1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Elists
; use Elists
;
33 with Errout
; use Errout
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Pakd
; use Exp_Pakd
;
38 with Exp_Util
; use Exp_Util
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Ghost
; use Ghost
;
41 with Layout
; use Layout
;
43 with Namet
; use Namet
;
44 with Nlists
; use Nlists
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
51 with Sem_Aux
; use Sem_Aux
;
52 with Sem_Cat
; use Sem_Cat
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Eval
; use Sem_Eval
;
58 with Sem_Mech
; use Sem_Mech
;
59 with Sem_Prag
; use Sem_Prag
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sinfo
; use Sinfo
;
63 with Snames
; use Snames
;
64 with Stand
; use Stand
;
65 with Targparm
; use Targparm
;
66 with Tbuild
; use Tbuild
;
67 with Ttypes
; use Ttypes
;
68 with Uintp
; use Uintp
;
69 with Urealp
; use Urealp
;
70 with Warnsw
; use Warnsw
;
72 package body Freeze
is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
88 After
: in out Node_Id
);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause
(E
: Entity_Id
);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type
: Entity_Id
;
100 Comp_ADC_Present
: out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
112 -- As each entity is frozen, this routine is called to deal with the
113 -- setting of Debug_Info_Needed for the entity. This flag is set if
114 -- the entity comes from source, or if we are in Debug_Generated_Code
115 -- mode or if the -gnatdV debug flag is set. However, it never sets
116 -- the flag if Debug_Info_Off is set. This procedure also ensures that
117 -- subsidiary entities have the flag set as required.
119 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
);
120 -- When an expression function is frozen by a use of it, the expression
121 -- itself is frozen. Check that the expression does not include references
122 -- to deferred constants without completion. We report this at the freeze
123 -- point of the function, to provide a better error message.
125 -- In most cases the expression itself is frozen by the time the function
126 -- itself is frozen, because the formals will be frozen by then. However,
127 -- Attribute references to outer types are freeze points for those types;
128 -- this routine generates the required freeze nodes for them.
130 procedure Check_Inherited_Conditions
(R
: Entity_Id
);
131 -- For a tagged derived type, create wrappers for inherited operations
132 -- that have a class-wide condition, so it can be properly rewritten if
133 -- it involves calls to other overriding primitives.
135 procedure Check_Strict_Alignment
(E
: Entity_Id
);
136 -- E is a base type. If E is tagged or has a component that is aliased
137 -- or tagged or contains something this is aliased or tagged, set
140 procedure Check_Unsigned_Type
(E
: Entity_Id
);
141 pragma Inline
(Check_Unsigned_Type
);
142 -- If E is a fixed-point or discrete type, then all the necessary work
143 -- to freeze it is completed except for possible setting of the flag
144 -- Is_Unsigned_Type, which is done by this procedure. The call has no
145 -- effect if the entity E is not a discrete or fixed-point type.
147 procedure Freeze_And_Append
150 Result
: in out List_Id
);
151 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
152 -- nodes to Result, modifying Result from No_List if necessary. N has
153 -- the same usage as in Freeze_Entity.
155 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
156 -- Freeze enumeration type. The Esize field is set as processing
157 -- proceeds (i.e. set by default when the type is declared and then
158 -- adjusted by rep clauses. What this procedure does is to make sure
159 -- that if a foreign convention is specified, and no specific size
160 -- is given, then the size must be at least Integer'Size.
162 procedure Freeze_Static_Object
(E
: Entity_Id
);
163 -- If an object is frozen which has Is_Statically_Allocated set, then
164 -- all referenced types must also be marked with this flag. This routine
165 -- is in charge of meeting this requirement for the object entity E.
167 procedure Freeze_Subprogram
(E
: Entity_Id
);
168 -- Perform freezing actions for a subprogram (create extra formals,
169 -- and set proper default mechanism values). Note that this routine
170 -- is not called for internal subprograms, for which neither of these
171 -- actions is needed (or desirable, we do not want for example to have
172 -- these extra formals present in initialization procedures, where they
173 -- would serve no purpose). In this call E is either a subprogram or
174 -- a subprogram type (i.e. an access to a subprogram).
176 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
177 -- True if T is not private and has no private components, or has a full
178 -- view. Used to determine whether the designated type of an access type
179 -- should be frozen when the access type is frozen. This is done when an
180 -- allocator is frozen, or an expression that may involve attributes of
181 -- the designated type. Otherwise freezing the access type does not freeze
182 -- the designated type.
184 procedure Process_Default_Expressions
186 After
: in out Node_Id
);
187 -- This procedure is called for each subprogram to complete processing of
188 -- default expressions at the point where all types are known to be frozen.
189 -- The expressions must be analyzed in full, to make sure that all error
190 -- processing is done (they have only been pre-analyzed). If the expression
191 -- is not an entity or literal, its analysis may generate code which must
192 -- not be executed. In that case we build a function body to hold that
193 -- code. This wrapper function serves no other purpose (it used to be
194 -- called to evaluate the default, but now the default is inlined at each
197 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
198 -- Typ is a record or array type that is being frozen. This routine sets
199 -- the default component alignment from the scope stack values if the
200 -- alignment is otherwise not specified.
202 procedure Set_SSO_From_Default
(T
: Entity_Id
);
203 -- T is a record or array type that is being frozen. If it is a base type,
204 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
205 -- will be set appropriately. Note that an explicit occurrence of aspect
206 -- Scalar_Storage_Order or an explicit setting of this aspect with an
207 -- attribute definition clause occurs, then these two flags are reset in
208 -- any case, so call will have no effect.
210 procedure Undelay_Type
(T
: Entity_Id
);
211 -- T is a type of a component that we know to be an Itype. We don't want
212 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
213 -- Full_View or Corresponding_Record_Type.
215 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Node_Id
);
216 -- Expr is the expression for an address clause for entity Nam whose type
217 -- is Typ. If Typ has a default initialization, and there is no explicit
218 -- initialization in the source declaration, check whether the address
219 -- clause might cause overlaying of an entity, and emit a warning on the
220 -- side effect that the initialization will cause.
222 -------------------------------
223 -- Adjust_Esize_For_Alignment --
224 -------------------------------
226 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
230 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
231 Align
:= Alignment_In_Bits
(Typ
);
233 if Align
> Esize
(Typ
)
234 and then Align
<= Standard_Long_Long_Integer_Size
236 Set_Esize
(Typ
, Align
);
239 end Adjust_Esize_For_Alignment
;
241 ------------------------------------
242 -- Build_And_Analyze_Renamed_Body --
243 ------------------------------------
245 procedure Build_And_Analyze_Renamed_Body
248 After
: in out Node_Id
)
250 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
251 Ent
: constant Entity_Id
:= Defining_Entity
(Decl
);
253 Renamed_Subp
: Entity_Id
;
256 -- If the renamed subprogram is intrinsic, there is no need for a
257 -- wrapper body: we set the alias that will be called and expanded which
258 -- completes the declaration. This transformation is only legal if the
259 -- renamed entity has already been elaborated.
261 -- Note that it is legal for a renaming_as_body to rename an intrinsic
262 -- subprogram, as long as the renaming occurs before the new entity
263 -- is frozen (RM 8.5.4 (5)).
265 if Nkind
(Body_Decl
) = N_Subprogram_Renaming_Declaration
266 and then Is_Entity_Name
(Name
(Body_Decl
))
268 Renamed_Subp
:= Entity
(Name
(Body_Decl
));
270 Renamed_Subp
:= Empty
;
273 if Present
(Renamed_Subp
)
274 and then Is_Intrinsic_Subprogram
(Renamed_Subp
)
276 (not In_Same_Source_Unit
(Renamed_Subp
, Ent
)
277 or else Sloc
(Renamed_Subp
) < Sloc
(Ent
))
279 -- We can make the renaming entity intrinsic if the renamed function
280 -- has an interface name, or if it is one of the shift/rotate
281 -- operations known to the compiler.
284 (Present
(Interface_Name
(Renamed_Subp
))
285 or else Nam_In
(Chars
(Renamed_Subp
), Name_Rotate_Left
,
289 Name_Shift_Right_Arithmetic
))
291 Set_Interface_Name
(Ent
, Interface_Name
(Renamed_Subp
));
293 if Present
(Alias
(Renamed_Subp
)) then
294 Set_Alias
(Ent
, Alias
(Renamed_Subp
));
296 Set_Alias
(Ent
, Renamed_Subp
);
299 Set_Is_Intrinsic_Subprogram
(Ent
);
300 Set_Has_Completion
(Ent
);
303 Body_Node
:= Build_Renamed_Body
(Decl
, New_S
);
304 Insert_After
(After
, Body_Node
);
305 Mark_Rewrite_Insertion
(Body_Node
);
309 end Build_And_Analyze_Renamed_Body
;
311 ------------------------
312 -- Build_Renamed_Body --
313 ------------------------
315 function Build_Renamed_Body
317 New_S
: Entity_Id
) return Node_Id
319 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
320 -- We use for the source location of the renamed body, the location of
321 -- the spec entity. It might seem more natural to use the location of
322 -- the renaming declaration itself, but that would be wrong, since then
323 -- the body we create would look as though it was created far too late,
324 -- and this could cause problems with elaboration order analysis,
325 -- particularly in connection with instantiations.
327 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
328 Nam
: constant Node_Id
:= Name
(N
);
330 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
331 Actuals
: List_Id
:= No_List
;
336 O_Formal
: Entity_Id
;
337 Param_Spec
: Node_Id
;
339 Pref
: Node_Id
:= Empty
;
340 -- If the renamed entity is a primitive operation given in prefix form,
341 -- the prefix is the target object and it has to be added as the first
342 -- actual in the generated call.
345 -- Determine the entity being renamed, which is the target of the call
346 -- statement. If the name is an explicit dereference, this is a renaming
347 -- of a subprogram type rather than a subprogram. The name itself is
350 if Nkind
(Nam
) = N_Selected_Component
then
351 Old_S
:= Entity
(Selector_Name
(Nam
));
353 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
354 Old_S
:= Etype
(Nam
);
356 elsif Nkind
(Nam
) = N_Indexed_Component
then
357 if Is_Entity_Name
(Prefix
(Nam
)) then
358 Old_S
:= Entity
(Prefix
(Nam
));
360 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
363 elsif Nkind
(Nam
) = N_Character_Literal
then
364 Old_S
:= Etype
(New_S
);
367 Old_S
:= Entity
(Nam
);
370 if Is_Entity_Name
(Nam
) then
372 -- If the renamed entity is a predefined operator, retain full name
373 -- to ensure its visibility.
375 if Ekind
(Old_S
) = E_Operator
376 and then Nkind
(Nam
) = N_Expanded_Name
378 Call_Name
:= New_Copy
(Name
(N
));
380 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
384 if Nkind
(Nam
) = N_Selected_Component
385 and then Present
(First_Formal
(Old_S
))
387 (Is_Controlling_Formal
(First_Formal
(Old_S
))
388 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
391 -- Retrieve the target object, to be added as a first actual
394 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
395 Pref
:= Prefix
(Nam
);
398 Call_Name
:= New_Copy
(Name
(N
));
401 -- Original name may have been overloaded, but is fully resolved now
403 Set_Is_Overloaded
(Call_Name
, False);
406 -- For simple renamings, subsequent calls can be expanded directly as
407 -- calls to the renamed entity. The body must be generated in any case
408 -- for calls that may appear elsewhere. This is not done in the case
409 -- where the subprogram is an instantiation because the actual proper
410 -- body has not been built yet.
412 if Ekind_In
(Old_S
, E_Function
, E_Procedure
)
413 and then Nkind
(Decl
) = N_Subprogram_Declaration
414 and then not Is_Generic_Instance
(Old_S
)
416 Set_Body_To_Inline
(Decl
, Old_S
);
419 -- Check whether the return type is a limited view. If the subprogram
420 -- is already frozen the generated body may have a non-limited view
421 -- of the type, that must be used, because it is the one in the spec
422 -- of the renaming declaration.
424 if Ekind
(Old_S
) = E_Function
425 and then Is_Entity_Name
(Result_Definition
(Spec
))
428 Ret_Type
: constant Entity_Id
:= Etype
(Result_Definition
(Spec
));
430 if Has_Non_Limited_View
(Ret_Type
) then
431 Set_Result_Definition
432 (Spec
, New_Occurrence_Of
(Non_Limited_View
(Ret_Type
), Loc
));
437 -- The body generated for this renaming is an internal artifact, and
438 -- does not constitute a freeze point for the called entity.
440 Set_Must_Not_Freeze
(Call_Name
);
442 Formal
:= First_Formal
(Defining_Entity
(Decl
));
444 if Present
(Pref
) then
446 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
447 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
450 -- The controlling formal may be an access parameter, or the
451 -- actual may be an access value, so adjust accordingly.
453 if Is_Access_Type
(Pref_Type
)
454 and then not Is_Access_Type
(Form_Type
)
457 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
459 elsif Is_Access_Type
(Form_Type
)
460 and then not Is_Access_Type
(Pref
)
464 Make_Attribute_Reference
(Loc
,
465 Attribute_Name
=> Name_Access
,
466 Prefix
=> Relocate_Node
(Pref
)));
468 Actuals
:= New_List
(Pref
);
472 elsif Present
(Formal
) then
479 if Present
(Formal
) then
480 while Present
(Formal
) loop
481 Append
(New_Occurrence_Of
(Formal
, Loc
), Actuals
);
482 Next_Formal
(Formal
);
486 -- If the renamed entity is an entry, inherit its profile. For other
487 -- renamings as bodies, both profiles must be subtype conformant, so it
488 -- is not necessary to replace the profile given in the declaration.
489 -- However, default values that are aggregates are rewritten when
490 -- partially analyzed, so we recover the original aggregate to insure
491 -- that subsequent conformity checking works. Similarly, if the default
492 -- expression was constant-folded, recover the original expression.
494 Formal
:= First_Formal
(Defining_Entity
(Decl
));
496 if Present
(Formal
) then
497 O_Formal
:= First_Formal
(Old_S
);
498 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
499 while Present
(Formal
) loop
500 if Is_Entry
(Old_S
) then
501 if Nkind
(Parameter_Type
(Param_Spec
)) /=
504 Set_Etype
(Formal
, Etype
(O_Formal
));
505 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
508 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
509 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
510 Nkind
(Default_Value
(O_Formal
))
512 Set_Expression
(Param_Spec
,
513 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
516 Next_Formal
(Formal
);
517 Next_Formal
(O_Formal
);
522 -- If the renamed entity is a function, the generated body contains a
523 -- return statement. Otherwise, build a procedure call. If the entity is
524 -- an entry, subsequent analysis of the call will transform it into the
525 -- proper entry or protected operation call. If the renamed entity is
526 -- a character literal, return it directly.
528 if Ekind
(Old_S
) = E_Function
529 or else Ekind
(Old_S
) = E_Operator
530 or else (Ekind
(Old_S
) = E_Subprogram_Type
531 and then Etype
(Old_S
) /= Standard_Void_Type
)
534 Make_Simple_Return_Statement
(Loc
,
536 Make_Function_Call
(Loc
,
538 Parameter_Associations
=> Actuals
));
540 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
542 Make_Simple_Return_Statement
(Loc
,
543 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
545 elsif Nkind
(Nam
) = N_Character_Literal
then
547 Make_Simple_Return_Statement
(Loc
, Expression
=> Call_Name
);
551 Make_Procedure_Call_Statement
(Loc
,
553 Parameter_Associations
=> Actuals
);
556 -- Create entities for subprogram body and formals
558 Set_Defining_Unit_Name
(Spec
,
559 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
561 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
562 while Present
(Param_Spec
) loop
563 Set_Defining_Identifier
(Param_Spec
,
564 Make_Defining_Identifier
(Loc
,
565 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
570 Make_Subprogram_Body
(Loc
,
571 Specification
=> Spec
,
572 Declarations
=> New_List
,
573 Handled_Statement_Sequence
=>
574 Make_Handled_Sequence_Of_Statements
(Loc
,
575 Statements
=> New_List
(Call_Node
)));
577 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
579 Make_Subprogram_Declaration
(Loc
,
580 Specification
=> Specification
(N
)));
583 -- Link the body to the entity whose declaration it completes. If
584 -- the body is analyzed when the renamed entity is frozen, it may
585 -- be necessary to restore the proper scope (see package Exp_Ch13).
587 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
588 and then Present
(Corresponding_Spec
(N
))
590 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
592 Set_Corresponding_Spec
(Body_Node
, New_S
);
596 end Build_Renamed_Body
;
598 --------------------------
599 -- Check_Address_Clause --
600 --------------------------
602 procedure Check_Address_Clause
(E
: Entity_Id
) is
603 Addr
: constant Node_Id
:= Address_Clause
(E
);
604 Typ
: constant Entity_Id
:= Etype
(E
);
609 Tag_Assign
: Node_Id
;
612 if Present
(Addr
) then
614 -- For a deferred constant, the initialization value is on full view
616 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
617 Decl
:= Declaration_Node
(Full_View
(E
));
619 Decl
:= Declaration_Node
(E
);
622 Expr
:= Expression
(Addr
);
624 if Needs_Constant_Address
(Decl
, Typ
) then
625 Check_Constant_Address_Clause
(Expr
, E
);
627 -- Has_Delayed_Freeze was set on E when the address clause was
628 -- analyzed, and must remain set because we want the address
629 -- clause to be elaborated only after any entity it references
630 -- has been elaborated.
633 -- If Rep_Clauses are to be ignored, remove address clause from
634 -- list attached to entity, because it may be illegal for gigi,
635 -- for example by breaking order of elaboration..
637 if Ignore_Rep_Clauses
then
642 Rep
:= First_Rep_Item
(E
);
645 Set_First_Rep_Item
(E
, Next_Rep_Item
(Addr
));
649 and then Next_Rep_Item
(Rep
) /= Addr
651 Rep
:= Next_Rep_Item
(Rep
);
655 if Present
(Rep
) then
656 Set_Next_Rep_Item
(Rep
, Next_Rep_Item
(Addr
));
660 -- And now remove the address clause
662 Kill_Rep_Clause
(Addr
);
664 elsif not Error_Posted
(Expr
)
665 and then not Needs_Finalization
(Typ
)
667 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
670 Init
:= Expression
(Decl
);
672 -- If a variable, or a non-imported constant, overlays a constant
673 -- object and has an initialization value, then the initialization
674 -- may end up writing into read-only memory. Detect the cases of
675 -- statically identical values and remove the initialization. In
676 -- the other cases, give a warning. We will give other warnings
677 -- later for the variable if it is assigned.
679 if (Ekind
(E
) = E_Variable
680 or else (Ekind
(E
) = E_Constant
681 and then not Is_Imported
(E
)))
682 and then Overlays_Constant
(E
)
683 and then Present
(Init
)
690 Find_Overlaid_Entity
(Addr
, O_Ent
, Off
);
692 if Ekind
(O_Ent
) = E_Constant
693 and then Etype
(O_Ent
) = Typ
694 and then Present
(Constant_Value
(O_Ent
))
695 and then Compile_Time_Compare
697 Constant_Value
(O_Ent
),
698 Assume_Valid
=> True) = EQ
700 Set_No_Initialization
(Decl
);
703 elsif Comes_From_Source
(Init
)
704 and then Address_Clause_Overlay_Warnings
706 Error_Msg_Sloc
:= Sloc
(Addr
);
708 ("??constant& may be modified via address clause#",
714 if Present
(Init
) then
716 -- Capture initialization value at point of declaration,
717 -- and make explicit assignment legal, because object may
720 Remove_Side_Effects
(Init
);
721 Lhs
:= New_Occurrence_Of
(E
, Sloc
(Decl
));
722 Set_Assignment_OK
(Lhs
);
724 -- Move initialization to freeze actions, once the object has
725 -- been frozen and the address clause alignment check has been
728 Append_Freeze_Action
(E
,
729 Make_Assignment_Statement
(Sloc
(Decl
),
731 Expression
=> Expression
(Decl
)));
733 Set_No_Initialization
(Decl
);
735 -- If the objet is tagged, check whether the tag must be
736 -- reassigned explicitly.
738 Tag_Assign
:= Make_Tag_Assignment
(Decl
);
739 if Present
(Tag_Assign
) then
740 Append_Freeze_Action
(E
, Tag_Assign
);
744 end Check_Address_Clause
;
746 -----------------------------
747 -- Check_Compile_Time_Size --
748 -----------------------------
750 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
752 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
753 -- Sets the compile time known size (64 bits or less) in the RM_Size
754 -- field of T, checking for a size clause that was given which attempts
755 -- to give a smaller size.
757 function Size_Known
(T
: Entity_Id
) return Boolean;
758 -- Recursive function that does all the work
760 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
761 -- If T is a constrained subtype, its size is not known if any of its
762 -- discriminant constraints is not static and it is not a null record.
763 -- The test is conservative and doesn't check that the components are
764 -- in fact constrained by non-static discriminant values. Could be made
771 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
776 -- Check for bad size clause given
778 elsif Has_Size_Clause
(T
) then
779 if RM_Size
(T
) < S
then
780 Error_Msg_Uint_1
:= S
;
782 ("size for& too small, minimum allowed is ^",
786 -- Set size if not set already
788 elsif Unknown_RM_Size
(T
) then
797 function Size_Known
(T
: Entity_Id
) return Boolean is
805 if Size_Known_At_Compile_Time
(T
) then
808 -- Always True for elementary types, even generic formal elementary
809 -- types. We used to return False in the latter case, but the size
810 -- is known at compile time, even in the template, we just do not
811 -- know the exact size but that's not the point of this routine.
813 elsif Is_Elementary_Type
(T
) or else Is_Task_Type
(T
) then
818 elsif Is_Array_Type
(T
) then
820 -- String literals always have known size, and we can set it
822 if Ekind
(T
) = E_String_Literal_Subtype
then
824 (T
, Component_Size
(T
) * String_Literal_Length
(T
));
827 -- Unconstrained types never have known at compile time size
829 elsif not Is_Constrained
(T
) then
832 -- Don't do any recursion on type with error posted, since we may
833 -- have a malformed type that leads us into a loop.
835 elsif Error_Posted
(T
) then
838 -- Otherwise if component size unknown, then array size unknown
840 elsif not Size_Known
(Component_Type
(T
)) then
844 -- Check for all indexes static, and also compute possible size
845 -- (in case it is not greater than 64 and may be packable).
848 Size
: Uint
:= Component_Size
(T
);
852 Index
:= First_Index
(T
);
853 while Present
(Index
) loop
854 if Nkind
(Index
) = N_Range
then
855 Get_Index_Bounds
(Index
, Low
, High
);
857 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
861 Low
:= Type_Low_Bound
(Etype
(Index
));
862 High
:= Type_High_Bound
(Etype
(Index
));
865 if not Compile_Time_Known_Value
(Low
)
866 or else not Compile_Time_Known_Value
(High
)
867 or else Etype
(Index
) = Any_Type
872 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
884 Set_Small_Size
(T
, Size
);
888 -- For non-generic private types, go to underlying type if present
890 elsif Is_Private_Type
(T
)
891 and then not Is_Generic_Type
(T
)
892 and then Present
(Underlying_Type
(T
))
894 -- Don't do any recursion on type with error posted, since we may
895 -- have a malformed type that leads us into a loop.
897 if Error_Posted
(T
) then
900 return Size_Known
(Underlying_Type
(T
));
905 elsif Is_Record_Type
(T
) then
907 -- A class-wide type is never considered to have a known size
909 if Is_Class_Wide_Type
(T
) then
912 -- A subtype of a variant record must not have non-static
913 -- discriminated components.
915 elsif T
/= Base_Type
(T
)
916 and then not Static_Discriminated_Components
(T
)
920 -- Don't do any recursion on type with error posted, since we may
921 -- have a malformed type that leads us into a loop.
923 elsif Error_Posted
(T
) then
927 -- Now look at the components of the record
930 -- The following two variables are used to keep track of the
931 -- size of packed records if we can tell the size of the packed
932 -- record in the front end. Packed_Size_Known is True if so far
933 -- we can figure out the size. It is initialized to True for a
934 -- packed record, unless the record has discriminants or atomic
935 -- components or independent components.
937 -- The reason we eliminate the discriminated case is that
938 -- we don't know the way the back end lays out discriminated
939 -- packed records. If Packed_Size_Known is True, then
940 -- Packed_Size is the size in bits so far.
942 Packed_Size_Known
: Boolean :=
944 and then not Has_Discriminants
(T
)
945 and then not Has_Atomic_Components
(T
)
946 and then not Has_Independent_Components
(T
);
948 Packed_Size
: Uint
:= Uint_0
;
949 -- Size in bits so far
952 -- Test for variant part present
954 if Has_Discriminants
(T
)
955 and then Present
(Parent
(T
))
956 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
957 and then Nkind
(Type_Definition
(Parent
(T
))) =
959 and then not Null_Present
(Type_Definition
(Parent
(T
)))
961 Present
(Variant_Part
962 (Component_List
(Type_Definition
(Parent
(T
)))))
964 -- If variant part is present, and type is unconstrained,
965 -- then we must have defaulted discriminants, or a size
966 -- clause must be present for the type, or else the size
967 -- is definitely not known at compile time.
969 if not Is_Constrained
(T
)
971 No
(Discriminant_Default_Value
(First_Discriminant
(T
)))
972 and then Unknown_RM_Size
(T
)
978 -- Loop through components
980 Comp
:= First_Component_Or_Discriminant
(T
);
981 while Present
(Comp
) loop
982 Ctyp
:= Etype
(Comp
);
984 -- We do not know the packed size if there is a component
985 -- clause present (we possibly could, but this would only
986 -- help in the case of a record with partial rep clauses.
987 -- That's because in the case of full rep clauses, the
988 -- size gets figured out anyway by a different circuit).
990 if Present
(Component_Clause
(Comp
)) then
991 Packed_Size_Known
:= False;
994 -- We do not know the packed size for an atomic/VFA type
995 -- or component, or an independent type or component, or a
996 -- by-reference type or aliased component (because packing
997 -- does not touch these).
999 if Is_Atomic_Or_VFA
(Ctyp
)
1000 or else Is_Atomic_Or_VFA
(Comp
)
1001 or else Is_Independent
(Ctyp
)
1002 or else Is_Independent
(Comp
)
1003 or else Is_By_Reference_Type
(Ctyp
)
1004 or else Is_Aliased
(Comp
)
1006 Packed_Size_Known
:= False;
1009 -- We need to identify a component that is an array where
1010 -- the index type is an enumeration type with non-standard
1011 -- representation, and some bound of the type depends on a
1014 -- This is because gigi computes the size by doing a
1015 -- substitution of the appropriate discriminant value in
1016 -- the size expression for the base type, and gigi is not
1017 -- clever enough to evaluate the resulting expression (which
1018 -- involves a call to rep_to_pos) at compile time.
1020 -- It would be nice if gigi would either recognize that
1021 -- this expression can be computed at compile time, or
1022 -- alternatively figured out the size from the subtype
1023 -- directly, where all the information is at hand ???
1025 if Is_Array_Type
(Etype
(Comp
))
1026 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
1029 Ocomp
: constant Entity_Id
:=
1030 Original_Record_Component
(Comp
);
1031 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
1037 Ind
:= First_Index
(OCtyp
);
1038 while Present
(Ind
) loop
1039 Indtyp
:= Etype
(Ind
);
1041 if Is_Enumeration_Type
(Indtyp
)
1042 and then Has_Non_Standard_Rep
(Indtyp
)
1044 Lo
:= Type_Low_Bound
(Indtyp
);
1045 Hi
:= Type_High_Bound
(Indtyp
);
1047 if Is_Entity_Name
(Lo
)
1048 and then Ekind
(Entity
(Lo
)) = E_Discriminant
1052 elsif Is_Entity_Name
(Hi
)
1053 and then Ekind
(Entity
(Hi
)) = E_Discriminant
1064 -- Clearly size of record is not known if the size of one of
1065 -- the components is not known.
1067 if not Size_Known
(Ctyp
) then
1071 -- Accumulate packed size if possible
1073 if Packed_Size_Known
then
1075 -- We can deal with elementary types, small packed arrays
1076 -- if the representation is a modular type and also small
1077 -- record types (if the size is not greater than 64, but
1078 -- the condition is checked by Set_Small_Size).
1080 if Is_Elementary_Type
(Ctyp
)
1081 or else (Is_Array_Type
(Ctyp
)
1083 (Packed_Array_Impl_Type
(Ctyp
))
1084 and then Is_Modular_Integer_Type
1085 (Packed_Array_Impl_Type
(Ctyp
)))
1086 or else Is_Record_Type
(Ctyp
)
1088 -- If RM_Size is known and static, then we can keep
1089 -- accumulating the packed size.
1091 if Known_Static_RM_Size
(Ctyp
) then
1093 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
1095 -- If we have a field whose RM_Size is not known then
1096 -- we can't figure out the packed size here.
1099 Packed_Size_Known
:= False;
1102 -- For other types we can't figure out the packed size
1105 Packed_Size_Known
:= False;
1109 Next_Component_Or_Discriminant
(Comp
);
1112 if Packed_Size_Known
then
1113 Set_Small_Size
(T
, Packed_Size
);
1119 -- All other cases, size not known at compile time
1126 -------------------------------------
1127 -- Static_Discriminated_Components --
1128 -------------------------------------
1130 function Static_Discriminated_Components
1131 (T
: Entity_Id
) return Boolean
1133 Constraint
: Elmt_Id
;
1136 if Has_Discriminants
(T
)
1137 and then Present
(Discriminant_Constraint
(T
))
1138 and then Present
(First_Component
(T
))
1140 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
1141 while Present
(Constraint
) loop
1142 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
1146 Next_Elmt
(Constraint
);
1151 end Static_Discriminated_Components
;
1153 -- Start of processing for Check_Compile_Time_Size
1156 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
1157 end Check_Compile_Time_Size
;
1159 -----------------------------------
1160 -- Check_Component_Storage_Order --
1161 -----------------------------------
1163 procedure Check_Component_Storage_Order
1164 (Encl_Type
: Entity_Id
;
1167 Comp_ADC_Present
: out Boolean)
1169 Comp_Base
: Entity_Id
;
1171 Encl_Base
: Entity_Id
;
1174 Component_Aliased
: Boolean;
1176 Comp_Byte_Aligned
: Boolean;
1177 pragma Warnings
(Off
, Comp_Byte_Aligned
);
1178 -- Set for the record case, True if Comp is aligned on byte boundaries
1179 -- (in which case it is allowed to have different storage order).
1181 Comp_SSO_Differs
: Boolean;
1182 -- Set True when the component is a nested composite, and it does not
1183 -- have the same scalar storage order as Encl_Type.
1188 if Present
(Comp
) then
1190 Comp_Base
:= Etype
(Comp
);
1192 if Is_Tag
(Comp
) then
1193 Comp_Byte_Aligned
:= True;
1194 Component_Aliased
:= False;
1197 -- If a component clause is present, check if the component starts
1198 -- and ends on byte boundaries. Otherwise conservatively assume it
1199 -- does so only in the case where the record is not packed.
