2008-08-26 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob048d163ff14c4e994fd24650ca0a3fa728cd8981
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
26 /* Definitions for the object file format. These are set at
27 compile-time. */
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
43 /* Control whether function entry points use a "dot" symbol when
44 ABI_AIX. */
45 #define DOT_SYMBOLS 1
47 /* Default string to use for cpu if not specified. */
48 #ifndef TARGET_CPU_DEFAULT
49 #define TARGET_CPU_DEFAULT ((char *)0)
50 #endif
52 /* If configured for PPC405, support PPC405CR Erratum77. */
53 #ifdef CONFIG_PPC405CR
54 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
55 #else
56 #define PPC405_ERRATUM77 0
57 #endif
59 #ifndef TARGET_PAIRED_FLOAT
60 #define TARGET_PAIRED_FLOAT 0
61 #endif
63 #ifdef HAVE_AS_POPCNTB
64 #define ASM_CPU_POWER5_SPEC "-mpower5"
65 #else
66 #define ASM_CPU_POWER5_SPEC "-mpower4"
67 #endif
69 #ifdef HAVE_AS_DFP
70 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
71 #else
72 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
73 #endif
75 #ifdef HAVE_AS_VSX
76 #define ASM_CPU_POWER7_SPEC "-mpower7"
77 #else
78 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
79 #endif
81 /* Common ASM definitions used by ASM_SPEC among the various targets
82 for handling -mcpu=xxx switches. */
83 #define ASM_CPU_SPEC \
84 "%{!mcpu*: \
85 %{mpower: %{!mpower2: -mpwr}} \
86 %{mpower2: -mpwrx} \
87 %{mpowerpc64*: -mppc64} \
88 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
89 %{mno-power: %{!mpowerpc*: -mcom}} \
90 %{!mno-power: %{!mpower*: %(asm_default)}}} \
91 %{mcpu=common: -mcom} \
92 %{mcpu=cell: -mcell} \
93 %{mcpu=power: -mpwr} \
94 %{mcpu=power2: -mpwrx} \
95 %{mcpu=power3: -mppc64} \
96 %{mcpu=power4: -mpower4} \
97 %{mcpu=power5: %(asm_cpu_power5)} \
98 %{mcpu=power5+: %(asm_cpu_power5)} \
99 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
100 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
101 %{mcpu=power7: %(asm_cpu_power7)} \
102 %{mcpu=powerpc: -mppc} \
103 %{mcpu=rios: -mpwr} \
104 %{mcpu=rios1: -mpwr} \
105 %{mcpu=rios2: -mpwrx} \
106 %{mcpu=rsc: -mpwr} \
107 %{mcpu=rsc1: -mpwr} \
108 %{mcpu=rs64a: -mppc64} \
109 %{mcpu=401: -mppc} \
110 %{mcpu=403: -m403} \
111 %{mcpu=405: -m405} \
112 %{mcpu=405fp: -m405} \
113 %{mcpu=440: -m440} \
114 %{mcpu=440fp: -m440} \
115 %{mcpu=464: -m440} \
116 %{mcpu=464fp: -m440} \
117 %{mcpu=505: -mppc} \
118 %{mcpu=601: -m601} \
119 %{mcpu=602: -mppc} \
120 %{mcpu=603: -mppc} \
121 %{mcpu=603e: -mppc} \
122 %{mcpu=ec603e: -mppc} \
123 %{mcpu=604: -mppc} \
124 %{mcpu=604e: -mppc} \
125 %{mcpu=620: -mppc64} \
126 %{mcpu=630: -mppc64} \
127 %{mcpu=740: -mppc} \
128 %{mcpu=750: -mppc} \
129 %{mcpu=G3: -mppc} \
130 %{mcpu=7400: -mppc -maltivec} \
131 %{mcpu=7450: -mppc -maltivec} \
132 %{mcpu=G4: -mppc -maltivec} \
133 %{mcpu=801: -mppc} \
134 %{mcpu=821: -mppc} \
135 %{mcpu=823: -mppc} \
136 %{mcpu=860: -mppc} \
137 %{mcpu=970: -mpower4 -maltivec} \
138 %{mcpu=G5: -mpower4 -maltivec} \
139 %{mcpu=8540: -me500} \
140 %{mcpu=8548: -me500} \
141 %{mcpu=e300c2: -me300} \
142 %{mcpu=e300c3: -me300} \
143 %{mcpu=e500mc: -me500mc} \
144 %{maltivec: -maltivec} \
145 -many"
147 #define CPP_DEFAULT_SPEC ""
149 #define ASM_DEFAULT_SPEC ""
151 /* This macro defines names of additional specifications to put in the specs
152 that can be used in various specifications like CC1_SPEC. Its definition
153 is an initializer with a subgrouping for each command option.
155 Each subgrouping contains a string constant, that defines the
156 specification name, and a string constant that used by the GCC driver
157 program.
159 Do not define this macro if it does not need to do anything. */
161 #define SUBTARGET_EXTRA_SPECS
163 #define EXTRA_SPECS \
164 { "cpp_default", CPP_DEFAULT_SPEC }, \
165 { "asm_cpu", ASM_CPU_SPEC }, \
166 { "asm_default", ASM_DEFAULT_SPEC }, \
167 { "cc1_cpu", CC1_CPU_SPEC }, \
168 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
169 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
170 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
171 SUBTARGET_EXTRA_SPECS
173 /* -mcpu=native handling only makes sense with compiler running on
174 an PowerPC chip. If changing this condition, also change
175 the condition in driver-rs6000.c. */
176 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
177 /* In driver-rs6000.c. */
178 extern const char *host_detect_local_cpu (int argc, const char **argv);
179 #define EXTRA_SPEC_FUNCTIONS \
180 { "local_cpu_detect", host_detect_local_cpu },
181 #define HAVE_LOCAL_CPU_DETECT
182 #endif
184 #ifndef CC1_CPU_SPEC
185 #ifdef HAVE_LOCAL_CPU_DETECT
186 #define CC1_CPU_SPEC \
187 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
188 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
189 #else
190 #define CC1_CPU_SPEC ""
191 #endif
192 #endif
194 /* Architecture type. */
196 /* Define TARGET_MFCRF if the target assembler does not support the
197 optional field operand for mfcr. */
199 #ifndef HAVE_AS_MFCRF
200 #undef TARGET_MFCRF
201 #define TARGET_MFCRF 0
202 #endif
204 /* Define TARGET_POPCNTB if the target assembler does not support the
205 popcount byte instruction. */
207 #ifndef HAVE_AS_POPCNTB
208 #undef TARGET_POPCNTB
209 #define TARGET_POPCNTB 0
210 #endif
212 /* Define TARGET_FPRND if the target assembler does not support the
213 fp rounding instructions. */
215 #ifndef HAVE_AS_FPRND
216 #undef TARGET_FPRND
217 #define TARGET_FPRND 0
218 #endif
220 /* Define TARGET_CMPB if the target assembler does not support the
221 cmpb instruction. */
223 #ifndef HAVE_AS_CMPB
224 #undef TARGET_CMPB
225 #define TARGET_CMPB 0
226 #endif
228 /* Define TARGET_MFPGPR if the target assembler does not support the
229 mffpr and mftgpr instructions. */
231 #ifndef HAVE_AS_MFPGPR
232 #undef TARGET_MFPGPR
233 #define TARGET_MFPGPR 0
234 #endif
236 /* Define TARGET_DFP if the target assembler does not support decimal
237 floating point instructions. */
238 #ifndef HAVE_AS_DFP
239 #undef TARGET_DFP
240 #define TARGET_DFP 0
241 #endif
243 #ifndef TARGET_SECURE_PLT
244 #define TARGET_SECURE_PLT 0
245 #endif
247 #define TARGET_32BIT (! TARGET_64BIT)
249 #ifndef HAVE_AS_TLS
250 #define HAVE_AS_TLS 0
251 #endif
253 /* Return 1 for a symbol ref for a thread-local storage symbol. */
254 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
255 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
257 #ifdef IN_LIBGCC2
258 /* For libgcc2 we make sure this is a compile time constant */
259 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
260 #undef TARGET_POWERPC64
261 #define TARGET_POWERPC64 1
262 #else
263 #undef TARGET_POWERPC64
264 #define TARGET_POWERPC64 0
265 #endif
266 #else
267 /* The option machinery will define this. */
268 #endif
270 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
272 /* Processor type. Order must match cpu attribute in MD file. */
273 enum processor_type
275 PROCESSOR_RIOS1,
276 PROCESSOR_RIOS2,
277 PROCESSOR_RS64A,
278 PROCESSOR_MPCCORE,
279 PROCESSOR_PPC403,
280 PROCESSOR_PPC405,
281 PROCESSOR_PPC440,
282 PROCESSOR_PPC601,
283 PROCESSOR_PPC603,
284 PROCESSOR_PPC604,
285 PROCESSOR_PPC604e,
286 PROCESSOR_PPC620,
287 PROCESSOR_PPC630,
288 PROCESSOR_PPC750,
289 PROCESSOR_PPC7400,
290 PROCESSOR_PPC7450,
291 PROCESSOR_PPC8540,
292 PROCESSOR_PPCE300C2,
293 PROCESSOR_PPCE300C3,
294 PROCESSOR_PPCE500MC,
295 PROCESSOR_POWER4,
296 PROCESSOR_POWER5,
297 PROCESSOR_POWER6,
298 PROCESSOR_CELL
301 extern enum processor_type rs6000_cpu;
303 /* Recast the processor type to the cpu attribute. */
304 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
306 /* Define generic processor types based upon current deployment. */
307 #define PROCESSOR_COMMON PROCESSOR_PPC601
308 #define PROCESSOR_POWER PROCESSOR_RIOS1
309 #define PROCESSOR_POWERPC PROCESSOR_PPC604
310 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
312 /* Define the default processor. This is overridden by other tm.h files. */
313 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
314 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
316 /* Specify the dialect of assembler to use. New mnemonics is dialect one
317 and the old mnemonics are dialect zero. */
318 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
320 /* Types of costly dependences. */
321 enum rs6000_dependence_cost
323 max_dep_latency = 1000,
324 no_dep_costly,
325 all_deps_costly,
326 true_store_to_load_dep_costly,
327 store_to_load_dep_costly
330 /* Types of nop insertion schemes in sched target hook sched_finish. */
331 enum rs6000_nop_insertion
333 sched_finish_regroup_exact = 1000,
334 sched_finish_pad_groups,
335 sched_finish_none
338 /* Dispatch group termination caused by an insn. */
339 enum group_termination
341 current_group,
342 previous_group
345 /* Support for a compile-time default CPU, et cetera. The rules are:
346 --with-cpu is ignored if -mcpu is specified.
347 --with-tune is ignored if -mtune is specified.
348 --with-float is ignored if -mhard-float or -msoft-float are
349 specified. */
350 #define OPTION_DEFAULT_SPECS \
351 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
352 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
353 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
355 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
356 struct rs6000_cpu_select
358 const char *string;
359 const char *name;
360 int set_tune_p;
361 int set_arch_p;
364 extern struct rs6000_cpu_select rs6000_select[];
366 /* Debug support */
367 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
368 extern int rs6000_debug_stack; /* debug stack applications */
369 extern int rs6000_debug_arg; /* debug argument handling */
371 #define TARGET_DEBUG_STACK rs6000_debug_stack
372 #define TARGET_DEBUG_ARG rs6000_debug_arg
374 extern const char *rs6000_traceback_name; /* Type of traceback table. */
376 /* These are separate from target_flags because we've run out of bits
377 there. */
378 extern int rs6000_long_double_type_size;
379 extern int rs6000_ieeequad;
380 extern int rs6000_altivec_abi;
381 extern int rs6000_spe_abi;
382 extern int rs6000_spe;
383 extern int rs6000_isel;
384 extern int rs6000_float_gprs;
385 extern int rs6000_alignment_flags;
386 extern const char *rs6000_sched_insert_nops_str;
387 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
389 /* Alignment options for fields in structures for sub-targets following
390 AIX-like ABI.
391 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
392 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
394 Override the macro definitions when compiling libobjc to avoid undefined
395 reference to rs6000_alignment_flags due to library's use of GCC alignment
396 macros which use the macros below. */
398 #ifndef IN_TARGET_LIBS
399 #define MASK_ALIGN_POWER 0x00000000
400 #define MASK_ALIGN_NATURAL 0x00000001
401 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
402 #else
403 #define TARGET_ALIGN_NATURAL 0
404 #endif
406 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
407 #define TARGET_IEEEQUAD rs6000_ieeequad
408 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
410 #define TARGET_SPE_ABI 0
411 #define TARGET_SPE 0
412 #define TARGET_E500 0
413 #define TARGET_ISEL rs6000_isel
414 #define TARGET_FPRS 1
415 #define TARGET_E500_SINGLE 0
416 #define TARGET_E500_DOUBLE 0
417 #define CHECK_E500_OPTIONS do { } while (0)
419 /* E500 processors only support plain "sync", not lwsync. */
420 #define TARGET_NO_LWSYNC TARGET_E500
422 /* Sometimes certain combinations of command options do not make sense
423 on a particular target machine. You can define a macro
424 `OVERRIDE_OPTIONS' to take account of this. This macro, if
425 defined, is executed once just after all the command options have
426 been parsed.
428 Do not use this macro to turn on various extra optimizations for
429 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
431 On the RS/6000 this is used to define the target cpu type. */
433 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
435 /* Define this to change the optimizations performed by default. */
436 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
438 /* Show we can debug even without a frame pointer. */
439 #define CAN_DEBUG_WITHOUT_FP
441 /* Target pragma. */
442 #define REGISTER_TARGET_PRAGMAS() do { \
443 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
444 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
445 } while (0)
447 /* Target #defines. */
448 #define TARGET_CPU_CPP_BUILTINS() \
449 rs6000_cpu_cpp_builtins (pfile)
451 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
452 we're compiling for. Some configurations may need to override it. */
453 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
454 do \
456 if (BYTES_BIG_ENDIAN) \
458 builtin_define ("__BIG_ENDIAN__"); \
459 builtin_define ("_BIG_ENDIAN"); \
460 builtin_assert ("machine=bigendian"); \
462 else \
464 builtin_define ("__LITTLE_ENDIAN__"); \
465 builtin_define ("_LITTLE_ENDIAN"); \
466 builtin_assert ("machine=littleendian"); \
469 while (0)
471 /* Target machine storage layout. */
473 /* Define this macro if it is advisable to hold scalars in registers
474 in a wider mode than that declared by the program. In such cases,
475 the value is constrained to be within the bounds of the declared
476 type, but kept valid in the wider mode. The signedness of the
477 extension may differ from that of the type. */
479 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
480 if (GET_MODE_CLASS (MODE) == MODE_INT \
481 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
482 (MODE) = TARGET_32BIT ? SImode : DImode;
484 /* Define this if most significant bit is lowest numbered
485 in instructions that operate on numbered bit-fields. */
486 /* That is true on RS/6000. */
487 #define BITS_BIG_ENDIAN 1
489 /* Define this if most significant byte of a word is the lowest numbered. */
490 /* That is true on RS/6000. */
491 #define BYTES_BIG_ENDIAN 1
493 /* Define this if most significant word of a multiword number is lowest
494 numbered.
