2003-05-15 Aldy Hernandez <aldyh@redhat.com>
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob8cd28acb3746b0d7fd09301510c438eddae1402c
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
26 /* Definitions for the object file format. These are set at
27 compile-time. */
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
43 /* Default string to use for cpu if not specified. */
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT ((char *)0)
46 #endif
48 /* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50 #define ASM_CPU_SPEC \
51 "%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
54 %{mpowerpc*: -mppc} \
55 %{mno-power: %{!mpowerpc*: -mcom}} \
56 %{!mno-power: %{!mpower2: %(asm_default)}}} \
57 %{mcpu=common: -mcom} \
58 %{mcpu=power: -mpwr} \
59 %{mcpu=power2: -mpwrx} \
60 %{mcpu=power3: -m604} \
61 %{mcpu=power4: -mpower4} \
62 %{mcpu=powerpc: -mppc} \
63 %{mcpu=rios: -mpwr} \
64 %{mcpu=rios1: -mpwr} \
65 %{mcpu=rios2: -mpwrx} \
66 %{mcpu=rsc: -mpwr} \
67 %{mcpu=rsc1: -mpwr} \
68 %{mcpu=401: -mppc} \
69 %{mcpu=403: -m403} \
70 %{mcpu=405: -m405} \
71 %{mcpu=405fp: -m405} \
72 %{mcpu=440: -m440} \
73 %{mcpu=440fp: -m440} \
74 %{mcpu=505: -mppc} \
75 %{mcpu=601: -m601} \
76 %{mcpu=602: -mppc} \
77 %{mcpu=603: -mppc} \
78 %{mcpu=603e: -mppc} \
79 %{mcpu=ec603e: -mppc} \
80 %{mcpu=604: -mppc} \
81 %{mcpu=604e: -mppc} \
82 %{mcpu=620: -mppc} \
83 %{mcpu=630: -m604} \
84 %{mcpu=740: -mppc} \
85 %{mcpu=7400: -mppc} \
86 %{mcpu=7450: -mppc} \
87 %{mcpu=750: -mppc} \
88 %{mcpu=801: -mppc} \
89 %{mcpu=821: -mppc} \
90 %{mcpu=823: -mppc} \
91 %{mcpu=860: -mppc} \
92 %{mcpu=8540: -me500} \
93 %{maltivec: -maltivec}"
95 #define CPP_DEFAULT_SPEC ""
97 #define ASM_DEFAULT_SPEC ""
99 /* This macro defines names of additional specifications to put in the specs
100 that can be used in various specifications like CC1_SPEC. Its definition
101 is an initializer with a subgrouping for each command option.
103 Each subgrouping contains a string constant, that defines the
104 specification name, and a string constant that used by the GCC driver
105 program.
107 Do not define this macro if it does not need to do anything. */
109 #define SUBTARGET_EXTRA_SPECS
111 #define EXTRA_SPECS \
112 { "cpp_default", CPP_DEFAULT_SPEC }, \
113 { "asm_cpu", ASM_CPU_SPEC }, \
114 { "asm_default", ASM_DEFAULT_SPEC }, \
115 SUBTARGET_EXTRA_SPECS
117 /* Architecture type. */
119 extern int target_flags;
121 /* Use POWER architecture instructions and MQ register. */
122 #define MASK_POWER 0x00000001
124 /* Use POWER2 extensions to POWER architecture. */
125 #define MASK_POWER2 0x00000002
127 /* Use PowerPC architecture instructions. */
128 #define MASK_POWERPC 0x00000004
130 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
131 #define MASK_PPC_GPOPT 0x00000008
133 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
134 #define MASK_PPC_GFXOPT 0x00000010
136 /* Use PowerPC-64 architecture instructions. */
137 #define MASK_POWERPC64 0x00000020
139 /* Use revised mnemonic names defined for PowerPC architecture. */
140 #define MASK_NEW_MNEMONICS 0x00000040
142 /* Disable placing fp constants in the TOC; can be turned on when the
143 TOC overflows. */
144 #define MASK_NO_FP_IN_TOC 0x00000080
146 /* Disable placing symbol+offset constants in the TOC; can be turned on when
147 the TOC overflows. */
148 #define MASK_NO_SUM_IN_TOC 0x00000100
150 /* Output only one TOC entry per module. Normally linking fails if
151 there are more than 16K unique variables/constants in an executable. With
152 this option, linking fails only if there are more than 16K modules, or
153 if there are more than 16K unique variables/constant in a single module.
155 This is at the cost of having 2 extra loads and one extra store per
156 function, and one less allocable register. */
157 #define MASK_MINIMAL_TOC 0x00000200
159 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
160 #define MASK_64BIT 0x00000400
162 /* Disable use of FPRs. */
163 #define MASK_SOFT_FLOAT 0x00000800
165 /* Enable load/store multiple, even on PowerPC */
166 #define MASK_MULTIPLE 0x00001000
168 /* Use string instructions for block moves */
169 #define MASK_STRING 0x00002000
171 /* Disable update form of load/store */
172 #define MASK_NO_UPDATE 0x00004000
174 /* Disable fused multiply/add operations */
175 #define MASK_NO_FUSED_MADD 0x00008000
177 /* Nonzero if we need to schedule the prolog and epilog. */
178 #define MASK_SCHED_PROLOG 0x00010000
180 /* Use AltiVec instructions. */
181 #define MASK_ALTIVEC 0x00020000
183 /* Return small structures in memory (as the AIX ABI requires). */
184 #define MASK_AIX_STRUCT_RET 0x00040000
186 /* The only remaining free bits are 0x00780000. sysv4.h uses
187 0x00800000 -> 0x40000000, and 0x80000000 is not available
188 because target_flags is signed. */
190 #define TARGET_POWER (target_flags & MASK_POWER)
191 #define TARGET_POWER2 (target_flags & MASK_POWER2)
192 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
193 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
194 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
195 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
196 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
197 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
198 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
199 #define TARGET_64BIT (target_flags & MASK_64BIT)
200 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
201 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
202 #define TARGET_STRING (target_flags & MASK_STRING)
203 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
204 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
205 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
206 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
207 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
209 #define TARGET_32BIT (! TARGET_64BIT)
210 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
211 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
212 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
214 #ifndef HAVE_AS_TLS
215 #define HAVE_AS_TLS 0
216 #endif
218 #ifdef IN_LIBGCC2
219 /* For libgcc2 we make sure this is a compile time constant */
220 #if defined (__64BIT__) || defined (__powerpc64__)
221 #define TARGET_POWERPC64 1
222 #else
223 #define TARGET_POWERPC64 0
224 #endif
225 #else
226 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
227 #endif
229 #define TARGET_XL_CALL 0
231 /* Run-time compilation parameters selecting different hardware subsets.
233 Macro to define tables used to set the flags.
234 This is a list in braces of pairs in braces,
235 each pair being { "NAME", VALUE }
236 where VALUE is the bits to set or minus the bits to clear.
237 An empty string NAME is used to identify the default VALUE. */
239 #define TARGET_SWITCHES \
240 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
241 N_("Use POWER instruction set")}, \
242 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
243 | MASK_POWER2), \
244 N_("Use POWER2 instruction set")}, \
245 {"no-power2", - MASK_POWER2, \
246 N_("Do not use POWER2 instruction set")}, \
247 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
248 | MASK_STRING), \
249 N_("Do not use POWER instruction set")}, \
250 {"powerpc", MASK_POWERPC, \
251 N_("Use PowerPC instruction set")}, \
252 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
253 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
254 N_("Do not use PowerPC instruction set")}, \
255 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
256 N_("Use PowerPC General Purpose group optional instructions")},\
257 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
258 N_("Don't use PowerPC General Purpose group optional instructions")},\
259 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
260 N_("Use PowerPC Graphics group optional instructions")},\
261 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
262 N_("Don't use PowerPC Graphics group optional instructions")},\
263 {"powerpc64", MASK_POWERPC64, \
264 N_("Use PowerPC-64 instruction set")}, \
265 {"no-powerpc64", - MASK_POWERPC64, \
266 N_("Don't use PowerPC-64 instruction set")}, \
267 {"altivec", MASK_ALTIVEC , \
268 N_("Use AltiVec instructions")}, \
269 {"no-altivec", - MASK_ALTIVEC , \
270 N_("Don't use AltiVec instructions")}, \
271 {"new-mnemonics", MASK_NEW_MNEMONICS, \
272 N_("Use new mnemonics for PowerPC architecture")},\
273 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
274 N_("Use old mnemonics for PowerPC architecture")},\
275 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
276 | MASK_MINIMAL_TOC), \
277 N_("Put everything in the regular TOC")}, \
278 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
279 N_("Place floating point constants in TOC")}, \
280 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
281 N_("Don't place floating point constants in TOC")},\
282 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
283 N_("Place symbol+offset constants in TOC")}, \
284 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
285 N_("Don't place symbol+offset constants in TOC")},\
286 {"minimal-toc", MASK_MINIMAL_TOC, \
287 "Use only one TOC entry per procedure"}, \
288 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
289 ""}, \
290 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
291 N_("Place variable addresses in the regular TOC")},\
292 {"hard-float", - MASK_SOFT_FLOAT, \
293 N_("Use hardware fp")}, \
294 {"soft-float", MASK_SOFT_FLOAT, \
295 N_("Do not use hardware fp")}, \
296 {"multiple", MASK_MULTIPLE, \
297 N_("Generate load/store multiple instructions")}, \
298 {"no-multiple", - MASK_MULTIPLE, \
299 N_("Do not generate load/store multiple instructions")},\
300 {"string", MASK_STRING, \
301 N_("Generate string instructions for block moves")},\
302 {"no-string", - MASK_STRING, \
303 N_("Do not generate string instructions for block moves")},\
304 {"update", - MASK_NO_UPDATE, \
305 N_("Generate load/store with update instructions")},\
306 {"no-update", MASK_NO_UPDATE, \
307 N_("Do not generate load/store with update instructions")},\
308 {"fused-madd", - MASK_NO_FUSED_MADD, \
309 N_("Generate fused multiply/add instructions")},\
310 {"no-fused-madd", MASK_NO_FUSED_MADD, \
311 N_("Don't generate fused multiply/add instructions")},\
312 {"sched-prolog", MASK_SCHED_PROLOG, \
313 ""}, \
314 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
315 N_("Don't schedule the start and end of the procedure")},\
316 {"sched-epilog", MASK_SCHED_PROLOG, \
317 ""}, \
318 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
319 ""}, \
320 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
321 N_("Return all structures in memory (AIX default)")},\
322 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
323 N_("Return small structures in registers (SVR4 default)")},\
324 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
325 ""},\
326 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
327 ""},\
328 SUBTARGET_SWITCHES \
329 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
330 ""}}
332 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
334 /* This is meant to be redefined in the host dependent files */
335 #define SUBTARGET_SWITCHES
337 /* Processor type. Order must match cpu attribute in MD file. */
338 enum processor_type
340 PROCESSOR_RIOS1,
341 PROCESSOR_RIOS2,
342 PROCESSOR_RS64A,
343 PROCESSOR_MPCCORE,
344 PROCESSOR_PPC403,
345 PROCESSOR_PPC405,
346 PROCESSOR_PPC440,
347 PROCESSOR_PPC601,
348 PROCESSOR_PPC603,
349 PROCESSOR_PPC604,
350 PROCESSOR_PPC604e,
351 PROCESSOR_PPC620,
352 PROCESSOR_PPC630,
353 PROCESSOR_PPC750,
354 PROCESSOR_PPC7400,
355 PROCESSOR_PPC7450,
356 PROCESSOR_PPC8540,
357 PROCESSOR_POWER4
360 extern enum processor_type rs6000_cpu;
362 /* Recast the processor type to the cpu attribute. */
363 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
365 /* Define generic processor types based upon current deployment. */
366 #define PROCESSOR_COMMON PROCESSOR_PPC601
367 #define PROCESSOR_POWER PROCESSOR_RIOS1
368 #define PROCESSOR_POWERPC PROCESSOR_PPC604
369 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
371 /* Define the default processor. This is overridden by other tm.h files. */
372 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
373 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
375 /* Specify the dialect of assembler to use. New mnemonics is dialect one
376 and the old mnemonics are dialect zero. */
377 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
379 /* This is meant to be overridden in target specific files. */
380 #define SUBTARGET_OPTIONS
382 #define TARGET_OPTIONS \
384 {"cpu=", &rs6000_select[1].string, \
385 N_("Use features of and schedule code for given CPU"), 0}, \
386 {"tune=", &rs6000_select[2].string, \
387 N_("Schedule code for given CPU"), 0}, \
388 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
389 {"traceback=", &rs6000_traceback_name, \
390 N_("Select full, part, or no traceback table"), 0}, \
391 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
392 {"long-double-", &rs6000_long_double_size_string, \
393 N_("Specify size of long double (64 or 128 bits)"), 0}, \
394 {"isel=", &rs6000_isel_string, \
395 N_("Specify yes/no if isel instructions should be generated"), 0}, \
396 {"spe=", &rs6000_spe_string, \
397 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
398 {"float-gprs=", &rs6000_float_gprs_string, \
399 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
400 {"vrsave=", &rs6000_altivec_vrsave_string, \
401 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
402 {"longcall", &rs6000_longcall_switch, \
403 N_("Avoid all range limits on call instructions"), 0}, \
404 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
405 SUBTARGET_OPTIONS \
408 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
409 struct rs6000_cpu_select
411 const char *string;
412 const char *name;
413 int set_tune_p;
414 int set_arch_p;
417 extern struct rs6000_cpu_select rs6000_select[];
419 /* Debug support */
420 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
421 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
422 extern int rs6000_debug_stack; /* debug stack applications */
423 extern int rs6000_debug_arg; /* debug argument handling */
425 #define TARGET_DEBUG_STACK rs6000_debug_stack
426 #define TARGET_DEBUG_ARG rs6000_debug_arg
428 extern const char *rs6000_traceback_name; /* Type of traceback table. */
430 /* These are separate from target_flags because we've run out of bits
431 there. */
432 extern const char *rs6000_long_double_size_string;
433 extern int rs6000_long_double_type_size;
434 extern int rs6000_altivec_abi;
435 extern int rs6000_spe_abi;
436 extern int rs6000_isel;
437 extern int rs6000_spe;
438 extern int rs6000_float_gprs;
439 extern const char *rs6000_float_gprs_string;
440 extern const char *rs6000_isel_string;
441 extern const char *rs6000_spe_string;
442 extern const char *rs6000_altivec_vrsave_string;
443 extern int rs6000_altivec_vrsave;
444 extern const char *rs6000_longcall_switch;
445 extern int rs6000_default_long_calls;
447 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
448 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
449 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
451 #define TARGET_SPE_ABI 0
452 #define TARGET_SPE 0
453 #define TARGET_E500 0
454 #define TARGET_ISEL 0
455 #define TARGET_FPRS 1
457 /* Sometimes certain combinations of command options do not make sense
458 on a particular target machine. You can define a macro
459 `OVERRIDE_OPTIONS' to take account of this. This macro, if
460 defined, is executed once just after all the command options have
461 been parsed.
