 reg_names[REGNO], \
3026 reg_names[STACK_POINTER_REGNUM], \
3027 TARGET_64BIT ? "daddu" : "addu", \
3028 reg_names[STACK_POINTER_REGNUM], \
3029 reg_names[STACK_POINTER_REGNUM]); \
3030 mips_pop_asm_switch (&mips_noreorder); \
3032 while (0)
3034 /* How to start an assembler comment.
3035 The leading space is important (the mips native assembler requires it). */
3036 #ifndef ASM_COMMENT_START
3037 #define ASM_COMMENT_START " #"
3038 #endif
3040 #undef SIZE_TYPE
3041 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3043 #undef PTRDIFF_TYPE
3044 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
3046 /* The minimum alignment of any expanded block move. */
3047 #define MIPS_MIN_MOVE_MEM_ALIGN 16
3049 /* The maximum number of bytes that can be copied by one iteration of
3050 a movmemsi loop; see mips_block_move_loop. */
3051 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3052 (UNITS_PER_WORD * 4)
3054 /* The maximum number of bytes that can be copied by a straight-line
3055 implementation of movmemsi; see mips_block_move_straight. We want
3056 to make sure that any loop-based implementation will iterate at
3057 least twice. */
3058 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3059 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3061 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
3062 values were determined experimentally by benchmarking with CSiBE.
3063 In theory, the call overhead is higher for TARGET_ABICALLS (especially
3064 for o32 where we have to restore $gp afterwards as well as make an
3065 indirect call), but in practice, bumping this up higher for
3066 TARGET_ABICALLS doesn't make much difference to code size. */
3068 #define MIPS_CALL_RATIO 8
3070 /* Any loop-based implementation of movmemsi will have at least
3071 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3072 moves, so allow individual copies of fewer elements.
3074 When movmemsi is not available, use a value approximating
3075 the length of a memcpy call sequence, so that move_by_pieces
3076 will generate inline code if it is shorter than a function call.
3077 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3078 we'll have to generate a load/store pair for each, halve the
3079 value of MIPS_CALL_RATIO to take that into account. */
3081 #define MOVE_RATIO(speed) \
3082 (HAVE_movmemsi \
3083 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3084 : MIPS_CALL_RATIO / 2)
3086 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3087 of the length of a memset call, but use the default otherwise. */
3089 #define CLEAR_RATIO(speed)\
3090 ((speed) ? 15 : MIPS_CALL_RATIO)
3092 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3093 optimizing for size adjust the ratio to account for the overhead of
3094 loading the constant and replicating it across the word. */
3096 #define SET_RATIO(speed) \
3097 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3099 /* Since the bits of the _init and _fini function is spread across
3100 many object files, each potentially with its own GP, we must assume
3101 we need to load our GP. We don't preserve $gp or $ra, since each
3102 init/fini chunk is supposed to initialize $gp, and crti/crtn
3103 already take care of preserving $ra and, when appropriate, $gp. */
3104 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3105 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3106 asm (SECTION_OP "\n\
3107 .set push\n\
3108 .set nomips16\n\
3109 .set noreorder\n\
3110 bal 1f\n\
3111 nop\n\
3112 1: .cpload $31\n\
3113 .set reorder\n\
3114 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3115 jalr $25\n\
3116 .set pop\n\
3117 " TEXT_SECTION_ASM_OP);
3118 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3119 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3120 asm (SECTION_OP "\n\
3121 .set push\n\
3122 .set nomips16\n\
3123 .set noreorder\n\
3124 bal 1f\n\
3125 nop\n\
3126 1: .set reorder\n\
3127 .cpsetup $31, $2, 1b\n\
3128 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3129 jalr $25\n\
3130 .set pop\n\
3131 " TEXT_SECTION_ASM_OP);
3132 #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3133 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3134 asm (SECTION_OP "\n\
3135 .set push\n\
3136 .set nomips16\n\
3137 .set noreorder\n\
3138 bal 1f\n\
3139 nop\n\