496 For RS/6000 we can decide arbitrarily since there are no machine
497 instructions for them. Might as well be consistent with bits and bytes. */
498 #define WORDS_BIG_ENDIAN 1
500 #define MAX_BITS_PER_WORD 64
502 /* Width of a word, in units (bytes). */
503 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
504 #ifdef IN_LIBGCC2
505 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
506 #else
507 #define MIN_UNITS_PER_WORD 4
508 #endif
509 #define UNITS_PER_FP_WORD 8
510 #define UNITS_PER_ALTIVEC_WORD 16
511 #define UNITS_PER_SPE_WORD 8
512 #define UNITS_PER_PAIRED_WORD 8
514 /* Type used for ptrdiff_t, as a string used in a declaration. */
515 #define PTRDIFF_TYPE "int"
517 /* Type used for size_t, as a string used in a declaration. */
518 #define SIZE_TYPE "long unsigned int"
520 /* Type used for wchar_t, as a string used in a declaration. */
521 #define WCHAR_TYPE "short unsigned int"
523 /* Width of wchar_t in bits. */
524 #define WCHAR_TYPE_SIZE 16
526 /* A C expression for the size in bits of the type `short' on the
527 target machine. If you don't define this, the default is half a
528 word. (If this would be less than one storage unit, it is
529 rounded up to one unit.) */
530 #define SHORT_TYPE_SIZE 16
532 /* A C expression for the size in bits of the type `int' on the
533 target machine. If you don't define this, the default is one
534 word. */
535 #define INT_TYPE_SIZE 32
537 /* A C expression for the size in bits of the type `long' on the
538 target machine. If you don't define this, the default is one
539 word. */
540 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
542 /* A C expression for the size in bits of the type `long long' on the
543 target machine. If you don't define this, the default is two
544 words. */
545 #define LONG_LONG_TYPE_SIZE 64
547 /* A C expression for the size in bits of the type `float' on the
548 target machine. If you don't define this, the default is one
549 word. */
550 #define FLOAT_TYPE_SIZE 32
552 /* A C expression for the size in bits of the type `double' on the
553 target machine. If you don't define this, the default is two
554 words. */
555 #define DOUBLE_TYPE_SIZE 64
557 /* A C expression for the size in bits of the type `long double' on
558 the target machine. If you don't define this, the default is two
559 words. */
560 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
562 /* Define this to set long double type size to use in libgcc2.c, which can
563 not depend on target_flags. */
564 #ifdef __LONG_DOUBLE_128__
565 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
566 #else
567 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
568 #endif
570 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
571 #define WIDEST_HARDWARE_FP_SIZE 64
573 /* Width in bits of a pointer.
574 See also the macro `Pmode' defined below. */
575 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
577 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
578 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
580 /* Boundary (in *bits*) on which stack pointer should be aligned. */
581 #define STACK_BOUNDARY \
582 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
584 /* Allocation boundary (in *bits*) for the code of a function. */
585 #define FUNCTION_BOUNDARY 32
587 /* No data type wants to be aligned rounder than this. */
588 #define BIGGEST_ALIGNMENT 128
590 /* A C expression to compute the alignment for a variables in the
591 local store. TYPE is the data type, and ALIGN is the alignment
592 that the object would ordinarily have. */
593 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
594 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
595 (TARGET_E500_DOUBLE \
596 && TYPE_MODE (TYPE) == DFmode) ? 64 : \
597 ((TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
598 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) || (TARGET_PAIRED_FLOAT \
599 && TREE_CODE (TYPE) == VECTOR_TYPE \
600 && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) ? 64 : ALIGN)
602 /* Alignment of field after `int : 0' in a structure. */
603 #define EMPTY_FIELD_BOUNDARY 32
605 /* Every structure's size must be a multiple of this. */
606 #define STRUCTURE_SIZE_BOUNDARY 8
608 /* Return 1 if a structure or array containing FIELD should be
609 accessed using `BLKMODE'.
611 For the SPE, simd types are V2SI, and gcc can be tempted to put the
612 entire thing in a DI and use subregs to access the internals.
613 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
614 back-end. Because a single GPR can hold a V2SI, but not a DI, the
615 best thing to do is set structs to BLKmode and avoid Severe Tire
616 Damage.
618 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
619 fit into 1, whereas DI still needs two. */
620 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
621 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
622 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
624 /* A bit-field declared as `int' forces `int' alignment for the struct. */
625 #define PCC_BITFIELD_TYPE_MATTERS 1
627 /* Make strings word-aligned so strcpy from constants will be faster.
628 Make vector constants quadword aligned. */
629 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
630 (TREE_CODE (EXP) == STRING_CST \
631 && (STRICT_ALIGNMENT || !optimize_size) \
632 && (ALIGN) < BITS_PER_WORD \
633 ? BITS_PER_WORD \
634 : (ALIGN))
636 /* Make arrays of chars word-aligned for the same reasons.
637 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
638 64 bits. */
639 #define DATA_ALIGNMENT(TYPE, ALIGN) \
640 (TREE_CODE (TYPE) == VECTOR_TYPE ? ((TARGET_SPE_ABI \
641 || TARGET_PAIRED_FLOAT) ? 64 : 128) \
642 : (TARGET_E500_DOUBLE \
643 && TYPE_MODE (TYPE) == DFmode) ? 64 \
644 : TREE_CODE (TYPE) == ARRAY_TYPE \
645 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
646 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
648 /* Nonzero if move instructions will actually fail to work
649 when given unaligned data. */
650 #define STRICT_ALIGNMENT 0
652 /* Define this macro to be the value 1 if unaligned accesses have a cost
653 many times greater than aligned accesses, for example if they are
654 emulated in a trap handler. */
655 /* Altivec vector memory instructions simply ignore the low bits; SPE
656 vector memory instructions trap on unaligned accesses. */
657 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
658 (STRICT_ALIGNMENT \
659 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
660 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
661 || (MODE) == DImode) \
662 && (ALIGN) < 32) \
663 || (VECTOR_MODE_P ((MODE)) && (ALIGN) < GET_MODE_BITSIZE ((MODE))))
665 /* Standard register usage. */
667 /* Number of actual hardware registers.
668 The hardware registers are assigned numbers for the compiler
669 from 0 to just below FIRST_PSEUDO_REGISTER.
670 All registers that the compiler knows about must be given numbers,
671 even those that are not normally considered general registers.
673 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
674 an MQ register, a count register, a link register, and 8 condition
675 register fields, which we view here as separate registers. AltiVec
676 adds 32 vector registers and a VRsave register.
678 In addition, the difference between the frame and argument pointers is
679 a function of the number of registers saved, so we need to have a
680 register for AP that will later be eliminated in favor of SP or FP.
681 This is a normal register, but it is fixed.
683 We also create a pseudo register for float/int conversions, that will
684 really represent the memory location used. It is represented here as
685 a register, in order to work around problems in allocating stack storage
686 in inline functions.
688 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
689 pointer, which is eventually eliminated in favor of SP or FP. */
691 #define FIRST_PSEUDO_REGISTER 114
693 /* This must be included for pre gcc 3.0 glibc compatibility. */
694 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
696 /* Add 32 dwarf columns for synthetic SPE registers. */
697 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
699 /* The SPE has an additional 32 synthetic registers, with DWARF debug
700 info numbering for these registers starting at 1200. While eh_frame
701 register numbering need not be the same as the debug info numbering,
702 we choose to number these regs for eh_frame at 1200 too. This allows
703 future versions of the rs6000 backend to add hard registers and
704 continue to use the gcc hard register numbering for eh_frame. If the
705 extra SPE registers in eh_frame were numbered starting from the
706 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
707 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
708 avoid invalidating older SPE eh_frame info.
710 We must map them here to avoid huge unwinder tables mostly consisting
711 of unused space. */
712 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
713 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
715 /* Use standard DWARF numbering for DWARF debugging information. */
716 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
718 /* Use gcc hard register numbering for eh_frame. */
719 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
721 /* Map register numbers held in the call frame info that gcc has
722 collected using DWARF_FRAME_REGNUM to those that should be output in
723 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
724 for .eh_frame, but use the numbers mandated by the various ABIs for
725 .debug_frame. rs6000_emit_prologue has translated any combination of
726 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
727 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
728 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
729 ((FOR_EH) ? (REGNO) \
730 : (REGNO) == CR2_REGNO ? 64 \
731 : DBX_REGISTER_NUMBER (REGNO))
733 /* 1 for registers that have pervasive standard uses
734 and are not available for the register allocator.
736 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
737 as a local register; for all other OS's r2 is the TOC pointer.
739 cr5 is not supposed to be used.
741 On System V implementations, r13 is fixed and not available for use. */
743 #define FIXED_REGISTERS \
744 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
749 /* AltiVec registers. */ \
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752 1, 1 \
753 , 1, 1, 1 \
756 /* 1 for registers not available across function calls.
757 These must include the FIXED_REGISTERS and also any
758 registers that can be used without being saved.
759 The latter must include the registers where values are returned
760 and the register where structure-value addresses are passed.
761 Aside from that, you can include as many other registers as you like. */
763 #define CALL_USED_REGISTERS \
764 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
765 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
766 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
767 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
768 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
769 /* AltiVec registers. */ \
770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
772 1, 1 \
773 , 1, 1, 1 \
776 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
777 the entire set of `FIXED_REGISTERS' be included.
778 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
779 This macro is optional. If not specified, it defaults to the value
780 of `CALL_USED_REGISTERS'. */
782 #define CALL_REALLY_USED_REGISTERS \
783 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
784 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
785 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
786 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
787 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
788 /* AltiVec registers. */ \
789 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
790 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
791 0, 0 \
792 , 0, 0, 0 \
795 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
797 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
798 #define FIRST_SAVED_FP_REGNO (14+32)
799 #define FIRST_SAVED_GP_REGNO 13
801 /* List the order in which to allocate registers. Each register must be
802 listed once, even those in FIXED_REGISTERS.
804 We allocate in the following order:
805 fp0 (not saved or used for anything)
806 fp13 - fp2 (not saved; incoming fp arg registers)
807 fp1 (not saved; return value)
808 fp31 - fp14 (saved; order given to save least number)
809 cr7, cr6 (not saved or special)
810 cr1 (not saved, but used for FP operations)
811 cr0 (not saved, but used for arithmetic operations)
812 cr4, cr3, cr2 (saved)
813 r0 (not saved; cannot be base reg)
814 r9 (not saved; best for TImode)
815 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
816 r3 (not saved; return value register)
817 r31 - r13 (saved; order given to save least number)
818 r12 (not saved; if used for DImode or DFmode would use r13)
819 mq (not saved; best to use it if we can)
820 ctr (not saved; when we have the choice ctr is better)
821 lr (saved)
822 cr5, r1, r2, ap, xer (fixed)
823 v0 - v1 (not saved or used for anything)
824 v13 - v3 (not saved; incoming vector arg registers)
825 v2 (not saved; incoming vector arg reg; return value)
826 v19 - v14 (not saved or used for anything)
827 v31 - v20 (saved; order given to save least number)
828 vrsave, vscr (fixed)
829 spe_acc, spefscr (fixed)
830 sfp (fixed)
833 #if FIXED_R2 == 1
834 #define MAYBE_R2_AVAILABLE
835 #define MAYBE_R2_FIXED 2,
836 #else
837 #define MAYBE_R2_AVAILABLE 2,
838 #define MAYBE_R2_FIXED
839 #endif
841 #define REG_ALLOC_ORDER \
842 {32, \
843 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
844 33, \
845 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
846 50, 49, 48, 47, 46, \
847 75, 74, 69, 68, 72, 71, 70, \
848 0, MAYBE_R2_AVAILABLE \
849 9, 11, 10, 8, 7, 6, 5, 4, \
850 3, \
851 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
852 18, 17, 16, 15, 14, 13, 12, \
853 64, 66, 65, \
854 73, 1, MAYBE_R2_FIXED 67, 76, \
855 /* AltiVec registers. */ \
856 77, 78, \
857 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
858 79, \
859 96, 95, 94, 93, 92, 91, \
860 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
861 109, 110, \
862 111, 112, 113 \
865 /* True if register is floating-point. */
866 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
868 /* True if register is a condition register. */
869 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
871 /* True if register is a condition register, but not cr0. */
872 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
874 /* True if register is an integer register. */
875 #define INT_REGNO_P(N) \
876 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
878 /* SPE SIMD registers are just the GPRs. */
879 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
881 /* PAIRED SIMD registers are just the FPRs. */
882 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
884 /* True if register is the XER register. */
885 #define XER_REGNO_P(N) ((N) == XER_REGNO)
887 /* True if register is an AltiVec register. */
888 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
890 /* Return number of consecutive hard regs needed starting at reg REGNO
891 to hold something of mode MODE. */
893 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
895 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
896 ((TARGET_32BIT && TARGET_POWERPC64 \
897 && (GET_MODE_SIZE (MODE) > 4) \
898 && INT_REGNO_P (REGNO)) ? 1 : 0)
900 #define ALTIVEC_VECTOR_MODE(MODE) \
901 ((MODE) == V16QImode \
902 || (MODE) == V8HImode \
903 || (MODE) == V4SFmode \
904 || (MODE) == V4SImode)
906 #define SPE_VECTOR_MODE(MODE) \
907 ((MODE) == V4HImode \
908 || (MODE) == V2SFmode \
909 || (MODE) == V1DImode \
910 || (MODE) == V2SImode)
912 #define PAIRED_VECTOR_MODE(MODE) \
913 ((MODE) == V2SFmode)
915 #define UNITS_PER_SIMD_WORD(MODE) \
916 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
917 : (TARGET_SPE ? UNITS_PER_SPE_WORD : (TARGET_PAIRED_FLOAT ? \
918 UNITS_PER_PAIRED_WORD : UNITS_PER_WORD)))
920 /* Value is TRUE if hard register REGNO can hold a value of
921 machine-mode MODE. */
922 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
923 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
925 /* Value is 1 if it is a good idea to tie two pseudo registers
926 when one has mode MODE1 and one has mode MODE2.