1201 if Present
(Component_Clause
(Comp
)) then
1202 Comp_Byte_Aligned
:=
1203 (Normalized_First_Bit
(Comp
) mod System_Storage_Unit
= 0)
1205 (Esize
(Comp
) mod System_Storage_Unit
= 0);
1207 Comp_Byte_Aligned
:= not Is_Packed
(Encl_Type
);
1210 Component_Aliased
:= Is_Aliased
(Comp
);
1216 Err_Node
:= Encl_Type
;
1217 Comp_Base
:= Component_Type
(Encl_Type
);
1219 Component_Aliased
:= Has_Aliased_Components
(Encl_Type
);
1222 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1223 -- the attribute definition clause is attached to the first subtype.
1224 -- Also, if the base type is incomplete or private, go to full view
1227 Encl_Base
:= Base_Type
(Encl_Type
);
1228 if Present
(Underlying_Type
(Encl_Base
)) then
1229 Encl_Base
:= Underlying_Type
(Encl_Base
);
1232 Comp_Base
:= Base_Type
(Comp_Base
);
1233 if Present
(Underlying_Type
(Comp_Base
)) then
1234 Comp_Base
:= Underlying_Type
(Comp_Base
);
1238 Get_Attribute_Definition_Clause
1239 (First_Subtype
(Comp_Base
), Attribute_Scalar_Storage_Order
);
1240 Comp_ADC_Present
:= Present
(Comp_ADC
);
1242 -- Case of record or array component: check storage order compatibility.
1243 -- But, if the record has Complex_Representation, then it is treated as
1244 -- a scalar in the back end so the storage order is irrelevant.
1246 if (Is_Record_Type
(Comp_Base
)
1247 and then not Has_Complex_Representation
(Comp_Base
))
1248 or else Is_Array_Type
(Comp_Base
)
1251 Reverse_Storage_Order
(Encl_Base
) /=
1252 Reverse_Storage_Order
(Comp_Base
);
1254 -- Parent and extension must have same storage order
1256 if Present
(Comp
) and then Chars
(Comp
) = Name_uParent
then
1257 if Comp_SSO_Differs
then
1259 ("record extension must have same scalar storage order as "
1260 & "parent", Err_Node
);
1263 -- If component and composite SSO differs, check that component
1264 -- falls on byte boundaries and isn't bit packed.
1266 elsif Comp_SSO_Differs
then
1268 -- Component SSO differs from enclosing composite:
1270 -- Reject if composite is a bit-packed array, as it is rewritten
1271 -- into an array of scalars.
1273 if Is_Bit_Packed_Array
(Encl_Base
) then
1275 ("type of packed array must have same scalar storage order "
1276 & "as component", Err_Node
);
1278 -- Reject if not byte aligned
1280 elsif Is_Record_Type
(Encl_Base
)
1281 and then not Comp_Byte_Aligned
1284 ("type of non-byte-aligned component must have same scalar "
1285 & "storage order as enclosing composite", Err_Node
);
1287 -- Warn if specified only for the outer composite
1289 elsif Present
(ADC
) and then No
(Comp_ADC
) then
1291 ("scalar storage order specified for & does not apply to "
1292 & "component?", Err_Node
, Encl_Base
);
1296 -- Enclosing type has explicit SSO: non-composite component must not
1299 elsif Present
(ADC
) and then Component_Aliased
then
1301 ("aliased component not permitted for type with explicit "
1302 & "Scalar_Storage_Order", Err_Node
);
1304 end Check_Component_Storage_Order
;
1306 -----------------------------
1307 -- Check_Debug_Info_Needed --
1308 -----------------------------
1310 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
1312 if Debug_Info_Off
(T
) then
1315 elsif Comes_From_Source
(T
)
1316 or else Debug_Generated_Code
1317 or else Debug_Flag_VV
1318 or else Needs_Debug_Info
(T
)
1320 Set_Debug_Info_Needed
(T
);
1322 end Check_Debug_Info_Needed
;
1324 -------------------------------
1325 -- Check_Expression_Function --
1326 -------------------------------
1328 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
) is
1329 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
;
1330 -- Function to search for deferred constant
1336 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
is
1338 -- When a constant is initialized with the result of a dispatching
1339 -- call, the constant declaration is rewritten as a renaming of the
1340 -- displaced function result. This scenario is not a premature use of
1341 -- a constant even though the Has_Completion flag is not set.
1343 if Is_Entity_Name
(Nod
)
1344 and then Present
(Entity
(Nod
))
1345 and then Ekind
(Entity
(Nod
)) = E_Constant
1346 and then Scope
(Entity
(Nod
)) = Current_Scope
1347 and then Nkind
(Declaration_Node
(Entity
(Nod
))) =
1348 N_Object_Declaration
1349 and then not Is_Imported
(Entity
(Nod
))
1350 and then not Has_Completion
(Entity
(Nod
))
1351 and then not Is_Frozen
(Entity
(Nod
))
1354 ("premature use of& in call or instance", N
, Entity
(Nod
));
1356 elsif Nkind
(Nod
) = N_Attribute_Reference
then
1357 Analyze
(Prefix
(Nod
));
1359 if Is_Entity_Name
(Prefix
(Nod
))
1360 and then Is_Type
(Entity
(Prefix
(Nod
)))
1362 Freeze_Before
(N
, Entity
(Prefix
(Nod
)));
1369 procedure Check_Deferred
is new Traverse_Proc
(Find_Constant
);
1375 -- Start of processing for Check_Expression_Function
1378 Decl
:= Original_Node
(Unit_Declaration_Node
(Nam
));
1380 -- The subprogram body created for the expression function is not
1381 -- itself a freeze point.
1383 if Scope
(Nam
) = Current_Scope
1384 and then Nkind
(Decl
) = N_Expression_Function
1385 and then Nkind
(N
) /= N_Subprogram_Body
1387 Check_Deferred
(Expression
(Decl
));
1389 end Check_Expression_Function
;
1391 --------------------------------
1392 -- Check_Inherited_Conditions --
1393 --------------------------------
1395 procedure Check_Inherited_Conditions
(R
: Entity_Id
) is
1396 Prim_Ops
: constant Elist_Id
:= Primitive_Operations
(R
);
1398 Needs_Wrapper
: Boolean;
1400 Par_Prim
: Entity_Id
;
1403 procedure Build_Inherited_Condition_Pragmas
(Subp
: Entity_Id
);
1404 -- Build corresponding pragmas for an operation whose ancestor has
1405 -- class-wide pre/postconditions. If the operation is inherited, the
1406 -- pragmas force the creation of a wrapper for the inherited operation.
1407 -- If the ancestor is being overridden, the pragmas are constructed only
1408 -- to verify their legality, in case they contain calls to other
1409 -- primitives that may haven been overridden.
1411 ---------------------------------------
1412 -- Build_Inherited_Condition_Pragmas --
1413 ---------------------------------------
1415 procedure Build_Inherited_Condition_Pragmas
(Subp
: Entity_Id
) is
1421 A_Pre
:= Get_Class_Wide_Pragma
(Par_Prim
, Pragma_Precondition
);
1423 if Present
(A_Pre
) then
1424 New_Prag
:= New_Copy_Tree
(A_Pre
);
1425 Build_Class_Wide_Expression
1428 Par_Subp
=> Par_Prim
,
1429 Adjust_Sloc
=> False,
1430 Needs_Wrapper
=> Needs_Wrapper
);
1433 and then not Comes_From_Source
(Subp
)
1434 and then Expander_Active
1436 Append
(New_Prag
, Decls
);
1440 A_Post
:= Get_Class_Wide_Pragma
(Par_Prim
, Pragma_Postcondition
);
1442 if Present
(A_Post
) then
1443 New_Prag
:= New_Copy_Tree
(A_Post
);
1444 Build_Class_Wide_Expression
1447 Par_Subp
=> Par_Prim
,
1448 Adjust_Sloc
=> False,
1449 Needs_Wrapper
=> Needs_Wrapper
);
1452 and then not Comes_From_Source
(Subp
)
1453 and then Expander_Active
1455 Append
(New_Prag
, Decls
);
1458 end Build_Inherited_Condition_Pragmas
;
1460 -- Start of processing for Check_Inherited_Conditions
1463 Op_Node
:= First_Elmt
(Prim_Ops
);
1464 while Present
(Op_Node
) loop
1465 Prim
:= Node
(Op_Node
);
1467 -- Map the overridden primitive to the overriding one. This takes
1468 -- care of all overridings and is done only once.
1470 if Present
(Overridden_Operation
(Prim
))
1471 and then Comes_From_Source
(Prim
)
1473 Par_Prim
:= Overridden_Operation
(Prim
);
1474 Update_Primitives_Mapping
(Par_Prim
, Prim
);
1477 Next_Elmt
(Op_Node
);
1480 -- Perform validity checks on the inherited conditions of overriding
1481 -- operations, for conformance with LSP, and apply SPARK-specific
1482 -- restrictions on inherited conditions.
1484 Op_Node
:= First_Elmt
(Prim_Ops
);
1485 while Present
(Op_Node
) loop
1486 Prim
:= Node
(Op_Node
);
1488 if Present
(Overridden_Operation
(Prim
))
1489 and then Comes_From_Source
(Prim
)
1491 Par_Prim
:= Overridden_Operation
(Prim
);
1493 -- Analyze the contract items of the overridden operation, before
1494 -- they are rewritten as pragmas.
1496 Analyze_Entry_Or_Subprogram_Contract
(Par_Prim
);
1498 -- In GNATprove mode this is where we can collect the inherited
1499 -- conditions, because we do not create the Check pragmas that
1500 -- normally convey the the modified class-wide conditions on
1501 -- overriding operations.
1503 if GNATprove_Mode
then
1504 Collect_Inherited_Class_Wide_Conditions
(Prim
);
1506 -- Otherwise build the corresponding pragmas to check for legality
1507 -- of the inherited condition.
1510 Build_Inherited_Condition_Pragmas
(Prim
);
1514 Next_Elmt
(Op_Node
);
1517 -- Now examine the inherited operations to check whether they require
1518 -- a wrapper to handle inherited conditions that call other primitives,
1519 -- so that LSP can be verified/enforced.
1521 Op_Node
:= First_Elmt
(Prim_Ops
);
1522 Needs_Wrapper
:= False;
1524 while Present
(Op_Node
) loop
1525 Decls
:= Empty_List
;
1526 Prim
:= Node
(Op_Node
);
1528 if not Comes_From_Source
(Prim
) and then Present
(Alias
(Prim
)) then
1529 Par_Prim
:= Alias
(Prim
);
1531 -- Analyze the contract items of the parent operation, and
1532 -- determine whether a wrapper is needed. This is determined
1533 -- when the condition is rewritten in sem_prag, using the
1534 -- mapping between overridden and overriding operations built
1535 -- in the loop above.
1537 Analyze_Entry_Or_Subprogram_Contract
(Par_Prim
);
1538 Build_Inherited_Condition_Pragmas
(Prim
);
1542 and then not Is_Abstract_Subprogram
(Par_Prim
)
1543 and then Expander_Active
1545 -- We need to build a new primitive that overrides the inherited
1546 -- one, and whose inherited expression has been updated above.
1547 -- These expressions are the arguments of pragmas that are part
1548 -- of the declarations of the wrapper. The wrapper holds a single
1549 -- statement that is a call to the class-wide clone, where the
1550 -- controlling actuals are conversions to the corresponding type
1551 -- in the parent primitive:
1553 -- procedure New_Prim (F1 : T1; ...);
1554 -- procedure New_Prim (F1 : T1; ...) is
1555 -- pragma Check (Precondition, Expr);
1557 -- Par_Prim_Clone (Par_Type (F1), ...);
1560 -- If the primitive is a function the statement is a return
1561 -- statement with a call.
1564 Loc
: constant Source_Ptr
:= Sloc
(R
);
1565 Par_R
: constant Node_Id
:= Parent
(R
);
1571 New_Spec
:= Build_Overriding_Spec
(Par_Prim
, R
);
1573 Make_Subprogram_Declaration
(Loc
,
1574 Specification
=> New_Spec
);
1576 -- Insert the declaration and the body of the wrapper after
1577 -- type declaration that generates inherited operation. For
1578 -- a null procedure, the declaration implies a null body.
1580 if Nkind
(New_Spec
) = N_Procedure_Specification
1581 and then Null_Present
(New_Spec
)
1583 Insert_After_And_Analyze
(Par_R
, New_Decl
);
1586 -- Build body as wrapper to a call to the already built
1587 -- class-wide clone.
1590 Build_Class_Wide_Clone_Call
1591 (Loc
, Decls
, Par_Prim
, New_Spec
);
1593 Insert_List_After_And_Analyze
1594 (Par_R
, New_List
(New_Decl
, New_Body
));
1598 Needs_Wrapper
:= False;
1601 Next_Elmt
(Op_Node
);
1603 end Check_Inherited_Conditions
;
1605 ----------------------------
1606 -- Check_Strict_Alignment --
1607 ----------------------------
1609 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1613 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1614 Set_Strict_Alignment
(E
);
1616 elsif Is_Array_Type
(E
) then
1617 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1619 elsif Is_Record_Type
(E
) then
1620 if Is_Limited_Record
(E
) then
1621 Set_Strict_Alignment
(E
);
1625 Comp
:= First_Component
(E
);
1626 while Present
(Comp
) loop
1627 if not Is_Type
(Comp
)
1628 and then (Strict_Alignment
(Etype
(Comp
))
1629 or else Is_Aliased
(Comp
))
1631 Set_Strict_Alignment
(E
);
1635 Next_Component
(Comp
);
1638 end Check_Strict_Alignment
;
1640 -------------------------
1641 -- Check_Unsigned_Type --
1642 -------------------------
1644 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1645 Ancestor
: Entity_Id
;
1650 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1654 -- Do not attempt to analyze case where range was in error
1656 if No
(Scalar_Range
(E
)) or else Error_Posted
(Scalar_Range
(E
)) then
1660 -- The situation that is nontrivial is something like:
1662 -- subtype x1 is integer range -10 .. +10;
1663 -- subtype x2 is x1 range 0 .. V1;
1664 -- subtype x3 is x2 range V2 .. V3;
1665 -- subtype x4 is x3 range V4 .. V5;
1667 -- where Vn are variables. Here the base type is signed, but we still
1668 -- know that x4 is unsigned because of the lower bound of x2.
1670 -- The only way to deal with this is to look up the ancestor chain
1674 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1678 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1680 if Compile_Time_Known_Value
(Lo_Bound
) then
1681 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1682 Set_Is_Unsigned_Type
(E
, True);
1688 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1690 -- If no ancestor had a static lower bound, go to base type
1692 if No
(Ancestor
) then
1694 -- Note: the reason we still check for a compile time known
1695 -- value for the base type is that at least in the case of
1696 -- generic formals, we can have bounds that fail this test,
1697 -- and there may be other cases in error situations.
1699 Btyp
:= Base_Type
(E
);
1701 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1705 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1707 if Compile_Time_Known_Value
(Lo_Bound
)
1708 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1710 Set_Is_Unsigned_Type
(E
, True);
1717 end Check_Unsigned_Type
;
1719 -----------------------------
1720 -- Is_Atomic_VFA_Aggregate --
1721 -----------------------------
1723 function Is_Atomic_VFA_Aggregate
(N
: Node_Id
) return Boolean is
1724 Loc
: constant Source_Ptr
:= Sloc
(N
);
1733 -- Array may be qualified, so find outer context
1735 if Nkind
(Par
) = N_Qualified_Expression
then
1736 Par
:= Parent
(Par
);
1739 if not Comes_From_Source
(Par
) then
1744 when N_Assignment_Statement
=>
1745 Typ
:= Etype
(Name
(Par
));
1747 if not Is_Atomic_Or_VFA
(Typ
)
1748 and then not (Is_Entity_Name
(Name
(Par
))
1749 and then Is_Atomic_Or_VFA
(Entity
(Name
(Par
))))
1754 when N_Object_Declaration
=>
1755 Typ
:= Etype
(Defining_Identifier
(Par
));
1757 if not Is_Atomic_Or_VFA
(Typ
)
1758 and then not Is_Atomic_Or_VFA
(Defining_Identifier
(Par
))
1767 Temp
:= Make_Temporary
(Loc
, 'T', N
);
1769 Make_Object_Declaration
(Loc
,
1770 Defining_Identifier
=> Temp
,
1771 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1772 Expression
=> Relocate_Node
(N
));
1773 Insert_Before
(Par
, New_N
);
1776 Set_Expression
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1778 end Is_Atomic_VFA_Aggregate
;
1780 -----------------------------------------------
1781 -- Explode_Initialization_Compound_Statement --
1782 -----------------------------------------------
1784 procedure Explode_Initialization_Compound_Statement
(E
: Entity_Id
) is
1785 Init_Stmts
: constant Node_Id
:= Initialization_Statements
(E
);
1788 if Present
(Init_Stmts
)
1789 and then Nkind
(Init_Stmts
) = N_Compound_Statement
1791 Insert_List_Before
(Init_Stmts
, Actions
(Init_Stmts
));
1793 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1794 -- just removing it, because Freeze_All may rely on this particular
1795 -- Node_Id still being present in the enclosing list to know where to
1798 Rewrite
(Init_Stmts
, Make_Null_Statement
(Sloc
(Init_Stmts
)));
1800 Set_Initialization_Statements
(E
, Empty
);
1802 end Explode_Initialization_Compound_Statement
;
1808 -- Note: the easy coding for this procedure would be to just build a
1809 -- single list of freeze nodes and then insert them and analyze them
1810 -- all at once. This won't work, because the analysis of earlier freeze
1811 -- nodes may recursively freeze types which would otherwise appear later
1812 -- on in the freeze list. So we must analyze and expand the freeze nodes
1813 -- as they are generated.
1815 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1816 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1817 -- This is the internal recursive routine that does freezing of entities
1818 -- (but NOT the analysis of default expressions, which should not be
1819 -- recursive, we don't want to analyze those till we are sure that ALL
1820 -- the types are frozen).
1822 --------------------
1823 -- Freeze_All_Ent --
1824 --------------------
1826 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
) is
1831 procedure Process_Flist
;
1832 -- If freeze nodes are present, insert and analyze, and reset cursor
1833 -- for next insertion.
1839 procedure Process_Flist
is
1841 if Is_Non_Empty_List
(Flist
) then
1842 Lastn
:= Next
(After
);
1843 Insert_List_After_And_Analyze
(After
, Flist
);
1845 if Present
(Lastn
) then
1846 After
:= Prev
(Lastn
);
1848 After
:= Last
(List_Containing
(After
));
1853 -- Start of processing for Freeze_All_Ent
1857 while Present
(E
) loop
1859 -- If the entity is an inner package which is not a package
1860 -- renaming, then its entities must be frozen at this point. Note
1861 -- that such entities do NOT get frozen at the end of the nested
1862 -- package itself (only library packages freeze).
1864 -- Same is true for task declarations, where anonymous records
1865 -- created for entry parameters must be frozen.
1867 if Ekind
(E
) = E_Package
1868 and then No
(Renamed_Object
(E
))
1869 and then not Is_Child_Unit
(E
)
1870 and then not Is_Frozen
(E
)
1874 Install_Visible_Declarations
(E
);
1875 Install_Private_Declarations
(E
);
1876 Freeze_All
(First_Entity
(E
), After
);
1878 End_Package_Scope
(E
);
1880 if Is_Generic_Instance
(E
)
1881 and then Has_Delayed_Freeze
(E
)
1883 Set_Has_Delayed_Freeze
(E
, False);
1884 Expand_N_Package_Declaration
(Unit_Declaration_Node
(E
));
1887 elsif Ekind
(E
) in Task_Kind
1888 and then Nkind_In
(Parent
(E
), N_Single_Task_Declaration
,
1889 N_Task_Type_Declaration
)
1892 Freeze_All
(First_Entity
(E
), After
);
1895 -- For a derived tagged type, we must ensure that all the
1896 -- primitive operations of the parent have been frozen, so that
1897 -- their addresses will be in the parent's dispatch table at the
1898 -- point it is inherited.
1900 elsif Ekind
(E
) = E_Record_Type
1901 and then Is_Tagged_Type
(E
)
1902 and then Is_Tagged_Type
(Etype
(E
))
1903 and then Is_Derived_Type
(E
)
1906 Prim_List
: constant Elist_Id
:=
1907 Primitive_Operations
(Etype
(E
));
1913 Prim
:= First_Elmt
(Prim_List
);
1914 while Present
(Prim
) loop
1915 Subp
:= Node
(Prim
);
1917 if Comes_From_Source
(Subp
)
1918 and then not Is_Frozen
(Subp
)
1920 Flist
:= Freeze_Entity
(Subp
, After
);
1929 if not Is_Frozen
(E
) then
1930 Flist
:= Freeze_Entity
(E
, After
);
1933 -- If already frozen, and there are delayed aspects, this is where
1934 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1935 -- for a description of how we handle aspect visibility).
1937 elsif Has_Delayed_Aspects
(E
) then
1939 -- Retrieve the visibility to the discriminants in order to
1940 -- analyze properly the aspects.
1942 Push_Scope_And_Install_Discriminants
(E
);
1948 Ritem
:= First_Rep_Item
(E
);
1949 while Present
(Ritem
) loop
1950 if Nkind
(Ritem
) = N_Aspect_Specification
1951 and then Entity
(Ritem
) = E
1952 and then Is_Delayed_Aspect
(Ritem
)
1954 Check_Aspect_At_End_Of_Declarations
(Ritem
);
1957 Ritem
:= Next_Rep_Item
(Ritem
);
1961 Uninstall_Discriminants_And_Pop_Scope
(E
);
1964 -- If an incomplete type is still not frozen, this may be a
1965 -- premature freezing because of a body declaration that follows.
1966 -- Indicate where the freezing took place. Freezing will happen
1967 -- if the body comes from source, but not if it is internally
1968 -- generated, for example as the body of a type invariant.
1970 -- If the freezing is caused by the end of the current declarative
1971 -- part, it is a Taft Amendment type, and there is no error.
1973 if not Is_Frozen
(E
)
1974 and then Ekind
(E
) = E_Incomplete_Type
1977 Bod
: constant Node_Id
:= Next
(After
);
1980 -- The presence of a body freezes all entities previously
1981 -- declared in the current list of declarations, but this
1982 -- does not apply if the body does not come from source.
1983 -- A type invariant is transformed into a subprogram body
1984 -- which is placed at the end of the private part of the
1985 -- current package, but this body does not freeze incomplete
1986 -- types that may be declared in this private part.
1988 if (Nkind_In
(Bod
, N_Entry_Body
,
1993 or else Nkind
(Bod
) in N_Body_Stub
)
1995 List_Containing
(After
) = List_Containing
(Parent
(E
))
1996 and then Comes_From_Source
(Bod
)
1998 Error_Msg_Sloc
:= Sloc
(Next
(After
));
2000 ("type& is frozen# before its full declaration",
2016 -- Start of processing for Freeze_All
2019 Freeze_All_Ent
(From
, After
);
2021 -- Now that all types are frozen, we can deal with default expressions
2022 -- that require us to build a default expression functions. This is the
2023 -- point at which such functions are constructed (after all types that
2024 -- might be used in such expressions have been frozen).
2026 -- For subprograms that are renaming_as_body, we create the wrapper
2027 -- bodies as needed.
2029 -- We also add finalization chains to access types whose designated
2030 -- types are controlled. This is normally done when freezing the type,
2031 -- but this misses recursive type definitions where the later members
2032 -- of the recursion introduce controlled components.
2034 -- Loop through entities
2037 while Present
(E
) loop
2038 if Is_Subprogram
(E
) then
2039 if not Default_Expressions_Processed
(E
) then
2040 Process_Default_Expressions
(E
, After
);
2043 if not Has_Completion
(E
) then
2044 Decl
:= Unit_Declaration_Node
(E
);
2046 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
2047 if Error_Posted
(Decl
) then
2048 Set_Has_Completion
(E
);
2050 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
2053 elsif Nkind
(Decl
) = N_Subprogram_Declaration
2054 and then Present
(Corresponding_Body
(Decl
))
2056 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
))) =
2057 N_Subprogram_Renaming_Declaration
2059 Build_And_Analyze_Renamed_Body
2060 (Decl
, Corresponding_Body
(Decl
), After
);
2064 -- Freeze the default expressions of entries, entry families, and
2065 -- protected subprograms.
2067 elsif Is_Concurrent_Type
(E
) then
2068 Item
:= First_Entity
(E
);
2069 while Present
(Item
) loop
2070 if (Is_Entry
(Item
) or else Is_Subprogram
(Item
))
2071 and then not Default_Expressions_Processed
(Item
)
2073 Process_Default_Expressions
(Item
, After
);
2080 -- Historical note: We used to create a finalization master for an
2081 -- access type whose designated type is not controlled, but contains
2082 -- private controlled compoments. This form of postprocessing is no
2083 -- longer needed because the finalization master is now created when
2084 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2090 -----------------------
2091 -- Freeze_And_Append --
2092 -----------------------
2094 procedure Freeze_And_Append
2097 Result
: in out List_Id
)
2099 L
: constant List_Id
:= Freeze_Entity
(Ent
, N
);
2101 if Is_Non_Empty_List
(L
) then
2102 if Result
= No_List
then
2105 Append_List
(L
, Result
);
2108 end Freeze_And_Append
;
2114 procedure Freeze_Before
2117 Do_Freeze_Profile
: Boolean := True)
2119 -- Freeze T, then insert the generated Freeze nodes before the node N.
2120 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2121 -- indicates whether its profile should be frozen at the same time.
2123 Freeze_Nodes
: constant List_Id
:=
2124 Freeze_Entity
(T
, N
, Do_Freeze_Profile
);
2125 Pack
: constant Entity_Id
:= Scope
(T
);
2128 if Ekind
(T
) = E_Function
then
2129 Check_Expression_Function
(N
, T
);
2132 if Is_Non_Empty_List
(Freeze_Nodes
) then
2134 -- If the entity is a type declared in an inner package, it may be
2135 -- frozen by an outer declaration before the package itself is
2136 -- frozen. Install the package scope to analyze the freeze nodes,
2137 -- which may include generated subprograms such as predicate
2140 if Is_Type
(T
) and then From_Nested_Package
(T
) then
2142 Install_Visible_Declarations
(Pack
);
2143 Install_Private_Declarations
(Pack
);
2144 Insert_Actions
(N
, Freeze_Nodes
);
2145 End_Package_Scope
(Pack
);
2148 Insert_Actions
(N
, Freeze_Nodes
);
2157 -- WARNING: This routine manages Ghost regions. Return statements must be
2158 -- replaced by gotos which jump to the end of the routine and restore the
2161 function Freeze_Entity
2164 Do_Freeze_Profile
: Boolean := True) return List_Id
2166 Loc
: constant Source_Ptr
:= Sloc
(N
);
2173 Has_Default_Initialization
: Boolean := False;
2174 -- This flag gets set to true for a variable with default initialization
2176 Result
: List_Id
:= No_List
;
2177 -- List of freezing actions, left at No_List if none
2179 Test_E
: Entity_Id
:= E
;
2180 -- This could use a comment ???
2182 procedure Add_To_Result
(N
: Node_Id
);
2183 -- N is a freezing action to be appended to the Result
2185 function After_Last_Declaration
return Boolean;
2186 -- If Loc is a freeze_entity that appears after the last declaration
2187 -- in the scope, inhibit error messages on late completion.
2189 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
2190 -- Check that an Access or Unchecked_Access attribute with a prefix
2191 -- which is the current instance type can only be applied when the type
2194 procedure Check_Suspicious_Convention
(Rec_Type
: Entity_Id
);
2195 -- Give a warning for pragma Convention with language C or C++ applied
2196 -- to a discriminated record type. This is suppressed for the unchecked
2197 -- union case, since the whole point in this case is interface C. We
2198 -- also do not generate this within instantiations, since we will have
2199 -- generated a message on the template.
2201 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
);
2202 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2203 -- integer literal without an explicit corresponding size clause. The
2204 -- caller has checked that Utype is a modular integer type.
2206 procedure Freeze_Array_Type
(Arr
: Entity_Id
);
2207 -- Freeze array type, including freezing index and component types
2209 procedure Freeze_Object_Declaration
(E
: Entity_Id
);
2210 -- Perform checks and generate freeze node if needed for a constant or
2211 -- variable declared by an object declaration.
2213 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
;
2214 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2215 -- package. Recurse on inner generic packages.
2217 function Freeze_Profile
(E
: Entity_Id
) return Boolean;
2218 -- Freeze formals and return type of subprogram. If some type in the
2219 -- profile is incomplete and we are in an instance, freezing of the
2220 -- entity will take place elsewhere, and the function returns False.
2222 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
2223 -- Freeze record type, including freezing component types, and freezing
2224 -- primitive operations if this is a tagged type.
2226 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean;
2227 -- Determine whether an arbitrary entity is subject to Boolean aspect
2228 -- Import and its value is specified as True.
2230 procedure Inherit_Freeze_Node
2233 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2234 -- that any attributes attached to Typ's original node are preserved.
2236 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
);
2237 -- If E is an entity for an imported subprogram with pre/post-conditions
2238 -- then this procedure will create a wrapper to ensure that proper run-
2239 -- time checking of the pre/postconditions. See body for details.
2245 procedure Add_To_Result
(N
: Node_Id
) is
2248 Result
:= New_List
(N
);
2254 ----------------------------
2255 -- After_Last_Declaration --
2256 ----------------------------
2258 function After_Last_Declaration
return Boolean is
2259 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
2262 if Nkind
(Spec
) = N_Package_Specification
then
2263 if Present
(Private_Declarations
(Spec
)) then
2264 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
2265 elsif Present
(Visible_Declarations
(Spec
)) then
2266 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
2274 end After_Last_Declaration
;
2276 ----------------------------
2277 -- Check_Current_Instance --
2278 ----------------------------
2280 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
2282 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean;
2283 -- Determine whether Typ is compatible with the rules for aliased
2284 -- views of types as defined in RM 3.10 in the various dialects.
2286 function Process
(N
: Node_Id
) return Traverse_Result
;
2287 -- Process routine to apply check to given node
2289 -----------------------------
2290 -- Is_Aliased_View_Of_Type --
2291 -----------------------------
2293 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean is
2294 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
2299 if Nkind
(Typ_Decl
) = N_Full_Type_Declaration
2300 and then Limited_Present
(Type_Definition
(Typ_Decl
))
2304 -- The following paragraphs describe what a legal aliased view of
2305 -- a type is in the various dialects of Ada.
2309 -- The current instance of a limited type, and a formal parameter
2310 -- or generic formal object of a tagged type.
2312 -- Ada 95 limited type
2313 -- * Type with reserved word "limited"
2314 -- * A protected or task type
2315 -- * A composite type with limited component
2317 elsif Ada_Version
<= Ada_95
then
2318 return Is_Limited_Type
(Typ
);
2322 -- The current instance of a limited tagged type, a protected
2323 -- type, a task type, or a type that has the reserved word
2324 -- "limited" in its full definition ... a formal parameter or
2325 -- generic formal object of a tagged type.
2327 -- Ada 2005 limited type
2328 -- * Type with reserved word "limited", "synchronized", "task"
2330 -- * A composite type with limited component
2331 -- * A derived type whose parent is a non-interface limited type
2333 elsif Ada_Version
= Ada_2005
then
2335 (Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
))
2337 (Is_Derived_Type
(Typ
)
2338 and then not Is_Interface
(Etype
(Typ
))
2339 and then Is_Limited_Type
(Etype
(Typ
)));
2341 -- Ada 2012 and beyond
2343 -- The current instance of an immutably limited type ... a formal
2344 -- parameter or generic formal object of a tagged type.
