* config/rs6000/rs6000.c (rs6000_register_move_cost): New function.
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob55805490d44ddc3eccdf991da0aa53aa3d790e88
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions. */
27 /* Definitions for the object file format. These are set at
28 compile-time. */
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
44 /* Default string to use for cpu if not specified. */
45 #ifndef TARGET_CPU_DEFAULT
46 #define TARGET_CPU_DEFAULT ((char *)0)
47 #endif
49 /* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51 #define ASM_CPU_SPEC \
52 "%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -m604} \
62 %{mcpu=power4: -mpower4} \
63 %{mcpu=powerpc: -mppc} \
64 %{mcpu=rios: -mpwr} \
65 %{mcpu=rios1: -mpwr} \
66 %{mcpu=rios2: -mpwrx} \
67 %{mcpu=rsc: -mpwr} \
68 %{mcpu=rsc1: -mpwr} \
69 %{mcpu=401: -mppc} \
70 %{mcpu=403: -m403} \
71 %{mcpu=405: -m405} \
72 %{mcpu=505: -mppc} \
73 %{mcpu=601: -m601} \
74 %{mcpu=602: -mppc} \
75 %{mcpu=603: -mppc} \
76 %{mcpu=603e: -mppc} \
77 %{mcpu=ec603e: -mppc} \
78 %{mcpu=604: -mppc} \
79 %{mcpu=604e: -mppc} \
80 %{mcpu=620: -mppc} \
81 %{mcpu=630: -m604} \
82 %{mcpu=740: -mppc} \
83 %{mcpu=7400: -mppc} \
84 %{mcpu=7450: -mppc} \
85 %{mcpu=750: -mppc} \
86 %{mcpu=801: -mppc} \
87 %{mcpu=821: -mppc} \
88 %{mcpu=823: -mppc} \
89 %{mcpu=860: -mppc} \
90 %{mcpu=8540: -me500} \
91 %{maltivec: -maltivec}"
93 #define CPP_DEFAULT_SPEC ""
95 #define ASM_DEFAULT_SPEC ""
97 /* This macro defines names of additional specifications to put in the specs
98 that can be used in various specifications like CC1_SPEC. Its definition
99 is an initializer with a subgrouping for each command option.
101 Each subgrouping contains a string constant, that defines the
102 specification name, and a string constant that used by the GNU CC driver
103 program.
105 Do not define this macro if it does not need to do anything. */
107 #define SUBTARGET_EXTRA_SPECS
109 #define EXTRA_SPECS \
110 { "cpp_default", CPP_DEFAULT_SPEC }, \
111 { "asm_cpu", ASM_CPU_SPEC }, \
112 { "asm_default", ASM_DEFAULT_SPEC }, \
113 SUBTARGET_EXTRA_SPECS
115 /* Architecture type. */
117 extern int target_flags;
119 /* Use POWER architecture instructions and MQ register. */
120 #define MASK_POWER 0x00000001
122 /* Use POWER2 extensions to POWER architecture. */
123 #define MASK_POWER2 0x00000002
125 /* Use PowerPC architecture instructions. */
126 #define MASK_POWERPC 0x00000004
128 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
129 #define MASK_PPC_GPOPT 0x00000008
131 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
132 #define MASK_PPC_GFXOPT 0x00000010
134 /* Use PowerPC-64 architecture instructions. */
135 #define MASK_POWERPC64 0x00000020
137 /* Use revised mnemonic names defined for PowerPC architecture. */
138 #define MASK_NEW_MNEMONICS 0x00000040
140 /* Disable placing fp constants in the TOC; can be turned on when the
141 TOC overflows. */
142 #define MASK_NO_FP_IN_TOC 0x00000080
144 /* Disable placing symbol+offset constants in the TOC; can be turned on when
145 the TOC overflows. */
146 #define MASK_NO_SUM_IN_TOC 0x00000100
148 /* Output only one TOC entry per module. Normally linking fails if
149 there are more than 16K unique variables/constants in an executable. With
150 this option, linking fails only if there are more than 16K modules, or
151 if there are more than 16K unique variables/constant in a single module.
153 This is at the cost of having 2 extra loads and one extra store per
154 function, and one less allocable register. */
155 #define MASK_MINIMAL_TOC 0x00000200
157 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
158 #define MASK_64BIT 0x00000400
160 /* Disable use of FPRs. */
161 #define MASK_SOFT_FLOAT 0x00000800
163 /* Enable load/store multiple, even on PowerPC */
164 #define MASK_MULTIPLE 0x00001000
165 #define MASK_MULTIPLE_SET 0x00002000
167 /* Use string instructions for block moves */
168 #define MASK_STRING 0x00004000
169 #define MASK_STRING_SET 0x00008000
171 /* Disable update form of load/store */
172 #define MASK_NO_UPDATE 0x00010000
174 /* Disable fused multiply/add operations */
175 #define MASK_NO_FUSED_MADD 0x00020000
177 /* Nonzero if we need to schedule the prolog and epilog. */
178 #define MASK_SCHED_PROLOG 0x00040000
180 /* Use AltiVec instructions. */
181 #define MASK_ALTIVEC 0x00080000
183 /* Return small structures in memory (as the AIX ABI requires). */
184 #define MASK_AIX_STRUCT_RET 0x00100000
185 #define MASK_AIX_STRUCT_RET_SET 0x00200000
187 /* The only remaining free bit is 0x00400000. sysv4.h uses
188 0x00800000 -> 0x40000000, and 0x80000000 is not available
189 because target_flags is signed. */
191 #define TARGET_POWER (target_flags & MASK_POWER)
192 #define TARGET_POWER2 (target_flags & MASK_POWER2)
193 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
194 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
195 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
196 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
197 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
198 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
199 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
202 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
203 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
204 #define TARGET_STRING (target_flags & MASK_STRING)
205 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
206 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
207 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
208 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
209 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
210 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
212 #define TARGET_32BIT (! TARGET_64BIT)
213 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
214 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
215 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
217 #ifdef IN_LIBGCC2
218 /* For libgcc2 we make sure this is a compile time constant */
219 #if defined (__64BIT__) || defined (__powerpc64__)
220 #define TARGET_POWERPC64 1
221 #else
222 #define TARGET_POWERPC64 0
223 #endif
224 #else
225 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
226 #endif
228 #define TARGET_XL_CALL 0
230 /* Run-time compilation parameters selecting different hardware subsets.
232 Macro to define tables used to set the flags.
233 This is a list in braces of pairs in braces,
234 each pair being { "NAME", VALUE }
235 where VALUE is the bits to set or minus the bits to clear.
236 An empty string NAME is used to identify the default VALUE. */
238 #define TARGET_SWITCHES \
239 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
240 N_("Use POWER instruction set")}, \
241 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
242 | MASK_POWER2), \
243 N_("Use POWER2 instruction set")}, \
244 {"no-power2", - MASK_POWER2, \
245 N_("Do not use POWER2 instruction set")}, \
246 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
247 | MASK_STRING), \
248 N_("Do not use POWER instruction set")}, \
249 {"powerpc", MASK_POWERPC, \
250 N_("Use PowerPC instruction set")}, \
251 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
252 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
253 N_("Do not use PowerPC instruction set")}, \
254 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
255 N_("Use PowerPC General Purpose group optional instructions")},\
256 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
257 N_("Don't use PowerPC General Purpose group optional instructions")},\
258 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
259 N_("Use PowerPC Graphics group optional instructions")},\
260 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
261 N_("Don't use PowerPC Graphics group optional instructions")},\
262 {"powerpc64", MASK_POWERPC64, \
263 N_("Use PowerPC-64 instruction set")}, \
264 {"no-powerpc64", - MASK_POWERPC64, \
265 N_("Don't use PowerPC-64 instruction set")}, \
266 {"altivec", MASK_ALTIVEC , \
267 N_("Use AltiVec instructions")}, \
268 {"no-altivec", - MASK_ALTIVEC , \
269 N_("Don't use AltiVec instructions")}, \
270 {"new-mnemonics", MASK_NEW_MNEMONICS, \
271 N_("Use new mnemonics for PowerPC architecture")},\
272 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
273 N_("Use old mnemonics for PowerPC architecture")},\
274 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
275 | MASK_MINIMAL_TOC), \
276 N_("Put everything in the regular TOC")}, \
277 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
278 N_("Place floating point constants in TOC")}, \
279 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
280 N_("Don't place floating point constants in TOC")},\
281 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
282 N_("Place symbol+offset constants in TOC")}, \
283 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
284 N_("Don't place symbol+offset constants in TOC")},\
285 {"minimal-toc", MASK_MINIMAL_TOC, \
286 "Use only one TOC entry per procedure"}, \
287 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
288 ""}, \
289 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
290 N_("Place variable addresses in the regular TOC")},\
291 {"hard-float", - MASK_SOFT_FLOAT, \
292 N_("Use hardware fp")}, \
293 {"soft-float", MASK_SOFT_FLOAT, \
294 N_("Do not use hardware fp")}, \
295 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
296 N_("Generate load/store multiple instructions")}, \
297 {"no-multiple", - MASK_MULTIPLE, \
298 N_("Do not generate load/store multiple instructions")},\
299 {"no-multiple", MASK_MULTIPLE_SET, \
300 ""}, \
301 {"string", MASK_STRING | MASK_STRING_SET, \
302 N_("Generate string instructions for block moves")},\
303 {"no-string", - MASK_STRING, \
304 N_("Do not generate string instructions for block moves")},\
305 {"no-string", MASK_STRING_SET, \
306 ""}, \
307 {"update", - MASK_NO_UPDATE, \
308 N_("Generate load/store with update instructions")},\
309 {"no-update", MASK_NO_UPDATE, \
310 N_("Do not generate load/store with update instructions")},\
311 {"fused-madd", - MASK_NO_FUSED_MADD, \
312 N_("Generate fused multiply/add instructions")},\
313 {"no-fused-madd", MASK_NO_FUSED_MADD, \
314 N_("Don't generate fused multiply/add instructions")},\
315 {"sched-prolog", MASK_SCHED_PROLOG, \
316 ""}, \
317 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
318 N_("Don't schedule the start and end of the procedure")},\
319 {"sched-epilog", MASK_SCHED_PROLOG, \
320 ""}, \
321 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
322 ""}, \
323 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
324 N_("Return all structures in memory (AIX default)")},\
325 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 N_("Return small structures in registers (SVR4 default)")},\
327 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 ""},\
329 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 ""},\
331 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 ""},\
333 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 ""},\
335 SUBTARGET_SWITCHES \
336 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
337 ""}}
339 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
341 /* This is meant to be redefined in the host dependent files */
342 #define SUBTARGET_SWITCHES
344 /* Processor type. Order must match cpu attribute in MD file. */
345 enum processor_type
347 PROCESSOR_RIOS1,
348 PROCESSOR_RIOS2,
349 PROCESSOR_RS64A,
350 PROCESSOR_MPCCORE,
351 PROCESSOR_PPC403,
352 PROCESSOR_PPC405,
353 PROCESSOR_PPC601,
354 PROCESSOR_PPC603,
355 PROCESSOR_PPC604,
356 PROCESSOR_PPC604e,
357 PROCESSOR_PPC620,
358 PROCESSOR_PPC630,
359 PROCESSOR_PPC750,
360 PROCESSOR_PPC7400,
361 PROCESSOR_PPC7450,
362 PROCESSOR_PPC8540,
363 PROCESSOR_POWER4
366 extern enum processor_type rs6000_cpu;
368 /* Recast the processor type to the cpu attribute. */
369 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
371 /* Define generic processor types based upon current deployment. */
372 #define PROCESSOR_COMMON PROCESSOR_PPC601
373 #define PROCESSOR_POWER PROCESSOR_RIOS1
374 #define PROCESSOR_POWERPC PROCESSOR_PPC604
375 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
377 /* Define the default processor. This is overridden by other tm.h files. */
378 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
379 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
381 /* Specify the dialect of assembler to use. New mnemonics is dialect one
382 and the old mnemonics are dialect zero. */
383 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
385 /* This is meant to be overridden in target specific files. */
386 #define SUBTARGET_OPTIONS
388 #define TARGET_OPTIONS \
390 {"cpu=", &rs6000_select[1].string, \
391 N_("Use features of and schedule code for given CPU") }, \
392 {"tune=", &rs6000_select[2].string, \
393 N_("Schedule code for given CPU") }, \
394 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
395 {"traceback=", &rs6000_traceback_name, \
396 N_("Select full, part, or no traceback table") }, \
397 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
398 {"long-double-", &rs6000_long_double_size_string, \
399 N_("Specify size of long double (64 or 128 bits)") }, \
400 {"isel=", &rs6000_isel_string, \
401 N_("Specify yes/no if isel instructions should be generated") }, \
402 {"vrsave=", &rs6000_altivec_vrsave_string, \
403 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
404 {"longcall", &rs6000_longcall_switch, \
405 N_("Avoid all range limits on call instructions") }, \
406 {"no-longcall", &rs6000_longcall_switch, "" }, \
407 SUBTARGET_OPTIONS \
410 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
411 struct rs6000_cpu_select
413 const char *string;
414 const char *name;
415 int set_tune_p;
416 int set_arch_p;
419 extern struct rs6000_cpu_select rs6000_select[];
421 /* Debug support */
422 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
423 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
424 extern int rs6000_debug_stack; /* debug stack applications */
425 extern int rs6000_debug_arg; /* debug argument handling */
427 #define TARGET_DEBUG_STACK rs6000_debug_stack
428 #define TARGET_DEBUG_ARG rs6000_debug_arg
430 extern const char *rs6000_traceback_name; /* Type of traceback table. */
432 /* These are separate from target_flags because we've run out of bits
433 there. */
434 extern const char *rs6000_long_double_size_string;
435 extern int rs6000_long_double_type_size;
436 extern int rs6000_altivec_abi;
437 extern int rs6000_spe_abi;
438 extern int rs6000_isel;
439 extern int rs6000_fprs;
440 extern const char *rs6000_isel_string;
441 extern const char *rs6000_altivec_vrsave_string;
442 extern int rs6000_altivec_vrsave;
443 extern const char *rs6000_longcall_switch;
444 extern int rs6000_default_long_calls;
446 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
450 #define TARGET_SPE_ABI 0
451 #define TARGET_SPE 0
452 #define TARGET_ISEL 0
453 #define TARGET_FPRS 1
455 /* Sometimes certain combinations of command options do not make sense
456 on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
464 On the RS/6000 this is used to define the target cpu type. */
466 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
468 /* Define this to change the optimizations performed by default. */
469 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
471 /* Show we can debug even without a frame pointer. */
472 #define CAN_DEBUG_WITHOUT_FP
474 /* Target pragma. */
475 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477 } while (0)
479 /* Target #defines. */
480 #define TARGET_CPU_CPP_BUILTINS() \
481 rs6000_cpu_cpp_builtins (pfile)
483 /* Target machine storage layout. */
485 /* Define this macro if it is advisable to hold scalars in registers
486 in a wider mode than that declared by the program. In such cases,
487 the value is constrained to be within the bounds of the declared
488 type, but kept valid in the wider mode. The signedness of the
489 extension may differ from that of the type. */
491 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
494 (MODE) = word_mode;
496 /* Define this if function arguments should also be promoted using the above
497 procedure. */
499 #define PROMOTE_FUNCTION_ARGS
501 /* Likewise, if the function return value is promoted. */
503 #define PROMOTE_FUNCTION_RETURN
505 /* Define this if most significant bit is lowest numbered
506 in instructions that operate on numbered bit-fields. */
507 /* That is true on RS/6000. */
508 #define BITS_BIG_ENDIAN 1
510 /* Define this if most significant byte of a word is the lowest numbered. */
511 /* That is true on RS/6000. */
512 #define BYTES_BIG_ENDIAN 1
514 /* Define this if most significant word of a multiword number is lowest
515 numbered.