927 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
928 for any hard reg, then this must be 0 for correct output. */
929 #define MODES_TIEABLE_P(MODE1, MODE2) \
930 (SCALAR_FLOAT_MODE_P (MODE1) \
931 ? SCALAR_FLOAT_MODE_P (MODE2) \
932 : SCALAR_FLOAT_MODE_P (MODE2) \
933 ? SCALAR_FLOAT_MODE_P (MODE1) \
934 : GET_MODE_CLASS (MODE1) == MODE_CC \
935 ? GET_MODE_CLASS (MODE2) == MODE_CC \
936 : GET_MODE_CLASS (MODE2) == MODE_CC \
937 ? GET_MODE_CLASS (MODE1) == MODE_CC \
938 : SPE_VECTOR_MODE (MODE1) \
939 ? SPE_VECTOR_MODE (MODE2) \
940 : SPE_VECTOR_MODE (MODE2) \
941 ? SPE_VECTOR_MODE (MODE1) \
942 : ALTIVEC_VECTOR_MODE (MODE1) \
943 ? ALTIVEC_VECTOR_MODE (MODE2) \
944 : ALTIVEC_VECTOR_MODE (MODE2) \
945 ? ALTIVEC_VECTOR_MODE (MODE1) \
946 : 1)
948 /* Post-reload, we can't use any new AltiVec registers, as we already
949 emitted the vrsave mask. */
951 #define HARD_REGNO_RENAME_OK(SRC, DST) \
952 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
954 /* A C expression returning the cost of moving data from a register of class
955 CLASS1 to one of CLASS2. */
957 #define REGISTER_MOVE_COST rs6000_register_move_cost
959 /* A C expressions returning the cost of moving data of MODE from a register to
960 or from memory. */
962 #define MEMORY_MOVE_COST rs6000_memory_move_cost
964 /* Specify the cost of a branch insn; roughly the number of extra insns that
965 should be added to avoid a branch.
967 Set this to 3 on the RS/6000 since that is roughly the average cost of an
968 unscheduled conditional branch. */
970 #define BRANCH_COST 3
972 /* Override BRANCH_COST heuristic which empirically produces worse
973 performance for removing short circuiting from the logical ops. */
975 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
977 /* A fixed register used at epilogue generation to address SPE registers
978 with negative offsets. The 64-bit load/store instructions on the SPE
979 only take positive offsets (and small ones at that), so we need to
980 reserve a register for consing up negative offsets. */
982 #define FIXED_SCRATCH 0
984 /* Define this macro to change register usage conditional on target
985 flags. */
987 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
989 /* Specify the registers used for certain standard purposes.
990 The values of these macros are register numbers. */
992 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
993 /* #define PC_REGNUM */
995 /* Register to use for pushing function arguments. */
996 #define STACK_POINTER_REGNUM 1
998 /* Base register for access to local variables of the function. */
999 #define HARD_FRAME_POINTER_REGNUM 31
1001 /* Base register for access to local variables of the function. */
1002 #define FRAME_POINTER_REGNUM 113
1004 /* Value should be nonzero if functions must have frame pointers.
1005 Zero means the frame pointer need not be set up (and parms
1006 may be accessed via the stack pointer) in functions that seem suitable.
1007 This is computed in `reload', in reload1.c. */
1008 #define FRAME_POINTER_REQUIRED 0
1010 /* Base register for access to arguments of the function. */
1011 #define ARG_POINTER_REGNUM 67
1013 /* Place to put static chain when calling a function that requires it. */
1014 #define STATIC_CHAIN_REGNUM 11
1017 /* Define the classes of registers for register constraints in the
1018 machine description. Also define ranges of constants.
1020 One of the classes must always be named ALL_REGS and include all hard regs.
1021 If there is more than one class, another class must be named NO_REGS
1022 and contain no registers.
1024 The name GENERAL_REGS must be the name of a class (or an alias for
1025 another name such as ALL_REGS). This is the class of registers
1026 that is allowed by "g" or "r" in a register constraint.
1027 Also, registers outside this class are allocated only when
1028 instructions express preferences for them.
1030 The classes must be numbered in nondecreasing order; that is,
1031 a larger-numbered class must never be contained completely
1032 in a smaller-numbered class.
1034 For any two classes, it is very desirable that there be another
1035 class that represents their union. */
1037 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1038 and condition registers, plus three special registers, MQ, CTR, and the
1039 link register. AltiVec adds a vector register class.
1041 However, r0 is special in that it cannot be used as a base register.
1042 So make a class for registers valid as base registers.
1044 Also, cr0 is the only condition code register that can be used in
1045 arithmetic insns, so make a separate class for it. */
1047 enum reg_class
1049 NO_REGS,
1050 BASE_REGS,
1051 GENERAL_REGS,
1052 FLOAT_REGS,
1053 ALTIVEC_REGS,
1054 VRSAVE_REGS,
1055 VSCR_REGS,
1056 SPE_ACC_REGS,
1057 SPEFSCR_REGS,
1058 NON_SPECIAL_REGS,
1059 MQ_REGS,
1060 LINK_REGS,
1061 CTR_REGS,
1062 LINK_OR_CTR_REGS,
1063 SPECIAL_REGS,
1064 SPEC_OR_GEN_REGS,
1065 CR0_REGS,
1066 CR_REGS,
1067 NON_FLOAT_REGS,
1068 XER_REGS,
1069 ALL_REGS,
1070 LIM_REG_CLASSES
1073 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1075 /* Give names of register classes as strings for dump file. */
1077 #define REG_CLASS_NAMES \
1079 "NO_REGS", \
1080 "BASE_REGS", \
1081 "GENERAL_REGS", \
1082 "FLOAT_REGS", \
1083 "ALTIVEC_REGS", \
1084 "VRSAVE_REGS", \
1085 "VSCR_REGS", \
1086 "SPE_ACC_REGS", \
1087 "SPEFSCR_REGS", \
1088 "NON_SPECIAL_REGS", \
1089 "MQ_REGS", \
1090 "LINK_REGS", \
1091 "CTR_REGS", \
1092 "LINK_OR_CTR_REGS", \
1093 "SPECIAL_REGS", \
1094 "SPEC_OR_GEN_REGS", \
1095 "CR0_REGS", \
1096 "CR_REGS", \
1097 "NON_FLOAT_REGS", \
1098 "XER_REGS", \
1099 "ALL_REGS" \
1102 /* Define which registers fit in which classes.
1103 This is an initializer for a vector of HARD_REG_SET
1104 of length N_REG_CLASSES. */
1106 #define REG_CLASS_CONTENTS \
1108 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1109 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1110 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1111 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1112 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1113 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1114 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1115 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1116 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1117 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1118 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1119 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1120 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1121 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1122 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1123 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1124 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1125 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1126 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1127 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1128 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1131 /* The following macro defines cover classes for Integrated Register
1132 Allocator. Cover classes is a set of non-intersected register
1133 classes covering all hard registers used for register allocation
1134 purpose. Any move between two registers of a cover class should be
1135 cheaper than load or store of the registers. The macro value is
1136 array of register classes with LIM_REG_CLASSES used as the end
1137 marker. */
1139 #define IRA_COVER_CLASSES \
1141 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, \
1142 /*VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1143 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1144 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1147 /* The same information, inverted:
1148 Return the class number of the smallest class containing
1149 reg number REGNO. This could be a conditional expression
1150 or could index an array. */
1152 #define REGNO_REG_CLASS(REGNO) \
1153 ((REGNO) == 0 ? GENERAL_REGS \
1154 : (REGNO) < 32 ? BASE_REGS \
1155 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1156 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1157 : (REGNO) == CR0_REGNO ? CR0_REGS \
1158 : CR_REGNO_P (REGNO) ? CR_REGS \
1159 : (REGNO) == MQ_REGNO ? MQ_REGS \
1160 : (REGNO) == LR_REGNO ? LINK_REGS \
1161 : (REGNO) == CTR_REGNO ? CTR_REGS \
1162 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1163 : (REGNO) == XER_REGNO ? XER_REGS \
1164 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1165 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1166 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1167 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1168 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1169 : NO_REGS)
1171 /* The class value for index registers, and the one for base regs. */
1172 #define INDEX_REG_CLASS GENERAL_REGS
1173 #define BASE_REG_CLASS BASE_REGS
1175 /* Given an rtx X being reloaded into a reg required to be
1176 in class CLASS, return the class of reg to actually use.
1177 In general this is just CLASS; but on some machines
1178 in some cases it is preferable to use a more restrictive class.
1180 On the RS/6000, we have to return NO_REGS when we want to reload a
1181 floating-point CONST_DOUBLE to force it to be copied to memory.
1183 We also don't want to reload integer values into floating-point
1184 registers if we can at all help it. In fact, this can
1185 cause reload to die, if it tries to generate a reload of CTR
1186 into a FP register and discovers it doesn't have the memory location
1187 required.
1189 ??? Would it be a good idea to have reload do the converse, that is
1190 try to reload floating modes into FP registers if possible?
1193 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1194 ((CONSTANT_P (X) \
1195 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1196 ? NO_REGS \
1197 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1198 && (CLASS) == NON_SPECIAL_REGS) \
1199 ? GENERAL_REGS \
1200 : (CLASS))
1202 /* Return the register class of a scratch register needed to copy IN into
1203 or out of a register in CLASS in MODE. If it can be done directly,
1204 NO_REGS is returned. */
1206 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1207 rs6000_secondary_reload_class (CLASS, MODE, IN)
1209 /* If we are copying between FP or AltiVec registers and anything
1210 else, we need a memory location. The exception is when we are
1211 targeting ppc64 and the move to/from fpr to gpr instructions
1212 are available.*/
1214 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1215 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1216 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1217 || ((MODE != DFmode) \
1218 && (MODE != DDmode) \
1219 && (MODE != DImode)))) \
1220 || ((CLASS2) == FLOAT_REGS \
1221 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1222 || ((MODE != DFmode) \
1223 && (MODE != DDmode) \
1224 && (MODE != DImode)))) \
1225 || (CLASS1) == ALTIVEC_REGS \
1226 || (CLASS2) == ALTIVEC_REGS))
1228 /* For cpus that cannot load/store SDmode values from the 64-bit
1229 FP registers without using a full 64-bit load/store, we need
1230 to allocate a full 64-bit stack slot for them. */
1232 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1233 rs6000_secondary_memory_needed_rtx (MODE)
1235 /* Return the maximum number of consecutive registers
1236 needed to represent mode MODE in a register of class CLASS.
1238 On RS/6000, this is the size of MODE in words,
1239 except in the FP regs, where a single reg is enough for two words. */
1240 #define CLASS_MAX_NREGS(CLASS, MODE) \
1241 (((CLASS) == FLOAT_REGS) \
1242 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1243 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS \
1244 && (MODE) == DFmode) \
1245 ? 1 \
1246 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1248 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1250 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1251 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1252 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1253 || TARGET_IEEEQUAD) \
1254 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1255 : (((TARGET_E500_DOUBLE \
1256 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1257 || (((TO) == TFmode) + ((FROM) == TFmode)) == 1 \
1258 || (((TO) == DDmode) + ((FROM) == DDmode)) == 1 \
1259 || (((TO) == TDmode) + ((FROM) == TDmode)) == 1 \
1260 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1261 || (TARGET_SPE \
1262 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1263 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1265 /* Stack layout; function entry, exit and calling. */
1267 /* Enumeration to give which calling sequence to use. */
1268 enum rs6000_abi {
1269 ABI_NONE,
1270 ABI_AIX, /* IBM's AIX */
1271 ABI_V4, /* System V.4/eabi */
1272 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1275 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1277 /* Define this if pushing a word on the stack
1278 makes the stack pointer a smaller address. */
1279 #define STACK_GROWS_DOWNWARD
1281 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1282 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1284 /* Define this to nonzero if the nominal address of the stack frame
1285 is at the high-address end of the local variables;
1286 that is, each additional local variable allocated
1287 goes at a more negative offset in the frame.
1289 On the RS/6000, we grow upwards, from the area after the outgoing
1290 arguments. */
1291 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1293 /* Size of the outgoing register save area */
1294 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1295 || DEFAULT_ABI == ABI_DARWIN) \
1296 ? (TARGET_64BIT ? 64 : 32) \
1297 : 0)
1299 /* Size of the fixed area on the stack */
1300 #define RS6000_SAVE_AREA \
1301 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1302 << (TARGET_64BIT ? 1 : 0))
1304 /* MEM representing address to save the TOC register */
1305 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1306 plus_constant (stack_pointer_rtx, \
1307 (TARGET_32BIT ? 20 : 40)))
1309 /* Align an address */
1310 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1312 /* Offset within stack frame to start allocating local variables at.
1313 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1314 first local allocated. Otherwise, it is the offset to the BEGINNING
1315 of the first local allocated.
1317 On the RS/6000, the frame pointer is the same as the stack pointer,
1318 except for dynamic allocations. So we start after the fixed area and
1319 outgoing parameter area. */
1321 #define STARTING_FRAME_OFFSET \
1322 (FRAME_GROWS_DOWNWARD \
1323 ? 0 \
1324 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1325 TARGET_ALTIVEC ? 16 : 8) \
1326 + RS6000_SAVE_AREA))
1328 /* Offset from the stack pointer register to an item dynamically
1329 allocated on the stack, e.g., by `alloca'.
1331 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1332 length of the outgoing arguments. The default is correct for most
1333 machines. See `function.c' for details. */
1334 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1335 (RS6000_ALIGN (crtl->outgoing_args_size, \
1336 TARGET_ALTIVEC ? 16 : 8) \
1337 + (STACK_POINTER_OFFSET))
1339 /* If we generate an insn to push BYTES bytes,
1340 this says how many the stack pointer really advances by.
1341 On RS/6000, don't define this because there are no push insns. */
1342 /* #define PUSH_ROUNDING(BYTES) */
1344 /* Offset of first parameter from the argument pointer register value.
1345 On the RS/6000, we define the argument pointer to the start of the fixed
1346 area. */
1347 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1349 /* Offset from the argument pointer register value to the top of
1350 stack. This is different from FIRST_PARM_OFFSET because of the
1351 register save area. */
1352 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1354 /* Define this if stack space is still allocated for a parameter passed
1355 in a register. The value is the number of bytes allocated to this
1356 area. */
1357 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1359 /* Define this if the above stack space is to be considered part of the
1360 space allocated by the caller. */
1361 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1363 /* This is the difference between the logical top of stack and the actual sp.
1365 For the RS/6000, sp points past the fixed area. */
1366 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1368 /* Define this if the maximum size of all the outgoing args is to be
1369 accumulated and pushed during the prologue. The amount can be
1370 found in the variable crtl->outgoing_args_size. */
1371 #define ACCUMULATE_OUTGOING_ARGS 1
1373 /* Value is the number of bytes of arguments automatically
1374 popped when returning from a subroutine call.
1375 FUNDECL is the declaration node of the function (as a tree),
1376 FUNTYPE is the data type of the function (as a tree),
1377 or for a library call it is an identifier node for the subroutine name.
1378 SIZE is the number of bytes of arguments passed on the stack. */
1380 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1382 /* Define how to find the value returned by a function.
1383 VALTYPE is the data type of the value (as a tree).
1384 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1385 otherwise, FUNC is 0. */
1387 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1389 /* Define how to find the value returned by a library function
1390 assuming the value has mode MODE. */
1392 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1394 /* DRAFT_V4_STRUCT_RET defaults off. */
1395 #define DRAFT_V4_STRUCT_RET 0
1397 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1398 #define DEFAULT_PCC_STRUCT_RETURN 0
1400 /* Mode of stack savearea.