2346 -- Ada 2012 limited type
2347 -- * Type with reserved word "limited", "synchronized", "task"
2349 -- * A composite type with limited component
2350 -- * A derived type whose parent is a non-interface limited type
2351 -- * An incomplete view
2353 -- Ada 2012 immutably limited type
2354 -- * Explicitly limited record type
2355 -- * Record extension with "limited" present
2356 -- * Non-formal limited private type that is either tagged
2357 -- or has at least one access discriminant with a default
2359 -- * Task type, protected type or synchronized interface
2360 -- * Type derived from immutably limited type
2364 Is_Immutably_Limited_Type
(Typ
)
2365 or else Is_Incomplete_Type
(Typ
);
2367 end Is_Aliased_View_Of_Type
;
2373 function Process
(N
: Node_Id
) return Traverse_Result
is
2376 when N_Attribute_Reference
=>
2377 if Nam_In
(Attribute_Name
(N
), Name_Access
,
2378 Name_Unchecked_Access
)
2379 and then Is_Entity_Name
(Prefix
(N
))
2380 and then Is_Type
(Entity
(Prefix
(N
)))
2381 and then Entity
(Prefix
(N
)) = E
2383 if Ada_Version
< Ada_2012
then
2385 ("current instance must be a limited type",
2389 ("current instance must be an immutably limited "
2390 & "type (RM-2012, 7.5 (8.1/3))", Prefix
(N
));
2404 procedure Traverse
is new Traverse_Proc
(Process
);
2408 Rec_Type
: constant Entity_Id
:=
2409 Scope
(Defining_Identifier
(Comp_Decl
));
2411 -- Start of processing for Check_Current_Instance
2414 if not Is_Aliased_View_Of_Type
(Rec_Type
) then
2415 Traverse
(Comp_Decl
);
2417 end Check_Current_Instance
;
2419 ---------------------------------
2420 -- Check_Suspicious_Convention --
2421 ---------------------------------
2423 procedure Check_Suspicious_Convention
(Rec_Type
: Entity_Id
) is
2425 if Has_Discriminants
(Rec_Type
)
2426 and then Is_Base_Type
(Rec_Type
)
2427 and then not Is_Unchecked_Union
(Rec_Type
)
2428 and then (Convention
(Rec_Type
) = Convention_C
2430 Convention
(Rec_Type
) = Convention_CPP
)
2431 and then Comes_From_Source
(Rec_Type
)
2432 and then not In_Instance
2433 and then not Has_Warnings_Off
(Rec_Type
)
2436 Cprag
: constant Node_Id
:=
2437 Get_Rep_Pragma
(Rec_Type
, Name_Convention
);
2441 if Present
(Cprag
) then
2442 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
2444 if Convention
(Rec_Type
) = Convention_C
then
2446 ("?x?discriminated record has no direct equivalent in "
2450 ("?x?discriminated record has no direct equivalent in "
2455 ("\?x?use of convention for type& is dubious",
2460 end Check_Suspicious_Convention
;
2462 ------------------------------
2463 -- Check_Suspicious_Modulus --
2464 ------------------------------
2466 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
) is
2467 Decl
: constant Node_Id
:= Declaration_Node
(Underlying_Type
(Utype
));
2470 if not Warn_On_Suspicious_Modulus_Value
then
2474 if Nkind
(Decl
) = N_Full_Type_Declaration
then
2476 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
2479 if Nkind
(Tdef
) = N_Modular_Type_Definition
then
2481 Modulus
: constant Node_Id
:=
2482 Original_Node
(Expression
(Tdef
));
2485 if Nkind
(Modulus
) = N_Integer_Literal
then
2487 Modv
: constant Uint
:= Intval
(Modulus
);
2488 Sizv
: constant Uint
:= RM_Size
(Utype
);
2491 -- First case, modulus and size are the same. This
2492 -- happens if you have something like mod 32, with
2493 -- an explicit size of 32, this is for sure a case
2494 -- where the warning is given, since it is seems
2495 -- very unlikely that someone would want e.g. a
2496 -- five bit type stored in 32 bits. It is much
2497 -- more likely they wanted a 32-bit type.
2502 -- Second case, the modulus is 32 or 64 and no
2503 -- size clause is present. This is a less clear
2504 -- case for giving the warning, but in the case
2505 -- of 32/64 (5-bit or 6-bit types) these seem rare
2506 -- enough that it is a likely error (and in any
2507 -- case using 2**5 or 2**6 in these cases seems
2508 -- clearer. We don't include 8 or 16 here, simply
2509 -- because in practice 3-bit and 4-bit types are
2510 -- more common and too many false positives if
2511 -- we warn in these cases.
2513 elsif not Has_Size_Clause
(Utype
)
2514 and then (Modv
= Uint_32
or else Modv
= Uint_64
)
2518 -- No warning needed
2524 -- If we fall through, give warning
2526 Error_Msg_Uint_1
:= Modv
;
2528 ("?M?2 '*'*^' may have been intended here",
2536 end Check_Suspicious_Modulus
;
2538 -----------------------
2539 -- Freeze_Array_Type --
2540 -----------------------
2542 procedure Freeze_Array_Type
(Arr
: Entity_Id
) is
2543 FS
: constant Entity_Id
:= First_Subtype
(Arr
);
2544 Ctyp
: constant Entity_Id
:= Component_Type
(Arr
);
2547 Non_Standard_Enum
: Boolean := False;
2548 -- Set true if any of the index types is an enumeration type with a
2549 -- non-standard representation.
2552 Freeze_And_Append
(Ctyp
, N
, Result
);
2554 Indx
:= First_Index
(Arr
);
2555 while Present
(Indx
) loop
2556 Freeze_And_Append
(Etype
(Indx
), N
, Result
);
2558 if Is_Enumeration_Type
(Etype
(Indx
))
2559 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2561 Non_Standard_Enum
:= True;
2567 -- Processing that is done only for base types
2569 if Ekind
(Arr
) = E_Array_Type
then
2571 -- Deal with default setting of reverse storage order
2573 Set_SSO_From_Default
(Arr
);
2575 -- Propagate flags for component type
2577 if Is_Controlled_Active
(Component_Type
(Arr
))
2578 or else Has_Controlled_Component
(Ctyp
)
2580 Set_Has_Controlled_Component
(Arr
);
2583 if Has_Unchecked_Union
(Component_Type
(Arr
)) then
2584 Set_Has_Unchecked_Union
(Arr
);
2587 -- The array type requires its own invariant procedure in order to
2588 -- verify the component invariant over all elements. In GNATprove
2589 -- mode, the component invariants are checked by other means. They
2590 -- should not be added to the array type invariant procedure, so
2591 -- that the procedure can be used to check the array type
2592 -- invariants if any.
2594 if Has_Invariants
(Component_Type
(Arr
))
2595 and then not GNATprove_Mode
2597 Set_Has_Own_Invariants
(Arr
);
2599 -- The array type is an implementation base type. Propagate the
2600 -- same property to the first subtype.
2602 if Is_Itype
(Arr
) then
2603 Set_Has_Own_Invariants
(First_Subtype
(Arr
));
2607 -- Warn for pragma Pack overriding foreign convention
2609 if Has_Foreign_Convention
(Ctyp
)
2610 and then Has_Pragma_Pack
(Arr
)
2613 CN
: constant Name_Id
:=
2614 Get_Convention_Name
(Convention
(Ctyp
));
2615 PP
: constant Node_Id
:=
2616 Get_Pragma
(First_Subtype
(Arr
), Pragma_Pack
);
2618 if Present
(PP
) then
2619 Error_Msg_Name_1
:= CN
;
2620 Error_Msg_Sloc
:= Sloc
(Arr
);
2622 ("pragma Pack affects convention % components #??", PP
);
2623 Error_Msg_Name_1
:= CN
;
2625 ("\array components may not have % compatible "
2626 & "representation??", PP
);
2631 -- If packing was requested or if the component size was
2632 -- set explicitly, then see if bit packing is required. This
2633 -- processing is only done for base types, since all of the
2634 -- representation aspects involved are type-related.
2636 -- This is not just an optimization, if we start processing the
2637 -- subtypes, they interfere with the settings on the base type
2638 -- (this is because Is_Packed has a slightly different meaning
2639 -- before and after freezing).
2646 if (Is_Packed
(Arr
) or else Has_Pragma_Pack
(Arr
))
2647 and then Known_Static_RM_Size
(Ctyp
)
2648 and then not Has_Component_Size_Clause
(Arr
)
2650 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2652 elsif Known_Component_Size
(Arr
) then
2653 Csiz
:= Component_Size
(Arr
);
2655 elsif not Known_Static_Esize
(Ctyp
) then
2659 Esiz
:= Esize
(Ctyp
);
2661 -- We can set the component size if it is less than 16,
2662 -- rounding it up to the next storage unit size.
2666 elsif Esiz
<= 16 then
2672 -- Set component size up to match alignment if it would
2673 -- otherwise be less than the alignment. This deals with
2674 -- cases of types whose alignment exceeds their size (the
2675 -- padded type cases).
2679 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2688 -- Case of component size that may result in bit packing
2690 if 1 <= Csiz
and then Csiz
<= 64 then
2692 Ent
: constant Entity_Id
:=
2693 First_Subtype
(Arr
);
2694 Pack_Pragma
: constant Node_Id
:=
2695 Get_Rep_Pragma
(Ent
, Name_Pack
);
2696 Comp_Size_C
: constant Node_Id
:=
2697 Get_Attribute_Definition_Clause
2698 (Ent
, Attribute_Component_Size
);
2701 -- Warn if we have pack and component size so that the
2704 -- Note: here we must check for the presence of a
2705 -- component size before checking for a Pack pragma to
2706 -- deal with the case where the array type is a derived
2707 -- type whose parent is currently private.
2709 if Present
(Comp_Size_C
)
2710 and then Has_Pragma_Pack
(Ent
)
2711 and then Warn_On_Redundant_Constructs
2713 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2715 ("?r?pragma Pack for& ignored!", Pack_Pragma
, Ent
);
2717 ("\?r?explicit component size given#!", Pack_Pragma
);
2718 Set_Is_Packed
(Base_Type
(Ent
), False);
2719 Set_Is_Bit_Packed_Array
(Base_Type
(Ent
), False);
2722 -- Set component size if not already set by a component
2725 if not Present
(Comp_Size_C
) then
2726 Set_Component_Size
(Arr
, Csiz
);
2729 -- Check for base type of 8, 16, 32 bits, where an
2730 -- unsigned subtype has a length one less than the
2731 -- base type (e.g. Natural subtype of Integer).
2733 -- In such cases, if a component size was not set
2734 -- explicitly, then generate a warning.
2736 if Has_Pragma_Pack
(Arr
)
2737 and then not Present
(Comp_Size_C
)
2738 and then (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2739 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2741 Error_Msg_Uint_1
:= Csiz
;
2743 if Present
(Pack_Pragma
) then
2745 ("??pragma Pack causes component size to be ^!",
2748 ("\??use Component_Size to set desired value!",
2753 -- Bit packing is never needed for 8, 16, 32, 64
2755 if Addressable
(Csiz
) then
2757 -- If the Esize of the component is known and equal to
2758 -- the component size then even packing is not needed.
2760 if Known_Static_Esize
(Component_Type
(Arr
))
2761 and then Esize
(Component_Type
(Arr
)) = Csiz
2763 -- Here the array was requested to be packed, but
2764 -- the packing request had no effect whatsoever,
2765 -- so flag Is_Packed is reset.
2767 -- Note: semantically this means that we lose track
2768 -- of the fact that a derived type inherited pragma
2769 -- Pack that was non-effective, but that is fine.
2771 -- We regard a Pack pragma as a request to set a
2772 -- representation characteristic, and this request
2775 Set_Is_Packed
(Base_Type
(Arr
), False);
2776 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), False);
2778 Set_Is_Packed
(Base_Type
(Arr
), True);
2779 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2782 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2784 -- Bit packing is not needed for multiples of the storage
2785 -- unit if the type is composite because the back end can
2786 -- byte pack composite types.
2788 elsif Csiz
mod System_Storage_Unit
= 0
2789 and then Is_Composite_Type
(Ctyp
)
2792 Set_Is_Packed
(Base_Type
(Arr
), True);
2793 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2794 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2796 -- In all other cases, bit packing is needed
2799 Set_Is_Packed
(Base_Type
(Arr
), True);
2800 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2801 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), True);
2807 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2808 -- unsuitable packing or explicit component size clause given.
2810 if (Has_Aliased_Components
(Arr
)
2811 or else Has_Atomic_Components
(Arr
)
2812 or else Is_Atomic_Or_VFA
(Ctyp
))
2814 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2816 Alias_Atomic_Check
: declare
2818 procedure Complain_CS
(T
: String);
2819 -- Outputs error messages for incorrect CS clause or pragma
2820 -- Pack for aliased or atomic/VFA components (T is "aliased"
2821 -- or "atomic/vfa");
2827 procedure Complain_CS
(T
: String) is
2829 if Has_Component_Size_Clause
(Arr
) then
2831 Get_Attribute_Definition_Clause
2832 (FS
, Attribute_Component_Size
);
2835 ("incorrect component size for "
2836 & T
& " components", Clause
);
2837 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2839 ("\only allowed value is^", Clause
);
2843 ("cannot pack " & T
& " components",
2844 Get_Rep_Pragma
(FS
, Name_Pack
));
2848 -- Start of processing for Alias_Atomic_Check
2851 -- If object size of component type isn't known, we cannot
2852 -- be sure so we defer to the back end.
2854 if not Known_Static_Esize
(Ctyp
) then
2857 -- Case where component size has no effect. First check for
2858 -- object size of component type multiple of the storage
2861 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2863 -- OK in both packing case and component size case if RM
2864 -- size is known and static and same as the object size.
2867 ((Known_Static_RM_Size
(Ctyp
)
2868 and then Esize
(Ctyp
) = RM_Size
(Ctyp
))
2870 -- Or if we have an explicit component size clause and
2871 -- the component size and object size are equal.
2874 (Has_Component_Size_Clause
(Arr
)
2875 and then Component_Size
(Arr
) = Esize
(Ctyp
)))
2879 elsif Has_Aliased_Components
(Arr
) then
2880 Complain_CS
("aliased");
2882 elsif Has_Atomic_Components
(Arr
)
2883 or else Is_Atomic
(Ctyp
)
2885 Complain_CS
("atomic");
2887 elsif Is_Volatile_Full_Access
(Ctyp
) then
2888 Complain_CS
("volatile full access");
2890 end Alias_Atomic_Check
;
2893 -- Check for Independent_Components/Independent with unsuitable
2894 -- packing or explicit component size clause given.
2896 if (Has_Independent_Components
(Arr
) or else Is_Independent
(Ctyp
))
2898 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2901 -- If object size of component type isn't known, we cannot
2902 -- be sure so we defer to the back end.
2904 if not Known_Static_Esize
(Ctyp
) then
2907 -- Case where component size has no effect. First check for
2908 -- object size of component type multiple of the storage
2911 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2913 -- OK in both packing case and component size case if RM
2914 -- size is known and multiple of the storage unit size.
2917 ((Known_Static_RM_Size
(Ctyp
)
2918 and then RM_Size
(Ctyp
) mod System_Storage_Unit
= 0)
2920 -- Or if we have an explicit component size clause and
2921 -- the component size is larger than the object size.
2924 (Has_Component_Size_Clause
(Arr
)
2925 and then Component_Size
(Arr
) >= Esize
(Ctyp
)))
2930 if Has_Component_Size_Clause
(Arr
) then
2932 Get_Attribute_Definition_Clause
2933 (FS
, Attribute_Component_Size
);
2936 ("incorrect component size for "
2937 & "independent components", Clause
);
2938 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2940 ("\minimum allowed is^", Clause
);
2944 ("cannot pack independent components",
2945 Get_Rep_Pragma
(FS
, Name_Pack
));
2951 -- Warn for case of atomic type
2953 Clause
:= Get_Rep_Pragma
(FS
, Name_Atomic
);
2956 and then not Addressable
(Component_Size
(FS
))
2959 ("non-atomic components of type& may not be "
2960 & "accessible by separate tasks??", Clause
, Arr
);
2962 if Has_Component_Size_Clause
(Arr
) then
2963 Error_Msg_Sloc
:= Sloc
(Get_Attribute_Definition_Clause
2964 (FS
, Attribute_Component_Size
));
2965 Error_Msg_N
("\because of component size clause#??", Clause
);
2967 elsif Has_Pragma_Pack
(Arr
) then
2968 Error_Msg_Sloc
:= Sloc
(Get_Rep_Pragma
(FS
, Name_Pack
));
2969 Error_Msg_N
("\because of pragma Pack#??", Clause
);
2973 -- Check for scalar storage order
2978 Check_Component_Storage_Order
2981 ADC
=> Get_Attribute_Definition_Clause
2982 (First_Subtype
(Arr
),
2983 Attribute_Scalar_Storage_Order
),
2984 Comp_ADC_Present
=> Dummy
);
2987 -- Processing that is done only for subtypes
2990 -- Acquire alignment from base type
2992 if Unknown_Alignment
(Arr
) then
2993 Set_Alignment
(Arr
, Alignment
(Base_Type
(Arr
)));
2994 Adjust_Esize_Alignment
(Arr
);
2998 -- Specific checks for bit-packed arrays
3000 if Is_Bit_Packed_Array
(Arr
) then
3002 -- Check number of elements for bit-packed arrays that come from
3003 -- source and have compile time known ranges. The bit-packed
3004 -- arrays circuitry does not support arrays with more than
3005 -- Integer'Last + 1 elements, and when this restriction is
3006 -- violated, causes incorrect data access.
3008 -- For the case where this is not compile time known, a run-time
3009 -- check should be generated???
3011 if Comes_From_Source
(Arr
) and then Is_Constrained
(Arr
) then
3020 Index
:= First_Index
(Arr
);
3021 while Present
(Index
) loop
3022 Ityp
:= Etype
(Index
);
3024 -- Never generate an error if any index is of a generic
3025 -- type. We will check this in instances.
3027 if Is_Generic_Type
(Ityp
) then
3033 Make_Attribute_Reference
(Loc
,
3034 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3035 Attribute_Name
=> Name_Range_Length
);
3036 Analyze_And_Resolve
(Ilen
);
3038 -- No attempt is made to check number of elements if not
3039 -- compile time known.
3041 if Nkind
(Ilen
) /= N_Integer_Literal
then
3046 Elmts
:= Elmts
* Intval
(Ilen
);
3050 if Elmts
> Intval
(High_Bound
3051 (Scalar_Range
(Standard_Integer
))) + 1
3054 ("bit packed array type may not have "
3055 & "more than Integer''Last+1 elements", Arr
);
3062 if Known_RM_Size
(Arr
) then
3064 SizC
: constant Node_Id
:= Size_Clause
(Arr
);
3068 -- It is not clear if it is possible to have no size clause
3069 -- at this stage, but it is not worth worrying about. Post
3070 -- error on the entity name in the size clause if present,
3071 -- else on the type entity itself.
3073 if Present
(SizC
) then
3074 Check_Size
(Name
(SizC
), Arr
, RM_Size
(Arr
), Discard
);
3076 Check_Size
(Arr
, Arr
, RM_Size
(Arr
), Discard
);
3082 -- If any of the index types was an enumeration type with a non-
3083 -- standard rep clause, then we indicate that the array type is
3084 -- always packed (even if it is not bit-packed).
3086 if Non_Standard_Enum
then
3087 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
));
3088 Set_Is_Packed
(Base_Type
(Arr
));
3091 Set_Component_Alignment_If_Not_Set
(Arr
);
3093 -- If the array is packed and bit-packed or packed to eliminate holes
3094 -- in the non-contiguous enumeration index types, we must create the
3095 -- packed array type to be used to actually implement the type. This
3096 -- is only needed for real array types (not for string literal types,
3097 -- since they are present only for the front end).
3100 and then (Is_Bit_Packed_Array
(Arr
) or else Non_Standard_Enum
)
3101 and then Ekind
(Arr
) /= E_String_Literal_Subtype
3103 Create_Packed_Array_Impl_Type
(Arr
);
3104 Freeze_And_Append
(Packed_Array_Impl_Type
(Arr
), N
, Result
);
3106 -- Make sure that we have the necessary routines to implement the
3107 -- packing, and complain now if not. Note that we only test this
3108 -- for constrained array types.
3110 if Is_Constrained
(Arr
)
3111 and then Is_Bit_Packed_Array
(Arr
)
3112 and then Present
(Packed_Array_Impl_Type
(Arr
))
3113 and then Is_Array_Type
(Packed_Array_Impl_Type
(Arr
))
3116 CS
: constant Uint
:= Component_Size
(Arr
);
3117 RE
: constant RE_Id
:= Get_Id
(UI_To_Int
(CS
));
3121 and then not RTE_Available
(RE
)
3124 ("packing of " & UI_Image
(CS
) & "-bit components",
3125 First_Subtype
(Etype
(Arr
)));
3127 -- Cancel the packing
3129 Set_Is_Packed
(Base_Type
(Arr
), False);
3130 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
3131 Set_Packed_Array_Impl_Type
(Arr
, Empty
);
3137 -- Size information of packed array type is copied to the array
3138 -- type, since this is really the representation. But do not
3139 -- override explicit existing size values. If the ancestor subtype
3140 -- is constrained the Packed_Array_Impl_Type will be inherited
3141 -- from it, but the size may have been provided already, and
3142 -- must not be overridden either.
3144 if not Has_Size_Clause
(Arr
)
3146 (No
(Ancestor_Subtype
(Arr
))
3147 or else not Has_Size_Clause
(Ancestor_Subtype
(Arr
)))
3149 Set_Esize
(Arr
, Esize
(Packed_Array_Impl_Type
(Arr
)));
3150 Set_RM_Size
(Arr
, RM_Size
(Packed_Array_Impl_Type
(Arr
)));
3153 if not Has_Alignment_Clause
(Arr
) then
3154 Set_Alignment
(Arr
, Alignment
(Packed_Array_Impl_Type
(Arr
)));
3160 -- For non-packed arrays set the alignment of the array to the
3161 -- alignment of the component type if it is unknown. Skip this
3162 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3164 if not Is_Packed
(Arr
)
3165 and then Unknown_Alignment
(Arr
)
3166 and then Known_Alignment
(Ctyp
)
3167 and then Known_Static_Component_Size
(Arr
)
3168 and then Known_Static_Esize
(Ctyp
)
3169 and then Esize
(Ctyp
) = Component_Size
(Arr
)
3170 and then not Is_Atomic_Or_VFA
(Arr
)
3172 Set_Alignment
(Arr
, Alignment
(Component_Type
(Arr
)));
3175 -- A Ghost type cannot have a component of protected or task type
3176 -- (SPARK RM 6.9(19)).
3178 if Is_Ghost_Entity
(Arr
) and then Is_Concurrent_Type
(Ctyp
) then
3180 ("ghost array type & cannot have concurrent component type",
3183 end Freeze_Array_Type
;
3185 -------------------------------
3186 -- Freeze_Object_Declaration --
3187 -------------------------------
3189 procedure Freeze_Object_Declaration
(E
: Entity_Id
) is
3191 -- Abstract type allowed only for C++ imported variables or constants
3193 -- Note: we inhibit this check for objects that do not come from
3194 -- source because there is at least one case (the expansion of
3195 -- x'Class'Input where x is abstract) where we legitimately
3196 -- generate an abstract object.
3198 if Is_Abstract_Type
(Etype
(E
))
3199 and then Comes_From_Source
(Parent
(E
))
3200 and then not (Is_Imported
(E
) and then Is_CPP_Class
(Etype
(E
)))
3202 Error_Msg_N
("type of object cannot be abstract",
3203 Object_Definition
(Parent
(E
)));
3205 if Is_CPP_Class
(Etype
(E
)) then
3207 ("\} may need a cpp_constructor",
3208 Object_Definition
(Parent
(E
)), Etype
(E
));
3210 elsif Present
(Expression
(Parent
(E
))) then
3211 Error_Msg_N
-- CODEFIX
3212 ("\maybe a class-wide type was meant",
3213 Object_Definition
(Parent
(E
)));
3217 -- For object created by object declaration, perform required
3218 -- categorization (preelaborate and pure) checks. Defer these
3219 -- checks to freeze time since pragma Import inhibits default
3220 -- initialization and thus pragma Import affects these checks.
3222 Validate_Object_Declaration
(Declaration_Node
(E
));
3224 -- If there is an address clause, check that it is valid
3225 -- and if need be move initialization to the freeze node.
3227 Check_Address_Clause
(E
);
3229 -- Similar processing is needed for aspects that may affect
3230 -- object layout, like Alignment, if there is an initialization
3231 -- expression. We don't do this if there is a pragma Linker_Section,
3232 -- because it would prevent the back end from statically initializing
3233 -- the object; we don't want elaboration code in that case.
3235 if Has_Delayed_Aspects
(E
)
3236 and then Expander_Active
3237 and then Is_Array_Type
(Etype
(E
))
3238 and then Present
(Expression
(Parent
(E
)))
3239 and then No
(Linker_Section_Pragma
(E
))
3242 Decl
: constant Node_Id
:= Parent
(E
);
3243 Lhs
: constant Node_Id
:= New_Occurrence_Of
(E
, Loc
);
3247 -- Capture initialization value at point of declaration, and
3248 -- make explicit assignment legal, because object may be a
3251 Remove_Side_Effects
(Expression
(Decl
));
3252 Set_Assignment_OK
(Lhs
);
3254 -- Move initialization to freeze actions.
3256 Append_Freeze_Action
(E
,
3257 Make_Assignment_Statement
(Loc
,
3259 Expression
=> Expression
(Decl
)));
3261 Set_No_Initialization
(Decl
);
3262 -- Set_Is_Frozen (E, False);
3266 -- Reset Is_True_Constant for non-constant aliased object. We
3267 -- consider that the fact that a non-constant object is aliased may
3268 -- indicate that some funny business is going on, e.g. an aliased
3269 -- object is passed by reference to a procedure which captures the
3270 -- address of the object, which is later used to assign a new value,
3271 -- even though the compiler thinks that it is not modified. Such
3272 -- code is highly dubious, but we choose to make it "work" for
3273 -- non-constant aliased objects.
3275 -- Note that we used to do this for all aliased objects, whether or
3276 -- not constant, but this caused anomalies down the line because we
3277 -- ended up with static objects that were not Is_True_Constant. Not
3278 -- resetting Is_True_Constant for (aliased) constant objects ensures
3279 -- that this anomaly never occurs.
3281 -- However, we don't do that for internal entities. We figure that if
3282 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3283 -- a dispatch table entry, then we mean it.
3285 if Ekind
(E
) /= E_Constant
3286 and then (Is_Aliased
(E
) or else Is_Aliased
(Etype
(E
)))
3287 and then not Is_Internal_Name
(Chars
(E
))
3289 Set_Is_True_Constant
(E
, False);
3292 -- If the object needs any kind of default initialization, an error
3293 -- must be issued if No_Default_Initialization applies. The check
3294 -- doesn't apply to imported objects, which are not ever default
3295 -- initialized, and is why the check is deferred until freezing, at
3296 -- which point we know if Import applies. Deferred constants are also
3297 -- exempted from this test because their completion is explicit, or
3298 -- through an import pragma.
3300 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
3303 elsif Comes_From_Source
(E
)
3304 and then not Is_Imported
(E
)
3305 and then not Has_Init_Expression
(Declaration_Node
(E
))
3307 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
3308 and then not No_Initialization
(Declaration_Node
(E
))
3309 and then not Initialization_Suppressed
(Etype
(E
)))
3311 (Needs_Simple_Initialization
(Etype
(E
))
3312 and then not Is_Internal
(E
)))
3314 Has_Default_Initialization
:= True;
3316 (No_Default_Initialization
, Declaration_Node
(E
));
3319 -- Check that a Thread_Local_Storage variable does not have
3320 -- default initialization, and any explicit initialization must
3321 -- either be the null constant or a static constant.
3323 if Has_Pragma_Thread_Local_Storage
(E
) then
3325 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3327 if Has_Default_Initialization
3329 (Has_Init_Expression
(Decl
)
3331 (No
(Expression
(Decl
))
3333 (Is_OK_Static_Expression
(Expression
(Decl
))
3334 or else Nkind
(Expression
(Decl
)) = N_Null
)))
3337 ("Thread_Local_Storage variable& is "
3338 & "improperly initialized", Decl
, E
);
3340 ("\only allowed initialization is explicit "
3341 & "NULL or static expression", Decl
, E
);
3346 -- For imported objects, set Is_Public unless there is also an
3347 -- address clause, which means that there is no external symbol
3348 -- needed for the Import (Is_Public may still be set for other
3349 -- unrelated reasons). Note that we delayed this processing
3350 -- till freeze time so that we can be sure not to set the flag
3351 -- if there is an address clause. If there is such a clause,
3352 -- then the only purpose of the Import pragma is to suppress
3353 -- implicit initialization.
3355 if Is_Imported
(E
) and then No
(Address_Clause
(E
)) then
3359 -- For source objects that are not Imported and are library
3360 -- level, if no linker section pragma was given inherit the
3361 -- appropriate linker section from the corresponding type.
3363 if Comes_From_Source
(E
)
3364 and then not Is_Imported
(E
)
3365 and then Is_Library_Level_Entity
(E
)
3366 and then No
(Linker_Section_Pragma
(E
))
3368 Set_Linker_Section_Pragma
3369 (E
, Linker_Section_Pragma
(Etype
(E
)));
3372 -- For convention C objects of an enumeration type, warn if the
3373 -- size is not integer size and no explicit size given. Skip
3374 -- warning for Boolean, and Character, assume programmer expects
3375 -- 8-bit sizes for these cases.
3377 if (Convention
(E
) = Convention_C
3379 Convention
(E
) = Convention_CPP
)
3380 and then Is_Enumeration_Type
(Etype
(E
))
3381 and then not Is_Character_Type
(Etype
(E
))
3382 and then not Is_Boolean_Type
(Etype
(E
))
3383 and then Esize
(Etype
(E
)) < Standard_Integer_Size
3384 and then not Has_Size_Clause
(E
)
3386 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
3388 ("??convention C enumeration object has size less than ^", E
);
3389 Error_Msg_N
("\??use explicit size clause to set size", E
);
3391 end Freeze_Object_Declaration
;
3393 -----------------------------
3394 -- Freeze_Generic_Entities --
3395 -----------------------------
3397 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
is
3404 E
:= First_Entity
(Pack
);
3405 while Present
(E
) loop
3406 if Is_Type
(E
) and then not Is_Generic_Type
(E
) then
3407 F
:= Make_Freeze_Generic_Entity
(Sloc
(Pack
));
3409 Append_To
(Flist
, F
);
3411 elsif Ekind
(E
) = E_Generic_Package
then
3412 Append_List_To
(Flist
, Freeze_Generic_Entities
(E
));
3419 end Freeze_Generic_Entities
;
3421 --------------------
3422 -- Freeze_Profile --
3423 --------------------
3425 function Freeze_Profile
(E
: Entity_Id
) return Boolean is
3428 Warn_Node
: Node_Id
;
3431 -- Loop through formals
3433 Formal
:= First_Formal
(E
);
3434 while Present
(Formal
) loop
3435 F_Type
:= Etype
(Formal
);
3437 -- AI05-0151: incomplete types can appear in a profile. By the
3438 -- time the entity is frozen, the full view must be available,
3439 -- unless it is a limited view.