517 For RS/6000 we can decide arbitrarily since there are no machine
518 instructions for them. Might as well be consistent with bits and bytes. */
519 #define WORDS_BIG_ENDIAN 1
521 #define MAX_BITS_PER_WORD 64
523 /* Width of a word, in units (bytes). */
524 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
525 #ifdef IN_LIBGCC2
526 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
527 #else
528 #define MIN_UNITS_PER_WORD 4
529 #endif
530 #define UNITS_PER_FP_WORD 8
531 #define UNITS_PER_ALTIVEC_WORD 16
532 #define UNITS_PER_SPE_WORD 8
534 /* Type used for ptrdiff_t, as a string used in a declaration. */
535 #define PTRDIFF_TYPE "int"
537 /* Type used for size_t, as a string used in a declaration. */
538 #define SIZE_TYPE "long unsigned int"
540 /* Type used for wchar_t, as a string used in a declaration. */
541 #define WCHAR_TYPE "short unsigned int"
543 /* Width of wchar_t in bits. */
544 #define WCHAR_TYPE_SIZE 16
546 /* A C expression for the size in bits of the type `short' on the
547 target machine. If you don't define this, the default is half a
548 word. (If this would be less than one storage unit, it is
549 rounded up to one unit.) */
550 #define SHORT_TYPE_SIZE 16
552 /* A C expression for the size in bits of the type `int' on the
553 target machine. If you don't define this, the default is one
554 word. */
555 #define INT_TYPE_SIZE 32
557 /* A C expression for the size in bits of the type `long' on the
558 target machine. If you don't define this, the default is one
559 word. */
560 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
561 #define MAX_LONG_TYPE_SIZE 64
563 /* A C expression for the size in bits of the type `long long' on the
564 target machine. If you don't define this, the default is two
565 words. */
566 #define LONG_LONG_TYPE_SIZE 64
568 /* A C expression for the size in bits of the type `float' on the
569 target machine. If you don't define this, the default is one
570 word. */
571 #define FLOAT_TYPE_SIZE 32
573 /* A C expression for the size in bits of the type `double' on the
574 target machine. If you don't define this, the default is two
575 words. */
576 #define DOUBLE_TYPE_SIZE 64
578 /* A C expression for the size in bits of the type `long double' on
579 the target machine. If you don't define this, the default is two
580 words. */
581 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
583 /* Constant which presents upper bound of the above value. */
584 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
586 /* Define this to set long double type size to use in libgcc2.c, which can
587 not depend on target_flags. */
588 #ifdef __LONG_DOUBLE_128__
589 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
590 #else
591 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
592 #endif
594 /* Width in bits of a pointer.
595 See also the macro `Pmode' defined below. */
596 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
598 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
599 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
601 /* Boundary (in *bits*) on which stack pointer should be aligned. */
602 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
604 /* Allocation boundary (in *bits*) for the code of a function. */
605 #define FUNCTION_BOUNDARY 32
607 /* No data type wants to be aligned rounder than this. */
608 #define BIGGEST_ALIGNMENT 128
610 /* A C expression to compute the alignment for a variables in the
611 local store. TYPE is the data type, and ALIGN is the alignment
612 that the object would ordinarily have. */
613 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
614 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
615 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
617 /* Alignment of field after `int : 0' in a structure. */
618 #define EMPTY_FIELD_BOUNDARY 32
620 /* Every structure's size must be a multiple of this. */
621 #define STRUCTURE_SIZE_BOUNDARY 8
623 /* Return 1 if a structure or array containing FIELD should be
624 accessed using `BLKMODE'.
626 For the SPE, simd types are V2SI, and gcc can be tempted to put the
627 entire thing in a DI and use subregs to access the internals.
628 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
629 back-end. Because a single GPR can hold a V2SI, but not a DI, the
630 best thing to do is set structs to BLKmode and avoid Severe Tire
631 Damage. */
632 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
633 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
635 /* A bit-field declared as `int' forces `int' alignment for the struct. */
636 #define PCC_BITFIELD_TYPE_MATTERS 1
638 /* Make strings word-aligned so strcpy from constants will be faster.
639 Make vector constants quadword aligned. */
640 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
641 (TREE_CODE (EXP) == STRING_CST \
642 && (ALIGN) < BITS_PER_WORD \
643 ? BITS_PER_WORD \
644 : (ALIGN))
646 /* Make arrays of chars word-aligned for the same reasons.
647 Align vectors to 128 bits. */
648 #define DATA_ALIGNMENT(TYPE, ALIGN) \
649 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
650 : TREE_CODE (TYPE) == ARRAY_TYPE \
651 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
652 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
654 /* Nonzero if move instructions will actually fail to work
655 when given unaligned data. */
656 #define STRICT_ALIGNMENT 0
658 /* Define this macro to be the value 1 if unaligned accesses have a cost
659 many times greater than aligned accesses, for example if they are
660 emulated in a trap handler. */
661 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
662 (STRICT_ALIGNMENT \
663 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
664 || (MODE) == DImode) \
665 && (ALIGN) < 32))
667 /* Standard register usage. */
669 /* Number of actual hardware registers.
670 The hardware registers are assigned numbers for the compiler
671 from 0 to just below FIRST_PSEUDO_REGISTER.
672 All registers that the compiler knows about must be given numbers,
673 even those that are not normally considered general registers.
675 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
676 an MQ register, a count register, a link register, and 8 condition
677 register fields, which we view here as separate registers.
679 In addition, the difference between the frame and argument pointers is
680 a function of the number of registers saved, so we need to have a
681 register for AP that will later be eliminated in favor of SP or FP.
682 This is a normal register, but it is fixed.
684 We also create a pseudo register for float/int conversions, that will
685 really represent the memory location used. It is represented here as
686 a register, in order to work around problems in allocating stack storage
687 in inline functions. */
689 #define FIRST_PSEUDO_REGISTER 113
691 /* This must be included for pre gcc 3.0 glibc compatibility. */
692 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
694 /* 1 for registers that have pervasive standard uses
695 and are not available for the register allocator.
697 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
698 as a local register; for all other OS's r2 is the TOC pointer.
700 cr5 is not supposed to be used.
702 On System V implementations, r13 is fixed and not available for use. */
704 #define FIXED_REGISTERS \
705 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
709 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
710 /* AltiVec registers. */ \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
712 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
713 1, 1 \
714 , 1, 1 \
717 /* 1 for registers not available across function calls.
718 These must include the FIXED_REGISTERS and also any
719 registers that can be used without being saved.
720 The latter must include the registers where values are returned
721 and the register where structure-value addresses are passed.
722 Aside from that, you can include as many other registers as you like. */
724 #define CALL_USED_REGISTERS \
725 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
727 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
729 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
730 /* AltiVec registers. */ \
731 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
732 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
733 1, 1 \
734 , 1, 1 \
737 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
738 the entire set of `FIXED_REGISTERS' be included.
739 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
740 This macro is optional. If not specified, it defaults to the value
741 of `CALL_USED_REGISTERS'. */
743 #define CALL_REALLY_USED_REGISTERS \
744 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
749 /* AltiVec registers. */ \
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752 0, 0 \
753 , 0, 0 \
756 #define MQ_REGNO 64
757 #define CR0_REGNO 68
758 #define CR1_REGNO 69
759 #define CR2_REGNO 70
760 #define CR3_REGNO 71
761 #define CR4_REGNO 72
762 #define MAX_CR_REGNO 75
763 #define XER_REGNO 76
764 #define FIRST_ALTIVEC_REGNO 77
765 #define LAST_ALTIVEC_REGNO 108
766 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
767 #define VRSAVE_REGNO 109
768 #define VSCR_REGNO 110
769 #define SPE_ACC_REGNO 111
770 #define SPEFSCR_REGNO 112
772 /* List the order in which to allocate registers. Each register must be
773 listed once, even those in FIXED_REGISTERS.
775 We allocate in the following order:
776 fp0 (not saved or used for anything)
777 fp13 - fp2 (not saved; incoming fp arg registers)
778 fp1 (not saved; return value)
779 fp31 - fp14 (saved; order given to save least number)
780 cr7, cr6 (not saved or special)
781 cr1 (not saved, but used for FP operations)
782 cr0 (not saved, but used for arithmetic operations)
783 cr4, cr3, cr2 (saved)
784 r0 (not saved; cannot be base reg)
785 r9 (not saved; best for TImode)
786 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
787 r3 (not saved; return value register)
788 r31 - r13 (saved; order given to save least number)
789 r12 (not saved; if used for DImode or DFmode would use r13)
790 mq (not saved; best to use it if we can)
791 ctr (not saved; when we have the choice ctr is better)
792 lr (saved)
793 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
794 spe_acc, spefscr (fixed)
796 AltiVec registers:
797 v0 - v1 (not saved or used for anything)
798 v13 - v3 (not saved; incoming vector arg registers)
799 v2 (not saved; incoming vector arg reg; return value)
800 v19 - v14 (not saved or used for anything)
801 v31 - v20 (saved; order given to save least number)
805 #define REG_ALLOC_ORDER \
806 {32, \
807 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
808 33, \
809 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
810 50, 49, 48, 47, 46, \
811 75, 74, 69, 68, 72, 71, 70, \
812 0, \
813 9, 11, 10, 8, 7, 6, 5, 4, \
814 3, \
815 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
816 18, 17, 16, 15, 14, 13, 12, \
817 64, 66, 65, \
818 73, 1, 2, 67, 76, \
819 /* AltiVec registers. */ \
820 77, 78, \
821 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
822 79, \
823 96, 95, 94, 93, 92, 91, \
824 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
825 97, 109, 110 \
826 , 111, 112 \
829 /* True if register is floating-point. */
830 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
832 /* True if register is a condition register. */
833 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
835 /* True if register is a condition register, but not cr0. */
836 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
838 /* True if register is an integer register. */
839 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
841 /* SPE SIMD registers are just the GPRs. */
842 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
844 /* True if register is the XER register. */
845 #define XER_REGNO_P(N) ((N) == XER_REGNO)
847 /* True if register is an AltiVec register. */
848 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
850 /* Return number of consecutive hard regs needed starting at reg REGNO
851 to hold something of mode MODE.
852 This is ordinarily the length in words of a value of mode MODE
853 but can be less for certain modes in special long registers.
855 For the SPE, GPRs are 64 bits but only 32 bits are visible in
856 scalar instructions. The upper 32 bits are only available to the
857 SIMD instructions.
859 POWER and PowerPC GPRs hold 32 bits worth;
860 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
862 #define HARD_REGNO_NREGS(REGNO, MODE) \
863 (FP_REGNO_P (REGNO) \
864 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
865 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
866 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
867 : ALTIVEC_REGNO_P (REGNO) \
868 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
869 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
871 #define ALTIVEC_VECTOR_MODE(MODE) \
872 ((MODE) == V16QImode \
873 || (MODE) == V8HImode \
874 || (MODE) == V4SFmode \
875 || (MODE) == V4SImode)
877 #define SPE_VECTOR_MODE(MODE) \
878 ((MODE) == V4HImode \
879 || (MODE) == V2SFmode \
880 || (MODE) == V1DImode \
881 || (MODE) == V2SImode)
883 /* Define this macro to be nonzero if the port is prepared to handle
884 insns involving vector mode MODE. At the very least, it must have
885 move patterns for this mode. */
887 #define VECTOR_MODE_SUPPORTED_P(MODE) \
888 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
889 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
891 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
892 For POWER and PowerPC, the GPRs can hold any mode, but the float
893 registers only can hold floating modes and DImode, and CR register only
894 can hold CC modes. We cannot put TImode anywhere except general
895 register and it must be able to fit within the register set. */
897 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
898 (FP_REGNO_P (REGNO) ? \
899 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
900 || (GET_MODE_CLASS (MODE) == MODE_INT \
901 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
902 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
903 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
904 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
905 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
906 : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
907 : 1)
909 /* Value is 1 if it is a good idea to tie two pseudo registers
910 when one has mode MODE1 and one has mode MODE2.
911 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
912 for any hard reg, then this must be 0 for correct output. */
913 #define MODES_TIEABLE_P(MODE1, MODE2) \
914 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
915 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
916 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
917 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
918 : GET_MODE_CLASS (MODE1) == MODE_CC \
919 ? GET_MODE_CLASS (MODE2) == MODE_CC \
920 : GET_MODE_CLASS (MODE2) == MODE_CC \
921 ? GET_MODE_CLASS (MODE1) == MODE_CC \
922 : ALTIVEC_VECTOR_MODE (MODE1) \
923 ? ALTIVEC_VECTOR_MODE (MODE2) \
924 : ALTIVEC_VECTOR_MODE (MODE2) \
925 ? ALTIVEC_VECTOR_MODE (MODE1) \
926 : 1)
928 /* A C expression returning the cost of moving data from a register of class
929 CLASS1 to one of CLASS2. */
931 #define REGISTER_MOVE_COST rs6000_register_move_cost
933 /* A C expressions returning the cost of moving data of MODE from a register to
934 or from memory. */
936 #define MEMORY_MOVE_COST rs6000_memory_move_cost
938 /* Specify the cost of a branch insn; roughly the number of extra insns that
939 should be added to avoid a branch.
941 Set this to 3 on the RS/6000 since that is roughly the average cost of an
942 unscheduled conditional branch. */
944 #define BRANCH_COST 3
947 /* A fixed register used at prologue and epilogue generation to fix
948 addressing modes. The SPE needs heavy addressing fixes at the last
949 minute, and it's best to save a register for it.
951 AltiVec also needs fixes, but we've gotten around using r11, which
952 is actually wrong because when use_backchain_to_restore_sp is true,
953 we end up clobbering r11.
955 The AltiVec case needs to be fixed. Dunno if we should break ABI
956 compatability and reserve a register for it as well.. */
958 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
960 /* Define this macro to change register usage conditional on target flags.
961 Set MQ register fixed (already call_used) if not POWER architecture
962 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
963 64-bit AIX reserves GPR13 for thread-private data.
964 Conditionally disable FPRs. */
966 #define CONDITIONAL_REGISTER_USAGE \
968 int i; \
969 if (! TARGET_POWER) \
970 fixed_regs[64] = 1; \
971 if (TARGET_64BIT) \
972 fixed_regs[13] = call_used_regs[13] \
973 = call_really_used_regs[13] = 1; \
974 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
975 for (i = 32; i < 64; i++) \
976 fixed_regs[i] = call_used_regs[i] \
977 = call_really_used_regs[i] = 1; \
978 if (DEFAULT_ABI == ABI_V4 \
979 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
980 && flag_pic == 1) \
981 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
982 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
983 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
984 if (DEFAULT_ABI == ABI_DARWIN \
985 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
986 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
987 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
988 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
989 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
990 if (TARGET_ALTIVEC) \
991 global_regs[VSCR_REGNO] = 1; \
992 if (TARGET_SPE) \
994 global_regs[SPEFSCR_REGNO] = 1; \
995 fixed_regs[FIXED_SCRATCH] \
996 = call_used_regs[FIXED_SCRATCH] \
997 = call_really_used_regs[FIXED_SCRATCH] = 1; \
999 if (! TARGET_ALTIVEC) \
1001 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1002 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1003 call_really_used_regs[VRSAVE_REGNO] = 1; \
1005 if (TARGET_ALTIVEC_ABI) \
1006 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1007 call_used_regs[i] = call_really_used_regs[i] = 1; \
1010 /* Specify the registers used for certain standard purposes.