1401 FUNCTION is VOIDmode because calling convention maintains SP.
1402 BLOCK needs Pmode for SP.
1403 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1404 #define STACK_SAVEAREA_MODE(LEVEL) \
1405 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1406 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1408 /* Minimum and maximum general purpose registers used to hold arguments. */
1409 #define GP_ARG_MIN_REG 3
1410 #define GP_ARG_MAX_REG 10
1411 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1413 /* Minimum and maximum floating point registers used to hold arguments. */
1414 #define FP_ARG_MIN_REG 33
1415 #define FP_ARG_AIX_MAX_REG 45
1416 #define FP_ARG_V4_MAX_REG 40
1417 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1418 || DEFAULT_ABI == ABI_DARWIN) \
1419 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1420 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1422 /* Minimum and maximum AltiVec registers used to hold arguments. */
1423 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1424 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1425 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1427 /* Return registers */
1428 #define GP_ARG_RETURN GP_ARG_MIN_REG
1429 #define FP_ARG_RETURN FP_ARG_MIN_REG
1430 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1432 /* Flags for the call/call_value rtl operations set up by function_arg */
1433 #define CALL_NORMAL 0x00000000 /* no special processing */
1434 /* Bits in 0x00000001 are unused. */
1435 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1436 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1437 #define CALL_LONG 0x00000008 /* always call indirect */
1438 #define CALL_LIBCALL 0x00000010 /* libcall */
1440 /* We don't have prologue and epilogue functions to save/restore
1441 everything for most ABIs. */
1442 #define WORLD_SAVE_P(INFO) 0
1444 /* 1 if N is a possible register number for a function value
1445 as seen by the caller.
1447 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1448 #define FUNCTION_VALUE_REGNO_P(N) \
1449 ((N) == GP_ARG_RETURN \
1450 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1451 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1453 /* 1 if N is a possible register number for function argument passing.
1454 On RS/6000, these are r3-r10 and fp1-fp13.
1455 On AltiVec, v2 - v13 are used for passing vectors. */
1456 #define FUNCTION_ARG_REGNO_P(N) \
1457 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1458 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1459 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1460 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1461 && TARGET_HARD_FLOAT && TARGET_FPRS))
1463 /* Define a data type for recording info about an argument list
1464 during the scan of that argument list. This data type should
1465 hold all necessary information about the function itself
1466 and about the args processed so far, enough to enable macros
1467 such as FUNCTION_ARG to determine where the next arg should go.
1469 On the RS/6000, this is a structure. The first element is the number of
1470 total argument words, the second is used to store the next
1471 floating-point register number, and the third says how many more args we
1472 have prototype types for.
1474 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1475 the next available GP register, `fregno' is the next available FP
1476 register, and `words' is the number of words used on the stack.
1478 The varargs/stdarg support requires that this structure's size
1479 be a multiple of sizeof(int). */
1481 typedef struct rs6000_args
1483 int words; /* # words used for passing GP registers */
1484 int fregno; /* next available FP register */
1485 int vregno; /* next available AltiVec register */
1486 int nargs_prototype; /* # args left in the current prototype */
1487 int prototype; /* Whether a prototype was defined */
1488 int stdarg; /* Whether function is a stdarg function. */
1489 int call_cookie; /* Do special things for this call */
1490 int sysv_gregno; /* next available GP register */
1491 int intoffset; /* running offset in struct (darwin64) */
1492 int use_stack; /* any part of struct on stack (darwin64) */
1493 int named; /* false for varargs params */
1494 } CUMULATIVE_ARGS;
1496 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1497 for a call to a function whose data type is FNTYPE.
1498 For a library call, FNTYPE is 0. */
1500 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1501 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1503 /* Similar, but when scanning the definition of a procedure. We always
1504 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1506 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1507 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1509 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1511 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1512 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1514 /* Update the data in CUM to advance over an argument
1515 of mode MODE and data type TYPE.
1516 (TYPE is null for libcalls where that information may not be available.) */
1518 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1519 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1521 /* Determine where to put an argument to a function.
1522 Value is zero to push the argument on the stack,
1523 or a hard register in which to store the argument.
1525 MODE is the argument's machine mode.
1526 TYPE is the data type of the argument (as a tree).
1527 This is null for libcalls where that information may
1528 not be available.
1529 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1530 the preceding args and about the function being called.
1531 NAMED is nonzero if this argument is a named parameter
1532 (otherwise it is an extra parameter matching an ellipsis).
1534 On RS/6000 the first eight words of non-FP are normally in registers
1535 and the rest are pushed. The first 13 FP args are in registers.
1537 If this is floating-point and no prototype is specified, we use
1538 both an FP and integer register (or possibly FP reg and stack). Library
1539 functions (when TYPE is zero) always have the proper types for args,
1540 so we can pass the FP value just in one register. emit_library_function
1541 doesn't support EXPR_LIST anyway. */
1543 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1544 function_arg (&CUM, MODE, TYPE, NAMED)
1546 /* If defined, a C expression which determines whether, and in which
1547 direction, to pad out an argument with extra space. The value
1548 should be of type `enum direction': either `upward' to pad above
1549 the argument, `downward' to pad below, or `none' to inhibit
1550 padding. */
1552 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1554 /* If defined, a C expression that gives the alignment boundary, in bits,
1555 of an argument with the specified mode and type. If it is not defined,
1556 PARM_BOUNDARY is used for all arguments. */
1558 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1559 function_arg_boundary (MODE, TYPE)
1561 #define PAD_VARARGS_DOWN \
1562 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1564 /* Output assembler code to FILE to increment profiler label # LABELNO
1565 for profiling a function entry. */
1567 #define FUNCTION_PROFILER(FILE, LABELNO) \
1568 output_function_profiler ((FILE), (LABELNO));
1570 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1571 the stack pointer does not matter. No definition is equivalent to
1572 always zero.
1574 On the RS/6000, this is nonzero because we can restore the stack from
1575 its backpointer, which we maintain. */
1576 #define EXIT_IGNORE_STACK 1
1578 /* Define this macro as a C expression that is nonzero for registers
1579 that are used by the epilogue or the return' pattern. The stack
1580 and frame pointer registers are already be assumed to be used as
1581 needed. */
1583 #define EPILOGUE_USES(REGNO) \
1584 ((reload_completed && (REGNO) == LR_REGNO) \
1585 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1586 || (crtl->calls_eh_return \
1587 && TARGET_AIX \
1588 && (REGNO) == 2))
1591 /* TRAMPOLINE_TEMPLATE deleted */
1593 /* Length in units of the trampoline for entering a nested function. */
1595 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1597 /* Emit RTL insns to initialize the variable parts of a trampoline.
1598 FNADDR is an RTX for the address of the function's pure code.
1599 CXT is an RTX for the static chain value for the function. */
1601 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1602 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1604 /* Definitions for __builtin_return_address and __builtin_frame_address.
1605 __builtin_return_address (0) should give link register (65), enable
1606 this. */
1607 /* This should be uncommented, so that the link register is used, but
1608 currently this would result in unmatched insns and spilling fixed
1609 registers so we'll leave it for another day. When these problems are
1610 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1611 (mrs) */
1612 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1614 /* Number of bytes into the frame return addresses can be found. See
1615 rs6000_stack_info in rs6000.c for more information on how the different
1616 abi's store the return address. */
1617 #define RETURN_ADDRESS_OFFSET \
1618 ((DEFAULT_ABI == ABI_AIX \
1619 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1620 (DEFAULT_ABI == ABI_V4) ? 4 : \
1621 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1623 /* The current return address is in link register (65). The return address
1624 of anything farther back is accessed normally at an offset of 8 from the
1625 frame pointer. */
1626 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1627 (rs6000_return_addr (COUNT, FRAME))
1630 /* Definitions for register eliminations.
1632 We have two registers that can be eliminated on the RS/6000. First, the
1633 frame pointer register can often be eliminated in favor of the stack
1634 pointer register. Secondly, the argument pointer register can always be
1635 eliminated; it is replaced with either the stack or frame pointer.
1637 In addition, we use the elimination mechanism to see if r30 is needed
1638 Initially we assume that it isn't. If it is, we spill it. This is done
1639 by making it an eliminable register. We replace it with itself so that
1640 if it isn't needed, then existing uses won't be modified. */
1642 /* This is an array of structures. Each structure initializes one pair
1643 of eliminable registers. The "from" register number is given first,
1644 followed by "to". Eliminations of the same "from" register are listed
1645 in order of preference. */
1646 #define ELIMINABLE_REGS \
1647 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1648 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1649 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1650 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1651 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1652 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1654 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1655 Frame pointer elimination is automatically handled.
1657 For the RS/6000, if frame pointer elimination is being done, we would like
1658 to convert ap into fp, not sp.
1660 We need r30 if -mminimal-toc was specified, and there are constant pool
1661 references. */
1663 #define CAN_ELIMINATE(FROM, TO) \
1664 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1665 ? ! frame_pointer_needed \
1666 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1667 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1668 : 1)
1670 /* Define the offset between two registers, one to be eliminated, and the other
1671 its replacement, at the start of a routine. */
1672 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1673 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1675 /* Addressing modes, and classification of registers for them. */
1677 #define HAVE_PRE_DECREMENT 1
1678 #define HAVE_PRE_INCREMENT 1
1679 #define HAVE_PRE_MODIFY_DISP 1
1680 #define HAVE_PRE_MODIFY_REG 1
1682 /* Macros to check register numbers against specific register classes. */
1684 /* These assume that REGNO is a hard or pseudo reg number.
1685 They give nonzero only if REGNO is a hard reg of the suitable class
1686 or a pseudo reg currently allocated to a suitable hard reg.
1687 Since they use reg_renumber, they are safe only once reg_renumber
1688 has been allocated, which happens in local-alloc.c. */
1690 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1691 ((REGNO) < FIRST_PSEUDO_REGISTER \
1692 ? (REGNO) <= 31 || (REGNO) == 67 \
1693 || (REGNO) == FRAME_POINTER_REGNUM \
1694 : (reg_renumber[REGNO] >= 0 \
1695 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1696 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1698 #define REGNO_OK_FOR_BASE_P(REGNO) \
1699 ((REGNO) < FIRST_PSEUDO_REGISTER \
1700 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1701 || (REGNO) == FRAME_POINTER_REGNUM \
1702 : (reg_renumber[REGNO] > 0 \
1703 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1704 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1706 /* Maximum number of registers that can appear in a valid memory address. */
1708 #define MAX_REGS_PER_ADDRESS 2
1710 /* Recognize any constant value that is a valid address. */
1712 #define CONSTANT_ADDRESS_P(X) \
1713 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1714 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1715 || GET_CODE (X) == HIGH)
1717 /* Nonzero if the constant value X is a legitimate general operand.
1718 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1720 On the RS/6000, all integer constants are acceptable, most won't be valid
1721 for particular insns, though. Only easy FP constants are
1722 acceptable. */
1724 #define LEGITIMATE_CONSTANT_P(X) \
1725 (((GET_CODE (X) != CONST_DOUBLE \
1726 && GET_CODE (X) != CONST_VECTOR) \
1727 || GET_MODE (X) == VOIDmode \
1728 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1729 || easy_fp_constant (X, GET_MODE (X)) \
1730 || easy_vector_constant (X, GET_MODE (X))) \
1731 && !rs6000_tls_referenced_p (X))
1733 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1734 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1735 && EASY_VECTOR_15((n) >> 1) \
1736 && ((n) & 1) == 0)
1738 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1739 and check its validity for a certain class.
1740 We have two alternate definitions for each of them.
1741 The usual definition accepts all pseudo regs; the other rejects
1742 them unless they have been allocated suitable hard regs.
1743 The symbol REG_OK_STRICT causes the latter definition to be used.
1745 Most source files want to accept pseudo regs in the hope that
1746 they will get allocated to the class that the insn wants them to be in.
1747 Source files for reload pass need to be strict.
1748 After reload, it makes no difference, since pseudo regs have
1749 been eliminated by then. */
1751 #ifdef REG_OK_STRICT
1752 # define REG_OK_STRICT_FLAG 1
1753 #else
1754 # define REG_OK_STRICT_FLAG 0
1755 #endif
1757 /* Nonzero if X is a hard reg that can be used as an index
1758 or if it is a pseudo reg in the non-strict case. */
1759 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1760 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1761 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1763 /* Nonzero if X is a hard reg that can be used as a base reg
1764 or if it is a pseudo reg in the non-strict case. */
1765 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1766 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1767 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1769 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1770 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1772 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1773 that is a valid memory address for an instruction.
1774 The MODE argument is the machine mode for the MEM expression
1775 that wants to use this address.
1777 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1778 refers to a constant pool entry of an address (or the sum of it
1779 plus a constant), a short (16-bit signed) constant plus a register,
1780 the sum of two registers, or a register indirect, possibly with an
1781 auto-increment. For DFmode, DDmode and DImode with a constant plus
1782 register, we must ensure that both words are addressable or PowerPC64
1783 with offset word aligned.
1785 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
1786 32-bit DImode, TImode), indexed addressing cannot be used because
1787 adjacent memory cells are accessed by adding word-sized offsets
1788 during assembly output. */
1790 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1791 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1792 goto ADDR; \
1795 /* Try machine-dependent ways of modifying an illegitimate address
1796 to be legitimate. If we find one, return the new, valid address.
1797 This macro is used in only one place: `memory_address' in explow.c.
1799 OLDX is the address as it was before break_out_memory_refs was called.
1800 In some cases it is useful to look at this to decide what needs to be done.
1802 MODE and WIN are passed so that this macro can use
1803 GO_IF_LEGITIMATE_ADDRESS.
1805 It is always safe for this macro to do nothing. It exists to recognize
1806 opportunities to optimize the output.
1808 On RS/6000, first check for the sum of a register with a constant
1809 integer that is out of range. If so, generate code to add the
1810 constant with the low-order 16 bits masked to the register and force
1811 this result into another register (this can be done with `cau').
1812 Then generate an address of REG+(CONST&0xffff), allowing for the
1813 possibility of bit 16 being a one.
1815 Then check for the sum of a register and something not constant, try to
1816 load the other things into a register and return the sum. */
1818 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1819 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1820 if (result != NULL_RTX) \
1822 (X) = result; \
1823 goto WIN; \
1827 /* Try a machine-dependent way of reloading an illegitimate address
1828 operand. If we find one, push the reload and jump to WIN. This
1829 macro is used in only one place: `find_reloads_address' in reload.c.
1831 Implemented on rs6000 by rs6000_legitimize_reload_address.
1832 Note that (X) is evaluated twice; this is safe in current usage. */
1834 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1835 do { \
1836 int win; \
1837 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1838 (int)(TYPE), (IND_LEVELS), &win); \
1839 if ( win ) \
1840 goto WIN; \
1841 } while (0)
1843 /* Go to LABEL if ADDR (a legitimate address expression)
1844 has an effect that depends on the machine mode it is used for. */
1846 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1847 do { \
1848 if (rs6000_mode_dependent_address (ADDR)) \
1849 goto LABEL; \
1850 } while (0)
1852 /* The register number of the register used to address a table of
1853 static data addresses in memory. In some cases this register is
1854 defined by a processor's "application binary interface" (ABI).
