1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Contracts
; use Contracts
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Elists
; use Elists
;
33 with Exp_Aggr
; use Exp_Aggr
;
34 with Exp_Atag
; use Exp_Atag
;
35 with Exp_Ch2
; use Exp_Ch2
;
36 with Exp_Ch3
; use Exp_Ch3
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Dbug
; use Exp_Dbug
;
40 with Exp_Disp
; use Exp_Disp
;
41 with Exp_Dist
; use Exp_Dist
;
42 with Exp_Intr
; use Exp_Intr
;
43 with Exp_Pakd
; use Exp_Pakd
;
44 with Exp_Tss
; use Exp_Tss
;
45 with Exp_Util
; use Exp_Util
;
46 with Freeze
; use Freeze
;
47 with Inline
; use Inline
;
49 with Namet
; use Namet
;
50 with Nlists
; use Nlists
;
51 with Nmake
; use Nmake
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch12
; use Sem_Ch12
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_SCIL
; use Sem_SCIL
;
69 with Sem_Util
; use Sem_Util
;
70 with Sinfo
; use Sinfo
;
71 with Snames
; use Snames
;
72 with Stand
; use Stand
;
73 with Targparm
; use Targparm
;
74 with Tbuild
; use Tbuild
;
75 with Uintp
; use Uintp
;
76 with Validsw
; use Validsw
;
78 package body Exp_Ch6
is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Add_Access_Actual_To_Build_In_Place_Call
85 (Function_Call
: Node_Id
;
86 Function_Id
: Entity_Id
;
87 Return_Object
: Node_Id
;
88 Is_Access
: Boolean := False);
89 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
90 -- object name given by Return_Object and add the attribute to the end of
91 -- the actual parameter list associated with the build-in-place function
92 -- call denoted by Function_Call. However, if Is_Access is True, then
93 -- Return_Object is already an access expression, in which case it's passed
94 -- along directly to the build-in-place function. Finally, if Return_Object
95 -- is empty, then pass a null literal as the actual.
97 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
98 (Function_Call
: Node_Id
;
99 Function_Id
: Entity_Id
;
100 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
101 Alloc_Form_Exp
: Node_Id
:= Empty
;
102 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
103 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
104 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
105 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
106 -- otherwise pass a literal corresponding to the Alloc_Form parameter
107 -- (which must not be Unspecified in that case). Pool_Actual is the
108 -- parameter to pass to BIP_Storage_Pool.
110 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
111 (Func_Call
: Node_Id
;
113 Ptr_Typ
: Entity_Id
:= Empty
;
114 Master_Exp
: Node_Id
:= Empty
);
115 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
116 -- finalization actions, add an actual parameter which is a pointer to the
117 -- finalization master of the caller. If Master_Exp is not Empty, then that
118 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
119 -- will result in an automatic "null" value for the actual.
121 procedure Add_Task_Actuals_To_Build_In_Place_Call
122 (Function_Call
: Node_Id
;
123 Function_Id
: Entity_Id
;
124 Master_Actual
: Node_Id
;
125 Chain
: Node_Id
:= Empty
);
126 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
127 -- contains tasks, add two actual parameters: the master, and a pointer to
128 -- the caller's activation chain. Master_Actual is the actual parameter
129 -- expression to pass for the master. In most cases, this is the current
130 -- master (_master). The two exceptions are: If the function call is the
131 -- initialization expression for an allocator, we pass the master of the
132 -- access type. If the function call is the initialization expression for a
133 -- return object, we pass along the master passed in by the caller. In most
134 -- contexts, the activation chain to pass is the local one, which is
135 -- indicated by No (Chain). However, in an allocator, the caller passes in
136 -- the activation Chain. Note: Master_Actual can be Empty, but only if
137 -- there are no tasks.
139 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
140 -- Subp is a dispatching operation. Check whether it may override an
141 -- inherited private operation, in which case its DT entry is that of
142 -- the hidden operation, not the one it may have received earlier.
143 -- This must be done before emitting the code to set the corresponding
144 -- DT to the address of the subprogram. The actual placement of Subp in
145 -- the proper place in the list of primitive operations is done in
146 -- Declare_Inherited_Private_Subprograms, which also has to deal with
147 -- implicit operations. This duplication is unavoidable for now???
149 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
150 -- This procedure is called only if the subprogram body N, whose spec
151 -- has the given entity Spec, contains a parameterless recursive call.
152 -- It attempts to generate runtime code to detect if this a case of
153 -- infinite recursion.
155 -- The body is scanned to determine dependencies. If the only external
156 -- dependencies are on a small set of scalar variables, then the values
157 -- of these variables are captured on entry to the subprogram, and if
158 -- the values are not changed for the call, we know immediately that
159 -- we have an infinite recursion.
161 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
);
162 -- For each actual of an in-out or out parameter which is a numeric
163 -- (view) conversion of the form T (A), where A denotes a variable,
164 -- we insert the declaration:
166 -- Temp : T[ := T (A)];
168 -- prior to the call. Then we replace the actual with a reference to Temp,
169 -- and append the assignment:
171 -- A := TypeA (Temp);
173 -- after the call. Here TypeA is the actual type of variable A. For out
174 -- parameters, the initial declaration has no expression. If A is not an
175 -- entity name, we generate instead:
177 -- Var : TypeA renames A;
178 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- Var := TypeA (Temp);
182 -- For other in-out parameters, we emit the required constraint checks
183 -- before and/or after the call.
185 -- For all parameter modes, actuals that denote components and slices of
186 -- packed arrays are expanded into suitable temporaries.
188 -- For non-scalar objects that are possibly unaligned, add call by copy
189 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
191 -- For OUT and IN OUT parameters, add predicate checks after the call
192 -- based on the predicates of the actual type.
194 -- The parameter N is IN OUT because in some cases, the expansion code
195 -- rewrites the call as an expression actions with the call inside. In
196 -- this case N is reset to point to the inside call so that the caller
197 -- can continue processing of this call.
199 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
200 -- N is a function call which returns a controlled object. Transform the
201 -- call into a temporary which retrieves the returned object from the
202 -- secondary stack using 'reference.
204 procedure Expand_Non_Function_Return
(N
: Node_Id
);
205 -- Expand a simple return statement found in a procedure body, entry body,
206 -- accept statement, or an extended return statement. Note that all non-
207 -- function returns are simple return statements.
209 function Expand_Protected_Object_Reference
211 Scop
: Entity_Id
) return Node_Id
;
213 procedure Expand_Protected_Subprogram_Call
217 -- A call to a protected subprogram within the protected object may appear
218 -- as a regular call. The list of actuals must be expanded to contain a
219 -- reference to the object itself, and the call becomes a call to the
220 -- corresponding protected subprogram.
222 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
223 -- Expand simple return from function. In the case where we are returning
224 -- from a function body this is called by Expand_N_Simple_Return_Statement.
226 function Has_Unconstrained_Access_Discriminants
227 (Subtyp
: Entity_Id
) return Boolean;
228 -- Returns True if the given subtype is unconstrained and has one or more
229 -- access discriminants.
231 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
);
232 -- When generating C code, replace a call to a function that returns an
233 -- array into the generated procedure with an additional out parameter.
235 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
);
236 -- N is a return statement for a function that returns its result on the
237 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
238 -- function and all blocks and loops that the return statement is jumping
239 -- out of. This ensures that the secondary stack is not released; otherwise
240 -- the function result would be reclaimed before returning to the caller.
242 ----------------------------------------------
243 -- Add_Access_Actual_To_Build_In_Place_Call --
244 ----------------------------------------------
246 procedure Add_Access_Actual_To_Build_In_Place_Call
247 (Function_Call
: Node_Id
;
248 Function_Id
: Entity_Id
;
249 Return_Object
: Node_Id
;
250 Is_Access
: Boolean := False)
252 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
253 Obj_Address
: Node_Id
;
254 Obj_Acc_Formal
: Entity_Id
;
257 -- Locate the implicit access parameter in the called function
259 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
261 -- If no return object is provided, then pass null
263 if not Present
(Return_Object
) then
264 Obj_Address
:= Make_Null
(Loc
);
265 Set_Parent
(Obj_Address
, Function_Call
);
267 -- If Return_Object is already an expression of an access type, then use
268 -- it directly, since it must be an access value denoting the return
269 -- object, and couldn't possibly be the return object itself.
272 Obj_Address
:= Return_Object
;
273 Set_Parent
(Obj_Address
, Function_Call
);
275 -- Apply Unrestricted_Access to caller's return object
279 Make_Attribute_Reference
(Loc
,
280 Prefix
=> Return_Object
,
281 Attribute_Name
=> Name_Unrestricted_Access
);
283 Set_Parent
(Return_Object
, Obj_Address
);
284 Set_Parent
(Obj_Address
, Function_Call
);
287 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
289 -- Build the parameter association for the new actual and add it to the
290 -- end of the function's actuals.
292 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
293 end Add_Access_Actual_To_Build_In_Place_Call
;
295 ------------------------------------------------------
296 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
297 ------------------------------------------------------
299 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
300 (Function_Call
: Node_Id
;
301 Function_Id
: Entity_Id
;
302 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
303 Alloc_Form_Exp
: Node_Id
:= Empty
;
304 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
306 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
307 Alloc_Form_Actual
: Node_Id
;
308 Alloc_Form_Formal
: Node_Id
;
309 Pool_Formal
: Node_Id
;
312 -- The allocation form generally doesn't need to be passed in the case
313 -- of a constrained result subtype, since normally the caller performs
314 -- the allocation in that case. However this formal is still needed in
315 -- the case where the function has a tagged result, because generally
316 -- such functions can be called in a dispatching context and such calls
317 -- must be handled like calls to class-wide functions.
319 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
320 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
325 -- Locate the implicit allocation form parameter in the called function.
326 -- Maybe it would be better for each implicit formal of a build-in-place
327 -- function to have a flag or a Uint attribute to identify it. ???
329 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
331 if Present
(Alloc_Form_Exp
) then
332 pragma Assert
(Alloc_Form
= Unspecified
);
334 Alloc_Form_Actual
:= Alloc_Form_Exp
;
337 pragma Assert
(Alloc_Form
/= Unspecified
);
340 Make_Integer_Literal
(Loc
,
341 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
344 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
346 -- Build the parameter association for the new actual and add it to the
347 -- end of the function's actuals.
349 Add_Extra_Actual_To_Call
350 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
352 -- Pass the Storage_Pool parameter. This parameter is omitted on
353 -- ZFP as those targets do not support pools.
355 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
356 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
357 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
358 Add_Extra_Actual_To_Call
359 (Function_Call
, Pool_Formal
, Pool_Actual
);
361 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
363 -----------------------------------------------------------
364 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
365 -----------------------------------------------------------
367 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
368 (Func_Call
: Node_Id
;
370 Ptr_Typ
: Entity_Id
:= Empty
;
371 Master_Exp
: Node_Id
:= Empty
)
374 if not Needs_BIP_Finalization_Master
(Func_Id
) then
379 Formal
: constant Entity_Id
:=
380 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
381 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
384 Desig_Typ
: Entity_Id
;
387 -- If there is a finalization master actual, such as the implicit
388 -- finalization master of an enclosing build-in-place function,
389 -- then this must be added as an extra actual of the call.
391 if Present
(Master_Exp
) then
392 Actual
:= Master_Exp
;
394 -- Case where the context does not require an actual master
396 elsif No
(Ptr_Typ
) then
397 Actual
:= Make_Null
(Loc
);
400 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
402 -- Check for a library-level access type whose designated type has
403 -- supressed finalization. Such an access types lack a master.
404 -- Pass a null actual to the callee in order to signal a missing
407 if Is_Library_Level_Entity
(Ptr_Typ
)
408 and then Finalize_Storage_Only
(Desig_Typ
)
410 Actual
:= Make_Null
(Loc
);
412 -- Types in need of finalization actions
414 elsif Needs_Finalization
(Desig_Typ
) then
416 -- The general mechanism of creating finalization masters for
417 -- anonymous access types is disabled by default, otherwise
418 -- finalization masters will pop all over the place. Such types
419 -- use context-specific masters.
421 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
422 and then No
(Finalization_Master
(Ptr_Typ
))
424 Build_Anonymous_Master
(Ptr_Typ
);
427 -- Access-to-controlled types should always have a master
429 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
432 Make_Attribute_Reference
(Loc
,
434 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
435 Attribute_Name
=> Name_Unrestricted_Access
);
440 Actual
:= Make_Null
(Loc
);
444 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
446 -- Build the parameter association for the new actual and add it to
447 -- the end of the function's actuals.
449 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
451 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
453 ------------------------------
454 -- Add_Extra_Actual_To_Call --
455 ------------------------------
457 procedure Add_Extra_Actual_To_Call
458 (Subprogram_Call
: Node_Id
;
459 Extra_Formal
: Entity_Id
;
460 Extra_Actual
: Node_Id
)
462 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
463 Param_Assoc
: Node_Id
;
467 Make_Parameter_Association
(Loc
,
468 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
469 Explicit_Actual_Parameter
=> Extra_Actual
);
471 Set_Parent
(Param_Assoc
, Subprogram_Call
);
472 Set_Parent
(Extra_Actual
, Param_Assoc
);
474 if Present
(Parameter_Associations
(Subprogram_Call
)) then
475 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
476 N_Parameter_Association
479 -- Find last named actual, and append
484 L
:= First_Actual
(Subprogram_Call
);
485 while Present
(L
) loop
486 if No
(Next_Actual
(L
)) then
487 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
495 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
498 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
501 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
502 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
504 end Add_Extra_Actual_To_Call
;
506 ---------------------------------------------
507 -- Add_Task_Actuals_To_Build_In_Place_Call --
508 ---------------------------------------------
510 procedure Add_Task_Actuals_To_Build_In_Place_Call
511 (Function_Call
: Node_Id
;
512 Function_Id
: Entity_Id
;
513 Master_Actual
: Node_Id
;
514 Chain
: Node_Id
:= Empty
)
516 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
517 Result_Subt
: constant Entity_Id
:=
518 Available_View
(Etype
(Function_Id
));
520 Chain_Actual
: Node_Id
;
521 Chain_Formal
: Node_Id
;
522 Master_Formal
: Node_Id
;
525 -- No such extra parameters are needed if there are no tasks
527 if not Has_Task
(Result_Subt
) then
531 Actual
:= Master_Actual
;
533 -- Use a dummy _master actual in case of No_Task_Hierarchy
535 if Restriction_Active
(No_Task_Hierarchy
) then
536 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
538 -- In the case where we use the master associated with an access type,
539 -- the actual is an entity and requires an explicit reference.
541 elsif Nkind
(Actual
) = N_Defining_Identifier
then
542 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
545 -- Locate the implicit master parameter in the called function
547 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
548 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
550 -- Build the parameter association for the new actual and add it to the
551 -- end of the function's actuals.
553 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
555 -- Locate the implicit activation chain parameter in the called function
558 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
560 -- Create the actual which is a pointer to the current activation chain
564 Make_Attribute_Reference
(Loc
,
565 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
566 Attribute_Name
=> Name_Unrestricted_Access
);
568 -- Allocator case; make a reference to the Chain passed in by the caller
572 Make_Attribute_Reference
(Loc
,
573 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
574 Attribute_Name
=> Name_Unrestricted_Access
);
577 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
579 -- Build the parameter association for the new actual and add it to the
580 -- end of the function's actuals.
582 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
583 end Add_Task_Actuals_To_Build_In_Place_Call
;
585 -----------------------
586 -- BIP_Formal_Suffix --
587 -----------------------
589 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
592 when BIP_Alloc_Form
=>
595 when BIP_Storage_Pool
=>
596 return "BIPstoragepool";
598 when BIP_Finalization_Master
=>
599 return "BIPfinalizationmaster";
601 when BIP_Task_Master
=>
602 return "BIPtaskmaster";
604 when BIP_Activation_Chain
=>
605 return "BIPactivationchain";
607 when BIP_Object_Access
=>
610 end BIP_Formal_Suffix
;
612 ---------------------------
613 -- Build_In_Place_Formal --
614 ---------------------------
616 function Build_In_Place_Formal
618 Kind
: BIP_Formal_Kind
) return Entity_Id
620 Formal_Name
: constant Name_Id
:=
622 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
623 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
626 -- Maybe it would be better for each implicit formal of a build-in-place
627 -- function to have a flag or a Uint attribute to identify it. ???
629 -- The return type in the function declaration may have been a limited
630 -- view, and the extra formals for the function were not generated at
631 -- that point. At the point of call the full view must be available and
632 -- the extra formals can be created.
634 if No
(Extra_Formal
) then
635 Create_Extra_Formals
(Func
);
636 Extra_Formal
:= Extra_Formals
(Func
);
640 pragma Assert
(Present
(Extra_Formal
));
641 exit when Chars
(Extra_Formal
) = Formal_Name
;
643 Next_Formal_With_Extras
(Extra_Formal
);
647 end Build_In_Place_Formal
;
649 -------------------------------
650 -- Build_Procedure_Body_Form --
651 -------------------------------
653 function Build_Procedure_Body_Form
654 (Func_Id
: Entity_Id
;
655 Func_Body
: Node_Id
) return Node_Id
657 Loc
: constant Source_Ptr
:= Sloc
(Func_Body
);
659 Proc_Decl
: constant Node_Id
:=
660 Next
(Unit_Declaration_Node
(Func_Id
));
661 -- It is assumed that the next node following the declaration of the
662 -- corresponding subprogram spec is the declaration of the procedure
665 Proc_Id
: constant Entity_Id
:= Defining_Entity
(Proc_Decl
);
667 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
);
668 -- Replace each return statement found in the list Stmts with an
669 -- assignment of the return expression to parameter Param_Id.
671 ---------------------
672 -- Replace_Returns --
673 ---------------------
675 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
) is
679 Stmt
:= First
(Stmts
);
680 while Present
(Stmt
) loop
681 if Nkind
(Stmt
) = N_Block_Statement
then
682 Replace_Returns
(Param_Id
, Statements
(Stmt
));
684 elsif Nkind
(Stmt
) = N_Case_Statement
then
688 Alt
:= First
(Alternatives
(Stmt
));
689 while Present
(Alt
) loop
690 Replace_Returns
(Param_Id
, Statements
(Alt
));
695 elsif Nkind
(Stmt
) = N_Extended_Return_Statement
then
697 Ret_Obj
: constant Entity_Id
:=
699 (First
(Return_Object_Declarations
(Stmt
)));
700 Assign
: constant Node_Id
:=
701 Make_Assignment_Statement
(Sloc
(Stmt
),
703 New_Occurrence_Of
(Param_Id
, Loc
),
705 New_Occurrence_Of
(Ret_Obj
, Sloc
(Stmt
)));
709 -- The extended return may just contain the declaration
711 if Present
(Handled_Statement_Sequence
(Stmt
)) then
712 Stmts
:= Statements
(Handled_Statement_Sequence
(Stmt
));
717 Set_Assignment_OK
(Name
(Assign
));
720 Make_Block_Statement
(Sloc
(Stmt
),
722 Return_Object_Declarations
(Stmt
),
723 Handled_Statement_Sequence
=>
724 Make_Handled_Sequence_Of_Statements
(Loc
,
725 Statements
=> Stmts
)));
727 Replace_Returns
(Param_Id
, Stmts
);
729 Append_To
(Stmts
, Assign
);
730 Append_To
(Stmts
, Make_Simple_Return_Statement
(Loc
));
733 elsif Nkind
(Stmt
) = N_If_Statement
then
734 Replace_Returns
(Param_Id
, Then_Statements
(Stmt
));
735 Replace_Returns
(Param_Id
, Else_Statements
(Stmt
));
740 Part
:= First
(Elsif_Parts
(Stmt
));
741 while Present
(Part
) loop
742 Replace_Returns
(Param_Id
, Then_Statements
(Part
));
747 elsif Nkind
(Stmt
) = N_Loop_Statement
then
748 Replace_Returns
(Param_Id
, Statements
(Stmt
));
750 elsif Nkind
(Stmt
) = N_Simple_Return_Statement
then
757 Make_Assignment_Statement
(Sloc
(Stmt
),
758 Name
=> New_Occurrence_Of
(Param_Id
, Loc
),
759 Expression
=> Relocate_Node
(Expression
(Stmt
))));
761 Insert_After
(Stmt
, Make_Simple_Return_Statement
(Loc
));
763 -- Skip the added return
777 -- Start of processing for Build_Procedure_Body_Form
780 -- This routine replaces the original function body:
782 -- function F (...) return Array_Typ is
788 -- with the following:
790 -- procedure P (..., Result : out Array_Typ) is
793 -- Result := Something;
797 Statements
(Handled_Statement_Sequence
(Func_Body
));
798 Replace_Returns
(Last_Entity
(Proc_Id
), Stmts
);
801 Make_Subprogram_Body
(Loc
,
803 Copy_Subprogram_Spec
(Specification
(Proc_Decl
)),
804 Declarations
=> Declarations
(Func_Body
),
805 Handled_Statement_Sequence
=>
806 Make_Handled_Sequence_Of_Statements
(Loc
,
807 Statements
=> Stmts
));
809 -- If the function is a generic instance, so is the new procedure.