1011 The values of these macros are register numbers. */
1013 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1014 /* #define PC_REGNUM */
1016 /* Register to use for pushing function arguments. */
1017 #define STACK_POINTER_REGNUM 1
1019 /* Base register for access to local variables of the function. */
1020 #define FRAME_POINTER_REGNUM 31
1022 /* Value should be nonzero if functions must have frame pointers.
1023 Zero means the frame pointer need not be set up (and parms
1024 may be accessed via the stack pointer) in functions that seem suitable.
1025 This is computed in `reload', in reload1.c. */
1026 #define FRAME_POINTER_REQUIRED 0
1028 /* Base register for access to arguments of the function. */
1029 #define ARG_POINTER_REGNUM 67
1031 /* Place to put static chain when calling a function that requires it. */
1032 #define STATIC_CHAIN_REGNUM 11
1034 /* Link register number. */
1035 #define LINK_REGISTER_REGNUM 65
1037 /* Count register number. */
1038 #define COUNT_REGISTER_REGNUM 66
1040 /* Place that structure value return address is placed.
1042 On the RS/6000, it is passed as an extra parameter. */
1043 #define STRUCT_VALUE 0
1045 /* Define the classes of registers for register constraints in the
1046 machine description. Also define ranges of constants.
1048 One of the classes must always be named ALL_REGS and include all hard regs.
1049 If there is more than one class, another class must be named NO_REGS
1050 and contain no registers.
1052 The name GENERAL_REGS must be the name of a class (or an alias for
1053 another name such as ALL_REGS). This is the class of registers
1054 that is allowed by "g" or "r" in a register constraint.
1055 Also, registers outside this class are allocated only when
1056 instructions express preferences for them.
1058 The classes must be numbered in nondecreasing order; that is,
1059 a larger-numbered class must never be contained completely
1060 in a smaller-numbered class.
1062 For any two classes, it is very desirable that there be another
1063 class that represents their union. */
1065 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1066 and condition registers, plus three special registers, MQ, CTR, and the
1067 link register.
1069 However, r0 is special in that it cannot be used as a base register.
1070 So make a class for registers valid as base registers.
1072 Also, cr0 is the only condition code register that can be used in
1073 arithmetic insns, so make a separate class for it. */
1075 enum reg_class
1077 NO_REGS,
1078 BASE_REGS,
1079 GENERAL_REGS,
1080 FLOAT_REGS,
1081 ALTIVEC_REGS,
1082 VRSAVE_REGS,
1083 VSCR_REGS,
1084 SPE_ACC_REGS,
1085 SPEFSCR_REGS,
1086 NON_SPECIAL_REGS,
1087 MQ_REGS,
1088 LINK_REGS,
1089 CTR_REGS,
1090 LINK_OR_CTR_REGS,
1091 SPECIAL_REGS,
1092 SPEC_OR_GEN_REGS,
1093 CR0_REGS,
1094 CR_REGS,
1095 NON_FLOAT_REGS,
1096 XER_REGS,
1097 ALL_REGS,
1098 LIM_REG_CLASSES
1101 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1103 /* Give names of register classes as strings for dump file. */
1105 #define REG_CLASS_NAMES \
1107 "NO_REGS", \
1108 "BASE_REGS", \
1109 "GENERAL_REGS", \
1110 "FLOAT_REGS", \
1111 "ALTIVEC_REGS", \
1112 "VRSAVE_REGS", \
1113 "VSCR_REGS", \
1114 "SPE_ACC_REGS", \
1115 "SPEFSCR_REGS", \
1116 "NON_SPECIAL_REGS", \
1117 "MQ_REGS", \
1118 "LINK_REGS", \
1119 "CTR_REGS", \
1120 "LINK_OR_CTR_REGS", \
1121 "SPECIAL_REGS", \
1122 "SPEC_OR_GEN_REGS", \
1123 "CR0_REGS", \
1124 "CR_REGS", \
1125 "NON_FLOAT_REGS", \
1126 "XER_REGS", \
1127 "ALL_REGS" \
1130 /* Define which registers fit in which classes.
1131 This is an initializer for a vector of HARD_REG_SET
1132 of length N_REG_CLASSES. */
1134 #define REG_CLASS_CONTENTS \
1136 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1137 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1138 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1139 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1140 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1142 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1143 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1144 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1145 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1146 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1148 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1149 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1150 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1151 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1152 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1153 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1154 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1155 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1156 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1159 /* The same information, inverted:
1160 Return the class number of the smallest class containing
1161 reg number REGNO. This could be a conditional expression
1162 or could index an array. */
1164 #define REGNO_REG_CLASS(REGNO) \
1165 ((REGNO) == 0 ? GENERAL_REGS \
1166 : (REGNO) < 32 ? BASE_REGS \
1167 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1168 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1169 : (REGNO) == CR0_REGNO ? CR0_REGS \
1170 : CR_REGNO_P (REGNO) ? CR_REGS \
1171 : (REGNO) == MQ_REGNO ? MQ_REGS \
1172 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1173 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1174 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1175 : (REGNO) == XER_REGNO ? XER_REGS \
1176 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1177 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1178 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1179 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1180 : NO_REGS)
1182 /* The class value for index registers, and the one for base regs. */
1183 #define INDEX_REG_CLASS GENERAL_REGS
1184 #define BASE_REG_CLASS BASE_REGS
1186 /* Get reg_class from a letter such as appears in the machine description. */
1188 #define REG_CLASS_FROM_LETTER(C) \
1189 ((C) == 'f' ? FLOAT_REGS \
1190 : (C) == 'b' ? BASE_REGS \
1191 : (C) == 'h' ? SPECIAL_REGS \
1192 : (C) == 'q' ? MQ_REGS \
1193 : (C) == 'c' ? CTR_REGS \
1194 : (C) == 'l' ? LINK_REGS \
1195 : (C) == 'v' ? ALTIVEC_REGS \
1196 : (C) == 'x' ? CR0_REGS \
1197 : (C) == 'y' ? CR_REGS \
1198 : (C) == 'z' ? XER_REGS \
1199 : NO_REGS)
1201 /* The letters I, J, K, L, M, N, and P in a register constraint string
1202 can be used to stand for particular ranges of immediate operands.
1203 This macro defines what the ranges are.
1204 C is the letter, and VALUE is a constant value.
1205 Return 1 if VALUE is in the range specified by C.
1207 `I' is a signed 16-bit constant
1208 `J' is a constant with only the high-order 16 bits nonzero
1209 `K' is a constant with only the low-order 16 bits nonzero
1210 `L' is a signed 16-bit constant shifted left 16 bits
1211 `M' is a constant that is greater than 31
1212 `N' is a positive constant that is an exact power of two
1213 `O' is the constant zero
1214 `P' is a constant whose negation is a signed 16-bit constant */
1216 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1217 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1218 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1219 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1220 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1221 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1222 : (C) == 'M' ? (VALUE) > 31 \
1223 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1224 : (C) == 'O' ? (VALUE) == 0 \
1225 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1226 : 0)
1228 /* Similar, but for floating constants, and defining letters G and H.
1229 Here VALUE is the CONST_DOUBLE rtx itself.
1231 We flag for special constants when we can copy the constant into
1232 a general register in two insns for DF/DI and one insn for SF.
1234 'H' is used for DI/DF constants that take 3 insns. */
1236 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1237 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1238 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1239 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1240 : 0)
1242 /* Optional extra constraints for this machine.
1244 'Q' means that is a memory operand that is just an offset from a reg.
1245 'R' is for AIX TOC entries.
1246 'S' is a constant that can be placed into a 64-bit mask operand
1247 'T' is a constant that can be placed into a 32-bit mask operand
1248 'U' is for V.4 small data references.
1249 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1251 #define EXTRA_CONSTRAINT(OP, C) \
1252 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1253 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1254 : (C) == 'S' ? mask64_operand (OP, DImode) \
1255 : (C) == 'T' ? mask_operand (OP, SImode) \
1256 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1257 && small_data_operand (OP, GET_MODE (OP))) \
1258 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1259 && (fixed_regs[CR0_REGNO] \
1260 || !logical_operand (OP, DImode)) \
1261 && !mask64_operand (OP, DImode)) \
1262 : 0)
1264 /* Given an rtx X being reloaded into a reg required to be
1265 in class CLASS, return the class of reg to actually use.
1266 In general this is just CLASS; but on some machines
1267 in some cases it is preferable to use a more restrictive class.
1269 On the RS/6000, we have to return NO_REGS when we want to reload a
1270 floating-point CONST_DOUBLE to force it to be copied to memory.
1272 We also don't want to reload integer values into floating-point
1273 registers if we can at all help it. In fact, this can
1274 cause reload to abort, if it tries to generate a reload of CTR
1275 into a FP register and discovers it doesn't have the memory location
1276 required.
1278 ??? Would it be a good idea to have reload do the converse, that is
1279 try to reload floating modes into FP registers if possible?
1282 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1283 (((GET_CODE (X) == CONST_DOUBLE \
1284 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1285 ? NO_REGS \
1286 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1287 && (CLASS) == NON_SPECIAL_REGS) \
1288 ? GENERAL_REGS \
1289 : (CLASS)))
1291 /* Return the register class of a scratch register needed to copy IN into
1292 or out of a register in CLASS in MODE. If it can be done directly,
1293 NO_REGS is returned. */
1295 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1296 secondary_reload_class (CLASS, MODE, IN)
1298 /* If we are copying between FP or AltiVec registers and anything
1299 else, we need a memory location. */
1301 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1302 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1303 || (CLASS2) == FLOAT_REGS \
1304 || (CLASS1) == ALTIVEC_REGS \
1305 || (CLASS2) == ALTIVEC_REGS))
1307 /* Return the maximum number of consecutive registers
1308 needed to represent mode MODE in a register of class CLASS.
1310 On RS/6000, this is the size of MODE in words,
1311 except in the FP regs, where a single reg is enough for two words. */
1312 #define CLASS_MAX_NREGS(CLASS, MODE) \
1313 (((CLASS) == FLOAT_REGS) \
1314 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1315 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1317 /* If defined, gives a class of registers that cannot be used as the
1318 operand of a SUBREG that changes the mode of the object illegally. */
1320 #define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1322 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1324 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1325 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1327 /* Stack layout; function entry, exit and calling. */
1329 /* Enumeration to give which calling sequence to use. */
1330 enum rs6000_abi {
1331 ABI_NONE,
1332 ABI_AIX, /* IBM's AIX */
1333 ABI_AIX_NODESC, /* AIX calling sequence minus
1334 function descriptors */
1335 ABI_V4, /* System V.4/eabi */
1336 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1339 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1341 /* Structure used to define the rs6000 stack */
1342 typedef struct rs6000_stack {
1343 int first_gp_reg_save; /* first callee saved GP register used */
1344 int first_fp_reg_save; /* first callee saved FP register used */
1345 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1346 int lr_save_p; /* true if the link reg needs to be saved */
1347 int cr_save_p; /* true if the CR reg needs to be saved */
1348 unsigned int vrsave_mask; /* mask of vec registers to save */
1349 int toc_save_p; /* true if the TOC needs to be saved */
1350 int push_p; /* true if we need to allocate stack space */
1351 int calls_p; /* true if the function makes any calls */
1352 enum rs6000_abi abi; /* which ABI to use */
1353 int gp_save_offset; /* offset to save GP regs from initial SP */
1354 int fp_save_offset; /* offset to save FP regs from initial SP */
1355 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
1356 int lr_save_offset; /* offset to save LR from initial SP */
1357 int cr_save_offset; /* offset to save CR from initial SP */
1358 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1359 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1360 int toc_save_offset; /* offset to save the TOC pointer */
1361 int varargs_save_offset; /* offset to save the varargs registers */
1362 int ehrd_offset; /* offset to EH return data */
1363 int reg_size; /* register size (4 or 8) */
1364 int varargs_size; /* size to hold V.4 args passed in regs */
1365 int vars_size; /* variable save area size */
1366 int parm_size; /* outgoing parameter size */
1367 int save_size; /* save area size */
1368 int fixed_size; /* fixed size of stack frame */
1369 int gp_size; /* size of saved GP registers */
1370 int fp_size; /* size of saved FP registers */
1371 int altivec_size; /* size of saved AltiVec registers */
1372 int cr_size; /* size to hold CR if not in save_size */
1373 int lr_size; /* size to hold LR if not in save_size */
1374 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1375 int altivec_padding_size; /* size of altivec alignment padding if
1376 not in save_size */
1377 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1378 int spe_padding_size;
1379 int toc_size; /* size to hold TOC if not in save_size */
1380 int total_size; /* total bytes allocated for stack */
1381 } rs6000_stack_t;
1383 /* Define this if pushing a word on the stack
1384 makes the stack pointer a smaller address. */
1385 #define STACK_GROWS_DOWNWARD
1387 /* Define this if the nominal address of the stack frame
1388 is at the high-address end of the local variables;
1389 that is, each additional local variable allocated
1390 goes at a more negative offset in the frame.
1392 On the RS/6000, we grow upwards, from the area after the outgoing
1393 arguments. */
1394 /* #define FRAME_GROWS_DOWNWARD */
1396 /* Size of the outgoing register save area */
1397 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1398 || DEFAULT_ABI == ABI_AIX_NODESC \
1399 || DEFAULT_ABI == ABI_DARWIN) \
1400 ? (TARGET_64BIT ? 64 : 32) \
1401 : 0)
1403 /* Size of the fixed area on the stack */
1404 #define RS6000_SAVE_AREA \
1405 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1406 << (TARGET_64BIT ? 1 : 0))
1408 /* MEM representing address to save the TOC register */
1409 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1410 plus_constant (stack_pointer_rtx, \
1411 (TARGET_32BIT ? 20 : 40)))
1413 /* Size of the V.4 varargs area if needed */
1414 #define RS6000_VARARGS_AREA 0
1416 /* Align an address */
1417 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1419 /* Size of V.4 varargs area in bytes */
1420 #define RS6000_VARARGS_SIZE \
1421 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1423 /* Offset within stack frame to start allocating local variables at.
1424 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1425 first local allocated. Otherwise, it is the offset to the BEGINNING
1426 of the first local allocated.
1428 On the RS/6000, the frame pointer is the same as the stack pointer,
1429 except for dynamic allocations. So we start after the fixed area and
1430 outgoing parameter area. */
1432 #define STARTING_FRAME_OFFSET \
1433 (RS6000_ALIGN (current_function_outgoing_args_size, \
1434 TARGET_ALTIVEC ? 16 : 8) \
1435 + RS6000_VARARGS_AREA \
1436 + RS6000_SAVE_AREA)
1438 /* Offset from the stack pointer register to an item dynamically
1439 allocated on the stack, e.g., by `alloca'.
1441 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1442 length of the outgoing arguments. The default is correct for most
1443 machines. See `function.c' for details. */
1444 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1445 (RS6000_ALIGN (current_function_outgoing_args_size, \
1446 TARGET_ALTIVEC ? 16 : 8) \
1447 + (STACK_POINTER_OFFSET))
1449 /* If we generate an insn to push BYTES bytes,
1450 this says how many the stack pointer really advances by.
1451 On RS/6000, don't define this because there are no push insns. */
1452 /* #define PUSH_ROUNDING(BYTES) */
1454 /* Offset of first parameter from the argument pointer register value.