463 Don't use this macro to turn on various extra optimizations for
464 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
466 On the RS/6000 this is used to define the target cpu type. */
468 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
470 /* Define this to change the optimizations performed by default. */
471 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
473 /* Show we can debug even without a frame pointer. */
474 #define CAN_DEBUG_WITHOUT_FP
476 /* Target pragma. */
477 #define REGISTER_TARGET_PRAGMAS() do { \
478 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
479 } while (0)
481 /* Target #defines. */
482 #define TARGET_CPU_CPP_BUILTINS() \
483 rs6000_cpu_cpp_builtins (pfile)
485 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
486 we're compiling for. Some configurations may need to override it. */
487 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
488 do \
490 if (BYTES_BIG_ENDIAN) \
492 builtin_define ("__BIG_ENDIAN__"); \
493 builtin_define ("_BIG_ENDIAN"); \
494 builtin_assert ("machine=bigendian"); \
496 else \
498 builtin_define ("__LITTLE_ENDIAN__"); \
499 builtin_define ("_LITTLE_ENDIAN"); \
500 builtin_assert ("machine=littleendian"); \
503 while (0)
505 /* Target machine storage layout. */
507 /* Define this macro if it is advisable to hold scalars in registers
508 in a wider mode than that declared by the program. In such cases,
509 the value is constrained to be within the bounds of the declared
510 type, but kept valid in the wider mode. The signedness of the
511 extension may differ from that of the type. */
513 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
514 if (GET_MODE_CLASS (MODE) == MODE_INT \
515 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
516 (MODE) = word_mode;
518 /* Define this if function arguments should also be promoted using the above
519 procedure. */
521 #define PROMOTE_FUNCTION_ARGS
523 /* Likewise, if the function return value is promoted. */
525 #define PROMOTE_FUNCTION_RETURN
527 /* Define this if most significant bit is lowest numbered
528 in instructions that operate on numbered bit-fields. */
529 /* That is true on RS/6000. */
530 #define BITS_BIG_ENDIAN 1
532 /* Define this if most significant byte of a word is the lowest numbered. */
533 /* That is true on RS/6000. */
534 #define BYTES_BIG_ENDIAN 1
536 /* Define this if most significant word of a multiword number is lowest
537 numbered.
539 For RS/6000 we can decide arbitrarily since there are no machine
540 instructions for them. Might as well be consistent with bits and bytes. */
541 #define WORDS_BIG_ENDIAN 1
543 #define MAX_BITS_PER_WORD 64
545 /* Width of a word, in units (bytes). */
546 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
547 #ifdef IN_LIBGCC2
548 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
549 #else
550 #define MIN_UNITS_PER_WORD 4
551 #endif
552 #define UNITS_PER_FP_WORD 8
553 #define UNITS_PER_ALTIVEC_WORD 16
554 #define UNITS_PER_SPE_WORD 8
556 /* Type used for ptrdiff_t, as a string used in a declaration. */
557 #define PTRDIFF_TYPE "int"
559 /* Type used for size_t, as a string used in a declaration. */
560 #define SIZE_TYPE "long unsigned int"
562 /* Type used for wchar_t, as a string used in a declaration. */
563 #define WCHAR_TYPE "short unsigned int"
565 /* Width of wchar_t in bits. */
566 #define WCHAR_TYPE_SIZE 16
568 /* A C expression for the size in bits of the type `short' on the
569 target machine. If you don't define this, the default is half a
570 word. (If this would be less than one storage unit, it is
571 rounded up to one unit.) */
572 #define SHORT_TYPE_SIZE 16
574 /* A C expression for the size in bits of the type `int' on the
575 target machine. If you don't define this, the default is one
576 word. */
577 #define INT_TYPE_SIZE 32
579 /* A C expression for the size in bits of the type `long' on the
580 target machine. If you don't define this, the default is one
581 word. */
582 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
583 #define MAX_LONG_TYPE_SIZE 64
585 /* A C expression for the size in bits of the type `long long' on the
586 target machine. If you don't define this, the default is two
587 words. */
588 #define LONG_LONG_TYPE_SIZE 64
590 /* A C expression for the size in bits of the type `float' on the
591 target machine. If you don't define this, the default is one
592 word. */
593 #define FLOAT_TYPE_SIZE 32
595 /* A C expression for the size in bits of the type `double' on the
596 target machine. If you don't define this, the default is two
597 words. */
598 #define DOUBLE_TYPE_SIZE 64
600 /* A C expression for the size in bits of the type `long double' on
601 the target machine. If you don't define this, the default is two
602 words. */
603 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
605 /* Constant which presents upper bound of the above value. */
606 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
608 /* Define this to set long double type size to use in libgcc2.c, which can
609 not depend on target_flags. */
610 #ifdef __LONG_DOUBLE_128__
611 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
612 #else
613 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
614 #endif
616 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
617 #define WIDEST_HARDWARE_FP_SIZE 64
619 /* Width in bits of a pointer.
620 See also the macro `Pmode' defined below. */
621 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
623 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
624 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
626 /* Boundary (in *bits*) on which stack pointer should be aligned. */
627 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
629 /* Allocation boundary (in *bits*) for the code of a function. */
630 #define FUNCTION_BOUNDARY 32
632 /* No data type wants to be aligned rounder than this. */
633 #define BIGGEST_ALIGNMENT 128
635 /* A C expression to compute the alignment for a variables in the
636 local store. TYPE is the data type, and ALIGN is the alignment
637 that the object would ordinarily have. */
638 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
639 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
640 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
642 /* Alignment of field after `int : 0' in a structure. */
643 #define EMPTY_FIELD_BOUNDARY 32
645 /* Every structure's size must be a multiple of this. */
646 #define STRUCTURE_SIZE_BOUNDARY 8
648 /* Return 1 if a structure or array containing FIELD should be
649 accessed using `BLKMODE'.
651 For the SPE, simd types are V2SI, and gcc can be tempted to put the
652 entire thing in a DI and use subregs to access the internals.
653 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
654 back-end. Because a single GPR can hold a V2SI, but not a DI, the
655 best thing to do is set structs to BLKmode and avoid Severe Tire
656 Damage. */
657 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
658 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
660 /* A bit-field declared as `int' forces `int' alignment for the struct. */
661 #define PCC_BITFIELD_TYPE_MATTERS 1
663 /* Make strings word-aligned so strcpy from constants will be faster.
664 Make vector constants quadword aligned. */
665 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
666 (TREE_CODE (EXP) == STRING_CST \
667 && (ALIGN) < BITS_PER_WORD \
668 ? BITS_PER_WORD \
669 : (ALIGN))
671 /* Make arrays of chars word-aligned for the same reasons.
672 Align vectors to 128 bits. */
673 #define DATA_ALIGNMENT(TYPE, ALIGN) \
674 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
675 : TREE_CODE (TYPE) == ARRAY_TYPE \
676 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
677 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
679 /* Nonzero if move instructions will actually fail to work
680 when given unaligned data. */
681 #define STRICT_ALIGNMENT 0
683 /* Define this macro to be the value 1 if unaligned accesses have a cost
684 many times greater than aligned accesses, for example if they are
685 emulated in a trap handler. */
686 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
687 (STRICT_ALIGNMENT \
688 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
689 || (MODE) == DImode) \
690 && (ALIGN) < 32))
692 /* Standard register usage. */
694 /* Number of actual hardware registers.
695 The hardware registers are assigned numbers for the compiler
696 from 0 to just below FIRST_PSEUDO_REGISTER.
697 All registers that the compiler knows about must be given numbers,
698 even those that are not normally considered general registers.
700 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
701 an MQ register, a count register, a link register, and 8 condition
702 register fields, which we view here as separate registers. AltiVec
703 adds 32 vector registers and a VRsave register.
705 In addition, the difference between the frame and argument pointers is
706 a function of the number of registers saved, so we need to have a
707 register for AP that will later be eliminated in favor of SP or FP.
708 This is a normal register, but it is fixed.
710 We also create a pseudo register for float/int conversions, that will
711 really represent the memory location used. It is represented here as
712 a register, in order to work around problems in allocating stack storage
713 in inline functions. */
715 #define FIRST_PSEUDO_REGISTER 113
717 /* This must be included for pre gcc 3.0 glibc compatibility. */
718 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
720 /* Add 32 dwarf columns for synthetic SPE registers. The SPE
721 synthetic registers are 113 through 145. */
722 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
724 /* The SPE has an additional 32 synthetic registers starting at 1200.
725 We must map them here to sane values in the unwinder to avoid a
726 huge hole in the unwind tables.
728 FIXME: the AltiVec ABI has AltiVec registers being 1124-1155, and
729 the VRSAVE SPR (SPR256) assigned to register 356. When AltiVec EH
730 is verified to be working, this macro should be changed
731 accordingly. */
732 #define DWARF_REG_TO_UNWIND_COLUMN(r) ((r) > 1200 ? ((r) - 1200 + 113) : (r))
734 /* 1 for registers that have pervasive standard uses
735 and are not available for the register allocator.
737 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
738 as a local register; for all other OS's r2 is the TOC pointer.
740 cr5 is not supposed to be used.
742 On System V implementations, r13 is fixed and not available for use. */
744 #define FIXED_REGISTERS \
745 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
749 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
750 /* AltiVec registers. */ \
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
753 1, 1 \
754 , 1, 1 \
757 /* 1 for registers not available across function calls.
758 These must include the FIXED_REGISTERS and also any
759 registers that can be used without being saved.
760 The latter must include the registers where values are returned
761 and the register where structure-value addresses are passed.
762 Aside from that, you can include as many other registers as you like. */
764 #define CALL_USED_REGISTERS \
765 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
766 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
767 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
768 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
769 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
770 /* AltiVec registers. */ \
771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
773 1, 1 \
774 , 1, 1 \
777 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
778 the entire set of `FIXED_REGISTERS' be included.
779 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
780 This macro is optional. If not specified, it defaults to the value
781 of `CALL_USED_REGISTERS'. */
783 #define CALL_REALLY_USED_REGISTERS \
784 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
785 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
786 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
787 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
788 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
789 /* AltiVec registers. */ \
790 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
791 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
792 0, 0 \
793 , 0, 0 \
796 #define MQ_REGNO 64
797 #define CR0_REGNO 68
798 #define CR1_REGNO 69
799 #define CR2_REGNO 70
800 #define CR3_REGNO 71
801 #define CR4_REGNO 72
802 #define MAX_CR_REGNO 75
803 #define XER_REGNO 76
804 #define FIRST_ALTIVEC_REGNO 77
805 #define LAST_ALTIVEC_REGNO 108
806 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
807 #define VRSAVE_REGNO 109
808 #define VSCR_REGNO 110
809 #define SPE_ACC_REGNO 111
810 #define SPEFSCR_REGNO 112
812 /* List the order in which to allocate registers. Each register must be
813 listed once, even those in FIXED_REGISTERS.
815 We allocate in the following order:
816 fp0 (not saved or used for anything)
817 fp13 - fp2 (not saved; incoming fp arg registers)
818 fp1 (not saved; return value)
819 fp31 - fp14 (saved; order given to save least number)
820 cr7, cr6 (not saved or special)
821 cr1 (not saved, but used for FP operations)
822 cr0 (not saved, but used for arithmetic operations)
823 cr4, cr3, cr2 (saved)
824 r0 (not saved; cannot be base reg)
825 r9 (not saved; best for TImode)
826 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
827 r3 (not saved; return value register)
828 r31 - r13 (saved; order given to save least number)
829 r12 (not saved; if used for DImode or DFmode would use r13)
830 mq (not saved; best to use it if we can)
831 ctr (not saved; when we have the choice ctr is better)
832 lr (saved)
833 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
834 spe_acc, spefscr (fixed)
836 AltiVec registers:
837 v0 - v1 (not saved or used for anything)
838 v13 - v3 (not saved; incoming vector arg registers)
839 v2 (not saved; incoming vector arg reg; return value)
840 v19 - v14 (not saved or used for anything)
841 v31 - v20 (saved; order given to save least number)
844 #if FIXED_R2 == 1
845 #define MAYBE_R2_AVAILABLE
846 #define MAYBE_R2_FIXED 2,
847 #else
848 #define MAYBE_R2_AVAILABLE 2,
849 #define MAYBE_R2_FIXED
850 #endif
852 #define REG_ALLOC_ORDER \
853 {32, \
854 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
855 33, \
856 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
857 50, 49, 48, 47, 46, \
858 75, 74, 69, 68, 72, 71, 70, \
859 0, MAYBE_R2_AVAILABLE \
860 9, 11, 10, 8, 7, 6, 5, 4, \
861 3, \
862 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
863 18, 17, 16, 15, 14, 13, 12, \
864 64, 66, 65, \
865 73, 1, MAYBE_R2_FIXED 67, 76, \
866 /* AltiVec registers. */ \
867 77, 78, \
868 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
869 79, \
870 96, 95, 94, 93, 92, 91, \
871 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
872 97, 109, 110 \
873 , 111, 112 \
876 /* True if register is floating-point. */
877 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
879 /* True if register is a condition register. */
880 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
882 /* True if register is a condition register, but not cr0. */
883 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
885 /* True if register is an integer register. */
886 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
888 /* SPE SIMD registers are just the GPRs. */
889 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
891 /* True if register is the XER register. */
892 #define XER_REGNO_P(N) ((N) == XER_REGNO)
894 /* True if register is an AltiVec register. */
895 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
897 /* Return number of consecutive hard regs needed starting at reg REGNO
898 to hold something of mode MODE.
899 This is ordinarily the length in words of a value of mode MODE
900 but can be less for certain modes in special long registers.