3441 if Is_Incomplete_Type
(F_Type
)
3442 and then Present
(Full_View
(F_Type
))
3443 and then not From_Limited_With
(F_Type
)
3445 F_Type
:= Full_View
(F_Type
);
3446 Set_Etype
(Formal
, F_Type
);
3449 if not From_Limited_With
(F_Type
) then
3450 Freeze_And_Append
(F_Type
, N
, Result
);
3453 if Is_Private_Type
(F_Type
)
3454 and then Is_Private_Type
(Base_Type
(F_Type
))
3455 and then No
(Full_View
(Base_Type
(F_Type
)))
3456 and then not Is_Generic_Type
(F_Type
)
3457 and then not Is_Derived_Type
(F_Type
)
3459 -- If the type of a formal is incomplete, subprogram is being
3460 -- frozen prematurely. Within an instance (but not within a
3461 -- wrapper package) this is an artifact of our need to regard
3462 -- the end of an instantiation as a freeze point. Otherwise it
3463 -- is a definite error.
3466 Set_Is_Frozen
(E
, False);
3470 elsif not After_Last_Declaration
3471 and then not Freezing_Library_Level_Tagged_Type
3473 Error_Msg_Node_1
:= F_Type
;
3475 ("type & must be fully defined before this point", Loc
);
3479 -- Check suspicious parameter for C function. These tests apply
3480 -- only to exported/imported subprograms.
3482 if Warn_On_Export_Import
3483 and then Comes_From_Source
(E
)
3484 and then (Convention
(E
) = Convention_C
3486 Convention
(E
) = Convention_CPP
)
3487 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3488 and then Convention
(E
) /= Convention
(Formal
)
3489 and then not Has_Warnings_Off
(E
)
3490 and then not Has_Warnings_Off
(F_Type
)
3491 and then not Has_Warnings_Off
(Formal
)
3493 -- Qualify mention of formals with subprogram name
3495 Error_Msg_Qual_Level
:= 1;
3497 -- Check suspicious use of fat C pointer
3499 if Is_Access_Type
(F_Type
)
3500 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
3503 ("?x?type of & does not correspond to C pointer!", Formal
);
3505 -- Check suspicious return of boolean
3507 elsif Root_Type
(F_Type
) = Standard_Boolean
3508 and then Convention
(F_Type
) = Convention_Ada
3509 and then not Has_Warnings_Off
(F_Type
)
3510 and then not Has_Size_Clause
(F_Type
)
3513 ("& is an 8-bit Ada Boolean?x?", Formal
);
3515 ("\use appropriate corresponding type in C "
3516 & "(e.g. char)?x?", Formal
);
3518 -- Check suspicious tagged type
3520 elsif (Is_Tagged_Type
(F_Type
)
3522 (Is_Access_Type
(F_Type
)
3523 and then Is_Tagged_Type
(Designated_Type
(F_Type
))))
3524 and then Convention
(E
) = Convention_C
3527 ("?x?& involves a tagged type which does not "
3528 & "correspond to any C type!", Formal
);
3530 -- Check wrong convention subprogram pointer
3532 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
3533 and then not Has_Foreign_Convention
(F_Type
)
3536 ("?x?subprogram pointer & should "
3537 & "have foreign convention!", Formal
);
3538 Error_Msg_Sloc
:= Sloc
(F_Type
);
3540 ("\?x?add Convention pragma to declaration of &#",
3544 -- Turn off name qualification after message output
3546 Error_Msg_Qual_Level
:= 0;
3549 -- Check for unconstrained array in exported foreign convention
3552 if Has_Foreign_Convention
(E
)
3553 and then not Is_Imported
(E
)
3554 and then Is_Array_Type
(F_Type
)
3555 and then not Is_Constrained
(F_Type
)
3556 and then Warn_On_Export_Import
3558 Error_Msg_Qual_Level
:= 1;
3560 -- If this is an inherited operation, place the warning on
3561 -- the derived type declaration, rather than on the original
3564 if Nkind
(Original_Node
(Parent
(E
))) = N_Full_Type_Declaration
3566 Warn_Node
:= Parent
(E
);
3568 if Formal
= First_Formal
(E
) then
3569 Error_Msg_NE
("??in inherited operation&", Warn_Node
, E
);
3572 Warn_Node
:= Formal
;
3575 Error_Msg_NE
("?x?type of argument& is unconstrained array",
3577 Error_Msg_NE
("?x?foreign caller must pass bounds explicitly",
3579 Error_Msg_Qual_Level
:= 0;
3582 if not From_Limited_With
(F_Type
) then
3583 if Is_Access_Type
(F_Type
) then
3584 F_Type
:= Designated_Type
(F_Type
);
3587 -- If the formal is an anonymous_access_to_subprogram
3588 -- freeze the subprogram type as well, to prevent
3589 -- scope anomalies in gigi, because there is no other
3590 -- clear point at which it could be frozen.
3592 if Is_Itype
(Etype
(Formal
))
3593 and then Ekind
(F_Type
) = E_Subprogram_Type
3595 Freeze_And_Append
(F_Type
, N
, Result
);
3599 Next_Formal
(Formal
);
3602 -- Case of function: similar checks on return type
3604 if Ekind
(E
) = E_Function
then
3606 -- Freeze return type
3608 R_Type
:= Etype
(E
);
3610 -- AI05-0151: the return type may have been incomplete at the
3611 -- point of declaration. Replace it with the full view, unless the
3612 -- current type is a limited view. In that case the full view is
3613 -- in a different unit, and gigi finds the non-limited view after
3614 -- the other unit is elaborated.
3616 if Ekind
(R_Type
) = E_Incomplete_Type
3617 and then Present
(Full_View
(R_Type
))
3618 and then not From_Limited_With
(R_Type
)
3620 R_Type
:= Full_View
(R_Type
);
3621 Set_Etype
(E
, R_Type
);
3624 Freeze_And_Append
(R_Type
, N
, Result
);
3626 -- Check suspicious return type for C function
3628 if Warn_On_Export_Import
3629 and then (Convention
(E
) = Convention_C
3631 Convention
(E
) = Convention_CPP
)
3632 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3634 -- Check suspicious return of fat C pointer
3636 if Is_Access_Type
(R_Type
)
3637 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
3638 and then not Has_Warnings_Off
(E
)
3639 and then not Has_Warnings_Off
(R_Type
)
3642 ("?x?return type of& does not correspond to C pointer!",
3645 -- Check suspicious return of boolean
3647 elsif Root_Type
(R_Type
) = Standard_Boolean
3648 and then Convention
(R_Type
) = Convention_Ada
3649 and then not Has_Warnings_Off
(E
)
3650 and then not Has_Warnings_Off
(R_Type
)
3651 and then not Has_Size_Clause
(R_Type
)
3654 N
: constant Node_Id
:=
3655 Result_Definition
(Declaration_Node
(E
));
3658 ("return type of & is an 8-bit Ada Boolean?x?", N
, E
);
3660 ("\use appropriate corresponding type in C "
3661 & "(e.g. char)?x?", N
, E
);
3664 -- Check suspicious return tagged type
3666 elsif (Is_Tagged_Type
(R_Type
)
3667 or else (Is_Access_Type
(R_Type
)
3670 (Designated_Type
(R_Type
))))
3671 and then Convention
(E
) = Convention_C
3672 and then not Has_Warnings_Off
(E
)
3673 and then not Has_Warnings_Off
(R_Type
)
3675 Error_Msg_N
("?x?return type of & does not "
3676 & "correspond to C type!", E
);
3678 -- Check return of wrong convention subprogram pointer
3680 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
3681 and then not Has_Foreign_Convention
(R_Type
)
3682 and then not Has_Warnings_Off
(E
)
3683 and then not Has_Warnings_Off
(R_Type
)
3685 Error_Msg_N
("?x?& should return a foreign "
3686 & "convention subprogram pointer", E
);
3687 Error_Msg_Sloc
:= Sloc
(R_Type
);
3689 ("\?x?add Convention pragma to declaration of& #",
3694 -- Give warning for suspicious return of a result of an
3695 -- unconstrained array type in a foreign convention function.
3697 if Has_Foreign_Convention
(E
)
3699 -- We are looking for a return of unconstrained array
3701 and then Is_Array_Type
(R_Type
)
3702 and then not Is_Constrained
(R_Type
)
3704 -- Exclude imported routines, the warning does not belong on
3705 -- the import, but rather on the routine definition.
3707 and then not Is_Imported
(E
)
3709 -- Check that general warning is enabled, and that it is not
3710 -- suppressed for this particular case.
3712 and then Warn_On_Export_Import
3713 and then not Has_Warnings_Off
(E
)
3714 and then not Has_Warnings_Off
(R_Type
)
3717 ("?x?foreign convention function& should not return "
3718 & "unconstrained array!", E
);
3722 -- Check suspicious use of Import in pure unit (cases where the RM
3723 -- allows calls to be omitted).
3727 -- It might be suspicious if the compilation unit has the Pure
3730 and then Has_Pragma_Pure
(Cunit_Entity
(Current_Sem_Unit
))
3732 -- The RM allows omission of calls only in the case of
3733 -- library-level subprograms (see RM-10.2.1(18)).
3735 and then Is_Library_Level_Entity
(E
)
3737 -- Ignore internally generated entity. This happens in some cases
3738 -- of subprograms in specs, where we generate an implied body.
3740 and then Comes_From_Source
(Import_Pragma
(E
))
3742 -- Assume run-time knows what it is doing
3744 and then not GNAT_Mode
3746 -- Assume explicit Pure_Function means import is pure
3748 and then not Has_Pragma_Pure_Function
(E
)
3750 -- Don't need warning in relaxed semantics mode
3752 and then not Relaxed_RM_Semantics
3754 -- Assume convention Intrinsic is OK, since this is specialized.
3755 -- This deals with the DEC unit current_exception.ads
3757 and then Convention
(E
) /= Convention_Intrinsic
3759 -- Assume that ASM interface knows what it is doing. This deals
3760 -- with e.g. unsigned.ads in the AAMP back end.
3762 and then Convention
(E
) /= Convention_Assembler
3765 ("pragma Import in Pure unit??", Import_Pragma
(E
));
3767 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3768 Import_Pragma
(E
), E
);
3774 ------------------------
3775 -- Freeze_Record_Type --
3776 ------------------------
3778 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
3785 pragma Warnings
(Off
, Junk
);
3787 Aliased_Component
: Boolean := False;
3788 -- Set True if we find at least one component which is aliased. This
3789 -- is used to prevent Implicit_Packing of the record, since packing
3790 -- cannot modify the size of alignment of an aliased component.
3792 All_Elem_Components
: Boolean := True;
3793 -- True if all components are of a type whose underlying type is
3796 All_Sized_Components
: Boolean := True;
3797 -- True if all components have a known RM_Size
3799 All_Storage_Unit_Components
: Boolean := True;
3800 -- True if all components have an RM_Size that is a multiple of the
3803 Elem_Component_Total_Esize
: Uint
:= Uint_0
;
3804 -- Accumulates total Esize values of all elementary components. Used
3805 -- for processing of Implicit_Packing.
3807 Placed_Component
: Boolean := False;
3808 -- Set True if we find at least one component with a component
3809 -- clause (used to warn about useless Bit_Order pragmas, and also
3810 -- to detect cases where Implicit_Packing may have an effect).
3812 Rec_Pushed
: Boolean := False;
3813 -- Set True if the record type scope Rec has been pushed on the scope
3814 -- stack. Needed for the analysis of delayed aspects specified to the
3815 -- components of Rec.
3817 Sized_Component_Total_RM_Size
: Uint
:= Uint_0
;
3818 -- Accumulates total RM_Size values of all sized components. Used
3819 -- for processing of Implicit_Packing.
3821 Sized_Component_Total_Round_RM_Size
: Uint
:= Uint_0
;
3822 -- Accumulates total RM_Size values of all sized components, rounded
3823 -- individually to a multiple of the storage unit.
3826 -- Scalar_Storage_Order attribute definition clause for the record
3828 SSO_ADC_Component
: Boolean := False;
3829 -- Set True if we find at least one component whose type has a
3830 -- Scalar_Storage_Order attribute definition clause.
3832 Unplaced_Component
: Boolean := False;
3833 -- Set True if we find at least one component with no component
3834 -- clause (used to warn about useless Pack pragmas).
3836 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
3837 -- If N is an allocator, possibly wrapped in one or more level of
3838 -- qualified expression(s), return the inner allocator node, else
3841 procedure Check_Itype
(Typ
: Entity_Id
);
3842 -- If the component subtype is an access to a constrained subtype of
3843 -- an already frozen type, make the subtype frozen as well. It might
3844 -- otherwise be frozen in the wrong scope, and a freeze node on
3845 -- subtype has no effect. Similarly, if the component subtype is a
3846 -- regular (not protected) access to subprogram, set the anonymous
3847 -- subprogram type to frozen as well, to prevent an out-of-scope
3848 -- freeze node at some eventual point of call. Protected operations
3849 -- are handled elsewhere.
3851 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
);
3852 -- Make sure that all types mentioned in Discrete_Choices of the
3853 -- variants referenceed by the Variant_Part VP are frozen. This is
3854 -- a recursive routine to deal with nested variants.
3856 ---------------------
3857 -- Check_Allocator --
3858 ---------------------
3860 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
3865 if Nkind
(Inner
) = N_Allocator
then
3867 elsif Nkind
(Inner
) = N_Qualified_Expression
then
3868 Inner
:= Expression
(Inner
);
3873 end Check_Allocator
;
3879 procedure Check_Itype
(Typ
: Entity_Id
) is
3880 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
3883 if not Is_Frozen
(Desig
)
3884 and then Is_Frozen
(Base_Type
(Desig
))
3886 Set_Is_Frozen
(Desig
);
3888 -- In addition, add an Itype_Reference to ensure that the
3889 -- access subtype is elaborated early enough. This cannot be
3890 -- done if the subtype may depend on discriminants.
3892 if Ekind
(Comp
) = E_Component
3893 and then Is_Itype
(Etype
(Comp
))
3894 and then not Has_Discriminants
(Rec
)
3896 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3897 Set_Itype
(IR
, Desig
);
3901 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
3902 and then Convention
(Desig
) /= Convention_Protected
3904 Set_Is_Frozen
(Desig
);
3908 ------------------------------------
3909 -- Freeze_Choices_In_Variant_Part --
3910 ------------------------------------
3912 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
) is
3913 pragma Assert
(Nkind
(VP
) = N_Variant_Part
);
3920 -- Loop through variants
3922 Variant
:= First_Non_Pragma
(Variants
(VP
));
3923 while Present
(Variant
) loop
3925 -- Loop through choices, checking that all types are frozen
3927 Choice
:= First_Non_Pragma
(Discrete_Choices
(Variant
));
3928 while Present
(Choice
) loop
3929 if Nkind
(Choice
) in N_Has_Etype
3930 and then Present
(Etype
(Choice
))
3932 Freeze_And_Append
(Etype
(Choice
), N
, Result
);
3935 Next_Non_Pragma
(Choice
);
3938 -- Check for nested variant part to process
3940 CL
:= Component_List
(Variant
);
3942 if not Null_Present
(CL
) then
3943 if Present
(Variant_Part
(CL
)) then
3944 Freeze_Choices_In_Variant_Part
(Variant_Part
(CL
));
3948 Next_Non_Pragma
(Variant
);
3950 end Freeze_Choices_In_Variant_Part
;
3952 -- Start of processing for Freeze_Record_Type
3955 -- Deal with delayed aspect specifications for components. The
3956 -- analysis of the aspect is required to be delayed to the freeze
3957 -- point, thus we analyze the pragma or attribute definition
3958 -- clause in the tree at this point. We also analyze the aspect
3959 -- specification node at the freeze point when the aspect doesn't
3960 -- correspond to pragma/attribute definition clause.
3962 Comp
:= First_Entity
(Rec
);
3963 while Present
(Comp
) loop
3964 if Ekind
(Comp
) = E_Component
3965 and then Has_Delayed_Aspects
(Comp
)
3967 if not Rec_Pushed
then
3971 -- The visibility to the discriminants must be restored in
3972 -- order to properly analyze the aspects.
3974 if Has_Discriminants
(Rec
) then
3975 Install_Discriminants
(Rec
);
3979 Analyze_Aspects_At_Freeze_Point
(Comp
);
3985 -- Pop the scope if Rec scope has been pushed on the scope stack
3986 -- during the delayed aspect analysis process.
3989 if Has_Discriminants
(Rec
) then
3990 Uninstall_Discriminants
(Rec
);
3996 -- Freeze components and embedded subtypes
3998 Comp
:= First_Entity
(Rec
);
4000 while Present
(Comp
) loop
4001 if Is_Aliased
(Comp
) then
4002 Aliased_Component
:= True;
4005 -- Handle the component and discriminant case
4007 if Ekind_In
(Comp
, E_Component
, E_Discriminant
) then
4009 CC
: constant Node_Id
:= Component_Clause
(Comp
);
4012 -- Freezing a record type freezes the type of each of its
4013 -- components. However, if the type of the component is
4014 -- part of this record, we do not want or need a separate
4015 -- Freeze_Node. Note that Is_Itype is wrong because that's
4016 -- also set in private type cases. We also can't check for
4017 -- the Scope being exactly Rec because of private types and
4018 -- record extensions.
4020 if Is_Itype
(Etype
(Comp
))
4021 and then Is_Record_Type
(Underlying_Type
4022 (Scope
(Etype
(Comp
))))
4024 Undelay_Type
(Etype
(Comp
));
4027 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
4029 -- Warn for pragma Pack overriding foreign convention
4031 if Has_Foreign_Convention
(Etype
(Comp
))
4032 and then Has_Pragma_Pack
(Rec
)
4034 -- Don't warn for aliased components, since override
4035 -- cannot happen in that case.
4037 and then not Is_Aliased
(Comp
)
4040 CN
: constant Name_Id
:=
4041 Get_Convention_Name
(Convention
(Etype
(Comp
)));
4042 PP
: constant Node_Id
:=
4043 Get_Pragma
(Rec
, Pragma_Pack
);
4045 if Present
(PP
) then
4046 Error_Msg_Name_1
:= CN
;
4047 Error_Msg_Sloc
:= Sloc
(Comp
);
4049 ("pragma Pack affects convention % component#??",
4051 Error_Msg_Name_1
:= CN
;
4053 ("\component & may not have % compatible "
4054 & "representation??", PP
, Comp
);
4059 -- Check for error of component clause given for variable
4060 -- sized type. We have to delay this test till this point,
4061 -- since the component type has to be frozen for us to know
4062 -- if it is variable length.
4064 if Present
(CC
) then
4065 Placed_Component
:= True;
4067 -- We omit this test in a generic context, it will be
4068 -- applied at instantiation time.
4070 if Inside_A_Generic
then
4073 -- Also omit this test in CodePeer mode, since we do not
4074 -- have sufficient info on size and rep clauses.
4076 elsif CodePeer_Mode
then
4079 -- Omit check if component has a generic type. This can
4080 -- happen in an instantiation within a generic in ASIS
4081 -- mode, where we force freeze actions without full
4084 elsif Is_Generic_Type
(Etype
(Comp
)) then
4090 Size_Known_At_Compile_Time
4091 (Underlying_Type
(Etype
(Comp
)))
4094 ("component clause not allowed for variable " &
4095 "length component", CC
);
4099 Unplaced_Component
:= True;
4102 -- Case of component requires byte alignment
4104 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
4106 -- Set the enclosing record to also require byte align
4108 Set_Must_Be_On_Byte_Boundary
(Rec
);
4110 -- Check for component clause that is inconsistent with
4111 -- the required byte boundary alignment.
4114 and then Normalized_First_Bit
(Comp
) mod
4115 System_Storage_Unit
/= 0
4118 ("component & must be byte aligned",
4119 Component_Name
(Component_Clause
(Comp
)));
4125 -- Gather data for possible Implicit_Packing later. Note that at
4126 -- this stage we might be dealing with a real component, or with
4127 -- an implicit subtype declaration.
4129 if Known_Static_RM_Size
(Etype
(Comp
)) then
4131 Comp_Type
: constant Entity_Id
:= Etype
(Comp
);
4132 Comp_Size
: constant Uint
:= RM_Size
(Comp_Type
);
4133 SSU
: constant Int
:= Ttypes
.System_Storage_Unit
;
4136 Sized_Component_Total_RM_Size
:=
4137 Sized_Component_Total_RM_Size
+ Comp_Size
;
4139 Sized_Component_Total_Round_RM_Size
:=
4140 Sized_Component_Total_Round_RM_Size
+
4141 (Comp_Size
+ SSU
- 1) / SSU
* SSU
;
4143 if Present
(Underlying_Type
(Comp_Type
))
4144 and then Is_Elementary_Type
(Underlying_Type
(Comp_Type
))
4146 Elem_Component_Total_Esize
:=
4147 Elem_Component_Total_Esize
+ Esize
(Comp_Type
);
4149 All_Elem_Components
:= False;
4151 if Comp_Size
mod SSU
/= 0 then
4152 All_Storage_Unit_Components
:= False;
4157 All_Sized_Components
:= False;
4160 -- If the component is an Itype with Delayed_Freeze and is either
4161 -- a record or array subtype and its base type has not yet been
4162 -- frozen, we must remove this from the entity list of this record
4163 -- and put it on the entity list of the scope of its base type.
4164 -- Note that we know that this is not the type of a component
4165 -- since we cleared Has_Delayed_Freeze for it in the previous
4166 -- loop. Thus this must be the Designated_Type of an access type,
4167 -- which is the type of a component.
4170 and then Is_Type
(Scope
(Comp
))
4171 and then Is_Composite_Type
(Comp
)
4172 and then Base_Type
(Comp
) /= Comp
4173 and then Has_Delayed_Freeze
(Comp
)
4174 and then not Is_Frozen
(Base_Type
(Comp
))
4177 Will_Be_Frozen
: Boolean := False;
4181 -- We have a difficult case to handle here. Suppose Rec is
4182 -- subtype being defined in a subprogram that's created as
4183 -- part of the freezing of Rec'Base. In that case, we know
4184 -- that Comp'Base must have already been frozen by the time
4185 -- we get to elaborate this because Gigi doesn't elaborate
4186 -- any bodies until it has elaborated all of the declarative
4187 -- part. But Is_Frozen will not be set at this point because
4188 -- we are processing code in lexical order.
4190 -- We detect this case by going up the Scope chain of Rec
4191 -- and seeing if we have a subprogram scope before reaching
4192 -- the top of the scope chain or that of Comp'Base. If we
4193 -- do, then mark that Comp'Base will actually be frozen. If
4194 -- so, we merely undelay it.
4197 while Present
(S
) loop
4198 if Is_Subprogram
(S
) then
4199 Will_Be_Frozen
:= True;
4201 elsif S
= Scope
(Base_Type
(Comp
)) then
4208 if Will_Be_Frozen
then
4209 Undelay_Type
(Comp
);
4212 if Present
(Prev
) then
4213 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
4215 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
4218 -- Insert in entity list of scope of base type (which
4219 -- must be an enclosing scope, because still unfrozen).
4221 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
4225 -- If the component is an access type with an allocator as default
4226 -- value, the designated type will be frozen by the corresponding
4227 -- expression in init_proc. In order to place the freeze node for
4228 -- the designated type before that for the current record type,
4231 -- Same process if the component is an array of access types,
4232 -- initialized with an aggregate. If the designated type is
4233 -- private, it cannot contain allocators, and it is premature
4234 -- to freeze the type, so we check for this as well.
4236 elsif Is_Access_Type
(Etype
(Comp
))
4237 and then Present
(Parent
(Comp
))
4238 and then Present
(Expression
(Parent
(Comp
)))
4241 Alloc
: constant Node_Id
:=
4242 Check_Allocator
(Expression
(Parent
(Comp
)));
4245 if Present
(Alloc
) then
4247 -- If component is pointer to a class-wide type, freeze
4248 -- the specific type in the expression being allocated.
4249 -- The expression may be a subtype indication, in which
4250 -- case freeze the subtype mark.
4252 if Is_Class_Wide_Type
4253 (Designated_Type
(Etype
(Comp
)))
4255 if Is_Entity_Name
(Expression
(Alloc
)) then
4257 (Entity
(Expression
(Alloc
)), N
, Result
);
4259 elsif Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
4262 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
4266 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
4267 Check_Itype
(Etype
(Comp
));
4271 (Designated_Type
(Etype
(Comp
)), N
, Result
);
4276 elsif Is_Access_Type
(Etype
(Comp
))
4277 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
4279 Check_Itype
(Etype
(Comp
));
4281 -- Freeze the designated type when initializing a component with
4282 -- an aggregate in case the aggregate contains allocators.
4285 -- type T_Ptr is access all T;
4286 -- type T_Array is array ... of T_Ptr;
4288 -- type Rec is record
4289 -- Comp : T_Array := (others => ...);
4292 elsif Is_Array_Type
(Etype
(Comp
))
4293 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
4296 Comp_Par
: constant Node_Id
:= Parent
(Comp
);
4297 Desig_Typ
: constant Entity_Id
:=
4299 (Component_Type
(Etype
(Comp
)));
4302 -- The only case when this sort of freezing is not done is
4303 -- when the designated type is class-wide and the root type
4304 -- is the record owning the component. This scenario results
4305 -- in a circularity because the class-wide type requires
4306 -- primitives that have not been created yet as the root
4307 -- type is in the process of being frozen.
4309 -- type Rec is tagged;
4310 -- type Rec_Ptr is access all Rec'Class;
4311 -- type Rec_Array is array ... of Rec_Ptr;
4313 -- type Rec is record
4314 -- Comp : Rec_Array := (others => ...);
4317 if Is_Class_Wide_Type
(Desig_Typ
)
4318 and then Root_Type
(Desig_Typ
) = Rec
4322 elsif Is_Fully_Defined
(Desig_Typ
)
4323 and then Present
(Comp_Par
)
4324 and then Nkind
(Comp_Par
) = N_Component_Declaration
4325 and then Present
(Expression
(Comp_Par
))
4326 and then Nkind
(Expression
(Comp_Par
)) = N_Aggregate
4328 Freeze_And_Append
(Desig_Typ
, N
, Result
);
4338 Get_Attribute_Definition_Clause
4339 (Rec
, Attribute_Scalar_Storage_Order
);
4341 -- If the record type has Complex_Representation, then it is treated
4342 -- as a scalar in the back end so the storage order is irrelevant.
4344 if Has_Complex_Representation
(Rec
) then
4345 if Present
(SSO_ADC
) then
4347 ("??storage order has no effect with Complex_Representation",
4352 -- Deal with default setting of reverse storage order
4354 Set_SSO_From_Default
(Rec
);
4356 -- Check consistent attribute setting on component types
4359 Comp_ADC_Present
: Boolean;
4361 Comp
:= First_Component
(Rec
);
4362 while Present
(Comp
) loop
4363 Check_Component_Storage_Order
4367 Comp_ADC_Present
=> Comp_ADC_Present
);
4368 SSO_ADC_Component
:= SSO_ADC_Component
or Comp_ADC_Present
;
4369 Next_Component
(Comp
);
4373 -- Now deal with reverse storage order/bit order issues
4375 if Present
(SSO_ADC
) then
4377 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4378 -- if the former is specified.
4380 if Reverse_Bit_Order
(Rec
) /= Reverse_Storage_Order
(Rec
) then
4382 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4383 -- apply to some ancestor type.
4385 Error_Msg_Sloc
:= Sloc
(SSO_ADC
);
4387 ("scalar storage order for& specified# inconsistent with "
4388 & "bit order", Rec
);
4391 -- Warn if there is a Scalar_Storage_Order attribute definition
4392 -- clause but no component clause, no component that itself has
4393 -- such an attribute definition, and no pragma Pack.
4395 if not (Placed_Component
4402 ("??scalar storage order specified but no component "
4403 & "clause", SSO_ADC
);
4408 -- Deal with Bit_Order aspect
4410 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
4412 if Present
(ADC
) and then Base_Type
(Rec
) = Rec
then
4413 if not (Placed_Component
4414 or else Present
(SSO_ADC
)
4415 or else Is_Packed
(Rec
))
4417 -- Warn if clause has no effect when no component clause is
4418 -- present, but suppress warning if the Bit_Order is required
4419 -- due to the presence of a Scalar_Storage_Order attribute.
4422 ("??bit order specification has no effect", ADC
);
4424 ("\??since no component clauses were specified", ADC
);
4426 -- Here is where we do the processing to adjust component clauses
4427 -- for reversed bit order, when not using reverse SSO. If an error
4428 -- has been reported on Rec already (such as SSO incompatible with
4429 -- bit order), don't bother adjusting as this may generate extra
4432 elsif Reverse_Bit_Order
(Rec
)
4433 and then not Reverse_Storage_Order
(Rec
)
4434 and then not Error_Posted
(Rec
)
4436 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
4438 -- Case where we have both an explicit Bit_Order and the same
4439 -- Scalar_Storage_Order: leave record untouched, the back-end
4440 -- will take care of required layout conversions.
4448 -- Complete error checking on record representation clause (e.g.
4449 -- overlap of components). This is called after adjusting the
4450 -- record for reverse bit order.
4453 RRC
: constant Node_Id
:= Get_Record_Representation_Clause
(Rec
);
4455 if Present
(RRC
) then
4456 Check_Record_Representation_Clause
(RRC
);
4460 -- Check for useless pragma Pack when all components placed. We only
4461 -- do this check for record types, not subtypes, since a subtype may
4462 -- have all its components placed, and it still makes perfectly good
4463 -- sense to pack other subtypes or the parent type. We do not give
4464 -- this warning if Optimize_Alignment is set to Space, since the
4465 -- pragma Pack does have an effect in this case (it always resets
4466 -- the alignment to one).
4468 if Ekind
(Rec
) = E_Record_Type
4469 and then Is_Packed
(Rec
)
4470 and then not Unplaced_Component
4471 and then Optimize_Alignment
/= 'S'
4473 -- Reset packed status. Probably not necessary, but we do it so
4474 -- that there is no chance of the back end doing something strange
4475 -- with this redundant indication of packing.
4477 Set_Is_Packed
(Rec
, False);
4479 -- Give warning if redundant constructs warnings on
4481 if Warn_On_Redundant_Constructs
then
4482 Error_Msg_N
-- CODEFIX
4483 ("??pragma Pack has no effect, no unplaced components",
4484 Get_Rep_Pragma
(Rec
, Name_Pack
));
4488 -- If this is the record corresponding to a remote type, freeze the
4489 -- remote type here since that is what we are semantically freezing.
4490 -- This prevents the freeze node for that type in an inner scope.
4492 if Ekind
(Rec
) = E_Record_Type
then
4493 if Present
(Corresponding_Remote_Type
(Rec
)) then
4494 Freeze_And_Append
(Corresponding_Remote_Type
(Rec
), N
, Result
);
4497 -- Check for controlled components, unchecked unions, and type
4500 Comp
:= First_Component
(Rec
);
4501 while Present
(Comp
) loop
4503 -- Do not set Has_Controlled_Component on a class-wide
4504 -- equivalent type. See Make_CW_Equivalent_Type.