1455 On the RS/6000, we define the argument pointer to the start of the fixed
1456 area. */
1457 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1459 /* Offset from the argument pointer register value to the top of
1460 stack. This is different from FIRST_PARM_OFFSET because of the
1461 register save area. */
1462 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1464 /* Define this if stack space is still allocated for a parameter passed
1465 in a register. The value is the number of bytes allocated to this
1466 area. */
1467 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1469 /* Define this if the above stack space is to be considered part of the
1470 space allocated by the caller. */
1471 #define OUTGOING_REG_PARM_STACK_SPACE
1473 /* This is the difference between the logical top of stack and the actual sp.
1475 For the RS/6000, sp points past the fixed area. */
1476 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1478 /* Define this if the maximum size of all the outgoing args is to be
1479 accumulated and pushed during the prologue. The amount can be
1480 found in the variable current_function_outgoing_args_size. */
1481 #define ACCUMULATE_OUTGOING_ARGS 1
1483 /* Value is the number of bytes of arguments automatically
1484 popped when returning from a subroutine call.
1485 FUNDECL is the declaration node of the function (as a tree),
1486 FUNTYPE is the data type of the function (as a tree),
1487 or for a library call it is an identifier node for the subroutine name.
1488 SIZE is the number of bytes of arguments passed on the stack. */
1490 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1492 /* Define how to find the value returned by a function.
1493 VALTYPE is the data type of the value (as a tree).
1494 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1495 otherwise, FUNC is 0.
1497 On the SPE, both FPs and vectors are returned in r3.
1499 On RS/6000 an integer value is in r3 and a floating-point value is in
1500 fp1, unless -msoft-float. */
1502 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1503 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1504 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1505 || POINTER_TYPE_P (VALTYPE) \
1506 ? word_mode : TYPE_MODE (VALTYPE), \
1507 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1508 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
1509 : TREE_CODE (VALTYPE) == REAL_TYPE \
1510 && TARGET_SPE_ABI && !TARGET_FPRS \
1511 ? GP_ARG_RETURN \
1512 : TREE_CODE (VALTYPE) == REAL_TYPE \
1513 && TARGET_HARD_FLOAT && TARGET_FPRS \
1514 ? FP_ARG_RETURN : GP_ARG_RETURN)
1516 /* Define how to find the value returned by a library function
1517 assuming the value has mode MODE. */
1519 #define LIBCALL_VALUE(MODE) \
1520 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1521 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1522 && TARGET_HARD_FLOAT && TARGET_FPRS \
1523 ? FP_ARG_RETURN : GP_ARG_RETURN)
1525 /* The AIX ABI for the RS/6000 specifies that all structures are
1526 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1527 specifies that structures <= 8 bytes are returned in r3/r4, but a
1528 draft put them in memory, and GCC used to implement the draft
1529 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1530 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1531 compatibility can change DRAFT_V4_STRUCT_RET to override the
1532 default, and -m switches get the final word. See
1533 rs6000_override_options for more details.
1535 int_size_in_bytes returns -1 for variable size objects, which go in
1536 memory always. The cast to unsigned makes -1 > 8. */
1538 #define RETURN_IN_MEMORY(TYPE) \
1539 (AGGREGATE_TYPE_P (TYPE) && \
1540 (TARGET_AIX_STRUCT_RET || \
1541 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
1543 /* DRAFT_V4_STRUCT_RET defaults off. */
1544 #define DRAFT_V4_STRUCT_RET 0
1546 /* Let RETURN_IN_MEMORY control what happens. */
1547 #define DEFAULT_PCC_STRUCT_RETURN 0
1549 /* Mode of stack savearea.
1550 FUNCTION is VOIDmode because calling convention maintains SP.
1551 BLOCK needs Pmode for SP.
1552 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1553 #define STACK_SAVEAREA_MODE(LEVEL) \
1554 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1555 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1557 /* Minimum and maximum general purpose registers used to hold arguments. */
1558 #define GP_ARG_MIN_REG 3
1559 #define GP_ARG_MAX_REG 10
1560 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1562 /* Minimum and maximum floating point registers used to hold arguments. */
1563 #define FP_ARG_MIN_REG 33
1564 #define FP_ARG_AIX_MAX_REG 45
1565 #define FP_ARG_V4_MAX_REG 40
1566 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1567 || DEFAULT_ABI == ABI_AIX_NODESC \
1568 || DEFAULT_ABI == ABI_DARWIN) \
1569 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1570 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1572 /* Minimum and maximum AltiVec registers used to hold arguments. */
1573 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1574 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1575 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1577 /* Return registers */
1578 #define GP_ARG_RETURN GP_ARG_MIN_REG
1579 #define FP_ARG_RETURN FP_ARG_MIN_REG
1580 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1582 /* Flags for the call/call_value rtl operations set up by function_arg */
1583 #define CALL_NORMAL 0x00000000 /* no special processing */
1584 /* Bits in 0x00000001 are unused. */
1585 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1586 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1587 #define CALL_LONG 0x00000008 /* always call indirect */
1589 /* 1 if N is a possible register number for a function value
1590 as seen by the caller.
1592 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1593 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1594 || ((N) == FP_ARG_RETURN) \
1595 || (TARGET_ALTIVEC && \
1596 (N) == ALTIVEC_ARG_RETURN))
1598 /* 1 if N is a possible register number for function argument passing.
1599 On RS/6000, these are r3-r10 and fp1-fp13.
1600 On AltiVec, v2 - v13 are used for passing vectors. */
1601 #define FUNCTION_ARG_REGNO_P(N) \
1602 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1603 || (TARGET_ALTIVEC && \
1604 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
1605 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1608 /* A C structure for machine-specific, per-function data.
1609 This is added to the cfun structure. */
1610 typedef struct machine_function GTY(())
1612 /* Whether a System V.4 varargs area was created. */
1613 int sysv_varargs_p;
1614 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1615 int ra_needs_full_frame;
1616 } machine_function;
1618 /* Define a data type for recording info about an argument list
1619 during the scan of that argument list. This data type should
1620 hold all necessary information about the function itself
1621 and about the args processed so far, enough to enable macros
1622 such as FUNCTION_ARG to determine where the next arg should go.
1624 On the RS/6000, this is a structure. The first element is the number of
1625 total argument words, the second is used to store the next
1626 floating-point register number, and the third says how many more args we
1627 have prototype types for.
1629 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1630 the next availible GP register, `fregno' is the next available FP
1631 register, and `words' is the number of words used on the stack.
1633 The varargs/stdarg support requires that this structure's size
1634 be a multiple of sizeof(int). */
1636 typedef struct rs6000_args
1638 int words; /* # words used for passing GP registers */
1639 int fregno; /* next available FP register */
1640 int vregno; /* next available AltiVec register */
1641 int nargs_prototype; /* # args left in the current prototype */
1642 int orig_nargs; /* Original value of nargs_prototype */
1643 int prototype; /* Whether a prototype was defined */
1644 int call_cookie; /* Do special things for this call */
1645 int sysv_gregno; /* next available GP register */
1646 } CUMULATIVE_ARGS;
1648 /* Define intermediate macro to compute the size (in registers) of an argument
1649 for the RS/6000. */
1651 #define RS6000_ARG_SIZE(MODE, TYPE) \
1652 ((MODE) != BLKmode \
1653 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1654 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1656 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1657 for a call to a function whose data type is FNTYPE.
1658 For a library call, FNTYPE is 0. */
1660 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1661 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1663 /* Similar, but when scanning the definition of a procedure. We always
1664 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1666 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1667 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1669 /* Update the data in CUM to advance over an argument
1670 of mode MODE and data type TYPE.
1671 (TYPE is null for libcalls where that information may not be available.) */
1673 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1674 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1676 /* Nonzero if we can use a floating-point register to pass this arg. */
1677 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1678 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1679 && (CUM).fregno <= FP_ARG_MAX_REG \
1680 && TARGET_HARD_FLOAT && TARGET_FPRS)
1682 /* Nonzero if we can use an AltiVec register to pass this arg. */
1683 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1684 (ALTIVEC_VECTOR_MODE (MODE) \
1685 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1686 && TARGET_ALTIVEC_ABI)
1688 /* Determine where to put an argument to a function.
1689 Value is zero to push the argument on the stack,
1690 or a hard register in which to store the argument.
1692 MODE is the argument's machine mode.
1693 TYPE is the data type of the argument (as a tree).
1694 This is null for libcalls where that information may
1695 not be available.
1696 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1697 the preceding args and about the function being called.
1698 NAMED is nonzero if this argument is a named parameter
1699 (otherwise it is an extra parameter matching an ellipsis).
1701 On RS/6000 the first eight words of non-FP are normally in registers
1702 and the rest are pushed. The first 13 FP args are in registers.
1704 If this is floating-point and no prototype is specified, we use
1705 both an FP and integer register (or possibly FP reg and stack). Library
1706 functions (when TYPE is zero) always have the proper types for args,
1707 so we can pass the FP value just in one register. emit_library_function
1708 doesn't support EXPR_LIST anyway. */
1710 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1711 function_arg (&CUM, MODE, TYPE, NAMED)
1713 /* For an arg passed partly in registers and partly in memory,
1714 this is the number of registers used.
1715 For args passed entirely in registers or entirely in memory, zero. */
1717 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1718 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1720 /* A C expression that indicates when an argument must be passed by
1721 reference. If nonzero for an argument, a copy of that argument is
1722 made in memory and a pointer to the argument is passed instead of
1723 the argument itself. The pointer is passed in whatever way is
1724 appropriate for passing a pointer to that type. */
1726 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1727 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1729 /* If defined, a C expression which determines whether, and in which
1730 direction, to pad out an argument with extra space. The value
1731 should be of type `enum direction': either `upward' to pad above
1732 the argument, `downward' to pad below, or `none' to inhibit
1733 padding. */
1735 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1737 /* If defined, a C expression that gives the alignment boundary, in bits,
1738 of an argument with the specified mode and type. If it is not defined,
1739 PARM_BOUNDARY is used for all arguments. */
1741 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1742 function_arg_boundary (MODE, TYPE)
1744 /* Perform any needed actions needed for a function that is receiving a
1745 variable number of arguments.
1747 CUM is as above.
1749 MODE and TYPE are the mode and type of the current parameter.
1751 PRETEND_SIZE is a variable that should be set to the amount of stack
1752 that must be pushed by the prolog to pretend that our caller pushed
1755 Normally, this macro will push all remaining incoming registers on the
1756 stack and set PRETEND_SIZE to the length of the registers pushed. */
1758 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1759 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1761 /* Define the `__builtin_va_list' type for the ABI. */
1762 #define BUILD_VA_LIST_TYPE(VALIST) \
1763 (VALIST) = rs6000_build_va_list ()
1765 /* Implement `va_start' for varargs and stdarg. */
1766 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1767 rs6000_va_start (valist, nextarg)
1769 /* Implement `va_arg'. */
1770 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1771 rs6000_va_arg (valist, type)
1773 /* For AIX, the rule is that structures are passed left-aligned in
1774 their stack slot. However, GCC does not presently do this:
1775 structures which are the same size as integer types are passed
1776 right-aligned, as if they were in fact integers. This only
1777 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1778 ABI_V4 does not use std_expand_builtin_va_arg. */
1779 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1781 /* Define this macro to be a nonzero value if the location where a function
1782 argument is passed depends on whether or not it is a named argument. */
1783 #define STRICT_ARGUMENT_NAMING 1
1785 /* We do not allow indirect calls to be optimized into sibling calls, nor
1786 do we allow calls with vector parameters. */
1787 #define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1789 /* Output assembler code to FILE to increment profiler label # LABELNO
1790 for profiling a function entry. */
1792 #define FUNCTION_PROFILER(FILE, LABELNO) \
1793 output_function_profiler ((FILE), (LABELNO));
1795 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1796 the stack pointer does not matter. No definition is equivalent to
1797 always zero.
1799 On the RS/6000, this is nonzero because we can restore the stack from
1800 its backpointer, which we maintain. */
1801 #define EXIT_IGNORE_STACK 1
1803 /* Define this macro as a C expression that is nonzero for registers
1804 that are used by the epilogue or the return' pattern. The stack
1805 and frame pointer registers are already be assumed to be used as
1806 needed. */
1808 #define EPILOGUE_USES(REGNO) \
1809 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1810 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1811 || (current_function_calls_eh_return \
1812 && TARGET_AIX \
1813 && (REGNO) == TOC_REGISTER))
1816 /* TRAMPOLINE_TEMPLATE deleted */
1818 /* Length in units of the trampoline for entering a nested function. */
1820 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1822 /* Emit RTL insns to initialize the variable parts of a trampoline.
1823 FNADDR is an RTX for the address of the function's pure code.
1824 CXT is an RTX for the static chain value for the function. */
1826 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1827 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1829 /* Definitions for __builtin_return_address and __builtin_frame_address.
1830 __builtin_return_address (0) should give link register (65), enable
1831 this. */
1832 /* This should be uncommented, so that the link register is used, but
1833 currently this would result in unmatched insns and spilling fixed
1834 registers so we'll leave it for another day. When these problems are
1835 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1836 (mrs) */
1837 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1839 /* Number of bytes into the frame return addresses can be found. See
1840 rs6000_stack_info in rs6000.c for more information on how the different
1841 abi's store the return address. */
1842 #define RETURN_ADDRESS_OFFSET \
1843 ((DEFAULT_ABI == ABI_AIX \
1844 || DEFAULT_ABI == ABI_DARWIN \
1845 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
1846 (DEFAULT_ABI == ABI_V4) ? 4 : \
1847 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1849 /* The current return address is in link register (65). The return address
1850 of anything farther back is accessed normally at an offset of 8 from the
1851 frame pointer. */
1852 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1853 (rs6000_return_addr (COUNT, FRAME))
1856 /* Definitions for register eliminations.
1858 We have two registers that can be eliminated on the RS/6000. First, the
1859 frame pointer register can often be eliminated in favor of the stack
1860 pointer register. Secondly, the argument pointer register can always be
1861 eliminated; it is replaced with either the stack or frame pointer.
1863 In addition, we use the elimination mechanism to see if r30 is needed
1864 Initially we assume that it isn't. If it is, we spill it. This is done
1865 by making it an eliminable register. We replace it with itself so that
1866 if it isn't needed, then existing uses won't be modified. */
1868 /* This is an array of structures. Each structure initializes one pair
1869 of eliminable registers. The "from" register number is given first,
1870 followed by "to". Eliminations of the same "from" register are listed
1871 in order of preference. */
1872 #define ELIMINABLE_REGS \
1873 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1874 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1875 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1876 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1878 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1879 Frame pointer elimination is automatically handled.
1881 For the RS/6000, if frame pointer elimination is being done, we would like
1882 to convert ap into fp, not sp.
1884 We need r30 if -mminimal-toc was specified, and there are constant pool
1885 references. */
1887 #define CAN_ELIMINATE(FROM, TO) \
1888 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1889 ? ! frame_pointer_needed \
1890 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1891 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1892 : 1)
1894 /* Define the offset between two registers, one to be eliminated, and the other
1895 its replacement, at the start of a routine. */
1896 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1898 rs6000_stack_t *info = rs6000_stack_info (); \
1900 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1901 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1902 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1903 (OFFSET) = info->total_size; \
1904 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1905 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1906 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
1907 (OFFSET) = 0; \
1908 else \
1909 abort (); \
1912 /* Addressing modes, and classification of registers for them. */
1914 /* #define HAVE_POST_INCREMENT 0 */
1915 /* #define HAVE_POST_DECREMENT 0 */
1917 #define HAVE_PRE_DECREMENT 1
1918 #define HAVE_PRE_INCREMENT 1
1920 /* Macros to check register numbers against specific register classes. */
1922 /* These assume that REGNO is a hard or pseudo reg number.