810 -- Set flag accordingly so that the proper renaming declarations are
813 Set_Is_Generic_Instance
(Proc_Id
, Is_Generic_Instance
(Func_Id
));
815 end Build_Procedure_Body_Form
;
817 --------------------------------
818 -- Check_Overriding_Operation --
819 --------------------------------
821 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
822 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
823 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
829 if Is_Derived_Type
(Typ
)
830 and then not Is_Private_Type
(Typ
)
831 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
832 and then Is_Base_Type
(Typ
)
834 -- Subp overrides an inherited private operation if there is an
835 -- inherited operation with a different name than Subp (see
836 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
837 -- same name as Subp.
839 Op_Elmt
:= First_Elmt
(Op_List
);
840 while Present
(Op_Elmt
) loop
841 Prim_Op
:= Node
(Op_Elmt
);
842 Par_Op
:= Alias
(Prim_Op
);
845 and then not Comes_From_Source
(Prim_Op
)
846 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
847 and then Chars
(Par_Op
) = Chars
(Subp
)
848 and then Is_Hidden
(Par_Op
)
849 and then Type_Conformant
(Prim_Op
, Subp
)
851 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
857 end Check_Overriding_Operation
;
859 -------------------------------
860 -- Detect_Infinite_Recursion --
861 -------------------------------
863 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
864 Loc
: constant Source_Ptr
:= Sloc
(N
);
866 Var_List
: constant Elist_Id
:= New_Elmt_List
;
867 -- List of globals referenced by body of procedure
869 Call_List
: constant Elist_Id
:= New_Elmt_List
;
870 -- List of recursive calls in body of procedure
872 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
873 -- List of entity id's for entities created to capture the value of
874 -- referenced globals on entry to the procedure.
876 Scop
: constant Uint
:= Scope_Depth
(Spec
);
877 -- This is used to record the scope depth of the current procedure, so
878 -- that we can identify global references.
880 Max_Vars
: constant := 4;
881 -- Do not test more than four global variables
883 Count_Vars
: Natural := 0;
884 -- Count variables found so far
896 function Process
(Nod
: Node_Id
) return Traverse_Result
;
897 -- Function to traverse the subprogram body (using Traverse_Func)
903 function Process
(Nod
: Node_Id
) return Traverse_Result
is
907 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
909 -- Case of one of the detected recursive calls
911 if Is_Entity_Name
(Name
(Nod
))
912 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
913 and then Entity
(Name
(Nod
)) = Spec
915 Append_Elmt
(Nod
, Call_List
);
918 -- Any other procedure call may have side effects
924 -- A call to a pure function can always be ignored
926 elsif Nkind
(Nod
) = N_Function_Call
927 and then Is_Entity_Name
(Name
(Nod
))
928 and then Is_Pure
(Entity
(Name
(Nod
)))
932 -- Case of an identifier reference
934 elsif Nkind
(Nod
) = N_Identifier
then
937 -- If no entity, then ignore the reference
939 -- Not clear why this can happen. To investigate, remove this
940 -- test and look at the crash that occurs here in 3401-004 ???
945 -- Ignore entities with no Scope, again not clear how this
946 -- can happen, to investigate, look at 4108-008 ???
948 elsif No
(Scope
(Ent
)) then
951 -- Ignore the reference if not to a more global object
953 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
956 -- References to types, exceptions and constants are always OK
959 or else Ekind
(Ent
) = E_Exception
960 or else Ekind
(Ent
) = E_Constant
964 -- If other than a non-volatile scalar variable, we have some
965 -- kind of global reference (e.g. to a function) that we cannot
966 -- deal with so we forget the attempt.
968 elsif Ekind
(Ent
) /= E_Variable
969 or else not Is_Scalar_Type
(Etype
(Ent
))
970 or else Treat_As_Volatile
(Ent
)
974 -- Otherwise we have a reference to a global scalar
977 -- Loop through global entities already detected
979 Elm
:= First_Elmt
(Var_List
);
981 -- If not detected before, record this new global reference
984 Count_Vars
:= Count_Vars
+ 1;
986 if Count_Vars
<= Max_Vars
then
987 Append_Elmt
(Entity
(Nod
), Var_List
);
994 -- If recorded before, ignore
996 elsif Node
(Elm
) = Entity
(Nod
) then
999 -- Otherwise keep looking
1009 -- For all other node kinds, recursively visit syntactic children
1016 function Traverse_Body
is new Traverse_Func
(Process
);
1018 -- Start of processing for Detect_Infinite_Recursion
1021 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1022 -- won't be able to generate the code to handle the recursion in any
1025 if Restriction_Active
(No_Implicit_Conditionals
) then
1029 -- Otherwise do traversal and quit if we get abandon signal
1031 if Traverse_Body
(N
) = Abandon
then
1034 -- We must have a call, since Has_Recursive_Call was set. If not just
1035 -- ignore (this is only an error check, so if we have a funny situation,
1036 -- due to bugs or errors, we do not want to bomb).
1038 elsif Is_Empty_Elmt_List
(Call_List
) then
1042 -- Here is the case where we detect recursion at compile time
1044 -- Push our current scope for analyzing the declarations and code that
1045 -- we will insert for the checking.
1049 -- This loop builds temporary variables for each of the referenced
1050 -- globals, so that at the end of the loop the list Shad_List contains
1051 -- these temporaries in one-to-one correspondence with the elements in
1055 Elm
:= First_Elmt
(Var_List
);
1056 while Present
(Elm
) loop
1058 Ent
:= Make_Temporary
(Loc
, 'S');
1059 Append_Elmt
(Ent
, Shad_List
);
1061 -- Insert a declaration for this temporary at the start of the
1062 -- declarations for the procedure. The temporaries are declared as
1063 -- constant objects initialized to the current values of the
1064 -- corresponding temporaries.
1067 Make_Object_Declaration
(Loc
,
1068 Defining_Identifier
=> Ent
,
1069 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
1070 Constant_Present
=> True,
1071 Expression
=> New_Occurrence_Of
(Var
, Loc
));
1074 Prepend
(Decl
, Declarations
(N
));
1076 Insert_After
(Last
, Decl
);
1084 -- Loop through calls
1086 Call
:= First_Elmt
(Call_List
);
1087 while Present
(Call
) loop
1089 -- Build a predicate expression of the form
1092 -- and then global1 = temp1
1093 -- and then global2 = temp2
1096 -- This predicate determines if any of the global values
1097 -- referenced by the procedure have changed since the
1098 -- current call, if not an infinite recursion is assured.
1100 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
1102 Elm1
:= First_Elmt
(Var_List
);
1103 Elm2
:= First_Elmt
(Shad_List
);
1104 while Present
(Elm1
) loop
1110 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
1111 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
1117 -- Now we replace the call with the sequence
1119 -- if no-changes (see above) then
1120 -- raise Storage_Error;
1125 Rewrite
(Node
(Call
),
1126 Make_If_Statement
(Loc
,
1128 Then_Statements
=> New_List
(
1129 Make_Raise_Storage_Error
(Loc
,
1130 Reason
=> SE_Infinite_Recursion
)),
1132 Else_Statements
=> New_List
(
1133 Relocate_Node
(Node
(Call
)))));
1135 Analyze
(Node
(Call
));
1140 -- Remove temporary scope stack entry used for analysis
1143 end Detect_Infinite_Recursion
;
1145 --------------------
1146 -- Expand_Actuals --
1147 --------------------
1149 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
) is
1150 Loc
: constant Source_Ptr
:= Sloc
(N
);
1154 Post_Call
: List_Id
;
1155 E_Actual
: Entity_Id
;
1156 E_Formal
: Entity_Id
;
1158 procedure Add_Call_By_Copy_Code
;
1159 -- For cases where the parameter must be passed by copy, this routine
1160 -- generates a temporary variable into which the actual is copied and
1161 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1162 -- an assignment is also generated to copy the result back. The call
1163 -- also takes care of any constraint checks required for the type
1164 -- conversion case (on both the way in and the way out).
1166 procedure Add_Simple_Call_By_Copy_Code
;
1167 -- This is similar to the above, but is used in cases where we know
1168 -- that all that is needed is to simply create a temporary and copy
1169 -- the value in and out of the temporary.
1171 procedure Check_Fortran_Logical
;
1172 -- A value of type Logical that is passed through a formal parameter
1173 -- must be normalized because .TRUE. usually does not have the same
1174 -- representation as True. We assume that .FALSE. = False = 0.
1175 -- What about functions that return a logical type ???
1177 function Is_Legal_Copy
return Boolean;
1178 -- Check that an actual can be copied before generating the temporary
1179 -- to be used in the call. If the actual is of a by_reference type then
1180 -- the program is illegal (this can only happen in the presence of
1181 -- rep. clauses that force an incorrect alignment). If the formal is
1182 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1183 -- the effect that this might lead to unaligned arguments.
1185 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1186 -- Returns an entity that refers to the given actual parameter, Actual
1187 -- (not including any type conversion). If Actual is an entity name,
1188 -- then this entity is returned unchanged, otherwise a renaming is
1189 -- created to provide an entity for the actual.
1191 procedure Reset_Packed_Prefix
;
1192 -- The expansion of a packed array component reference is delayed in
1193 -- the context of a call. Now we need to complete the expansion, so we
1194 -- unmark the analyzed bits in all prefixes.
1196 ---------------------------
1197 -- Add_Call_By_Copy_Code --
1198 ---------------------------
1200 procedure Add_Call_By_Copy_Code
is
1203 F_Typ
: Entity_Id
:= Etype
(Formal
);
1211 if not Is_Legal_Copy
then
1215 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1217 -- Handle formals whose type comes from the limited view
1219 if From_Limited_With
(F_Typ
)
1220 and then Has_Non_Limited_View
(F_Typ
)
1222 F_Typ
:= Non_Limited_View
(F_Typ
);
1225 -- Use formal type for temp, unless formal type is an unconstrained
1226 -- array, in which case we don't have to worry about bounds checks,
1227 -- and we use the actual type, since that has appropriate bounds.
1229 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1230 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1232 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1235 if Nkind
(Actual
) = N_Type_Conversion
then
1236 V_Typ
:= Etype
(Expression
(Actual
));
1238 -- If the formal is an (in-)out parameter, capture the name
1239 -- of the variable in order to build the post-call assignment.
1241 Var
:= Make_Var
(Expression
(Actual
));
1243 Crep
:= not Same_Representation
1244 (F_Typ
, Etype
(Expression
(Actual
)));
1247 V_Typ
:= Etype
(Actual
);
1248 Var
:= Make_Var
(Actual
);
1252 -- Setup initialization for case of in out parameter, or an out
1253 -- parameter where the formal is an unconstrained array (in the
1254 -- latter case, we have to pass in an object with bounds).
1256 -- If this is an out parameter, the initial copy is wasteful, so as
1257 -- an optimization for the one-dimensional case we extract the
1258 -- bounds of the actual and build an uninitialized temporary of the
1261 if Ekind
(Formal
) = E_In_Out_Parameter
1262 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1264 if Nkind
(Actual
) = N_Type_Conversion
then
1265 if Conversion_OK
(Actual
) then
1266 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1268 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1271 elsif Ekind
(Formal
) = E_Out_Parameter
1272 and then Is_Array_Type
(F_Typ
)
1273 and then Number_Dimensions
(F_Typ
) = 1
1274 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1276 -- Actual is a one-dimensional array or slice, and the type
1277 -- requires no initialization. Create a temporary of the
1278 -- right size, but do not copy actual into it (optimization).
1282 Make_Subtype_Indication
(Loc
,
1283 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1285 Make_Index_Or_Discriminant_Constraint
(Loc
,
1286 Constraints
=> New_List
(
1289 Make_Attribute_Reference
(Loc
,
1290 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1291 Attribute_Name
=> Name_First
),
1293 Make_Attribute_Reference
(Loc
,
1294 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1295 Attribute_Name
=> Name_Last
)))));
1298 Init
:= New_Occurrence_Of
(Var
, Loc
);
1301 -- An initialization is created for packed conversions as
1302 -- actuals for out parameters to enable Make_Object_Declaration
1303 -- to determine the proper subtype for N_Node. Note that this
1304 -- is wasteful because the extra copying on the call side is
1305 -- not required for such out parameters. ???
1307 elsif Ekind
(Formal
) = E_Out_Parameter
1308 and then Nkind
(Actual
) = N_Type_Conversion
1309 and then (Is_Bit_Packed_Array
(F_Typ
)
1311 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1313 if Conversion_OK
(Actual
) then
1314 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1316 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1319 elsif Ekind
(Formal
) = E_In_Parameter
then
1321 -- Handle the case in which the actual is a type conversion
1323 if Nkind
(Actual
) = N_Type_Conversion
then
1324 if Conversion_OK
(Actual
) then
1325 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1327 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1330 Init
:= New_Occurrence_Of
(Var
, Loc
);
1338 Make_Object_Declaration
(Loc
,
1339 Defining_Identifier
=> Temp
,
1340 Object_Definition
=> Indic
,
1341 Expression
=> Init
);
1342 Set_Assignment_OK
(N_Node
);
1343 Insert_Action
(N
, N_Node
);
1345 -- Now, normally the deal here is that we use the defining
1346 -- identifier created by that object declaration. There is
1347 -- one exception to this. In the change of representation case
1348 -- the above declaration will end up looking like:
1350 -- temp : type := identifier;
1352 -- And in this case we might as well use the identifier directly
1353 -- and eliminate the temporary. Note that the analysis of the
1354 -- declaration was not a waste of time in that case, since it is
1355 -- what generated the necessary change of representation code. If
1356 -- the change of representation introduced additional code, as in
1357 -- a fixed-integer conversion, the expression is not an identifier
1358 -- and must be kept.
1361 and then Present
(Expression
(N_Node
))
1362 and then Is_Entity_Name
(Expression
(N_Node
))
1364 Temp
:= Entity
(Expression
(N_Node
));
1365 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1368 -- For IN parameter, all we do is to replace the actual
1370 if Ekind
(Formal
) = E_In_Parameter
then
1371 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1374 -- Processing for OUT or IN OUT parameter
1377 -- Kill current value indications for the temporary variable we
1378 -- created, since we just passed it as an OUT parameter.
1380 Kill_Current_Values
(Temp
);
1381 Set_Is_Known_Valid
(Temp
, False);
1383 -- If type conversion, use reverse conversion on exit
1385 if Nkind
(Actual
) = N_Type_Conversion
then
1386 if Conversion_OK
(Actual
) then
1387 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1389 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1392 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1395 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1398 -- If the actual is a conversion of a packed reference, it may
1399 -- already have been expanded by Remove_Side_Effects, and the
1400 -- resulting variable is a temporary which does not designate
1401 -- the proper out-parameter, which may not be addressable. In
1402 -- that case, generate an assignment to the original expression
1403 -- (before expansion of the packed reference) so that the proper
1404 -- expansion of assignment to a packed component can take place.
1411 if Is_Renaming_Of_Object
(Var
)
1412 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1413 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1414 = N_Indexed_Component
1416 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1418 Obj
:= Renamed_Object
(Var
);
1420 Make_Selected_Component
(Loc
,
1422 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1423 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1424 Reset_Analyzed_Flags
(Lhs
);
1427 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1430 Set_Assignment_OK
(Lhs
);
1432 if Is_Access_Type
(E_Formal
)
1433 and then Is_Entity_Name
(Lhs
)
1435 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1437 -- Copyback target is an Ada 2012 stand-alone object of an
1438 -- anonymous access type.
1440 pragma Assert
(Ada_Version
>= Ada_2012
);
1442 if Type_Access_Level
(E_Formal
) >
1443 Object_Access_Level
(Lhs
)
1445 Append_To
(Post_Call
,
1446 Make_Raise_Program_Error
(Loc
,
1447 Reason
=> PE_Accessibility_Check_Failed
));
1450 Append_To
(Post_Call
,
1451 Make_Assignment_Statement
(Loc
,
1453 Expression
=> Expr
));
1455 -- We would like to somehow suppress generation of the
1456 -- extra_accessibility assignment generated by the expansion
1457 -- of the above assignment statement. It's not a correctness
1458 -- issue because the following assignment renders it dead,
1459 -- but generating back-to-back assignments to the same
1460 -- target is undesirable. ???
1462 Append_To
(Post_Call
,
1463 Make_Assignment_Statement
(Loc
,
1464 Name
=> New_Occurrence_Of
(
1465 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1466 Expression
=> Make_Integer_Literal
(Loc
,
1467 Type_Access_Level
(E_Formal
))));
1470 Append_To
(Post_Call
,
1471 Make_Assignment_Statement
(Loc
,
1473 Expression
=> Expr
));
1477 end Add_Call_By_Copy_Code
;
1479 ----------------------------------
1480 -- Add_Simple_Call_By_Copy_Code --
1481 ----------------------------------
1483 procedure Add_Simple_Call_By_Copy_Code
is
1485 F_Typ
: Entity_Id
:= Etype
(Formal
);
1494 if not Is_Legal_Copy
then
1498 -- Handle formals whose type comes from the limited view
1500 if From_Limited_With
(F_Typ
)
1501 and then Has_Non_Limited_View
(F_Typ
)
1503 F_Typ
:= Non_Limited_View
(F_Typ
);
1506 -- Use formal type for temp, unless formal type is an unconstrained
1507 -- array, in which case we don't have to worry about bounds checks,
1508 -- and we use the actual type, since that has appropriate bounds.
1510 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1511 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1513 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1516 -- Prepare to generate code
1518 Reset_Packed_Prefix
;
1520 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1521 Incod
:= Relocate_Node
(Actual
);
1522 Outcod
:= New_Copy_Tree
(Incod
);
1524 -- Generate declaration of temporary variable, initializing it
1525 -- with the input parameter unless we have an OUT formal or
1526 -- this is an initialization call.
1528 -- If the formal is an out parameter with discriminants, the
1529 -- discriminants must be captured even if the rest of the object
1530 -- is in principle uninitialized, because the discriminants may
1531 -- be read by the called subprogram.
1533 if Ekind
(Formal
) = E_Out_Parameter
then
1536 if Has_Discriminants
(F_Typ
) then
1537 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1540 elsif Inside_Init_Proc
then
1542 -- Could use a comment here to match comment below ???
1544 if Nkind
(Actual
) /= N_Selected_Component
1546 not Has_Discriminant_Dependent_Constraint
1547 (Entity
(Selector_Name
(Actual
)))
1551 -- Otherwise, keep the component in order to generate the proper
1552 -- actual subtype, that depends on enclosing discriminants.
1560 Make_Object_Declaration
(Loc
,
1561 Defining_Identifier
=> Temp
,
1562 Object_Definition
=> Indic
,
1563 Expression
=> Incod
);
1568 -- If the call is to initialize a component of a composite type,
1569 -- and the component does not depend on discriminants, use the
1570 -- actual type of the component. This is required in case the
1571 -- component is constrained, because in general the formal of the
1572 -- initialization procedure will be unconstrained. Note that if
1573 -- the component being initialized is constrained by an enclosing
1574 -- discriminant, the presence of the initialization in the
1575 -- declaration will generate an expression for the actual subtype.
1577 Set_No_Initialization
(Decl
);
1578 Set_Object_Definition
(Decl
,
1579 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1582 Insert_Action
(N
, Decl
);
1584 -- The actual is simply a reference to the temporary
1586 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1588 -- Generate copy out if OUT or IN OUT parameter
1590 if Ekind
(Formal
) /= E_In_Parameter
then
1592 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1594 -- Deal with conversion
1596 if Nkind
(Lhs
) = N_Type_Conversion
then
1597 Lhs
:= Expression
(Lhs
);
1598 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1601 Append_To
(Post_Call
,
1602 Make_Assignment_Statement
(Loc
,
1604 Expression
=> Rhs
));
1605 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1607 end Add_Simple_Call_By_Copy_Code
;
1609 ---------------------------
1610 -- Check_Fortran_Logical --
1611 ---------------------------
1613 procedure Check_Fortran_Logical
is
1614 Logical
: constant Entity_Id
:= Etype
(Formal
);
1617 -- Note: this is very incomplete, e.g. it does not handle arrays
1618 -- of logical values. This is really not the right approach at all???)
1621 if Convention
(Subp
) = Convention_Fortran
1622 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1623 and then Ekind
(Formal
) /= E_In_Parameter
1625 Var
:= Make_Var
(Actual
);
1626 Append_To
(Post_Call
,
1627 Make_Assignment_Statement
(Loc
,
1628 Name
=> New_Occurrence_Of
(Var
, Loc
),
1630 Unchecked_Convert_To
(
1633 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1635 Unchecked_Convert_To
(
1637 New_Occurrence_Of
(Standard_False
, Loc
))))));
1639 end Check_Fortran_Logical
;
1645 function Is_Legal_Copy
return Boolean is
1647 -- An attempt to copy a value of such a type can only occur if
1648 -- representation clauses give the actual a misaligned address.