4506 if not Is_Class_Wide_Equivalent_Type
(Rec
)
4508 (Has_Controlled_Component
(Etype
(Comp
))
4510 (Chars
(Comp
) /= Name_uParent
4511 and then Is_Controlled_Active
(Etype
(Comp
)))
4513 (Is_Protected_Type
(Etype
(Comp
))
4515 Present
(Corresponding_Record_Type
(Etype
(Comp
)))
4517 Has_Controlled_Component
4518 (Corresponding_Record_Type
(Etype
(Comp
)))))
4520 Set_Has_Controlled_Component
(Rec
);
4523 if Has_Unchecked_Union
(Etype
(Comp
)) then
4524 Set_Has_Unchecked_Union
(Rec
);
4527 -- The record type requires its own invariant procedure in
4528 -- order to verify the invariant of each individual component.
4529 -- Do not consider internal components such as _parent because
4530 -- parent class-wide invariants are always inherited.
4531 -- In GNATprove mode, the component invariants are checked by
4532 -- other means. They should not be added to the record type
4533 -- invariant procedure, so that the procedure can be used to
4534 -- check the recordy type invariants if any.
4536 if Comes_From_Source
(Comp
)
4537 and then Has_Invariants
(Etype
(Comp
))
4538 and then not GNATprove_Mode
4540 Set_Has_Own_Invariants
(Rec
);
4543 -- Scan component declaration for likely misuses of current
4544 -- instance, either in a constraint or a default expression.
4546 if Has_Per_Object_Constraint
(Comp
) then
4547 Check_Current_Instance
(Parent
(Comp
));
4550 Next_Component
(Comp
);
4554 -- Enforce the restriction that access attributes with a current
4555 -- instance prefix can only apply to limited types. This comment
4556 -- is floating here, but does not seem to belong here???
4558 -- Set component alignment if not otherwise already set
4560 Set_Component_Alignment_If_Not_Set
(Rec
);
4562 -- For first subtypes, check if there are any fixed-point fields with
4563 -- component clauses, where we must check the size. This is not done
4564 -- till the freeze point since for fixed-point types, we do not know
4565 -- the size until the type is frozen. Similar processing applies to
4566 -- bit-packed arrays.
4568 if Is_First_Subtype
(Rec
) then
4569 Comp
:= First_Component
(Rec
);
4570 while Present
(Comp
) loop
4571 if Present
(Component_Clause
(Comp
))
4572 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
4573 or else Is_Bit_Packed_Array
(Etype
(Comp
)))
4576 (Component_Name
(Component_Clause
(Comp
)),
4582 Next_Component
(Comp
);
4586 -- See if Size is too small as is (and implicit packing might help)
4588 if not Is_Packed
(Rec
)
4590 -- No implicit packing if even one component is explicitly placed
4592 and then not Placed_Component
4594 -- Or even one component is aliased
4596 and then not Aliased_Component
4598 -- Must have size clause and all sized components
4600 and then Has_Size_Clause
(Rec
)
4601 and then All_Sized_Components
4603 -- Do not try implicit packing on records with discriminants, too
4604 -- complicated, especially in the variant record case.
4606 and then not Has_Discriminants
(Rec
)
4608 -- We want to implicitly pack if the specified size of the record
4609 -- is less than the sum of the object sizes (no point in packing
4610 -- if this is not the case), if we can compute it, i.e. if we have
4611 -- only elementary components. Otherwise, we have at least one
4612 -- composite component and we want to implicitly pack only if bit
4613 -- packing is required for it, as we are sure in this case that
4614 -- the back end cannot do the expected layout without packing.
4617 ((All_Elem_Components
4618 and then RM_Size
(Rec
) < Elem_Component_Total_Esize
)
4620 (not All_Elem_Components
4621 and then not All_Storage_Unit_Components
4622 and then RM_Size
(Rec
) < Sized_Component_Total_Round_RM_Size
))
4624 -- And the total RM size cannot be greater than the specified size
4625 -- since otherwise packing will not get us where we have to be.
4627 and then Sized_Component_Total_RM_Size
<= RM_Size
(Rec
)
4629 -- Never do implicit packing in CodePeer or SPARK modes since
4630 -- we don't do any packing in these modes, since this generates
4631 -- over-complex code that confuses static analysis, and in
4632 -- general, neither CodePeer not GNATprove care about the
4633 -- internal representation of objects.
4635 and then not (CodePeer_Mode
or GNATprove_Mode
)
4637 -- If implicit packing enabled, do it
4639 if Implicit_Packing
then
4640 Set_Is_Packed
(Rec
);
4642 -- Otherwise flag the size clause
4646 Sz
: constant Node_Id
:= Size_Clause
(Rec
);
4648 Error_Msg_NE
-- CODEFIX
4649 ("size given for& too small", Sz
, Rec
);
4650 Error_Msg_N
-- CODEFIX
4651 ("\use explicit pragma Pack "
4652 & "or use pragma Implicit_Packing", Sz
);
4657 -- The following checks are relevant only when SPARK_Mode is on as
4658 -- they are not standard Ada legality rules.
4660 if SPARK_Mode
= On
then
4662 -- A discriminated type cannot be effectively volatile
4663 -- (SPARK RM 7.1.3(5)).
4665 if Is_Effectively_Volatile
(Rec
) then
4666 if Has_Discriminants
(Rec
) then
4667 Error_Msg_N
("discriminated type & cannot be volatile", Rec
);
4670 -- A non-effectively volatile record type cannot contain
4671 -- effectively volatile components (SPARK RM 7.1.3(6)).
4674 Comp
:= First_Component
(Rec
);
4675 while Present
(Comp
) loop
4676 if Comes_From_Source
(Comp
)
4677 and then Is_Effectively_Volatile
(Etype
(Comp
))
4679 Error_Msg_Name_1
:= Chars
(Rec
);
4681 ("component & of non-volatile type % cannot be "
4682 & "volatile", Comp
);
4685 Next_Component
(Comp
);
4689 -- A type which does not yield a synchronized object cannot have
4690 -- a component that yields a synchronized object (SPARK RM 9.5).
4692 if not Yields_Synchronized_Object
(Rec
) then
4693 Comp
:= First_Component
(Rec
);
4694 while Present
(Comp
) loop
4695 if Comes_From_Source
(Comp
)
4696 and then Yields_Synchronized_Object
(Etype
(Comp
))
4698 Error_Msg_Name_1
:= Chars
(Rec
);
4700 ("component & of non-synchronized type % cannot be "
4701 & "synchronized", Comp
);
4704 Next_Component
(Comp
);
4708 -- A Ghost type cannot have a component of protected or task type
4709 -- (SPARK RM 6.9(19)).
4711 if Is_Ghost_Entity
(Rec
) then
4712 Comp
:= First_Component
(Rec
);
4713 while Present
(Comp
) loop
4714 if Comes_From_Source
(Comp
)
4715 and then Is_Concurrent_Type
(Etype
(Comp
))
4717 Error_Msg_Name_1
:= Chars
(Rec
);
4719 ("component & of ghost type % cannot be concurrent",
4723 Next_Component
(Comp
);
4728 -- Make sure that if we have an iterator aspect, then we have
4729 -- either Constant_Indexing or Variable_Indexing.
4732 Iterator_Aspect
: Node_Id
;
4735 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Iterator_Element
);
4737 if No
(Iterator_Aspect
) then
4738 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Default_Iterator
);
4741 if Present
(Iterator_Aspect
) then
4742 if Has_Aspect
(Rec
, Aspect_Constant_Indexing
)
4744 Has_Aspect
(Rec
, Aspect_Variable_Indexing
)
4749 ("Iterator_Element requires indexing aspect",
4755 -- All done if not a full record definition
4757 if Ekind
(Rec
) /= E_Record_Type
then
4761 -- Finally we need to check the variant part to make sure that
4762 -- all types within choices are properly frozen as part of the
4763 -- freezing of the record type.
4765 Check_Variant_Part
: declare
4766 D
: constant Node_Id
:= Declaration_Node
(Rec
);
4771 -- Find component list
4775 if Nkind
(D
) = N_Full_Type_Declaration
then
4776 T
:= Type_Definition
(D
);
4778 if Nkind
(T
) = N_Record_Definition
then
4779 C
:= Component_List
(T
);
4781 elsif Nkind
(T
) = N_Derived_Type_Definition
4782 and then Present
(Record_Extension_Part
(T
))
4784 C
:= Component_List
(Record_Extension_Part
(T
));
4788 -- Case of variant part present
4790 if Present
(C
) and then Present
(Variant_Part
(C
)) then
4791 Freeze_Choices_In_Variant_Part
(Variant_Part
(C
));
4794 -- Note: we used to call Check_Choices here, but it is too early,
4795 -- since predicated subtypes are frozen here, but their freezing
4796 -- actions are in Analyze_Freeze_Entity, which has not been called
4797 -- yet for entities frozen within this procedure, so we moved that
4798 -- call to the Analyze_Freeze_Entity for the record type.
4800 end Check_Variant_Part
;
4802 -- Check that all the primitives of an interface type are abstract
4803 -- or null procedures.
4805 if Is_Interface
(Rec
)
4806 and then not Error_Posted
(Parent
(Rec
))
4813 Elmt
:= First_Elmt
(Primitive_Operations
(Rec
));
4814 while Present
(Elmt
) loop
4815 Subp
:= Node
(Elmt
);
4817 if not Is_Abstract_Subprogram
(Subp
)
4819 -- Avoid reporting the error on inherited primitives
4821 and then Comes_From_Source
(Subp
)
4823 Error_Msg_Name_1
:= Chars
(Subp
);
4825 if Ekind
(Subp
) = E_Procedure
then
4826 if not Null_Present
(Parent
(Subp
)) then
4828 ("interface procedure % must be abstract or null",
4833 ("interface function % must be abstract",
4843 -- For a derived tagged type, check whether inherited primitives
4844 -- might require a wrapper to handle class-wide conditions.
4846 if Is_Tagged_Type
(Rec
) and then Is_Derived_Type
(Rec
) then
4847 Check_Inherited_Conditions
(Rec
);
4849 end Freeze_Record_Type
;
4851 -------------------------------
4852 -- Has_Boolean_Aspect_Import --
4853 -------------------------------
4855 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean is
4856 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4861 if Has_Aspects
(Decl
) then
4862 Asp
:= First
(Aspect_Specifications
(Decl
));
4863 while Present
(Asp
) loop
4864 Expr
:= Expression
(Asp
);
4866 -- The value of aspect Import is True when the expression is
4867 -- either missing or it is explicitly set to True.
4869 if Get_Aspect_Id
(Asp
) = Aspect_Import
4871 or else (Compile_Time_Known_Value
(Expr
)
4872 and then Is_True
(Expr_Value
(Expr
))))
4882 end Has_Boolean_Aspect_Import
;
4884 -------------------------
4885 -- Inherit_Freeze_Node --
4886 -------------------------
4888 procedure Inherit_Freeze_Node
4892 Typ_Fnod
: constant Node_Id
:= Freeze_Node
(Typ
);
4895 Set_Freeze_Node
(Typ
, Fnod
);
4896 Set_Entity
(Fnod
, Typ
);
4898 -- The input type had an existing node. Propagate relevant attributes
4899 -- from the old freeze node to the inherited freeze node.
4901 -- ??? if both freeze nodes have attributes, would they differ?
4903 if Present
(Typ_Fnod
) then
4905 -- Attribute Access_Types_To_Process
4907 if Present
(Access_Types_To_Process
(Typ_Fnod
))
4908 and then No
(Access_Types_To_Process
(Fnod
))
4910 Set_Access_Types_To_Process
(Fnod
,
4911 Access_Types_To_Process
(Typ_Fnod
));
4914 -- Attribute Actions
4916 if Present
(Actions
(Typ_Fnod
)) and then No
(Actions
(Fnod
)) then
4917 Set_Actions
(Fnod
, Actions
(Typ_Fnod
));
4920 -- Attribute First_Subtype_Link
4922 if Present
(First_Subtype_Link
(Typ_Fnod
))
4923 and then No
(First_Subtype_Link
(Fnod
))
4925 Set_First_Subtype_Link
(Fnod
, First_Subtype_Link
(Typ_Fnod
));
4928 -- Attribute TSS_Elist
4930 if Present
(TSS_Elist
(Typ_Fnod
))
4931 and then No
(TSS_Elist
(Fnod
))
4933 Set_TSS_Elist
(Fnod
, TSS_Elist
(Typ_Fnod
));
4936 end Inherit_Freeze_Node
;
4938 ------------------------------
4939 -- Wrap_Imported_Subprogram --
4940 ------------------------------
4942 -- The issue here is that our normal approach of checking preconditions
4943 -- and postconditions does not work for imported procedures, since we
4944 -- are not generating code for the body. To get around this we create
4945 -- a wrapper, as shown by the following example:
4947 -- procedure K (A : Integer);
4948 -- pragma Import (C, K);
4950 -- The spec is rewritten by removing the effects of pragma Import, but
4951 -- leaving the convention unchanged, as though the source had said:
4953 -- procedure K (A : Integer);
4954 -- pragma Convention (C, K);
4956 -- and we create a body, added to the entity K freeze actions, which
4959 -- procedure K (A : Integer) is
4960 -- procedure K (A : Integer);
4961 -- pragma Import (C, K);
4966 -- Now the contract applies in the normal way to the outer procedure,
4967 -- and the inner procedure has no contracts, so there is no problem
4968 -- in just calling it to get the original effect.
4970 -- In the case of a function, we create an appropriate return statement
4971 -- for the subprogram body that calls the inner procedure.
4973 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
) is
4974 function Copy_Import_Pragma
return Node_Id
;
4975 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4977 ------------------------
4978 -- Copy_Import_Pragma --
4979 ------------------------
4981 function Copy_Import_Pragma
return Node_Id
is
4983 -- The subprogram should have an import pragma, otherwise it does
4986 Prag
: constant Node_Id
:= Import_Pragma
(E
);
4987 pragma Assert
(Present
(Prag
));
4989 -- Save all semantic fields of the pragma
4991 Save_Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
4992 Save_From
: constant Boolean := From_Aspect_Specification
(Prag
);
4993 Save_Prag
: constant Node_Id
:= Next_Pragma
(Prag
);
4994 Save_Rep
: constant Node_Id
:= Next_Rep_Item
(Prag
);
4999 -- Reset all semantic fields. This avoids a potential infinite
5000 -- loop when the pragma comes from an aspect as the duplication
5001 -- will copy the aspect, then copy the corresponding pragma and
5004 Set_Corresponding_Aspect
(Prag
, Empty
);
5005 Set_From_Aspect_Specification
(Prag
, False);
5006 Set_Next_Pragma
(Prag
, Empty
);
5007 Set_Next_Rep_Item
(Prag
, Empty
);
5009 Result
:= Copy_Separate_Tree
(Prag
);
5011 -- Restore the original semantic fields
5013 Set_Corresponding_Aspect
(Prag
, Save_Asp
);
5014 Set_From_Aspect_Specification
(Prag
, Save_From
);
5015 Set_Next_Pragma
(Prag
, Save_Prag
);
5016 Set_Next_Rep_Item
(Prag
, Save_Rep
);
5019 end Copy_Import_Pragma
;
5023 Loc
: constant Source_Ptr
:= Sloc
(E
);
5024 CE
: constant Name_Id
:= Chars
(E
);
5032 -- Start of processing for Wrap_Imported_Subprogram
5035 -- Nothing to do if not imported
5037 if not Is_Imported
(E
) then
5040 -- Test enabling conditions for wrapping
5042 elsif Is_Subprogram
(E
)
5043 and then Present
(Contract
(E
))
5044 and then Present
(Pre_Post_Conditions
(Contract
(E
)))
5045 and then not GNATprove_Mode
5047 -- Here we do the wrap
5049 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5050 -- here are fully analyzed, but we definitely want fully syntactic
5051 -- unanalyzed trees in the body we construct, so that the analysis
5052 -- generates the right visibility, and that is exactly what the
5053 -- calls to Copy_Separate_Tree give us.
5055 Prag
:= Copy_Import_Pragma
;
5057 -- Fix up spec so it is no longer imported and has convention Ada
5059 Set_Has_Completion
(E
, False);
5060 Set_Import_Pragma
(E
, Empty
);
5061 Set_Interface_Name
(E
, Empty
);
5062 Set_Is_Imported
(E
, False);
5063 Set_Convention
(E
, Convention_Ada
);
5065 -- Grab the subprogram declaration and specification
5067 Spec
:= Declaration_Node
(E
);
5069 -- Build parameter list that we need
5072 Forml
:= First_Formal
(E
);
5073 while Present
(Forml
) loop
5074 Append_To
(Parms
, Make_Identifier
(Loc
, Chars
(Forml
)));
5075 Next_Formal
(Forml
);
5080 if Ekind_In
(E
, E_Function
, E_Generic_Function
) then
5082 Make_Simple_Return_Statement
(Loc
,
5084 Make_Function_Call
(Loc
,
5085 Name
=> Make_Identifier
(Loc
, CE
),
5086 Parameter_Associations
=> Parms
));
5090 Make_Procedure_Call_Statement
(Loc
,
5091 Name
=> Make_Identifier
(Loc
, CE
),
5092 Parameter_Associations
=> Parms
);
5095 -- Now build the body
5098 Make_Subprogram_Body
(Loc
,
5100 Copy_Separate_Tree
(Spec
),
5101 Declarations
=> New_List
(
5102 Make_Subprogram_Declaration
(Loc
,
5103 Specification
=> Copy_Separate_Tree
(Spec
)),
5105 Handled_Statement_Sequence
=>
5106 Make_Handled_Sequence_Of_Statements
(Loc
,
5107 Statements
=> New_List
(Stmt
),
5108 End_Label
=> Make_Identifier
(Loc
, CE
)));
5110 -- Append the body to freeze result
5112 Add_To_Result
(Bod
);
5115 -- Case of imported subprogram that does not get wrapped
5118 -- Set Is_Public. All imported entities need an external symbol
5119 -- created for them since they are always referenced from another
5120 -- object file. Note this used to be set when we set Is_Imported
5121 -- back in Sem_Prag, but now we delay it to this point, since we
5122 -- don't want to set this flag if we wrap an imported subprogram.
5126 end Wrap_Imported_Subprogram
;
5130 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
5131 -- Save the Ghost mode to restore on exit
5133 -- Start of processing for Freeze_Entity
5136 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5137 -- now to ensure that any nodes generated during freezing are properly
5138 -- flagged as Ghost.
5142 -- We are going to test for various reasons why this entity need not be
5143 -- frozen here, but in the case of an Itype that's defined within a
5144 -- record, that test actually applies to the record.
5146 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
5147 Test_E
:= Scope
(E
);
5148 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
5149 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
5151 Test_E
:= Underlying_Type
(Scope
(E
));
5154 -- Do not freeze if already frozen since we only need one freeze node
5156 if Is_Frozen
(E
) then
5160 elsif Ekind
(E
) = E_Generic_Package
then
5161 Result
:= Freeze_Generic_Entities
(E
);
5164 -- It is improper to freeze an external entity within a generic because
5165 -- its freeze node will appear in a non-valid context. The entity will
5166 -- be frozen in the proper scope after the current generic is analyzed.
5167 -- However, aspects must be analyzed because they may be queried later
5168 -- within the generic itself, and the corresponding pragma or attribute
5169 -- definition has not been analyzed yet.
5171 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
5172 if Has_Delayed_Aspects
(E
) then
5173 Analyze_Aspects_At_Freeze_Point
(E
);
5179 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5180 -- the instance, the same applies to the subtype renaming the actual.
5182 elsif Is_Private_Type
(E
)
5183 and then Is_Generic_Actual_Type
(E
)
5184 and then No
(Full_View
(Base_Type
(E
)))
5185 and then Ada_Version
>= Ada_2012
5190 -- Formal subprograms are never frozen
5192 elsif Is_Formal_Subprogram
(E
) then
5196 -- Generic types are never frozen as they lack delayed semantic checks
5198 elsif Is_Generic_Type
(E
) then
5202 -- Do not freeze a global entity within an inner scope created during
5203 -- expansion. A call to subprogram E within some internal procedure
5204 -- (a stream attribute for example) might require freezing E, but the
5205 -- freeze node must appear in the same declarative part as E itself.
5206 -- The two-pass elaboration mechanism in gigi guarantees that E will
5207 -- be frozen before the inner call is elaborated. We exclude constants
5208 -- from this test, because deferred constants may be frozen early, and
5209 -- must be diagnosed (e.g. in the case of a deferred constant being used
5210 -- in a default expression). If the enclosing subprogram comes from
5211 -- source, or is a generic instance, then the freeze point is the one
5212 -- mandated by the language, and we freeze the entity. A subprogram that
5213 -- is a child unit body that acts as a spec does not have a spec that
5214 -- comes from source, but can only come from source.
5216 elsif In_Open_Scopes
(Scope
(Test_E
))
5217 and then Scope
(Test_E
) /= Current_Scope
5218 and then Ekind
(Test_E
) /= E_Constant
5225 while Present
(S
) loop
5226 if Is_Overloadable
(S
) then
5227 if Comes_From_Source
(S
)
5228 or else Is_Generic_Instance
(S
)
5229 or else Is_Child_Unit
(S
)
5242 -- Similarly, an inlined instance body may make reference to global
5243 -- entities, but these references cannot be the proper freezing point
5244 -- for them, and in the absence of inlining freezing will take place in
5245 -- their own scope. Normally instance bodies are analyzed after the
5246 -- enclosing compilation, and everything has been frozen at the proper
5247 -- place, but with front-end inlining an instance body is compiled
5248 -- before the end of the enclosing scope, and as a result out-of-order
5249 -- freezing must be prevented.
5251 elsif Front_End_Inlining
5252 and then In_Instance_Body
5253 and then Present
(Scope
(Test_E
))
5259 S
:= Scope
(Test_E
);
5260 while Present
(S
) loop
5261 if Is_Generic_Instance
(S
) then
5275 -- Add checks to detect proper initialization of scalars that may appear
5276 -- as subprogram parameters.
5278 if Is_Subprogram
(E
) and then Check_Validity_Of_Parameters
then
5279 Apply_Parameter_Validity_Checks
(E
);
5282 -- Deal with delayed aspect specifications. The analysis of the aspect
5283 -- is required to be delayed to the freeze point, thus we analyze the
5284 -- pragma or attribute definition clause in the tree at this point. We
5285 -- also analyze the aspect specification node at the freeze point when
5286 -- the aspect doesn't correspond to pragma/attribute definition clause.
5287 -- In addition, a derived type may have inherited aspects that were
5288 -- delayed in the parent, so these must also be captured now.
5290 if Has_Delayed_Aspects
(E
)
5291 or else May_Inherit_Delayed_Rep_Aspects
(E
)
5293 Analyze_Aspects_At_Freeze_Point
(E
);
5296 -- Here to freeze the entity
5300 -- Case of entity being frozen is other than a type
5302 if not Is_Type
(E
) then
5304 -- If entity is exported or imported and does not have an external
5305 -- name, now is the time to provide the appropriate default name.
5306 -- Skip this if the entity is stubbed, since we don't need a name
5307 -- for any stubbed routine. For the case on intrinsics, if no
5308 -- external name is specified, then calls will be handled in
5309 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5310 -- external name is provided, then Expand_Intrinsic_Call leaves
5311 -- calls in place for expansion by GIGI.
5313 if (Is_Imported
(E
) or else Is_Exported
(E
))
5314 and then No
(Interface_Name
(E
))
5315 and then Convention
(E
) /= Convention_Stubbed
5316 and then Convention
(E
) /= Convention_Intrinsic
5318 Set_Encoded_Interface_Name
5319 (E
, Get_Default_External_Name
(E
));
5321 -- If entity is an atomic object appearing in a declaration and
5322 -- the expression is an aggregate, assign it to a temporary to
5323 -- ensure that the actual assignment is done atomically rather
5324 -- than component-wise (the assignment to the temp may be done
5325 -- component-wise, but that is harmless).
5327 elsif Is_Atomic_Or_VFA
(E
)
5328 and then Nkind
(Parent
(E
)) = N_Object_Declaration
5329 and then Present
(Expression
(Parent
(E
)))
5330 and then Nkind
(Expression
(Parent
(E
))) = N_Aggregate
5331 and then Is_Atomic_VFA_Aggregate
(Expression
(Parent
(E
)))
5338 if Is_Subprogram
(E
) then
5340 -- Check for needing to wrap imported subprogram
5342 Wrap_Imported_Subprogram
(E
);
5344 -- Freeze all parameter types and the return type (RM 13.14(14)).
5345 -- However skip this for internal subprograms. This is also where
5346 -- any extra formal parameters are created since we now know
5347 -- whether the subprogram will use a foreign convention.
5349 -- In Ada 2012, freezing a subprogram does not always freeze the
5350 -- corresponding profile (see AI05-019). An attribute reference
5351 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5352 -- indicates whether the profile should be frozen now.
5353 -- Other constructs that should not freeze ???
5355 -- This processing doesn't apply to internal entities (see below)
5357 if not Is_Internal
(E
) and then Do_Freeze_Profile
then
5358 if not Freeze_Profile
(E
) then
5363 -- Must freeze its parent first if it is a derived subprogram
5365 if Present
(Alias
(E
)) then
5366 Freeze_And_Append
(Alias
(E
), N
, Result
);
5369 -- We don't freeze internal subprograms, because we don't normally
5370 -- want addition of extra formals or mechanism setting to happen
5371 -- for those. However we do pass through predefined dispatching
5372 -- cases, since extra formals may be needed in some cases, such as
5373 -- for the stream 'Input function (build-in-place formals).
5375 if not Is_Internal
(E
)
5376 or else Is_Predefined_Dispatching_Operation
(E
)
5378 Freeze_Subprogram
(E
);
5381 -- If warning on suspicious contracts then check for the case of
5382 -- a postcondition other than False for a No_Return subprogram.
5385 and then Warn_On_Suspicious_Contract
5386 and then Present
(Contract
(E
))
5389 Prag
: Node_Id
:= Pre_Post_Conditions
(Contract
(E
));
5393 while Present
(Prag
) loop
5394 if Nam_In
(Pragma_Name_Unmapped
(Prag
),
5401 (First
(Pragma_Argument_Associations
(Prag
)));
5403 if Nkind
(Exp
) /= N_Identifier
5404 or else Chars
(Exp
) /= Name_False
5407 ("useless postcondition, & is marked "
5408 & "No_Return?T?", Exp
, E
);
5412 Prag
:= Next_Pragma
(Prag
);
5417 -- Here for other than a subprogram or type
5420 -- If entity has a type, and it is not a generic unit, then
5421 -- freeze it first (RM 13.14(10)).
5423 if Present
(Etype
(E
))
5424 and then Ekind
(E
) /= E_Generic_Function
5426 Freeze_And_Append
(Etype
(E
), N
, Result
);
5428 -- For an object of an anonymous array type, aspects on the
5429 -- object declaration apply to the type itself. This is the
5430 -- case for Atomic_Components, Volatile_Components, and
5431 -- Independent_Components. In these cases analysis of the
5432 -- generated pragma will mark the anonymous types accordingly,
5433 -- and the object itself does not require a freeze node.
5435 if Ekind
(E
) = E_Variable
5436 and then Is_Itype
(Etype
(E
))
5437 and then Is_Array_Type
(Etype
(E
))
5438 and then Has_Delayed_Aspects
(E
)
5440 Set_Has_Delayed_Aspects
(E
, False);
5441 Set_Has_Delayed_Freeze
(E
, False);
5442 Set_Freeze_Node
(E
, Empty
);
5446 -- Special processing for objects created by object declaration
5448 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
5449 Freeze_Object_Declaration
(E
);
5452 -- Check that a constant which has a pragma Volatile[_Components]
5453 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5455 -- Note: Atomic[_Components] also sets Volatile[_Components]
5457 if Ekind
(E
) = E_Constant
5458 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
5459 and then not Is_Imported
(E
)
5460 and then not Has_Boolean_Aspect_Import
(E
)
5462 -- Make sure we actually have a pragma, and have not merely
5463 -- inherited the indication from elsewhere (e.g. an address
5464 -- clause, which is not good enough in RM terms).
5466 if Has_Rep_Pragma
(E
, Name_Atomic
)
5468 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
5471 ("stand alone atomic constant must be " &
5472 "imported (RM C.6(13))", E
);
5474 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
5476 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
5479 ("stand alone volatile constant must be " &
5480 "imported (RM C.6(13))", E
);
5484 -- Static objects require special handling
5486 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
5487 and then Is_Statically_Allocated
(E
)
5489 Freeze_Static_Object
(E
);
5492 -- Remaining step is to layout objects
5494 if Ekind_In
(E
, E_Variable
, E_Constant
, E_Loop_Parameter
)
5495 or else Is_Formal
(E
)
5500 -- For an object that does not have delayed freezing, and whose
5501 -- initialization actions have been captured in a compound
5502 -- statement, move them back now directly within the enclosing
5503 -- statement sequence.
5505 if Ekind_In
(E
, E_Constant
, E_Variable
)
5506 and then not Has_Delayed_Freeze
(E
)
5508 Explode_Initialization_Compound_Statement
(E
);
5511 -- Do not generate a freeze node for a generic unit
5513 if Is_Generic_Unit
(E
) then
5519 -- Case of a type or subtype being frozen
5522 -- We used to check here that a full type must have preelaborable
5523 -- initialization if it completes a private type specified with
5524 -- pragma Preelaborable_Initialization, but that missed cases where
5525 -- the types occur within a generic package, since the freezing
5526 -- that occurs within a containing scope generally skips traversal
5527 -- of a generic unit's declarations (those will be frozen within
5528 -- instances). This check was moved to Analyze_Package_Specification.
5530 -- The type may be defined in a generic unit. This can occur when
5531 -- freezing a generic function that returns the type (which is
5532 -- defined in a parent unit). It is clearly meaningless to freeze
5533 -- this type. However, if it is a subtype, its size may be determi-
5534 -- nable and used in subsequent checks, so might as well try to
5537 -- In Ada 2012, Freeze_Entities is also used in the front end to
5538 -- trigger the analysis of aspect expressions, so in this case we
5539 -- want to continue the freezing process.
5541 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5542 -- In_Generic_Scope (E)???
5544 if Present
(Scope
(E
))
5545 and then Is_Generic_Unit
(Scope
(E
))
5547 (not Has_Predicates
(E
)
5548 and then not Has_Delayed_Freeze
(E
))
5550 Check_Compile_Time_Size
(E
);
5555 -- Check for error of Type_Invariant'Class applied to an untagged
5556 -- type (check delayed to freeze time when full type is available).
5559 Prag
: constant Node_Id
:= Get_Pragma
(E
, Pragma_Invariant
);
5562 and then Class_Present
(Prag
)
5563 and then not Is_Tagged_Type
(E
)
5566 ("Type_Invariant''Class cannot be specified for &", Prag
, E
);
5568 ("\can only be specified for a tagged type", Prag
);
5572 if Is_Ghost_Entity
(E
) then
5574 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5575 -- this legality rule first to five a finer-grained diagnostic.