3140 1: .set reorder\n\
3141 .cpsetup $31, $2, 1b\n\
3142 dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3143 jalr $25\n\
3144 .set pop\n\
3145 " TEXT_SECTION_ASM_OP);
3146 #endif
3148 #ifndef HAVE_AS_TLS
3149 #define HAVE_AS_TLS 0
3150 #endif
3152 #ifndef HAVE_AS_NAN
3153 #define HAVE_AS_NAN 0
3154 #endif
3156 #ifndef USED_FOR_TARGET
3157 /* Information about ".set noFOO; ...; .set FOO" blocks. */
3158 struct mips_asm_switch {
3159 /* The FOO in the description above. */
3160 const char *name;
3162 /* The current block nesting level, or 0 if we aren't in a block. */
3163 int nesting_level;
3166 extern const enum reg_class mips_regno_to_class[];
3167 extern const char *current_function_file; /* filename current function is in */
3168 extern int num_source_filenames; /* current .file # */
3169 extern struct mips_asm_switch mips_noreorder;
3170 extern struct mips_asm_switch mips_nomacro;
3171 extern struct mips_asm_switch mips_noat;
3172 extern int mips_dbx_regno[];
3173 extern int mips_dwarf_regno[];
3174 extern bool mips_split_p[];
3175 extern bool mips_split_hi_p[];
3176 extern bool mips_use_pcrel_pool_p[];
3177 extern const char *mips_lo_relocs[];
3178 extern const char *mips_hi_relocs[];
3179 extern enum processor mips_arch; /* which cpu to codegen for */
3180 extern enum processor mips_tune; /* which cpu to schedule for */
3181 extern int mips_isa; /* architectural level */
3182 extern int mips_isa_rev;
3183 extern const struct mips_cpu_info *mips_arch_info;
3184 extern const struct mips_cpu_info *mips_tune_info;
3185 extern unsigned int mips_base_compression_flags;
3186 extern GTY(()) struct target_globals *mips16_globals;
3187 extern GTY(()) struct target_globals *micromips_globals;
3189 /* Information about a function's frame layout. */
3190 struct GTY(()) mips_frame_info {
3191 /* The size of the frame in bytes. */
3192 HOST_WIDE_INT total_size;
3194 /* The number of bytes allocated to variables. */
3195 HOST_WIDE_INT var_size;
3197 /* The number of bytes allocated to outgoing function arguments. */
3198 HOST_WIDE_INT args_size;
3200 /* The number of bytes allocated to the .cprestore slot, or 0 if there
3201 is no such slot. */
3202 HOST_WIDE_INT cprestore_size;
3204 /* Bit X is set if the function saves or restores GPR X. */
3205 unsigned int mask;
3207 /* Likewise FPR X. */
3208 unsigned int fmask;
3210 /* Likewise doubleword accumulator X ($acX). */
3211 unsigned int acc_mask;
3213 /* The number of GPRs, FPRs, doubleword accumulators and COP0
3214 registers saved. */
3215 unsigned int num_gp;
3216 unsigned int num_fp;
3217 unsigned int num_acc;
3218 unsigned int num_cop0_regs;
3220 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3221 save slots from the top of the frame, or zero if no such slots are
3222 needed. */
3223 HOST_WIDE_INT gp_save_offset;
3224 HOST_WIDE_INT fp_save_offset;
3225 HOST_WIDE_INT acc_save_offset;
3226 HOST_WIDE_INT cop0_save_offset;
3228 /* Likewise, but giving offsets from the bottom of the frame. */
3229 HOST_WIDE_INT gp_sp_offset;
3230 HOST_WIDE_INT fp_sp_offset;
3231 HOST_WIDE_INT acc_sp_offset;
3232 HOST_WIDE_INT cop0_sp_offset;
3234 /* Similar, but the value passed to _mcount. */
3235 HOST_WIDE_INT ra_fp_offset;
3237 /* The offset of arg_pointer_rtx from the bottom of the frame. */
3238 HOST_WIDE_INT arg_pointer_offset;
3240 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
3241 HOST_WIDE_INT hard_frame_pointer_offset;
3244 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
3245 enum mips_int_mask
3247 INT_MASK_EIC = -1,
3248 INT_MASK_SW0 = 0,
3249 INT_MASK_SW1 = 1,
3250 INT_MASK_HW0 = 2,
3251 INT_MASK_HW1 = 3,
3252 INT_MASK_HW2 = 4,
3253 INT_MASK_HW3 = 5,
3254 INT_MASK_HW4 = 6,
3255 INT_MASK_HW5 = 7
3258 /* Enumeration to mark the existence of the shadow register set.
3259 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3260 pointer. */
3261 enum mips_shadow_set
3263 SHADOW_SET_NO,
3264 SHADOW_SET_YES,
3265 SHADOW_SET_INTSTACK
3268 struct GTY(()) machine_function {
3269 /* The next floating-point condition-code register to allocate
3270 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
3271 unsigned int next_fcc;
3273 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
3274 rtx mips16_gp_pseudo_rtx;
3276 /* The number of extra stack bytes taken up by register varargs.