1650 if Is_By_Reference_Type
(Etype
(Formal
)) then
1652 -- If the front-end does not perform full type layout, the actual
1653 -- may in fact be properly aligned but there is not enough front-
1654 -- end information to determine this. In that case gigi will emit
1655 -- an error if a copy is not legal, or generate the proper code.
1656 -- For other backends we report the error now.
1658 -- Seems wrong to be issuing an error in the expander, since it
1659 -- will be missed in -gnatc mode ???
1661 if Frontend_Layout_On_Target
then
1663 ("misaligned actual cannot be passed by reference", Actual
);
1668 -- For users of Starlet, we assume that the specification of by-
1669 -- reference mechanism is mandatory. This may lead to unaligned
1670 -- objects but at least for DEC legacy code it is known to work.
1671 -- The warning will alert users of this code that a problem may
1674 elsif Mechanism
(Formal
) = By_Reference
1675 and then Is_Valued_Procedure
(Scope
(Formal
))
1678 ("by_reference actual may be misaligned??", Actual
);
1690 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1694 if Is_Entity_Name
(Actual
) then
1695 return Entity
(Actual
);
1698 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1701 Make_Object_Renaming_Declaration
(Loc
,
1702 Defining_Identifier
=> Var
,
1704 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1705 Name
=> Relocate_Node
(Actual
));
1707 Insert_Action
(N
, N_Node
);
1712 -------------------------
1713 -- Reset_Packed_Prefix --
1714 -------------------------
1716 procedure Reset_Packed_Prefix
is
1717 Pfx
: Node_Id
:= Actual
;
1720 Set_Analyzed
(Pfx
, False);
1722 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1723 Pfx
:= Prefix
(Pfx
);
1725 end Reset_Packed_Prefix
;
1727 -- Start of processing for Expand_Actuals
1730 Post_Call
:= New_List
;
1732 Formal
:= First_Formal
(Subp
);
1733 Actual
:= First_Actual
(N
);
1734 while Present
(Formal
) loop
1735 E_Formal
:= Etype
(Formal
);
1736 E_Actual
:= Etype
(Actual
);
1738 -- Handle formals whose type comes from the limited view
1740 if From_Limited_With
(E_Formal
)
1741 and then Has_Non_Limited_View
(E_Formal
)
1743 E_Formal
:= Non_Limited_View
(E_Formal
);
1746 if Is_Scalar_Type
(E_Formal
)
1747 or else Nkind
(Actual
) = N_Slice
1749 Check_Fortran_Logical
;
1753 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1755 -- The unusual case of the current instance of a protected type
1756 -- requires special handling. This can only occur in the context
1757 -- of a call within the body of a protected operation.
1759 if Is_Entity_Name
(Actual
)
1760 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1761 and then In_Open_Scopes
(Entity
(Actual
))
1763 if Scope
(Subp
) /= Entity
(Actual
) then
1765 ("operation outside protected type may not "
1766 & "call back its protected operations??", Actual
);
1770 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1773 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1774 -- build-in-place function, then a temporary return object needs
1775 -- to be created and access to it must be passed to the function.
1776 -- Currently we limit such functions to those with inherently
1777 -- limited result subtypes, but eventually we plan to expand the
1778 -- functions that are treated as build-in-place to include other
1779 -- composite result types.
1781 if Is_Build_In_Place_Function_Call
(Actual
) then
1782 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1785 Apply_Constraint_Check
(Actual
, E_Formal
);
1787 -- Out parameter case. No constraint checks on access type
1790 elsif Is_Access_Type
(E_Formal
) then
1795 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1796 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1798 Apply_Constraint_Check
(Actual
, E_Formal
);
1803 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1806 -- Processing for IN-OUT and OUT parameters
1808 if Ekind
(Formal
) /= E_In_Parameter
then
1810 -- For type conversions of arrays, apply length/range checks
1812 if Is_Array_Type
(E_Formal
)
1813 and then Nkind
(Actual
) = N_Type_Conversion
1815 if Is_Constrained
(E_Formal
) then
1816 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1818 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1822 -- If argument is a type conversion for a type that is passed
1823 -- by copy, then we must pass the parameter by copy.
1825 if Nkind
(Actual
) = N_Type_Conversion
1827 (Is_Numeric_Type
(E_Formal
)
1828 or else Is_Access_Type
(E_Formal
)
1829 or else Is_Enumeration_Type
(E_Formal
)
1830 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1831 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1833 -- Also pass by copy if change of representation
1835 or else not Same_Representation
1837 Etype
(Expression
(Actual
))))
1839 Add_Call_By_Copy_Code
;
1841 -- References to components of bit-packed arrays are expanded
1842 -- at this point, rather than at the point of analysis of the
1843 -- actuals, to handle the expansion of the assignment to
1844 -- [in] out parameters.
1846 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1847 Add_Simple_Call_By_Copy_Code
;
1849 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1850 -- because the back-end cannot cope with such objects. In other
1851 -- cases where alignment forces a copy, the back-end generates
1852 -- it properly. It should not be generated unconditionally in the
1853 -- front-end because it does not know precisely the alignment
1854 -- requirements of the target, and makes too conservative an
1855 -- estimate, leading to superfluous copies or spurious errors
1856 -- on by-reference parameters.
1858 elsif Nkind
(Actual
) = N_Selected_Component
1860 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1861 and then not Represented_As_Scalar
(Etype
(Formal
))
1863 Add_Simple_Call_By_Copy_Code
;
1865 -- References to slices of bit-packed arrays are expanded
1867 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1868 Add_Call_By_Copy_Code
;
1870 -- References to possibly unaligned slices of arrays are expanded
1872 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1873 Add_Call_By_Copy_Code
;
1875 -- Deal with access types where the actual subtype and the
1876 -- formal subtype are not the same, requiring a check.
1878 -- It is necessary to exclude tagged types because of "downward
1879 -- conversion" errors.
1881 elsif Is_Access_Type
(E_Formal
)
1882 and then not Same_Type
(E_Formal
, E_Actual
)
1883 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
1885 Add_Call_By_Copy_Code
;
1887 -- If the actual is not a scalar and is marked for volatile
1888 -- treatment, whereas the formal is not volatile, then pass
1889 -- by copy unless it is a by-reference type.
1891 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1892 -- because this is the enforcement of a language rule that applies
1893 -- only to "real" volatile variables, not e.g. to the address
1894 -- clause overlay case.
1896 elsif Is_Entity_Name
(Actual
)
1897 and then Is_Volatile
(Entity
(Actual
))
1898 and then not Is_By_Reference_Type
(E_Actual
)
1899 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
1900 and then not Is_Volatile
(E_Formal
)
1902 Add_Call_By_Copy_Code
;
1904 elsif Nkind
(Actual
) = N_Indexed_Component
1905 and then Is_Entity_Name
(Prefix
(Actual
))
1906 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
1908 Add_Call_By_Copy_Code
;
1910 -- Add call-by-copy code for the case of scalar out parameters
1911 -- when it is not known at compile time that the subtype of the
1912 -- formal is a subrange of the subtype of the actual (or vice
1913 -- versa for in out parameters), in order to get range checks
1914 -- on such actuals. (Maybe this case should be handled earlier
1915 -- in the if statement???)
1917 elsif Is_Scalar_Type
(E_Formal
)
1919 (not In_Subrange_Of
(E_Formal
, E_Actual
)
1921 (Ekind
(Formal
) = E_In_Out_Parameter
1922 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
1924 -- Perhaps the setting back to False should be done within
1925 -- Add_Call_By_Copy_Code, since it could get set on other
1926 -- cases occurring above???
1928 if Do_Range_Check
(Actual
) then
1929 Set_Do_Range_Check
(Actual
, False);
1932 Add_Call_By_Copy_Code
;
1935 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1936 -- by-reference parameters on exit from the call. If the actual
1937 -- is a derived type and the operation is inherited, the body
1938 -- of the operation will not contain a call to the predicate
1939 -- function, so it must be done explicitly after the call. Ditto
1940 -- if the actual is an entity of a predicated subtype.
1942 -- The rule refers to by-reference types, but a check is needed
1943 -- for by-copy types as well. That check is subsumed by the rule
1944 -- for subtype conversion on assignment, but we can generate the
1945 -- required check now.
1947 -- Note also that Subp may be either a subprogram entity for
1948 -- direct calls, or a type entity for indirect calls, which must
1949 -- be handled separately because the name does not denote an
1950 -- overloadable entity.
1952 By_Ref_Predicate_Check
: declare
1953 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
1956 function Is_Public_Subp
return Boolean;
1957 -- Check whether the subprogram being called is a visible
1958 -- operation of the type of the actual. Used to determine
1959 -- whether an invariant check must be generated on the
1962 ---------------------
1963 -- Is_Public_Subp --
1964 ---------------------
1966 function Is_Public_Subp
return Boolean is
1967 Pack
: constant Entity_Id
:= Scope
(Subp
);
1968 Subp_Decl
: Node_Id
;
1971 if not Is_Subprogram
(Subp
) then
1974 -- The operation may be inherited, or a primitive of the
1978 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
1979 N_Full_Type_Declaration
)
1981 Subp_Decl
:= Parent
(Subp
);
1984 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
1987 return Ekind
(Pack
) = E_Package
1989 List_Containing
(Subp_Decl
) =
1990 Visible_Declarations
1991 (Specification
(Unit_Declaration_Node
(Pack
)));
1994 -- Start of processing for By_Ref_Predicate_Check
2003 if Has_Predicates
(Atyp
)
2004 and then Present
(Predicate_Function
(Atyp
))
2006 -- Skip predicate checks for special cases
2008 and then Predicate_Tests_On_Arguments
(Subp
)
2010 Append_To
(Post_Call
,
2011 Make_Predicate_Check
(Atyp
, Actual
));
2014 -- We generated caller-side invariant checks in two cases:
2016 -- a) when calling an inherited operation, where there is an
2017 -- implicit view conversion of the actual to the parent type.
2019 -- b) When the conversion is explicit
2021 -- We treat these cases separately because the required
2022 -- conversion for a) is added later when expanding the call.
2024 if Has_Invariants
(Etype
(Actual
))
2026 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
2028 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2029 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
2032 elsif Nkind
(Actual
) = N_Type_Conversion
2033 and then Has_Invariants
(Etype
(Expression
(Actual
)))
2035 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2036 Append_To
(Post_Call
,
2037 Make_Invariant_Call
(Expression
(Actual
)));
2040 end By_Ref_Predicate_Check
;
2042 -- Processing for IN parameters
2045 -- For IN parameters in the bit-packed array case, we expand an
2046 -- indexed component (the circuit in Exp_Ch4 deliberately left
2047 -- indexed components appearing as actuals untouched, so that
2048 -- the special processing above for the OUT and IN OUT cases
2049 -- could be performed. We could make the test in Exp_Ch4 more
2050 -- complex and have it detect the parameter mode, but it is
2051 -- easier simply to handle all cases here.)
2053 if Nkind
(Actual
) = N_Indexed_Component
2054 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Actual
)))
2056 Reset_Packed_Prefix
;
2057 Expand_Packed_Element_Reference
(Actual
);
2059 -- If we have a reference to a bit-packed array, we copy it, since
2060 -- the actual must be byte aligned.
2062 -- Is this really necessary in all cases???
2064 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
2065 Add_Simple_Call_By_Copy_Code
;
2067 -- If a non-scalar actual is possibly unaligned, we need a copy
2069 elsif Is_Possibly_Unaligned_Object
(Actual
)
2070 and then not Represented_As_Scalar
(Etype
(Formal
))
2072 Add_Simple_Call_By_Copy_Code
;
2074 -- Similarly, we have to expand slices of packed arrays here
2075 -- because the result must be byte aligned.
2077 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2078 Add_Call_By_Copy_Code
;
2080 -- Only processing remaining is to pass by copy if this is a
2081 -- reference to a possibly unaligned slice, since the caller
2082 -- expects an appropriately aligned argument.
2084 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2085 Add_Call_By_Copy_Code
;
2087 -- An unusual case: a current instance of an enclosing task can be
2088 -- an actual, and must be replaced by a reference to self.
2090 elsif Is_Entity_Name
(Actual
)
2091 and then Is_Task_Type
(Entity
(Actual
))
2093 if In_Open_Scopes
(Entity
(Actual
)) then
2095 (Make_Function_Call
(Loc
,
2096 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
2099 -- A task type cannot otherwise appear as an actual
2102 raise Program_Error
;
2107 Next_Formal
(Formal
);
2108 Next_Actual
(Actual
);
2111 -- Find right place to put post call stuff if it is present
2113 if not Is_Empty_List
(Post_Call
) then
2115 -- Cases where the call is not a member of a statement list.
2116 -- This includes the case where the call is an actual in another
2117 -- function call or indexing, i.e. an expression context as well.
2119 if not Is_List_Member
(N
)
2120 or else Nkind_In
(Parent
(N
), N_Function_Call
, N_Indexed_Component
)
2122 -- In Ada 2012 the call may be a function call in an expression
2123 -- (since OUT and IN OUT parameters are now allowed for such
2124 -- calls). The write-back of (in)-out parameters is handled
2125 -- by the back-end, but the constraint checks generated when
2126 -- subtypes of formal and actual don't match must be inserted
2127 -- in the form of assignments.
2129 if Ada_Version
>= Ada_2012
2130 and then Nkind
(N
) = N_Function_Call
2132 -- We used to just do handle this by climbing up parents to
2133 -- a non-statement/declaration and then simply making a call
2134 -- to Insert_Actions_After (P, Post_Call), but that doesn't
2135 -- work. If we are in the middle of an expression, e.g. the
2136 -- condition of an IF, this call would insert after the IF
2137 -- statement, which is much too late to be doing the write
2138 -- back. For example:
2140 -- if Clobber (X) then
2141 -- Put_Line (X'Img);
2146 -- Now assume Clobber changes X, if we put the write back
2147 -- after the IF, the Put_Line gets the wrong value and the
2148 -- goto causes the write back to be skipped completely.
2150 -- To deal with this, we replace the call by
2153 -- Tnnn : constant function-result-type := function-call;
2154 -- Post_Call actions
2160 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2161 FRTyp
: constant Entity_Id
:= Etype
(N
);
2162 Name
: constant Node_Id
:= Relocate_Node
(N
);
2165 Prepend_To
(Post_Call
,
2166 Make_Object_Declaration
(Loc
,
2167 Defining_Identifier
=> Tnnn
,
2168 Object_Definition
=> New_Occurrence_Of
(FRTyp
, Loc
),
2169 Constant_Present
=> True,
2170 Expression
=> Name
));
2173 Make_Expression_With_Actions
(Loc
,
2174 Actions
=> Post_Call
,
2175 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
2177 -- We don't want to just blindly call Analyze_And_Resolve
2178 -- because that would cause unwanted recursion on the call.
2179 -- So for a moment set the call as analyzed to prevent that
2180 -- recursion, and get the rest analyzed properly, then reset
2181 -- the analyzed flag, so our caller can continue.
2183 Set_Analyzed
(Name
, True);
2184 Analyze_And_Resolve
(N
, FRTyp
);
2185 Set_Analyzed
(Name
, False);
2187 -- Reset calling argument to point to function call inside
2188 -- the expression with actions so the caller can continue
2189 -- to process the call. In spite of the fact that it is
2190 -- marked Analyzed above, it may be rewritten by Remove_
2191 -- Side_Effects if validity checks are present, so go back
2192 -- to original call.
2194 N
:= Original_Node
(Name
);
2197 -- If not the special Ada 2012 case of a function call, then
2198 -- we must have the triggering statement of a triggering
2199 -- alternative or an entry call alternative, and we can add
2200 -- the post call stuff to the corresponding statement list.
2208 pragma Assert
(Nkind_In
(P
, N_Triggering_Alternative
,
2209 N_Entry_Call_Alternative
));
2211 if Is_Non_Empty_List
(Statements
(P
)) then
2212 Insert_List_Before_And_Analyze
2213 (First
(Statements
(P
)), Post_Call
);
2215 Set_Statements
(P
, Post_Call
);
2222 -- Otherwise, normal case where N is in a statement sequence,
2223 -- just put the post-call stuff after the call statement.
2226 Insert_Actions_After
(N
, Post_Call
);
2231 -- The call node itself is re-analyzed in Expand_Call
2239 -- This procedure handles expansion of function calls and procedure call
2240 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2241 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2243 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2244 -- Provide values of actuals for all formals in Extra_Formals list
2245 -- Replace "call" to enumeration literal function by literal itself
2246 -- Rewrite call to predefined operator as operator
2247 -- Replace actuals to in-out parameters that are numeric conversions,
2248 -- with explicit assignment to temporaries before and after the call.
2250 -- Note that the list of actuals has been filled with default expressions
2251 -- during semantic analysis of the call. Only the extra actuals required
2252 -- for the 'Constrained attribute and for accessibility checks are added
2255 procedure Expand_Call
(N
: Node_Id
) is
2256 Loc
: constant Source_Ptr
:= Sloc
(N
);
2257 Call_Node
: Node_Id
:= N
;
2258 Extra_Actuals
: List_Id
:= No_List
;
2259 Prev
: Node_Id
:= Empty
;
2261 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2262 -- Adds one entry to the end of the actual parameter list. Used for
2263 -- default parameters and for extra actuals (for Extra_Formals). The
2264 -- argument is an N_Parameter_Association node.
2266 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2267 -- Adds an extra actual to the list of extra actuals. Expr is the
2268 -- expression for the value of the actual, EF is the entity for the
2271 procedure Add_View_Conversion_Invariants
2272 (Formal
: Entity_Id
;
2274 -- Adds invariant checks for every intermediate type between the range
2275 -- of a view converted argument to its ancestor (from parent to child).
2277 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2278 -- Within an instance, a type derived from an untagged formal derived
2279 -- type inherits from the original parent, not from the actual. The
2280 -- current derivation mechanism has the derived type inherit from the
2281 -- actual, which is only correct outside of the instance. If the
2282 -- subprogram is inherited, we test for this particular case through a
2283 -- convoluted tree traversal before setting the proper subprogram to be
2286 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2287 -- Return true if E comes from an instance that is not yet frozen
2289 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2290 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2292 function New_Value
(From
: Node_Id
) return Node_Id
;
2293 -- From is the original Expression. New_Value is equivalent to a call
2294 -- to Duplicate_Subexpr with an explicit dereference when From is an
2295 -- access parameter.
2297 --------------------------
2298 -- Add_Actual_Parameter --
2299 --------------------------
2301 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2302 Actual_Expr
: constant Node_Id
:=
2303 Explicit_Actual_Parameter
(Insert_Param
);
2306 -- Case of insertion is first named actual
2308 if No
(Prev
) or else
2309 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2311 Set_Next_Named_Actual
2312 (Insert_Param
, First_Named_Actual
(Call_Node
));
2313 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2316 if No
(Parameter_Associations
(Call_Node
)) then
2317 Set_Parameter_Associations
(Call_Node
, New_List
);
2320 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2323 Insert_After
(Prev
, Insert_Param
);
2326 -- Case of insertion is not first named actual
2329 Set_Next_Named_Actual
2330 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2331 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2332 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2335 Prev
:= Actual_Expr
;
2336 end Add_Actual_Parameter
;
2338 ----------------------
2339 -- Add_Extra_Actual --
2340 ----------------------
2342 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2343 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2346 if Extra_Actuals
= No_List
then
2347 Extra_Actuals
:= New_List
;
2348 Set_Parent
(Extra_Actuals
, Call_Node
);
2351 Append_To
(Extra_Actuals
,
2352 Make_Parameter_Association
(Loc
,
2353 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2354 Explicit_Actual_Parameter
=> Expr
));
2356 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2358 if Nkind
(Call_Node
) = N_Function_Call
then
2359 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2361 end Add_Extra_Actual
;
2363 ------------------------------------
2364 -- Add_View_Conversion_Invariants --
2365 ------------------------------------
2367 procedure Add_View_Conversion_Invariants
2368 (Formal
: Entity_Id
;
2372 Curr_Typ
: Entity_Id
;
2373 Inv_Checks
: List_Id
;
2374 Par_Typ
: Entity_Id
;
2377 Inv_Checks
:= No_List
;
2379 -- Extract the argument from a potentially nested set of view
2383 while Nkind
(Arg
) = N_Type_Conversion
loop
2384 Arg
:= Expression
(Arg
);
2387 -- Move up the derivation chain starting with the type of the formal
2388 -- parameter down to the type of the actual object.