5577 if Is_Concurrent_Type
(E
) then
5578 Error_Msg_N
("ghost type & cannot be concurrent", E
);
5580 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(7))
5582 elsif Is_Effectively_Volatile
(E
) then
5583 Error_Msg_N
("ghost type & cannot be volatile", E
);
5587 -- Deal with special cases of freezing for subtype
5589 if E
/= Base_Type
(E
) then
5591 -- Before we do anything else, a specific test for the case of a
5592 -- size given for an array where the array would need to be packed
5593 -- in order for the size to be honored, but is not. This is the
5594 -- case where implicit packing may apply. The reason we do this so
5595 -- early is that, if we have implicit packing, the layout of the
5596 -- base type is affected, so we must do this before we freeze the
5599 -- We could do this processing only if implicit packing is enabled
5600 -- since in all other cases, the error would be caught by the back
5601 -- end. However, we choose to do the check even if we do not have
5602 -- implicit packing enabled, since this allows us to give a more
5603 -- useful error message (advising use of pragma Implicit_Packing
5606 if Is_Array_Type
(E
) then
5608 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
5609 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
5610 SZ
: constant Node_Id
:= Size_Clause
(E
);
5611 Btyp
: constant Entity_Id
:= Base_Type
(E
);
5618 Num_Elmts
: Uint
:= Uint_1
;
5619 -- Number of elements in array
5622 -- Check enabling conditions. These are straightforward
5623 -- except for the test for a limited composite type. This
5624 -- eliminates the rare case of a array of limited components
5625 -- where there are issues of whether or not we can go ahead
5626 -- and pack the array (since we can't freely pack and unpack
5627 -- arrays if they are limited).
5629 -- Note that we check the root type explicitly because the
5630 -- whole point is we are doing this test before we have had
5631 -- a chance to freeze the base type (and it is that freeze
5632 -- action that causes stuff to be inherited).
5634 -- The conditions on the size are identical to those used in
5635 -- Freeze_Array_Type to set the Is_Packed flag.
5637 if Has_Size_Clause
(E
)
5638 and then Known_Static_RM_Size
(E
)
5639 and then not Is_Packed
(E
)
5640 and then not Has_Pragma_Pack
(E
)
5641 and then not Has_Component_Size_Clause
(E
)
5642 and then Known_Static_RM_Size
(Ctyp
)
5644 and then not (Addressable
(Rsiz
)
5645 and then Known_Static_Esize
(Ctyp
)
5646 and then Esize
(Ctyp
) = Rsiz
)
5647 and then not (Rsiz
mod System_Storage_Unit
= 0
5648 and then Is_Composite_Type
(Ctyp
))
5649 and then not Is_Limited_Composite
(E
)
5650 and then not Is_Packed
(Root_Type
(E
))
5651 and then not Has_Component_Size_Clause
(Root_Type
(E
))
5652 and then not (CodePeer_Mode
or GNATprove_Mode
)
5654 -- Compute number of elements in array
5656 Indx
:= First_Index
(E
);
5657 while Present
(Indx
) loop
5658 Get_Index_Bounds
(Indx
, Lo
, Hi
);
5660 if not (Compile_Time_Known_Value
(Lo
)
5662 Compile_Time_Known_Value
(Hi
))
5664 goto No_Implicit_Packing
;
5667 Dim
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
5670 Num_Elmts
:= Num_Elmts
* Dim
;
5672 Num_Elmts
:= Uint_0
;
5678 -- What we are looking for here is the situation where
5679 -- the RM_Size given would be exactly right if there was
5680 -- a pragma Pack, resulting in the component size being
5681 -- the RM_Size of the component type.
5683 if RM_Size
(E
) = Num_Elmts
* Rsiz
then
5685 -- For implicit packing mode, just set the component
5686 -- size and Freeze_Array_Type will do the rest.
5688 if Implicit_Packing
then
5689 Set_Component_Size
(Btyp
, Rsiz
);
5691 -- Otherwise give an error message
5695 ("size given for& too small", SZ
, E
);
5696 Error_Msg_N
-- CODEFIX
5697 ("\use explicit pragma Pack or use pragma "
5698 & "Implicit_Packing", SZ
);
5705 <<No_Implicit_Packing
>>
5707 -- If ancestor subtype present, freeze that first. Note that this
5708 -- will also get the base type frozen. Need RM reference ???
5710 Atype
:= Ancestor_Subtype
(E
);
5712 if Present
(Atype
) then
5713 Freeze_And_Append
(Atype
, N
, Result
);
5715 -- No ancestor subtype present
5718 -- See if we have a nearest ancestor that has a predicate.
5719 -- That catches the case of derived type with a predicate.
5720 -- Need RM reference here ???
5722 Atype
:= Nearest_Ancestor
(E
);
5724 if Present
(Atype
) and then Has_Predicates
(Atype
) then
5725 Freeze_And_Append
(Atype
, N
, Result
);
5728 -- Freeze base type before freezing the entity (RM 13.14(15))
5730 if E
/= Base_Type
(E
) then
5731 Freeze_And_Append
(Base_Type
(E
), N
, Result
);
5735 -- A subtype inherits all the type-related representation aspects
5736 -- from its parents (RM 13.1(8)).
5738 Inherit_Aspects_At_Freeze_Point
(E
);
5740 -- For a derived type, freeze its parent type first (RM 13.14(15))
5742 elsif Is_Derived_Type
(E
) then
5743 Freeze_And_Append
(Etype
(E
), N
, Result
);
5744 Freeze_And_Append
(First_Subtype
(Etype
(E
)), N
, Result
);
5746 -- A derived type inherits each type-related representation aspect
5747 -- of its parent type that was directly specified before the
5748 -- declaration of the derived type (RM 13.1(15)).
5750 Inherit_Aspects_At_Freeze_Point
(E
);
5753 -- Check for incompatible size and alignment for record type
5755 if Warn_On_Size_Alignment
5756 and then Is_Record_Type
(E
)
5757 and then Has_Size_Clause
(E
) and then Has_Alignment_Clause
(E
)
5759 -- If explicit Object_Size clause given assume that the programmer
5760 -- knows what he is doing, and expects the compiler behavior.
5762 and then not Has_Object_Size_Clause
(E
)
5764 -- Check for size not a multiple of alignment
5766 and then RM_Size
(E
) mod (Alignment
(E
) * System_Storage_Unit
) /= 0
5769 SC
: constant Node_Id
:= Size_Clause
(E
);
5770 AC
: constant Node_Id
:= Alignment_Clause
(E
);
5772 Abits
: constant Uint
:= Alignment
(E
) * System_Storage_Unit
;
5775 if Present
(SC
) and then Present
(AC
) then
5779 if Sloc
(SC
) > Sloc
(AC
) then
5782 ("?Z?size is not a multiple of alignment for &",
5784 Error_Msg_Sloc
:= Sloc
(AC
);
5785 Error_Msg_Uint_1
:= Alignment
(E
);
5786 Error_Msg_N
("\?Z?alignment of ^ specified #", Loc
);
5791 ("?Z?size is not a multiple of alignment for &",
5793 Error_Msg_Sloc
:= Sloc
(SC
);
5794 Error_Msg_Uint_1
:= RM_Size
(E
);
5795 Error_Msg_N
("\?Z?size of ^ specified #", Loc
);
5798 Error_Msg_Uint_1
:= ((RM_Size
(E
) / Abits
) + 1) * Abits
;
5799 Error_Msg_N
("\?Z?Object_Size will be increased to ^", Loc
);
5806 if Is_Array_Type
(E
) then
5807 Freeze_Array_Type
(E
);
5809 -- For a class-wide type, the corresponding specific type is
5810 -- frozen as well (RM 13.14(15))
5812 elsif Is_Class_Wide_Type
(E
) then
5813 Freeze_And_Append
(Root_Type
(E
), N
, Result
);
5815 -- If the base type of the class-wide type is still incomplete,
5816 -- the class-wide remains unfrozen as well. This is legal when
5817 -- E is the formal of a primitive operation of some other type
5818 -- which is being frozen.
5820 if not Is_Frozen
(Root_Type
(E
)) then
5821 Set_Is_Frozen
(E
, False);
5825 -- The equivalent type associated with a class-wide subtype needs
5826 -- to be frozen to ensure that its layout is done.
5828 if Ekind
(E
) = E_Class_Wide_Subtype
5829 and then Present
(Equivalent_Type
(E
))
5831 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5834 -- Generate an itype reference for a library-level class-wide type
5835 -- at the freeze point. Otherwise the first explicit reference to
5836 -- the type may appear in an inner scope which will be rejected by
5840 and then Is_Compilation_Unit
(Scope
(E
))
5843 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
5848 -- From a gigi point of view, a class-wide subtype derives
5849 -- from its record equivalent type. As a result, the itype
5850 -- reference must appear after the freeze node of the
5851 -- equivalent type or gigi will reject the reference.
5853 if Ekind
(E
) = E_Class_Wide_Subtype
5854 and then Present
(Equivalent_Type
(E
))
5856 Insert_After
(Freeze_Node
(Equivalent_Type
(E
)), Ref
);
5858 Add_To_Result
(Ref
);
5863 -- For a record type or record subtype, freeze all component types
5864 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5865 -- using Is_Record_Type, because we don't want to attempt the freeze
5866 -- for the case of a private type with record extension (we will do
5867 -- that later when the full type is frozen).
5869 elsif Ekind_In
(E
, E_Record_Type
, E_Record_Subtype
) then
5870 if not In_Generic_Scope
(E
) then
5871 Freeze_Record_Type
(E
);
5874 -- Report a warning if a discriminated record base type has a
5875 -- convention with language C or C++ applied to it. This check is
5876 -- done even within generic scopes (but not in instantiations),
5877 -- which is why we don't do it as part of Freeze_Record_Type.
5879 Check_Suspicious_Convention
(E
);
5881 -- For a concurrent type, freeze corresponding record type. This does
5882 -- not correspond to any specific rule in the RM, but the record type
5883 -- is essentially part of the concurrent type. Also freeze all local
5884 -- entities. This includes record types created for entry parameter
5885 -- blocks and whatever local entities may appear in the private part.
5887 elsif Is_Concurrent_Type
(E
) then
5888 if Present
(Corresponding_Record_Type
(E
)) then
5889 Freeze_And_Append
(Corresponding_Record_Type
(E
), N
, Result
);
5892 Comp
:= First_Entity
(E
);
5893 while Present
(Comp
) loop
5894 if Is_Type
(Comp
) then
5895 Freeze_And_Append
(Comp
, N
, Result
);
5897 elsif (Ekind
(Comp
)) /= E_Function
then
5899 -- The guard on the presence of the Etype seems to be needed
5900 -- for some CodePeer (-gnatcC) cases, but not clear why???
5902 if Present
(Etype
(Comp
)) then
5903 if Is_Itype
(Etype
(Comp
))
5904 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
5906 Undelay_Type
(Etype
(Comp
));
5909 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
5916 -- Private types are required to point to the same freeze node as
5917 -- their corresponding full views. The freeze node itself has to
5918 -- point to the partial view of the entity (because from the partial
5919 -- view, we can retrieve the full view, but not the reverse).
5920 -- However, in order to freeze correctly, we need to freeze the full
5921 -- view. If we are freezing at the end of a scope (or within the
5922 -- scope) of the private type, the partial and full views will have
5923 -- been swapped, the full view appears first in the entity chain and
5924 -- the swapping mechanism ensures that the pointers are properly set
5927 -- If we encounter the partial view before the full view (e.g. when
5928 -- freezing from another scope), we freeze the full view, and then
5929 -- set the pointers appropriately since we cannot rely on swapping to
5930 -- fix things up (subtypes in an outer scope might not get swapped).
5932 -- If the full view is itself private, the above requirements apply
5933 -- to the underlying full view instead of the full view. But there is
5934 -- no swapping mechanism for the underlying full view so we need to
5935 -- set the pointers appropriately in both cases.
5937 elsif Is_Incomplete_Or_Private_Type
(E
)
5938 and then not Is_Generic_Type
(E
)
5940 -- The construction of the dispatch table associated with library
5941 -- level tagged types forces freezing of all the primitives of the
5942 -- type, which may cause premature freezing of the partial view.
5946 -- type T is tagged private;
5947 -- type DT is new T with private;
5948 -- procedure Prim (X : in out T; Y : in out DT'Class);
5950 -- type T is tagged null record;
5952 -- type DT is new T with null record;
5955 -- In this case the type will be frozen later by the usual
5956 -- mechanism: an object declaration, an instantiation, or the
5957 -- end of a declarative part.
5959 if Is_Library_Level_Tagged_Type
(E
)
5960 and then not Present
(Full_View
(E
))
5962 Set_Is_Frozen
(E
, False);
5965 -- Case of full view present
5967 elsif Present
(Full_View
(E
)) then
5969 -- If full view has already been frozen, then no further
5970 -- processing is required
5972 if Is_Frozen
(Full_View
(E
)) then
5973 Set_Has_Delayed_Freeze
(E
, False);
5974 Set_Freeze_Node
(E
, Empty
);
5976 -- Otherwise freeze full view and patch the pointers so that
5977 -- the freeze node will elaborate both views in the back end.
5978 -- However, if full view is itself private, freeze underlying
5979 -- full view instead and patch the pointers so that the freeze
5980 -- node will elaborate the three views in the back end.
5984 Full
: Entity_Id
:= Full_View
(E
);
5987 if Is_Private_Type
(Full
)
5988 and then Present
(Underlying_Full_View
(Full
))
5990 Full
:= Underlying_Full_View
(Full
);
5993 Freeze_And_Append
(Full
, N
, Result
);
5995 if Full
/= Full_View
(E
)
5996 and then Has_Delayed_Freeze
(Full_View
(E
))
5998 F_Node
:= Freeze_Node
(Full
);
6000 if Present
(F_Node
) then
6003 Typ
=> Full_View
(E
));
6005 Set_Has_Delayed_Freeze
(Full_View
(E
), False);
6006 Set_Freeze_Node
(Full_View
(E
), Empty
);
6010 if Has_Delayed_Freeze
(E
) then
6011 F_Node
:= Freeze_Node
(Full_View
(E
));
6013 if Present
(F_Node
) then
6018 -- {Incomplete,Private}_Subtypes with Full_Views
6019 -- constrained by discriminants.
6021 Set_Has_Delayed_Freeze
(E
, False);
6022 Set_Freeze_Node
(E
, Empty
);
6028 Check_Debug_Info_Needed
(E
);
6030 -- AI-117 requires that the convention of a partial view be the
6031 -- same as the convention of the full view. Note that this is a
6032 -- recognized breach of privacy, but it's essential for logical
6033 -- consistency of representation, and the lack of a rule in
6034 -- RM95 was an oversight.
6036 Set_Convention
(E
, Convention
(Full_View
(E
)));
6038 Set_Size_Known_At_Compile_Time
(E
,
6039 Size_Known_At_Compile_Time
(Full_View
(E
)));
6041 -- Size information is copied from the full view to the
6042 -- incomplete or private view for consistency.
6044 -- We skip this is the full view is not a type. This is very
6045 -- strange of course, and can only happen as a result of
6046 -- certain illegalities, such as a premature attempt to derive
6047 -- from an incomplete type.
6049 if Is_Type
(Full_View
(E
)) then
6050 Set_Size_Info
(E
, Full_View
(E
));
6051 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
6056 -- Case of underlying full view present
6058 elsif Is_Private_Type
(E
)
6059 and then Present
(Underlying_Full_View
(E
))
6061 if not Is_Frozen
(Underlying_Full_View
(E
)) then
6062 Freeze_And_Append
(Underlying_Full_View
(E
), N
, Result
);
6065 -- Patch the pointers so that the freeze node will elaborate
6066 -- both views in the back end.
6068 if Has_Delayed_Freeze
(E
) then
6069 F_Node
:= Freeze_Node
(Underlying_Full_View
(E
));
6071 if Present
(F_Node
) then
6076 Set_Has_Delayed_Freeze
(E
, False);
6077 Set_Freeze_Node
(E
, Empty
);
6081 Check_Debug_Info_Needed
(E
);
6085 -- Case of no full view present. If entity is derived or subtype,
6086 -- it is safe to freeze, correctness depends on the frozen status
6087 -- of parent. Otherwise it is either premature usage, or a Taft
6088 -- amendment type, so diagnosis is at the point of use and the
6089 -- type might be frozen later.
6091 elsif E
/= Base_Type
(E
) or else Is_Derived_Type
(E
) then
6095 Set_Is_Frozen
(E
, False);
6100 -- For access subprogram, freeze types of all formals, the return
6101 -- type was already frozen, since it is the Etype of the function.
6102 -- Formal types can be tagged Taft amendment types, but otherwise
6103 -- they cannot be incomplete.
6105 elsif Ekind
(E
) = E_Subprogram_Type
then
6106 Formal
:= First_Formal
(E
);
6107 while Present
(Formal
) loop
6108 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
6109 and then No
(Full_View
(Etype
(Formal
)))
6111 if Is_Tagged_Type
(Etype
(Formal
)) then
6114 -- AI05-151: Incomplete types are allowed in access to
6115 -- subprogram specifications.
6117 elsif Ada_Version
< Ada_2012
then
6119 ("invalid use of incomplete type&", E
, Etype
(Formal
));
6123 Freeze_And_Append
(Etype
(Formal
), N
, Result
);
6124 Next_Formal
(Formal
);
6127 Freeze_Subprogram
(E
);
6129 -- For access to a protected subprogram, freeze the equivalent type
6130 -- (however this is not set if we are not generating code or if this
6131 -- is an anonymous type used just for resolution).
6133 elsif Is_Access_Protected_Subprogram_Type
(E
) then
6134 if Present
(Equivalent_Type
(E
)) then
6135 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
6139 -- Generic types are never seen by the back-end, and are also not
6140 -- processed by the expander (since the expander is turned off for
6141 -- generic processing), so we never need freeze nodes for them.
6143 if Is_Generic_Type
(E
) then
6147 -- Some special processing for non-generic types to complete
6148 -- representation details not known till the freeze point.
6150 if Is_Fixed_Point_Type
(E
) then
6151 Freeze_Fixed_Point_Type
(E
);
6153 -- Some error checks required for ordinary fixed-point type. Defer
6154 -- these till the freeze-point since we need the small and range
6155 -- values. We only do these checks for base types
6157 if Is_Ordinary_Fixed_Point_Type
(E
) and then Is_Base_Type
(E
) then
6158 if Small_Value
(E
) < Ureal_2_M_80
then
6159 Error_Msg_Name_1
:= Name_Small
;
6161 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
6163 elsif Small_Value
(E
) > Ureal_2_80
then
6164 Error_Msg_Name_1
:= Name_Small
;
6166 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
6169 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
6170 Error_Msg_Name_1
:= Name_First
;
6172 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
6175 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
6176 Error_Msg_Name_1
:= Name_Last
;
6178 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
6182 elsif Is_Enumeration_Type
(E
) then
6183 Freeze_Enumeration_Type
(E
);
6185 elsif Is_Integer_Type
(E
) then
6186 Adjust_Esize_For_Alignment
(E
);
6188 if Is_Modular_Integer_Type
(E
)
6189 and then Warn_On_Suspicious_Modulus_Value
6191 Check_Suspicious_Modulus
(E
);
6194 -- The pool applies to named and anonymous access types, but not
6195 -- to subprogram and to internal types generated for 'Access
6198 elsif Is_Access_Type
(E
)
6199 and then not Is_Access_Subprogram_Type
(E
)
6200 and then Ekind
(E
) /= E_Access_Attribute_Type
6202 -- If a pragma Default_Storage_Pool applies, and this type has no
6203 -- Storage_Pool or Storage_Size clause (which must have occurred
6204 -- before the freezing point), then use the default. This applies
6205 -- only to base types.
6207 -- None of this applies to access to subprograms, for which there
6208 -- are clearly no pools.
6210 if Present
(Default_Pool
)
6211 and then Is_Base_Type
(E
)
6212 and then not Has_Storage_Size_Clause
(E
)
6213 and then No
(Associated_Storage_Pool
(E
))
6215 -- Case of pragma Default_Storage_Pool (null)
6217 if Nkind
(Default_Pool
) = N_Null
then
6218 Set_No_Pool_Assigned
(E
);
6220 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6223 Set_Associated_Storage_Pool
(E
, Entity
(Default_Pool
));
6227 -- Check restriction for standard storage pool
6229 if No
(Associated_Storage_Pool
(E
)) then
6230 Check_Restriction
(No_Standard_Storage_Pools
, E
);
6233 -- Deal with error message for pure access type. This is not an
6234 -- error in Ada 2005 if there is no pool (see AI-366).
6236 if Is_Pure_Unit_Access_Type
(E
)
6237 and then (Ada_Version
< Ada_2005
6238 or else not No_Pool_Assigned
(E
))
6239 and then not Is_Generic_Unit
(Scope
(E
))
6241 Error_Msg_N
("named access type not allowed in pure unit", E
);
6243 if Ada_Version
>= Ada_2005
then
6245 ("\would be legal if Storage_Size of 0 given??", E
);
6247 elsif No_Pool_Assigned
(E
) then
6249 ("\would be legal in Ada 2005??", E
);
6253 ("\would be legal in Ada 2005 if "
6254 & "Storage_Size of 0 given??", E
);
6259 -- Case of composite types
6261 if Is_Composite_Type
(E
) then
6263 -- AI-117 requires that all new primitives of a tagged type must
6264 -- inherit the convention of the full view of the type. Inherited
6265 -- and overriding operations are defined to inherit the convention
6266 -- of their parent or overridden subprogram (also specified in
6267 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6268 -- and New_Overloaded_Entity). Here we set the convention of
6269 -- primitives that are still convention Ada, which will ensure
6270 -- that any new primitives inherit the type's convention. Class-
6271 -- wide types can have a foreign convention inherited from their
6272 -- specific type, but are excluded from this since they don't have
6273 -- any associated primitives.
6275 if Is_Tagged_Type
(E
)
6276 and then not Is_Class_Wide_Type
(E
)
6277 and then Convention
(E
) /= Convention_Ada
6280 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
6284 Prim
:= First_Elmt
(Prim_List
);
6285 while Present
(Prim
) loop
6286 if Convention
(Node
(Prim
)) = Convention_Ada
then
6287 Set_Convention
(Node
(Prim
), Convention
(E
));
6295 -- If the type is a simple storage pool type, then this is where
6296 -- we attempt to locate and validate its Allocate, Deallocate, and
6297 -- Storage_Size operations (the first is required, and the latter
6298 -- two are optional). We also verify that the full type for a
6299 -- private type is allowed to be a simple storage pool type.
6301 if Present
(Get_Rep_Pragma
(E
, Name_Simple_Storage_Pool_Type
))
6302 and then (Is_Base_Type
(E
) or else Has_Private_Declaration
(E
))
6304 -- If the type is marked Has_Private_Declaration, then this is
6305 -- a full type for a private type that was specified with the
6306 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6307 -- pragma is allowed for the full type (for example, it can't
6308 -- be an array type, or a nonlimited record type).
6310 if Has_Private_Declaration
(E
) then
6311 if (not Is_Record_Type
(E
) or else not Is_Limited_View
(E
))
6312 and then not Is_Private_Type
(E
)
6314 Error_Msg_Name_1
:= Name_Simple_Storage_Pool_Type
;
6316 ("pragma% can only apply to full type that is an " &
6317 "explicitly limited type", E
);
6321 Validate_Simple_Pool_Ops
: declare
6322 Pool_Type
: Entity_Id
renames E
;
6323 Address_Type
: constant Entity_Id
:= RTE
(RE_Address
);
6324 Stg_Cnt_Type
: constant Entity_Id
:= RTE
(RE_Storage_Count
);
6326 procedure Validate_Simple_Pool_Op_Formal
6327 (Pool_Op
: Entity_Id
;
6328 Pool_Op_Formal
: in out Entity_Id
;
6329 Expected_Mode
: Formal_Kind
;
6330 Expected_Type
: Entity_Id
;
6331 Formal_Name
: String;
6332 OK_Formal
: in out Boolean);
6333 -- Validate one formal Pool_Op_Formal of the candidate pool
6334 -- operation Pool_Op. The formal must be of Expected_Type
6335 -- and have mode Expected_Mode. OK_Formal will be set to
6336 -- False if the formal doesn't match. If OK_Formal is False
6337 -- on entry, then the formal will effectively be ignored
6338 -- (because validation of the pool op has already failed).
6339 -- Upon return, Pool_Op_Formal will be updated to the next
6342 procedure Validate_Simple_Pool_Operation
6343 (Op_Name
: Name_Id
);
6344 -- Search for and validate a simple pool operation with the
6345 -- name Op_Name. If the name is Allocate, then there must be
6346 -- exactly one such primitive operation for the simple pool
6347 -- type. If the name is Deallocate or Storage_Size, then
6348 -- there can be at most one such primitive operation. The
6349 -- profile of the located primitive must conform to what
6350 -- is expected for each operation.
6352 ------------------------------------
6353 -- Validate_Simple_Pool_Op_Formal --
6354 ------------------------------------
6356 procedure Validate_Simple_Pool_Op_Formal
6357 (Pool_Op
: Entity_Id
;
6358 Pool_Op_Formal
: in out Entity_Id
;
6359 Expected_Mode
: Formal_Kind
;
6360 Expected_Type
: Entity_Id
;
6361 Formal_Name
: String;
6362 OK_Formal
: in out Boolean)
6365 -- If OK_Formal is False on entry, then simply ignore
6366 -- the formal, because an earlier formal has already
6369 if not OK_Formal
then
6372 -- If no formal is passed in, then issue an error for a
6375 elsif not Present
(Pool_Op_Formal
) then
6377 ("simple storage pool op missing formal " &
6378 Formal_Name
& " of type&", Pool_Op
, Expected_Type
);
6384 if Etype
(Pool_Op_Formal
) /= Expected_Type
then
6386 -- If the pool type was expected for this formal, then
6387 -- this will not be considered a candidate operation
6388 -- for the simple pool, so we unset OK_Formal so that
6389 -- the op and any later formals will be ignored.
6391 if Expected_Type
= Pool_Type
then
6398 ("wrong type for formal " & Formal_Name
&
6399 " of simple storage pool op; expected type&",
6400 Pool_Op_Formal
, Expected_Type
);
6404 -- Issue error if formal's mode is not the expected one
6406 if Ekind
(Pool_Op_Formal
) /= Expected_Mode
then
6408 ("wrong mode for formal of simple storage pool op",
6412 -- Advance to the next formal
6414 Next_Formal
(Pool_Op_Formal
);
6415 end Validate_Simple_Pool_Op_Formal
;
6417 ------------------------------------
6418 -- Validate_Simple_Pool_Operation --
6419 ------------------------------------
6421 procedure Validate_Simple_Pool_Operation
6425 Found_Op
: Entity_Id
:= Empty
;
6431 (Nam_In
(Op_Name
, Name_Allocate
,
6433 Name_Storage_Size
));
6435 Error_Msg_Name_1
:= Op_Name
;
6437 -- For each homonym declared immediately in the scope
6438 -- of the simple storage pool type, determine whether
6439 -- the homonym is an operation of the pool type, and,
6440 -- if so, check that its profile is as expected for
6441 -- a simple pool operation of that name.
6443 Op
:= Get_Name_Entity_Id
(Op_Name
);
6444 while Present
(Op
) loop
6445 if Ekind_In
(Op
, E_Function
, E_Procedure
)
6446 and then Scope
(Op
) = Current_Scope
6448 Formal
:= First_Entity
(Op
);
6452 -- The first parameter must be of the pool type
6453 -- in order for the operation to qualify.
6455 if Op_Name
= Name_Storage_Size
then
6456 Validate_Simple_Pool_Op_Formal
6457 (Op
, Formal
, E_In_Parameter
, Pool_Type
,
6460 Validate_Simple_Pool_Op_Formal
6461 (Op
, Formal
, E_In_Out_Parameter
, Pool_Type
,
6465 -- If another operation with this name has already
6466 -- been located for the type, then flag an error,
6467 -- since we only allow the type to have a single
6470 if Present
(Found_Op
) and then Is_OK
then
6472 ("only one % operation allowed for " &
6473 "simple storage pool type&", Op
, Pool_Type
);
6476 -- In the case of Allocate and Deallocate, a formal
6477 -- of type System.Address is required.
6479 if Op_Name
= Name_Allocate
then
6480 Validate_Simple_Pool_Op_Formal
6481 (Op
, Formal
, E_Out_Parameter
,
6482 Address_Type
, "Storage_Address", Is_OK
);
6484 elsif Op_Name
= Name_Deallocate
then
6485 Validate_Simple_Pool_Op_Formal
6486 (Op
, Formal
, E_In_Parameter
,
6487 Address_Type
, "Storage_Address", Is_OK
);
6490 -- In the case of Allocate and Deallocate, formals
6491 -- of type Storage_Count are required as the third
6492 -- and fourth parameters.
6494 if Op_Name
/= Name_Storage_Size
then
6495 Validate_Simple_Pool_Op_Formal
6496 (Op
, Formal
, E_In_Parameter
,
6497 Stg_Cnt_Type
, "Size_In_Storage_Units", Is_OK
);
6498 Validate_Simple_Pool_Op_Formal
6499 (Op
, Formal
, E_In_Parameter
,
6500 Stg_Cnt_Type
, "Alignment", Is_OK
);
6503 -- If no mismatched formals have been found (Is_OK)
6504 -- and no excess formals are present, then this
6505 -- operation has been validated, so record it.
6507 if not Present
(Formal
) and then Is_OK
then
6515 -- There must be a valid Allocate operation for the type,
6516 -- so issue an error if none was found.
6518 if Op_Name
= Name_Allocate
6519 and then not Present
(Found_Op
)
6521 Error_Msg_N
("missing % operation for simple " &
6522 "storage pool type", Pool_Type
);
6524 elsif Present
(Found_Op
) then
6526 -- Simple pool operations can't be abstract
6528 if Is_Abstract_Subprogram
(Found_Op
) then
6530 ("simple storage pool operation must not be " &
6531 "abstract", Found_Op
);
6534 -- The Storage_Size operation must be a function with
6535 -- Storage_Count as its result type.
6537 if Op_Name
= Name_Storage_Size
then
6538 if Ekind
(Found_Op
) = E_Procedure
then
6540 ("% operation must be a function", Found_Op
);
6542 elsif Etype
(Found_Op
) /= Stg_Cnt_Type
then
6544 ("wrong result type for%, expected type&",
6545 Found_Op
, Stg_Cnt_Type
);
6548 -- Allocate and Deallocate must be procedures
6550 elsif Ekind
(Found_Op
) = E_Function
then
6552 ("% operation must be a procedure", Found_Op
);
6555 end Validate_Simple_Pool_Operation
;
6557 -- Start of processing for Validate_Simple_Pool_Ops
6560 Validate_Simple_Pool_Operation
(Name_Allocate
);
6561 Validate_Simple_Pool_Operation
(Name_Deallocate
);
6562 Validate_Simple_Pool_Operation
(Name_Storage_Size
);
6563 end Validate_Simple_Pool_Ops
;
6567 -- Now that all types from which E may depend are frozen, see if the
6568 -- size is known at compile time, if it must be unsigned, or if
6569 -- strict alignment is required
6571 Check_Compile_Time_Size
(E
);
6572 Check_Unsigned_Type
(E
);
6574 if Base_Type
(E
) = E
then
6575 Check_Strict_Alignment
(E
);
6578 -- Do not allow a size clause for a type which does not have a size
6579 -- that is known at compile time
6581 if Has_Size_Clause
(E
)
6582 and then not Size_Known_At_Compile_Time
(E
)
6584 -- Suppress this message if errors posted on E, even if we are
6585 -- in all errors mode, since this is often a junk message
6587 if not Error_Posted
(E
) then
6589 ("size clause not allowed for variable length type",
6594 -- Now we set/verify the representation information, in particular
6595 -- the size and alignment values. This processing is not required for
6596 -- generic types, since generic types do not play any part in code
6597 -- generation, and so the size and alignment values for such types
6598 -- are irrelevant. Ditto for types declared within a generic unit,
6599 -- which may have components that depend on generic parameters, and
6600 -- that will be recreated in an instance.