902 For the SPE, GPRs are 64 bits but only 32 bits are visible in
903 scalar instructions. The upper 32 bits are only available to the
904 SIMD instructions.
906 POWER and PowerPC GPRs hold 32 bits worth;
907 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
909 #define HARD_REGNO_NREGS(REGNO, MODE) \
910 (FP_REGNO_P (REGNO) \
911 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
912 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
913 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
914 : ALTIVEC_REGNO_P (REGNO) \
915 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
916 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
918 #define ALTIVEC_VECTOR_MODE(MODE) \
919 ((MODE) == V16QImode \
920 || (MODE) == V8HImode \
921 || (MODE) == V4SFmode \
922 || (MODE) == V4SImode)
924 #define SPE_VECTOR_MODE(MODE) \
925 ((MODE) == V4HImode \
926 || (MODE) == V2SFmode \
927 || (MODE) == V1DImode \
928 || (MODE) == V2SImode)
930 /* Define this macro to be nonzero if the port is prepared to handle
931 insns involving vector mode MODE. At the very least, it must have
932 move patterns for this mode. */
934 #define VECTOR_MODE_SUPPORTED_P(MODE) \
935 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
936 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
938 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
939 For POWER and PowerPC, the GPRs can hold any mode, but values bigger
940 than one register cannot go past R31. The float
941 registers only can hold floating modes and DImode, and CR register only
942 can hold CC modes. We cannot put TImode anywhere except general
943 register and it must be able to fit within the register set. */
945 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
946 (INT_REGNO_P (REGNO) ? \
947 INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1) \
948 : FP_REGNO_P (REGNO) ? \
949 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
950 || (GET_MODE_CLASS (MODE) == MODE_INT \
951 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
952 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
953 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
954 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
955 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
956 : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
958 /* Value is 1 if it is a good idea to tie two pseudo registers
959 when one has mode MODE1 and one has mode MODE2.
960 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
961 for any hard reg, then this must be 0 for correct output. */
962 #define MODES_TIEABLE_P(MODE1, MODE2) \
963 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
964 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
965 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
966 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
967 : GET_MODE_CLASS (MODE1) == MODE_CC \
968 ? GET_MODE_CLASS (MODE2) == MODE_CC \
969 : GET_MODE_CLASS (MODE2) == MODE_CC \
970 ? GET_MODE_CLASS (MODE1) == MODE_CC \
971 : ALTIVEC_VECTOR_MODE (MODE1) \
972 ? ALTIVEC_VECTOR_MODE (MODE2) \
973 : ALTIVEC_VECTOR_MODE (MODE2) \
974 ? ALTIVEC_VECTOR_MODE (MODE1) \
975 : 1)
977 /* Post-reload, we can't use any new AltiVec registers, as we already
978 emitted the vrsave mask. */
980 #define HARD_REGNO_RENAME_OK(SRC, DST) \
981 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
983 /* A C expression returning the cost of moving data from a register of class
984 CLASS1 to one of CLASS2. */
986 #define REGISTER_MOVE_COST rs6000_register_move_cost
988 /* A C expressions returning the cost of moving data of MODE from a register to
989 or from memory. */
991 #define MEMORY_MOVE_COST rs6000_memory_move_cost
993 /* Specify the cost of a branch insn; roughly the number of extra insns that
994 should be added to avoid a branch.
996 Set this to 3 on the RS/6000 since that is roughly the average cost of an
997 unscheduled conditional branch. */
999 #define BRANCH_COST 3
1001 /* Override BRANCH_COST heuristic which empirically produces worse
1002 performance for fold_range_test(). */
1004 #define RANGE_TEST_NON_SHORT_CIRCUIT 0
1006 /* A fixed register used at prologue and epilogue generation to fix
1007 addressing modes. The SPE needs heavy addressing fixes at the last
1008 minute, and it's best to save a register for it.
1010 AltiVec also needs fixes, but we've gotten around using r11, which
1011 is actually wrong because when use_backchain_to_restore_sp is true,
1012 we end up clobbering r11.
1014 The AltiVec case needs to be fixed. Dunno if we should break ABI
1015 compatibility and reserve a register for it as well.. */
1017 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1019 /* Define this macro to change register usage conditional on target flags.
1020 Set MQ register fixed (already call_used) if not POWER architecture
1021 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1022 64-bit AIX reserves GPR13 for thread-private data.
1023 Conditionally disable FPRs. */
1025 #define CONDITIONAL_REGISTER_USAGE \
1027 int i; \
1028 if (! TARGET_POWER) \
1029 fixed_regs[64] = 1; \
1030 if (TARGET_64BIT) \
1031 fixed_regs[13] = call_used_regs[13] \
1032 = call_really_used_regs[13] = 1; \
1033 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
1034 for (i = 32; i < 64; i++) \
1035 fixed_regs[i] = call_used_regs[i] \
1036 = call_really_used_regs[i] = 1; \
1037 if (DEFAULT_ABI == ABI_V4 \
1038 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1039 && flag_pic == 2) \
1040 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1041 if (DEFAULT_ABI == ABI_V4 \
1042 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1043 && flag_pic == 1) \
1044 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1045 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1046 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1047 if (DEFAULT_ABI == ABI_DARWIN \
1048 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1049 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1050 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1051 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1052 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1053 if (TARGET_ALTIVEC) \
1054 global_regs[VSCR_REGNO] = 1; \
1055 if (TARGET_SPE) \
1057 global_regs[SPEFSCR_REGNO] = 1; \
1058 fixed_regs[FIXED_SCRATCH] \
1059 = call_used_regs[FIXED_SCRATCH] \
1060 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1062 if (! TARGET_ALTIVEC) \
1064 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1065 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1066 call_really_used_regs[VRSAVE_REGNO] = 1; \
1068 if (TARGET_ALTIVEC_ABI) \
1069 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1070 call_used_regs[i] = call_really_used_regs[i] = 1; \
1073 /* Specify the registers used for certain standard purposes.
1074 The values of these macros are register numbers. */
1076 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1077 /* #define PC_REGNUM */
1079 /* Register to use for pushing function arguments. */
1080 #define STACK_POINTER_REGNUM 1
1082 /* Base register for access to local variables of the function. */
1083 #define FRAME_POINTER_REGNUM 31
1085 /* Value should be nonzero if functions must have frame pointers.
1086 Zero means the frame pointer need not be set up (and parms
1087 may be accessed via the stack pointer) in functions that seem suitable.
1088 This is computed in `reload', in reload1.c. */
1089 #define FRAME_POINTER_REQUIRED 0
1091 /* Base register for access to arguments of the function. */
1092 #define ARG_POINTER_REGNUM 67
1094 /* Place to put static chain when calling a function that requires it. */
1095 #define STATIC_CHAIN_REGNUM 11
1097 /* Link register number. */
1098 #define LINK_REGISTER_REGNUM 65
1100 /* Count register number. */
1101 #define COUNT_REGISTER_REGNUM 66
1103 /* Place that structure value return address is placed.
1105 On the RS/6000, it is passed as an extra parameter. */
1106 #define STRUCT_VALUE 0
1108 /* Define the classes of registers for register constraints in the
1109 machine description. Also define ranges of constants.
1111 One of the classes must always be named ALL_REGS and include all hard regs.
1112 If there is more than one class, another class must be named NO_REGS
1113 and contain no registers.
1115 The name GENERAL_REGS must be the name of a class (or an alias for
1116 another name such as ALL_REGS). This is the class of registers
1117 that is allowed by "g" or "r" in a register constraint.
1118 Also, registers outside this class are allocated only when
1119 instructions express preferences for them.
1121 The classes must be numbered in nondecreasing order; that is,
1122 a larger-numbered class must never be contained completely
1123 in a smaller-numbered class.
1125 For any two classes, it is very desirable that there be another
1126 class that represents their union. */
1128 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1129 and condition registers, plus three special registers, MQ, CTR, and the
1130 link register. AltiVec adds a vector register class.
1132 However, r0 is special in that it cannot be used as a base register.
1133 So make a class for registers valid as base registers.
1135 Also, cr0 is the only condition code register that can be used in
1136 arithmetic insns, so make a separate class for it. */
1138 enum reg_class
1140 NO_REGS,
1141 BASE_REGS,
1142 GENERAL_REGS,
1143 FLOAT_REGS,
1144 ALTIVEC_REGS,
1145 VRSAVE_REGS,
1146 VSCR_REGS,
1147 SPE_ACC_REGS,
1148 SPEFSCR_REGS,
1149 NON_SPECIAL_REGS,
1150 MQ_REGS,
1151 LINK_REGS,
1152 CTR_REGS,
1153 LINK_OR_CTR_REGS,
1154 SPECIAL_REGS,
1155 SPEC_OR_GEN_REGS,
1156 CR0_REGS,
1157 CR_REGS,
1158 NON_FLOAT_REGS,
1159 XER_REGS,
1160 ALL_REGS,
1161 LIM_REG_CLASSES
1164 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1166 /* Give names of register classes as strings for dump file. */
1168 #define REG_CLASS_NAMES \
1170 "NO_REGS", \
1171 "BASE_REGS", \
1172 "GENERAL_REGS", \
1173 "FLOAT_REGS", \
1174 "ALTIVEC_REGS", \
1175 "VRSAVE_REGS", \
1176 "VSCR_REGS", \
1177 "SPE_ACC_REGS", \
1178 "SPEFSCR_REGS", \
1179 "NON_SPECIAL_REGS", \
1180 "MQ_REGS", \
1181 "LINK_REGS", \
1182 "CTR_REGS", \
1183 "LINK_OR_CTR_REGS", \
1184 "SPECIAL_REGS", \
1185 "SPEC_OR_GEN_REGS", \
1186 "CR0_REGS", \
1187 "CR_REGS", \
1188 "NON_FLOAT_REGS", \
1189 "XER_REGS", \
1190 "ALL_REGS" \
1193 /* Define which registers fit in which classes.
1194 This is an initializer for a vector of HARD_REG_SET
1195 of length N_REG_CLASSES. */
1197 #define REG_CLASS_CONTENTS \
1199 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1200 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1201 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1202 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1203 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1204 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1205 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1206 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1207 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1208 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1209 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1210 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1211 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1212 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1213 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1214 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1215 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1216 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1217 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1218 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1219 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1222 /* The same information, inverted:
1223 Return the class number of the smallest class containing
1224 reg number REGNO. This could be a conditional expression
1225 or could index an array. */
1227 #define REGNO_REG_CLASS(REGNO) \
1228 ((REGNO) == 0 ? GENERAL_REGS \
1229 : (REGNO) < 32 ? BASE_REGS \
1230 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1231 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1232 : (REGNO) == CR0_REGNO ? CR0_REGS \
1233 : CR_REGNO_P (REGNO) ? CR_REGS \
1234 : (REGNO) == MQ_REGNO ? MQ_REGS \
1235 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1236 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1237 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1238 : (REGNO) == XER_REGNO ? XER_REGS \
1239 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1240 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1241 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1242 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1243 : NO_REGS)
1245 /* The class value for index registers, and the one for base regs. */
1246 #define INDEX_REG_CLASS GENERAL_REGS
1247 #define BASE_REG_CLASS BASE_REGS
1249 /* Get reg_class from a letter such as appears in the machine description. */
1251 #define REG_CLASS_FROM_LETTER(C) \
1252 ((C) == 'f' ? FLOAT_REGS \
1253 : (C) == 'b' ? BASE_REGS \
1254 : (C) == 'h' ? SPECIAL_REGS \
1255 : (C) == 'q' ? MQ_REGS \
1256 : (C) == 'c' ? CTR_REGS \
1257 : (C) == 'l' ? LINK_REGS \
1258 : (C) == 'v' ? ALTIVEC_REGS \
1259 : (C) == 'x' ? CR0_REGS \
1260 : (C) == 'y' ? CR_REGS \
1261 : (C) == 'z' ? XER_REGS \
1262 : NO_REGS)
1264 /* The letters I, J, K, L, M, N, and P in a register constraint string
1265 can be used to stand for particular ranges of immediate operands.
1266 This macro defines what the ranges are.
1267 C is the letter, and VALUE is a constant value.
1268 Return 1 if VALUE is in the range specified by C.
1270 `I' is a signed 16-bit constant
1271 `J' is a constant with only the high-order 16 bits nonzero
1272 `K' is a constant with only the low-order 16 bits nonzero
1273 `L' is a signed 16-bit constant shifted left 16 bits
1274 `M' is a constant that is greater than 31
1275 `N' is a positive constant that is an exact power of two
1276 `O' is the constant zero
1277 `P' is a constant whose negation is a signed 16-bit constant */
1279 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1280 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1281 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1282 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1283 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1284 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1285 : (C) == 'M' ? (VALUE) > 31 \
1286 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1287 : (C) == 'O' ? (VALUE) == 0 \
1288 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1289 : 0)
1291 /* Similar, but for floating constants, and defining letters G and H.
1292 Here VALUE is the CONST_DOUBLE rtx itself.
1294 We flag for special constants when we can copy the constant into
1295 a general register in two insns for DF/DI and one insn for SF.
1297 'H' is used for DI/DF constants that take 3 insns. */
1299 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1300 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1301 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1302 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1303 : 0)
1305 /* Optional extra constraints for this machine.
1307 'Q' means that is a memory operand that is just an offset from a reg.
1308 'R' is for AIX TOC entries.
1309 'S' is a constant that can be placed into a 64-bit mask operand
1310 'T' is a constant that can be placed into a 32-bit mask operand
1311 'U' is for V.4 small data references.
1312 'W' is a vector constant that can be easily generated (no mem refs).
1313 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1315 #define EXTRA_CONSTRAINT(OP, C) \
1316 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1317 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
1318 : (C) == 'S' ? mask64_operand (OP, DImode) \
1319 : (C) == 'T' ? mask_operand (OP, SImode) \
1320 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1321 && small_data_operand (OP, GET_MODE (OP))) \
1322 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1323 && (fixed_regs[CR0_REGNO] \
1324 || !logical_operand (OP, DImode)) \
1325 && !mask64_operand (OP, DImode)) \
1326 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
1327 : 0)
1329 /* Given an rtx X being reloaded into a reg required to be
1330 in class CLASS, return the class of reg to actually use.
1331 In general this is just CLASS; but on some machines
1332 in some cases it is preferable to use a more restrictive class.
1334 On the RS/6000, we have to return NO_REGS when we want to reload a
1335 floating-point CONST_DOUBLE to force it to be copied to memory.
1337 We also don't want to reload integer values into floating-point
1338 registers if we can at all help it. In fact, this can
1339 cause reload to abort, if it tries to generate a reload of CTR
1340 into a FP register and discovers it doesn't have the memory location
1341 required.
1343 ??? Would it be a good idea to have reload do the converse, that is
1344 try to reload floating modes into FP registers if possible?
1347 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1348 (((GET_CODE (X) == CONST_DOUBLE \
1349 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1350 ? NO_REGS \
1351 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1352 && (CLASS) == NON_SPECIAL_REGS) \
1353 ? GENERAL_REGS \
1354 : (CLASS)))
1356 /* Return the register class of a scratch register needed to copy IN into
1357 or out of a register in CLASS in MODE. If it can be done directly,
1358 NO_REGS is returned. */
1360 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1361 secondary_reload_class (CLASS, MODE, IN)
1363 /* If we are copying between FP or AltiVec registers and anything
1364 else, we need a memory location. */
1366 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1367 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1368 || (CLASS2) == FLOAT_REGS \
1369 || (CLASS1) == ALTIVEC_REGS \
1370 || (CLASS2) == ALTIVEC_REGS))
1372 /* Return the maximum number of consecutive registers
1373 needed to represent mode MODE in a register of class CLASS.