1855 When this macro is defined, RTL is generated for this register
1856 once, as with the stack pointer and frame pointer registers. If
1857 this macro is not defined, it is up to the machine-dependent files
1858 to allocate such a register (if necessary). */
1860 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1861 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1863 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1865 /* Define this macro if the register defined by
1866 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1867 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1869 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1871 /* A C expression that is nonzero if X is a legitimate immediate
1872 operand on the target machine when generating position independent
1873 code. You can assume that X satisfies `CONSTANT_P', so you need
1874 not check this. You can also assume FLAG_PIC is true, so you need
1875 not check it either. You need not define this macro if all
1876 constants (including `SYMBOL_REF') can be immediate operands when
1877 generating position independent code. */
1879 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1881 /* Define this if some processing needs to be done immediately before
1882 emitting code for an insn. */
1884 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1886 /* Specify the machine mode that this machine uses
1887 for the index in the tablejump instruction. */
1888 #define CASE_VECTOR_MODE SImode
1890 /* Define as C expression which evaluates to nonzero if the tablejump
1891 instruction expects the table to contain offsets from the address of the
1892 table.
1893 Do not define this if the table should contain absolute addresses. */
1894 #define CASE_VECTOR_PC_RELATIVE 1
1896 /* Define this as 1 if `char' should by default be signed; else as 0. */
1897 #define DEFAULT_SIGNED_CHAR 0
1899 /* This flag, if defined, says the same insns that convert to a signed fixnum
1900 also convert validly to an unsigned one. */
1902 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1904 /* An integer expression for the size in bits of the largest integer machine
1905 mode that should actually be used. */
1907 /* Allow pairs of registers to be used, which is the intent of the default. */
1908 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1910 /* Max number of bytes we can move from memory to memory
1911 in one reasonably fast instruction. */
1912 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1913 #define MAX_MOVE_MAX 8
1915 /* Nonzero if access to memory by bytes is no faster than for words.
1916 Also nonzero if doing byte operations (specifically shifts) in registers
1917 is undesirable. */
1918 #define SLOW_BYTE_ACCESS 1
1920 /* Define if operations between registers always perform the operation
1921 on the full register even if a narrower mode is specified. */
1922 #define WORD_REGISTER_OPERATIONS
1924 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1925 will either zero-extend or sign-extend. The value of this macro should
1926 be the code that says which one of the two operations is implicitly
1927 done, UNKNOWN if none. */
1928 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1930 /* Define if loading short immediate values into registers sign extends. */
1931 #define SHORT_IMMEDIATES_SIGN_EXTEND
1933 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1934 is done just by pretending it is already truncated. */
1935 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1937 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1938 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1939 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1941 /* The CTZ patterns return -1 for input of zero. */
1942 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1944 /* Specify the machine mode that pointers have.
1945 After generation of rtl, the compiler makes no further distinction
1946 between pointers and any other objects of this machine mode. */
1947 #define Pmode (TARGET_32BIT ? SImode : DImode)
1949 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1950 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1952 /* Mode of a function address in a call instruction (for indexing purposes).
1953 Doesn't matter on RS/6000. */
1954 #define FUNCTION_MODE SImode
1956 /* Define this if addresses of constant functions
1957 shouldn't be put through pseudo regs where they can be cse'd.
1958 Desirable on machines where ordinary constants are expensive
1959 but a CALL with constant address is cheap. */
1960 #define NO_FUNCTION_CSE
1962 /* Define this to be nonzero if shift instructions ignore all but the low-order
1963 few bits.
1965 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1966 have been dropped from the PowerPC architecture. */
1968 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1970 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1971 should be adjusted to reflect any required changes. This macro is used when
1972 there is some systematic length adjustment required that would be difficult
1973 to express in the length attribute. */
1975 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1977 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1978 COMPARE, return the mode to be used for the comparison. For
1979 floating-point, CCFPmode should be used. CCUNSmode should be used
1980 for unsigned comparisons. CCEQmode should be used when we are
1981 doing an inequality comparison on the result of a
1982 comparison. CCmode should be used in all other cases. */
1984 #define SELECT_CC_MODE(OP,X,Y) \
1985 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1986 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1987 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1988 ? CCEQmode : CCmode))
1990 /* Can the condition code MODE be safely reversed? This is safe in
1991 all cases on this port, because at present it doesn't use the
1992 trapping FP comparisons (fcmpo). */
1993 #define REVERSIBLE_CC_MODE(MODE) 1
1995 /* Given a condition code and a mode, return the inverse condition. */
1996 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1998 /* Define the information needed to generate branch and scc insns. This is
1999 stored from the compare operation. */
2001 extern GTY(()) rtx rs6000_compare_op0;
2002 extern GTY(()) rtx rs6000_compare_op1;
2003 extern int rs6000_compare_fp_p;
2005 /* Control the assembler format that we output. */
2007 /* A C string constant describing how to begin a comment in the target
2008 assembler language. The compiler assumes that the comment will end at
2009 the end of the line. */
2010 #define ASM_COMMENT_START " #"
2012 /* Flag to say the TOC is initialized */
2013 extern int toc_initialized;
2015 /* Macro to output a special constant pool entry. Go to WIN if we output
2016 it. Otherwise, it is written the usual way.
2018 On the RS/6000, toc entries are handled this way. */
2020 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2021 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2023 output_toc (FILE, X, LABELNO, MODE); \
2024 goto WIN; \
2028 #ifdef HAVE_GAS_WEAK
2029 #define RS6000_WEAK 1
2030 #else
2031 #define RS6000_WEAK 0
2032 #endif
2034 #if RS6000_WEAK
2035 /* Used in lieu of ASM_WEAKEN_LABEL. */
2036 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2037 do \
2039 fputs ("\t.weak\t", (FILE)); \
2040 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2041 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2042 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2044 if (TARGET_XCOFF) \
2045 fputs ("[DS]", (FILE)); \
2046 fputs ("\n\t.weak\t.", (FILE)); \
2047 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2049 fputc ('\n', (FILE)); \
2050 if (VAL) \
2052 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2053 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2054 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2056 fputs ("\t.set\t.", (FILE)); \
2057 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2058 fputs (",.", (FILE)); \
2059 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2060 fputc ('\n', (FILE)); \
2064 while (0)
2065 #endif
2067 #if HAVE_GAS_WEAKREF
2068 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2069 do \
2071 fputs ("\t.weakref\t", (FILE)); \
2072 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2073 fputs (", ", (FILE)); \
2074 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2075 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2076 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2078 fputs ("\n\t.weakref\t.", (FILE)); \
2079 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2080 fputs (", .", (FILE)); \
2081 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2083 fputc ('\n', (FILE)); \
2084 } while (0)
2085 #endif
2087 /* This implements the `alias' attribute. */
2088 #undef ASM_OUTPUT_DEF_FROM_DECLS
2089 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2090 do \
2092 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2093 const char *name = IDENTIFIER_POINTER (TARGET); \
2094 if (TREE_CODE (DECL) == FUNCTION_DECL \
2095 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2097 if (TREE_PUBLIC (DECL)) \
2099 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2101 fputs ("\t.globl\t.", FILE); \
2102 RS6000_OUTPUT_BASENAME (FILE, alias); \
2103 putc ('\n', FILE); \
2106 else if (TARGET_XCOFF) \
2108 fputs ("\t.lglobl\t.", FILE); \
2109 RS6000_OUTPUT_BASENAME (FILE, alias); \
2110 putc ('\n', FILE); \
2112 fputs ("\t.set\t.", FILE); \
2113 RS6000_OUTPUT_BASENAME (FILE, alias); \
2114 fputs (",.", FILE); \
2115 RS6000_OUTPUT_BASENAME (FILE, name); \
2116 fputc ('\n', FILE); \
2118 ASM_OUTPUT_DEF (FILE, alias, name); \
2120 while (0)
2122 #define TARGET_ASM_FILE_START rs6000_file_start
2124 /* Output to assembler file text saying following lines
2125 may contain character constants, extra white space, comments, etc. */
2127 #define ASM_APP_ON ""
2129 /* Output to assembler file text saying following lines
2130 no longer contain unusual constructs. */
2132 #define ASM_APP_OFF ""
2134 /* How to refer to registers in assembler output.
2135 This sequence is indexed by compiler's hard-register-number (see above). */
2137 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2139 #define REGISTER_NAMES \
2141 &rs6000_reg_names[ 0][0], /* r0 */ \
2142 &rs6000_reg_names[ 1][0], /* r1 */ \
2143 &rs6000_reg_names[ 2][0], /* r2 */ \
2144 &rs6000_reg_names[ 3][0], /* r3 */ \
2145 &rs6000_reg_names[ 4][0], /* r4 */ \
2146 &rs6000_reg_names[ 5][0], /* r5 */ \
2147 &rs6000_reg_names[ 6][0], /* r6 */ \
2148 &rs6000_reg_names[ 7][0], /* r7 */ \
2149 &rs6000_reg_names[ 8][0], /* r8 */ \
2150 &rs6000_reg_names[ 9][0], /* r9 */ \
2151 &rs6000_reg_names[10][0], /* r10 */ \
2152 &rs6000_reg_names[11][0], /* r11 */ \
2153 &rs6000_reg_names[12][0], /* r12 */ \
2154 &rs6000_reg_names[13][0], /* r13 */ \
2155 &rs6000_reg_names[14][0], /* r14 */ \
2156 &rs6000_reg_names[15][0], /* r15 */ \
2157 &rs6000_reg_names[16][0], /* r16 */ \
2158 &rs6000_reg_names[17][0], /* r17 */ \
2159 &rs6000_reg_names[18][0], /* r18 */ \
2160 &rs6000_reg_names[19][0], /* r19 */ \
2161 &rs6000_reg_names[20][0], /* r20 */ \
2162 &rs6000_reg_names[21][0], /* r21 */ \
2163 &rs6000_reg_names[22][0], /* r22 */ \
2164 &rs6000_reg_names[23][0], /* r23 */ \
2165 &rs6000_reg_names[24][0], /* r24 */ \
2166 &rs6000_reg_names[25][0], /* r25 */ \
2167 &rs6000_reg_names[26][0], /* r26 */ \
2168 &rs6000_reg_names[27][0], /* r27 */ \
2169 &rs6000_reg_names[28][0], /* r28 */ \
2170 &rs6000_reg_names[29][0], /* r29 */ \
2171 &rs6000_reg_names[30][0], /* r30 */ \
2172 &rs6000_reg_names[31][0], /* r31 */ \
2174 &rs6000_reg_names[32][0], /* fr0 */ \
2175 &rs6000_reg_names[33][0], /* fr1 */ \
2176 &rs6000_reg_names[34][0], /* fr2 */ \
2177 &rs6000_reg_names[35][0], /* fr3 */ \
2178 &rs6000_reg_names[36][0], /* fr4 */ \
2179 &rs6000_reg_names[37][0], /* fr5 */ \
2180 &rs6000_reg_names[38][0], /* fr6 */ \
2181 &rs6000_reg_names[39][0], /* fr7 */ \
2182 &rs6000_reg_names[40][0], /* fr8 */ \
2183 &rs6000_reg_names[41][0], /* fr9 */ \
2184 &rs6000_reg_names[42][0], /* fr10 */ \
2185 &rs6000_reg_names[43][0], /* fr11 */ \
2186 &rs6000_reg_names[44][0], /* fr12 */ \
2187 &rs6000_reg_names[45][0], /* fr13 */ \
2188 &rs6000_reg_names[46][0], /* fr14 */ \
2189 &rs6000_reg_names[47][0], /* fr15 */ \
2190 &rs6000_reg_names[48][0], /* fr16 */ \
2191 &rs6000_reg_names[49][0], /* fr17 */ \
2192 &rs6000_reg_names[50][0], /* fr18 */ \
2193 &rs6000_reg_names[51][0], /* fr19 */ \
2194 &rs6000_reg_names[52][0], /* fr20 */ \
2195 &rs6000_reg_names[53][0], /* fr21 */ \
2196 &rs6000_reg_names[54][0], /* fr22 */ \
2197 &rs6000_reg_names[55][0], /* fr23 */ \
2198 &rs6000_reg_names[56][0], /* fr24 */ \
2199 &rs6000_reg_names[57][0], /* fr25 */ \
2200 &rs6000_reg_names[58][0], /* fr26 */ \
2201 &rs6000_reg_names[59][0], /* fr27 */ \
2202 &rs6000_reg_names[60][0], /* fr28 */ \
2203 &rs6000_reg_names[61][0], /* fr29 */ \
2204 &rs6000_reg_names[62][0], /* fr30 */ \
2205 &rs6000_reg_names[63][0], /* fr31 */ \
2207 &rs6000_reg_names[64][0], /* mq */ \
2208 &rs6000_reg_names[65][0], /* lr */ \
2209 &rs6000_reg_names[66][0], /* ctr */ \
2210 &rs6000_reg_names[67][0], /* ap */ \
2212 &rs6000_reg_names[68][0], /* cr0 */ \
2213 &rs6000_reg_names[69][0], /* cr1 */ \
2214 &rs6000_reg_names[70][0], /* cr2 */ \
2215 &rs6000_reg_names[71][0], /* cr3 */ \
2216 &rs6000_reg_names[72][0], /* cr4 */ \
2217 &rs6000_reg_names[73][0], /* cr5 */ \
2218 &rs6000_reg_names[74][0], /* cr6 */ \
2219 &rs6000_reg_names[75][0], /* cr7 */ \
2221 &rs6000_reg_names[76][0], /* xer */ \
2223 &rs6000_reg_names[77][0], /* v0 */ \
2224 &rs6000_reg_names[78][0], /* v1 */ \
2225 &rs6000_reg_names[79][0], /* v2 */ \
2226 &rs6000_reg_names[80][0], /* v3 */ \
2227 &rs6000_reg_names[81][0], /* v4 */ \
2228 &rs6000_reg_names[82][0], /* v5 */ \
2229 &rs6000_reg_names[83][0], /* v6 */ \
2230 &rs6000_reg_names[84][0], /* v7 */ \
2231 &rs6000_reg_names[85][0], /* v8 */ \
2232 &rs6000_reg_names[86][0], /* v9 */ \
2233 &rs6000_reg_names[87][0], /* v10 */ \
2234 &rs6000_reg_names[88][0], /* v11 */ \
2235 &rs6000_reg_names[89][0], /* v12 */ \
2236 &rs6000_reg_names[90][0], /* v13 */ \
2237 &rs6000_reg_names[91][0], /* v14 */ \
2238 &rs6000_reg_names[92][0], /* v15 */ \
2239 &rs6000_reg_names[93][0], /* v16 */ \
2240 &rs6000_reg_names[94][0], /* v17 */ \
2241 &rs6000_reg_names[95][0], /* v18 */ \
2242 &rs6000_reg_names[96][0], /* v19 */ \
2243 &rs6000_reg_names[97][0], /* v20 */ \
2244 &rs6000_reg_names[98][0], /* v21 */ \
2245 &rs6000_reg_names[99][0], /* v22 */ \
2246 &rs6000_reg_names[100][0], /* v23 */ \
2247 &rs6000_reg_names[101][0], /* v24 */ \
2248 &rs6000_reg_names[102][0], /* v25 */ \
2249 &rs6000_reg_names[103][0], /* v26 */ \
2250 &rs6000_reg_names[104][0], /* v27 */ \
2251 &rs6000_reg_names[105][0], /* v28 */ \
2252 &rs6000_reg_names[106][0], /* v29 */ \
2253 &rs6000_reg_names[107][0], /* v30 */ \
2254 &rs6000_reg_names[108][0], /* v31 */ \
2255 &rs6000_reg_names[109][0], /* vrsave */ \
2256 &rs6000_reg_names[110][0], /* vscr */ \
2257 &rs6000_reg_names[111][0], /* spe_acc */ \
2258 &rs6000_reg_names[112][0], /* spefscr */ \
2259 &rs6000_reg_names[113][0], /* sfp */ \
2262 /* Table of additional register names to use in user input. */
2264 #define ADDITIONAL_REGISTER_NAMES \
2265 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2266 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2267 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2268 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2269 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2270 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2271 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2272 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2273 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2274 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2275 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2276 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2277 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2278 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2279 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2280 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2281 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2282 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2283 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2284 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2285 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2286 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2287 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2288 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2289 {"vrsave", 109}, {"vscr", 110}, \
2290 {"spe_acc", 111}, {"spefscr", 112}, \
2291 /* no additional names for: mq, lr, ctr, ap */ \
2292 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2293 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2294 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2296 /* Text to write out after a CALL that may be replaced by glue code by
2297 the loader. This depends on the AIX version. */
2298 #define RS6000_CALL_GLUE "cror 31,31,31"
2300 /* This is how to output an element of a case-vector that is relative. */
2302 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2303 do { char buf[100]; \
2304 fputs ("\t.long ", FILE); \
2305 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2306 assemble_name (FILE, buf); \
2307 putc ('-', FILE); \
2308 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2309 assemble_name (FILE, buf); \
2310 putc ('\n', FILE); \
2311 } while (0)
2313 /* This is how to output an assembler line
2314 that says to advance the location counter
2315 to a multiple of 2**LOG bytes. */
2317 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2318 if ((LOG) != 0) \
2319 fprintf (FILE, "\t.align %d\n", (LOG))
2321 /* Pick up the return address upon entry to a procedure. Used for
2322 dwarf2 unwind information. This also enables the table driven
2323 mechanism. */
2325 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2326 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2328 /* Describe how we implement __builtin_eh_return. */
2329 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2330 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2332 /* Print operand X (an rtx) in assembler syntax to file FILE.