6602 if Inside_A_Generic
then
6605 -- Otherwise we call the layout procedure
6611 -- If this is an access to subprogram whose designated type is itself
6612 -- a subprogram type, the return type of this anonymous subprogram
6613 -- type must be decorated as well.
6615 if Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
6616 and then Ekind
(Designated_Type
(E
)) = E_Subprogram_Type
6618 Layout_Type
(Etype
(Designated_Type
(E
)));
6621 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6622 -- this is where we analye the expression (after the type is frozen,
6623 -- since in the case of Default_Value, we are analyzing with the
6624 -- type itself, and we treat Default_Component_Value similarly for
6625 -- the sake of uniformity).
6627 if Is_First_Subtype
(E
) and then Has_Default_Aspect
(E
) then
6634 if Is_Scalar_Type
(E
) then
6635 Nam
:= Name_Default_Value
;
6637 Exp
:= Default_Aspect_Value
(Typ
);
6639 Nam
:= Name_Default_Component_Value
;
6640 Typ
:= Component_Type
(E
);
6641 Exp
:= Default_Aspect_Component_Value
(E
);
6644 Analyze_And_Resolve
(Exp
, Typ
);
6646 if Etype
(Exp
) /= Any_Type
then
6647 if not Is_OK_Static_Expression
(Exp
) then
6648 Error_Msg_Name_1
:= Nam
;
6649 Flag_Non_Static_Expr
6650 ("aspect% requires static expression", Exp
);
6656 -- End of freeze processing for type entities
6659 -- Here is where we logically freeze the current entity. If it has a
6660 -- freeze node, then this is the point at which the freeze node is
6661 -- linked into the result list.
6663 if Has_Delayed_Freeze
(E
) then
6665 -- If a freeze node is already allocated, use it, otherwise allocate
6666 -- a new one. The preallocation happens in the case of anonymous base
6667 -- types, where we preallocate so that we can set First_Subtype_Link.
6668 -- Note that we reset the Sloc to the current freeze location.
6670 if Present
(Freeze_Node
(E
)) then
6671 F_Node
:= Freeze_Node
(E
);
6672 Set_Sloc
(F_Node
, Loc
);
6675 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
6676 Set_Freeze_Node
(E
, F_Node
);
6677 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
6678 Set_TSS_Elist
(F_Node
, No_Elist
);
6679 Set_Actions
(F_Node
, No_List
);
6682 Set_Entity
(F_Node
, E
);
6683 Add_To_Result
(F_Node
);
6685 -- A final pass over record types with discriminants. If the type
6686 -- has an incomplete declaration, there may be constrained access
6687 -- subtypes declared elsewhere, which do not depend on the discrimi-
6688 -- nants of the type, and which are used as component types (i.e.
6689 -- the full view is a recursive type). The designated types of these
6690 -- subtypes can only be elaborated after the type itself, and they
6691 -- need an itype reference.
6693 if Ekind
(E
) = E_Record_Type
and then Has_Discriminants
(E
) then
6700 Comp
:= First_Component
(E
);
6701 while Present
(Comp
) loop
6702 Typ
:= Etype
(Comp
);
6704 if Ekind
(Comp
) = E_Component
6705 and then Is_Access_Type
(Typ
)
6706 and then Scope
(Typ
) /= E
6707 and then Base_Type
(Designated_Type
(Typ
)) = E
6708 and then Is_Itype
(Designated_Type
(Typ
))
6710 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
6711 Set_Itype
(IR
, Designated_Type
(Typ
));
6712 Append
(IR
, Result
);
6715 Next_Component
(Comp
);
6721 -- When a type is frozen, the first subtype of the type is frozen as
6722 -- well (RM 13.14(15)). This has to be done after freezing the type,
6723 -- since obviously the first subtype depends on its own base type.
6726 Freeze_And_Append
(First_Subtype
(E
), N
, Result
);
6728 -- If we just froze a tagged non-class wide record, then freeze the
6729 -- corresponding class-wide type. This must be done after the tagged
6730 -- type itself is frozen, because the class-wide type refers to the
6731 -- tagged type which generates the class.
6733 if Is_Tagged_Type
(E
)
6734 and then not Is_Class_Wide_Type
(E
)
6735 and then Present
(Class_Wide_Type
(E
))
6737 Freeze_And_Append
(Class_Wide_Type
(E
), N
, Result
);
6741 Check_Debug_Info_Needed
(E
);
6743 -- Special handling for subprograms
6745 if Is_Subprogram
(E
) then
6747 -- If subprogram has address clause then reset Is_Public flag, since
6748 -- we do not want the backend to generate external references.
6750 if Present
(Address_Clause
(E
))
6751 and then not Is_Library_Level_Entity
(E
)
6753 Set_Is_Public
(E
, False);
6758 Restore_Ghost_Mode
(Saved_GM
);
6763 -----------------------------
6764 -- Freeze_Enumeration_Type --
6765 -----------------------------
6767 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
6769 -- By default, if no size clause is present, an enumeration type with
6770 -- Convention C is assumed to interface to a C enum, and has integer
6771 -- size. This applies to types. For subtypes, verify that its base
6772 -- type has no size clause either. Treat other foreign conventions
6773 -- in the same way, and also make sure alignment is set right.
6775 if Has_Foreign_Convention
(Typ
)
6776 and then not Has_Size_Clause
(Typ
)
6777 and then not Has_Size_Clause
(Base_Type
(Typ
))
6778 and then Esize
(Typ
) < Standard_Integer_Size
6780 -- Don't do this if Short_Enums on target
6782 and then not Target_Short_Enums
6784 Init_Esize
(Typ
, Standard_Integer_Size
);
6785 Set_Alignment
(Typ
, Alignment
(Standard_Integer
));
6787 -- Normal Ada case or size clause present or not Long_C_Enums on target
6790 -- If the enumeration type interfaces to C, and it has a size clause
6791 -- that specifies less than int size, it warrants a warning. The
6792 -- user may intend the C type to be an enum or a char, so this is
6793 -- not by itself an error that the Ada compiler can detect, but it
6794 -- it is a worth a heads-up. For Boolean and Character types we
6795 -- assume that the programmer has the proper C type in mind.
6797 if Convention
(Typ
) = Convention_C
6798 and then Has_Size_Clause
(Typ
)
6799 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
6800 and then not Is_Boolean_Type
(Typ
)
6801 and then not Is_Character_Type
(Typ
)
6803 -- Don't do this if Short_Enums on target
6805 and then not Target_Short_Enums
6808 ("C enum types have the size of a C int??", Size_Clause
(Typ
));
6811 Adjust_Esize_For_Alignment
(Typ
);
6813 end Freeze_Enumeration_Type
;
6815 -----------------------
6816 -- Freeze_Expression --
6817 -----------------------
6819 procedure Freeze_Expression
(N
: Node_Id
) is
6820 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
6823 Desig_Typ
: Entity_Id
;
6827 Freeze_Outside
: Boolean := False;
6828 -- This flag is set true if the entity must be frozen outside the
6829 -- current subprogram. This happens in the case of expander generated
6830 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6831 -- not freeze all entities like other bodies, but which nevertheless
6832 -- may reference entities that have to be frozen before the body and
6833 -- obviously cannot be frozen inside the body.
6835 function Find_Aggregate_Component_Desig_Type
return Entity_Id
;
6836 -- If the expression is an array aggregate, the type of the component
6837 -- expressions is also frozen. If the component type is an access type
6838 -- and the expressions include allocators, the designed type is frozen
6841 function In_Expanded_Body
(N
: Node_Id
) return Boolean;
6842 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6843 -- it is the handled statement sequence of an expander-generated
6844 -- subprogram (init proc, stream subprogram, or renaming as body).
6845 -- If so, this is not a freezing context.
6847 -----------------------------------------
6848 -- Find_Aggregate_Component_Desig_Type --
6849 -----------------------------------------
6851 function Find_Aggregate_Component_Desig_Type
return Entity_Id
is
6856 if Present
(Expressions
(N
)) then
6857 Exp
:= First
(Expressions
(N
));
6858 while Present
(Exp
) loop
6859 if Nkind
(Exp
) = N_Allocator
then
6860 return Designated_Type
(Component_Type
(Etype
(N
)));
6867 if Present
(Component_Associations
(N
)) then
6868 Assoc
:= First
(Component_Associations
(N
));
6869 while Present
(Assoc
) loop
6870 if Nkind
(Expression
(Assoc
)) = N_Allocator
then
6871 return Designated_Type
(Component_Type
(Etype
(N
)));
6879 end Find_Aggregate_Component_Desig_Type
;
6881 ----------------------
6882 -- In_Expanded_Body --
6883 ----------------------
6885 function In_Expanded_Body
(N
: Node_Id
) return Boolean is
6890 if Nkind
(N
) = N_Subprogram_Body
then
6896 if Nkind
(P
) /= N_Subprogram_Body
then
6900 Id
:= Defining_Unit_Name
(Specification
(P
));
6902 -- The following are expander-created bodies, or bodies that
6903 -- are not freeze points.
6905 if Nkind
(Id
) = N_Defining_Identifier
6906 and then (Is_Init_Proc
(Id
)
6907 or else Is_TSS
(Id
, TSS_Stream_Input
)
6908 or else Is_TSS
(Id
, TSS_Stream_Output
)
6909 or else Is_TSS
(Id
, TSS_Stream_Read
)
6910 or else Is_TSS
(Id
, TSS_Stream_Write
)
6911 or else Nkind_In
(Original_Node
(P
),
6912 N_Subprogram_Renaming_Declaration
,
6913 N_Expression_Function
))
6920 end In_Expanded_Body
;
6922 -- Start of processing for Freeze_Expression
6925 -- Immediate return if freezing is inhibited. This flag is set by the
6926 -- analyzer to stop freezing on generated expressions that would cause
6927 -- freezing if they were in the source program, but which are not
6928 -- supposed to freeze, since they are created.
6930 if Must_Not_Freeze
(N
) then
6934 -- If expression is non-static, then it does not freeze in a default
6935 -- expression, see section "Handling of Default Expressions" in the
6936 -- spec of package Sem for further details. Note that we have to make
6937 -- sure that we actually have a real expression (if we have a subtype
6938 -- indication, we can't test Is_OK_Static_Expression). However, we
6939 -- exclude the case of the prefix of an attribute of a static scalar
6940 -- subtype from this early return, because static subtype attributes
6941 -- should always cause freezing, even in default expressions, but
6942 -- the attribute may not have been marked as static yet (because in
6943 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6944 -- Freeze_Expression on the prefix).
6947 and then Nkind
(N
) in N_Subexpr
6948 and then not Is_OK_Static_Expression
(N
)
6949 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
6950 or else not (Is_Entity_Name
(N
)
6951 and then Is_Type
(Entity
(N
))
6952 and then Is_OK_Static_Subtype
(Entity
(N
))))
6957 -- Freeze type of expression if not frozen already
6961 if Nkind
(N
) in N_Has_Etype
then
6962 if not Is_Frozen
(Etype
(N
)) then
6965 -- Base type may be an derived numeric type that is frozen at
6966 -- the point of declaration, but first_subtype is still unfrozen.
6968 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
6969 Typ
:= First_Subtype
(Etype
(N
));
6973 -- For entity name, freeze entity if not frozen already. A special
6974 -- exception occurs for an identifier that did not come from source.
6975 -- We don't let such identifiers freeze a non-internal entity, i.e.
6976 -- an entity that did come from source, since such an identifier was
6977 -- generated by the expander, and cannot have any semantic effect on
6978 -- the freezing semantics. For example, this stops the parameter of
6979 -- an initialization procedure from freezing the variable.
6981 if Is_Entity_Name
(N
)
6982 and then not Is_Frozen
(Entity
(N
))
6983 and then (Nkind
(N
) /= N_Identifier
6984 or else Comes_From_Source
(N
)
6985 or else not Comes_From_Source
(Entity
(N
)))
6989 if Present
(Nam
) and then Ekind
(Nam
) = E_Function
then
6990 Check_Expression_Function
(N
, Nam
);
6997 -- For an allocator freeze designated type if not frozen already
6999 -- For an aggregate whose component type is an access type, freeze the
7000 -- designated type now, so that its freeze does not appear within the
7001 -- loop that might be created in the expansion of the aggregate. If the
7002 -- designated type is a private type without full view, the expression
7003 -- cannot contain an allocator, so the type is not frozen.
7005 -- For a function, we freeze the entity when the subprogram declaration
7006 -- is frozen, but a function call may appear in an initialization proc.
7007 -- before the declaration is frozen. We need to generate the extra
7008 -- formals, if any, to ensure that the expansion of the call includes
7009 -- the proper actuals. This only applies to Ada subprograms, not to
7016 Desig_Typ
:= Designated_Type
(Etype
(N
));
7019 if Is_Array_Type
(Etype
(N
))
7020 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
7023 -- Check whether aggregate includes allocators.
7025 Desig_Typ
:= Find_Aggregate_Component_Desig_Type
;
7028 when N_Indexed_Component
7029 | N_Selected_Component
7032 if Is_Access_Type
(Etype
(Prefix
(N
))) then
7033 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
7036 when N_Identifier
=>
7038 and then Ekind
(Nam
) = E_Function
7039 and then Nkind
(Parent
(N
)) = N_Function_Call
7040 and then Convention
(Nam
) = Convention_Ada
7042 Create_Extra_Formals
(Nam
);
7049 if Desig_Typ
/= Empty
7050 and then (Is_Frozen
(Desig_Typ
)
7051 or else (not Is_Fully_Defined
(Desig_Typ
)))
7056 -- All done if nothing needs freezing
7060 and then No
(Desig_Typ
)
7065 -- Examine the enclosing context by climbing the parent chain. The
7066 -- traversal serves two purposes - to detect scenarios where freezeing
7067 -- is not needed and to find the proper insertion point for the freeze
7068 -- nodes. Although somewhat similar to Insert_Actions, this traversal
7069 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
7070 -- the tree may result in types being frozen too early.
7074 Parent_P
:= Parent
(P
);
7076 -- If we don't have a parent, then we are not in a well-formed tree.
7077 -- This is an unusual case, but there are some legitimate situations
7078 -- in which this occurs, notably when the expressions in the range of
7079 -- a type declaration are resolved. We simply ignore the freeze
7080 -- request in this case. Is this right ???
7082 if No
(Parent_P
) then
7086 -- See if we have got to an appropriate point in the tree
7088 case Nkind
(Parent_P
) is
7090 -- A special test for the exception of (RM 13.14(8)) for the case
7091 -- of per-object expressions (RM 3.8(18)) occurring in component
7092 -- definition or a discrete subtype definition. Note that we test
7093 -- for a component declaration which includes both cases we are
7094 -- interested in, and furthermore the tree does not have explicit
7095 -- nodes for either of these two constructs.
7097 when N_Component_Declaration
=>
7099 -- The case we want to test for here is an identifier that is
7100 -- a per-object expression, this is either a discriminant that
7101 -- appears in a context other than the component declaration
7102 -- or it is a reference to the type of the enclosing construct.
7104 -- For either of these cases, we skip the freezing
7106 if not In_Spec_Expression
7107 and then Nkind
(N
) = N_Identifier
7108 and then (Present
(Entity
(N
)))
7110 -- We recognize the discriminant case by just looking for
7111 -- a reference to a discriminant. It can only be one for
7112 -- the enclosing construct. Skip freezing in this case.
7114 if Ekind
(Entity
(N
)) = E_Discriminant
then
7117 -- For the case of a reference to the enclosing record,
7118 -- (or task or protected type), we look for a type that
7119 -- matches the current scope.
7121 elsif Entity
(N
) = Current_Scope
then
7126 -- If we have an enumeration literal that appears as the choice in
7127 -- the aggregate of an enumeration representation clause, then
7128 -- freezing does not occur (RM 13.14(10)).
7130 when N_Enumeration_Representation_Clause
=>
7132 -- The case we are looking for is an enumeration literal
7134 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
7135 and then Is_Enumeration_Type
(Etype
(N
))
7137 -- If enumeration literal appears directly as the choice,
7138 -- do not freeze (this is the normal non-overloaded case)
7140 if Nkind
(Parent
(N
)) = N_Component_Association
7141 and then First
(Choices
(Parent
(N
))) = N
7145 -- If enumeration literal appears as the name of function
7146 -- which is the choice, then also do not freeze. This
7147 -- happens in the overloaded literal case, where the
7148 -- enumeration literal is temporarily changed to a function
7149 -- call for overloading analysis purposes.
7151 elsif Nkind
(Parent
(N
)) = N_Function_Call
7153 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
7155 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
7161 -- Normally if the parent is a handled sequence of statements,
7162 -- then the current node must be a statement, and that is an
7163 -- appropriate place to insert a freeze node.
7165 when N_Handled_Sequence_Of_Statements
=>
7167 -- An exception occurs when the sequence of statements is for
7168 -- an expander generated body that did not do the usual freeze
7169 -- all operation. In this case we usually want to freeze
7170 -- outside this body, not inside it, and we skip past the
7171 -- subprogram body that we are inside.
7173 if In_Expanded_Body
(Parent_P
) then
7175 Subp
: constant Node_Id
:= Parent
(Parent_P
);
7179 -- Freeze the entity only when it is declared inside the
7180 -- body of the expander generated procedure. This case
7181 -- is recognized by the scope of the entity or its type,
7182 -- which is either the spec for some enclosing body, or
7183 -- (in the case of init_procs, for which there are no
7184 -- separate specs) the current scope.
7186 if Nkind
(Subp
) = N_Subprogram_Body
then
7187 Spec
:= Corresponding_Spec
(Subp
);
7189 if (Present
(Typ
) and then Scope
(Typ
) = Spec
)
7191 (Present
(Nam
) and then Scope
(Nam
) = Spec
)
7196 and then Scope
(Typ
) = Current_Scope
7197 and then Defining_Entity
(Subp
) = Current_Scope
7203 -- An expression function may act as a completion of
7204 -- a function declaration. As such, it can reference
7205 -- entities declared between the two views:
7208 -- function F return ...;
7210 -- function Hidden return ...;
7211 -- function F return ... is (Hidden); -- 2
7213 -- Refering to the example above, freezing the expression
7214 -- of F (2) would place Hidden's freeze node (1) in the
7215 -- wrong place. Avoid explicit freezing and let the usual
7216 -- scenarios do the job - for example, reaching the end
7217 -- of the private declarations, or a call to F.
7219 if Nkind
(Original_Node
(Subp
)) =
7220 N_Expression_Function
7224 -- Freeze outside the body
7227 Parent_P
:= Parent
(Parent_P
);
7228 Freeze_Outside
:= True;
7232 -- Here if normal case where we are in handled statement
7233 -- sequence and want to do the insertion right there.
7239 -- If parent is a body or a spec or a block, then the current node
7240 -- is a statement or declaration and we can insert the freeze node
7243 when N_Block_Statement
7246 | N_Package_Specification
7253 -- The expander is allowed to define types in any statements list,
7254 -- so any of the following parent nodes also mark a freezing point
7255 -- if the actual node is in a list of statements or declarations.
7257 when N_Abortable_Part
7258 | N_Accept_Alternative
7260 | N_Case_Statement_Alternative
7261 | N_Compilation_Unit_Aux
7262 | N_Conditional_Entry_Call
7263 | N_Delay_Alternative
7265 | N_Entry_Call_Alternative
7266 | N_Exception_Handler
7267 | N_Extended_Return_Statement
7271 | N_Selective_Accept
7272 | N_Triggering_Alternative
7274 exit when Is_List_Member
(P
);
7276 -- Freeze nodes produced by an expression coming from the Actions
7277 -- list of a N_Expression_With_Actions node must remain within the
7278 -- Actions list. Inserting the freeze nodes further up the tree
7279 -- may lead to use before declaration issues in the case of array
7282 when N_Expression_With_Actions
=>
7283 if Is_List_Member
(P
)
7284 and then List_Containing
(P
) = Actions
(Parent_P
)
7289 -- Note: N_Loop_Statement is a special case. A type that appears
7290 -- in the source can never be frozen in a loop (this occurs only
7291 -- because of a loop expanded by the expander), so we keep on
7292 -- going. Otherwise we terminate the search. Same is true of any
7293 -- entity which comes from source. (if they have predefined type,
7294 -- that type does not appear to come from source, but the entity
7295 -- should not be frozen here).
7297 when N_Loop_Statement
=>
7298 exit when not Comes_From_Source
(Etype
(N
))
7299 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
7301 -- For all other cases, keep looking at parents
7307 -- We fall through the case if we did not yet find the proper
7308 -- place in the free for inserting the freeze node, so climb.
7313 -- If the expression appears in a record or an initialization procedure,
7314 -- the freeze nodes are collected and attached to the current scope, to
7315 -- be inserted and analyzed on exit from the scope, to insure that
7316 -- generated entities appear in the correct scope. If the expression is
7317 -- a default for a discriminant specification, the scope is still void.
7318 -- The expression can also appear in the discriminant part of a private
7319 -- or concurrent type.
7321 -- If the expression appears in a constrained subcomponent of an
7322 -- enclosing record declaration, the freeze nodes must be attached to
7323 -- the outer record type so they can eventually be placed in the
7324 -- enclosing declaration list.
7326 -- The other case requiring this special handling is if we are in a
7327 -- default expression, since in that case we are about to freeze a
7328 -- static type, and the freeze scope needs to be the outer scope, not
7329 -- the scope of the subprogram with the default parameter.
7331 -- For default expressions and other spec expressions in generic units,
7332 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7333 -- placing them at the proper place, after the generic unit.
7335 if (In_Spec_Exp
and not Inside_A_Generic
)
7336 or else Freeze_Outside
7337 or else (Is_Type
(Current_Scope
)
7338 and then (not Is_Concurrent_Type
(Current_Scope
)
7339 or else not Has_Completion
(Current_Scope
)))
7340 or else Ekind
(Current_Scope
) = E_Void
7343 N
: constant Node_Id
:= Current_Scope
;
7344 Freeze_Nodes
: List_Id
:= No_List
;
7345 Pos
: Int
:= Scope_Stack
.Last
;
7348 if Present
(Desig_Typ
) then
7349 Freeze_And_Append
(Desig_Typ
, N
, Freeze_Nodes
);
7352 if Present
(Typ
) then
7353 Freeze_And_Append
(Typ
, N
, Freeze_Nodes
);
7356 if Present
(Nam
) then
7357 Freeze_And_Append
(Nam
, N
, Freeze_Nodes
);
7360 -- The current scope may be that of a constrained component of
7361 -- an enclosing record declaration, or of a loop of an enclosing
7362 -- quantified expression, which is above the current scope in the
7363 -- scope stack. Indeed in the context of a quantified expression,
7364 -- a scope is created and pushed above the current scope in order
7365 -- to emulate the loop-like behavior of the quantified expression.
7366 -- If the expression is within a top-level pragma, as for a pre-
7367 -- condition on a library-level subprogram, nothing to do.
7369 if not Is_Compilation_Unit
(Current_Scope
)
7370 and then (Is_Record_Type
(Scope
(Current_Scope
))
7371 or else Nkind
(Parent
(Current_Scope
)) =
7372 N_Quantified_Expression
)
7377 if Is_Non_Empty_List
(Freeze_Nodes
) then
7378 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
7379 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
7382 Append_List
(Freeze_Nodes
,
7383 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
);
7391 -- Now we have the right place to do the freezing. First, a special
7392 -- adjustment, if we are in spec-expression analysis mode, these freeze
7393 -- actions must not be thrown away (normally all inserted actions are
7394 -- thrown away in this mode. However, the freeze actions are from static
7395 -- expressions and one of the important reasons we are doing this
7396 -- special analysis is to get these freeze actions. Therefore we turn
7397 -- off the In_Spec_Expression mode to propagate these freeze actions.
7398 -- This also means they get properly analyzed and expanded.
7400 In_Spec_Expression
:= False;
7402 -- Freeze the designated type of an allocator (RM 13.14(13))
7404 if Present
(Desig_Typ
) then
7405 Freeze_Before
(P
, Desig_Typ
);
7408 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7409 -- the enumeration representation clause exception in the loop above.
7411 if Present
(Typ
) then
7412 Freeze_Before
(P
, Typ
);
7415 -- Freeze name if one is present (RM 13.14(11))
7417 if Present
(Nam
) then
7418 Freeze_Before
(P
, Nam
);
7421 -- Restore In_Spec_Expression flag
7423 In_Spec_Expression
:= In_Spec_Exp
;
7424 end Freeze_Expression
;
7426 -----------------------------
7427 -- Freeze_Fixed_Point_Type --
7428 -----------------------------
7430 -- Certain fixed-point types and subtypes, including implicit base types
7431 -- and declared first subtypes, have not yet set up a range. This is
7432 -- because the range cannot be set until the Small and Size values are
7433 -- known, and these are not known till the type is frozen.
7435 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7436 -- whose bounds are unanalyzed real literals. This routine will recognize
7437 -- this case, and transform this range node into a properly typed range
7438 -- with properly analyzed and resolved values.
7440 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
7441 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
7442 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
7443 Hi
: constant Node_Id
:= High_Bound
(Rng
);
7444 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7445 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
7446 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
7447 BHi
: constant Node_Id
:= High_Bound
(Brng
);
7448 Small
: constant Ureal
:= Small_Value
(Typ
);
7455 -- Save original bounds (for shaving tests)
7458 -- Actual size chosen
7460 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
7461 -- Returns size of type with given bounds. Also leaves these
7462 -- bounds set as the current bounds of the Typ.
7468 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
7470 Set_Realval
(Lo
, Lov
);
7471 Set_Realval
(Hi
, Hiv
);
7472 return Minimum_Size
(Typ
);
7475 -- Start of processing for Freeze_Fixed_Point_Type
7478 -- If Esize of a subtype has not previously been set, set it now
7480 if Unknown_Esize
(Typ
) then
7481 Atype
:= Ancestor_Subtype
(Typ
);
7483 if Present
(Atype
) then
7484 Set_Esize
(Typ
, Esize
(Atype
));
7486 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
7490 -- Immediate return if the range is already analyzed. This means that
7491 -- the range is already set, and does not need to be computed by this
7494 if Analyzed
(Rng
) then
7498 -- Immediate return if either of the bounds raises Constraint_Error
7500 if Raises_Constraint_Error
(Lo
)
7501 or else Raises_Constraint_Error
(Hi
)
7506 Loval
:= Realval
(Lo
);
7507 Hival
:= Realval
(Hi
);
7512 -- Ordinary fixed-point case
7514 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
7516 -- For the ordinary fixed-point case, we are allowed to fudge the
7517 -- end-points up or down by small. Generally we prefer to fudge up,
7518 -- i.e. widen the bounds for non-model numbers so that the end points
7519 -- are included. However there are cases in which this cannot be
7520 -- done, and indeed cases in which we may need to narrow the bounds.
7521 -- The following circuit makes the decision.
7523 -- Note: our terminology here is that Incl_EP means that the bounds
7524 -- are widened by Small if necessary to include the end points, and
7525 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7526 -- end-points if this reduces the size.
7528 -- Note that in the Incl case, all we care about is including the
7529 -- end-points. In the Excl case, we want to narrow the bounds as
7530 -- much as permitted by the RM, to give the smallest possible size.
7533 Loval_Incl_EP
: Ureal
;
7534 Hival_Incl_EP
: Ureal
;
7536 Loval_Excl_EP
: Ureal
;
7537 Hival_Excl_EP
: Ureal
;
7543 First_Subt
: Entity_Id
;
7548 -- First step. Base types are required to be symmetrical. Right
7549 -- now, the base type range is a copy of the first subtype range.
7550 -- This will be corrected before we are done, but right away we
7551 -- need to deal with the case where both bounds are non-negative.
7552 -- In this case, we set the low bound to the negative of the high
7553 -- bound, to make sure that the size is computed to include the
7554 -- required sign. Note that we do not need to worry about the
7555 -- case of both bounds negative, because the sign will be dealt
7556 -- with anyway. Furthermore we can't just go making such a bound
7557 -- symmetrical, since in a twos-complement system, there is an
7558 -- extra negative value which could not be accommodated on the
7562 and then not UR_Is_Negative
(Loval
)
7563 and then Hival
> Loval
7566 Set_Realval
(Lo
, Loval
);
7569 -- Compute the fudged bounds. If the number is a model number,
7570 -- then we do nothing to include it, but we are allowed to backoff
7571 -- to the next adjacent model number when we exclude it. If it is
7572 -- not a model number then we straddle the two values with the
7573 -- model numbers on either side.
7575 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
7577 if Loval
= Model_Num
then
7578 Loval_Incl_EP
:= Model_Num
;
7580 Loval_Incl_EP
:= Model_Num
- Small
;
7583 -- The low value excluding the end point is Small greater, but
7584 -- we do not do this exclusion if the low value is positive,
7585 -- since it can't help the size and could actually hurt by
7586 -- crossing the high bound.
7588 if UR_Is_Negative
(Loval_Incl_EP
) then
7589 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
7591 -- If the value went from negative to zero, then we have the
7592 -- case where Loval_Incl_EP is the model number just below
7593 -- zero, so we want to stick to the negative value for the
7594 -- base type to maintain the condition that the size will
7595 -- include signed values.
7598 and then UR_Is_Zero
(Loval_Excl_EP
)
7600 Loval_Excl_EP
:= Loval_Incl_EP
;
7604 Loval_Excl_EP
:= Loval_Incl_EP
;
7607 -- Similar processing for upper bound and high value
7609 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
7611 if Hival
= Model_Num
then
7612 Hival_Incl_EP
:= Model_Num
;
7614 Hival_Incl_EP
:= Model_Num
+ Small
;
7617 if UR_Is_Positive
(Hival_Incl_EP
) then
7618 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
7620 Hival_Excl_EP
:= Hival_Incl_EP
;
7623 -- One further adjustment is needed. In the case of subtypes, we
7624 -- cannot go outside the range of the base type, or we get
7625 -- peculiarities, and the base type range is already set. This
7626 -- only applies to the Incl values, since clearly the Excl values
7627 -- are already as restricted as they are allowed to be.
7630 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
7631 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
7634 -- Get size including and excluding end points
7636 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
7637 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
7639 -- No need to exclude end-points if it does not reduce size
7641 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
7642 Loval_Excl_EP
:= Loval_Incl_EP
;
7645 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
7646 Hival_Excl_EP
:= Hival_Incl_EP
;
7649 -- Now we set the actual size to be used. We want to use the
7650 -- bounds fudged up to include the end-points but only if this
7651 -- can be done without violating a specifically given size
7652 -- size clause or causing an unacceptable increase in size.
7654 -- Case of size clause given
7656 if Has_Size_Clause
(Typ
) then
7658 -- Use the inclusive size only if it is consistent with
7659 -- the explicitly specified size.