2391 Par_Typ
:= Etype
(Arg
);
2392 while Par_Typ
/= Etype
(Formal
) and Par_Typ
/= Curr_Typ
loop
2393 Curr_Typ
:= Par_Typ
;
2395 if Has_Invariants
(Curr_Typ
)
2396 and then Present
(Invariant_Procedure
(Curr_Typ
))
2398 -- Verify the invariate of the current type. Generate:
2400 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2402 Prepend_New_To
(Inv_Checks
,
2403 Make_Procedure_Call_Statement
(Loc
,
2406 (Invariant_Procedure
(Curr_Typ
), Loc
),
2407 Parameter_Associations
=> New_List
(
2408 Make_Type_Conversion
(Loc
,
2409 Subtype_Mark
=> New_Occurrence_Of
(Curr_Typ
, Loc
),
2410 Expression
=> New_Copy_Tree
(Arg
)))));
2413 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2416 if not Is_Empty_List
(Inv_Checks
) then
2417 Insert_Actions_After
(N
, Inv_Checks
);
2419 end Add_View_Conversion_Invariants
;
2421 ---------------------------
2422 -- Inherited_From_Formal --
2423 ---------------------------
2425 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2427 Gen_Par
: Entity_Id
;
2428 Gen_Prim
: Elist_Id
;
2433 -- If the operation is inherited, it is attached to the corresponding
2434 -- type derivation. If the parent in the derivation is a generic
2435 -- actual, it is a subtype of the actual, and we have to recover the
2436 -- original derived type declaration to find the proper parent.
2438 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2439 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2440 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2441 N_Derived_Type_Definition
2442 or else not In_Instance
2449 (Type_Definition
(Original_Node
(Parent
(S
))));
2451 if Nkind
(Indic
) = N_Subtype_Indication
then
2452 Par
:= Entity
(Subtype_Mark
(Indic
));
2454 Par
:= Entity
(Indic
);
2458 if not Is_Generic_Actual_Type
(Par
)
2459 or else Is_Tagged_Type
(Par
)
2460 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2461 or else not In_Open_Scopes
(Scope
(Par
))
2465 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2468 -- If the actual has no generic parent type, the formal is not
2469 -- a formal derived type, so nothing to inherit.
2471 if No
(Gen_Par
) then
2475 -- If the generic parent type is still the generic type, this is a
2476 -- private formal, not a derived formal, and there are no operations
2477 -- inherited from the formal.
2479 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2483 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2485 Elmt
:= First_Elmt
(Gen_Prim
);
2486 while Present
(Elmt
) loop
2487 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2493 F1
:= First_Formal
(S
);
2494 F2
:= First_Formal
(Node
(Elmt
));
2496 and then Present
(F2
)
2498 if Etype
(F1
) = Etype
(F2
)
2499 or else Etype
(F2
) = Gen_Par
2505 exit; -- not the right subprogram
2517 raise Program_Error
;
2518 end Inherited_From_Formal
;
2520 --------------------------
2521 -- In_Unfrozen_Instance --
2522 --------------------------
2524 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2529 while Present
(S
) and then S
/= Standard_Standard
loop
2530 if Is_Generic_Instance
(S
)
2531 and then Present
(Freeze_Node
(S
))
2532 and then not Analyzed
(Freeze_Node
(S
))
2541 end In_Unfrozen_Instance
;
2543 -------------------------
2544 -- Is_Direct_Deep_Call --
2545 -------------------------
2547 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2549 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2550 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2551 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2558 Actual
:= First
(Parameter_Associations
(N
));
2559 Formal
:= First_Formal
(Subp
);
2560 while Present
(Actual
)
2561 and then Present
(Formal
)
2563 if Nkind
(Actual
) = N_Identifier
2564 and then Is_Controlling_Actual
(Actual
)
2565 and then Etype
(Actual
) = Etype
(Formal
)
2571 Next_Formal
(Formal
);
2577 end Is_Direct_Deep_Call
;
2583 function New_Value
(From
: Node_Id
) return Node_Id
is
2584 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2586 if Is_Access_Type
(Etype
(From
)) then
2587 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2595 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2598 Orig_Subp
: Entity_Id
:= Empty
;
2599 Param_Count
: Natural := 0;
2600 Parent_Formal
: Entity_Id
;
2601 Parent_Subp
: Entity_Id
;
2605 Prev_Orig
: Node_Id
;
2606 -- Original node for an actual, which may have been rewritten. If the
2607 -- actual is a function call that has been transformed from a selected
2608 -- component, the original node is unanalyzed. Otherwise, it carries
2609 -- semantic information used to generate additional actuals.
2611 CW_Interface_Formals_Present
: Boolean := False;
2613 -- Start of processing for Expand_Call
2616 -- Expand the function or procedure call if the first actual has a
2617 -- declared dimension aspect, and the subprogram is declared in one
2618 -- of the dimension I/O packages.
2620 if Ada_Version
>= Ada_2012
2622 Nkind_In
(Call_Node
, N_Procedure_Call_Statement
, N_Function_Call
)
2623 and then Present
(Parameter_Associations
(Call_Node
))
2625 Expand_Put_Call_With_Symbol
(Call_Node
);
2628 -- Ignore if previous error
2630 if Nkind
(Call_Node
) in N_Has_Etype
2631 and then Etype
(Call_Node
) = Any_Type
2636 -- Call using access to subprogram with explicit dereference
2638 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2639 Subp
:= Etype
(Name
(Call_Node
));
2640 Parent_Subp
:= Empty
;
2642 -- Case of call to simple entry, where the Name is a selected component
2643 -- whose prefix is the task, and whose selector name is the entry name
2645 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2646 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2647 Parent_Subp
:= Empty
;
2649 -- Case of call to member of entry family, where Name is an indexed
2650 -- component, with the prefix being a selected component giving the
2651 -- task and entry family name, and the index being the entry index.
2653 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2654 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2655 Parent_Subp
:= Empty
;
2660 Subp
:= Entity
(Name
(Call_Node
));
2661 Parent_Subp
:= Alias
(Subp
);
2663 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2664 -- if we can tell that the first parameter cannot possibly be null.
2665 -- This improves efficiency by avoiding a run-time test.
2667 -- We do not do this if Raise_Exception_Always does not exist, which
2668 -- can happen in configurable run time profiles which provide only a
2671 if Is_RTE
(Subp
, RE_Raise_Exception
)
2672 and then RTE_Available
(RE_Raise_Exception_Always
)
2675 FA
: constant Node_Id
:=
2676 Original_Node
(First_Actual
(Call_Node
));
2679 -- The case we catch is where the first argument is obtained
2680 -- using the Identity attribute (which must always be
2683 if Nkind
(FA
) = N_Attribute_Reference
2684 and then Attribute_Name
(FA
) = Name_Identity
2686 Subp
:= RTE
(RE_Raise_Exception_Always
);
2687 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2692 if Ekind
(Subp
) = E_Entry
then
2693 Parent_Subp
:= Empty
;
2697 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2698 -- alternative in an asynchronous select or as an entry call in
2699 -- a conditional or timed select. Check whether the procedure call
2700 -- is a renaming of an entry and rewrite it as an entry call.
2702 if Ada_Version
>= Ada_2005
2703 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2705 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2706 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2708 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2709 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2713 Ren_Root
: Entity_Id
:= Subp
;
2716 -- This may be a chain of renamings, find the root
2718 if Present
(Alias
(Ren_Root
)) then
2719 Ren_Root
:= Alias
(Ren_Root
);
2722 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2723 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2725 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2727 Make_Entry_Call_Statement
(Loc
,
2729 New_Copy_Tree
(Name
(Ren_Decl
)),
2730 Parameter_Associations
=>
2732 (Parameter_Associations
(Call_Node
))));
2740 -- When generating C code, transform a function call that returns a
2741 -- constrained array type into procedure form.
2743 if Modify_Tree_For_C
2744 and then Nkind
(Call_Node
) = N_Function_Call
2745 and then Is_Entity_Name
(Name
(Call_Node
))
2746 and then Rewritten_For_C
(Ultimate_Alias
(Entity
(Name
(Call_Node
))))
2748 -- For internally generated calls ensure that they reference the
2749 -- entity of the spec of the called function (needed since the
2750 -- expander may generate calls using the entity of their body).
2751 -- See for example Expand_Boolean_Operator().
2753 if not (Comes_From_Source
(Call_Node
))
2754 and then Nkind
(Unit_Declaration_Node
2755 (Ultimate_Alias
(Entity
(Name
(Call_Node
))))) =
2758 Set_Entity
(Name
(Call_Node
),
2759 Corresponding_Function
2760 (Corresponding_Procedure
2761 (Ultimate_Alias
(Entity
(Name
(Call_Node
))))));
2764 Rewrite_Function_Call_For_C
(Call_Node
);
2768 -- First step, compute extra actuals, corresponding to any Extra_Formals
2769 -- present. Note that we do not access Extra_Formals directly, instead
2770 -- we simply note the presence of the extra formals as we process the
2771 -- regular formals collecting corresponding actuals in Extra_Actuals.
2773 -- We also generate any required range checks for actuals for in formals
2774 -- as we go through the loop, since this is a convenient place to do it.
2775 -- (Though it seems that this would be better done in Expand_Actuals???)
2777 -- Special case: Thunks must not compute the extra actuals; they must
2778 -- just propagate to the target primitive their extra actuals.
2780 if Is_Thunk
(Current_Scope
)
2781 and then Thunk_Entity
(Current_Scope
) = Subp
2782 and then Present
(Extra_Formals
(Subp
))
2784 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2787 Target_Formal
: Entity_Id
;
2788 Thunk_Formal
: Entity_Id
;
2791 Target_Formal
:= Extra_Formals
(Subp
);
2792 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2793 while Present
(Target_Formal
) loop
2795 (New_Occurrence_Of
(Thunk_Formal
, Loc
), Thunk_Formal
);
2797 Target_Formal
:= Extra_Formal
(Target_Formal
);
2798 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2801 while Is_Non_Empty_List
(Extra_Actuals
) loop
2802 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2805 Expand_Actuals
(Call_Node
, Subp
);
2810 Formal
:= First_Formal
(Subp
);
2811 Actual
:= First_Actual
(Call_Node
);
2813 while Present
(Formal
) loop
2815 -- Generate range check if required
2817 if Do_Range_Check
(Actual
)
2818 and then Ekind
(Formal
) = E_In_Parameter
2820 Generate_Range_Check
2821 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2824 -- Prepare to examine current entry
2827 Prev_Orig
:= Original_Node
(Prev
);
2829 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2830 -- to expand it in a further round.
2832 CW_Interface_Formals_Present
:=
2833 CW_Interface_Formals_Present
2835 (Is_Class_Wide_Type
(Etype
(Formal
))
2836 and then Is_Interface
(Etype
(Etype
(Formal
))))
2838 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2839 and then Is_Class_Wide_Type
(Directly_Designated_Type
2840 (Etype
(Etype
(Formal
))))
2841 and then Is_Interface
(Directly_Designated_Type
2842 (Etype
(Etype
(Formal
)))));
2844 -- Create possible extra actual for constrained case. Usually, the
2845 -- extra actual is of the form actual'constrained, but since this
2846 -- attribute is only available for unconstrained records, TRUE is
2847 -- expanded if the type of the formal happens to be constrained (for
2848 -- instance when this procedure is inherited from an unconstrained
2849 -- record to a constrained one) or if the actual has no discriminant
2850 -- (its type is constrained). An exception to this is the case of a
2851 -- private type without discriminants. In this case we pass FALSE
2852 -- because the object has underlying discriminants with defaults.
2854 if Present
(Extra_Constrained
(Formal
)) then
2855 if Ekind
(Etype
(Prev
)) in Private_Kind
2856 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2859 (New_Occurrence_Of
(Standard_False
, Loc
),
2860 Extra_Constrained
(Formal
));
2862 elsif Is_Constrained
(Etype
(Formal
))
2863 or else not Has_Discriminants
(Etype
(Prev
))
2866 (New_Occurrence_Of
(Standard_True
, Loc
),
2867 Extra_Constrained
(Formal
));
2869 -- Do not produce extra actuals for Unchecked_Union parameters.
2870 -- Jump directly to the end of the loop.
2872 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2873 goto Skip_Extra_Actual_Generation
;
2876 -- If the actual is a type conversion, then the constrained
2877 -- test applies to the actual, not the target type.
2883 -- Test for unchecked conversions as well, which can occur
2884 -- as out parameter actuals on calls to stream procedures.
2887 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2888 N_Unchecked_Type_Conversion
)
2890 Act_Prev
:= Expression
(Act_Prev
);
2893 -- If the expression is a conversion of a dereference, this
2894 -- is internally generated code that manipulates addresses,
2895 -- e.g. when building interface tables. No check should
2896 -- occur in this case, and the discriminated object is not
2899 if not Comes_From_Source
(Actual
)
2900 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2901 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2904 (New_Occurrence_Of
(Standard_False
, Loc
),
2905 Extra_Constrained
(Formal
));
2909 (Make_Attribute_Reference
(Sloc
(Prev
),
2911 Duplicate_Subexpr_No_Checks
2912 (Act_Prev
, Name_Req
=> True),
2913 Attribute_Name
=> Name_Constrained
),
2914 Extra_Constrained
(Formal
));
2920 -- Create possible extra actual for accessibility level
2922 if Present
(Extra_Accessibility
(Formal
)) then
2924 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2925 -- attribute, then the original actual may be an aliased object
2926 -- occurring as the prefix in a call using "Object.Operation"
2927 -- notation. In that case we must pass the level of the object,
2928 -- so Prev_Orig is reset to Prev and the attribute will be
2929 -- processed by the code for Access attributes further below.
2931 if Prev_Orig
/= Prev
2932 and then Nkind
(Prev
) = N_Attribute_Reference
2934 Get_Attribute_Id
(Attribute_Name
(Prev
)) = Attribute_Access
2935 and then Is_Aliased_View
(Prev_Orig
)
2940 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2941 -- accessibility levels.
2943 if Is_Thunk
(Current_Scope
) then
2945 Parm_Ent
: Entity_Id
;
2948 if Is_Controlling_Actual
(Actual
) then
2950 -- Find the corresponding actual of the thunk
2952 Parm_Ent
:= First_Entity
(Current_Scope
);
2953 for J
in 2 .. Param_Count
loop
2954 Next_Entity
(Parm_Ent
);
2957 -- Handle unchecked conversion of access types generated
2958 -- in thunks (cf. Expand_Interface_Thunk).
2960 elsif Is_Access_Type
(Etype
(Actual
))
2961 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2963 Parm_Ent
:= Entity
(Expression
(Actual
));
2965 else pragma Assert
(Is_Entity_Name
(Actual
));
2966 Parm_Ent
:= Entity
(Actual
);
2970 (New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
2971 Extra_Accessibility
(Formal
));
2974 elsif Is_Entity_Name
(Prev_Orig
) then
2976 -- When passing an access parameter, or a renaming of an access
2977 -- parameter, as the actual to another access parameter we need
2978 -- to pass along the actual's own access level parameter. This
2979 -- is done if we are within the scope of the formal access
2980 -- parameter (if this is an inlined body the extra formal is
2983 if (Is_Formal
(Entity
(Prev_Orig
))
2985 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
2987 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
2990 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
2991 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
2992 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
2995 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
2998 pragma Assert
(Present
(Parm_Ent
));
3000 if Present
(Extra_Accessibility
(Parm_Ent
)) then
3003 (Extra_Accessibility
(Parm_Ent
), Loc
),
3004 Extra_Accessibility
(Formal
));
3006 -- If the actual access parameter does not have an
3007 -- associated extra formal providing its scope level,
3008 -- then treat the actual as having library-level
3013 (Make_Integer_Literal
(Loc
,
3014 Intval
=> Scope_Depth
(Standard_Standard
)),
3015 Extra_Accessibility
(Formal
));
3019 -- The actual is a normal access value, so just pass the level
3020 -- of the actual's access type.
3024 (Dynamic_Accessibility_Level
(Prev_Orig
),
3025 Extra_Accessibility
(Formal
));
3028 -- If the actual is an access discriminant, then pass the level
3029 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3031 elsif Nkind
(Prev_Orig
) = N_Selected_Component
3032 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
3034 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
3035 E_Anonymous_Access_Type
3038 (Make_Integer_Literal
(Loc
,
3039 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
3040 Extra_Accessibility
(Formal
));
3045 case Nkind
(Prev_Orig
) is
3046 when N_Attribute_Reference
=>
3047 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
3049 -- For X'Access, pass on the level of the prefix X
3051 when Attribute_Access
=>
3053 -- If this is an Access attribute applied to the
3054 -- the current instance object passed to a type
3055 -- initialization procedure, then use the level
3056 -- of the type itself. This is not really correct,
3057 -- as there should be an extra level parameter
3058 -- passed in with _init formals (only in the case
3059 -- where the type is immutably limited), but we
3060 -- don't have an easy way currently to create such
3061 -- an extra formal (init procs aren't ever frozen).
3062 -- For now we just use the level of the type,
3063 -- which may be too shallow, but that works better
3064 -- than passing Object_Access_Level of the type,
3065 -- which can be one level too deep in some cases.
3068 if Is_Entity_Name
(Prefix
(Prev_Orig
))
3069 and then Is_Type
(Entity
(Prefix
(Prev_Orig
)))
3072 (Make_Integer_Literal
(Loc
,
3075 (Entity
(Prefix
(Prev_Orig
)))),
3076 Extra_Accessibility
(Formal
));
3080 (Make_Integer_Literal
(Loc
,
3083 (Prefix
(Prev_Orig
))),
3084 Extra_Accessibility
(Formal
));
3087 -- Treat the unchecked attributes as library-level
3089 when Attribute_Unchecked_Access
3090 | Attribute_Unrestricted_Access
3093 (Make_Integer_Literal
(Loc
,
3094 Intval
=> Scope_Depth
(Standard_Standard
)),
3095 Extra_Accessibility
(Formal
));
3097 -- No other cases of attributes returning access
3098 -- values that can be passed to access parameters.
3101 raise Program_Error
;
3105 -- For allocators we pass the level of the execution of the
3106 -- called subprogram, which is one greater than the current
3111 (Make_Integer_Literal
(Loc
,
3112 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3113 Extra_Accessibility
(Formal
));
3115 -- For most other cases we simply pass the level of the
3116 -- actual's access type. The type is retrieved from
3117 -- Prev rather than Prev_Orig, because in some cases
3118 -- Prev_Orig denotes an original expression that has
3119 -- not been analyzed.
3123 (Dynamic_Accessibility_Level
(Prev
),
3124 Extra_Accessibility
(Formal
));
3129 -- Perform the check of 4.6(49) that prevents a null value from being
3130 -- passed as an actual to an access parameter. Note that the check
3131 -- is elided in the common cases of passing an access attribute or
3132 -- access parameter as an actual. Also, we currently don't enforce
3133 -- this check for expander-generated actuals and when -gnatdj is set.
3135 if Ada_Version
>= Ada_2005
then
3137 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3138 -- the intent of 6.4.1(13) is that null-exclusion checks should
3139 -- not be done for 'out' parameters, even though it refers only
3140 -- to constraint checks, and a null_exclusion is not a constraint.
3141 -- Note that AI05-0196-1 corrects this mistake in the RM.
3143 if Is_Access_Type
(Etype
(Formal
))
3144 and then Can_Never_Be_Null
(Etype
(Formal
))
3145 and then Ekind
(Formal
) /= E_Out_Parameter
3146 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3147 and then (Known_Null
(Prev
)
3148 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3150 Install_Null_Excluding_Check
(Prev
);
3153 -- Ada_Version < Ada_2005
3156 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3157 or else Access_Checks_Suppressed
(Subp
)
3161 elsif Debug_Flag_J
then
3164 elsif not Comes_From_Source
(Prev
) then
3167 elsif Is_Entity_Name
(Prev
)
3168 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3172 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3176 Install_Null_Excluding_Check
(Prev
);
3180 -- Perform appropriate validity checks on parameters that
3183 if Validity_Checks_On
then
3184 if (Ekind
(Formal
) = E_In_Parameter
3185 and then Validity_Check_In_Params
)
3187 (Ekind
(Formal
) = E_In_Out_Parameter
3188 and then Validity_Check_In_Out_Params
)
3190 -- If the actual is an indexed component of a packed type (or
3191 -- is an indexed or selected component whose prefix recursively
3192 -- meets this condition), it has not been expanded yet. It will
3193 -- be copied in the validity code that follows, and has to be
3194 -- expanded appropriately, so reanalyze it.
3196 -- What we do is just to unset analyzed bits on prefixes till
3197 -- we reach something that does not have a prefix.
3204 while Nkind_In
(Nod
, N_Indexed_Component
,
3205 N_Selected_Component
)
3207 Set_Analyzed
(Nod
, False);
3208 Nod
:= Prefix
(Nod
);
3212 Ensure_Valid
(Actual
);
3216 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3217 -- since this is a left side reference. We only do this for calls
3218 -- from the source program since we assume that compiler generated
3219 -- calls explicitly generate any required checks. We also need it
3220 -- only if we are doing standard validity checks, since clearly it is
3221 -- not needed if validity checks are off, and in subscript validity
3222 -- checking mode, all indexed components are checked with a call
3223 -- directly from Expand_N_Indexed_Component.