2333 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2334 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2336 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2338 /* Define which CODE values are valid. */
2340 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2341 ((CODE) == '.' || (CODE) == '&')
2343 /* Print a memory address as an operand to reference that memory location. */
2345 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2347 /* uncomment for disabling the corresponding default options */
2348 /* #define MACHINE_no_sched_interblock */
2349 /* #define MACHINE_no_sched_speculative */
2350 /* #define MACHINE_no_sched_speculative_load */
2352 /* General flags. */
2353 extern int flag_pic;
2354 extern int optimize;
2355 extern int flag_expensive_optimizations;
2356 extern int frame_pointer_needed;
2358 enum rs6000_builtins
2360 /* AltiVec builtins. */
2361 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2362 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2363 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2364 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2365 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2366 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2367 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2368 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2369 ALTIVEC_BUILTIN_VADDUBM,
2370 ALTIVEC_BUILTIN_VADDUHM,
2371 ALTIVEC_BUILTIN_VADDUWM,
2372 ALTIVEC_BUILTIN_VADDFP,
2373 ALTIVEC_BUILTIN_VADDCUW,
2374 ALTIVEC_BUILTIN_VADDUBS,
2375 ALTIVEC_BUILTIN_VADDSBS,
2376 ALTIVEC_BUILTIN_VADDUHS,
2377 ALTIVEC_BUILTIN_VADDSHS,
2378 ALTIVEC_BUILTIN_VADDUWS,
2379 ALTIVEC_BUILTIN_VADDSWS,
2380 ALTIVEC_BUILTIN_VAND,
2381 ALTIVEC_BUILTIN_VANDC,
2382 ALTIVEC_BUILTIN_VAVGUB,
2383 ALTIVEC_BUILTIN_VAVGSB,
2384 ALTIVEC_BUILTIN_VAVGUH,
2385 ALTIVEC_BUILTIN_VAVGSH,
2386 ALTIVEC_BUILTIN_VAVGUW,
2387 ALTIVEC_BUILTIN_VAVGSW,
2388 ALTIVEC_BUILTIN_VCFUX,
2389 ALTIVEC_BUILTIN_VCFSX,
2390 ALTIVEC_BUILTIN_VCTSXS,
2391 ALTIVEC_BUILTIN_VCTUXS,
2392 ALTIVEC_BUILTIN_VCMPBFP,
2393 ALTIVEC_BUILTIN_VCMPEQUB,
2394 ALTIVEC_BUILTIN_VCMPEQUH,
2395 ALTIVEC_BUILTIN_VCMPEQUW,
2396 ALTIVEC_BUILTIN_VCMPEQFP,
2397 ALTIVEC_BUILTIN_VCMPGEFP,
2398 ALTIVEC_BUILTIN_VCMPGTUB,
2399 ALTIVEC_BUILTIN_VCMPGTSB,
2400 ALTIVEC_BUILTIN_VCMPGTUH,
2401 ALTIVEC_BUILTIN_VCMPGTSH,
2402 ALTIVEC_BUILTIN_VCMPGTUW,
2403 ALTIVEC_BUILTIN_VCMPGTSW,
2404 ALTIVEC_BUILTIN_VCMPGTFP,
2405 ALTIVEC_BUILTIN_VEXPTEFP,
2406 ALTIVEC_BUILTIN_VLOGEFP,
2407 ALTIVEC_BUILTIN_VMADDFP,
2408 ALTIVEC_BUILTIN_VMAXUB,
2409 ALTIVEC_BUILTIN_VMAXSB,
2410 ALTIVEC_BUILTIN_VMAXUH,
2411 ALTIVEC_BUILTIN_VMAXSH,
2412 ALTIVEC_BUILTIN_VMAXUW,
2413 ALTIVEC_BUILTIN_VMAXSW,
2414 ALTIVEC_BUILTIN_VMAXFP,
2415 ALTIVEC_BUILTIN_VMHADDSHS,
2416 ALTIVEC_BUILTIN_VMHRADDSHS,
2417 ALTIVEC_BUILTIN_VMLADDUHM,
2418 ALTIVEC_BUILTIN_VMRGHB,
2419 ALTIVEC_BUILTIN_VMRGHH,
2420 ALTIVEC_BUILTIN_VMRGHW,
2421 ALTIVEC_BUILTIN_VMRGLB,
2422 ALTIVEC_BUILTIN_VMRGLH,
2423 ALTIVEC_BUILTIN_VMRGLW,
2424 ALTIVEC_BUILTIN_VMSUMUBM,
2425 ALTIVEC_BUILTIN_VMSUMMBM,
2426 ALTIVEC_BUILTIN_VMSUMUHM,
2427 ALTIVEC_BUILTIN_VMSUMSHM,
2428 ALTIVEC_BUILTIN_VMSUMUHS,
2429 ALTIVEC_BUILTIN_VMSUMSHS,
2430 ALTIVEC_BUILTIN_VMINUB,
2431 ALTIVEC_BUILTIN_VMINSB,
2432 ALTIVEC_BUILTIN_VMINUH,
2433 ALTIVEC_BUILTIN_VMINSH,
2434 ALTIVEC_BUILTIN_VMINUW,
2435 ALTIVEC_BUILTIN_VMINSW,
2436 ALTIVEC_BUILTIN_VMINFP,
2437 ALTIVEC_BUILTIN_VMULEUB,
2438 ALTIVEC_BUILTIN_VMULESB,
2439 ALTIVEC_BUILTIN_VMULEUH,
2440 ALTIVEC_BUILTIN_VMULESH,
2441 ALTIVEC_BUILTIN_VMULOUB,
2442 ALTIVEC_BUILTIN_VMULOSB,
2443 ALTIVEC_BUILTIN_VMULOUH,
2444 ALTIVEC_BUILTIN_VMULOSH,
2445 ALTIVEC_BUILTIN_VNMSUBFP,
2446 ALTIVEC_BUILTIN_VNOR,
2447 ALTIVEC_BUILTIN_VOR,
2448 ALTIVEC_BUILTIN_VSEL_4SI,
2449 ALTIVEC_BUILTIN_VSEL_4SF,
2450 ALTIVEC_BUILTIN_VSEL_8HI,
2451 ALTIVEC_BUILTIN_VSEL_16QI,
2452 ALTIVEC_BUILTIN_VPERM_4SI,
2453 ALTIVEC_BUILTIN_VPERM_4SF,
2454 ALTIVEC_BUILTIN_VPERM_8HI,
2455 ALTIVEC_BUILTIN_VPERM_16QI,
2456 ALTIVEC_BUILTIN_VPKUHUM,
2457 ALTIVEC_BUILTIN_VPKUWUM,
2458 ALTIVEC_BUILTIN_VPKPX,
2459 ALTIVEC_BUILTIN_VPKUHSS,
2460 ALTIVEC_BUILTIN_VPKSHSS,
2461 ALTIVEC_BUILTIN_VPKUWSS,
2462 ALTIVEC_BUILTIN_VPKSWSS,
2463 ALTIVEC_BUILTIN_VPKUHUS,
2464 ALTIVEC_BUILTIN_VPKSHUS,
2465 ALTIVEC_BUILTIN_VPKUWUS,
2466 ALTIVEC_BUILTIN_VPKSWUS,
2467 ALTIVEC_BUILTIN_VREFP,
2468 ALTIVEC_BUILTIN_VRFIM,
2469 ALTIVEC_BUILTIN_VRFIN,
2470 ALTIVEC_BUILTIN_VRFIP,
2471 ALTIVEC_BUILTIN_VRFIZ,
2472 ALTIVEC_BUILTIN_VRLB,
2473 ALTIVEC_BUILTIN_VRLH,
2474 ALTIVEC_BUILTIN_VRLW,
2475 ALTIVEC_BUILTIN_VRSQRTEFP,
2476 ALTIVEC_BUILTIN_VSLB,
2477 ALTIVEC_BUILTIN_VSLH,
2478 ALTIVEC_BUILTIN_VSLW,
2479 ALTIVEC_BUILTIN_VSL,
2480 ALTIVEC_BUILTIN_VSLO,
2481 ALTIVEC_BUILTIN_VSPLTB,
2482 ALTIVEC_BUILTIN_VSPLTH,
2483 ALTIVEC_BUILTIN_VSPLTW,
2484 ALTIVEC_BUILTIN_VSPLTISB,
2485 ALTIVEC_BUILTIN_VSPLTISH,
2486 ALTIVEC_BUILTIN_VSPLTISW,
2487 ALTIVEC_BUILTIN_VSRB,
2488 ALTIVEC_BUILTIN_VSRH,
2489 ALTIVEC_BUILTIN_VSRW,
2490 ALTIVEC_BUILTIN_VSRAB,
2491 ALTIVEC_BUILTIN_VSRAH,
2492 ALTIVEC_BUILTIN_VSRAW,
2493 ALTIVEC_BUILTIN_VSR,
2494 ALTIVEC_BUILTIN_VSRO,
2495 ALTIVEC_BUILTIN_VSUBUBM,
2496 ALTIVEC_BUILTIN_VSUBUHM,
2497 ALTIVEC_BUILTIN_VSUBUWM,
2498 ALTIVEC_BUILTIN_VSUBFP,
2499 ALTIVEC_BUILTIN_VSUBCUW,
2500 ALTIVEC_BUILTIN_VSUBUBS,
2501 ALTIVEC_BUILTIN_VSUBSBS,
2502 ALTIVEC_BUILTIN_VSUBUHS,
2503 ALTIVEC_BUILTIN_VSUBSHS,
2504 ALTIVEC_BUILTIN_VSUBUWS,
2505 ALTIVEC_BUILTIN_VSUBSWS,
2506 ALTIVEC_BUILTIN_VSUM4UBS,
2507 ALTIVEC_BUILTIN_VSUM4SBS,
2508 ALTIVEC_BUILTIN_VSUM4SHS,
2509 ALTIVEC_BUILTIN_VSUM2SWS,
2510 ALTIVEC_BUILTIN_VSUMSWS,
2511 ALTIVEC_BUILTIN_VXOR,
2512 ALTIVEC_BUILTIN_VSLDOI_16QI,
2513 ALTIVEC_BUILTIN_VSLDOI_8HI,
2514 ALTIVEC_BUILTIN_VSLDOI_4SI,
2515 ALTIVEC_BUILTIN_VSLDOI_4SF,
2516 ALTIVEC_BUILTIN_VUPKHSB,
2517 ALTIVEC_BUILTIN_VUPKHPX,
2518 ALTIVEC_BUILTIN_VUPKHSH,
2519 ALTIVEC_BUILTIN_VUPKLSB,
2520 ALTIVEC_BUILTIN_VUPKLPX,
2521 ALTIVEC_BUILTIN_VUPKLSH,
2522 ALTIVEC_BUILTIN_MTVSCR,
2523 ALTIVEC_BUILTIN_MFVSCR,
2524 ALTIVEC_BUILTIN_DSSALL,
2525 ALTIVEC_BUILTIN_DSS,
2526 ALTIVEC_BUILTIN_LVSL,
2527 ALTIVEC_BUILTIN_LVSR,
2528 ALTIVEC_BUILTIN_DSTT,
2529 ALTIVEC_BUILTIN_DSTST,
2530 ALTIVEC_BUILTIN_DSTSTT,
2531 ALTIVEC_BUILTIN_DST,
2532 ALTIVEC_BUILTIN_LVEBX,
2533 ALTIVEC_BUILTIN_LVEHX,
2534 ALTIVEC_BUILTIN_LVEWX,
2535 ALTIVEC_BUILTIN_LVXL,
2536 ALTIVEC_BUILTIN_LVX,
2537 ALTIVEC_BUILTIN_STVX,
2538 ALTIVEC_BUILTIN_STVEBX,
2539 ALTIVEC_BUILTIN_STVEHX,
2540 ALTIVEC_BUILTIN_STVEWX,
2541 ALTIVEC_BUILTIN_STVXL,
2542 ALTIVEC_BUILTIN_VCMPBFP_P,
2543 ALTIVEC_BUILTIN_VCMPEQFP_P,
2544 ALTIVEC_BUILTIN_VCMPEQUB_P,
2545 ALTIVEC_BUILTIN_VCMPEQUH_P,
2546 ALTIVEC_BUILTIN_VCMPEQUW_P,
2547 ALTIVEC_BUILTIN_VCMPGEFP_P,
2548 ALTIVEC_BUILTIN_VCMPGTFP_P,
2549 ALTIVEC_BUILTIN_VCMPGTSB_P,
2550 ALTIVEC_BUILTIN_VCMPGTSH_P,
2551 ALTIVEC_BUILTIN_VCMPGTSW_P,
2552 ALTIVEC_BUILTIN_VCMPGTUB_P,
2553 ALTIVEC_BUILTIN_VCMPGTUH_P,
2554 ALTIVEC_BUILTIN_VCMPGTUW_P,
2555 ALTIVEC_BUILTIN_ABSS_V4SI,
2556 ALTIVEC_BUILTIN_ABSS_V8HI,
2557 ALTIVEC_BUILTIN_ABSS_V16QI,
2558 ALTIVEC_BUILTIN_ABS_V4SI,
2559 ALTIVEC_BUILTIN_ABS_V4SF,
2560 ALTIVEC_BUILTIN_ABS_V8HI,
2561 ALTIVEC_BUILTIN_ABS_V16QI,
2562 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2563 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2564 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2565 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2566 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2567 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2568 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2569 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2570 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2571 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2572 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2573 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2574 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2575 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2577 /* Altivec overloaded builtins. */
2578 ALTIVEC_BUILTIN_VCMPEQ_P,
2579 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2580 ALTIVEC_BUILTIN_VCMPGT_P,
2581 ALTIVEC_BUILTIN_VCMPGE_P,
2582 ALTIVEC_BUILTIN_VEC_ABS,
2583 ALTIVEC_BUILTIN_VEC_ABSS,
2584 ALTIVEC_BUILTIN_VEC_ADD,
2585 ALTIVEC_BUILTIN_VEC_ADDC,
2586 ALTIVEC_BUILTIN_VEC_ADDS,
2587 ALTIVEC_BUILTIN_VEC_AND,
2588 ALTIVEC_BUILTIN_VEC_ANDC,
2589 ALTIVEC_BUILTIN_VEC_AVG,
2590 ALTIVEC_BUILTIN_VEC_CEIL,
2591 ALTIVEC_BUILTIN_VEC_CMPB,
2592 ALTIVEC_BUILTIN_VEC_CMPEQ,
2593 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2594 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2595 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2596 ALTIVEC_BUILTIN_VEC_CMPGE,
2597 ALTIVEC_BUILTIN_VEC_CMPGT,
2598 ALTIVEC_BUILTIN_VEC_CMPLE,
2599 ALTIVEC_BUILTIN_VEC_CMPLT,
2600 ALTIVEC_BUILTIN_VEC_CTF,
2601 ALTIVEC_BUILTIN_VEC_CTS,
2602 ALTIVEC_BUILTIN_VEC_CTU,
2603 ALTIVEC_BUILTIN_VEC_DST,
2604 ALTIVEC_BUILTIN_VEC_DSTST,
2605 ALTIVEC_BUILTIN_VEC_DSTSTT,
2606 ALTIVEC_BUILTIN_VEC_DSTT,