1923 They give nonzero only if REGNO is a hard reg of the suitable class
1924 or a pseudo reg currently allocated to a suitable hard reg.
1925 Since they use reg_renumber, they are safe only once reg_renumber
1926 has been allocated, which happens in local-alloc.c. */
1928 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1929 ((REGNO) < FIRST_PSEUDO_REGISTER \
1930 ? (REGNO) <= 31 || (REGNO) == 67 \
1931 : (reg_renumber[REGNO] >= 0 \
1932 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1934 #define REGNO_OK_FOR_BASE_P(REGNO) \
1935 ((REGNO) < FIRST_PSEUDO_REGISTER \
1936 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1937 : (reg_renumber[REGNO] > 0 \
1938 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1940 /* Maximum number of registers that can appear in a valid memory address. */
1942 #define MAX_REGS_PER_ADDRESS 2
1944 /* Recognize any constant value that is a valid address. */
1946 #define CONSTANT_ADDRESS_P(X) \
1947 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1948 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1949 || GET_CODE (X) == HIGH)
1951 /* Nonzero if the constant value X is a legitimate general operand.
1952 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1954 On the RS/6000, all integer constants are acceptable, most won't be valid
1955 for particular insns, though. Only easy FP constants are
1956 acceptable. */
1958 #define LEGITIMATE_CONSTANT_P(X) \
1959 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1960 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1961 || easy_fp_constant (X, GET_MODE (X)))
1963 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1964 and check its validity for a certain class.
1965 We have two alternate definitions for each of them.
1966 The usual definition accepts all pseudo regs; the other rejects
1967 them unless they have been allocated suitable hard regs.
1968 The symbol REG_OK_STRICT causes the latter definition to be used.
1970 Most source files want to accept pseudo regs in the hope that
1971 they will get allocated to the class that the insn wants them to be in.
1972 Source files for reload pass need to be strict.
1973 After reload, it makes no difference, since pseudo regs have
1974 been eliminated by then. */
1976 #ifdef REG_OK_STRICT
1977 # define REG_OK_STRICT_FLAG 1
1978 #else
1979 # define REG_OK_STRICT_FLAG 0
1980 #endif
1982 /* Nonzero if X is a hard reg that can be used as an index
1983 or if it is a pseudo reg in the non-strict case. */
1984 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1985 ((! (STRICT) \
1986 && (REGNO (X) <= 31 \
1987 || REGNO (X) == ARG_POINTER_REGNUM \
1988 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1989 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
1991 /* Nonzero if X is a hard reg that can be used as a base reg
1992 or if it is a pseudo reg in the non-strict case. */
1993 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1994 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
1996 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1997 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1999 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2000 that is a valid memory address for an instruction.
2001 The MODE argument is the machine mode for the MEM expression
2002 that wants to use this address.
2004 On the RS/6000, there are four valid address: a SYMBOL_REF that
2005 refers to a constant pool entry of an address (or the sum of it
2006 plus a constant), a short (16-bit signed) constant plus a register,
2007 the sum of two registers, or a register indirect, possibly with an
2008 auto-increment. For DFmode and DImode with an constant plus register,
2009 we must ensure that both words are addressable or PowerPC64 with offset
2010 word aligned.
2012 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2013 32-bit DImode, TImode), indexed addressing cannot be used because
2014 adjacent memory cells are accessed by adding word-sized offsets
2015 during assembly output. */
2017 #define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2019 #define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2021 /* SPE offset addressing is limited to 5-bits worth of double words. */
2022 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
2024 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
2025 (TARGET_TOC \
2026 && GET_CODE (X) == PLUS \
2027 && GET_CODE (XEXP (X, 0)) == REG \
2028 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2029 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2031 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
2032 (DEFAULT_ABI == ABI_V4 \
2033 && !flag_pic && !TARGET_TOC \
2034 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2035 && small_data_operand (X, MODE))
2037 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
2038 (GET_CODE (X) == CONST_INT \
2039 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2041 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2042 (GET_CODE (X) == PLUS \
2043 && GET_CODE (XEXP (X, 0)) == REG \
2044 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2045 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
2046 && (! ALTIVEC_VECTOR_MODE (MODE) \
2047 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2048 && (! SPE_VECTOR_MODE (MODE) \
2049 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2050 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
2051 && (((MODE) != DFmode && (MODE) != DImode) \
2052 || (TARGET_32BIT \
2053 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2054 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2055 && (((MODE) != TFmode && (MODE) != TImode) \
2056 || (TARGET_32BIT \
2057 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2058 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
2059 && ! (INTVAL (XEXP (X, 1)) & 3)))))
2061 #define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2062 (GET_CODE (X) == PLUS \
2063 && GET_CODE (XEXP (X, 0)) == REG \
2064 && GET_CODE (XEXP (X, 1)) == REG \
2065 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2066 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2067 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2068 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2070 #define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2071 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2073 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2074 (TARGET_ELF \
2075 && ! flag_pic && ! TARGET_TOC \
2076 && GET_MODE_NUNITS (MODE) == 1 \
2077 && (GET_MODE_BITSIZE (MODE) <= 32 \
2078 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
2079 && GET_CODE (X) == LO_SUM \
2080 && GET_CODE (XEXP (X, 0)) == REG \
2081 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2082 && CONSTANT_P (XEXP (X, 1)))
2084 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2085 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2086 goto ADDR; \
2089 /* Try machine-dependent ways of modifying an illegitimate address
2090 to be legitimate. If we find one, return the new, valid address.
2091 This macro is used in only one place: `memory_address' in explow.c.
2093 OLDX is the address as it was before break_out_memory_refs was called.
2094 In some cases it is useful to look at this to decide what needs to be done.
2096 MODE and WIN are passed so that this macro can use
2097 GO_IF_LEGITIMATE_ADDRESS.
2099 It is always safe for this macro to do nothing. It exists to recognize
2100 opportunities to optimize the output.
2102 On RS/6000, first check for the sum of a register with a constant
2103 integer that is out of range. If so, generate code to add the
2104 constant with the low-order 16 bits masked to the register and force
2105 this result into another register (this can be done with `cau').
2106 Then generate an address of REG+(CONST&0xffff), allowing for the
2107 possibility of bit 16 being a one.
2109 Then check for the sum of a register and something not constant, try to
2110 load the other things into a register and return the sum. */
2112 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2113 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2114 if (result != NULL_RTX) \
2116 (X) = result; \
2117 goto WIN; \
2121 /* Try a machine-dependent way of reloading an illegitimate address
2122 operand. If we find one, push the reload and jump to WIN. This
2123 macro is used in only one place: `find_reloads_address' in reload.c.
2125 Implemented on rs6000 by rs6000_legitimize_reload_address.
2126 Note that (X) is evaluated twice; this is safe in current usage. */
2128 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2129 do { \
2130 int win; \
2131 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2132 (int)(TYPE), (IND_LEVELS), &win); \
2133 if ( win ) \
2134 goto WIN; \
2135 } while (0)
2137 /* Go to LABEL if ADDR (a legitimate address expression)
2138 has an effect that depends on the machine mode it is used for.
2140 On the RS/6000 this is true if the address is valid with a zero offset
2141 but not with an offset of four (this means it cannot be used as an
2142 address for DImode or DFmode) or is a pre-increment or decrement. Since
2143 we know it is valid, we just check for an address that is not valid with
2144 an offset of four. */
2146 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2147 { if (GET_CODE (ADDR) == PLUS \
2148 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2149 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2150 (TARGET_32BIT ? 4 : 8))) \
2151 goto LABEL; \
2152 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2153 goto LABEL; \
2154 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2155 goto LABEL; \
2156 if (GET_CODE (ADDR) == LO_SUM) \
2157 goto LABEL; \
2160 /* The register number of the register used to address a table of
2161 static data addresses in memory. In some cases this register is
2162 defined by a processor's "application binary interface" (ABI).
2163 When this macro is defined, RTL is generated for this register
2164 once, as with the stack pointer and frame pointer registers. If
2165 this macro is not defined, it is up to the machine-dependent files
2166 to allocate such a register (if necessary). */
2168 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2169 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2171 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2173 /* Define this macro if the register defined by
2174 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2175 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2177 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2179 /* By generating position-independent code, when two different
2180 programs (A and B) share a common library (libC.a), the text of
2181 the library can be shared whether or not the library is linked at
2182 the same address for both programs. In some of these
2183 environments, position-independent code requires not only the use
2184 of different addressing modes, but also special code to enable the
2185 use of these addressing modes.
2187 The `FINALIZE_PIC' macro serves as a hook to emit these special
2188 codes once the function is being compiled into assembly code, but
2189 not before. (It is not done before, because in the case of
2190 compiling an inline function, it would lead to multiple PIC
2191 prologues being included in functions which used inline functions
2192 and were compiled to assembly language.) */
2194 /* #define FINALIZE_PIC */
2196 /* A C expression that is nonzero if X is a legitimate immediate
2197 operand on the target machine when generating position independent
2198 code. You can assume that X satisfies `CONSTANT_P', so you need
2199 not check this. You can also assume FLAG_PIC is true, so you need
2200 not check it either. You need not define this macro if all
2201 constants (including `SYMBOL_REF') can be immediate operands when
2202 generating position independent code. */
2204 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2206 /* In rare cases, correct code generation requires extra machine
2207 dependent processing between the second jump optimization pass and
2208 delayed branch scheduling. On those machines, define this macro
2209 as a C statement to act on the code starting at INSN. */
2211 /* #define MACHINE_DEPENDENT_REORG(INSN) */
2214 /* Define this if some processing needs to be done immediately before
2215 emitting code for an insn. */
2217 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2219 /* Specify the machine mode that this machine uses
2220 for the index in the tablejump instruction. */
2221 #define CASE_VECTOR_MODE SImode
2223 /* Define as C expression which evaluates to nonzero if the tablejump
2224 instruction expects the table to contain offsets from the address of the
2225 table.
2226 Do not define this if the table should contain absolute addresses. */
2227 #define CASE_VECTOR_PC_RELATIVE 1
2229 /* Define this as 1 if `char' should by default be signed; else as 0. */
2230 #define DEFAULT_SIGNED_CHAR 0
2232 /* This flag, if defined, says the same insns that convert to a signed fixnum
2233 also convert validly to an unsigned one. */
2235 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2237 /* Max number of bytes we can move from memory to memory
2238 in one reasonably fast instruction. */
2239 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2240 #define MAX_MOVE_MAX 8
2242 /* Nonzero if access to memory by bytes is no faster than for words.
2243 Also nonzero if doing byte operations (specifically shifts) in registers
2244 is undesirable. */
2245 #define SLOW_BYTE_ACCESS 1
2247 /* Define if operations between registers always perform the operation
2248 on the full register even if a narrower mode is specified. */
2249 #define WORD_REGISTER_OPERATIONS
2251 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2252 will either zero-extend or sign-extend. The value of this macro should
2253 be the code that says which one of the two operations is implicitly
2254 done, NIL if none. */
2255 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2257 /* Define if loading short immediate values into registers sign extends. */
2258 #define SHORT_IMMEDIATES_SIGN_EXTEND
2260 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2261 is done just by pretending it is already truncated. */
2262 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2264 /* Specify the machine mode that pointers have.
2265 After generation of rtl, the compiler makes no further distinction
2266 between pointers and any other objects of this machine mode. */
2267 #define Pmode (TARGET_32BIT ? SImode : DImode)
2269 /* Mode of a function address in a call instruction (for indexing purposes).
2270 Doesn't matter on RS/6000. */
2271 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2273 /* Define this if addresses of constant functions
2274 shouldn't be put through pseudo regs where they can be cse'd.
2275 Desirable on machines where ordinary constants are expensive
2276 but a CALL with constant address is cheap. */
2277 #define NO_FUNCTION_CSE
2279 /* Define this to be nonzero if shift instructions ignore all but the low-order
2280 few bits.
2282 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2283 have been dropped from the PowerPC architecture. */
2285 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2287 /* Compute the cost of computing a constant rtl expression RTX
2288 whose rtx-code is CODE. The body of this macro is a portion
2289 of a switch statement. If the code is computed here,
2290 return it with a return statement. Otherwise, break from the switch.
2292 On the RS/6000, if it is valid in the insn, it is free. So this
2293 always returns 0. */
2295 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2296 case CONST_INT: \
2297 case CONST: \
2298 case LABEL_REF: \
2299 case SYMBOL_REF: \
2300 case CONST_DOUBLE: \
2301 case HIGH: \
2302 return 0;
2304 /* Provide the costs of a rtl expression. This is in the body of a
2305 switch on CODE. */
2307 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2308 case PLUS: \
2309 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2310 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2311 + 0x8000) >= 0x10000) \
2312 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2313 ? COSTS_N_INSNS (2) \
2314 : COSTS_N_INSNS (1)); \
2315 case AND: \
2316 case IOR: \
2317 case XOR: \
2318 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2319 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2320 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2321 ? COSTS_N_INSNS (2) \
2322 : COSTS_N_INSNS (1)); \
2323 case MULT: \
2324 if (optimize_size) \
2325 return COSTS_N_INSNS (2); \
2326 switch (rs6000_cpu) \
2328 case PROCESSOR_RIOS1: \
2329 case PROCESSOR_PPC405: \
2330 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2331 ? COSTS_N_INSNS (5) \
2332 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2333 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2334 case PROCESSOR_RS64A: \
2335 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2336 ? GET_MODE (XEXP (X, 1)) != DImode \
2337 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2338 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2339 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
2340 case PROCESSOR_RIOS2: \
2341 case PROCESSOR_MPCCORE: \
2342 case PROCESSOR_PPC604e: \
2343 return COSTS_N_INSNS (2); \
2344 case PROCESSOR_PPC601: \
2345 return COSTS_N_INSNS (5); \
2346 case PROCESSOR_PPC603: \
2347 case PROCESSOR_PPC7400: \
2348 case PROCESSOR_PPC750: \
2349 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2350 ? COSTS_N_INSNS (5) \
2351 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2352 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2353 case PROCESSOR_PPC7450: \
2354 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2355 ? COSTS_N_INSNS (4) \
2356 : COSTS_N_INSNS (3)); \
2357 case PROCESSOR_PPC403: \
2358 case PROCESSOR_PPC604: \
2359 case PROCESSOR_PPC8540: \
2360 return COSTS_N_INSNS (4); \
2361 case PROCESSOR_PPC620: \
2362 case PROCESSOR_PPC630: \
2363 case PROCESSOR_POWER4: \
2364 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2365 ? GET_MODE (XEXP (X, 1)) != DImode \
2366 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
2367 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2368 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2370 case DIV: \
2371 case MOD: \
2372 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2373 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2374 return COSTS_N_INSNS (2); \
2375 /* otherwise fall through to normal divide. */ \
2376 case UDIV: \
2377 case UMOD: \
2378 switch (rs6000_cpu) \
2380 case PROCESSOR_RIOS1: \
2381 return COSTS_N_INSNS (19); \
2382 case PROCESSOR_RIOS2: \
2383 return COSTS_N_INSNS (13); \
2384 case PROCESSOR_RS64A: \
2385 return (GET_MODE (XEXP (X, 1)) != DImode \
2386 ? COSTS_N_INSNS (65) \
2387 : COSTS_N_INSNS (67)); \
2388 case PROCESSOR_MPCCORE: \
2389 return COSTS_N_INSNS (6); \
2390 case PROCESSOR_PPC403: \
2391 return COSTS_N_INSNS (33); \
2392 case PROCESSOR_PPC405: \
2393 return COSTS_N_INSNS (35); \
2394 case PROCESSOR_PPC601: \
2395 return COSTS_N_INSNS (36); \
2396 case PROCESSOR_PPC603: \
2397 return COSTS_N_INSNS (37); \
2398 case PROCESSOR_PPC604: \
2399 case PROCESSOR_PPC604e: \
2400 return COSTS_N_INSNS (20); \
2401 case PROCESSOR_PPC620: \
2402 case PROCESSOR_PPC630: \
2403 case PROCESSOR_POWER4: \
2404 return (GET_MODE (XEXP (X, 1)) != DImode \
2405 ? COSTS_N_INSNS (21) \
2406 : COSTS_N_INSNS (37)); \
2407 case PROCESSOR_PPC750: \
2408 case PROCESSOR_PPC8540: \
2409 case PROCESSOR_PPC7400: \
2410 return COSTS_N_INSNS (19); \
2411 case PROCESSOR_PPC7450: \
2412 return COSTS_N_INSNS (23); \
2414 case FFS: \
2415 return COSTS_N_INSNS (4); \
2416 case MEM: \
2417 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2418 return 5;
2420 /* Compute the cost of an address. This is meant to approximate the size
2421 and/or execution delay of an insn using that address. If the cost is
2422 approximated by the RTL complexity, including CONST_COSTS above, as
2423 is usually the case for CISC machines, this macro should not be defined.