3225 if Comes_From_Source
(Call_Node
)
3226 and then Ekind
(Formal
) /= E_In_Parameter
3227 and then Validity_Checks_On
3228 and then Validity_Check_Default
3229 and then not Validity_Check_Subscripts
3231 Check_Valid_Lvalue_Subscripts
(Actual
);
3234 -- Mark any scalar OUT parameter that is a simple variable as no
3235 -- longer known to be valid (unless the type is always valid). This
3236 -- reflects the fact that if an OUT parameter is never set in a
3237 -- procedure, then it can become invalid on the procedure return.
3239 if Ekind
(Formal
) = E_Out_Parameter
3240 and then Is_Entity_Name
(Actual
)
3241 and then Ekind
(Entity
(Actual
)) = E_Variable
3242 and then not Is_Known_Valid
(Etype
(Actual
))
3244 Set_Is_Known_Valid
(Entity
(Actual
), False);
3247 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3248 -- clear current values, since they can be clobbered. We are probably
3249 -- doing this in more places than we need to, but better safe than
3250 -- sorry when it comes to retaining bad current values.
3252 if Ekind
(Formal
) /= E_In_Parameter
3253 and then Is_Entity_Name
(Actual
)
3254 and then Present
(Entity
(Actual
))
3257 Ent
: constant Entity_Id
:= Entity
(Actual
);
3261 -- For an OUT or IN OUT parameter that is an assignable entity,
3262 -- we do not want to clobber the Last_Assignment field, since
3263 -- if it is set, it was precisely because it is indeed an OUT
3264 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3265 -- since the subprogram could have returned in invalid value.
3267 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3268 and then Is_Assignable
(Ent
)
3270 Sav
:= Last_Assignment
(Ent
);
3271 Kill_Current_Values
(Ent
);
3272 Set_Last_Assignment
(Ent
, Sav
);
3273 Set_Is_Known_Valid
(Ent
, False);
3275 -- For all other cases, just kill the current values
3278 Kill_Current_Values
(Ent
);
3283 -- If the formal is class wide and the actual is an aggregate, force
3284 -- evaluation so that the back end who does not know about class-wide
3285 -- type, does not generate a temporary of the wrong size.
3287 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3290 elsif Nkind
(Actual
) = N_Aggregate
3291 or else (Nkind
(Actual
) = N_Qualified_Expression
3292 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3294 Force_Evaluation
(Actual
);
3297 -- In a remote call, if the formal is of a class-wide type, check
3298 -- that the actual meets the requirements described in E.4(18).
3300 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3301 Insert_Action
(Actual
,
3302 Make_Transportable_Check
(Loc
,
3303 Duplicate_Subexpr_Move_Checks
(Actual
)));
3306 -- Perform invariant checks for all intermediate types in a view
3307 -- conversion after successful return from a call that passes the
3308 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3309 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3310 -- generating spurious checks on complex expansion such as object
3311 -- initialization through an extension aggregate.
3313 if Comes_From_Source
(N
)
3314 and then Ekind
(Formal
) /= E_In_Parameter
3315 and then Nkind
(Actual
) = N_Type_Conversion
3317 Add_View_Conversion_Invariants
(Formal
, Actual
);
3320 -- Generating C the initialization of an allocator is performed by
3321 -- means of individual statements, and hence it must be done before
3324 if Modify_Tree_For_C
3325 and then Nkind
(Actual
) = N_Allocator
3326 and then Nkind
(Expression
(Actual
)) = N_Qualified_Expression
3328 Remove_Side_Effects
(Actual
);
3331 -- This label is required when skipping extra actual generation for
3332 -- Unchecked_Union parameters.
3334 <<Skip_Extra_Actual_Generation
>>
3336 Param_Count
:= Param_Count
+ 1;
3337 Next_Actual
(Actual
);
3338 Next_Formal
(Formal
);
3341 -- If we are calling an Ada 2012 function which needs to have the
3342 -- "accessibility level determined by the point of call" (AI05-0234)
3343 -- passed in to it, then pass it in.
3345 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3347 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3350 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3351 Level
: Node_Id
:= Empty
;
3352 Defer
: Boolean := False;
3355 -- Unimplemented: if Subp returns an anonymous access type, then
3357 -- a) if the call is the operand of an explict conversion, then
3358 -- the target type of the conversion (a named access type)
3359 -- determines the accessibility level pass in;
3361 -- b) if the call defines an access discriminant of an object
3362 -- (e.g., the discriminant of an object being created by an
3363 -- allocator, or the discriminant of a function result),
3364 -- then the accessibility level to pass in is that of the
3365 -- discriminated object being initialized).
3369 while Nkind
(Ancestor
) = N_Qualified_Expression
3371 Ancestor
:= Parent
(Ancestor
);
3374 case Nkind
(Ancestor
) is
3377 -- At this point, we'd like to assign
3379 -- Level := Dynamic_Accessibility_Level (Ancestor);
3381 -- but Etype of Ancestor may not have been set yet,
3382 -- so that doesn't work.
3384 -- Handle this later in Expand_Allocator_Expression.
3388 when N_Object_Declaration
3389 | N_Object_Renaming_Declaration
3392 Def_Id
: constant Entity_Id
:=
3393 Defining_Identifier
(Ancestor
);
3396 if Is_Return_Object
(Def_Id
) then
3397 if Present
(Extra_Accessibility_Of_Result
3398 (Return_Applies_To
(Scope
(Def_Id
))))
3400 -- Pass along value that was passed in if the
3401 -- routine we are returning from also has an
3402 -- Accessibility_Of_Result formal.
3406 (Extra_Accessibility_Of_Result
3407 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3411 Make_Integer_Literal
(Loc
,
3412 Intval
=> Object_Access_Level
(Def_Id
));
3416 when N_Simple_Return_Statement
=>
3417 if Present
(Extra_Accessibility_Of_Result
3419 (Return_Statement_Entity
(Ancestor
))))
3421 -- Pass along value that was passed in if the returned
3422 -- routine also has an Accessibility_Of_Result formal.
3426 (Extra_Accessibility_Of_Result
3428 (Return_Statement_Entity
(Ancestor
))), Loc
);
3436 if not Present
(Level
) then
3438 -- The "innermost master that evaluates the function call".
3440 -- ??? - Should we use Integer'Last here instead in order
3441 -- to deal with (some of) the problems associated with
3442 -- calls to subps whose enclosing scope is unknown (e.g.,
3443 -- Anon_Access_To_Subp_Param.all)?
3446 Make_Integer_Literal
(Loc
,
3447 Intval
=> Scope_Depth
(Current_Scope
) + 1);
3452 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3457 -- If we are expanding the RHS of an assignment we need to check if tag
3458 -- propagation is needed. You might expect this processing to be in
3459 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3460 -- assignment might be transformed to a declaration for an unconstrained
3461 -- value if the expression is classwide.
3463 if Nkind
(Call_Node
) = N_Function_Call
3464 and then Is_Tag_Indeterminate
(Call_Node
)
3465 and then Is_Entity_Name
(Name
(Call_Node
))
3468 Ass
: Node_Id
:= Empty
;
3471 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3472 Ass
:= Parent
(Call_Node
);
3474 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3475 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3476 N_Assignment_Statement
3478 Ass
:= Parent
(Parent
(Call_Node
));
3480 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3481 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3482 N_Assignment_Statement
3484 Ass
:= Parent
(Parent
(Call_Node
));
3488 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3490 if Is_Access_Type
(Etype
(Call_Node
)) then
3491 if Designated_Type
(Etype
(Call_Node
)) /=
3492 Root_Type
(Etype
(Name
(Ass
)))
3495 ("tag-indeterminate expression "
3496 & " must have designated type& (RM 5.2 (6))",
3497 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3499 Propagate_Tag
(Name
(Ass
), Call_Node
);
3502 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3504 ("tag-indeterminate expression must have type&"
3506 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3509 Propagate_Tag
(Name
(Ass
), Call_Node
);
3512 -- The call will be rewritten as a dispatching call, and
3513 -- expanded as such.
3520 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3521 -- it to point to the correct secondary virtual table
3523 if Nkind
(Call_Node
) in N_Subprogram_Call
3524 and then CW_Interface_Formals_Present
3526 Expand_Interface_Actuals
(Call_Node
);
3529 -- Deals with Dispatch_Call if we still have a call, before expanding
3530 -- extra actuals since this will be done on the re-analysis of the
3531 -- dispatching call. Note that we do not try to shorten the actual list
3532 -- for a dispatching call, it would not make sense to do so. Expansion
3533 -- of dispatching calls is suppressed for VM targets, because the VM
3534 -- back-ends directly handle the generation of dispatching calls and
3535 -- would have to undo any expansion to an indirect call.
3537 if Nkind
(Call_Node
) in N_Subprogram_Call
3538 and then Present
(Controlling_Argument
(Call_Node
))
3541 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3542 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3543 Eq_Prim_Op
: Entity_Id
:= Empty
;
3546 Prev_Call
: Node_Id
;
3549 if not Is_Limited_Type
(Typ
) then
3550 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3553 if Tagged_Type_Expansion
then
3554 Expand_Dispatching_Call
(Call_Node
);
3556 -- The following return is worrisome. Is it really OK to skip
3557 -- all remaining processing in this procedure ???
3564 Apply_Tag_Checks
(Call_Node
);
3566 -- If this is a dispatching "=", we must first compare the
3567 -- tags so we generate: x.tag = y.tag and then x = y
3569 if Subp
= Eq_Prim_Op
then
3571 -- Mark the node as analyzed to avoid reanalyzing this
3572 -- dispatching call (which would cause a never-ending loop)
3574 Prev_Call
:= Relocate_Node
(Call_Node
);
3575 Set_Analyzed
(Prev_Call
);
3577 Param
:= First_Actual
(Call_Node
);
3583 Make_Selected_Component
(Loc
,
3584 Prefix
=> New_Value
(Param
),
3587 (First_Tag_Component
(Typ
), Loc
)),
3590 Make_Selected_Component
(Loc
,
3592 Unchecked_Convert_To
(Typ
,
3593 New_Value
(Next_Actual
(Param
))),
3596 (First_Tag_Component
(Typ
), Loc
))),
3597 Right_Opnd
=> Prev_Call
);
3599 Rewrite
(Call_Node
, New_Call
);
3602 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3605 -- Expansion of a dispatching call results in an indirect call,
3606 -- which in turn causes current values to be killed (see
3607 -- Resolve_Call), so on VM targets we do the call here to
3608 -- ensure consistent warnings between VM and non-VM targets.
3610 Kill_Current_Values
;
3613 -- If this is a dispatching "=" then we must update the reference
3614 -- to the call node because we generated:
3615 -- x.tag = y.tag and then x = y
3617 if Subp
= Eq_Prim_Op
then
3618 Call_Node
:= Right_Opnd
(Call_Node
);
3623 -- Similarly, expand calls to RCI subprograms on which pragma
3624 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3625 -- later. Do this only when the call comes from source since we
3626 -- do not want such a rewriting to occur in expanded code.
3628 if Is_All_Remote_Call
(Call_Node
) then
3629 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3631 -- Similarly, do not add extra actuals for an entry call whose entity
3632 -- is a protected procedure, or for an internal protected subprogram
3633 -- call, because it will be rewritten as a protected subprogram call
3634 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3636 elsif Is_Protected_Type
(Scope
(Subp
))
3637 and then (Ekind
(Subp
) = E_Procedure
3638 or else Ekind
(Subp
) = E_Function
)
3642 -- During that loop we gathered the extra actuals (the ones that
3643 -- correspond to Extra_Formals), so now they can be appended.
3646 while Is_Non_Empty_List
(Extra_Actuals
) loop
3647 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3651 -- At this point we have all the actuals, so this is the point at which
3652 -- the various expansion activities for actuals is carried out.
3654 Expand_Actuals
(Call_Node
, Subp
);
3656 -- Verify that the actuals do not share storage. This check must be done
3657 -- on the caller side rather that inside the subprogram to avoid issues
3658 -- of parameter passing.
3660 if Check_Aliasing_Of_Parameters
then
3661 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3664 -- If the subprogram is a renaming, or if it is inherited, replace it in
3665 -- the call with the name of the actual subprogram being called. If this
3666 -- is a dispatching call, the run-time decides what to call. The Alias
3667 -- attribute does not apply to entries.
3669 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3670 and then No
(Controlling_Argument
(Call_Node
))
3671 and then Present
(Parent_Subp
)
3672 and then not Is_Direct_Deep_Call
(Subp
)
3674 if Present
(Inherited_From_Formal
(Subp
)) then
3675 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3677 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3680 -- The below setting of Entity is suspect, see F109-018 discussion???
3682 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3684 if Is_Abstract_Subprogram
(Parent_Subp
)
3685 and then not In_Instance
3688 ("cannot call abstract subprogram &!",
3689 Name
(Call_Node
), Parent_Subp
);
3692 -- Inspect all formals of derived subprogram Subp. Compare parameter
3693 -- types with the parent subprogram and check whether an actual may
3694 -- need a type conversion to the corresponding formal of the parent
3697 -- Not clear whether intrinsic subprograms need such conversions. ???
3699 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3700 or else Is_Generic_Instance
(Parent_Subp
)
3703 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3704 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3705 -- and resolve the newly generated construct.
3711 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3713 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3720 Actual_Typ
: Entity_Id
;
3721 Formal_Typ
: Entity_Id
;
3722 Parent_Typ
: Entity_Id
;
3725 Actual
:= First_Actual
(Call_Node
);
3726 Formal
:= First_Formal
(Subp
);
3727 Parent_Formal
:= First_Formal
(Parent_Subp
);
3728 while Present
(Formal
) loop
3729 Actual_Typ
:= Etype
(Actual
);
3730 Formal_Typ
:= Etype
(Formal
);
3731 Parent_Typ
:= Etype
(Parent_Formal
);
3733 -- For an IN parameter of a scalar type, the parent formal
3734 -- type and derived formal type differ or the parent formal
3735 -- type and actual type do not match statically.
3737 if Is_Scalar_Type
(Formal_Typ
)
3738 and then Ekind
(Formal
) = E_In_Parameter
3739 and then Formal_Typ
/= Parent_Typ
3741 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3742 and then not Raises_Constraint_Error
(Actual
)
3744 Convert
(Actual
, Parent_Typ
);
3745 Enable_Range_Check
(Actual
);
3747 -- If the actual has been marked as requiring a range
3748 -- check, then generate it here.
3750 if Do_Range_Check
(Actual
) then
3751 Generate_Range_Check
3752 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3755 -- For access types, the parent formal type and actual type
3758 elsif Is_Access_Type
(Formal_Typ
)
3759 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3761 if Ekind
(Formal
) /= E_In_Parameter
then
3762 Convert
(Actual
, Parent_Typ
);
3764 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3765 and then Designated_Type
(Parent_Typ
) /=
3766 Designated_Type
(Actual_Typ
)
3767 and then not Is_Controlling_Formal
(Formal
)
3769 -- This unchecked conversion is not necessary unless
3770 -- inlining is enabled, because in that case the type
3771 -- mismatch may become visible in the body about to be
3775 Unchecked_Convert_To
(Parent_Typ
,
3776 Relocate_Node
(Actual
)));
3778 Resolve
(Actual
, Parent_Typ
);
3781 -- If there is a change of representation, then generate a
3782 -- warning, and do the change of representation.
3784 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3786 ("??change of representation required", Actual
);
3787 Convert
(Actual
, Parent_Typ
);
3789 -- For array and record types, the parent formal type and
3790 -- derived formal type have different sizes or pragma Pack
3793 elsif ((Is_Array_Type
(Formal_Typ
)
3794 and then Is_Array_Type
(Parent_Typ
))
3796 (Is_Record_Type
(Formal_Typ
)
3797 and then Is_Record_Type
(Parent_Typ
)))
3799 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3800 or else Has_Pragma_Pack
(Formal_Typ
) /=
3801 Has_Pragma_Pack
(Parent_Typ
))
3803 Convert
(Actual
, Parent_Typ
);
3806 Next_Actual
(Actual
);
3807 Next_Formal
(Formal
);
3808 Next_Formal
(Parent_Formal
);
3814 Subp
:= Parent_Subp
;
3817 -- Deal with case where call is an explicit dereference
3819 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3821 -- Handle case of access to protected subprogram type
3823 if Is_Access_Protected_Subprogram_Type
3824 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3826 -- If this is a call through an access to protected operation, the
3827 -- prefix has the form (object'address, operation'access). Rewrite
3828 -- as a for other protected calls: the object is the 1st parameter
3829 -- of the list of actuals.
3836 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3838 T
: constant Entity_Id
:=
3839 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3841 D_T
: constant Entity_Id
:=
3842 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3846 Make_Selected_Component
(Loc
,
3847 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3849 New_Occurrence_Of
(First_Entity
(T
), Loc
));
3852 Make_Selected_Component
(Loc
,
3853 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3855 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
3858 Make_Explicit_Dereference
(Loc
,
3861 if Present
(Parameter_Associations
(Call_Node
)) then
3862 Parm
:= Parameter_Associations
(Call_Node
);
3867 Prepend
(Obj
, Parm
);
3869 if Etype
(D_T
) = Standard_Void_Type
then
3871 Make_Procedure_Call_Statement
(Loc
,
3873 Parameter_Associations
=> Parm
);
3876 Make_Function_Call
(Loc
,
3878 Parameter_Associations
=> Parm
);
3881 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
3882 Set_Etype
(Call
, Etype
(D_T
));
3884 -- We do not re-analyze the call to avoid infinite recursion.
3885 -- We analyze separately the prefix and the object, and set
3886 -- the checks on the prefix that would otherwise be emitted
3887 -- when resolving a call.
3889 Rewrite
(Call_Node
, Call
);
3891 Apply_Access_Check
(Nam
);
3898 -- If this is a call to an intrinsic subprogram, then perform the
3899 -- appropriate expansion to the corresponding tree node and we
3900 -- are all done (since after that the call is gone).
3902 -- In the case where the intrinsic is to be processed by the back end,
3903 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3904 -- since the idea in this case is to pass the call unchanged. If the
3905 -- intrinsic is an inherited unchecked conversion, and the derived type
3906 -- is the target type of the conversion, we must retain it as the return
3907 -- type of the expression. Otherwise the expansion below, which uses the
3908 -- parent operation, will yield the wrong type.
3910 if Is_Intrinsic_Subprogram
(Subp
) then
3911 Expand_Intrinsic_Call
(Call_Node
, Subp
);
3913 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
3914 and then Parent_Subp
/= Orig_Subp
3915 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
3917 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
3923 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
3925 -- We perform a simple optimization on calls for To_Address by
3926 -- replacing them with an unchecked conversion. Not only is this
3927 -- efficient, but it also avoids order of elaboration problems when
3928 -- address clauses are inlined (address expression elaborated at the
3929 -- at the wrong point).
3931 -- We perform this optimization regardless of whether we are in the
3932 -- main unit or in a unit in the context of the main unit, to ensure
3933 -- that tree generated is the same in both cases, for CodePeer use.
3935 if Is_RTE
(Subp
, RE_To_Address
) then
3937 Unchecked_Convert_To
3938 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
3942 -- Handle inlining. No action needed if the subprogram is not inlined
3944 if not Is_Inlined
(Subp
) then
3947 -- Frontend inlining of expression functions (performed also when
3948 -- backend inlining is enabled).
3950 elsif Is_Inlinable_Expression_Function
(Subp
) then
3951 Rewrite
(N
, New_Copy
(Expression_Of_Expression_Function
(Subp
)));
3955 -- Handle frontend inlining
3957 elsif not Back_End_Inlining
then
3958 Inlined_Subprogram
: declare
3960 Must_Inline
: Boolean := False;
3961 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3964 -- Verify that the body to inline has already been seen, and
3965 -- that if the body is in the current unit the inlining does
3966 -- not occur earlier. This avoids order-of-elaboration problems
3969 -- This should be documented in sinfo/einfo ???
3972 or else Nkind
(Spec
) /= N_Subprogram_Declaration
3973 or else No
(Body_To_Inline
(Spec
))
3975 Must_Inline
:= False;
3977 -- If this an inherited function that returns a private type,
3978 -- do not inline if the full view is an unconstrained array,
3979 -- because such calls cannot be inlined.
3981 elsif Present
(Orig_Subp
)
3982 and then Is_Array_Type
(Etype
(Orig_Subp
))
3983 and then not Is_Constrained
(Etype
(Orig_Subp
))
3985 Must_Inline
:= False;
3987 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
3988 Must_Inline
:= False;
3991 Bod
:= Body_To_Inline
(Spec
);
3993 if (In_Extended_Main_Code_Unit
(Call_Node
)
3994 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
3995 or else Has_Pragma_Inline_Always
(Subp
))
3996 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3998 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
4000 Must_Inline
:= True;
4002 -- If we are compiling a package body that is not the main
4003 -- unit, it must be for inlining/instantiation purposes,
4004 -- in which case we inline the call to insure that the same
4005 -- temporaries are generated when compiling the body by
4006 -- itself. Otherwise link errors can occur.
4008 -- If the function being called is itself in the main unit,
4009 -- we cannot inline, because there is a risk of double
4010 -- elaboration and/or circularity: the inlining can make
4011 -- visible a private entity in the body of the main unit,
4012 -- that gigi will see before its sees its proper definition.