2607 ALTIVEC_BUILTIN_VEC_EXPTE,
2608 ALTIVEC_BUILTIN_VEC_FLOOR,
2609 ALTIVEC_BUILTIN_VEC_LD,
2610 ALTIVEC_BUILTIN_VEC_LDE,
2611 ALTIVEC_BUILTIN_VEC_LDL,
2612 ALTIVEC_BUILTIN_VEC_LOGE,
2613 ALTIVEC_BUILTIN_VEC_LVEBX,
2614 ALTIVEC_BUILTIN_VEC_LVEHX,
2615 ALTIVEC_BUILTIN_VEC_LVEWX,
2616 ALTIVEC_BUILTIN_VEC_LVSL,
2617 ALTIVEC_BUILTIN_VEC_LVSR,
2618 ALTIVEC_BUILTIN_VEC_MADD,
2619 ALTIVEC_BUILTIN_VEC_MADDS,
2620 ALTIVEC_BUILTIN_VEC_MAX,
2621 ALTIVEC_BUILTIN_VEC_MERGEH,
2622 ALTIVEC_BUILTIN_VEC_MERGEL,
2623 ALTIVEC_BUILTIN_VEC_MIN,
2624 ALTIVEC_BUILTIN_VEC_MLADD,
2625 ALTIVEC_BUILTIN_VEC_MPERM,
2626 ALTIVEC_BUILTIN_VEC_MRADDS,
2627 ALTIVEC_BUILTIN_VEC_MRGHB,
2628 ALTIVEC_BUILTIN_VEC_MRGHH,
2629 ALTIVEC_BUILTIN_VEC_MRGHW,
2630 ALTIVEC_BUILTIN_VEC_MRGLB,
2631 ALTIVEC_BUILTIN_VEC_MRGLH,
2632 ALTIVEC_BUILTIN_VEC_MRGLW,
2633 ALTIVEC_BUILTIN_VEC_MSUM,
2634 ALTIVEC_BUILTIN_VEC_MSUMS,
2635 ALTIVEC_BUILTIN_VEC_MTVSCR,
2636 ALTIVEC_BUILTIN_VEC_MULE,
2637 ALTIVEC_BUILTIN_VEC_MULO,
2638 ALTIVEC_BUILTIN_VEC_NMSUB,
2639 ALTIVEC_BUILTIN_VEC_NOR,
2640 ALTIVEC_BUILTIN_VEC_OR,
2641 ALTIVEC_BUILTIN_VEC_PACK,
2642 ALTIVEC_BUILTIN_VEC_PACKPX,
2643 ALTIVEC_BUILTIN_VEC_PACKS,
2644 ALTIVEC_BUILTIN_VEC_PACKSU,
2645 ALTIVEC_BUILTIN_VEC_PERM,
2646 ALTIVEC_BUILTIN_VEC_RE,
2647 ALTIVEC_BUILTIN_VEC_RL,
2648 ALTIVEC_BUILTIN_VEC_ROUND,
2649 ALTIVEC_BUILTIN_VEC_RSQRTE,
2650 ALTIVEC_BUILTIN_VEC_SEL,
2651 ALTIVEC_BUILTIN_VEC_SL,
2652 ALTIVEC_BUILTIN_VEC_SLD,
2653 ALTIVEC_BUILTIN_VEC_SLL,
2654 ALTIVEC_BUILTIN_VEC_SLO,
2655 ALTIVEC_BUILTIN_VEC_SPLAT,
2656 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2657 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2658 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2659 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2660 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2661 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2662 ALTIVEC_BUILTIN_VEC_SPLTB,
2663 ALTIVEC_BUILTIN_VEC_SPLTH,
2664 ALTIVEC_BUILTIN_VEC_SPLTW,
2665 ALTIVEC_BUILTIN_VEC_SR,
2666 ALTIVEC_BUILTIN_VEC_SRA,
2667 ALTIVEC_BUILTIN_VEC_SRL,
2668 ALTIVEC_BUILTIN_VEC_SRO,
2669 ALTIVEC_BUILTIN_VEC_ST,
2670 ALTIVEC_BUILTIN_VEC_STE,
2671 ALTIVEC_BUILTIN_VEC_STL,
2672 ALTIVEC_BUILTIN_VEC_STVEBX,
2673 ALTIVEC_BUILTIN_VEC_STVEHX,
2674 ALTIVEC_BUILTIN_VEC_STVEWX,
2675 ALTIVEC_BUILTIN_VEC_SUB,
2676 ALTIVEC_BUILTIN_VEC_SUBC,
2677 ALTIVEC_BUILTIN_VEC_SUBS,
2678 ALTIVEC_BUILTIN_VEC_SUM2S,
2679 ALTIVEC_BUILTIN_VEC_SUM4S,
2680 ALTIVEC_BUILTIN_VEC_SUMS,
2681 ALTIVEC_BUILTIN_VEC_TRUNC,
2682 ALTIVEC_BUILTIN_VEC_UNPACKH,
2683 ALTIVEC_BUILTIN_VEC_UNPACKL,
2684 ALTIVEC_BUILTIN_VEC_VADDFP,
2685 ALTIVEC_BUILTIN_VEC_VADDSBS,
2686 ALTIVEC_BUILTIN_VEC_VADDSHS,
2687 ALTIVEC_BUILTIN_VEC_VADDSWS,
2688 ALTIVEC_BUILTIN_VEC_VADDUBM,
2689 ALTIVEC_BUILTIN_VEC_VADDUBS,
2690 ALTIVEC_BUILTIN_VEC_VADDUHM,
2691 ALTIVEC_BUILTIN_VEC_VADDUHS,
2692 ALTIVEC_BUILTIN_VEC_VADDUWM,
2693 ALTIVEC_BUILTIN_VEC_VADDUWS,
2694 ALTIVEC_BUILTIN_VEC_VAVGSB,
2695 ALTIVEC_BUILTIN_VEC_VAVGSH,
2696 ALTIVEC_BUILTIN_VEC_VAVGSW,
2697 ALTIVEC_BUILTIN_VEC_VAVGUB,
2698 ALTIVEC_BUILTIN_VEC_VAVGUH,
2699 ALTIVEC_BUILTIN_VEC_VAVGUW,
2700 ALTIVEC_BUILTIN_VEC_VCFSX,
2701 ALTIVEC_BUILTIN_VEC_VCFUX,
2702 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2703 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2704 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2705 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2706 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2707 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2708 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2709 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2710 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2711 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2712 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2713 ALTIVEC_BUILTIN_VEC_VMAXFP,
2714 ALTIVEC_BUILTIN_VEC_VMAXSB,
2715 ALTIVEC_BUILTIN_VEC_VMAXSH,
2716 ALTIVEC_BUILTIN_VEC_VMAXSW,
2717 ALTIVEC_BUILTIN_VEC_VMAXUB,
2718 ALTIVEC_BUILTIN_VEC_VMAXUH,
2719 ALTIVEC_BUILTIN_VEC_VMAXUW,
2720 ALTIVEC_BUILTIN_VEC_VMINFP,
2721 ALTIVEC_BUILTIN_VEC_VMINSB,
2722 ALTIVEC_BUILTIN_VEC_VMINSH,
2723 ALTIVEC_BUILTIN_VEC_VMINSW,
2724 ALTIVEC_BUILTIN_VEC_VMINUB,
2725 ALTIVEC_BUILTIN_VEC_VMINUH,
2726 ALTIVEC_BUILTIN_VEC_VMINUW,
2727 ALTIVEC_BUILTIN_VEC_VMRGHB,
2728 ALTIVEC_BUILTIN_VEC_VMRGHH,
2729 ALTIVEC_BUILTIN_VEC_VMRGHW,
2730 ALTIVEC_BUILTIN_VEC_VMRGLB,
2731 ALTIVEC_BUILTIN_VEC_VMRGLH,
2732 ALTIVEC_BUILTIN_VEC_VMRGLW,
2733 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2734 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2735 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2736 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2737 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2738 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2739 ALTIVEC_BUILTIN_VEC_VMULESB,
2740 ALTIVEC_BUILTIN_VEC_VMULESH,
2741 ALTIVEC_BUILTIN_VEC_VMULEUB,
2742 ALTIVEC_BUILTIN_VEC_VMULEUH,
2743 ALTIVEC_BUILTIN_VEC_VMULOSB,
2744 ALTIVEC_BUILTIN_VEC_VMULOSH,
2745 ALTIVEC_BUILTIN_VEC_VMULOUB,
2746 ALTIVEC_BUILTIN_VEC_VMULOUH,
2747 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2748 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2749 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2750 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2751 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2752 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2753 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2754 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2755 ALTIVEC_BUILTIN_VEC_VRLB,
2756 ALTIVEC_BUILTIN_VEC_VRLH,
2757 ALTIVEC_BUILTIN_VEC_VRLW,
2758 ALTIVEC_BUILTIN_VEC_VSLB,
2759 ALTIVEC_BUILTIN_VEC_VSLH,
2760 ALTIVEC_BUILTIN_VEC_VSLW,
2761 ALTIVEC_BUILTIN_VEC_VSPLTB,
2762 ALTIVEC_BUILTIN_VEC_VSPLTH,
2763 ALTIVEC_BUILTIN_VEC_VSPLTW,
2764 ALTIVEC_BUILTIN_VEC_VSRAB,
2765 ALTIVEC_BUILTIN_VEC_VSRAH,
2766 ALTIVEC_BUILTIN_VEC_VSRAW,
2767 ALTIVEC_BUILTIN_VEC_VSRB,
2768 ALTIVEC_BUILTIN_VEC_VSRH,
2769 ALTIVEC_BUILTIN_VEC_VSRW,
2770 ALTIVEC_BUILTIN_VEC_VSUBFP,
2771 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2772 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2773 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2774 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2775 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2776 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2777 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2778 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2779 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2780 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2781 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2782 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2783 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2784 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2785 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2786 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2787 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2788 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2789 ALTIVEC_BUILTIN_VEC_XOR,
2790 ALTIVEC_BUILTIN_VEC_STEP,
2791 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2793 /* SPE builtins. */
2794 SPE_BUILTIN_EVADDW,
2795 SPE_BUILTIN_EVAND,
2796 SPE_BUILTIN_EVANDC,
2797 SPE_BUILTIN_EVDIVWS,
2798 SPE_BUILTIN_EVDIVWU,
2799 SPE_BUILTIN_EVEQV,
2800 SPE_BUILTIN_EVFSADD,
2801 SPE_BUILTIN_EVFSDIV,
2802 SPE_BUILTIN_EVFSMUL,
2803 SPE_BUILTIN_EVFSSUB,
2804 SPE_BUILTIN_EVLDDX,
2805 SPE_BUILTIN_EVLDHX,
2806 SPE_BUILTIN_EVLDWX,
2807 SPE_BUILTIN_EVLHHESPLATX,
2808 SPE_BUILTIN_EVLHHOSSPLATX,
2809 SPE_BUILTIN_EVLHHOUSPLATX,
2810 SPE_BUILTIN_EVLWHEX,
2811 SPE_BUILTIN_EVLWHOSX,
2812 SPE_BUILTIN_EVLWHOUX,
2813 SPE_BUILTIN_EVLWHSPLATX,
2814 SPE_BUILTIN_EVLWWSPLATX,
2815 SPE_BUILTIN_EVMERGEHI,
2816 SPE_BUILTIN_EVMERGEHILO,
2817 SPE_BUILTIN_EVMERGELO,
2818 SPE_BUILTIN_EVMERGELOHI,
2819 SPE_BUILTIN_EVMHEGSMFAA,
2820 SPE_BUILTIN_EVMHEGSMFAN,
2821 SPE_BUILTIN_EVMHEGSMIAA,
2822 SPE_BUILTIN_EVMHEGSMIAN,
2823 SPE_BUILTIN_EVMHEGUMIAA,
2824 SPE_BUILTIN_EVMHEGUMIAN,
2825 SPE_BUILTIN_EVMHESMF,
2826 SPE_BUILTIN_EVMHESMFA,
2827 SPE_BUILTIN_EVMHESMFAAW,
2828 SPE_BUILTIN_EVMHESMFANW,
2829 SPE_BUILTIN_EVMHESMI,
2830 SPE_BUILTIN_EVMHESMIA,
2831 SPE_BUILTIN_EVMHESMIAAW,
2832 SPE_BUILTIN_EVMHESMIANW,
2833 SPE_BUILTIN_EVMHESSF,
2834 SPE_BUILTIN_EVMHESSFA,
2835 SPE_BUILTIN_EVMHESSFAAW,
2836 SPE_BUILTIN_EVMHESSFANW,
2837 SPE_BUILTIN_EVMHESSIAAW,
2838 SPE_BUILTIN_EVMHESSIANW,
2839 SPE_BUILTIN_EVMHEUMI,
2840 SPE_BUILTIN_EVMHEUMIA,
2841 SPE_BUILTIN_EVMHEUMIAAW,
2842 SPE_BUILTIN_EVMHEUMIANW,
2843 SPE_BUILTIN_EVMHEUSIAAW,
2844 SPE_BUILTIN_EVMHEUSIANW,
2845 SPE_BUILTIN_EVMHOGSMFAA,
2846 SPE_BUILTIN_EVMHOGSMFAN,
2847 SPE_BUILTIN_EVMHOGSMIAA,
2848 SPE_BUILTIN_EVMHOGSMIAN,
2849 SPE_BUILTIN_EVMHOGUMIAA,
2850 SPE_BUILTIN_EVMHOGUMIAN,
2851 SPE_BUILTIN_EVMHOSMF,
2852 SPE_BUILTIN_EVMHOSMFA,
2853 SPE_BUILTIN_EVMHOSMFAAW,
2854 SPE_BUILTIN_EVMHOSMFANW,