1375 On RS/6000, this is the size of MODE in words,
1376 except in the FP regs, where a single reg is enough for two words. */
1377 #define CLASS_MAX_NREGS(CLASS, MODE) \
1378 (((CLASS) == FLOAT_REGS) \
1379 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1380 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1383 /* Return a class of registers that cannot change FROM mode to TO mode. */
1385 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1386 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1387 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1388 : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1 \
1389 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1390 : 0)
1392 /* Stack layout; function entry, exit and calling. */
1394 /* Enumeration to give which calling sequence to use. */
1395 enum rs6000_abi {
1396 ABI_NONE,
1397 ABI_AIX, /* IBM's AIX */
1398 ABI_V4, /* System V.4/eabi */
1399 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1402 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1404 /* Structure used to define the rs6000 stack */
1405 typedef struct rs6000_stack {
1406 int first_gp_reg_save; /* first callee saved GP register used */
1407 int first_fp_reg_save; /* first callee saved FP register used */
1408 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1409 int lr_save_p; /* true if the link reg needs to be saved */
1410 int cr_save_p; /* true if the CR reg needs to be saved */
1411 unsigned int vrsave_mask; /* mask of vec registers to save */
1412 int toc_save_p; /* true if the TOC needs to be saved */
1413 int push_p; /* true if we need to allocate stack space */
1414 int calls_p; /* true if the function makes any calls */
1415 enum rs6000_abi abi; /* which ABI to use */
1416 int gp_save_offset; /* offset to save GP regs from initial SP */
1417 int fp_save_offset; /* offset to save FP regs from initial SP */
1418 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
1419 int lr_save_offset; /* offset to save LR from initial SP */
1420 int cr_save_offset; /* offset to save CR from initial SP */
1421 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1422 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1423 int toc_save_offset; /* offset to save the TOC pointer */
1424 int varargs_save_offset; /* offset to save the varargs registers */
1425 int ehrd_offset; /* offset to EH return data */
1426 int reg_size; /* register size (4 or 8) */
1427 int varargs_size; /* size to hold V.4 args passed in regs */
1428 int vars_size; /* variable save area size */
1429 int parm_size; /* outgoing parameter size */
1430 int save_size; /* save area size */
1431 int fixed_size; /* fixed size of stack frame */
1432 int gp_size; /* size of saved GP registers */
1433 int fp_size; /* size of saved FP registers */
1434 int altivec_size; /* size of saved AltiVec registers */
1435 int cr_size; /* size to hold CR if not in save_size */
1436 int lr_size; /* size to hold LR if not in save_size */
1437 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1438 int altivec_padding_size; /* size of altivec alignment padding if
1439 not in save_size */
1440 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1441 int spe_padding_size;
1442 int toc_size; /* size to hold TOC if not in save_size */
1443 int total_size; /* total bytes allocated for stack */
1444 int spe_64bit_regs_used;
1445 } rs6000_stack_t;
1447 /* Define this if pushing a word on the stack
1448 makes the stack pointer a smaller address. */
1449 #define STACK_GROWS_DOWNWARD
1451 /* Define this if the nominal address of the stack frame
1452 is at the high-address end of the local variables;
1453 that is, each additional local variable allocated
1454 goes at a more negative offset in the frame.
1456 On the RS/6000, we grow upwards, from the area after the outgoing
1457 arguments. */
1458 /* #define FRAME_GROWS_DOWNWARD */
1460 /* Size of the outgoing register save area */
1461 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1462 || DEFAULT_ABI == ABI_DARWIN) \
1463 ? (TARGET_64BIT ? 64 : 32) \
1464 : 0)
1466 /* Size of the fixed area on the stack */
1467 #define RS6000_SAVE_AREA \
1468 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1469 << (TARGET_64BIT ? 1 : 0))
1471 /* MEM representing address to save the TOC register */
1472 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1473 plus_constant (stack_pointer_rtx, \
1474 (TARGET_32BIT ? 20 : 40)))
1476 /* Size of the V.4 varargs area if needed */
1477 #define RS6000_VARARGS_AREA 0
1479 /* Align an address */
1480 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1482 /* Size of V.4 varargs area in bytes */
1483 #define RS6000_VARARGS_SIZE \
1484 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1486 /* Offset within stack frame to start allocating local variables at.
1487 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1488 first local allocated. Otherwise, it is the offset to the BEGINNING
1489 of the first local allocated.
1491 On the RS/6000, the frame pointer is the same as the stack pointer,
1492 except for dynamic allocations. So we start after the fixed area and
1493 outgoing parameter area. */
1495 #define STARTING_FRAME_OFFSET \
1496 (RS6000_ALIGN (current_function_outgoing_args_size, \
1497 TARGET_ALTIVEC ? 16 : 8) \
1498 + RS6000_VARARGS_AREA \
1499 + RS6000_SAVE_AREA)
1501 /* Offset from the stack pointer register to an item dynamically
1502 allocated on the stack, e.g., by `alloca'.
1504 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1505 length of the outgoing arguments. The default is correct for most
1506 machines. See `function.c' for details. */
1507 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1508 (RS6000_ALIGN (current_function_outgoing_args_size, \
1509 TARGET_ALTIVEC ? 16 : 8) \
1510 + (STACK_POINTER_OFFSET))
1512 /* If we generate an insn to push BYTES bytes,
1513 this says how many the stack pointer really advances by.
1514 On RS/6000, don't define this because there are no push insns. */
1515 /* #define PUSH_ROUNDING(BYTES) */
1517 /* Offset of first parameter from the argument pointer register value.
1518 On the RS/6000, we define the argument pointer to the start of the fixed
1519 area. */
1520 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1522 /* Offset from the argument pointer register value to the top of
1523 stack. This is different from FIRST_PARM_OFFSET because of the
1524 register save area. */
1525 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1527 /* Define this if stack space is still allocated for a parameter passed
1528 in a register. The value is the number of bytes allocated to this
1529 area. */
1530 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1532 /* Define this if the above stack space is to be considered part of the
1533 space allocated by the caller. */
1534 #define OUTGOING_REG_PARM_STACK_SPACE
1536 /* This is the difference between the logical top of stack and the actual sp.
1538 For the RS/6000, sp points past the fixed area. */
1539 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1541 /* Define this if the maximum size of all the outgoing args is to be
1542 accumulated and pushed during the prologue. The amount can be
1543 found in the variable current_function_outgoing_args_size. */
1544 #define ACCUMULATE_OUTGOING_ARGS 1
1546 /* Value is the number of bytes of arguments automatically
1547 popped when returning from a subroutine call.
1548 FUNDECL is the declaration node of the function (as a tree),
1549 FUNTYPE is the data type of the function (as a tree),
1550 or for a library call it is an identifier node for the subroutine name.
1551 SIZE is the number of bytes of arguments passed on the stack. */
1553 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1555 /* Define how to find the value returned by a function.
1556 VALTYPE is the data type of the value (as a tree).
1557 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1558 otherwise, FUNC is 0. */
1560 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1562 /* Define how to find the value returned by a library function
1563 assuming the value has mode MODE. */
1565 #define LIBCALL_VALUE(MODE) \
1566 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1567 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1568 && TARGET_HARD_FLOAT && TARGET_FPRS \
1569 ? FP_ARG_RETURN : GP_ARG_RETURN)
1571 /* The AIX ABI for the RS/6000 specifies that all structures are
1572 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1573 specifies that structures <= 8 bytes are returned in r3/r4, but a
1574 draft put them in memory, and GCC used to implement the draft
1575 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1576 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1577 compatibility can change DRAFT_V4_STRUCT_RET to override the
1578 default, and -m switches get the final word. See
1579 rs6000_override_options for more details.
1581 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1582 long double support is enabled. These values are returned in memory.
1584 int_size_in_bytes returns -1 for variable size objects, which go in
1585 memory always. The cast to unsigned makes -1 > 8. */
1587 #define RETURN_IN_MEMORY(TYPE) \
1588 ((AGGREGATE_TYPE_P (TYPE) \
1589 && (TARGET_AIX_STRUCT_RET \
1590 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1591 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1593 /* DRAFT_V4_STRUCT_RET defaults off. */
1594 #define DRAFT_V4_STRUCT_RET 0
1596 /* Let RETURN_IN_MEMORY control what happens. */
1597 #define DEFAULT_PCC_STRUCT_RETURN 0
1599 /* Mode of stack savearea.
1600 FUNCTION is VOIDmode because calling convention maintains SP.
1601 BLOCK needs Pmode for SP.
1602 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1603 #define STACK_SAVEAREA_MODE(LEVEL) \
1604 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1605 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1607 /* Minimum and maximum general purpose registers used to hold arguments. */
1608 #define GP_ARG_MIN_REG 3
1609 #define GP_ARG_MAX_REG 10
1610 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1612 /* Minimum and maximum floating point registers used to hold arguments. */
1613 #define FP_ARG_MIN_REG 33
1614 #define FP_ARG_AIX_MAX_REG 45
1615 #define FP_ARG_V4_MAX_REG 40
1616 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1617 || DEFAULT_ABI == ABI_DARWIN) \
1618 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1619 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1621 /* Minimum and maximum AltiVec registers used to hold arguments. */
1622 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1623 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1624 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1626 /* Return registers */
1627 #define GP_ARG_RETURN GP_ARG_MIN_REG
1628 #define FP_ARG_RETURN FP_ARG_MIN_REG
1629 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1631 /* Flags for the call/call_value rtl operations set up by function_arg */
1632 #define CALL_NORMAL 0x00000000 /* no special processing */
1633 /* Bits in 0x00000001 are unused. */
1634 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1635 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1636 #define CALL_LONG 0x00000008 /* always call indirect */
1638 /* 1 if N is a possible register number for a function value
1639 as seen by the caller.
1641 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1642 #define FUNCTION_VALUE_REGNO_P(N) \
1643 ((N) == GP_ARG_RETURN \
1644 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1645 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
1647 /* 1 if N is a possible register number for function argument passing.
1648 On RS/6000, these are r3-r10 and fp1-fp13.
1649 On AltiVec, v2 - v13 are used for passing vectors. */
1650 #define FUNCTION_ARG_REGNO_P(N) \
1651 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1652 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1653 && TARGET_ALTIVEC) \
1654 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1655 && TARGET_HARD_FLOAT))
1657 /* A C structure for machine-specific, per-function data.
1658 This is added to the cfun structure. */
1659 typedef struct machine_function GTY(())
1661 /* Whether a System V.4 varargs area was created. */
1662 int sysv_varargs_p;
1663 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1664 int ra_needs_full_frame;
1665 /* Some local-dynamic symbol. */
1666 const char *some_ld_name;
1667 /* Whether the instruction chain has been scanned already. */
1668 int insn_chain_scanned_p;
1669 } machine_function;
1671 /* Define a data type for recording info about an argument list
1672 during the scan of that argument list. This data type should
1673 hold all necessary information about the function itself
1674 and about the args processed so far, enough to enable macros
1675 such as FUNCTION_ARG to determine where the next arg should go.
1677 On the RS/6000, this is a structure. The first element is the number of
1678 total argument words, the second is used to store the next
1679 floating-point register number, and the third says how many more args we
1680 have prototype types for.
1682 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1683 the next available GP register, `fregno' is the next available FP
1684 register, and `words' is the number of words used on the stack.
1686 The varargs/stdarg support requires that this structure's size
1687 be a multiple of sizeof(int). */
1689 typedef struct rs6000_args
1691 int words; /* # words used for passing GP registers */
1692 int fregno; /* next available FP register */
1693 int vregno; /* next available AltiVec register */
1694 int nargs_prototype; /* # args left in the current prototype */
1695 int orig_nargs; /* Original value of nargs_prototype */
1696 int prototype; /* Whether a prototype was defined */
1697 int call_cookie; /* Do special things for this call */
1698 int sysv_gregno; /* next available GP register */
1699 } CUMULATIVE_ARGS;
1701 /* Define intermediate macro to compute the size (in registers) of an argument
1702 for the RS/6000. */
1704 #define RS6000_ARG_SIZE(MODE, TYPE) \
1705 ((MODE) != BLKmode \
1706 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1707 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1709 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1710 for a call to a function whose data type is FNTYPE.
1711 For a library call, FNTYPE is 0. */
1713 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1714 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1716 /* Similar, but when scanning the definition of a procedure. We always
1717 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1719 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1720 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1722 /* Update the data in CUM to advance over an argument
1723 of mode MODE and data type TYPE.
1724 (TYPE is null for libcalls where that information may not be available.) */
1726 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1727 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1729 /* Nonzero if we can use a floating-point register to pass this arg. */
1730 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1731 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1732 && (CUM).fregno <= FP_ARG_MAX_REG \
1733 && TARGET_HARD_FLOAT && TARGET_FPRS)
1735 /* Nonzero if we can use an AltiVec register to pass this arg. */
1736 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1737 (ALTIVEC_VECTOR_MODE (MODE) \
1738 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1739 && TARGET_ALTIVEC_ABI)
1741 /* Determine where to put an argument to a function.
1742 Value is zero to push the argument on the stack,
1743 or a hard register in which to store the argument.
1745 MODE is the argument's machine mode.
1746 TYPE is the data type of the argument (as a tree).
1747 This is null for libcalls where that information may
1748 not be available.
1749 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1750 the preceding args and about the function being called.
1751 NAMED is nonzero if this argument is a named parameter
1752 (otherwise it is an extra parameter matching an ellipsis).
1754 On RS/6000 the first eight words of non-FP are normally in registers
1755 and the rest are pushed. The first 13 FP args are in registers.
1757 If this is floating-point and no prototype is specified, we use
1758 both an FP and integer register (or possibly FP reg and stack). Library
1759 functions (when TYPE is zero) always have the proper types for args,
1760 so we can pass the FP value just in one register. emit_library_function
1761 doesn't support EXPR_LIST anyway. */
1763 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1764 function_arg (&CUM, MODE, TYPE, NAMED)
1766 /* For an arg passed partly in registers and partly in memory,
1767 this is the number of registers used.
1768 For args passed entirely in registers or entirely in memory, zero. */
1770 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1771 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1773 /* A C expression that indicates when an argument must be passed by
1774 reference. If nonzero for an argument, a copy of that argument is
1775 made in memory and a pointer to the argument is passed instead of
1776 the argument itself. The pointer is passed in whatever way is
1777 appropriate for passing a pointer to that type. */
1779 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1780 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1782 /* If defined, a C expression which determines whether, and in which
1783 direction, to pad out an argument with extra space. The value
1784 should be of type `enum direction': either `upward' to pad above
1785 the argument, `downward' to pad below, or `none' to inhibit
1786 padding. */
1788 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1790 /* If defined, a C expression that gives the alignment boundary, in bits,
1791 of an argument with the specified mode and type. If it is not defined,
1792 PARM_BOUNDARY is used for all arguments. */
1794 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1795 function_arg_boundary (MODE, TYPE)
1797 /* Perform any needed actions needed for a function that is receiving a
1798 variable number of arguments.