4014 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
4015 and then In_Package_Body
4017 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
4019 -- Inline calls to _postconditions when generating C code
4021 elsif Modify_Tree_For_C
4022 and then In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4023 and then Chars
(Name
(N
)) = Name_uPostconditions
4025 Must_Inline
:= True;
4030 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4033 -- Let the back end handle it
4035 Add_Inlined_Body
(Subp
, Call_Node
);
4037 if Front_End_Inlining
4038 and then Nkind
(Spec
) = N_Subprogram_Declaration
4039 and then (In_Extended_Main_Code_Unit
(Call_Node
))
4040 and then No
(Body_To_Inline
(Spec
))
4041 and then not Has_Completion
(Subp
)
4042 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
4045 ("cannot inline& (body not seen yet)?",
4049 end Inlined_Subprogram
;
4051 -- Back end inlining: let the back end handle it
4053 elsif No
(Unit_Declaration_Node
(Subp
))
4054 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
4055 N_Subprogram_Declaration
4056 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
4057 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
4060 Add_Inlined_Body
(Subp
, Call_Node
);
4062 -- If the inlined call appears within an instantiation and some
4063 -- level of optimization is required, ensure that the enclosing
4064 -- instance body is available so that the back-end can actually
4065 -- perform the inlining.
4068 and then Comes_From_Source
(Subp
)
4069 and then Optimization_Level
> 0
4074 Inst_Node
: Node_Id
;
4077 Inst
:= Scope
(Subp
);
4079 -- Find enclosing instance
4081 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
4082 exit when Is_Generic_Instance
(Inst
);
4083 Inst
:= Scope
(Inst
);
4087 and then Is_Generic_Instance
(Inst
)
4088 and then not Is_Inlined
(Inst
)
4090 Set_Is_Inlined
(Inst
);
4091 Decl
:= Unit_Declaration_Node
(Inst
);
4093 -- Do not add a pending instantiation if the body exits
4094 -- already, or if the instance is a compilation unit, or
4095 -- the instance node is missing.
4097 if Present
(Corresponding_Body
(Decl
))
4098 or else Nkind
(Parent
(Decl
)) = N_Compilation_Unit
4099 or else No
(Next
(Decl
))
4104 -- The instantiation node usually follows the package
4105 -- declaration for the instance. If the generic unit
4106 -- has aspect specifications, they are transformed
4107 -- into pragmas in the instance, and the instance node
4108 -- appears after them.
4110 Inst_Node
:= Next
(Decl
);
4112 while Nkind
(Inst_Node
) /= N_Package_Instantiation
loop
4113 Inst_Node
:= Next
(Inst_Node
);
4116 Add_Pending_Instantiation
(Inst_Node
, Decl
);
4122 -- Front end expansion of simple functions returning unconstrained
4123 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4124 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4125 -- also Build_Renamed_Body) cannot be expanded here because this may
4126 -- give rise to order-of-elaboration issues for the types of the
4127 -- parameters of the subprogram, if any.
4130 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4134 -- Check for protected subprogram. This is either an intra-object call,
4135 -- or a protected function call. Protected procedure calls are rewritten
4136 -- as entry calls and handled accordingly.
4138 -- In Ada 2005, this may be an indirect call to an access parameter that
4139 -- is an access_to_subprogram. In that case the anonymous type has a
4140 -- scope that is a protected operation, but the call is a regular one.
4141 -- In either case do not expand call if subprogram is eliminated.
4143 Scop
:= Scope
(Subp
);
4145 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
4146 and then Is_Protected_Type
(Scop
)
4147 and then Ekind
(Subp
) /= E_Subprogram_Type
4148 and then not Is_Eliminated
(Subp
)
4150 -- If the call is an internal one, it is rewritten as a call to the
4151 -- corresponding unprotected subprogram.
4153 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
4156 -- Functions returning controlled objects need special attention. If
4157 -- the return type is limited, then the context is initialization and
4158 -- different processing applies. If the call is to a protected function,
4159 -- the expansion above will call Expand_Call recursively. Otherwise the
4160 -- function call is transformed into a temporary which obtains the
4161 -- result from the secondary stack.
4163 if Needs_Finalization
(Etype
(Subp
)) then
4164 if not Is_Limited_View
(Etype
(Subp
))
4166 (No
(First_Formal
(Subp
))
4168 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4170 Expand_Ctrl_Function_Call
(Call_Node
);
4172 -- Build-in-place function calls which appear in anonymous contexts
4173 -- need a transient scope to ensure the proper finalization of the
4174 -- intermediate result after its use.
4176 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4178 Nkind_In
(Parent
(Call_Node
), N_Attribute_Reference
,
4180 N_Indexed_Component
,
4181 N_Object_Renaming_Declaration
,
4182 N_Procedure_Call_Statement
,
4183 N_Selected_Component
,
4186 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
4191 -------------------------------
4192 -- Expand_Ctrl_Function_Call --
4193 -------------------------------
4195 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4196 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4197 -- Determine whether node N denotes a reference to an Ada 2012 container
4200 --------------------------
4201 -- Is_Element_Reference --
4202 --------------------------
4204 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4205 Ref
: constant Node_Id
:= Original_Node
(N
);
4208 -- Analysis marks an element reference by setting the generalized
4209 -- indexing attribute of an indexed component before the component
4210 -- is rewritten into a function call.
4213 Nkind
(Ref
) = N_Indexed_Component
4214 and then Present
(Generalized_Indexing
(Ref
));
4215 end Is_Element_Reference
;
4217 -- Start of processing for Expand_Ctrl_Function_Call
4220 -- Optimization, if the returned value (which is on the sec-stack) is
4221 -- returned again, no need to copy/readjust/finalize, we can just pass
4222 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4223 -- attachment is needed
4225 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4229 -- Resolution is now finished, make sure we don't start analysis again
4230 -- because of the duplication.
4234 -- A function which returns a controlled object uses the secondary
4235 -- stack. Rewrite the call into a temporary which obtains the result of
4236 -- the function using 'reference.
4238 Remove_Side_Effects
(N
);
4240 -- The side effect removal of the function call produced a temporary.
4241 -- When the context is a case expression, if expression, or expression
4242 -- with actions, the lifetime of the temporary must be extended to match
4243 -- that of the context. Otherwise the function result will be finalized
4244 -- too early and affect the result of the expression. To prevent this
4245 -- unwanted effect, the temporary should not be considered for clean up
4246 -- actions by the general finalization machinery.
4248 -- Exception to this rule are references to Ada 2012 container elements.
4249 -- Such references must be finalized at the end of each iteration of the
4250 -- related quantified expression, otherwise the container will remain
4253 if Nkind
(N
) = N_Explicit_Dereference
4254 and then Within_Case_Or_If_Expression
(N
)
4255 and then not Is_Element_Reference
(N
)
4257 Set_Is_Ignored_Transient
(Entity
(Prefix
(N
)));
4259 end Expand_Ctrl_Function_Call
;
4261 ----------------------------------------
4262 -- Expand_N_Extended_Return_Statement --
4263 ----------------------------------------
4265 -- If there is a Handled_Statement_Sequence, we rewrite this:
4267 -- return Result : T := <expression> do
4268 -- <handled_seq_of_stms>
4274 -- Result : T := <expression>;
4276 -- <handled_seq_of_stms>
4280 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4282 -- return Result : T := <expression>;
4286 -- return <expression>;
4288 -- unless it's build-in-place or there's no <expression>, in which case
4292 -- Result : T := <expression>;
4297 -- Note that this case could have been written by the user as an extended
4298 -- return statement, or could have been transformed to this from a simple
4299 -- return statement.
4301 -- That is, we need to have a reified return object if there are statements
4302 -- (which might refer to it) or if we're doing build-in-place (so we can
4303 -- set its address to the final resting place or if there is no expression
4304 -- (in which case default initial values might need to be set).
4306 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4307 Loc
: constant Source_Ptr
:= Sloc
(N
);
4309 function Build_Heap_Allocator
4310 (Temp_Id
: Entity_Id
;
4311 Temp_Typ
: Entity_Id
;
4312 Func_Id
: Entity_Id
;
4313 Ret_Typ
: Entity_Id
;
4314 Alloc_Expr
: Node_Id
) return Node_Id
;
4315 -- Create the statements necessary to allocate a return object on the
4316 -- caller's master. The master is available through implicit parameter
4317 -- BIPfinalizationmaster.
4319 -- if BIPfinalizationmaster /= null then
4321 -- type Ptr_Typ is access Ret_Typ;
4322 -- for Ptr_Typ'Storage_Pool use
4323 -- Base_Pool (BIPfinalizationmaster.all).all;
4327 -- procedure Allocate (...) is
4329 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4332 -- Local := <Alloc_Expr>;
4333 -- Temp_Id := Temp_Typ (Local);
4337 -- Temp_Id is the temporary which is used to reference the internally
4338 -- created object in all allocation forms. Temp_Typ is the type of the
4339 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4340 -- type of Func_Id. Alloc_Expr is the actual allocator.
4342 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
;
4343 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4345 -- From current activation chain
4346 -- To activation chain passed in by the caller
4347 -- New_Master master passed in by the caller
4349 -- Func_Id is the entity of the function where the extended return
4350 -- statement appears.
4352 --------------------------
4353 -- Build_Heap_Allocator --
4354 --------------------------
4356 function Build_Heap_Allocator
4357 (Temp_Id
: Entity_Id
;
4358 Temp_Typ
: Entity_Id
;
4359 Func_Id
: Entity_Id
;
4360 Ret_Typ
: Entity_Id
;
4361 Alloc_Expr
: Node_Id
) return Node_Id
4364 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4366 -- Processing for build-in-place object allocation.
4368 if Needs_Finalization
(Ret_Typ
) then
4370 Decls
: constant List_Id
:= New_List
;
4371 Fin_Mas_Id
: constant Entity_Id
:=
4372 Build_In_Place_Formal
4373 (Func_Id
, BIP_Finalization_Master
);
4374 Stmts
: constant List_Id
:= New_List
;
4375 Desig_Typ
: Entity_Id
;
4376 Local_Id
: Entity_Id
;
4377 Pool_Id
: Entity_Id
;
4378 Ptr_Typ
: Entity_Id
;
4382 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4384 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4387 Make_Object_Renaming_Declaration
(Loc
,
4388 Defining_Identifier
=> Pool_Id
,
4390 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4392 Make_Explicit_Dereference
(Loc
,
4394 Make_Function_Call
(Loc
,
4396 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4397 Parameter_Associations
=> New_List
(
4398 Make_Explicit_Dereference
(Loc
,
4400 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4402 -- Create an access type which uses the storage pool of the
4403 -- caller's master. This additional type is necessary because
4404 -- the finalization master cannot be associated with the type
4405 -- of the temporary. Otherwise the secondary stack allocation
4408 Desig_Typ
:= Ret_Typ
;
4410 -- Ensure that the build-in-place machinery uses a fat pointer
4411 -- when allocating an unconstrained array on the heap. In this
4412 -- case the result object type is a constrained array type even
4413 -- though the function type is unconstrained.
4415 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4416 Desig_Typ
:= Base_Type
(Desig_Typ
);
4420 -- type Ptr_Typ is access Desig_Typ;
4422 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4425 Make_Full_Type_Declaration
(Loc
,
4426 Defining_Identifier
=> Ptr_Typ
,
4428 Make_Access_To_Object_Definition
(Loc
,
4429 Subtype_Indication
=>
4430 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4432 -- Perform minor decoration in order to set the master and the
4433 -- storage pool attributes.
4435 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4436 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4437 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4439 -- Create the temporary, generate:
4440 -- Local_Id : Ptr_Typ;
4442 Local_Id
:= Make_Temporary
(Loc
, 'T');
4445 Make_Object_Declaration
(Loc
,
4446 Defining_Identifier
=> Local_Id
,
4447 Object_Definition
=>
4448 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4450 -- Allocate the object, generate:
4451 -- Local_Id := <Alloc_Expr>;
4454 Make_Assignment_Statement
(Loc
,
4455 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4456 Expression
=> Alloc_Expr
));
4459 -- Temp_Id := Temp_Typ (Local_Id);
4462 Make_Assignment_Statement
(Loc
,
4463 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4465 Unchecked_Convert_To
(Temp_Typ
,
4466 New_Occurrence_Of
(Local_Id
, Loc
))));
4468 -- Wrap the allocation in a block. This is further conditioned
4469 -- by checking the caller finalization master at runtime. A
4470 -- null value indicates a non-existent master, most likely due
4471 -- to a Finalize_Storage_Only allocation.
4474 -- if BIPfinalizationmaster /= null then
4483 Make_If_Statement
(Loc
,
4486 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4487 Right_Opnd
=> Make_Null
(Loc
)),
4489 Then_Statements
=> New_List
(
4490 Make_Block_Statement
(Loc
,
4491 Declarations
=> Decls
,
4492 Handled_Statement_Sequence
=>
4493 Make_Handled_Sequence_Of_Statements
(Loc
,
4494 Statements
=> Stmts
))));
4497 -- For all other cases, generate:
4498 -- Temp_Id := <Alloc_Expr>;
4502 Make_Assignment_Statement
(Loc
,
4503 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4504 Expression
=> Alloc_Expr
);
4506 end Build_Heap_Allocator
;
4508 ---------------------------
4509 -- Move_Activation_Chain --
4510 ---------------------------
4512 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
is
4515 Make_Procedure_Call_Statement
(Loc
,
4517 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4519 Parameter_Associations
=> New_List
(
4523 Make_Attribute_Reference
(Loc
,
4524 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4525 Attribute_Name
=> Name_Unrestricted_Access
),
4527 -- Destination chain
4530 (Build_In_Place_Formal
(Func_Id
, BIP_Activation_Chain
), Loc
),
4535 (Build_In_Place_Formal
(Func_Id
, BIP_Task_Master
), Loc
)));
4536 end Move_Activation_Chain
;
4540 Func_Id
: constant Entity_Id
:=
4541 Return_Applies_To
(Return_Statement_Entity
(N
));
4542 Is_BIP_Func
: constant Boolean :=
4543 Is_Build_In_Place_Function
(Func_Id
);
4544 Ret_Obj_Id
: constant Entity_Id
:=
4545 First_Entity
(Return_Statement_Entity
(N
));
4546 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4547 Ret_Typ
: constant Entity_Id
:= Etype
(Func_Id
);
4552 Return_Stmt
: Node_Id
;
4555 -- Start of processing for Expand_N_Extended_Return_Statement
4558 -- Given that functionality of interface thunks is simple (just displace
4559 -- the pointer to the object) they are always handled by means of
4560 -- simple return statements.
4562 pragma Assert
(not Is_Thunk
(Current_Scope
));
4564 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4565 Exp
:= Expression
(Ret_Obj_Decl
);
4570 HSS
:= Handled_Statement_Sequence
(N
);
4572 -- If the returned object needs finalization actions, the function must
4573 -- perform the appropriate cleanup should it fail to return. The state
4574 -- of the function itself is tracked through a flag which is coupled
4575 -- with the scope finalizer. There is one flag per each return object
4576 -- in case of multiple returns.
4578 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4580 Flag_Decl
: Node_Id
;
4581 Flag_Id
: Entity_Id
;
4585 -- Recover the function body
4587 Func_Bod
:= Unit_Declaration_Node
(Func_Id
);
4589 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4590 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4593 -- Create a flag to track the function state
4595 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4596 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4598 -- Insert the flag at the beginning of the function declarations,
4600 -- Fnn : Boolean := False;
4603 Make_Object_Declaration
(Loc
,
4604 Defining_Identifier
=> Flag_Id
,
4605 Object_Definition
=>
4606 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4608 New_Occurrence_Of
(Standard_False
, Loc
));
4610 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4611 Analyze
(Flag_Decl
);
4615 -- Build a simple_return_statement that returns the return object when
4616 -- there is a statement sequence, or no expression, or the result will
4617 -- be built in place. Note however that we currently do this for all
4618 -- composite cases, even though nonlimited composite results are not yet
4619 -- built in place (though we plan to do so eventually).
4622 or else Is_Composite_Type
(Ret_Typ
)
4628 -- If the extended return has a handled statement sequence, then wrap
4629 -- it in a block and use the block as the first statement.
4633 Make_Block_Statement
(Loc
,
4634 Declarations
=> New_List
,
4635 Handled_Statement_Sequence
=> HSS
));
4638 -- If the result type contains tasks, we call Move_Activation_Chain.
4639 -- Later, the cleanup code will call Complete_Master, which will
4640 -- terminate any unactivated tasks belonging to the return statement
4641 -- master. But Move_Activation_Chain updates their master to be that
4642 -- of the caller, so they will not be terminated unless the return
4643 -- statement completes unsuccessfully due to exception, abort, goto,
4644 -- or exit. As a formality, we test whether the function requires the
4645 -- result to be built in place, though that's necessarily true for
4646 -- the case of result types with task parts.
4648 if Is_BIP_Func
and then Has_Task
(Ret_Typ
) then
4650 -- The return expression is an aggregate for a complex type which
4651 -- contains tasks. This particular case is left unexpanded since
4652 -- the regular expansion would insert all temporaries and
4653 -- initialization code in the wrong block.
4655 if Nkind
(Exp
) = N_Aggregate
then
4656 Expand_N_Aggregate
(Exp
);
4659 -- Do not move the activation chain if the return object does not
4662 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4663 Append_To
(Stmts
, Move_Activation_Chain
(Func_Id
));
4667 -- Update the state of the function right before the object is
4670 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4672 Flag_Id
: constant Entity_Id
:=
4673 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4680 Make_Assignment_Statement
(Loc
,
4681 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4682 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4686 -- Build a simple_return_statement that returns the return object
4689 Make_Simple_Return_Statement
(Loc
,
4690 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4691 Append_To
(Stmts
, Return_Stmt
);
4693 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4696 -- Case where we build a return statement block
4698 if Present
(HSS
) then
4700 Make_Block_Statement
(Loc
,
4701 Declarations
=> Return_Object_Declarations
(N
),
4702 Handled_Statement_Sequence
=> HSS
);
4704 -- We set the entity of the new block statement to be that of the
4705 -- return statement. This is necessary so that various fields, such
4706 -- as Finalization_Chain_Entity carry over from the return statement
4707 -- to the block. Note that this block is unusual, in that its entity
4708 -- is an E_Return_Statement rather than an E_Block.
4711 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4713 -- If the object decl was already rewritten as a renaming, then we
4714 -- don't want to do the object allocation and transformation of
4715 -- the return object declaration to a renaming. This case occurs
4716 -- when the return object is initialized by a call to another
4717 -- build-in-place function, and that function is responsible for
4718 -- the allocation of the return object.
4721 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4724 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4725 and then Is_Build_In_Place_Function_Call
4726 (Expression
(Original_Node
(Ret_Obj_Decl
))));
4728 -- Return the build-in-place result by reference
4730 Set_By_Ref
(Return_Stmt
);
4732 elsif Is_BIP_Func
then
4734 -- Locate the implicit access parameter associated with the
4735 -- caller-supplied return object and convert the return
4736 -- statement's return object declaration to a renaming of a
4737 -- dereference of the access parameter. If the return object's
4738 -- declaration includes an expression that has not already been
4739 -- expanded as separate assignments, then add an assignment
4740 -- statement to ensure the return object gets initialized.
4743 -- Result : T [:= <expression>];
4750 -- Result : T renames FuncRA.all;
4751 -- [Result := <expression;]
4756 Ret_Obj_Expr
: constant Node_Id
:= Expression
(Ret_Obj_Decl
);
4757 Ret_Obj_Typ
: constant Entity_Id
:= Etype
(Ret_Obj_Id
);
4759 Init_Assignment
: Node_Id
:= Empty
;
4760 Obj_Acc_Formal
: Entity_Id
;
4761 Obj_Acc_Deref
: Node_Id
;
4762 Obj_Alloc_Formal
: Entity_Id
;
4765 -- Build-in-place results must be returned by reference
4767 Set_By_Ref
(Return_Stmt
);
4769 -- Retrieve the implicit access parameter passed by the caller
4772 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
4774 -- If the return object's declaration includes an expression
4775 -- and the declaration isn't marked as No_Initialization, then
4776 -- we need to generate an assignment to the object and insert
4777 -- it after the declaration before rewriting it as a renaming
4778 -- (otherwise we'll lose the initialization). The case where
4779 -- the result type is an interface (or class-wide interface)
4780 -- is also excluded because the context of the function call
4781 -- must be unconstrained, so the initialization will always
4782 -- be done as part of an allocator evaluation (storage pool
4783 -- or secondary stack), never to a constrained target object
4784 -- passed in by the caller. Besides the assignment being
4785 -- unneeded in this case, it avoids problems with trying to
4786 -- generate a dispatching assignment when the return expression
4787 -- is a nonlimited descendant of a limited interface (the
4788 -- interface has no assignment operation).