2855 SPE_BUILTIN_EVMHOSMI,
2856 SPE_BUILTIN_EVMHOSMIA,
2857 SPE_BUILTIN_EVMHOSMIAAW,
2858 SPE_BUILTIN_EVMHOSMIANW,
2859 SPE_BUILTIN_EVMHOSSF,
2860 SPE_BUILTIN_EVMHOSSFA,
2861 SPE_BUILTIN_EVMHOSSFAAW,
2862 SPE_BUILTIN_EVMHOSSFANW,
2863 SPE_BUILTIN_EVMHOSSIAAW,
2864 SPE_BUILTIN_EVMHOSSIANW,
2865 SPE_BUILTIN_EVMHOUMI,
2866 SPE_BUILTIN_EVMHOUMIA,
2867 SPE_BUILTIN_EVMHOUMIAAW,
2868 SPE_BUILTIN_EVMHOUMIANW,
2869 SPE_BUILTIN_EVMHOUSIAAW,
2870 SPE_BUILTIN_EVMHOUSIANW,
2871 SPE_BUILTIN_EVMWHSMF,
2872 SPE_BUILTIN_EVMWHSMFA,
2873 SPE_BUILTIN_EVMWHSMI,
2874 SPE_BUILTIN_EVMWHSMIA,
2875 SPE_BUILTIN_EVMWHSSF,
2876 SPE_BUILTIN_EVMWHSSFA,
2877 SPE_BUILTIN_EVMWHUMI,
2878 SPE_BUILTIN_EVMWHUMIA,
2879 SPE_BUILTIN_EVMWLSMIAAW,
2880 SPE_BUILTIN_EVMWLSMIANW,
2881 SPE_BUILTIN_EVMWLSSIAAW,
2882 SPE_BUILTIN_EVMWLSSIANW,
2883 SPE_BUILTIN_EVMWLUMI,
2884 SPE_BUILTIN_EVMWLUMIA,
2885 SPE_BUILTIN_EVMWLUMIAAW,
2886 SPE_BUILTIN_EVMWLUMIANW,
2887 SPE_BUILTIN_EVMWLUSIAAW,
2888 SPE_BUILTIN_EVMWLUSIANW,
2889 SPE_BUILTIN_EVMWSMF,
2890 SPE_BUILTIN_EVMWSMFA,
2891 SPE_BUILTIN_EVMWSMFAA,
2892 SPE_BUILTIN_EVMWSMFAN,
2893 SPE_BUILTIN_EVMWSMI,
2894 SPE_BUILTIN_EVMWSMIA,
2895 SPE_BUILTIN_EVMWSMIAA,
2896 SPE_BUILTIN_EVMWSMIAN,
2897 SPE_BUILTIN_EVMWHSSFAA,
2898 SPE_BUILTIN_EVMWSSF,
2899 SPE_BUILTIN_EVMWSSFA,
2900 SPE_BUILTIN_EVMWSSFAA,
2901 SPE_BUILTIN_EVMWSSFAN,
2902 SPE_BUILTIN_EVMWUMI,
2903 SPE_BUILTIN_EVMWUMIA,
2904 SPE_BUILTIN_EVMWUMIAA,
2905 SPE_BUILTIN_EVMWUMIAN,
2906 SPE_BUILTIN_EVNAND,
2907 SPE_BUILTIN_EVNOR,
2908 SPE_BUILTIN_EVOR,
2909 SPE_BUILTIN_EVORC,
2910 SPE_BUILTIN_EVRLW,
2911 SPE_BUILTIN_EVSLW,
2912 SPE_BUILTIN_EVSRWS,
2913 SPE_BUILTIN_EVSRWU,
2914 SPE_BUILTIN_EVSTDDX,
2915 SPE_BUILTIN_EVSTDHX,
2916 SPE_BUILTIN_EVSTDWX,
2917 SPE_BUILTIN_EVSTWHEX,
2918 SPE_BUILTIN_EVSTWHOX,
2919 SPE_BUILTIN_EVSTWWEX,
2920 SPE_BUILTIN_EVSTWWOX,
2921 SPE_BUILTIN_EVSUBFW,
2922 SPE_BUILTIN_EVXOR,
2923 SPE_BUILTIN_EVABS,
2924 SPE_BUILTIN_EVADDSMIAAW,
2925 SPE_BUILTIN_EVADDSSIAAW,
2926 SPE_BUILTIN_EVADDUMIAAW,
2927 SPE_BUILTIN_EVADDUSIAAW,
2928 SPE_BUILTIN_EVCNTLSW,
2929 SPE_BUILTIN_EVCNTLZW,
2930 SPE_BUILTIN_EVEXTSB,
2931 SPE_BUILTIN_EVEXTSH,
2932 SPE_BUILTIN_EVFSABS,
2933 SPE_BUILTIN_EVFSCFSF,
2934 SPE_BUILTIN_EVFSCFSI,
2935 SPE_BUILTIN_EVFSCFUF,
2936 SPE_BUILTIN_EVFSCFUI,
2937 SPE_BUILTIN_EVFSCTSF,
2938 SPE_BUILTIN_EVFSCTSI,
2939 SPE_BUILTIN_EVFSCTSIZ,
2940 SPE_BUILTIN_EVFSCTUF,
2941 SPE_BUILTIN_EVFSCTUI,
2942 SPE_BUILTIN_EVFSCTUIZ,
2943 SPE_BUILTIN_EVFSNABS,
2944 SPE_BUILTIN_EVFSNEG,
2945 SPE_BUILTIN_EVMRA,
2946 SPE_BUILTIN_EVNEG,
2947 SPE_BUILTIN_EVRNDW,
2948 SPE_BUILTIN_EVSUBFSMIAAW,
2949 SPE_BUILTIN_EVSUBFSSIAAW,
2950 SPE_BUILTIN_EVSUBFUMIAAW,
2951 SPE_BUILTIN_EVSUBFUSIAAW,
2952 SPE_BUILTIN_EVADDIW,
2953 SPE_BUILTIN_EVLDD,
2954 SPE_BUILTIN_EVLDH,
2955 SPE_BUILTIN_EVLDW,
2956 SPE_BUILTIN_EVLHHESPLAT,
2957 SPE_BUILTIN_EVLHHOSSPLAT,
2958 SPE_BUILTIN_EVLHHOUSPLAT,
2959 SPE_BUILTIN_EVLWHE,
2960 SPE_BUILTIN_EVLWHOS,
2961 SPE_BUILTIN_EVLWHOU,
2962 SPE_BUILTIN_EVLWHSPLAT,
2963 SPE_BUILTIN_EVLWWSPLAT,
2964 SPE_BUILTIN_EVRLWI,
2965 SPE_BUILTIN_EVSLWI,
2966 SPE_BUILTIN_EVSRWIS,
2967 SPE_BUILTIN_EVSRWIU,
2968 SPE_BUILTIN_EVSTDD,
2969 SPE_BUILTIN_EVSTDH,
2970 SPE_BUILTIN_EVSTDW,
2971 SPE_BUILTIN_EVSTWHE,
2972 SPE_BUILTIN_EVSTWHO,
2973 SPE_BUILTIN_EVSTWWE,
2974 SPE_BUILTIN_EVSTWWO,
2975 SPE_BUILTIN_EVSUBIFW,
2977 /* Compares. */
2978 SPE_BUILTIN_EVCMPEQ,
2979 SPE_BUILTIN_EVCMPGTS,
2980 SPE_BUILTIN_EVCMPGTU,
2981 SPE_BUILTIN_EVCMPLTS,
2982 SPE_BUILTIN_EVCMPLTU,
2983 SPE_BUILTIN_EVFSCMPEQ,
2984 SPE_BUILTIN_EVFSCMPGT,
2985 SPE_BUILTIN_EVFSCMPLT,
2986 SPE_BUILTIN_EVFSTSTEQ,
2987 SPE_BUILTIN_EVFSTSTGT,
2988 SPE_BUILTIN_EVFSTSTLT,
2990 /* EVSEL compares. */
2991 SPE_BUILTIN_EVSEL_CMPEQ,
2992 SPE_BUILTIN_EVSEL_CMPGTS,
2993 SPE_BUILTIN_EVSEL_CMPGTU,
2994 SPE_BUILTIN_EVSEL_CMPLTS,
2995 SPE_BUILTIN_EVSEL_CMPLTU,
2996 SPE_BUILTIN_EVSEL_FSCMPEQ,
2997 SPE_BUILTIN_EVSEL_FSCMPGT,
2998 SPE_BUILTIN_EVSEL_FSCMPLT,
2999 SPE_BUILTIN_EVSEL_FSTSTEQ,
3000 SPE_BUILTIN_EVSEL_FSTSTGT,
3001 SPE_BUILTIN_EVSEL_FSTSTLT,
3003 SPE_BUILTIN_EVSPLATFI,
3004 SPE_BUILTIN_EVSPLATI,
3005 SPE_BUILTIN_EVMWHSSMAA,
3006 SPE_BUILTIN_EVMWHSMFAA,
3007 SPE_BUILTIN_EVMWHSMIAA,
3008 SPE_BUILTIN_EVMWHUSIAA,
3009 SPE_BUILTIN_EVMWHUMIAA,
3010 SPE_BUILTIN_EVMWHSSFAN,
3011 SPE_BUILTIN_EVMWHSSIAN,
3012 SPE_BUILTIN_EVMWHSMFAN,
3013 SPE_BUILTIN_EVMWHSMIAN,
3014 SPE_BUILTIN_EVMWHUSIAN,
3015 SPE_BUILTIN_EVMWHUMIAN,
3016 SPE_BUILTIN_EVMWHGSSFAA,
3017 SPE_BUILTIN_EVMWHGSMFAA,
3018 SPE_BUILTIN_EVMWHGSMIAA,
3019 SPE_BUILTIN_EVMWHGUMIAA,
3020 SPE_BUILTIN_EVMWHGSSFAN,
3021 SPE_BUILTIN_EVMWHGSMFAN,
3022 SPE_BUILTIN_EVMWHGSMIAN,
3023 SPE_BUILTIN_EVMWHGUMIAN,
3024 SPE_BUILTIN_MTSPEFSCR,
3025 SPE_BUILTIN_MFSPEFSCR,
3026 SPE_BUILTIN_BRINC,
3028 /* PAIRED builtins. */
3029 PAIRED_BUILTIN_DIVV2SF3,
3030 PAIRED_BUILTIN_ABSV2SF2,
3031 PAIRED_BUILTIN_NEGV2SF2,
3032 PAIRED_BUILTIN_SQRTV2SF2,
3033 PAIRED_BUILTIN_ADDV2SF3,
3034 PAIRED_BUILTIN_SUBV2SF3,
3035 PAIRED_BUILTIN_RESV2SF2,
3036 PAIRED_BUILTIN_MULV2SF3,
3037 PAIRED_BUILTIN_MSUB,
3038 PAIRED_BUILTIN_MADD,
3039 PAIRED_BUILTIN_NMSUB,
3040 PAIRED_BUILTIN_NMADD,
3041 PAIRED_BUILTIN_NABSV2SF2,
3042 PAIRED_BUILTIN_SUM0,
3043 PAIRED_BUILTIN_SUM1,
3044 PAIRED_BUILTIN_MULS0,
3045 PAIRED_BUILTIN_MULS1,
3046 PAIRED_BUILTIN_MERGE00,
3047 PAIRED_BUILTIN_MERGE01,
3048 PAIRED_BUILTIN_MERGE10,
3049 PAIRED_BUILTIN_MERGE11,
3050 PAIRED_BUILTIN_MADDS0,
3051 PAIRED_BUILTIN_MADDS1,
3052 PAIRED_BUILTIN_STX,
3053 PAIRED_BUILTIN_LX,
3054 PAIRED_BUILTIN_SELV2SF4,
3055 PAIRED_BUILTIN_CMPU0,
3056 PAIRED_BUILTIN_CMPU1,
3058 RS6000_BUILTIN_RECIP,
3059 RS6000_BUILTIN_RECIPF,
3060 RS6000_BUILTIN_RSQRTF,
3062 RS6000_BUILTIN_COUNT
3065 enum rs6000_builtin_type_index
3067 RS6000_BTI_NOT_OPAQUE,
3068 RS6000_BTI_opaque_V2SI,
3069 RS6000_BTI_opaque_V2SF,
3070 RS6000_BTI_opaque_p_V2SI,
3071 RS6000_BTI_opaque_V4SI,
3072 RS6000_BTI_V16QI,
3073 RS6000_BTI_V2SI,
3074 RS6000_BTI_V2SF,
3075 RS6000_BTI_V4HI,
3076 RS6000_BTI_V4SI,
3077 RS6000_BTI_V4SF,
3078 RS6000_BTI_V8HI,
3079 RS6000_BTI_unsigned_V16QI,
3080 RS6000_BTI_unsigned_V8HI,
3081 RS6000_BTI_unsigned_V4SI,
3082 RS6000_BTI_bool_char, /* __bool char */
3083 RS6000_BTI_bool_short, /* __bool short */
3084 RS6000_BTI_bool_int, /* __bool int */
3085 RS6000_BTI_pixel, /* __pixel */
3086 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3087 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3088 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3089 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3090 RS6000_BTI_long, /* long_integer_type_node */
3091 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3092 RS6000_BTI_INTQI, /* intQI_type_node */
3093 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3094 RS6000_BTI_INTHI, /* intHI_type_node */
3095 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3096 RS6000_BTI_INTSI, /* intSI_type_node */
3097 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3098 RS6000_BTI_float, /* float_type_node */
3099 RS6000_BTI_void, /* void_type_node */
3100 RS6000_BTI_MAX
3104 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3105 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3106 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3107 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3108 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3109 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3110 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3111 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3112 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3113 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3114 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3115 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3116 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3117 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3118 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3119 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3120 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3121 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3122 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3123 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3124 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3125 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3127 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3128 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3129 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3130 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3131 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3132 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3133 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3134 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3135 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3136 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3138 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3139 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];