1800 CUM is as above.
1802 MODE and TYPE are the mode and type of the current parameter.
1804 PRETEND_SIZE is a variable that should be set to the amount of stack
1805 that must be pushed by the prolog to pretend that our caller pushed
1808 Normally, this macro will push all remaining incoming registers on the
1809 stack and set PRETEND_SIZE to the length of the registers pushed. */
1811 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1812 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1814 /* Define the `__builtin_va_list' type for the ABI. */
1815 #define BUILD_VA_LIST_TYPE(VALIST) \
1816 (VALIST) = rs6000_build_va_list ()
1818 /* Implement `va_start' for varargs and stdarg. */
1819 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1820 rs6000_va_start (valist, nextarg)
1822 /* Implement `va_arg'. */
1823 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1824 rs6000_va_arg (valist, type)
1826 /* For AIX, the rule is that structures are passed left-aligned in
1827 their stack slot. However, GCC does not presently do this:
1828 structures which are the same size as integer types are passed
1829 right-aligned, as if they were in fact integers. This only
1830 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1831 ABI_V4 does not use std_expand_builtin_va_arg. */
1832 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1834 /* Define this macro to be a nonzero value if the location where a function
1835 argument is passed depends on whether or not it is a named argument. */
1836 #define STRICT_ARGUMENT_NAMING 1
1838 /* Output assembler code to FILE to increment profiler label # LABELNO
1839 for profiling a function entry. */
1841 #define FUNCTION_PROFILER(FILE, LABELNO) \
1842 output_function_profiler ((FILE), (LABELNO));
1844 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1845 the stack pointer does not matter. No definition is equivalent to
1846 always zero.
1848 On the RS/6000, this is nonzero because we can restore the stack from
1849 its backpointer, which we maintain. */
1850 #define EXIT_IGNORE_STACK 1
1852 /* Define this macro as a C expression that is nonzero for registers
1853 that are used by the epilogue or the return' pattern. The stack
1854 and frame pointer registers are already be assumed to be used as
1855 needed. */
1857 #define EPILOGUE_USES(REGNO) \
1858 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1859 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1860 || (current_function_calls_eh_return \
1861 && TARGET_AIX \
1862 && (REGNO) == 2))
1865 /* TRAMPOLINE_TEMPLATE deleted */
1867 /* Length in units of the trampoline for entering a nested function. */
1869 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1871 /* Emit RTL insns to initialize the variable parts of a trampoline.
1872 FNADDR is an RTX for the address of the function's pure code.
1873 CXT is an RTX for the static chain value for the function. */
1875 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1876 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1878 /* Definitions for __builtin_return_address and __builtin_frame_address.
1879 __builtin_return_address (0) should give link register (65), enable
1880 this. */
1881 /* This should be uncommented, so that the link register is used, but
1882 currently this would result in unmatched insns and spilling fixed
1883 registers so we'll leave it for another day. When these problems are
1884 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1885 (mrs) */
1886 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1888 /* Number of bytes into the frame return addresses can be found. See
1889 rs6000_stack_info in rs6000.c for more information on how the different
1890 abi's store the return address. */
1891 #define RETURN_ADDRESS_OFFSET \
1892 ((DEFAULT_ABI == ABI_AIX \
1893 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1894 (DEFAULT_ABI == ABI_V4) ? 4 : \
1895 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1897 /* The current return address is in link register (65). The return address
1898 of anything farther back is accessed normally at an offset of 8 from the
1899 frame pointer. */
1900 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1901 (rs6000_return_addr (COUNT, FRAME))
1904 /* Definitions for register eliminations.
1906 We have two registers that can be eliminated on the RS/6000. First, the
1907 frame pointer register can often be eliminated in favor of the stack
1908 pointer register. Secondly, the argument pointer register can always be
1909 eliminated; it is replaced with either the stack or frame pointer.
1911 In addition, we use the elimination mechanism to see if r30 is needed
1912 Initially we assume that it isn't. If it is, we spill it. This is done
1913 by making it an eliminable register. We replace it with itself so that
1914 if it isn't needed, then existing uses won't be modified. */
1916 /* This is an array of structures. Each structure initializes one pair
1917 of eliminable registers. The "from" register number is given first,
1918 followed by "to". Eliminations of the same "from" register are listed
1919 in order of preference. */
1920 #define ELIMINABLE_REGS \
1921 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1922 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1923 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1924 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1926 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1927 Frame pointer elimination is automatically handled.
1929 For the RS/6000, if frame pointer elimination is being done, we would like
1930 to convert ap into fp, not sp.
1932 We need r30 if -mminimal-toc was specified, and there are constant pool
1933 references. */
1935 #define CAN_ELIMINATE(FROM, TO) \
1936 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1937 ? ! frame_pointer_needed \
1938 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1939 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1940 : 1)
1942 /* Define the offset between two registers, one to be eliminated, and the other
1943 its replacement, at the start of a routine. */
1944 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1946 rs6000_stack_t *info = rs6000_stack_info (); \
1948 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1949 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1950 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1951 (OFFSET) = info->total_size; \
1952 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1953 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1954 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
1955 (OFFSET) = 0; \
1956 else \
1957 abort (); \
1960 /* Addressing modes, and classification of registers for them. */
1962 #define HAVE_PRE_DECREMENT 1
1963 #define HAVE_PRE_INCREMENT 1
1965 /* Macros to check register numbers against specific register classes. */
1967 /* These assume that REGNO is a hard or pseudo reg number.
1968 They give nonzero only if REGNO is a hard reg of the suitable class
1969 or a pseudo reg currently allocated to a suitable hard reg.
1970 Since they use reg_renumber, they are safe only once reg_renumber
1971 has been allocated, which happens in local-alloc.c. */
1973 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1974 ((REGNO) < FIRST_PSEUDO_REGISTER \
1975 ? (REGNO) <= 31 || (REGNO) == 67 \
1976 : (reg_renumber[REGNO] >= 0 \
1977 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1979 #define REGNO_OK_FOR_BASE_P(REGNO) \
1980 ((REGNO) < FIRST_PSEUDO_REGISTER \
1981 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1982 : (reg_renumber[REGNO] > 0 \
1983 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1985 /* Maximum number of registers that can appear in a valid memory address. */
1987 #define MAX_REGS_PER_ADDRESS 2
1989 /* Recognize any constant value that is a valid address. */
1991 #define CONSTANT_ADDRESS_P(X) \
1992 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1993 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1994 || GET_CODE (X) == HIGH)
1996 /* Nonzero if the constant value X is a legitimate general operand.
1997 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1999 On the RS/6000, all integer constants are acceptable, most won't be valid
2000 for particular insns, though. Only easy FP constants are
2001 acceptable. */
2003 #define LEGITIMATE_CONSTANT_P(X) \
2004 ((GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
2005 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
2006 || easy_fp_constant (X, GET_MODE (X))) \
2007 && !rs6000_tls_referenced_p (X))
2009 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2010 and check its validity for a certain class.
2011 We have two alternate definitions for each of them.
2012 The usual definition accepts all pseudo regs; the other rejects
2013 them unless they have been allocated suitable hard regs.
2014 The symbol REG_OK_STRICT causes the latter definition to be used.
2016 Most source files want to accept pseudo regs in the hope that
2017 they will get allocated to the class that the insn wants them to be in.
2018 Source files for reload pass need to be strict.
2019 After reload, it makes no difference, since pseudo regs have
2020 been eliminated by then. */
2022 #ifdef REG_OK_STRICT
2023 # define REG_OK_STRICT_FLAG 1
2024 #else
2025 # define REG_OK_STRICT_FLAG 0
2026 #endif
2028 /* Nonzero if X is a hard reg that can be used as an index
2029 or if it is a pseudo reg in the non-strict case. */
2030 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2031 ((! (STRICT) \
2032 && (REGNO (X) <= 31 \
2033 || REGNO (X) == ARG_POINTER_REGNUM \
2034 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2035 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2037 /* Nonzero if X is a hard reg that can be used as a base reg
2038 or if it is a pseudo reg in the non-strict case. */
2039 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2040 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2042 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2043 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2045 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2046 that is a valid memory address for an instruction.
2047 The MODE argument is the machine mode for the MEM expression
2048 that wants to use this address.
2050 On the RS/6000, there are four valid address: a SYMBOL_REF that
2051 refers to a constant pool entry of an address (or the sum of it
2052 plus a constant), a short (16-bit signed) constant plus a register,
2053 the sum of two registers, or a register indirect, possibly with an
2054 auto-increment. For DFmode and DImode with a constant plus register,
2055 we must ensure that both words are addressable or PowerPC64 with offset
2056 word aligned.
2058 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2059 32-bit DImode, TImode), indexed addressing cannot be used because
2060 adjacent memory cells are accessed by adding word-sized offsets
2061 during assembly output. */
2063 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2064 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2065 goto ADDR; \
2068 /* Try machine-dependent ways of modifying an illegitimate address
2069 to be legitimate. If we find one, return the new, valid address.
2070 This macro is used in only one place: `memory_address' in explow.c.
2072 OLDX is the address as it was before break_out_memory_refs was called.
2073 In some cases it is useful to look at this to decide what needs to be done.
2075 MODE and WIN are passed so that this macro can use
2076 GO_IF_LEGITIMATE_ADDRESS.
2078 It is always safe for this macro to do nothing. It exists to recognize
2079 opportunities to optimize the output.
2081 On RS/6000, first check for the sum of a register with a constant
2082 integer that is out of range. If so, generate code to add the
2083 constant with the low-order 16 bits masked to the register and force
2084 this result into another register (this can be done with `cau').
2085 Then generate an address of REG+(CONST&0xffff), allowing for the
2086 possibility of bit 16 being a one.
2088 Then check for the sum of a register and something not constant, try to
2089 load the other things into a register and return the sum. */
2091 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2092 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2093 if (result != NULL_RTX) \
2095 (X) = result; \
2096 goto WIN; \
2100 /* Try a machine-dependent way of reloading an illegitimate address
2101 operand. If we find one, push the reload and jump to WIN. This
2102 macro is used in only one place: `find_reloads_address' in reload.c.
2104 Implemented on rs6000 by rs6000_legitimize_reload_address.
2105 Note that (X) is evaluated twice; this is safe in current usage. */
2107 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2108 do { \
2109 int win; \
2110 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2111 (int)(TYPE), (IND_LEVELS), &win); \
2112 if ( win ) \
2113 goto WIN; \
2114 } while (0)
2116 /* Go to LABEL if ADDR (a legitimate address expression)
2117 has an effect that depends on the machine mode it is used for. */
2119 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2120 do { \
2121 if (rs6000_mode_dependent_address (ADDR)) \
2122 goto LABEL; \
2123 } while (0)
2125 /* The register number of the register used to address a table of
2126 static data addresses in memory. In some cases this register is
2127 defined by a processor's "application binary interface" (ABI).
2128 When this macro is defined, RTL is generated for this register
2129 once, as with the stack pointer and frame pointer registers. If
2130 this macro is not defined, it is up to the machine-dependent files
2131 to allocate such a register (if necessary). */
2133 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2134 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2136 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2138 /* Define this macro if the register defined by
2139 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2140 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2142 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2144 /* By generating position-independent code, when two different
2145 programs (A and B) share a common library (libC.a), the text of
2146 the library can be shared whether or not the library is linked at
2147 the same address for both programs. In some of these
2148 environments, position-independent code requires not only the use
2149 of different addressing modes, but also special code to enable the
2150 use of these addressing modes.
2152 The `FINALIZE_PIC' macro serves as a hook to emit these special
2153 codes once the function is being compiled into assembly code, but
2154 not before. (It is not done before, because in the case of
2155 compiling an inline function, it would lead to multiple PIC
2156 prologues being included in functions which used inline functions
2157 and were compiled to assembly language.) */
2159 /* #define FINALIZE_PIC */
2161 /* A C expression that is nonzero if X is a legitimate immediate
2162 operand on the target machine when generating position independent
2163 code. You can assume that X satisfies `CONSTANT_P', so you need
2164 not check this. You can also assume FLAG_PIC is true, so you need
2165 not check it either. You need not define this macro if all
2166 constants (including `SYMBOL_REF') can be immediate operands when
2167 generating position independent code. */
2169 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2171 /* Define this if some processing needs to be done immediately before
2172 emitting code for an insn. */
2174 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2176 /* Specify the machine mode that this machine uses
2177 for the index in the tablejump instruction. */
2178 #define CASE_VECTOR_MODE SImode
2180 /* Define as C expression which evaluates to nonzero if the tablejump
2181 instruction expects the table to contain offsets from the address of the
2182 table.
2183 Do not define this if the table should contain absolute addresses. */
2184 #define CASE_VECTOR_PC_RELATIVE 1
2186 /* Define this as 1 if `char' should by default be signed; else as 0. */
2187 #define DEFAULT_SIGNED_CHAR 0
2189 /* This flag, if defined, says the same insns that convert to a signed fixnum
2190 also convert validly to an unsigned one. */
2192 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2194 /* Max number of bytes we can move from memory to memory
2195 in one reasonably fast instruction. */
2196 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2197 #define MAX_MOVE_MAX 8
2199 /* Nonzero if access to memory by bytes is no faster than for words.
2200 Also nonzero if doing byte operations (specifically shifts) in registers
2201 is undesirable. */
2202 #define SLOW_BYTE_ACCESS 1
2204 /* Define if operations between registers always perform the operation
2205 on the full register even if a narrower mode is specified. */
2206 #define WORD_REGISTER_OPERATIONS
2208 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2209 will either zero-extend or sign-extend. The value of this macro should
2210 be the code that says which one of the two operations is implicitly
2211 done, NIL if none. */
2212 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2214 /* Define if loading short immediate values into registers sign extends. */
2215 #define SHORT_IMMEDIATES_SIGN_EXTEND
2217 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2218 is done just by pretending it is already truncated. */
2219 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2221 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2222 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2223 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2225 /* The CTZ patterns return -1 for input of zero. */
2226 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2228 /* Specify the machine mode that pointers have.
2229 After generation of rtl, the compiler makes no further distinction
2230 between pointers and any other objects of this machine mode. */
2231 #define Pmode (TARGET_32BIT ? SImode : DImode)
2233 /* Mode of a function address in a call instruction (for indexing purposes).
2234 Doesn't matter on RS/6000. */
2235 #define FUNCTION_MODE SImode
2237 /* Define this if addresses of constant functions
2238 shouldn't be put through pseudo regs where they can be cse'd.
2239 Desirable on machines where ordinary constants are expensive
2240 but a CALL with constant address is cheap. */
2241 #define NO_FUNCTION_CSE
2243 /* Define this to be nonzero if shift instructions ignore all but the low-order
2244 few bits.