4790 if Present
(Ret_Obj_Expr
)
4791 and then not No_Initialization
(Ret_Obj_Decl
)
4792 and then not Is_Interface
(Ret_Obj_Typ
)
4795 Make_Assignment_Statement
(Loc
,
4796 Name
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
),
4797 Expression
=> Relocate_Node
(Ret_Obj_Expr
));
4799 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
4800 Set_Assignment_OK
(Name
(Init_Assignment
));
4801 Set_No_Ctrl_Actions
(Init_Assignment
);
4803 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4804 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4806 Set_Expression
(Ret_Obj_Decl
, Empty
);
4808 if Is_Class_Wide_Type
(Etype
(Ret_Obj_Id
))
4809 and then not Is_Class_Wide_Type
4810 (Etype
(Expression
(Init_Assignment
)))
4812 Rewrite
(Expression
(Init_Assignment
),
4813 Make_Type_Conversion
(Loc
,
4815 New_Occurrence_Of
(Etype
(Ret_Obj_Id
), Loc
),
4817 Relocate_Node
(Expression
(Init_Assignment
))));
4820 -- In the case of functions where the calling context can
4821 -- determine the form of allocation needed, initialization
4822 -- is done with each part of the if statement that handles
4823 -- the different forms of allocation (this is true for
4824 -- unconstrained and tagged result subtypes).
4826 if Is_Constrained
(Ret_Typ
)
4827 and then not Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
4829 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
4833 -- When the function's subtype is unconstrained, a run-time
4834 -- test is needed to determine the form of allocation to use
4835 -- for the return object. The function has an implicit formal
4836 -- parameter indicating this. If the BIP_Alloc_Form formal has
4837 -- the value one, then the caller has passed access to an
4838 -- existing object for use as the return object. If the value
4839 -- is two, then the return object must be allocated on the
4840 -- secondary stack. Otherwise, the object must be allocated in
4841 -- a storage pool (currently only supported for the global
4842 -- heap, user-defined storage pools TBD ???). We generate an
4843 -- if statement to test the implicit allocation formal and
4844 -- initialize a local access value appropriately, creating
4845 -- allocators in the secondary stack and global heap cases.
4846 -- The special formal also exists and must be tested when the
4847 -- function has a tagged result, even when the result subtype
4848 -- is constrained, because in general such functions can be
4849 -- called in dispatching contexts and must be handled similarly
4850 -- to functions with a class-wide result.
4852 if not Is_Constrained
(Ret_Typ
)
4853 or else Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
4856 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
4859 Pool_Id
: constant Entity_Id
:=
4860 Make_Temporary
(Loc
, 'P');
4861 Alloc_Obj_Id
: Entity_Id
;
4862 Alloc_Obj_Decl
: Node_Id
;
4863 Alloc_If_Stmt
: Node_Id
;
4864 Heap_Allocator
: Node_Id
;
4865 Pool_Decl
: Node_Id
;
4866 Pool_Allocator
: Node_Id
;
4867 Ptr_Type_Decl
: Node_Id
;
4868 Ref_Type
: Entity_Id
;
4869 SS_Allocator
: Node_Id
;
4872 -- Reuse the itype created for the function's implicit
4873 -- access formal. This avoids the need to create a new
4874 -- access type here, plus it allows assigning the access
4875 -- formal directly without applying a conversion.
4877 -- Ref_Type := Etype (Object_Access);
4879 -- Create an access type designating the function's
4882 Ref_Type
:= Make_Temporary
(Loc
, 'A');
4885 Make_Full_Type_Declaration
(Loc
,
4886 Defining_Identifier
=> Ref_Type
,
4888 Make_Access_To_Object_Definition
(Loc
,
4889 All_Present
=> True,
4890 Subtype_Indication
=>
4891 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
)));
4893 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
4895 -- Create an access object that will be initialized to an
4896 -- access value denoting the return object, either coming
4897 -- from an implicit access value passed in by the caller
4898 -- or from the result of an allocator.
4900 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
4901 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
4904 Make_Object_Declaration
(Loc
,
4905 Defining_Identifier
=> Alloc_Obj_Id
,
4906 Object_Definition
=>
4907 New_Occurrence_Of
(Ref_Type
, Loc
));
4909 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
4911 -- Create allocators for both the secondary stack and
4912 -- global heap. If there's an initialization expression,
4913 -- then create these as initialized allocators.
4915 if Present
(Ret_Obj_Expr
)
4916 and then not No_Initialization
(Ret_Obj_Decl
)
4918 -- Always use the type of the expression for the
4919 -- qualified expression, rather than the result type.
4920 -- In general we cannot always use the result type
4921 -- for the allocator, because the expression might be
4922 -- of a specific type, such as in the case of an
4923 -- aggregate or even a nonlimited object when the
4924 -- result type is a limited class-wide interface type.
4927 Make_Allocator
(Loc
,
4929 Make_Qualified_Expression
(Loc
,
4932 (Etype
(Ret_Obj_Expr
), Loc
),
4933 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
)));
4936 -- If the function returns a class-wide type we cannot
4937 -- use the return type for the allocator. Instead we
4938 -- use the type of the expression, which must be an
4939 -- aggregate of a definite type.
4941 if Is_Class_Wide_Type
(Ret_Obj_Typ
) then
4943 Make_Allocator
(Loc
,
4946 (Etype
(Ret_Obj_Expr
), Loc
));
4949 Make_Allocator
(Loc
,
4951 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
));
4954 -- If the object requires default initialization then
4955 -- that will happen later following the elaboration of
4956 -- the object renaming. If we don't turn it off here
4957 -- then the object will be default initialized twice.
4959 Set_No_Initialization
(Heap_Allocator
);
4962 -- The Pool_Allocator is just like the Heap_Allocator,
4963 -- except we set Storage_Pool and Procedure_To_Call so
4964 -- it will use the user-defined storage pool.
4966 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4968 -- Do not generate the renaming of the build-in-place
4969 -- pool parameter on ZFP because the parameter is not
4970 -- created in the first place.
4972 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
4974 Make_Object_Renaming_Declaration
(Loc
,
4975 Defining_Identifier
=> Pool_Id
,
4978 (RTE
(RE_Root_Storage_Pool
), Loc
),
4980 Make_Explicit_Dereference
(Loc
,
4982 (Build_In_Place_Formal
4983 (Func_Id
, BIP_Storage_Pool
), Loc
)));
4984 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
4985 Set_Procedure_To_Call
4986 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
4988 Pool_Decl
:= Make_Null_Statement
(Loc
);
4991 -- If the No_Allocators restriction is active, then only
4992 -- an allocator for secondary stack allocation is needed.
4993 -- It's OK for such allocators to have Comes_From_Source
4994 -- set to False, because gigi knows not to flag them as
4995 -- being a violation of No_Implicit_Heap_Allocations.
4997 if Restriction_Active
(No_Allocators
) then
4998 SS_Allocator
:= Heap_Allocator
;
4999 Heap_Allocator
:= Make_Null
(Loc
);
5000 Pool_Allocator
:= Make_Null
(Loc
);
5002 -- Otherwise the heap and pool allocators may be needed,
5003 -- so we make another allocator for secondary stack
5007 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5009 -- The heap and pool allocators are marked as
5010 -- Comes_From_Source since they correspond to an
5011 -- explicit user-written allocator (that is, it will
5012 -- only be executed on behalf of callers that call the
5013 -- function as initialization for such an allocator).
5014 -- Prevents errors when No_Implicit_Heap_Allocations
5017 Set_Comes_From_Source
(Heap_Allocator
, True);
5018 Set_Comes_From_Source
(Pool_Allocator
, True);
5021 -- The allocator is returned on the secondary stack.
5023 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
5024 Set_Procedure_To_Call
5025 (SS_Allocator
, RTE
(RE_SS_Allocate
));
5027 -- The allocator is returned on the secondary stack,
5028 -- so indicate that the function return, as well as
5029 -- all blocks that encloses the allocator, must not
5030 -- release it. The flags must be set now because
5031 -- the decision to use the secondary stack is done
5032 -- very late in the course of expanding the return
5033 -- statement, past the point where these flags are
5036 Set_Uses_Sec_Stack
(Func_Id
);
5037 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
5038 Set_Sec_Stack_Needed_For_Return
5039 (Return_Statement_Entity
(N
));
5040 Set_Enclosing_Sec_Stack_Return
(N
);
5042 -- Create an if statement to test the BIP_Alloc_Form
5043 -- formal and initialize the access object to either the
5044 -- BIP_Object_Access formal (BIP_Alloc_Form =
5045 -- Caller_Allocation), the result of allocating the
5046 -- object in the secondary stack (BIP_Alloc_Form =
5047 -- Secondary_Stack), or else an allocator to create the
5048 -- return object in the heap or user-defined pool
5049 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5051 -- ??? An unchecked type conversion must be made in the
5052 -- case of assigning the access object formal to the
5053 -- local access object, because a normal conversion would
5054 -- be illegal in some cases (such as converting access-
5055 -- to-unconstrained to access-to-constrained), but the
5056 -- the unchecked conversion will presumably fail to work
5057 -- right in just such cases. It's not clear at all how to
5061 Make_If_Statement
(Loc
,
5065 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5067 Make_Integer_Literal
(Loc
,
5068 UI_From_Int
(BIP_Allocation_Form
'Pos
5069 (Caller_Allocation
)))),
5071 Then_Statements
=> New_List
(
5072 Make_Assignment_Statement
(Loc
,
5074 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5076 Make_Unchecked_Type_Conversion
(Loc
,
5078 New_Occurrence_Of
(Ref_Type
, Loc
),
5080 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
5082 Elsif_Parts
=> New_List
(
5083 Make_Elsif_Part
(Loc
,
5087 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5089 Make_Integer_Literal
(Loc
,
5090 UI_From_Int
(BIP_Allocation_Form
'Pos
5091 (Secondary_Stack
)))),
5093 Then_Statements
=> New_List
(
5094 Make_Assignment_Statement
(Loc
,
5096 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5097 Expression
=> SS_Allocator
))),
5099 Make_Elsif_Part
(Loc
,
5103 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5105 Make_Integer_Literal
(Loc
,
5106 UI_From_Int
(BIP_Allocation_Form
'Pos
5109 Then_Statements
=> New_List
(
5110 Build_Heap_Allocator
5111 (Temp_Id
=> Alloc_Obj_Id
,
5112 Temp_Typ
=> Ref_Type
,
5114 Ret_Typ
=> Ret_Obj_Typ
,
5115 Alloc_Expr
=> Heap_Allocator
)))),
5117 Else_Statements
=> New_List
(
5119 Build_Heap_Allocator
5120 (Temp_Id
=> Alloc_Obj_Id
,
5121 Temp_Typ
=> Ref_Type
,
5123 Ret_Typ
=> Ret_Obj_Typ
,
5124 Alloc_Expr
=> Pool_Allocator
)));
5126 -- If a separate initialization assignment was created
5127 -- earlier, append that following the assignment of the
5128 -- implicit access formal to the access object, to ensure
5129 -- that the return object is initialized in that case. In
5130 -- this situation, the target of the assignment must be
5131 -- rewritten to denote a dereference of the access to the
5132 -- return object passed in by the caller.
5134 if Present
(Init_Assignment
) then
5135 Rewrite
(Name
(Init_Assignment
),
5136 Make_Explicit_Dereference
(Loc
,
5137 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
5139 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5142 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
5145 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
5147 -- Remember the local access object for use in the
5148 -- dereference of the renaming created below.
5150 Obj_Acc_Formal
:= Alloc_Obj_Id
;
5154 -- Replace the return object declaration with a renaming of a
5155 -- dereference of the access value designating the return
5159 Make_Explicit_Dereference
(Loc
,
5160 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
5162 Rewrite
(Ret_Obj_Decl
,
5163 Make_Object_Renaming_Declaration
(Loc
,
5164 Defining_Identifier
=> Ret_Obj_Id
,
5165 Access_Definition
=> Empty
,
5166 Subtype_Mark
=> New_Occurrence_Of
(Ret_Obj_Typ
, Loc
),
5167 Name
=> Obj_Acc_Deref
));
5169 Set_Renamed_Object
(Ret_Obj_Id
, Obj_Acc_Deref
);
5173 -- Case where we do not build a block
5176 -- We're about to drop Return_Object_Declarations on the floor, so
5177 -- we need to insert it, in case it got expanded into useful code.
5178 -- Remove side effects from expression, which may be duplicated in
5179 -- subsequent checks (see Expand_Simple_Function_Return).
5181 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5182 Remove_Side_Effects
(Exp
);
5184 -- Build simple_return_statement that returns the expression directly
5186 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5187 Result
:= Return_Stmt
;
5190 -- Set the flag to prevent infinite recursion
5192 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5194 Rewrite
(N
, Result
);
5196 end Expand_N_Extended_Return_Statement
;
5198 ----------------------------
5199 -- Expand_N_Function_Call --
5200 ----------------------------
5202 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5205 end Expand_N_Function_Call
;
5207 ---------------------------------------
5208 -- Expand_N_Procedure_Call_Statement --
5209 ---------------------------------------
5211 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5214 end Expand_N_Procedure_Call_Statement
;
5216 --------------------------------------
5217 -- Expand_N_Simple_Return_Statement --
5218 --------------------------------------
5220 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5222 -- Defend against previous errors (i.e. the return statement calls a
5223 -- function that is not available in configurable runtime).
5225 if Present
(Expression
(N
))
5226 and then Nkind
(Expression
(N
)) = N_Empty
5228 Check_Error_Detected
;
5232 -- Distinguish the function and non-function cases:
5234 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5236 | E_Generic_Function
5238 Expand_Simple_Function_Return
(N
);
5242 | E_Generic_Procedure
5244 | E_Return_Statement
5246 Expand_Non_Function_Return
(N
);
5249 raise Program_Error
;
5253 when RE_Not_Available
=>
5255 end Expand_N_Simple_Return_Statement
;
5257 ------------------------------
5258 -- Expand_N_Subprogram_Body --
5259 ------------------------------
5261 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5264 -- Add dummy push/pop label nodes at start and end to clear any local
5265 -- exception indications if local-exception-to-goto optimization is active.
5267 -- Add return statement if last statement in body is not a return statement
5268 -- (this makes things easier on Gigi which does not want to have to handle
5269 -- a missing return).
5271 -- Add call to Activate_Tasks if body is a task activator
5273 -- Deal with possible detection of infinite recursion
5275 -- Eliminate body completely if convention stubbed
5277 -- Encode entity names within body, since we will not need to reference
5278 -- these entities any longer in the front end.
5280 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5282 -- Reset Pure indication if any parameter has root type System.Address
5283 -- or has any parameters of limited types, where limited means that the
5284 -- run-time view is limited (i.e. the full type is limited).
5288 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5289 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
5290 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5291 Loc
: constant Source_Ptr
:= Sloc
(N
);
5293 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
);
5294 -- Append a return statement to the statement sequence Stmts if the last
5295 -- statement is not already a return or a goto statement. Note that the
5296 -- latter test is not critical, it does not matter if we add a few extra
5297 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5298 -- the corresponding spec of the subprogram body.
5304 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
) is
5305 Last_Stmt
: Node_Id
;
5310 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5311 -- not relevant in this context since they are not executable.
5313 Last_Stmt
:= Last
(Stmts
);
5314 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5318 -- Now insert return unless last statement is a transfer
5320 if not Is_Transfer
(Last_Stmt
) then
5322 -- The source location for the return is the end label of the
5323 -- procedure if present. Otherwise use the sloc of the last
5324 -- statement in the list. If the list comes from a generated
5325 -- exception handler and we are not debugging generated code,
5326 -- all the statements within the handler are made invisible
5329 if Nkind
(Parent
(Stmts
)) = N_Exception_Handler
5330 and then not Comes_From_Source
(Parent
(Stmts
))
5332 Loc
:= Sloc
(Last_Stmt
);
5333 elsif Present
(End_Label
(HSS
)) then
5334 Loc
:= Sloc
(End_Label
(HSS
));
5336 Loc
:= Sloc
(Last_Stmt
);
5339 -- Append return statement, and set analyzed manually. We can't
5340 -- call Analyze on this return since the scope is wrong.
5342 -- Note: it almost works to push the scope and then do the Analyze
5343 -- call, but something goes wrong in some weird cases and it is
5344 -- not worth worrying about ???
5346 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5348 -- The return statement is handled properly, and the call to the
5349 -- postcondition, inserted below, does not require information
5350 -- from the body either. However, that call is analyzed in the
5351 -- enclosing scope, and an elaboration check might improperly be
5352 -- added to it. A guard in Sem_Elab is needed to prevent that
5353 -- spurious check, see Check_Elab_Call.
5355 Append_To
(Stmts
, Stmt
);
5356 Set_Analyzed
(Stmt
);
5358 -- Call the _Postconditions procedure if the related subprogram
5359 -- has contract assertions that need to be verified on exit.
5361 if Ekind
(Spec_Id
) = E_Procedure
5362 and then Present
(Postconditions_Proc
(Spec_Id
))
5364 Insert_Action
(Stmt
,
5365 Make_Procedure_Call_Statement
(Loc
,
5367 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5376 Spec_Id
: Entity_Id
;
5378 -- Start of processing for Expand_N_Subprogram_Body
5381 if Present
(Corresponding_Spec
(N
)) then
5382 Spec_Id
:= Corresponding_Spec
(N
);
5387 -- If this is a Pure function which has any parameters whose root type
5388 -- is System.Address, reset the Pure indication.
5389 -- This check is also performed when the subprogram is frozen, but we
5390 -- repeat it on the body so that the indication is consistent, and so
5391 -- it applies as well to bodies without separate specifications.
5393 if Is_Pure
(Spec_Id
)
5394 and then Is_Subprogram
(Spec_Id
)
5395 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5397 Check_Function_With_Address_Parameter
(Spec_Id
);
5399 if Spec_Id
/= Body_Id
then
5400 Set_Is_Pure
(Body_Id
, Is_Pure
(Spec_Id
));
5404 -- Set L to either the list of declarations if present, or to the list
5405 -- of statements if no declarations are present. This is used to insert
5406 -- new stuff at the start.
5408 if Is_Non_Empty_List
(Declarations
(N
)) then
5409 L
:= Declarations
(N
);
5411 L
:= Statements
(HSS
);
5414 -- If local-exception-to-goto optimization active, insert dummy push
5415 -- statements at start, and dummy pop statements at end, but inhibit
5416 -- this if we have No_Exception_Handlers, since they are useless and
5417 -- intefere with analysis, e.g. by codepeer.
5419 if (Debug_Flag_Dot_G
5420 or else Restriction_Active
(No_Exception_Propagation
))
5421 and then not Restriction_Active
(No_Exception_Handlers
)
5422 and then not CodePeer_Mode
5423 and then Is_Non_Empty_List
(L
)
5426 FS
: constant Node_Id
:= First
(L
);
5427 FL
: constant Source_Ptr
:= Sloc
(FS
);
5432 -- LS points to either last statement, if statements are present
5433 -- or to the last declaration if there are no statements present.
5434 -- It is the node after which the pop's are generated.
5436 if Is_Non_Empty_List
(Statements
(HSS
)) then
5437 LS
:= Last
(Statements
(HSS
));
5444 Insert_List_Before_And_Analyze
(FS
, New_List
(
5445 Make_Push_Constraint_Error_Label
(FL
),
5446 Make_Push_Program_Error_Label
(FL
),
5447 Make_Push_Storage_Error_Label
(FL
)));
5449 Insert_List_After_And_Analyze
(LS
, New_List
(
5450 Make_Pop_Constraint_Error_Label
(LL
),
5451 Make_Pop_Program_Error_Label
(LL
),
5452 Make_Pop_Storage_Error_Label
(LL
)));
5456 -- Need poll on entry to subprogram if polling enabled. We only do this
5457 -- for non-empty subprograms, since it does not seem necessary to poll
5458 -- for a dummy null subprogram.
5460 if Is_Non_Empty_List
(L
) then
5462 -- Do not add a polling call if the subprogram is to be inlined by
5463 -- the back-end, to avoid repeated calls with multiple inlinings.
5465 if Is_Inlined
(Spec_Id
)
5466 and then Front_End_Inlining
5467 and then Optimization_Level
> 1
5471 Generate_Poll_Call
(First
(L
));
5475 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5477 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5483 -- Loop through formals
5485 F
:= First_Formal
(Spec_Id
);
5486 while Present
(F
) loop
5487 if Is_Scalar_Type
(Etype
(F
))
5488 and then Ekind
(F
) = E_Out_Parameter
5490 Check_Restriction
(No_Default_Initialization
, F
);
5492 -- Insert the initialization. We turn off validity checks
5493 -- for this assignment, since we do not want any check on
5494 -- the initial value itself (which may well be invalid).