7661 if Size_Incl_EP
<= RM_Size
(Typ
) then
7662 Actual_Lo
:= Loval_Incl_EP
;
7663 Actual_Hi
:= Hival_Incl_EP
;
7664 Actual_Size
:= Size_Incl_EP
;
7666 -- If the inclusive size is too large, we try excluding
7667 -- the end-points (will be caught later if does not work).
7670 Actual_Lo
:= Loval_Excl_EP
;
7671 Actual_Hi
:= Hival_Excl_EP
;
7672 Actual_Size
:= Size_Excl_EP
;
7675 -- Case of size clause not given
7678 -- If we have a base type whose corresponding first subtype
7679 -- has an explicit size that is large enough to include our
7680 -- end-points, then do so. There is no point in working hard
7681 -- to get a base type whose size is smaller than the specified
7682 -- size of the first subtype.
7684 First_Subt
:= First_Subtype
(Typ
);
7686 if Has_Size_Clause
(First_Subt
)
7687 and then Size_Incl_EP
<= Esize
(First_Subt
)
7689 Actual_Size
:= Size_Incl_EP
;
7690 Actual_Lo
:= Loval_Incl_EP
;
7691 Actual_Hi
:= Hival_Incl_EP
;
7693 -- If excluding the end-points makes the size smaller and
7694 -- results in a size of 8,16,32,64, then we take the smaller
7695 -- size. For the 64 case, this is compulsory. For the other
7696 -- cases, it seems reasonable. We like to include end points
7697 -- if we can, but not at the expense of moving to the next
7698 -- natural boundary of size.
7700 elsif Size_Incl_EP
/= Size_Excl_EP
7701 and then Addressable
(Size_Excl_EP
)
7703 Actual_Size
:= Size_Excl_EP
;
7704 Actual_Lo
:= Loval_Excl_EP
;
7705 Actual_Hi
:= Hival_Excl_EP
;
7707 -- Otherwise we can definitely include the end points
7710 Actual_Size
:= Size_Incl_EP
;
7711 Actual_Lo
:= Loval_Incl_EP
;
7712 Actual_Hi
:= Hival_Incl_EP
;
7715 -- One pathological case: normally we never fudge a low bound
7716 -- down, since it would seem to increase the size (if it has
7717 -- any effect), but for ranges containing single value, or no
7718 -- values, the high bound can be small too large. Consider:
7720 -- type t is delta 2.0**(-14)
7721 -- range 131072.0 .. 0;
7723 -- That lower bound is *just* outside the range of 32 bits, and
7724 -- does need fudging down in this case. Note that the bounds
7725 -- will always have crossed here, since the high bound will be
7726 -- fudged down if necessary, as in the case of:
7728 -- type t is delta 2.0**(-14)
7729 -- range 131072.0 .. 131072.0;
7731 -- So we detect the situation by looking for crossed bounds,
7732 -- and if the bounds are crossed, and the low bound is greater
7733 -- than zero, we will always back it off by small, since this
7734 -- is completely harmless.
7736 if Actual_Lo
> Actual_Hi
then
7737 if UR_Is_Positive
(Actual_Lo
) then
7738 Actual_Lo
:= Loval_Incl_EP
- Small
;
7739 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7741 -- And of course, we need to do exactly the same parallel
7742 -- fudge for flat ranges in the negative region.
7744 elsif UR_Is_Negative
(Actual_Hi
) then
7745 Actual_Hi
:= Hival_Incl_EP
+ Small
;
7746 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7751 Set_Realval
(Lo
, Actual_Lo
);
7752 Set_Realval
(Hi
, Actual_Hi
);
7755 -- For the decimal case, none of this fudging is required, since there
7756 -- are no end-point problems in the decimal case (the end-points are
7757 -- always included).
7760 Actual_Size
:= Fsize
(Loval
, Hival
);
7763 -- At this stage, the actual size has been calculated and the proper
7764 -- required bounds are stored in the low and high bounds.
7766 if Actual_Size
> 64 then
7767 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
7769 ("size required (^) for type& too large, maximum allowed is 64",
7774 -- Check size against explicit given size
7776 if Has_Size_Clause
(Typ
) then
7777 if Actual_Size
> RM_Size
(Typ
) then
7778 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7779 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
7781 ("size given (^) for type& too small, minimum allowed is ^",
7782 Size_Clause
(Typ
), Typ
);
7785 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
7788 -- Increase size to next natural boundary if no size clause given
7791 if Actual_Size
<= 8 then
7793 elsif Actual_Size
<= 16 then
7795 elsif Actual_Size
<= 32 then
7801 Init_Esize
(Typ
, Actual_Size
);
7802 Adjust_Esize_For_Alignment
(Typ
);
7805 -- If we have a base type, then expand the bounds so that they extend to
7806 -- the full width of the allocated size in bits, to avoid junk range
7807 -- checks on intermediate computations.
7809 if Base_Type
(Typ
) = Typ
then
7810 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
7811 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
7814 -- Final step is to reanalyze the bounds using the proper type
7815 -- and set the Corresponding_Integer_Value fields of the literals.
7817 Set_Etype
(Lo
, Empty
);
7818 Set_Analyzed
(Lo
, False);
7821 -- Resolve with universal fixed if the base type, and the base type if
7822 -- it is a subtype. Note we can't resolve the base type with itself,
7823 -- that would be a reference before definition.
7826 Resolve
(Lo
, Universal_Fixed
);
7831 -- Set corresponding integer value for bound
7833 Set_Corresponding_Integer_Value
7834 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
7836 -- Similar processing for high bound
7838 Set_Etype
(Hi
, Empty
);
7839 Set_Analyzed
(Hi
, False);
7843 Resolve
(Hi
, Universal_Fixed
);
7848 Set_Corresponding_Integer_Value
7849 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
7851 -- Set type of range to correspond to bounds
7853 Set_Etype
(Rng
, Etype
(Lo
));
7855 -- Set Esize to calculated size if not set already
7857 if Unknown_Esize
(Typ
) then
7858 Init_Esize
(Typ
, Actual_Size
);
7861 -- Set RM_Size if not already set. If already set, check value
7864 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
7867 if RM_Size
(Typ
) /= Uint_0
then
7868 if RM_Size
(Typ
) < Minsiz
then
7869 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7870 Error_Msg_Uint_2
:= Minsiz
;
7872 ("size given (^) for type& too small, minimum allowed is ^",
7873 Size_Clause
(Typ
), Typ
);
7877 Set_RM_Size
(Typ
, Minsiz
);
7881 -- Check for shaving
7883 if Comes_From_Source
(Typ
) then
7885 -- In SPARK mode the given bounds must be strictly representable
7887 if SPARK_Mode
= On
then
7888 if Orig_Lo
< Expr_Value_R
(Lo
) then
7890 ("declared low bound of type & is outside type range",
7894 if Orig_Hi
> Expr_Value_R
(Hi
) then
7896 ("declared high bound of type & is outside type range",
7901 if Orig_Lo
< Expr_Value_R
(Lo
) then
7903 ("declared low bound of type & is outside type range??", Typ
);
7905 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ
);
7908 if Orig_Hi
> Expr_Value_R
(Hi
) then
7910 ("declared high bound of type & is outside type range??",
7913 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ
);
7917 end Freeze_Fixed_Point_Type
;
7923 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
7927 Set_Has_Delayed_Freeze
(T
);
7928 L
:= Freeze_Entity
(T
, N
);
7930 if Is_Non_Empty_List
(L
) then
7931 Insert_Actions
(N
, L
);
7935 --------------------------
7936 -- Freeze_Static_Object --
7937 --------------------------
7939 procedure Freeze_Static_Object
(E
: Entity_Id
) is
7941 Cannot_Be_Static
: exception;
7942 -- Exception raised if the type of a static object cannot be made
7943 -- static. This happens if the type depends on non-global objects.
7945 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
7946 -- Called to ensure that an expression used as part of a type definition
7947 -- is statically allocatable, which means that the expression type is
7948 -- statically allocatable, and the expression is either static, or a
7949 -- reference to a library level constant.
7951 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
7952 -- Called to mark a type as static, checking that it is possible
7953 -- to set the type as static. If it is not possible, then the
7954 -- exception Cannot_Be_Static is raised.
7956 -----------------------------
7957 -- Ensure_Expression_Is_SA --
7958 -----------------------------
7960 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
7964 Ensure_Type_Is_SA
(Etype
(N
));
7966 if Is_OK_Static_Expression
(N
) then
7969 elsif Nkind
(N
) = N_Identifier
then
7973 and then Ekind
(Ent
) = E_Constant
7974 and then Is_Library_Level_Entity
(Ent
)
7980 raise Cannot_Be_Static
;
7981 end Ensure_Expression_Is_SA
;
7983 -----------------------
7984 -- Ensure_Type_Is_SA --
7985 -----------------------
7987 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
7992 -- If type is library level, we are all set
7994 if Is_Library_Level_Entity
(Typ
) then
7998 -- We are also OK if the type already marked as statically allocated,
7999 -- which means we processed it before.
8001 if Is_Statically_Allocated
(Typ
) then
8005 -- Mark type as statically allocated
8007 Set_Is_Statically_Allocated
(Typ
);
8009 -- Check that it is safe to statically allocate this type
8011 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
8012 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
8013 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
8015 elsif Is_Array_Type
(Typ
) then
8016 N
:= First_Index
(Typ
);
8017 while Present
(N
) loop
8018 Ensure_Type_Is_SA
(Etype
(N
));
8022 Ensure_Type_Is_SA
(Component_Type
(Typ
));
8024 elsif Is_Access_Type
(Typ
) then
8025 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
8029 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
8032 if T
/= Standard_Void_Type
then
8033 Ensure_Type_Is_SA
(T
);
8036 F
:= First_Formal
(Designated_Type
(Typ
));
8037 while Present
(F
) loop
8038 Ensure_Type_Is_SA
(Etype
(F
));
8044 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
8047 elsif Is_Record_Type
(Typ
) then
8048 C
:= First_Entity
(Typ
);
8049 while Present
(C
) loop
8050 if Ekind
(C
) = E_Discriminant
8051 or else Ekind
(C
) = E_Component
8053 Ensure_Type_Is_SA
(Etype
(C
));
8055 elsif Is_Type
(C
) then
8056 Ensure_Type_Is_SA
(C
);
8062 elsif Ekind
(Typ
) = E_Subprogram_Type
then
8063 Ensure_Type_Is_SA
(Etype
(Typ
));
8065 C
:= First_Formal
(Typ
);
8066 while Present
(C
) loop
8067 Ensure_Type_Is_SA
(Etype
(C
));
8072 raise Cannot_Be_Static
;
8074 end Ensure_Type_Is_SA
;
8076 -- Start of processing for Freeze_Static_Object
8079 Ensure_Type_Is_SA
(Etype
(E
));
8082 when Cannot_Be_Static
=>
8084 -- If the object that cannot be static is imported or exported, then
8085 -- issue an error message saying that this object cannot be imported
8086 -- or exported. If it has an address clause it is an overlay in the
8087 -- current partition and the static requirement is not relevant.
8088 -- Do not issue any error message when ignoring rep clauses.
8090 if Ignore_Rep_Clauses
then
8093 elsif Is_Imported
(E
) then
8094 if No
(Address_Clause
(E
)) then
8096 ("& cannot be imported (local type is not constant)", E
);
8099 -- Otherwise must be exported, something is wrong if compiler
8100 -- is marking something as statically allocated which cannot be).
8102 else pragma Assert
(Is_Exported
(E
));
8104 ("& cannot be exported (local type is not constant)", E
);
8106 end Freeze_Static_Object
;
8108 -----------------------
8109 -- Freeze_Subprogram --
8110 -----------------------
8112 procedure Freeze_Subprogram
(E
: Entity_Id
) is
8113 procedure Set_Profile_Convention
(Subp_Id
: Entity_Id
);
8114 -- Set the conventions of all anonymous access-to-subprogram formals and
8115 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8117 ----------------------------
8118 -- Set_Profile_Convention --
8119 ----------------------------
8121 procedure Set_Profile_Convention
(Subp_Id
: Entity_Id
) is
8122 Conv
: constant Convention_Id
:= Convention
(Subp_Id
);
8124 procedure Set_Type_Convention
(Typ
: Entity_Id
);
8125 -- Set the convention of anonymous access-to-subprogram type Typ and
8126 -- its designated type to Conv.
8128 -------------------------
8129 -- Set_Type_Convention --
8130 -------------------------
8132 procedure Set_Type_Convention
(Typ
: Entity_Id
) is
8134 -- Set the convention on both the anonymous access-to-subprogram
8135 -- type and the subprogram type it points to because both types
8136 -- participate in conformance-related checks.
8138 if Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
then
8139 Set_Convention
(Typ
, Conv
);
8140 Set_Convention
(Designated_Type
(Typ
), Conv
);
8142 end Set_Type_Convention
;
8148 -- Start of processing for Set_Profile_Convention
8151 Formal
:= First_Formal
(Subp_Id
);
8152 while Present
(Formal
) loop
8153 Set_Type_Convention
(Etype
(Formal
));
8154 Next_Formal
(Formal
);
8157 if Ekind
(Subp_Id
) = E_Function
then
8158 Set_Type_Convention
(Etype
(Subp_Id
));
8160 end Set_Profile_Convention
;
8167 -- Start of processing for Freeze_Subprogram
8170 -- Subprogram may not have an address clause unless it is imported
8172 if Present
(Address_Clause
(E
)) then
8173 if not Is_Imported
(E
) then
8175 ("address clause can only be given for imported subprogram",
8176 Name
(Address_Clause
(E
)));
8180 -- Reset the Pure indication on an imported subprogram unless an
8181 -- explicit Pure_Function pragma was present or the subprogram is an
8182 -- intrinsic. We do this because otherwise it is an insidious error
8183 -- to call a non-pure function from pure unit and have calls
8184 -- mysteriously optimized away. What happens here is that the Import
8185 -- can bypass the normal check to ensure that pure units call only pure
8188 -- The reason for the intrinsic exception is that in general, intrinsic
8189 -- functions (such as shifts) are pure anyway. The only exceptions are
8190 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8191 -- in any case, so no problem arises.
8194 and then Is_Pure
(E
)
8195 and then not Has_Pragma_Pure_Function
(E
)
8196 and then not Is_Intrinsic_Subprogram
(E
)
8198 Set_Is_Pure
(E
, False);
8201 -- We also reset the Pure indication on a subprogram with an Address
8202 -- parameter, because the parameter may be used as a pointer and the
8203 -- referenced data may change even if the address value does not.
8205 -- Note that if the programmer gave an explicit Pure_Function pragma,
8206 -- then we believe the programmer, and leave the subprogram Pure. We
8207 -- also suppress this check on run-time files.
8210 and then Is_Subprogram
(E
)
8211 and then not Has_Pragma_Pure_Function
(E
)
8212 and then not Is_Internal_Unit
(Current_Sem_Unit
)
8214 Check_Function_With_Address_Parameter
(E
);
8217 -- Ensure that all anonymous access-to-subprogram types inherit the
8218 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8219 -- not done for a defaulted convention Ada because those types also
8220 -- default to Ada. Convention Protected must not be propagated when
8221 -- the subprogram is an entry because this would be illegal. The only
8222 -- way to force convention Protected on these kinds of types is to
8223 -- include keyword "protected" in the access definition.
8225 if Convention
(E
) /= Convention_Ada
8226 and then Convention
(E
) /= Convention_Protected
8228 Set_Profile_Convention
(E
);
8231 -- For non-foreign convention subprograms, this is where we create
8232 -- the extra formals (for accessibility level and constrained bit
8233 -- information). We delay this till the freeze point precisely so
8234 -- that we know the convention.
8236 if not Has_Foreign_Convention
(E
) then
8237 if No
(Extra_Formals
(E
)) then
8238 Create_Extra_Formals
(E
);
8242 -- If this is convention Ada and a Valued_Procedure, that's odd
8244 if Ekind
(E
) = E_Procedure
8245 and then Is_Valued_Procedure
(E
)
8246 and then Convention
(E
) = Convention_Ada
8247 and then Warn_On_Export_Import
8250 ("??Valued_Procedure has no effect for convention Ada", E
);
8251 Set_Is_Valued_Procedure
(E
, False);
8254 -- Case of foreign convention
8259 -- For foreign conventions, warn about return of unconstrained array
8261 if Ekind
(E
) = E_Function
then
8262 Retype
:= Underlying_Type
(Etype
(E
));
8264 -- If no return type, probably some other error, e.g. a
8265 -- missing full declaration, so ignore.
8270 -- If the return type is generic, we have emitted a warning
8271 -- earlier on, and there is nothing else to check here. Specific
8272 -- instantiations may lead to erroneous behavior.
8274 elsif Is_Generic_Type
(Etype
(E
)) then
8277 -- Display warning if returning unconstrained array
8279 elsif Is_Array_Type
(Retype
)
8280 and then not Is_Constrained
(Retype
)
8282 -- Check appropriate warning is enabled (should we check for
8283 -- Warnings (Off) on specific entities here, probably so???)
8285 and then Warn_On_Export_Import
8288 ("?x?foreign convention function& should not return " &
8289 "unconstrained array", E
);
8294 -- If any of the formals for an exported foreign convention
8295 -- subprogram have defaults, then emit an appropriate warning since
8296 -- this is odd (default cannot be used from non-Ada code)
8298 if Is_Exported
(E
) then
8299 F
:= First_Formal
(E
);
8300 while Present
(F
) loop
8301 if Warn_On_Export_Import
8302 and then Present
(Default_Value
(F
))
8305 ("?x?parameter cannot be defaulted in non-Ada call",
8314 -- Pragma Inline_Always is disallowed for dispatching subprograms
8315 -- because the address of such subprograms is saved in the dispatch
8316 -- table to support dispatching calls, and dispatching calls cannot
8317 -- be inlined. This is consistent with the restriction against using
8318 -- 'Access or 'Address on an Inline_Always subprogram.
8320 if Is_Dispatching_Operation
(E
)
8321 and then Has_Pragma_Inline_Always
(E
)
8324 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
8327 -- Because of the implicit representation of inherited predefined
8328 -- operators in the front-end, the overriding status of the operation
8329 -- may be affected when a full view of a type is analyzed, and this is
8330 -- not captured by the analysis of the corresponding type declaration.
8331 -- Therefore the correctness of a not-overriding indicator must be
8332 -- rechecked when the subprogram is frozen.
8334 if Nkind
(E
) = N_Defining_Operator_Symbol
8335 and then not Error_Posted
(Parent
(E
))
8337 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
8340 if Modify_Tree_For_C
8341 and then Nkind
(Parent
(E
)) = N_Function_Specification
8342 and then Is_Array_Type
(Etype
(E
))
8343 and then Is_Constrained
(Etype
(E
))
8344 and then not Is_Unchecked_Conversion_Instance
(E
)
8345 and then not Rewritten_For_C
(E
)
8347 Build_Procedure_Form
(Unit_Declaration_Node
(E
));
8349 end Freeze_Subprogram
;
8351 ----------------------
8352 -- Is_Fully_Defined --
8353 ----------------------
8355 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
8357 if Ekind
(T
) = E_Class_Wide_Type
then
8358 return Is_Fully_Defined
(Etype
(T
));
8360 elsif Is_Array_Type
(T
) then
8361 return Is_Fully_Defined
(Component_Type
(T
));
8363 elsif Is_Record_Type
(T
)
8364 and not Is_Private_Type
(T
)
8366 -- Verify that the record type has no components with private types
8367 -- without completion.
8373 Comp
:= First_Component
(T
);
8374 while Present
(Comp
) loop
8375 if not Is_Fully_Defined
(Etype
(Comp
)) then
8379 Next_Component
(Comp
);
8384 -- For the designated type of an access to subprogram, all types in
8385 -- the profile must be fully defined.
8387 elsif Ekind
(T
) = E_Subprogram_Type
then
8392 F
:= First_Formal
(T
);
8393 while Present
(F
) loop
8394 if not Is_Fully_Defined
(Etype
(F
)) then
8401 return Is_Fully_Defined
(Etype
(T
));
8405 return not Is_Private_Type
(T
)
8406 or else Present
(Full_View
(Base_Type
(T
)));
8408 end Is_Fully_Defined
;
8410 ---------------------------------
8411 -- Process_Default_Expressions --
8412 ---------------------------------
8414 procedure Process_Default_Expressions
8416 After
: in out Node_Id
)
8418 Loc
: constant Source_Ptr
:= Sloc
(E
);
8425 Set_Default_Expressions_Processed
(E
);
8427 -- A subprogram instance and its associated anonymous subprogram share
8428 -- their signature. The default expression functions are defined in the
8429 -- wrapper packages for the anonymous subprogram, and should not be
8430 -- generated again for the instance.
8432 if Is_Generic_Instance
(E
)
8433 and then Present
(Alias
(E
))
8434 and then Default_Expressions_Processed
(Alias
(E
))
8439 Formal
:= First_Formal
(E
);
8440 while Present
(Formal
) loop
8441 if Present
(Default_Value
(Formal
)) then
8443 -- We work with a copy of the default expression because we
8444 -- do not want to disturb the original, since this would mess
8445 -- up the conformance checking.
8447 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
8449 -- The analysis of the expression may generate insert actions,
8450 -- which of course must not be executed. We wrap those actions
8451 -- in a procedure that is not called, and later on eliminated.
8452 -- The following cases have no side-effects, and are analyzed
8455 if Nkind
(Dcopy
) = N_Identifier
8456 or else Nkind_In
(Dcopy
, N_Expanded_Name
,
8458 N_Character_Literal
,
8461 or else (Nkind
(Dcopy
) = N_Attribute_Reference
8462 and then Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
8463 or else Known_Null
(Dcopy
)
8465 -- If there is no default function, we must still do a full
8466 -- analyze call on the default value, to ensure that all error
8467 -- checks are performed, e.g. those associated with static
8468 -- evaluation. Note: this branch will always be taken if the
8469 -- analyzer is turned off (but we still need the error checks).
8471 -- Note: the setting of parent here is to meet the requirement
8472 -- that we can only analyze the expression while attached to
8473 -- the tree. Really the requirement is that the parent chain
8474 -- be set, we don't actually need to be in the tree.
8476 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
8479 -- Default expressions are resolved with their own type if the
8480 -- context is generic, to avoid anomalies with private types.
8482 if Ekind
(Scope
(E
)) = E_Generic_Package
then
8485 Resolve
(Dcopy
, Etype
(Formal
));
8488 -- If that resolved expression will raise constraint error,
8489 -- then flag the default value as raising constraint error.
8490 -- This allows a proper error message on the calls.
8492 if Raises_Constraint_Error
(Dcopy
) then
8493 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
8496 -- If the default is a parameterless call, we use the name of
8497 -- the called function directly, and there is no body to build.
8499 elsif Nkind
(Dcopy
) = N_Function_Call
8500 and then No
(Parameter_Associations
(Dcopy
))
8504 -- Else construct and analyze the body of a wrapper procedure
8505 -- that contains an object declaration to hold the expression.
8506 -- Given that this is done only to complete the analysis, it is
8507 -- simpler to build a procedure than a function which might
8508 -- involve secondary stack expansion.
8511 Dnam
:= Make_Temporary
(Loc
, 'D');
8514 Make_Subprogram_Body
(Loc
,
8516 Make_Procedure_Specification
(Loc
,
8517 Defining_Unit_Name
=> Dnam
),
8519 Declarations
=> New_List
(
8520 Make_Object_Declaration
(Loc
,
8521 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
8522 Object_Definition
=>
8523 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8524 Expression
=> New_Copy_Tree
(Dcopy
))),
8526 Handled_Statement_Sequence
=>
8527 Make_Handled_Sequence_Of_Statements
(Loc
,
8528 Statements
=> Empty_List
));
8530 Set_Scope
(Dnam
, Scope
(E
));
8531 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
8532 Set_Is_Eliminated
(Dnam
);
8533 Insert_After
(After
, Dbody
);
8539 Next_Formal
(Formal
);
8541 end Process_Default_Expressions
;
8543 ----------------------------------------
8544 -- Set_Component_Alignment_If_Not_Set --
8545 ----------------------------------------
8547 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
8549 -- Ignore if not base type, subtypes don't need anything
8551 if Typ
/= Base_Type
(Typ
) then
8555 -- Do not override existing representation
8557 if Is_Packed
(Typ
) then
8560 elsif Has_Specified_Layout
(Typ
) then
8563 elsif Component_Alignment
(Typ
) /= Calign_Default
then
8567 Set_Component_Alignment
8568 (Typ
, Scope_Stack
.Table
8569 (Scope_Stack
.Last
).Component_Alignment_Default
);
8571 end Set_Component_Alignment_If_Not_Set
;
8573 --------------------------
8574 -- Set_SSO_From_Default --
8575 --------------------------
8577 procedure Set_SSO_From_Default
(T
: Entity_Id
) is
8581 -- Set default SSO for an array or record base type, except in case of
8582 -- a type extension (which always inherits the SSO of its parent type).
8585 and then (Is_Array_Type
(T
)
8586 or else (Is_Record_Type
(T
)
8587 and then not (Is_Tagged_Type
(T
)
8588 and then Is_Derived_Type
(T
))))
8591 (Bytes_Big_Endian
and then SSO_Set_Low_By_Default
(T
))
8593 (not Bytes_Big_Endian
and then SSO_Set_High_By_Default
(T
));
8595 if (SSO_Set_Low_By_Default
(T
) or else SSO_Set_High_By_Default
(T
))
8597 -- For a record type, if bit order is specified explicitly,
8598 -- then do not set SSO from default if not consistent. Note that
8599 -- we do not want to look at a Bit_Order attribute definition
8600 -- for a parent: if we were to inherit Bit_Order, then both
8601 -- SSO_Set_*_By_Default flags would have been cleared already
8602 -- (by Inherit_Aspects_At_Freeze_Point).
8607 Has_Rep_Item
(T
, Name_Bit_Order
, Check_Parents
=> False)
8608 and then Reverse_Bit_Order
(T
) /= Reversed
)
8610 -- If flags cause reverse storage order, then set the result. Note
8611 -- that we would have ignored the pragma setting the non default
8612 -- storage order in any case, hence the assertion at this point.
8615 (not Reversed
or else Support_Nondefault_SSO_On_Target
);
8617 Set_Reverse_Storage_Order
(T
, Reversed
);
8619 -- For a record type, also set reversed bit order. Note: if a bit
8620 -- order has been specified explicitly, then this is a no-op.
8622 if Is_Record_Type
(T
) then
8623 Set_Reverse_Bit_Order
(T
, Reversed
);
8627 end Set_SSO_From_Default
;
8633 procedure Undelay_Type
(T
: Entity_Id
) is
8635 Set_Has_Delayed_Freeze
(T
, False);
8636 Set_Freeze_Node
(T
, Empty
);
8638 -- Since we don't want T to have a Freeze_Node, we don't want its
8639 -- Full_View or Corresponding_Record_Type to have one either.
8641 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8642 -- want is to be sure that for an Itype that's part of record R and is a
8643 -- subtype of type T, that it's frozen after the later of the freeze
8644 -- points of R and T. We have no way of doing that directly, so what we
8645 -- do is force most such Itypes to be frozen as part of freezing R via
8646 -- this procedure and only delay the ones that need to be delayed
8647 -- (mostly the designated types of access types that are defined as part
8650 if Is_Private_Type
(T
)
8651 and then Present
(Full_View
(T
))
8652 and then Is_Itype
(Full_View
(T
))
8653 and then Is_Record_Type
(Scope
(Full_View
(T
)))
8655 Undelay_Type
(Full_View
(T
));
8658 if Is_Concurrent_Type
(T
)
8659 and then Present
(Corresponding_Record_Type
(T
))
8660 and then Is_Itype
(Corresponding_Record_Type
(T
))
8661 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
8663 Undelay_Type
(Corresponding_Record_Type
(T
));
8671 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Entity_Id
) is
8672 Ent
: constant Entity_Id
:= Entity
(Nam
);
8673 -- The object to which the address clause applies
8676 Old
: Entity_Id
:= Empty
;
8680 -- No warning if address clause overlay warnings are off
8682 if not Address_Clause_Overlay_Warnings
then
8686 -- No warning if there is an explicit initialization
8688 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
8690 if Present
(Init
) and then Comes_From_Source
(Init
) then
8694 -- We only give the warning for non-imported entities of a type for
8695 -- which a non-null base init proc is defined, or for objects of access
8696 -- types with implicit null initialization, or when Normalize_Scalars
8697 -- applies and the type is scalar or a string type (the latter being
8698 -- tested for because predefined String types are initialized by inline
8699 -- code rather than by an init_proc). Note that we do not give the
8700 -- warning for Initialize_Scalars, since we suppressed initialization
8701 -- in this case. Also, do not warn if Suppress_Initialization is set.
8704 and then not Is_Imported
(Ent
)
8705 and then not Initialization_Suppressed
(Typ
)
8706 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
8707 or else Is_Access_Type
(Typ
)
8708 or else (Normalize_Scalars
8709 and then (Is_Scalar_Type
(Typ
)
8710 or else Is_String_Type
(Typ
))))
8712 if Nkind
(Expr
) = N_Attribute_Reference
8713 and then Is_Entity_Name
(Prefix
(Expr
))
8715 Old
:= Entity
(Prefix
(Expr
));
8717 elsif Is_Entity_Name
(Expr
)
8718 and then Ekind
(Entity
(Expr
)) = E_Constant
8720 Decl
:= Declaration_Node
(Entity
(Expr
));
8722 if Nkind
(Decl
) = N_Object_Declaration
8723 and then Present
(Expression
(Decl
))
8724 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
8725 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
8727 Old
:= Entity
(Prefix
(Expression
(Decl
)));
8729 elsif Nkind
(Expr
) = N_Function_Call
then
8733 -- A function call (most likely to To_Address) is probably not an
8734 -- overlay, so skip warning. Ditto if the function call was inlined
8735 -- and transformed into an entity.
8737 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
8741 -- If a pragma Import follows, we assume that it is for the current
8742 -- target of the address clause, and skip the warning. There may be
8743 -- a source pragma or an aspect that specifies import and generates
8744 -- the corresponding pragma. These will indicate that the entity is
8745 -- imported and that is checked above so that the spurious warning
8746 -- (generated when the entity is frozen) will be suppressed. The
8747 -- pragma may be attached to the aspect, so it is not yet a list
8750 if Is_List_Member
(Parent
(Expr
)) then
8751 Decl
:= Next
(Parent
(Expr
));
8754 and then Nkind
(Decl
) = N_Pragma
8755 and then Pragma_Name
(Decl
) = Name_Import
8761 -- Otherwise give warning message
8763 if Present
(Old
) then
8764 Error_Msg_Node_2
:= Old
;
8766 ("default initialization of & may modify &??",
8770 ("default initialization of & may modify overlaid storage??",
8774 -- Add friendly warning if initialization comes from a packed array
8777 if Is_Record_Type
(Typ
) then
8782 Comp
:= First_Component
(Typ
);
8783 while Present
(Comp
) loop
8784 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
8785 and then Present
(Expression
(Parent
(Comp
)))
8788 elsif Is_Array_Type
(Etype
(Comp
))
8789 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
8792 ("\packed array component& " &
8793 "will be initialized to zero??",
8797 Next_Component
(Comp
);
8804 ("\use pragma Import for & to " &
8805 "suppress initialization (RM B.1(24))??",