2246 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2247 have been dropped from the PowerPC architecture. */
2249 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2251 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2252 should be adjusted to reflect any required changes. This macro is used when
2253 there is some systematic length adjustment required that would be difficult
2254 to express in the length attribute. */
2256 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2258 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2259 COMPARE, return the mode to be used for the comparison. For
2260 floating-point, CCFPmode should be used. CCUNSmode should be used
2261 for unsigned comparisons. CCEQmode should be used when we are
2262 doing an inequality comparison on the result of a
2263 comparison. CCmode should be used in all other cases. */
2265 #define SELECT_CC_MODE(OP,X,Y) \
2266 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2267 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2268 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2269 ? CCEQmode : CCmode))
2271 /* Can the condition code MODE be safely reversed? This is safe in
2272 all cases on this port, because at present it doesn't use the
2273 trapping FP comparisons (fcmpo). */
2274 #define REVERSIBLE_CC_MODE(MODE) 1
2276 /* Given a condition code and a mode, return the inverse condition. */
2277 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2279 /* Define the information needed to generate branch and scc insns. This is
2280 stored from the compare operation. */
2282 extern GTY(()) rtx rs6000_compare_op0;
2283 extern GTY(()) rtx rs6000_compare_op1;
2284 extern int rs6000_compare_fp_p;
2286 /* Control the assembler format that we output. */
2288 /* A C string constant describing how to begin a comment in the target
2289 assembler language. The compiler assumes that the comment will end at
2290 the end of the line. */
2291 #define ASM_COMMENT_START " #"
2293 /* Implicit library calls should use memcpy, not bcopy, etc. */
2295 #define TARGET_MEM_FUNCTIONS
2297 /* Flag to say the TOC is initialized */
2298 extern int toc_initialized;
2300 /* Macro to output a special constant pool entry. Go to WIN if we output
2301 it. Otherwise, it is written the usual way.
2303 On the RS/6000, toc entries are handled this way. */
2305 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2306 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2308 output_toc (FILE, X, LABELNO, MODE); \
2309 goto WIN; \
2313 #ifdef HAVE_GAS_WEAK
2314 #define RS6000_WEAK 1
2315 #else
2316 #define RS6000_WEAK 0
2317 #endif
2319 #if RS6000_WEAK
2320 /* Used in lieu of ASM_WEAKEN_LABEL. */
2321 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2322 do \
2324 fputs ("\t.weak\t", (FILE)); \
2325 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2326 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2327 && DEFAULT_ABI == ABI_AIX) \
2329 if (TARGET_XCOFF) \
2330 fputs ("[DS]", (FILE)); \
2331 fputs ("\n\t.weak\t.", (FILE)); \
2332 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2334 fputc ('\n', (FILE)); \
2335 if (VAL) \
2337 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2338 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2339 && DEFAULT_ABI == ABI_AIX) \
2341 fputs ("\t.set\t.", (FILE)); \
2342 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2343 fputs (",.", (FILE)); \
2344 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2345 fputc ('\n', (FILE)); \
2349 while (0)
2350 #endif
2352 /* This implements the `alias' attribute. */
2353 #undef ASM_OUTPUT_DEF_FROM_DECLS
2354 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2355 do \
2357 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2358 const char *name = IDENTIFIER_POINTER (TARGET); \
2359 if (TREE_CODE (DECL) == FUNCTION_DECL \
2360 && DEFAULT_ABI == ABI_AIX) \
2362 if (TREE_PUBLIC (DECL)) \
2364 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2366 fputs ("\t.globl\t.", FILE); \
2367 RS6000_OUTPUT_BASENAME (FILE, alias); \
2368 putc ('\n', FILE); \
2371 else if (TARGET_XCOFF) \
2373 fputs ("\t.lglobl\t.", FILE); \
2374 RS6000_OUTPUT_BASENAME (FILE, alias); \
2375 putc ('\n', FILE); \
2377 fputs ("\t.set\t.", FILE); \
2378 RS6000_OUTPUT_BASENAME (FILE, alias); \
2379 fputs (",.", FILE); \
2380 RS6000_OUTPUT_BASENAME (FILE, name); \
2381 fputc ('\n', FILE); \
2383 ASM_OUTPUT_DEF (FILE, alias, name); \
2385 while (0)
2387 /* Output to assembler file text saying following lines
2388 may contain character constants, extra white space, comments, etc. */
2390 #define ASM_APP_ON ""
2392 /* Output to assembler file text saying following lines
2393 no longer contain unusual constructs. */
2395 #define ASM_APP_OFF ""
2397 /* How to refer to registers in assembler output.
2398 This sequence is indexed by compiler's hard-register-number (see above). */
2400 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2402 #define REGISTER_NAMES \
2404 &rs6000_reg_names[ 0][0], /* r0 */ \
2405 &rs6000_reg_names[ 1][0], /* r1 */ \
2406 &rs6000_reg_names[ 2][0], /* r2 */ \
2407 &rs6000_reg_names[ 3][0], /* r3 */ \
2408 &rs6000_reg_names[ 4][0], /* r4 */ \
2409 &rs6000_reg_names[ 5][0], /* r5 */ \
2410 &rs6000_reg_names[ 6][0], /* r6 */ \
2411 &rs6000_reg_names[ 7][0], /* r7 */ \
2412 &rs6000_reg_names[ 8][0], /* r8 */ \
2413 &rs6000_reg_names[ 9][0], /* r9 */ \
2414 &rs6000_reg_names[10][0], /* r10 */ \
2415 &rs6000_reg_names[11][0], /* r11 */ \
2416 &rs6000_reg_names[12][0], /* r12 */ \
2417 &rs6000_reg_names[13][0], /* r13 */ \
2418 &rs6000_reg_names[14][0], /* r14 */ \
2419 &rs6000_reg_names[15][0], /* r15 */ \
2420 &rs6000_reg_names[16][0], /* r16 */ \
2421 &rs6000_reg_names[17][0], /* r17 */ \
2422 &rs6000_reg_names[18][0], /* r18 */ \
2423 &rs6000_reg_names[19][0], /* r19 */ \
2424 &rs6000_reg_names[20][0], /* r20 */ \
2425 &rs6000_reg_names[21][0], /* r21 */ \
2426 &rs6000_reg_names[22][0], /* r22 */ \
2427 &rs6000_reg_names[23][0], /* r23 */ \
2428 &rs6000_reg_names[24][0], /* r24 */ \
2429 &rs6000_reg_names[25][0], /* r25 */ \
2430 &rs6000_reg_names[26][0], /* r26 */ \
2431 &rs6000_reg_names[27][0], /* r27 */ \
2432 &rs6000_reg_names[28][0], /* r28 */ \
2433 &rs6000_reg_names[29][0], /* r29 */ \
2434 &rs6000_reg_names[30][0], /* r30 */ \
2435 &rs6000_reg_names[31][0], /* r31 */ \
2437 &rs6000_reg_names[32][0], /* fr0 */ \
2438 &rs6000_reg_names[33][0], /* fr1 */ \
2439 &rs6000_reg_names[34][0], /* fr2 */ \
2440 &rs6000_reg_names[35][0], /* fr3 */ \
2441 &rs6000_reg_names[36][0], /* fr4 */ \
2442 &rs6000_reg_names[37][0], /* fr5 */ \
2443 &rs6000_reg_names[38][0], /* fr6 */ \
2444 &rs6000_reg_names[39][0], /* fr7 */ \
2445 &rs6000_reg_names[40][0], /* fr8 */ \
2446 &rs6000_reg_names[41][0], /* fr9 */ \
2447 &rs6000_reg_names[42][0], /* fr10 */ \
2448 &rs6000_reg_names[43][0], /* fr11 */ \
2449 &rs6000_reg_names[44][0], /* fr12 */ \
2450 &rs6000_reg_names[45][0], /* fr13 */ \
2451 &rs6000_reg_names[46][0], /* fr14 */ \
2452 &rs6000_reg_names[47][0], /* fr15 */ \
2453 &rs6000_reg_names[48][0], /* fr16 */ \
2454 &rs6000_reg_names[49][0], /* fr17 */ \
2455 &rs6000_reg_names[50][0], /* fr18 */ \
2456 &rs6000_reg_names[51][0], /* fr19 */ \
2457 &rs6000_reg_names[52][0], /* fr20 */ \
2458 &rs6000_reg_names[53][0], /* fr21 */ \
2459 &rs6000_reg_names[54][0], /* fr22 */ \
2460 &rs6000_reg_names[55][0], /* fr23 */ \
2461 &rs6000_reg_names[56][0], /* fr24 */ \
2462 &rs6000_reg_names[57][0], /* fr25 */ \
2463 &rs6000_reg_names[58][0], /* fr26 */ \
2464 &rs6000_reg_names[59][0], /* fr27 */ \
2465 &rs6000_reg_names[60][0], /* fr28 */ \
2466 &rs6000_reg_names[61][0], /* fr29 */ \
2467 &rs6000_reg_names[62][0], /* fr30 */ \
2468 &rs6000_reg_names[63][0], /* fr31 */ \
2470 &rs6000_reg_names[64][0], /* mq */ \
2471 &rs6000_reg_names[65][0], /* lr */ \
2472 &rs6000_reg_names[66][0], /* ctr */ \
2473 &rs6000_reg_names[67][0], /* ap */ \
2475 &rs6000_reg_names[68][0], /* cr0 */ \
2476 &rs6000_reg_names[69][0], /* cr1 */ \
2477 &rs6000_reg_names[70][0], /* cr2 */ \
2478 &rs6000_reg_names[71][0], /* cr3 */ \
2479 &rs6000_reg_names[72][0], /* cr4 */ \
2480 &rs6000_reg_names[73][0], /* cr5 */ \
2481 &rs6000_reg_names[74][0], /* cr6 */ \
2482 &rs6000_reg_names[75][0], /* cr7 */ \
2484 &rs6000_reg_names[76][0], /* xer */ \
2486 &rs6000_reg_names[77][0], /* v0 */ \
2487 &rs6000_reg_names[78][0], /* v1 */ \
2488 &rs6000_reg_names[79][0], /* v2 */ \
2489 &rs6000_reg_names[80][0], /* v3 */ \
2490 &rs6000_reg_names[81][0], /* v4 */ \
2491 &rs6000_reg_names[82][0], /* v5 */ \
2492 &rs6000_reg_names[83][0], /* v6 */ \
2493 &rs6000_reg_names[84][0], /* v7 */ \
2494 &rs6000_reg_names[85][0], /* v8 */ \
2495 &rs6000_reg_names[86][0], /* v9 */ \
2496 &rs6000_reg_names[87][0], /* v10 */ \
2497 &rs6000_reg_names[88][0], /* v11 */ \
2498 &rs6000_reg_names[89][0], /* v12 */ \
2499 &rs6000_reg_names[90][0], /* v13 */ \
2500 &rs6000_reg_names[91][0], /* v14 */ \
2501 &rs6000_reg_names[92][0], /* v15 */ \
2502 &rs6000_reg_names[93][0], /* v16 */ \
2503 &rs6000_reg_names[94][0], /* v17 */ \
2504 &rs6000_reg_names[95][0], /* v18 */ \
2505 &rs6000_reg_names[96][0], /* v19 */ \
2506 &rs6000_reg_names[97][0], /* v20 */ \
2507 &rs6000_reg_names[98][0], /* v21 */ \
2508 &rs6000_reg_names[99][0], /* v22 */ \
2509 &rs6000_reg_names[100][0], /* v23 */ \
2510 &rs6000_reg_names[101][0], /* v24 */ \
2511 &rs6000_reg_names[102][0], /* v25 */ \
2512 &rs6000_reg_names[103][0], /* v26 */ \
2513 &rs6000_reg_names[104][0], /* v27 */ \
2514 &rs6000_reg_names[105][0], /* v28 */ \
2515 &rs6000_reg_names[106][0], /* v29 */ \
2516 &rs6000_reg_names[107][0], /* v30 */ \
2517 &rs6000_reg_names[108][0], /* v31 */ \
2518 &rs6000_reg_names[109][0], /* vrsave */ \
2519 &rs6000_reg_names[110][0], /* vscr */ \
2520 &rs6000_reg_names[111][0], /* spe_acc */ \
2521 &rs6000_reg_names[112][0], /* spefscr */ \
2524 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2525 following for it. Switch to use the alternate names since
2526 they are more mnemonic. */
2528 #define DEBUG_REGISTER_NAMES \
2530 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2531 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2532 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2533 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2534 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2535 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2536 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2537 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2538 "mq", "lr", "ctr", "ap", \
2539 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2540 "xer", \
2541 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2542 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2543 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2544 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2545 "vrsave", "vscr", \
2546 "spe_acc", "spefscr" \
2549 /* Table of additional register names to use in user input. */
2551 #define ADDITIONAL_REGISTER_NAMES \
2552 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2553 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2554 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2555 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2556 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2557 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2558 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2559 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2560 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2561 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2562 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2563 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2564 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2565 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2566 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2567 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2568 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2569 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2570 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2571 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2572 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2573 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2574 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2575 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2576 {"vrsave", 109}, {"vscr", 110}, \
2577 {"spe_acc", 111}, {"spefscr", 112}, \
2578 /* no additional names for: mq, lr, ctr, ap */ \
2579 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2580 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2581 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2583 /* Text to write out after a CALL that may be replaced by glue code by
2584 the loader. This depends on the AIX version. */
2585 #define RS6000_CALL_GLUE "cror 31,31,31"
2587 /* This is how to output an element of a case-vector that is relative. */
2589 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2590 do { char buf[100]; \
2591 fputs ("\t.long ", FILE); \
2592 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2593 assemble_name (FILE, buf); \
2594 putc ('-', FILE); \
2595 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2596 assemble_name (FILE, buf); \
2597 putc ('\n', FILE); \
2598 } while (0)
2600 /* This is how to output an assembler line
2601 that says to advance the location counter
2602 to a multiple of 2**LOG bytes. */
2604 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2605 if ((LOG) != 0) \
2606 fprintf (FILE, "\t.align %d\n", (LOG))
2608 /* Pick up the return address upon entry to a procedure. Used for
2609 dwarf2 unwind information. This also enables the table driven
2610 mechanism. */
2612 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2613 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2615 /* Describe how we implement __builtin_eh_return. */
2616 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2617 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2619 /* Print operand X (an rtx) in assembler syntax to file FILE.