3277 This area is allocated by the callee at the very top of the frame. */
3278 int varargs_size;
3280 /* The current frame information, calculated by mips_compute_frame_info. */
3281 struct mips_frame_info frame;
3283 /* The register to use as the function's global pointer, or INVALID_REGNUM
3284 if the function doesn't need one. */
3285 unsigned int global_pointer;
3287 /* How many instructions it takes to load a label into $AT, or 0 if
3288 this property hasn't yet been calculated. */
3289 unsigned int load_label_num_insns;
3291 /* True if mips_adjust_insn_length should ignore an instruction's
3292 hazard attribute. */
3293 bool ignore_hazard_length_p;
3295 /* True if the whole function is suitable for .set noreorder and
3296 .set nomacro. */
3297 bool all_noreorder_p;
3299 /* True if the function has "inflexible" and "flexible" references
3300 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
3301 and mips_cfun_has_flexible_gp_ref_p for details. */
3302 bool has_inflexible_gp_insn_p;
3303 bool has_flexible_gp_insn_p;
3305 /* True if the function's prologue must load the global pointer
3306 value into pic_offset_table_rtx and store the same value in
3307 the function's cprestore slot (if any). Even if this value
3308 is currently false, we may decide to set it to true later;
3309 see mips_must_initialize_gp_p () for details. */
3310 bool must_initialize_gp_p;
3312 /* True if the current function must restore $gp after any potential
3313 clobber. This value is only meaningful during the first post-epilogue
3314 split_insns pass; see mips_must_initialize_gp_p () for details. */
3315 bool must_restore_gp_when_clobbered_p;
3317 /* True if this is an interrupt handler. */
3318 bool interrupt_handler_p;
3320 /* Records the way in which interrupts should be masked. Only used if
3321 interrupts are not kept masked. */
3322 enum mips_int_mask int_mask;
3324 /* Records if this is an interrupt handler that uses shadow registers. */
3325 enum mips_shadow_set use_shadow_register_set;
3327 /* True if this is an interrupt handler that should keep interrupts
3328 masked. */
3329 bool keep_interrupts_masked_p;
3331 /* True if this is an interrupt handler that should use DERET
3332 instead of ERET. */
3333 bool use_debug_exception_return_p;
3335 /* True if at least one of the formal parameters to a function must be
3336 written to the frame header (probably so its address can be taken). */
3337 bool does_not_use_frame_header;
3339 /* True if none of the functions that are called by this function need
3340 stack space allocated for their arguments. */
3341 bool optimize_call_stack;
3343 /* True if one of the functions calling this function may not allocate
3344 a frame header. */
3345 bool callers_may_not_allocate_frame;
3347 /* True if GCC stored callee saved registers in the frame header. */
3348 bool use_frame_header_for_callee_saved_regs;
3350 #endif
3352 /* Enable querying of DFA units. */
3353 #define CPU_UNITS_QUERY 1
3355 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3356 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3358 /* As on most targets, we want the .eh_frame section to be read-only where
3359 possible. And as on most targets, this means two things:
3361 (a) Non-locally-binding pointers must have an indirect encoding,
3362 so that the addresses in the .eh_frame section itself become
3363 locally-binding.
3365 (b) A shared library's .eh_frame section must encode locally-binding
3366 pointers in a relative (relocation-free) form.
3368 However, MIPS has traditionally not allowed directives like:
3370 .long x-.
3372 in cases where "x" is in a different section, or is not defined in the
3373 same assembly file. We are therefore unable to emit the PC-relative
3374 form required by (b) at assembly time.
3376 Fortunately, the linker is able to convert absolute addresses into
3377 PC-relative addresses on our behalf. Unfortunately, only certain
3378 versions of the linker know how to do this for indirect pointers,
3379 and for personality data. We must fall back on using writable
3380 .eh_frame sections for shared libraries if the linker does not
3381 support this feature. */
3382 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3383 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3385 /* For switching between MIPS16 and non-MIPS16 modes. */
3386 #define SWITCHABLE_TARGET 1
3388 /* Several named MIPS patterns depend on Pmode. These patterns have the
3389 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3390 Add the appropriate suffix to generator function NAME and invoke it
3391 with arguments ARGS. */
3392 #define PMODE_INSN(NAME, ARGS) \
3393 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3395 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3396 need to change these from /lib and /usr/lib. */
3397 #if MIPS_ABI_DEFAULT == ABI_N32
3398 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3399 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3400 #elif MIPS_ABI_DEFAULT == ABI_64
3401 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3402 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3403 #endif
3405 /* Load store bonding is not supported by micromips and fix_24k. The
3406 performance can be degraded for those targets. Hence, do not bond for
3407 micromips or fix_24k. */
3408 #define ENABLE_LD_ST_PAIRS \
3409 (TARGET_LOAD_STORE_PAIRS \
3410 && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
3411 && !TARGET_MICROMIPS && !TARGET_FIX_24K)