2424 For aggressively RISCy machines, only one insn format is allowed, so
2425 this macro should be a constant. The value of this macro only matters
2426 for valid addresses.
2428 For the RS/6000, everything is cost 0. */
2430 #define ADDRESS_COST(RTX) 0
2432 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2433 should be adjusted to reflect any required changes. This macro is used when
2434 there is some systematic length adjustment required that would be difficult
2435 to express in the length attribute. */
2437 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2439 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2440 COMPARE, return the mode to be used for the comparison. For
2441 floating-point, CCFPmode should be used. CCUNSmode should be used
2442 for unsigned comparisons. CCEQmode should be used when we are
2443 doing an inequality comparison on the result of a
2444 comparison. CCmode should be used in all other cases. */
2446 #define SELECT_CC_MODE(OP,X,Y) \
2447 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2448 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2449 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2450 ? CCEQmode : CCmode))
2452 /* Define the information needed to generate branch and scc insns. This is
2453 stored from the compare operation. Note that we can't use "rtx" here
2454 since it hasn't been defined! */
2456 extern GTY(()) rtx rs6000_compare_op0;
2457 extern GTY(()) rtx rs6000_compare_op1;
2458 extern int rs6000_compare_fp_p;
2460 /* Control the assembler format that we output. */
2462 /* A C string constant describing how to begin a comment in the target
2463 assembler language. The compiler assumes that the comment will end at
2464 the end of the line. */
2465 #define ASM_COMMENT_START " #"
2467 /* Implicit library calls should use memcpy, not bcopy, etc. */
2469 #define TARGET_MEM_FUNCTIONS
2471 /* Flag to say the TOC is initialized */
2472 extern int toc_initialized;
2474 /* Macro to output a special constant pool entry. Go to WIN if we output
2475 it. Otherwise, it is written the usual way.
2477 On the RS/6000, toc entries are handled this way. */
2479 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2480 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2482 output_toc (FILE, X, LABELNO, MODE); \
2483 goto WIN; \
2487 #ifdef HAVE_GAS_WEAK
2488 #define RS6000_WEAK 1
2489 #else
2490 #define RS6000_WEAK 0
2491 #endif
2493 #if RS6000_WEAK
2494 /* Used in lieu of ASM_WEAKEN_LABEL. */
2495 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2496 do \
2498 fputs ("\t.weak\t", (FILE)); \
2499 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2500 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2501 && DEFAULT_ABI == ABI_AIX) \
2503 if (TARGET_XCOFF) \
2504 fputs ("[DS]", (FILE)); \
2505 fputs ("\n\t.weak\t.", (FILE)); \
2506 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2508 fputc ('\n', (FILE)); \
2509 if (VAL) \
2511 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2512 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2513 && DEFAULT_ABI == ABI_AIX) \
2515 fputs ("\t.set\t.", (FILE)); \
2516 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2517 fputs (",.", (FILE)); \
2518 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2519 fputc ('\n', (FILE)); \
2523 while (0)
2524 #endif
2526 /* This implements the `alias' attribute. */
2527 #undef ASM_OUTPUT_DEF_FROM_DECLS
2528 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2529 do \
2531 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2532 const char *name = IDENTIFIER_POINTER (TARGET); \
2533 if (TREE_CODE (DECL) == FUNCTION_DECL \
2534 && DEFAULT_ABI == ABI_AIX) \
2536 if (TREE_PUBLIC (DECL)) \
2538 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2540 fputs ("\t.globl\t.", FILE); \
2541 RS6000_OUTPUT_BASENAME (FILE, alias); \
2542 putc ('\n', FILE); \
2545 else if (TARGET_XCOFF) \
2547 fputs ("\t.lglobl\t.", FILE); \
2548 RS6000_OUTPUT_BASENAME (FILE, alias); \
2549 putc ('\n', FILE); \
2551 fputs ("\t.set\t.", FILE); \
2552 RS6000_OUTPUT_BASENAME (FILE, alias); \
2553 fputs (",.", FILE); \
2554 RS6000_OUTPUT_BASENAME (FILE, name); \
2555 fputc ('\n', FILE); \
2557 ASM_OUTPUT_DEF (FILE, alias, name); \
2559 while (0)
2561 /* Output to assembler file text saying following lines
2562 may contain character constants, extra white space, comments, etc. */
2564 #define ASM_APP_ON ""
2566 /* Output to assembler file text saying following lines
2567 no longer contain unusual constructs. */
2569 #define ASM_APP_OFF ""
2571 /* How to refer to registers in assembler output.
2572 This sequence is indexed by compiler's hard-register-number (see above). */
2574 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2576 #define REGISTER_NAMES \
2578 &rs6000_reg_names[ 0][0], /* r0 */ \
2579 &rs6000_reg_names[ 1][0], /* r1 */ \
2580 &rs6000_reg_names[ 2][0], /* r2 */ \
2581 &rs6000_reg_names[ 3][0], /* r3 */ \
2582 &rs6000_reg_names[ 4][0], /* r4 */ \
2583 &rs6000_reg_names[ 5][0], /* r5 */ \
2584 &rs6000_reg_names[ 6][0], /* r6 */ \
2585 &rs6000_reg_names[ 7][0], /* r7 */ \
2586 &rs6000_reg_names[ 8][0], /* r8 */ \
2587 &rs6000_reg_names[ 9][0], /* r9 */ \
2588 &rs6000_reg_names[10][0], /* r10 */ \
2589 &rs6000_reg_names[11][0], /* r11 */ \
2590 &rs6000_reg_names[12][0], /* r12 */ \
2591 &rs6000_reg_names[13][0], /* r13 */ \
2592 &rs6000_reg_names[14][0], /* r14 */ \
2593 &rs6000_reg_names[15][0], /* r15 */ \
2594 &rs6000_reg_names[16][0], /* r16 */ \
2595 &rs6000_reg_names[17][0], /* r17 */ \
2596 &rs6000_reg_names[18][0], /* r18 */ \
2597 &rs6000_reg_names[19][0], /* r19 */ \
2598 &rs6000_reg_names[20][0], /* r20 */ \
2599 &rs6000_reg_names[21][0], /* r21 */ \
2600 &rs6000_reg_names[22][0], /* r22 */ \
2601 &rs6000_reg_names[23][0], /* r23 */ \
2602 &rs6000_reg_names[24][0], /* r24 */ \
2603 &rs6000_reg_names[25][0], /* r25 */ \
2604 &rs6000_reg_names[26][0], /* r26 */ \
2605 &rs6000_reg_names[27][0], /* r27 */ \
2606 &rs6000_reg_names[28][0], /* r28 */ \
2607 &rs6000_reg_names[29][0], /* r29 */ \
2608 &rs6000_reg_names[30][0], /* r30 */ \
2609 &rs6000_reg_names[31][0], /* r31 */ \
2611 &rs6000_reg_names[32][0], /* fr0 */ \
2612 &rs6000_reg_names[33][0], /* fr1 */ \
2613 &rs6000_reg_names[34][0], /* fr2 */ \
2614 &rs6000_reg_names[35][0], /* fr3 */ \
2615 &rs6000_reg_names[36][0], /* fr4 */ \
2616 &rs6000_reg_names[37][0], /* fr5 */ \
2617 &rs6000_reg_names[38][0], /* fr6 */ \
2618 &rs6000_reg_names[39][0], /* fr7 */ \
2619 &rs6000_reg_names[40][0], /* fr8 */ \
2620 &rs6000_reg_names[41][0], /* fr9 */ \
2621 &rs6000_reg_names[42][0], /* fr10 */ \
2622 &rs6000_reg_names[43][0], /* fr11 */ \
2623 &rs6000_reg_names[44][0], /* fr12 */ \
2624 &rs6000_reg_names[45][0], /* fr13 */ \
2625 &rs6000_reg_names[46][0], /* fr14 */ \
2626 &rs6000_reg_names[47][0], /* fr15 */ \
2627 &rs6000_reg_names[48][0], /* fr16 */ \
2628 &rs6000_reg_names[49][0], /* fr17 */ \
2629 &rs6000_reg_names[50][0], /* fr18 */ \
2630 &rs6000_reg_names[51][0], /* fr19 */ \
2631 &rs6000_reg_names[52][0], /* fr20 */ \
2632 &rs6000_reg_names[53][0], /* fr21 */ \
2633 &rs6000_reg_names[54][0], /* fr22 */ \
2634 &rs6000_reg_names[55][0], /* fr23 */ \
2635 &rs6000_reg_names[56][0], /* fr24 */ \
2636 &rs6000_reg_names[57][0], /* fr25 */ \
2637 &rs6000_reg_names[58][0], /* fr26 */ \
2638 &rs6000_reg_names[59][0], /* fr27 */ \
2639 &rs6000_reg_names[60][0], /* fr28 */ \
2640 &rs6000_reg_names[61][0], /* fr29 */ \
2641 &rs6000_reg_names[62][0], /* fr30 */ \
2642 &rs6000_reg_names[63][0], /* fr31 */ \
2644 &rs6000_reg_names[64][0], /* mq */ \
2645 &rs6000_reg_names[65][0], /* lr */ \
2646 &rs6000_reg_names[66][0], /* ctr */ \
2647 &rs6000_reg_names[67][0], /* ap */ \
2649 &rs6000_reg_names[68][0], /* cr0 */ \
2650 &rs6000_reg_names[69][0], /* cr1 */ \
2651 &rs6000_reg_names[70][0], /* cr2 */ \
2652 &rs6000_reg_names[71][0], /* cr3 */ \
2653 &rs6000_reg_names[72][0], /* cr4 */ \
2654 &rs6000_reg_names[73][0], /* cr5 */ \
2655 &rs6000_reg_names[74][0], /* cr6 */ \
2656 &rs6000_reg_names[75][0], /* cr7 */ \
2658 &rs6000_reg_names[76][0], /* xer */ \
2660 &rs6000_reg_names[77][0], /* v0 */ \
2661 &rs6000_reg_names[78][0], /* v1 */ \
2662 &rs6000_reg_names[79][0], /* v2 */ \
2663 &rs6000_reg_names[80][0], /* v3 */ \
2664 &rs6000_reg_names[81][0], /* v4 */ \
2665 &rs6000_reg_names[82][0], /* v5 */ \
2666 &rs6000_reg_names[83][0], /* v6 */ \
2667 &rs6000_reg_names[84][0], /* v7 */ \
2668 &rs6000_reg_names[85][0], /* v8 */ \
2669 &rs6000_reg_names[86][0], /* v9 */ \
2670 &rs6000_reg_names[87][0], /* v10 */ \
2671 &rs6000_reg_names[88][0], /* v11 */ \
2672 &rs6000_reg_names[89][0], /* v12 */ \
2673 &rs6000_reg_names[90][0], /* v13 */ \
2674 &rs6000_reg_names[91][0], /* v14 */ \
2675 &rs6000_reg_names[92][0], /* v15 */ \
2676 &rs6000_reg_names[93][0], /* v16 */ \
2677 &rs6000_reg_names[94][0], /* v17 */ \
2678 &rs6000_reg_names[95][0], /* v18 */ \
2679 &rs6000_reg_names[96][0], /* v19 */ \
2680 &rs6000_reg_names[97][0], /* v20 */ \
2681 &rs6000_reg_names[98][0], /* v21 */ \
2682 &rs6000_reg_names[99][0], /* v22 */ \
2683 &rs6000_reg_names[100][0], /* v23 */ \
2684 &rs6000_reg_names[101][0], /* v24 */ \
2685 &rs6000_reg_names[102][0], /* v25 */ \
2686 &rs6000_reg_names[103][0], /* v26 */ \
2687 &rs6000_reg_names[104][0], /* v27 */ \
2688 &rs6000_reg_names[105][0], /* v28 */ \
2689 &rs6000_reg_names[106][0], /* v29 */ \
2690 &rs6000_reg_names[107][0], /* v30 */ \
2691 &rs6000_reg_names[108][0], /* v31 */ \
2692 &rs6000_reg_names[109][0], /* vrsave */ \
2693 &rs6000_reg_names[110][0], /* vscr */ \
2694 &rs6000_reg_names[111][0], /* spe_acc */ \
2695 &rs6000_reg_names[112][0], /* spefscr */ \
2698 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2699 following for it. Switch to use the alternate names since
2700 they are more mnemonic. */
2702 #define DEBUG_REGISTER_NAMES \
2704 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2705 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2706 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2707 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2708 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2709 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2710 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2711 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2712 "mq", "lr", "ctr", "ap", \
2713 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2714 "xer", \
2715 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2716 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2717 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2718 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2719 "vrsave", "vscr" \
2720 , "spe_acc", "spefscr" \
2723 /* Table of additional register names to use in user input. */
2725 #define ADDITIONAL_REGISTER_NAMES \
2726 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2727 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2728 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2729 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2730 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2731 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2732 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2733 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2734 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2735 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2736 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2737 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2738 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2739 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2740 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2741 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2742 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2743 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2744 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2745 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2746 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2747 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2748 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2749 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2750 {"vrsave", 109}, {"vscr", 110}, \
2751 {"spe_acc", 111}, {"spefscr", 112}, \
2752 /* no additional names for: mq, lr, ctr, ap */ \
2753 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2754 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2755 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2757 /* Text to write out after a CALL that may be replaced by glue code by
2758 the loader. This depends on the AIX version. */
2759 #define RS6000_CALL_GLUE "cror 31,31,31"
2761 /* This is how to output an element of a case-vector that is relative. */
2763 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2764 do { char buf[100]; \
2765 fputs ("\t.long ", FILE); \
2766 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2767 assemble_name (FILE, buf); \
2768 putc ('-', FILE); \
2769 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2770 assemble_name (FILE, buf); \
2771 putc ('\n', FILE); \
2772 } while (0)
2774 /* This is how to output an assembler line
2775 that says to advance the location counter
2776 to a multiple of 2**LOG bytes. */
2778 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2779 if ((LOG) != 0) \
2780 fprintf (FILE, "\t.align %d\n", (LOG))
2782 /* Store in OUTPUT a string (made with alloca) containing
2783 an assembler-name for a local static variable named NAME.