2620 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2621 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2623 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2625 /* Define which CODE values are valid. */
2627 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2628 ((CODE) == '.' || (CODE) == '&')
2630 /* Print a memory address as an operand to reference that memory location. */
2632 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2634 /* Define the codes that are matched by predicates in rs6000.c. */
2636 #define PREDICATE_CODES \
2637 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2638 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2639 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2640 LABEL_REF, SUBREG, REG, MEM}}, \
2641 {"short_cint_operand", {CONST_INT}}, \
2642 {"u_short_cint_operand", {CONST_INT}}, \
2643 {"non_short_cint_operand", {CONST_INT}}, \
2644 {"exact_log2_cint_operand", {CONST_INT}}, \
2645 {"gpc_reg_operand", {SUBREG, REG}}, \
2646 {"cc_reg_operand", {SUBREG, REG}}, \
2647 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2648 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2649 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2650 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2651 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2652 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2653 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2654 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2655 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2656 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2657 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2658 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2659 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
2660 {"easy_fp_constant", {CONST_DOUBLE}}, \
2661 {"easy_vector_constant", {CONST_VECTOR}}, \
2662 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
2663 {"zero_fp_constant", {CONST_DOUBLE}}, \
2664 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2665 {"lwa_operand", {SUBREG, MEM, REG}}, \
2666 {"volatile_mem_operand", {MEM}}, \
2667 {"offsettable_mem_operand", {MEM}}, \
2668 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2669 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2670 {"non_add_cint_operand", {CONST_INT}}, \
2671 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2672 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2673 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2674 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2675 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2676 {"mask_operand", {CONST_INT}}, \
2677 {"mask_operand_wrap", {CONST_INT}}, \
2678 {"mask64_operand", {CONST_INT}}, \
2679 {"mask64_2_operand", {CONST_INT}}, \
2680 {"count_register_operand", {REG}}, \
2681 {"xer_operand", {REG}}, \
2682 {"symbol_ref_operand", {SYMBOL_REF}}, \
2683 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
2684 {"call_operand", {SYMBOL_REF, REG}}, \
2685 {"current_file_function_operand", {SYMBOL_REF}}, \
2686 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2687 CONST_DOUBLE, SYMBOL_REF}}, \
2688 {"load_multiple_operation", {PARALLEL}}, \
2689 {"store_multiple_operation", {PARALLEL}}, \
2690 {"vrsave_operation", {PARALLEL}}, \
2691 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2692 GT, LEU, LTU, GEU, GTU, \
2693 UNORDERED, ORDERED, \
2694 UNGE, UNLE }}, \
2695 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2696 UNORDERED }}, \
2697 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2698 GT, LEU, LTU, GEU, GTU, \
2699 UNORDERED, ORDERED, \
2700 UNGE, UNLE }}, \
2701 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2702 GT, LEU, LTU, GEU, GTU}}, \
2703 {"boolean_operator", {AND, IOR, XOR}}, \
2704 {"boolean_or_operator", {IOR, XOR}}, \
2705 {"altivec_register_operand", {REG}}, \
2706 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2708 /* uncomment for disabling the corresponding default options */
2709 /* #define MACHINE_no_sched_interblock */
2710 /* #define MACHINE_no_sched_speculative */
2711 /* #define MACHINE_no_sched_speculative_load */
2713 /* General flags. */
2714 extern int flag_pic;
2715 extern int optimize;
2716 extern int flag_expensive_optimizations;
2717 extern int frame_pointer_needed;
2719 enum rs6000_builtins
2721 /* AltiVec builtins. */
2722 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2723 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2724 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2725 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2726 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2727 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2728 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2729 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2730 ALTIVEC_BUILTIN_VADDUBM,
2731 ALTIVEC_BUILTIN_VADDUHM,
2732 ALTIVEC_BUILTIN_VADDUWM,
2733 ALTIVEC_BUILTIN_VADDFP,
2734 ALTIVEC_BUILTIN_VADDCUW,
2735 ALTIVEC_BUILTIN_VADDUBS,
2736 ALTIVEC_BUILTIN_VADDSBS,
2737 ALTIVEC_BUILTIN_VADDUHS,
2738 ALTIVEC_BUILTIN_VADDSHS,
2739 ALTIVEC_BUILTIN_VADDUWS,
2740 ALTIVEC_BUILTIN_VADDSWS,
2741 ALTIVEC_BUILTIN_VAND,
2742 ALTIVEC_BUILTIN_VANDC,
2743 ALTIVEC_BUILTIN_VAVGUB,
2744 ALTIVEC_BUILTIN_VAVGSB,
2745 ALTIVEC_BUILTIN_VAVGUH,
2746 ALTIVEC_BUILTIN_VAVGSH,
2747 ALTIVEC_BUILTIN_VAVGUW,
2748 ALTIVEC_BUILTIN_VAVGSW,
2749 ALTIVEC_BUILTIN_VCFUX,
2750 ALTIVEC_BUILTIN_VCFSX,
2751 ALTIVEC_BUILTIN_VCTSXS,
2752 ALTIVEC_BUILTIN_VCTUXS,
2753 ALTIVEC_BUILTIN_VCMPBFP,
2754 ALTIVEC_BUILTIN_VCMPEQUB,
2755 ALTIVEC_BUILTIN_VCMPEQUH,
2756 ALTIVEC_BUILTIN_VCMPEQUW,
2757 ALTIVEC_BUILTIN_VCMPEQFP,
2758 ALTIVEC_BUILTIN_VCMPGEFP,
2759 ALTIVEC_BUILTIN_VCMPGTUB,
2760 ALTIVEC_BUILTIN_VCMPGTSB,
2761 ALTIVEC_BUILTIN_VCMPGTUH,
2762 ALTIVEC_BUILTIN_VCMPGTSH,
2763 ALTIVEC_BUILTIN_VCMPGTUW,
2764 ALTIVEC_BUILTIN_VCMPGTSW,
2765 ALTIVEC_BUILTIN_VCMPGTFP,
2766 ALTIVEC_BUILTIN_VEXPTEFP,
2767 ALTIVEC_BUILTIN_VLOGEFP,
2768 ALTIVEC_BUILTIN_VMADDFP,
2769 ALTIVEC_BUILTIN_VMAXUB,
2770 ALTIVEC_BUILTIN_VMAXSB,
2771 ALTIVEC_BUILTIN_VMAXUH,
2772 ALTIVEC_BUILTIN_VMAXSH,
2773 ALTIVEC_BUILTIN_VMAXUW,
2774 ALTIVEC_BUILTIN_VMAXSW,
2775 ALTIVEC_BUILTIN_VMAXFP,
2776 ALTIVEC_BUILTIN_VMHADDSHS,
2777 ALTIVEC_BUILTIN_VMHRADDSHS,
2778 ALTIVEC_BUILTIN_VMLADDUHM,
2779 ALTIVEC_BUILTIN_VMRGHB,
2780 ALTIVEC_BUILTIN_VMRGHH,
2781 ALTIVEC_BUILTIN_VMRGHW,
2782 ALTIVEC_BUILTIN_VMRGLB,
2783 ALTIVEC_BUILTIN_VMRGLH,
2784 ALTIVEC_BUILTIN_VMRGLW,
2785 ALTIVEC_BUILTIN_VMSUMUBM,
2786 ALTIVEC_BUILTIN_VMSUMMBM,
2787 ALTIVEC_BUILTIN_VMSUMUHM,
2788 ALTIVEC_BUILTIN_VMSUMSHM,
2789 ALTIVEC_BUILTIN_VMSUMUHS,
2790 ALTIVEC_BUILTIN_VMSUMSHS,
2791 ALTIVEC_BUILTIN_VMINUB,
2792 ALTIVEC_BUILTIN_VMINSB,
2793 ALTIVEC_BUILTIN_VMINUH,
2794 ALTIVEC_BUILTIN_VMINSH,
2795 ALTIVEC_BUILTIN_VMINUW,
2796 ALTIVEC_BUILTIN_VMINSW,
2797 ALTIVEC_BUILTIN_VMINFP,
2798 ALTIVEC_BUILTIN_VMULEUB,
2799 ALTIVEC_BUILTIN_VMULESB,
2800 ALTIVEC_BUILTIN_VMULEUH,
2801 ALTIVEC_BUILTIN_VMULESH,
2802 ALTIVEC_BUILTIN_VMULOUB,
2803 ALTIVEC_BUILTIN_VMULOSB,
2804 ALTIVEC_BUILTIN_VMULOUH,
2805 ALTIVEC_BUILTIN_VMULOSH,
2806 ALTIVEC_BUILTIN_VNMSUBFP,
2807 ALTIVEC_BUILTIN_VNOR,
2808 ALTIVEC_BUILTIN_VOR,
2809 ALTIVEC_BUILTIN_VSEL_4SI,
2810 ALTIVEC_BUILTIN_VSEL_4SF,
2811 ALTIVEC_BUILTIN_VSEL_8HI,
2812 ALTIVEC_BUILTIN_VSEL_16QI,
2813 ALTIVEC_BUILTIN_VPERM_4SI,
2814 ALTIVEC_BUILTIN_VPERM_4SF,
2815 ALTIVEC_BUILTIN_VPERM_8HI,
2816 ALTIVEC_BUILTIN_VPERM_16QI,
2817 ALTIVEC_BUILTIN_VPKUHUM,
2818 ALTIVEC_BUILTIN_VPKUWUM,
2819 ALTIVEC_BUILTIN_VPKPX,
2820 ALTIVEC_BUILTIN_VPKUHSS,
2821 ALTIVEC_BUILTIN_VPKSHSS,
2822 ALTIVEC_BUILTIN_VPKUWSS,
2823 ALTIVEC_BUILTIN_VPKSWSS,
2824 ALTIVEC_BUILTIN_VPKUHUS,
2825 ALTIVEC_BUILTIN_VPKSHUS,
2826 ALTIVEC_BUILTIN_VPKUWUS,
2827 ALTIVEC_BUILTIN_VPKSWUS,
2828 ALTIVEC_BUILTIN_VREFP,
2829 ALTIVEC_BUILTIN_VRFIM,
2830 ALTIVEC_BUILTIN_VRFIN,
2831 ALTIVEC_BUILTIN_VRFIP,
2832 ALTIVEC_BUILTIN_VRFIZ,
2833 ALTIVEC_BUILTIN_VRLB,
2834 ALTIVEC_BUILTIN_VRLH,
2835 ALTIVEC_BUILTIN_VRLW,
2836 ALTIVEC_BUILTIN_VRSQRTEFP,
2837 ALTIVEC_BUILTIN_VSLB,
2838 ALTIVEC_BUILTIN_VSLH,
2839 ALTIVEC_BUILTIN_VSLW,
2840 ALTIVEC_BUILTIN_VSL,
2841 ALTIVEC_BUILTIN_VSLO,
2842 ALTIVEC_BUILTIN_VSPLTB,
2843 ALTIVEC_BUILTIN_VSPLTH,
2844 ALTIVEC_BUILTIN_VSPLTW,
2845 ALTIVEC_BUILTIN_VSPLTISB,
2846 ALTIVEC_BUILTIN_VSPLTISH,
2847 ALTIVEC_BUILTIN_VSPLTISW,
2848 ALTIVEC_BUILTIN_VSRB,
2849 ALTIVEC_BUILTIN_VSRH,
2850 ALTIVEC_BUILTIN_VSRW,
2851 ALTIVEC_BUILTIN_VSRAB,
2852 ALTIVEC_BUILTIN_VSRAH,
2853 ALTIVEC_BUILTIN_VSRAW,
2854 ALTIVEC_BUILTIN_VSR,