2784 LABELNO is an integer which is different for each call. */
2786 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2787 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2788 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2790 /* Pick up the return address upon entry to a procedure. Used for
2791 dwarf2 unwind information. This also enables the table driven
2792 mechanism. */
2794 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2795 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2797 /* Describe how we implement __builtin_eh_return. */
2798 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2799 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2801 /* Print operand X (an rtx) in assembler syntax to file FILE.
2802 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2803 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2805 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2807 /* Define which CODE values are valid. */
2809 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2810 ((CODE) == '.')
2812 /* Print a memory address as an operand to reference that memory location. */
2814 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2816 /* Define the codes that are matched by predicates in rs6000.c. */
2818 #define PREDICATE_CODES \
2819 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2820 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2821 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2822 LABEL_REF, SUBREG, REG, MEM}}, \
2823 {"short_cint_operand", {CONST_INT}}, \
2824 {"u_short_cint_operand", {CONST_INT}}, \
2825 {"non_short_cint_operand", {CONST_INT}}, \
2826 {"exact_log2_cint_operand", {CONST_INT}}, \
2827 {"gpc_reg_operand", {SUBREG, REG}}, \
2828 {"cc_reg_operand", {SUBREG, REG}}, \
2829 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2830 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2831 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2832 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2833 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2834 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2835 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2836 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2837 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2838 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2839 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2840 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2841 {"easy_fp_constant", {CONST_DOUBLE}}, \
2842 {"zero_fp_constant", {CONST_DOUBLE}}, \
2843 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2844 {"lwa_operand", {SUBREG, MEM, REG}}, \
2845 {"volatile_mem_operand", {MEM}}, \
2846 {"offsettable_mem_operand", {MEM}}, \
2847 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2848 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2849 {"non_add_cint_operand", {CONST_INT}}, \
2850 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2851 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2852 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2853 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2854 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2855 {"mask_operand", {CONST_INT}}, \
2856 {"mask_operand_wrap", {CONST_INT}}, \
2857 {"mask64_operand", {CONST_INT}}, \
2858 {"mask64_2_operand", {CONST_INT}}, \
2859 {"count_register_operand", {REG}}, \
2860 {"xer_operand", {REG}}, \
2861 {"symbol_ref_operand", {SYMBOL_REF}}, \
2862 {"call_operand", {SYMBOL_REF, REG}}, \
2863 {"current_file_function_operand", {SYMBOL_REF}}, \
2864 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2865 CONST_DOUBLE, SYMBOL_REF}}, \
2866 {"load_multiple_operation", {PARALLEL}}, \
2867 {"store_multiple_operation", {PARALLEL}}, \
2868 {"vrsave_operation", {PARALLEL}}, \
2869 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2870 GT, LEU, LTU, GEU, GTU, \
2871 UNORDERED, ORDERED, \
2872 UNGE, UNLE }}, \
2873 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2874 UNORDERED }}, \
2875 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2876 GT, LEU, LTU, GEU, GTU, \
2877 UNORDERED, ORDERED, \
2878 UNGE, UNLE }}, \
2879 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2880 GT, LEU, LTU, GEU, GTU}}, \
2881 {"boolean_operator", {AND, IOR, XOR}}, \
2882 {"boolean_or_operator", {IOR, XOR}}, \
2883 {"altivec_register_operand", {REG}}, \
2884 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2886 /* uncomment for disabling the corresponding default options */
2887 /* #define MACHINE_no_sched_interblock */
2888 /* #define MACHINE_no_sched_speculative */
2889 /* #define MACHINE_no_sched_speculative_load */
2891 /* General flags. */
2892 extern int flag_pic;
2893 extern int optimize;
2894 extern int flag_expensive_optimizations;
2895 extern int frame_pointer_needed;
2897 enum rs6000_builtins
2899 /* AltiVec builtins. */
2900 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2901 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2902 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2903 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2904 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2905 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2906 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2907 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2908 ALTIVEC_BUILTIN_VADDUBM,
2909 ALTIVEC_BUILTIN_VADDUHM,
2910 ALTIVEC_BUILTIN_VADDUWM,
2911 ALTIVEC_BUILTIN_VADDFP,
2912 ALTIVEC_BUILTIN_VADDCUW,
2913 ALTIVEC_BUILTIN_VADDUBS,
2914 ALTIVEC_BUILTIN_VADDSBS,
2915 ALTIVEC_BUILTIN_VADDUHS,
2916 ALTIVEC_BUILTIN_VADDSHS,
2917 ALTIVEC_BUILTIN_VADDUWS,
2918 ALTIVEC_BUILTIN_VADDSWS,
2919 ALTIVEC_BUILTIN_VAND,
2920 ALTIVEC_BUILTIN_VANDC,
2921 ALTIVEC_BUILTIN_VAVGUB,
2922 ALTIVEC_BUILTIN_VAVGSB,
2923 ALTIVEC_BUILTIN_VAVGUH,
2924 ALTIVEC_BUILTIN_VAVGSH,
2925 ALTIVEC_BUILTIN_VAVGUW,
2926 ALTIVEC_BUILTIN_VAVGSW,
2927 ALTIVEC_BUILTIN_VCFUX,
2928 ALTIVEC_BUILTIN_VCFSX,
2929 ALTIVEC_BUILTIN_VCTSXS,
2930 ALTIVEC_BUILTIN_VCTUXS,
2931 ALTIVEC_BUILTIN_VCMPBFP,
2932 ALTIVEC_BUILTIN_VCMPEQUB,
2933 ALTIVEC_BUILTIN_VCMPEQUH,
2934 ALTIVEC_BUILTIN_VCMPEQUW,
2935 ALTIVEC_BUILTIN_VCMPEQFP,
2936 ALTIVEC_BUILTIN_VCMPGEFP,
2937 ALTIVEC_BUILTIN_VCMPGTUB,
2938 ALTIVEC_BUILTIN_VCMPGTSB,
2939 ALTIVEC_BUILTIN_VCMPGTUH,
2940 ALTIVEC_BUILTIN_VCMPGTSH,
2941 ALTIVEC_BUILTIN_VCMPGTUW,
2942 ALTIVEC_BUILTIN_VCMPGTSW,
2943 ALTIVEC_BUILTIN_VCMPGTFP,
2944 ALTIVEC_BUILTIN_VEXPTEFP,
2945 ALTIVEC_BUILTIN_VLOGEFP,
2946 ALTIVEC_BUILTIN_VMADDFP,
2947 ALTIVEC_BUILTIN_VMAXUB,
2948 ALTIVEC_BUILTIN_VMAXSB,
2949 ALTIVEC_BUILTIN_VMAXUH,
2950 ALTIVEC_BUILTIN_VMAXSH,
2951 ALTIVEC_BUILTIN_VMAXUW,
2952 ALTIVEC_BUILTIN_VMAXSW,
2953 ALTIVEC_BUILTIN_VMAXFP,
2954 ALTIVEC_BUILTIN_VMHADDSHS,
2955 ALTIVEC_BUILTIN_VMHRADDSHS,
2956 ALTIVEC_BUILTIN_VMLADDUHM,
2957 ALTIVEC_BUILTIN_VMRGHB,
2958 ALTIVEC_BUILTIN_VMRGHH,
2959 ALTIVEC_BUILTIN_VMRGHW,
2960 ALTIVEC_BUILTIN_VMRGLB,
2961 ALTIVEC_BUILTIN_VMRGLH,
2962 ALTIVEC_BUILTIN_VMRGLW,
2963 ALTIVEC_BUILTIN_VMSUMUBM,
2964 ALTIVEC_BUILTIN_VMSUMMBM,
2965 ALTIVEC_BUILTIN_VMSUMUHM,
2966 ALTIVEC_BUILTIN_VMSUMSHM,
2967 ALTIVEC_BUILTIN_VMSUMUHS,
2968 ALTIVEC_BUILTIN_VMSUMSHS,
2969 ALTIVEC_BUILTIN_VMINUB,
2970 ALTIVEC_BUILTIN_VMINSB,
2971 ALTIVEC_BUILTIN_VMINUH,
2972 ALTIVEC_BUILTIN_VMINSH,
2973 ALTIVEC_BUILTIN_VMINUW,
2974 ALTIVEC_BUILTIN_VMINSW,
2975 ALTIVEC_BUILTIN_VMINFP,
2976 ALTIVEC_BUILTIN_VMULEUB,
2977 ALTIVEC_BUILTIN_VMULESB,
2978 ALTIVEC_BUILTIN_VMULEUH,
2979 ALTIVEC_BUILTIN_VMULESH,
2980 ALTIVEC_BUILTIN_VMULOUB,
2981 ALTIVEC_BUILTIN_VMULOSB,
2982 ALTIVEC_BUILTIN_VMULOUH,
2983 ALTIVEC_BUILTIN_VMULOSH,
2984 ALTIVEC_BUILTIN_VNMSUBFP,
2985 ALTIVEC_BUILTIN_VNOR,
2986 ALTIVEC_BUILTIN_VOR,
2987 ALTIVEC_BUILTIN_VSEL_4SI,
2988 ALTIVEC_BUILTIN_VSEL_4SF,
2989 ALTIVEC_BUILTIN_VSEL_8HI,
2990 ALTIVEC_BUILTIN_VSEL_16QI,
2991 ALTIVEC_BUILTIN_VPERM_4SI,
2992 ALTIVEC_BUILTIN_VPERM_4SF,
2993 ALTIVEC_BUILTIN_VPERM_8HI,
2994 ALTIVEC_BUILTIN_VPERM_16QI,
2995 ALTIVEC_BUILTIN_VPKUHUM,
2996 ALTIVEC_BUILTIN_VPKUWUM,
2997 ALTIVEC_BUILTIN_VPKPX,
2998 ALTIVEC_BUILTIN_VPKUHSS,
2999 ALTIVEC_BUILTIN_VPKSHSS,
3000 ALTIVEC_BUILTIN_VPKUWSS,
3001 ALTIVEC_BUILTIN_VPKSWSS,
3002 ALTIVEC_BUILTIN_VPKUHUS,
3003 ALTIVEC_BUILTIN_VPKSHUS,
3004 ALTIVEC_BUILTIN_VPKUWUS,
3005 ALTIVEC_BUILTIN_VPKSWUS,
3006 ALTIVEC_BUILTIN_VREFP,
3007 ALTIVEC_BUILTIN_VRFIM,
3008 ALTIVEC_BUILTIN_VRFIN,
3009 ALTIVEC_BUILTIN_VRFIP,
3010 ALTIVEC_BUILTIN_VRFIZ,
3011 ALTIVEC_BUILTIN_VRLB,
3012 ALTIVEC_BUILTIN_VRLH,
3013 ALTIVEC_BUILTIN_VRLW,
3014 ALTIVEC_BUILTIN_VRSQRTEFP,
3015 ALTIVEC_BUILTIN_VSLB,
3016 ALTIVEC_BUILTIN_VSLH,
3017 ALTIVEC_BUILTIN_VSLW,
3018 ALTIVEC_BUILTIN_VSL,
3019 ALTIVEC_BUILTIN_VSLO,
3020 ALTIVEC_BUILTIN_VSPLTB,
3021 ALTIVEC_BUILTIN_VSPLTH,
3022 ALTIVEC_BUILTIN_VSPLTW,
3023 ALTIVEC_BUILTIN_VSPLTISB,
3024 ALTIVEC_BUILTIN_VSPLTISH,
3025 ALTIVEC_BUILTIN_VSPLTISW,
3026 ALTIVEC_BUILTIN_VSRB,