2855 ALTIVEC_BUILTIN_VSRO,
2856 ALTIVEC_BUILTIN_VSUBUBM,
2857 ALTIVEC_BUILTIN_VSUBUHM,
2858 ALTIVEC_BUILTIN_VSUBUWM,
2859 ALTIVEC_BUILTIN_VSUBFP,
2860 ALTIVEC_BUILTIN_VSUBCUW,
2861 ALTIVEC_BUILTIN_VSUBUBS,
2862 ALTIVEC_BUILTIN_VSUBSBS,
2863 ALTIVEC_BUILTIN_VSUBUHS,
2864 ALTIVEC_BUILTIN_VSUBSHS,
2865 ALTIVEC_BUILTIN_VSUBUWS,
2866 ALTIVEC_BUILTIN_VSUBSWS,
2867 ALTIVEC_BUILTIN_VSUM4UBS,
2868 ALTIVEC_BUILTIN_VSUM4SBS,
2869 ALTIVEC_BUILTIN_VSUM4SHS,
2870 ALTIVEC_BUILTIN_VSUM2SWS,
2871 ALTIVEC_BUILTIN_VSUMSWS,
2872 ALTIVEC_BUILTIN_VXOR,
2873 ALTIVEC_BUILTIN_VSLDOI_16QI,
2874 ALTIVEC_BUILTIN_VSLDOI_8HI,
2875 ALTIVEC_BUILTIN_VSLDOI_4SI,
2876 ALTIVEC_BUILTIN_VSLDOI_4SF,
2877 ALTIVEC_BUILTIN_VUPKHSB,
2878 ALTIVEC_BUILTIN_VUPKHPX,
2879 ALTIVEC_BUILTIN_VUPKHSH,
2880 ALTIVEC_BUILTIN_VUPKLSB,
2881 ALTIVEC_BUILTIN_VUPKLPX,
2882 ALTIVEC_BUILTIN_VUPKLSH,
2883 ALTIVEC_BUILTIN_MTVSCR,
2884 ALTIVEC_BUILTIN_MFVSCR,
2885 ALTIVEC_BUILTIN_DSSALL,
2886 ALTIVEC_BUILTIN_DSS,
2887 ALTIVEC_BUILTIN_LVSL,
2888 ALTIVEC_BUILTIN_LVSR,
2889 ALTIVEC_BUILTIN_DSTT,
2890 ALTIVEC_BUILTIN_DSTST,
2891 ALTIVEC_BUILTIN_DSTSTT,
2892 ALTIVEC_BUILTIN_DST,
2893 ALTIVEC_BUILTIN_LVEBX,
2894 ALTIVEC_BUILTIN_LVEHX,
2895 ALTIVEC_BUILTIN_LVEWX,
2896 ALTIVEC_BUILTIN_LVXL,
2897 ALTIVEC_BUILTIN_LVX,
2898 ALTIVEC_BUILTIN_STVX,
2899 ALTIVEC_BUILTIN_STVEBX,
2900 ALTIVEC_BUILTIN_STVEHX,
2901 ALTIVEC_BUILTIN_STVEWX,
2902 ALTIVEC_BUILTIN_STVXL,
2903 ALTIVEC_BUILTIN_VCMPBFP_P,
2904 ALTIVEC_BUILTIN_VCMPEQFP_P,
2905 ALTIVEC_BUILTIN_VCMPEQUB_P,
2906 ALTIVEC_BUILTIN_VCMPEQUH_P,
2907 ALTIVEC_BUILTIN_VCMPEQUW_P,
2908 ALTIVEC_BUILTIN_VCMPGEFP_P,
2909 ALTIVEC_BUILTIN_VCMPGTFP_P,
2910 ALTIVEC_BUILTIN_VCMPGTSB_P,
2911 ALTIVEC_BUILTIN_VCMPGTSH_P,
2912 ALTIVEC_BUILTIN_VCMPGTSW_P,
2913 ALTIVEC_BUILTIN_VCMPGTUB_P,
2914 ALTIVEC_BUILTIN_VCMPGTUH_P,
2915 ALTIVEC_BUILTIN_VCMPGTUW_P,
2916 ALTIVEC_BUILTIN_ABSS_V4SI,
2917 ALTIVEC_BUILTIN_ABSS_V8HI,
2918 ALTIVEC_BUILTIN_ABSS_V16QI,
2919 ALTIVEC_BUILTIN_ABS_V4SI,
2920 ALTIVEC_BUILTIN_ABS_V4SF,
2921 ALTIVEC_BUILTIN_ABS_V8HI,
2922 ALTIVEC_BUILTIN_ABS_V16QI
2923 /* SPE builtins. */
2924 , SPE_BUILTIN_EVADDW,
2925 SPE_BUILTIN_EVAND,
2926 SPE_BUILTIN_EVANDC,
2927 SPE_BUILTIN_EVDIVWS,
2928 SPE_BUILTIN_EVDIVWU,
2929 SPE_BUILTIN_EVEQV,
2930 SPE_BUILTIN_EVFSADD,
2931 SPE_BUILTIN_EVFSDIV,
2932 SPE_BUILTIN_EVFSMUL,
2933 SPE_BUILTIN_EVFSSUB,
2934 SPE_BUILTIN_EVLDDX,
2935 SPE_BUILTIN_EVLDHX,
2936 SPE_BUILTIN_EVLDWX,
2937 SPE_BUILTIN_EVLHHESPLATX,
2938 SPE_BUILTIN_EVLHHOSSPLATX,
2939 SPE_BUILTIN_EVLHHOUSPLATX,
2940 SPE_BUILTIN_EVLWHEX,
2941 SPE_BUILTIN_EVLWHOSX,
2942 SPE_BUILTIN_EVLWHOUX,
2943 SPE_BUILTIN_EVLWHSPLATX,
2944 SPE_BUILTIN_EVLWWSPLATX,
2945 SPE_BUILTIN_EVMERGEHI,
2946 SPE_BUILTIN_EVMERGEHILO,
2947 SPE_BUILTIN_EVMERGELO,
2948 SPE_BUILTIN_EVMERGELOHI,
2949 SPE_BUILTIN_EVMHEGSMFAA,
2950 SPE_BUILTIN_EVMHEGSMFAN,
2951 SPE_BUILTIN_EVMHEGSMIAA,
2952 SPE_BUILTIN_EVMHEGSMIAN,
2953 SPE_BUILTIN_EVMHEGUMIAA,
2954 SPE_BUILTIN_EVMHEGUMIAN,
2955 SPE_BUILTIN_EVMHESMF,
2956 SPE_BUILTIN_EVMHESMFA,
2957 SPE_BUILTIN_EVMHESMFAAW,
2958 SPE_BUILTIN_EVMHESMFANW,
2959 SPE_BUILTIN_EVMHESMI,
2960 SPE_BUILTIN_EVMHESMIA,
2961 SPE_BUILTIN_EVMHESMIAAW,
2962 SPE_BUILTIN_EVMHESMIANW,
2963 SPE_BUILTIN_EVMHESSF,
2964 SPE_BUILTIN_EVMHESSFA,
2965 SPE_BUILTIN_EVMHESSFAAW,
2966 SPE_BUILTIN_EVMHESSFANW,
2967 SPE_BUILTIN_EVMHESSIAAW,
2968 SPE_BUILTIN_EVMHESSIANW,
2969 SPE_BUILTIN_EVMHEUMI,
2970 SPE_BUILTIN_EVMHEUMIA,
2971 SPE_BUILTIN_EVMHEUMIAAW,
2972 SPE_BUILTIN_EVMHEUMIANW,
2973 SPE_BUILTIN_EVMHEUSIAAW,
2974 SPE_BUILTIN_EVMHEUSIANW,
2975 SPE_BUILTIN_EVMHOGSMFAA,
2976 SPE_BUILTIN_EVMHOGSMFAN,
2977 SPE_BUILTIN_EVMHOGSMIAA,
2978 SPE_BUILTIN_EVMHOGSMIAN,
2979 SPE_BUILTIN_EVMHOGUMIAA,
2980 SPE_BUILTIN_EVMHOGUMIAN,
2981 SPE_BUILTIN_EVMHOSMF,
2982 SPE_BUILTIN_EVMHOSMFA,
2983 SPE_BUILTIN_EVMHOSMFAAW,
2984 SPE_BUILTIN_EVMHOSMFANW,
2985 SPE_BUILTIN_EVMHOSMI,
2986 SPE_BUILTIN_EVMHOSMIA,
2987 SPE_BUILTIN_EVMHOSMIAAW,
2988 SPE_BUILTIN_EVMHOSMIANW,
2989 SPE_BUILTIN_EVMHOSSF,
2990 SPE_BUILTIN_EVMHOSSFA,
2991 SPE_BUILTIN_EVMHOSSFAAW,
2992 SPE_BUILTIN_EVMHOSSFANW,
2993 SPE_BUILTIN_EVMHOSSIAAW,
2994 SPE_BUILTIN_EVMHOSSIANW,
2995 SPE_BUILTIN_EVMHOUMI,
2996 SPE_BUILTIN_EVMHOUMIA,
2997 SPE_BUILTIN_EVMHOUMIAAW,
2998 SPE_BUILTIN_EVMHOUMIANW,
2999 SPE_BUILTIN_EVMHOUSIAAW,
3000 SPE_BUILTIN_EVMHOUSIANW,
3001 SPE_BUILTIN_EVMWHSMF,
3002 SPE_BUILTIN_EVMWHSMFA,
3003 SPE_BUILTIN_EVMWHSMI,
3004 SPE_BUILTIN_EVMWHSMIA,
3005 SPE_BUILTIN_EVMWHSSF,
3006 SPE_BUILTIN_EVMWHSSFA,
3007 SPE_BUILTIN_EVMWHUMI,
3008 SPE_BUILTIN_EVMWHUMIA,
3009 SPE_BUILTIN_EVMWLSMIAAW,
3010 SPE_BUILTIN_EVMWLSMIANW,
3011 SPE_BUILTIN_EVMWLSSIAAW,
3012 SPE_BUILTIN_EVMWLSSIANW,
3013 SPE_BUILTIN_EVMWLUMI,
3014 SPE_BUILTIN_EVMWLUMIA,
3015 SPE_BUILTIN_EVMWLUMIAAW,
3016 SPE_BUILTIN_EVMWLUMIANW,
3017 SPE_BUILTIN_EVMWLUSIAAW,
3018 SPE_BUILTIN_EVMWLUSIANW,
3019 SPE_BUILTIN_EVMWSMF,
3020 SPE_BUILTIN_EVMWSMFA,
3021 SPE_BUILTIN_EVMWSMFAA,
3022 SPE_BUILTIN_EVMWSMFAN,
3023 SPE_BUILTIN_EVMWSMI,
3024 SPE_BUILTIN_EVMWSMIA,
3025 SPE_BUILTIN_EVMWSMIAA,
3026 SPE_BUILTIN_EVMWSMIAN,
3027 SPE_BUILTIN_EVMWHSSFAA,
3028 SPE_BUILTIN_EVMWSSF,
3029 SPE_BUILTIN_EVMWSSFA,
3030 SPE_BUILTIN_EVMWSSFAA,
3031 SPE_BUILTIN_EVMWSSFAN,
3032 SPE_BUILTIN_EVMWUMI,
3033 SPE_BUILTIN_EVMWUMIA,
3034 SPE_BUILTIN_EVMWUMIAA,
3035 SPE_BUILTIN_EVMWUMIAN,
3036 SPE_BUILTIN_EVNAND,
3037 SPE_BUILTIN_EVNOR,
3038 SPE_BUILTIN_EVOR,
3039 SPE_BUILTIN_EVORC,
3040 SPE_BUILTIN_EVRLW,
3041 SPE_BUILTIN_EVSLW,
3042 SPE_BUILTIN_EVSRWS,
3043 SPE_BUILTIN_EVSRWU,
3044 SPE_BUILTIN_EVSTDDX,
3045 SPE_BUILTIN_EVSTDHX,
3046 SPE_BUILTIN_EVSTDWX,
3047 SPE_BUILTIN_EVSTWHEX,
3048 SPE_BUILTIN_EVSTWHOX,
3049 SPE_BUILTIN_EVSTWWEX,
3050 SPE_BUILTIN_EVSTWWOX,
3051 SPE_BUILTIN_EVSUBFW,
3052 SPE_BUILTIN_EVXOR,
3053 SPE_BUILTIN_EVABS,
3054 SPE_BUILTIN_EVADDSMIAAW,
3055 SPE_BUILTIN_EVADDSSIAAW,
3056 SPE_BUILTIN_EVADDUMIAAW,
3057 SPE_BUILTIN_EVADDUSIAAW,
3058 SPE_BUILTIN_EVCNTLSW,
3059 SPE_BUILTIN_EVCNTLZW,
3060 SPE_BUILTIN_EVEXTSB,
3061 SPE_BUILTIN_EVEXTSH,
3062 SPE_BUILTIN_EVFSABS,
3063 SPE_BUILTIN_EVFSCFSF,
3064 SPE_BUILTIN_EVFSCFSI,
3065 SPE_BUILTIN_EVFSCFUF,
3066 SPE_BUILTIN_EVFSCFUI,
3067 SPE_BUILTIN_EVFSCTSF,
3068 SPE_BUILTIN_EVFSCTSI,
3069 SPE_BUILTIN_EVFSCTSIZ,
3070 SPE_BUILTIN_EVFSCTUF,
3071 SPE_BUILTIN_EVFSCTUI,
3072 SPE_BUILTIN_EVFSCTUIZ,
3073 SPE_BUILTIN_EVFSNABS,
3074 SPE_BUILTIN_EVFSNEG,
3075 SPE_BUILTIN_EVMRA,
3076 SPE_BUILTIN_EVNEG,
3077 SPE_BUILTIN_EVRNDW,
3078 SPE_BUILTIN_EVSUBFSMIAAW,
3079 SPE_BUILTIN_EVSUBFSSIAAW,
3080 SPE_BUILTIN_EVSUBFUMIAAW,
3081 SPE_BUILTIN_EVSUBFUSIAAW,
3082 SPE_BUILTIN_EVADDIW,
3083 SPE_BUILTIN_EVLDD,
3084 SPE_BUILTIN_EVLDH,
3085 SPE_BUILTIN_EVLDW,
3086 SPE_BUILTIN_EVLHHESPLAT,
3087 SPE_BUILTIN_EVLHHOSSPLAT,
3088 SPE_BUILTIN_EVLHHOUSPLAT,
3089 SPE_BUILTIN_EVLWHE,
3090 SPE_BUILTIN_EVLWHOS,
3091 SPE_BUILTIN_EVLWHOU,
3092 SPE_BUILTIN_EVLWHSPLAT,
3093 SPE_BUILTIN_EVLWWSPLAT,
3094 SPE_BUILTIN_EVRLWI,
3095 SPE_BUILTIN_EVSLWI,
3096 SPE_BUILTIN_EVSRWIS,
3097 SPE_BUILTIN_EVSRWIU,
3098 SPE_BUILTIN_EVSTDD,
3099 SPE_BUILTIN_EVSTDH,
3100 SPE_BUILTIN_EVSTDW,
3101 SPE_BUILTIN_EVSTWHE,
3102 SPE_BUILTIN_EVSTWHO,
3103 SPE_BUILTIN_EVSTWWE,
3104 SPE_BUILTIN_EVSTWWO,
3105 SPE_BUILTIN_EVSUBIFW,
3107 /* Compares. */
3108 SPE_BUILTIN_EVCMPEQ,
3109 SPE_BUILTIN_EVCMPGTS,
3110 SPE_BUILTIN_EVCMPGTU,
3111 SPE_BUILTIN_EVCMPLTS,
3112 SPE_BUILTIN_EVCMPLTU,
3113 SPE_BUILTIN_EVFSCMPEQ,
3114 SPE_BUILTIN_EVFSCMPGT,
3115 SPE_BUILTIN_EVFSCMPLT,
3116 SPE_BUILTIN_EVFSTSTEQ,
3117 SPE_BUILTIN_EVFSTSTGT,
3118 SPE_BUILTIN_EVFSTSTLT,
3120 /* EVSEL compares. */
3121 SPE_BUILTIN_EVSEL_CMPEQ,
3122 SPE_BUILTIN_EVSEL_CMPGTS,
3123 SPE_BUILTIN_EVSEL_CMPGTU,
3124 SPE_BUILTIN_EVSEL_CMPLTS,
3125 SPE_BUILTIN_EVSEL_CMPLTU,
3126 SPE_BUILTIN_EVSEL_FSCMPEQ,
3127 SPE_BUILTIN_EVSEL_FSCMPGT,
3128 SPE_BUILTIN_EVSEL_FSCMPLT,
3129 SPE_BUILTIN_EVSEL_FSTSTEQ,
3130 SPE_BUILTIN_EVSEL_FSTSTGT,
3131 SPE_BUILTIN_EVSEL_FSTSTLT,
3133 SPE_BUILTIN_EVSPLATFI,
3134 SPE_BUILTIN_EVSPLATI,
3135 SPE_BUILTIN_EVMWHSSMAA,
3136 SPE_BUILTIN_EVMWHSMFAA,
3137 SPE_BUILTIN_EVMWHSMIAA,
3138 SPE_BUILTIN_EVMWHUSIAA,
3139 SPE_BUILTIN_EVMWHUMIAA,
3140 SPE_BUILTIN_EVMWHSSFAN,
3141 SPE_BUILTIN_EVMWHSSIAN,
3142 SPE_BUILTIN_EVMWHSMFAN,
3143 SPE_BUILTIN_EVMWHSMIAN,
3144 SPE_BUILTIN_EVMWHUSIAN,
3145 SPE_BUILTIN_EVMWHUMIAN,
3146 SPE_BUILTIN_EVMWHGSSFAA,
3147 SPE_BUILTIN_EVMWHGSMFAA,
3148 SPE_BUILTIN_EVMWHGSMIAA,
3149 SPE_BUILTIN_EVMWHGUMIAA,
3150 SPE_BUILTIN_EVMWHGSSFAN,
3151 SPE_BUILTIN_EVMWHGSMFAN,
3152 SPE_BUILTIN_EVMWHGSMIAN,
3153 SPE_BUILTIN_EVMWHGUMIAN,
3154 SPE_BUILTIN_MTSPEFSCR,
3155 SPE_BUILTIN_MFSPEFSCR,
3156 SPE_BUILTIN_BRINC