3027 ALTIVEC_BUILTIN_VSRH,
3028 ALTIVEC_BUILTIN_VSRW,
3029 ALTIVEC_BUILTIN_VSRAB,
3030 ALTIVEC_BUILTIN_VSRAH,
3031 ALTIVEC_BUILTIN_VSRAW,
3032 ALTIVEC_BUILTIN_VSR,
3033 ALTIVEC_BUILTIN_VSRO,
3034 ALTIVEC_BUILTIN_VSUBUBM,
3035 ALTIVEC_BUILTIN_VSUBUHM,
3036 ALTIVEC_BUILTIN_VSUBUWM,
3037 ALTIVEC_BUILTIN_VSUBFP,
3038 ALTIVEC_BUILTIN_VSUBCUW,
3039 ALTIVEC_BUILTIN_VSUBUBS,
3040 ALTIVEC_BUILTIN_VSUBSBS,
3041 ALTIVEC_BUILTIN_VSUBUHS,
3042 ALTIVEC_BUILTIN_VSUBSHS,
3043 ALTIVEC_BUILTIN_VSUBUWS,
3044 ALTIVEC_BUILTIN_VSUBSWS,
3045 ALTIVEC_BUILTIN_VSUM4UBS,
3046 ALTIVEC_BUILTIN_VSUM4SBS,
3047 ALTIVEC_BUILTIN_VSUM4SHS,
3048 ALTIVEC_BUILTIN_VSUM2SWS,
3049 ALTIVEC_BUILTIN_VSUMSWS,
3050 ALTIVEC_BUILTIN_VXOR,
3051 ALTIVEC_BUILTIN_VSLDOI_16QI,
3052 ALTIVEC_BUILTIN_VSLDOI_8HI,
3053 ALTIVEC_BUILTIN_VSLDOI_4SI,
3054 ALTIVEC_BUILTIN_VSLDOI_4SF,
3055 ALTIVEC_BUILTIN_VUPKHSB,
3056 ALTIVEC_BUILTIN_VUPKHPX,
3057 ALTIVEC_BUILTIN_VUPKHSH,
3058 ALTIVEC_BUILTIN_VUPKLSB,
3059 ALTIVEC_BUILTIN_VUPKLPX,
3060 ALTIVEC_BUILTIN_VUPKLSH,
3061 ALTIVEC_BUILTIN_MTVSCR,
3062 ALTIVEC_BUILTIN_MFVSCR,
3063 ALTIVEC_BUILTIN_DSSALL,
3064 ALTIVEC_BUILTIN_DSS,
3065 ALTIVEC_BUILTIN_LVSL,
3066 ALTIVEC_BUILTIN_LVSR,
3067 ALTIVEC_BUILTIN_DSTT,
3068 ALTIVEC_BUILTIN_DSTST,
3069 ALTIVEC_BUILTIN_DSTSTT,
3070 ALTIVEC_BUILTIN_DST,
3071 ALTIVEC_BUILTIN_LVEBX,
3072 ALTIVEC_BUILTIN_LVEHX,
3073 ALTIVEC_BUILTIN_LVEWX,
3074 ALTIVEC_BUILTIN_LVXL,
3075 ALTIVEC_BUILTIN_LVX,
3076 ALTIVEC_BUILTIN_STVX,
3077 ALTIVEC_BUILTIN_STVEBX,
3078 ALTIVEC_BUILTIN_STVEHX,
3079 ALTIVEC_BUILTIN_STVEWX,
3080 ALTIVEC_BUILTIN_STVXL,
3081 ALTIVEC_BUILTIN_VCMPBFP_P,
3082 ALTIVEC_BUILTIN_VCMPEQFP_P,
3083 ALTIVEC_BUILTIN_VCMPEQUB_P,
3084 ALTIVEC_BUILTIN_VCMPEQUH_P,
3085 ALTIVEC_BUILTIN_VCMPEQUW_P,
3086 ALTIVEC_BUILTIN_VCMPGEFP_P,
3087 ALTIVEC_BUILTIN_VCMPGTFP_P,
3088 ALTIVEC_BUILTIN_VCMPGTSB_P,
3089 ALTIVEC_BUILTIN_VCMPGTSH_P,
3090 ALTIVEC_BUILTIN_VCMPGTSW_P,
3091 ALTIVEC_BUILTIN_VCMPGTUB_P,
3092 ALTIVEC_BUILTIN_VCMPGTUH_P,
3093 ALTIVEC_BUILTIN_VCMPGTUW_P,
3094 ALTIVEC_BUILTIN_ABSS_V4SI,
3095 ALTIVEC_BUILTIN_ABSS_V8HI,
3096 ALTIVEC_BUILTIN_ABSS_V16QI,
3097 ALTIVEC_BUILTIN_ABS_V4SI,
3098 ALTIVEC_BUILTIN_ABS_V4SF,
3099 ALTIVEC_BUILTIN_ABS_V8HI,
3100 ALTIVEC_BUILTIN_ABS_V16QI
3101 /* SPE builtins. */
3102 , SPE_BUILTIN_EVADDW,
3103 SPE_BUILTIN_EVAND,
3104 SPE_BUILTIN_EVANDC,
3105 SPE_BUILTIN_EVDIVWS,
3106 SPE_BUILTIN_EVDIVWU,
3107 SPE_BUILTIN_EVEQV,
3108 SPE_BUILTIN_EVFSADD,
3109 SPE_BUILTIN_EVFSDIV,
3110 SPE_BUILTIN_EVFSMUL,
3111 SPE_BUILTIN_EVFSSUB,
3112 SPE_BUILTIN_EVLDDX,
3113 SPE_BUILTIN_EVLDHX,
3114 SPE_BUILTIN_EVLDWX,
3115 SPE_BUILTIN_EVLHHESPLATX,
3116 SPE_BUILTIN_EVLHHOSSPLATX,
3117 SPE_BUILTIN_EVLHHOUSPLATX,
3118 SPE_BUILTIN_EVLWHEX,
3119 SPE_BUILTIN_EVLWHOSX,
3120 SPE_BUILTIN_EVLWHOUX,
3121 SPE_BUILTIN_EVLWHSPLATX,
3122 SPE_BUILTIN_EVLWWSPLATX,
3123 SPE_BUILTIN_EVMERGEHI,
3124 SPE_BUILTIN_EVMERGEHILO,
3125 SPE_BUILTIN_EVMERGELO,
3126 SPE_BUILTIN_EVMERGELOHI,
3127 SPE_BUILTIN_EVMHEGSMFAA,
3128 SPE_BUILTIN_EVMHEGSMFAN,
3129 SPE_BUILTIN_EVMHEGSMIAA,
3130 SPE_BUILTIN_EVMHEGSMIAN,
3131 SPE_BUILTIN_EVMHEGUMIAA,
3132 SPE_BUILTIN_EVMHEGUMIAN,
3133 SPE_BUILTIN_EVMHESMF,
3134 SPE_BUILTIN_EVMHESMFA,
3135 SPE_BUILTIN_EVMHESMFAAW,
3136 SPE_BUILTIN_EVMHESMFANW,
3137 SPE_BUILTIN_EVMHESMI,
3138 SPE_BUILTIN_EVMHESMIA,
3139 SPE_BUILTIN_EVMHESMIAAW,
3140 SPE_BUILTIN_EVMHESMIANW,
3141 SPE_BUILTIN_EVMHESSF,
3142 SPE_BUILTIN_EVMHESSFA,
3143 SPE_BUILTIN_EVMHESSFAAW,
3144 SPE_BUILTIN_EVMHESSFANW,
3145 SPE_BUILTIN_EVMHESSIAAW,
3146 SPE_BUILTIN_EVMHESSIANW,
3147 SPE_BUILTIN_EVMHEUMI,
3148 SPE_BUILTIN_EVMHEUMIA,
3149 SPE_BUILTIN_EVMHEUMIAAW,
3150 SPE_BUILTIN_EVMHEUMIANW,
3151 SPE_BUILTIN_EVMHEUSIAAW,
3152 SPE_BUILTIN_EVMHEUSIANW,
3153 SPE_BUILTIN_EVMHOGSMFAA,
3154 SPE_BUILTIN_EVMHOGSMFAN,
3155 SPE_BUILTIN_EVMHOGSMIAA,
3156 SPE_BUILTIN_EVMHOGSMIAN,
3157 SPE_BUILTIN_EVMHOGUMIAA,
3158 SPE_BUILTIN_EVMHOGUMIAN,
3159 SPE_BUILTIN_EVMHOSMF,
3160 SPE_BUILTIN_EVMHOSMFA,
3161 SPE_BUILTIN_EVMHOSMFAAW,
3162 SPE_BUILTIN_EVMHOSMFANW,
3163 SPE_BUILTIN_EVMHOSMI,
3164 SPE_BUILTIN_EVMHOSMIA,
3165 SPE_BUILTIN_EVMHOSMIAAW,
3166 SPE_BUILTIN_EVMHOSMIANW,
3167 SPE_BUILTIN_EVMHOSSF,
3168 SPE_BUILTIN_EVMHOSSFA,
3169 SPE_BUILTIN_EVMHOSSFAAW,
3170 SPE_BUILTIN_EVMHOSSFANW,
3171 SPE_BUILTIN_EVMHOSSIAAW,
3172 SPE_BUILTIN_EVMHOSSIANW,
3173 SPE_BUILTIN_EVMHOUMI,
3174 SPE_BUILTIN_EVMHOUMIA,
3175 SPE_BUILTIN_EVMHOUMIAAW,
3176 SPE_BUILTIN_EVMHOUMIANW,
3177 SPE_BUILTIN_EVMHOUSIAAW,
3178 SPE_BUILTIN_EVMHOUSIANW,
3179 SPE_BUILTIN_EVMWHSMF,
3180 SPE_BUILTIN_EVMWHSMFA,
3181 SPE_BUILTIN_EVMWHSMI,
3182 SPE_BUILTIN_EVMWHSMIA,
3183 SPE_BUILTIN_EVMWHSSF,
3184 SPE_BUILTIN_EVMWHSSFA,
3185 SPE_BUILTIN_EVMWHUMI,
3186 SPE_BUILTIN_EVMWHUMIA,
3187 SPE_BUILTIN_EVMWLSMF,
3188 SPE_BUILTIN_EVMWLSMFA,
3189 SPE_BUILTIN_EVMWLSMFAAW,
3190 SPE_BUILTIN_EVMWLSMFANW,
3191 SPE_BUILTIN_EVMWLSMIAAW,
3192 SPE_BUILTIN_EVMWLSMIANW,
3193 SPE_BUILTIN_EVMWLSSF,
3194 SPE_BUILTIN_EVMWLSSFA,
3195 SPE_BUILTIN_EVMWLSSFAAW,
3196 SPE_BUILTIN_EVMWLSSFANW,
3197 SPE_BUILTIN_EVMWLSSIAAW,
3198 SPE_BUILTIN_EVMWLSSIANW,
3199 SPE_BUILTIN_EVMWLUMI,
3200 SPE_BUILTIN_EVMWLUMIA,
3201 SPE_BUILTIN_EVMWLUMIAAW,
3202 SPE_BUILTIN_EVMWLUMIANW,
3203 SPE_BUILTIN_EVMWLUSIAAW,
3204 SPE_BUILTIN_EVMWLUSIANW,
3205 SPE_BUILTIN_EVMWSMF,
3206 SPE_BUILTIN_EVMWSMFA,
3207 SPE_BUILTIN_EVMWSMFAA,
3208 SPE_BUILTIN_EVMWSMFAN,
3209 SPE_BUILTIN_EVMWSMI,
3210 SPE_BUILTIN_EVMWSMIA,
3211 SPE_BUILTIN_EVMWSMIAA,
3212 SPE_BUILTIN_EVMWSMIAN,
3213 SPE_BUILTIN_EVMWHSSFAA,
3214 SPE_BUILTIN_EVMWSSF,
3215 SPE_BUILTIN_EVMWSSFA,
3216 SPE_BUILTIN_EVMWSSFAA,
3217 SPE_BUILTIN_EVMWSSFAN,
3218 SPE_BUILTIN_EVMWUMI,
3219 SPE_BUILTIN_EVMWUMIA,
3220 SPE_BUILTIN_EVMWUMIAA,
3221 SPE_BUILTIN_EVMWUMIAN,
3222 SPE_BUILTIN_EVNAND,
3223 SPE_BUILTIN_EVNOR,
3224 SPE_BUILTIN_EVOR,
3225 SPE_BUILTIN_EVORC,
3226 SPE_BUILTIN_EVRLW,
3227 SPE_BUILTIN_EVSLW,
3228 SPE_BUILTIN_EVSRWS,
3229 SPE_BUILTIN_EVSRWU,
3230 SPE_BUILTIN_EVSTDDX,
3231 SPE_BUILTIN_EVSTDHX,
3232 SPE_BUILTIN_EVSTDWX,
3233 SPE_BUILTIN_EVSTWHEX,
3234 SPE_BUILTIN_EVSTWHOX,
3235 SPE_BUILTIN_EVSTWWEX,
3236 SPE_BUILTIN_EVSTWWOX,
3237 SPE_BUILTIN_EVSUBFW,
3238 SPE_BUILTIN_EVXOR,
3239 SPE_BUILTIN_EVABS,
3240 SPE_BUILTIN_EVADDSMIAAW,
3241 SPE_BUILTIN_EVADDSSIAAW,
3242 SPE_BUILTIN_EVADDUMIAAW,
3243 SPE_BUILTIN_EVADDUSIAAW,
3244 SPE_BUILTIN_EVCNTLSW,
3245 SPE_BUILTIN_EVCNTLZW,
3246 SPE_BUILTIN_EVEXTSB,
3247 SPE_BUILTIN_EVEXTSH,
3248 SPE_BUILTIN_EVFSABS,
3249 SPE_BUILTIN_EVFSCFSF,
3250 SPE_BUILTIN_EVFSCFSI,
3251 SPE_BUILTIN_EVFSCFUF,
3252 SPE_BUILTIN_EVFSCFUI,
3253 SPE_BUILTIN_EVFSCTSF,
3254 SPE_BUILTIN_EVFSCTSI,
3255 SPE_BUILTIN_EVFSCTSIZ,
3256 SPE_BUILTIN_EVFSCTUF,
3257 SPE_BUILTIN_EVFSCTUI,
3258 SPE_BUILTIN_EVFSCTUIZ,
3259 SPE_BUILTIN_EVFSNABS,
3260 SPE_BUILTIN_EVFSNEG,
3261 SPE_BUILTIN_EVMRA,
3262 SPE_BUILTIN_EVNEG,
3263 SPE_BUILTIN_EVRNDW,
3264 SPE_BUILTIN_EVSUBFSMIAAW,
3265 SPE_BUILTIN_EVSUBFSSIAAW,
3266 SPE_BUILTIN_EVSUBFUMIAAW,
3267 SPE_BUILTIN_EVSUBFUSIAAW,
3268 SPE_BUILTIN_EVADDIW,
3269 SPE_BUILTIN_EVLDD,
3270 SPE_BUILTIN_EVLDH,
3271 SPE_BUILTIN_EVLDW,
3272 SPE_BUILTIN_EVLHHESPLAT,
3273 SPE_BUILTIN_EVLHHOSSPLAT,
3274 SPE_BUILTIN_EVLHHOUSPLAT,
3275 SPE_BUILTIN_EVLWHE,
3276 SPE_BUILTIN_EVLWHOS,
3277 SPE_BUILTIN_EVLWHOU,
3278 SPE_BUILTIN_EVLWHSPLAT,
3279 SPE_BUILTIN_EVLWWSPLAT,
3280 SPE_BUILTIN_EVRLWI,
3281 SPE_BUILTIN_EVSLWI,
3282 SPE_BUILTIN_EVSRWIS,
3283 SPE_BUILTIN_EVSRWIU,
3284 SPE_BUILTIN_EVSTDD,
3285 SPE_BUILTIN_EVSTDH,
3286 SPE_BUILTIN_EVSTDW,
3287 SPE_BUILTIN_EVSTWHE,
3288 SPE_BUILTIN_EVSTWHO,
3289 SPE_BUILTIN_EVSTWWE,
3290 SPE_BUILTIN_EVSTWWO,
3291 SPE_BUILTIN_EVSUBIFW,
3293 /* Compares. */
3294 SPE_BUILTIN_EVCMPEQ,
3295 SPE_BUILTIN_EVCMPGTS,
3296 SPE_BUILTIN_EVCMPGTU,
3297 SPE_BUILTIN_EVCMPLTS,
3298 SPE_BUILTIN_EVCMPLTU,
3299 SPE_BUILTIN_EVFSCMPEQ,
3300 SPE_BUILTIN_EVFSCMPGT,
3301 SPE_BUILTIN_EVFSCMPLT,
3302 SPE_BUILTIN_EVFSTSTEQ,
3303 SPE_BUILTIN_EVFSTSTGT,
3304 SPE_BUILTIN_EVFSTSTLT,
3306 /* EVSEL compares. */
3307 SPE_BUILTIN_EVSEL_CMPEQ,
3308 SPE_BUILTIN_EVSEL_CMPGTS,
3309 SPE_BUILTIN_EVSEL_CMPGTU,
3310 SPE_BUILTIN_EVSEL_CMPLTS,
3311 SPE_BUILTIN_EVSEL_CMPLTU,
3312 SPE_BUILTIN_EVSEL_FSCMPEQ,
3313 SPE_BUILTIN_EVSEL_FSCMPGT,
3314 SPE_BUILTIN_EVSEL_FSCMPLT,
3315 SPE_BUILTIN_EVSEL_FSTSTEQ,
3316 SPE_BUILTIN_EVSEL_FSTSTGT,
3317 SPE_BUILTIN_EVSEL_FSTSTLT,
3319 SPE_BUILTIN_EVSPLATFI,
3320 SPE_BUILTIN_EVSPLATI,
3321 SPE_BUILTIN_EVMWHSSMAA,
3322 SPE_BUILTIN_EVMWHSMFAA,
3323 SPE_BUILTIN_EVMWHSMIAA,
3324 SPE_BUILTIN_EVMWHUSIAA,
3325 SPE_BUILTIN_EVMWHUMIAA,
3326 SPE_BUILTIN_EVMWHSSFAN,
3327 SPE_BUILTIN_EVMWHSSIAN,
3328 SPE_BUILTIN_EVMWHSMFAN,
3329 SPE_BUILTIN_EVMWHSMIAN,
3330 SPE_BUILTIN_EVMWHUSIAN,
3331 SPE_BUILTIN_EVMWHUMIAN,
3332 SPE_BUILTIN_EVMWHGSSFAA,
3333 SPE_BUILTIN_EVMWHGSMFAA,
3334 SPE_BUILTIN_EVMWHGSMIAA,
3335 SPE_BUILTIN_EVMWHGUMIAA,
3336 SPE_BUILTIN_EVMWHGSSFAN,
3337 SPE_BUILTIN_EVMWHGSMFAN,
3338 SPE_BUILTIN_EVMWHGSMIAN,
3339 SPE_BUILTIN_EVMWHGUMIAN,
3340 SPE_BUILTIN_MTSPEFSCR,
3341 SPE_BUILTIN_MFSPEFSCR,
3342 SPE_BUILTIN_BRINC