5495 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5498 Make_Assignment_Statement
(Loc
,
5499 Name
=> New_Occurrence_Of
(F
, Loc
),
5500 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5501 Set_Suppress_Assignment_Checks
(A
);
5503 Insert_Before_And_Analyze
(First
(L
),
5504 A
, Suppress
=> Validity_Check
);
5512 -- Clear out statement list for stubbed procedure
5514 if Present
(Corresponding_Spec
(N
)) then
5515 Set_Elaboration_Flag
(N
, Spec_Id
);
5517 if Convention
(Spec_Id
) = Convention_Stubbed
5518 or else Is_Eliminated
(Spec_Id
)
5520 Set_Declarations
(N
, Empty_List
);
5521 Set_Handled_Statement_Sequence
(N
,
5522 Make_Handled_Sequence_Of_Statements
(Loc
,
5523 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5529 -- Create a set of discriminals for the next protected subprogram body
5531 if Is_List_Member
(N
)
5532 and then Present
(Parent
(List_Containing
(N
)))
5533 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5534 and then Present
(Next_Protected_Operation
(N
))
5536 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5539 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5540 -- subprograms with no specs are not frozen.
5543 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5544 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5547 if Is_Limited_View
(Typ
) then
5548 Set_Returns_By_Ref
(Spec_Id
);
5550 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5551 Set_Returns_By_Ref
(Spec_Id
);
5555 -- For a procedure, we add a return for all possible syntactic ends of
5558 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5559 Add_Return
(Spec_Id
, Statements
(HSS
));
5561 if Present
(Exception_Handlers
(HSS
)) then
5562 Except_H
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5563 while Present
(Except_H
) loop
5564 Add_Return
(Spec_Id
, Statements
(Except_H
));
5565 Next_Non_Pragma
(Except_H
);
5569 -- For a function, we must deal with the case where there is at least
5570 -- one missing return. What we do is to wrap the entire body of the
5571 -- function in a block:
5584 -- raise Program_Error;
5587 -- This approach is necessary because the raise must be signalled to the
5588 -- caller, not handled by any local handler (RM 6.4(11)).
5590 -- Note: we do not need to analyze the constructed sequence here, since
5591 -- it has no handler, and an attempt to analyze the handled statement
5592 -- sequence twice is risky in various ways (e.g. the issue of expanding
5593 -- cleanup actions twice).
5595 elsif Has_Missing_Return
(Spec_Id
) then
5597 Hloc
: constant Source_Ptr
:= Sloc
(HSS
);
5598 Blok
: constant Node_Id
:=
5599 Make_Block_Statement
(Hloc
,
5600 Handled_Statement_Sequence
=> HSS
);
5601 Rais
: constant Node_Id
:=
5602 Make_Raise_Program_Error
(Hloc
,
5603 Reason
=> PE_Missing_Return
);
5606 Set_Handled_Statement_Sequence
(N
,
5607 Make_Handled_Sequence_Of_Statements
(Hloc
,
5608 Statements
=> New_List
(Blok
, Rais
)));
5610 Push_Scope
(Spec_Id
);
5617 -- If subprogram contains a parameterless recursive call, then we may
5618 -- have an infinite recursion, so see if we can generate code to check
5619 -- for this possibility if storage checks are not suppressed.
5621 if Ekind
(Spec_Id
) = E_Procedure
5622 and then Has_Recursive_Call
(Spec_Id
)
5623 and then not Storage_Checks_Suppressed
(Spec_Id
)
5625 Detect_Infinite_Recursion
(N
, Spec_Id
);
5628 -- Set to encode entity names in package body before gigi is called
5630 Qualify_Entity_Names
(N
);
5631 end Expand_N_Subprogram_Body
;
5633 -----------------------------------
5634 -- Expand_N_Subprogram_Body_Stub --
5635 -----------------------------------
5637 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5641 if Present
(Corresponding_Body
(N
)) then
5642 Bod
:= Unit_Declaration_Node
(Corresponding_Body
(N
));
5644 -- The body may have been expanded already when it is analyzed
5645 -- through the subunit node. Do no expand again: it interferes
5646 -- with the construction of unnesting tables when generating C.
5648 if not Analyzed
(Bod
) then
5649 Expand_N_Subprogram_Body
(Bod
);
5652 -- Add full qualification to entities that may be created late
5653 -- during unnesting.
5655 Qualify_Entity_Names
(N
);
5657 end Expand_N_Subprogram_Body_Stub
;
5659 -------------------------------------
5660 -- Expand_N_Subprogram_Declaration --
5661 -------------------------------------
5663 -- If the declaration appears within a protected body, it is a private
5664 -- operation of the protected type. We must create the corresponding
5665 -- protected subprogram an associated formals. For a normal protected
5666 -- operation, this is done when expanding the protected type declaration.
5668 -- If the declaration is for a null procedure, emit null body
5670 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5671 Loc
: constant Source_Ptr
:= Sloc
(N
);
5672 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5676 Scop
: constant Entity_Id
:= Scope
(Subp
);
5678 Prot_Decl
: Node_Id
;
5679 Prot_Id
: Entity_Id
;
5681 -- Start of processing for Expand_N_Subprogram_Declaration
5684 -- In SPARK, subprogram declarations are only allowed in package
5687 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5688 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5689 Check_SPARK_05_Restriction
5690 ("subprogram declaration is not a library item", N
);
5692 elsif Present
(Next
(N
))
5693 and then Nkind
(Next
(N
)) = N_Pragma
5694 and then Get_Pragma_Id
(Next
(N
)) = Pragma_Import
5696 -- In SPARK, subprogram declarations are also permitted in
5697 -- declarative parts when immediately followed by a corresponding
5698 -- pragma Import. We only check here that there is some pragma
5703 Check_SPARK_05_Restriction
5704 ("subprogram declaration is not allowed here", N
);
5708 -- Deal with case of protected subprogram. Do not generate protected
5709 -- operation if operation is flagged as eliminated.
5711 if Is_List_Member
(N
)
5712 and then Present
(Parent
(List_Containing
(N
)))
5713 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5714 and then Is_Protected_Type
(Scop
)
5716 if No
(Protected_Body_Subprogram
(Subp
))
5717 and then not Is_Eliminated
(Subp
)
5720 Make_Subprogram_Declaration
(Loc
,
5722 Build_Protected_Sub_Specification
5723 (N
, Scop
, Unprotected_Mode
));
5725 -- The protected subprogram is declared outside of the protected
5726 -- body. Given that the body has frozen all entities so far, we
5727 -- analyze the subprogram and perform freezing actions explicitly.
5728 -- including the generation of an explicit freeze node, to ensure
5729 -- that gigi has the proper order of elaboration.
5730 -- If the body is a subunit, the insertion point is before the
5731 -- stub in the parent.
5733 Prot_Bod
:= Parent
(List_Containing
(N
));
5735 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5736 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5739 Insert_Before
(Prot_Bod
, Prot_Decl
);
5740 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5741 Set_Has_Delayed_Freeze
(Prot_Id
);
5743 Push_Scope
(Scope
(Scop
));
5744 Analyze
(Prot_Decl
);
5745 Freeze_Before
(N
, Prot_Id
);
5746 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5748 -- Create protected operation as well. Even though the operation
5749 -- is only accessible within the body, it is possible to make it
5750 -- available outside of the protected object by using 'Access to
5751 -- provide a callback, so build protected version in all cases.
5754 Make_Subprogram_Declaration
(Loc
,
5756 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5757 Insert_Before
(Prot_Bod
, Prot_Decl
);
5758 Analyze
(Prot_Decl
);
5763 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5764 -- cases this is superfluous because calls to it will be automatically
5765 -- inlined, but we definitely need the body if preconditions for the
5766 -- procedure are present.
5768 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5769 and then Null_Present
(Specification
(N
))
5772 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
5775 Set_Has_Completion
(Subp
, False);
5776 Append_Freeze_Action
(Subp
, Bod
);
5778 -- The body now contains raise statements, so calls to it will
5781 Set_Is_Inlined
(Subp
, False);
5785 -- When generating C code, transform a function that returns a
5786 -- constrained array type into a procedure with an out parameter
5787 -- that carries the return value.
5789 -- We skip this transformation for unchecked conversions, since they
5790 -- are not needed by the C generator (and this also produces cleaner
5793 if Modify_Tree_For_C
5794 and then Nkind
(Specification
(N
)) = N_Function_Specification
5795 and then Is_Array_Type
(Etype
(Subp
))
5796 and then Is_Constrained
(Etype
(Subp
))
5797 and then not Is_Unchecked_Conversion_Instance
(Subp
)
5799 Build_Procedure_Form
(N
);
5801 end Expand_N_Subprogram_Declaration
;
5803 --------------------------------
5804 -- Expand_Non_Function_Return --
5805 --------------------------------
5807 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
5808 pragma Assert
(No
(Expression
(N
)));
5810 Loc
: constant Source_Ptr
:= Sloc
(N
);
5811 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
5812 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
5815 Goto_Stat
: Node_Id
;
5819 -- Call the _Postconditions procedure if the related subprogram has
5820 -- contract assertions that need to be verified on exit.
5822 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
5823 and then Present
(Postconditions_Proc
(Scope_Id
))
5826 Make_Procedure_Call_Statement
(Loc
,
5827 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
5830 -- If it is a return from a procedure do no extra steps
5832 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
5835 -- If it is a nested return within an extended one, replace it with a
5836 -- return of the previously declared return object.
5838 elsif Kind
= E_Return_Statement
then
5840 Make_Simple_Return_Statement
(Loc
,
5842 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
5843 Set_Comes_From_Extended_Return_Statement
(N
);
5844 Set_Return_Statement_Entity
(N
, Scope_Id
);
5845 Expand_Simple_Function_Return
(N
);
5849 pragma Assert
(Is_Entry
(Scope_Id
));
5851 -- Look at the enclosing block to see whether the return is from an
5852 -- accept statement or an entry body.
5854 for J
in reverse 0 .. Scope_Stack
.Last
loop
5855 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
5856 exit when Is_Concurrent_Type
(Scope_Id
);
5859 -- If it is a return from accept statement it is expanded as call to
5860 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5862 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5863 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5865 if Is_Task_Type
(Scope_Id
) then
5868 Make_Procedure_Call_Statement
(Loc
,
5869 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
5870 Insert_Before
(N
, Call
);
5871 -- why not insert actions here???
5874 Acc_Stat
:= Parent
(N
);
5875 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
5876 Acc_Stat
:= Parent
(Acc_Stat
);
5879 Lab_Node
:= Last
(Statements
5880 (Handled_Statement_Sequence
(Acc_Stat
)));
5882 Goto_Stat
:= Make_Goto_Statement
(Loc
,
5883 Name
=> New_Occurrence_Of
5884 (Entity
(Identifier
(Lab_Node
)), Loc
));
5886 Set_Analyzed
(Goto_Stat
);
5888 Rewrite
(N
, Goto_Stat
);
5891 -- If it is a return from an entry body, put a Complete_Entry_Body call
5892 -- in front of the return.
5894 elsif Is_Protected_Type
(Scope_Id
) then
5896 Make_Procedure_Call_Statement
(Loc
,
5898 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
5899 Parameter_Associations
=> New_List
(
5900 Make_Attribute_Reference
(Loc
,
5903 (Find_Protection_Object
(Current_Scope
), Loc
),
5904 Attribute_Name
=> Name_Unchecked_Access
)));
5906 Insert_Before
(N
, Call
);
5909 end Expand_Non_Function_Return
;
5911 ---------------------------------------
5912 -- Expand_Protected_Object_Reference --
5913 ---------------------------------------
5915 function Expand_Protected_Object_Reference
5917 Scop
: Entity_Id
) return Node_Id
5919 Loc
: constant Source_Ptr
:= Sloc
(N
);
5926 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
5927 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
5929 -- Find enclosing protected operation, and retrieve its first parameter,
5930 -- which denotes the enclosing protected object. If the enclosing
5931 -- operation is an entry, we are immediately within the protected body,
5932 -- and we can retrieve the object from the service entries procedure. A
5933 -- barrier function has the same signature as an entry. A barrier
5934 -- function is compiled within the protected object, but unlike
5935 -- protected operations its never needs locks, so that its protected
5936 -- body subprogram points to itself.
5938 Proc
:= Current_Scope
;
5939 while Present
(Proc
)
5940 and then Scope
(Proc
) /= Scop
5942 Proc
:= Scope
(Proc
);
5945 Corr
:= Protected_Body_Subprogram
(Proc
);
5949 -- Previous error left expansion incomplete.
5950 -- Nothing to do on this call.
5957 (First
(Parameter_Specifications
(Parent
(Corr
))));
5959 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
5961 -- Protected function or procedure
5963 Set_Entity
(Rec
, Param
);
5965 -- Rec is a reference to an entity which will not be in scope when
5966 -- the call is reanalyzed, and needs no further analysis.
5971 -- Entry or barrier function for entry body. The first parameter of
5972 -- the entry body procedure is pointer to the object. We create a
5973 -- local variable of the proper type, duplicating what is done to
5974 -- define _object later on.
5978 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
5982 Make_Full_Type_Declaration
(Loc
,
5983 Defining_Identifier
=> Obj_Ptr
,
5985 Make_Access_To_Object_Definition
(Loc
,
5986 Subtype_Indication
=>
5988 (Corresponding_Record_Type
(Scop
), Loc
))));
5990 Insert_Actions
(N
, Decls
);
5991 Freeze_Before
(N
, Obj_Ptr
);
5994 Make_Explicit_Dereference
(Loc
,
5996 Unchecked_Convert_To
(Obj_Ptr
,
5997 New_Occurrence_Of
(Param
, Loc
)));
5999 -- Analyze new actual. Other actuals in calls are already analyzed
6000 -- and the list of actuals is not reanalyzed after rewriting.
6002 Set_Parent
(Rec
, N
);
6008 end Expand_Protected_Object_Reference
;
6010 --------------------------------------
6011 -- Expand_Protected_Subprogram_Call --
6012 --------------------------------------
6014 procedure Expand_Protected_Subprogram_Call
6021 procedure Expand_Internal_Init_Call
;
6022 -- A call to an operation of the type may occur in the initialization
6023 -- of a private component. In that case the prefix of the call is an
6024 -- entity name and the call is treated as internal even though it
6025 -- appears in code outside of the protected type.
6027 procedure Freeze_Called_Function
;
6028 -- If it is a function call it can appear in elaboration code and
6029 -- the called entity must be frozen before the call. This must be
6030 -- done before the call is expanded, as the expansion may rewrite it
6031 -- to something other than a call (e.g. a temporary initialized in a
6032 -- transient block).
6034 -------------------------------
6035 -- Expand_Internal_Init_Call --
6036 -------------------------------
6038 procedure Expand_Internal_Init_Call
is
6040 -- If the context is a protected object (rather than a protected
6041 -- type) the call itself is bound to raise program_error because
6042 -- the protected body will not have been elaborated yet. This is
6043 -- diagnosed subsequently in Sem_Elab.
6045 Freeze_Called_Function
;
6047 -- The target of the internal call is the first formal of the
6048 -- enclosing initialization procedure.
6050 Rec
:= New_Occurrence_Of
(First_Formal
(Current_Scope
), Sloc
(N
));
6051 Build_Protected_Subprogram_Call
(N
,
6056 Resolve
(N
, Etype
(Subp
));
6057 end Expand_Internal_Init_Call
;
6059 ----------------------------
6060 -- Freeze_Called_Function --
6061 ----------------------------
6063 procedure Freeze_Called_Function
is
6065 if Ekind
(Subp
) = E_Function
then
6066 Freeze_Expression
(Name
(N
));
6068 end Freeze_Called_Function
;
6070 -- Start of processing for Expand_Protected_Subprogram_Call
6073 -- If the protected object is not an enclosing scope, this is an inter-
6074 -- object function call. Inter-object procedure calls are expanded by
6075 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6076 -- subprogram being called is in the protected body being compiled, and
6077 -- if the protected object in the call is statically the enclosing type.
6078 -- The object may be a component of some other data structure, in which
6079 -- case this must be handled as an inter-object call.
6081 if not In_Open_Scopes
(Scop
)
6082 or else Is_Entry_Wrapper
(Current_Scope
)
6083 or else not Is_Entity_Name
(Name
(N
))
6085 if Nkind
(Name
(N
)) = N_Selected_Component
then
6086 Rec
:= Prefix
(Name
(N
));
6088 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
6089 Rec
:= Prefix
(Prefix
(Name
(N
)));
6091 -- If this is a call within an entry wrapper, it appears within a
6092 -- precondition that calls another primitive of the synchronized
6093 -- type. The target object of the call is the first actual on the
6094 -- wrapper. Note that this is an external call, because the wrapper
6095 -- is called outside of the synchronized object. This means that
6096 -- an entry call to an entry with preconditions involves two
6097 -- synchronized operations.
6099 elsif Ekind
(Current_Scope
) = E_Procedure
6100 and then Is_Entry_Wrapper
(Current_Scope
)
6102 Rec
:= New_Occurrence_Of
(First_Entity
(Current_Scope
), Sloc
(N
));
6105 -- If the context is the initialization procedure for a protected
6106 -- type, the call is legal because the called entity must be a
6107 -- function of that enclosing type, and this is treated as an
6111 (Is_Entity_Name
(Name
(N
)) and then Inside_Init_Proc
);
6113 Expand_Internal_Init_Call
;
6117 Freeze_Called_Function
;
6118 Build_Protected_Subprogram_Call
(N
,
6119 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
6120 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
6124 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
6130 Freeze_Called_Function
;
6131 Build_Protected_Subprogram_Call
(N
,
6137 -- Analyze and resolve the new call. The actuals have already been
6138 -- resolved, but expansion of a function call will add extra actuals
6139 -- if needed. Analysis of a procedure call already includes resolution.
6143 if Ekind
(Subp
) = E_Function
then
6144 Resolve
(N
, Etype
(Subp
));
6146 end Expand_Protected_Subprogram_Call
;
6148 -----------------------------------
6149 -- Expand_Simple_Function_Return --
6150 -----------------------------------
6152 -- The "simple" comes from the syntax rule simple_return_statement. The
6153 -- semantics are not at all simple.
6155 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
6156 Loc
: constant Source_Ptr
:= Sloc
(N
);
6158 Scope_Id
: constant Entity_Id
:=
6159 Return_Applies_To
(Return_Statement_Entity
(N
));
6160 -- The function we are returning from
6162 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
6163 -- The result type of the function
6165 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
6167 Exp
: Node_Id
:= Expression
(N
);
6168 pragma Assert
(Present
(Exp
));
6170 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
6171 -- The type of the expression (not necessarily the same as R_Type)
6173 Subtype_Ind
: Node_Id
;
6174 -- If the result type of the function is class-wide and the expression
6175 -- has a specific type, then we use the expression's type as the type of
6176 -- the return object. In cases where the expression is an aggregate that
6177 -- is built in place, this avoids the need for an expensive conversion
6178 -- of the return object to the specific type on assignments to the
6179 -- individual components.
6182 if Is_Class_Wide_Type
(R_Type
)
6183 and then not Is_Class_Wide_Type
(Exptyp
)
6184 and then Nkind
(Exp
) /= N_Type_Conversion
6186 Subtype_Ind
:= New_Occurrence_Of
(Exptyp
, Loc
);
6188 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6190 -- If the result type is class-wide and the expression is a view
6191 -- conversion, the conversion plays no role in the expansion because
6192 -- it does not modify the tag of the object. Remove the conversion
6193 -- altogether to prevent tag overwriting.
6195 if Is_Class_Wide_Type
(R_Type
)
6196 and then not Is_Class_Wide_Type
(Exptyp
)
6197 and then Nkind
(Exp
) = N_Type_Conversion
6199 Exp
:= Expression
(Exp
);
6203 -- For the case of a simple return that does not come from an extended
6204 -- return, in the case of Ada 2005 where we are returning a limited
6205 -- type, we rewrite "return <expression>;" to be:
6207 -- return _anon_ : <return_subtype> := <expression>
6209 -- The expansion produced by Expand_N_Extended_Return_Statement will
6210 -- contain simple return statements (for example, a block containing
6211 -- simple return of the return object), which brings us back here with
6212 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6213 -- checking for a simple return that does not come from an extended
6214 -- return is to avoid this infinite recursion.
6216 -- The reason for this design is that for Ada 2005 limited returns, we
6217 -- need to reify the return object, so we can build it "in place", and
6218 -- we need a block statement to hang finalization and tasking stuff.
6220 -- ??? In order to avoid disruption, we avoid translating to extended
6221 -- return except in the cases where we really need to (Ada 2005 for
6222 -- inherently limited). We might prefer to do this translation in all
6223 -- cases (except perhaps for the case of Ada 95 inherently limited),
6224 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6225 -- code. This would also allow us to do the build-in-place optimization
6226 -- for efficiency even in cases where it is semantically not required.
6228 -- As before, we check the type of the return expression rather than the
6229 -- return type of the function, because the latter may be a limited
6230 -- class-wide interface type, which is not a limited type, even though
6231 -- the type of the expression may be.
6233 if not Comes_From_Extended_Return_Statement
(N
)
6234 and then Is_Limited_View
(Etype
(Expression
(N
)))
6235 and then Ada_Version
>= Ada_2005
6236 and then not Debug_Flag_Dot_L
6238 -- The functionality of interface thunks is simple and it is always
6239 -- handled by means of simple return statements. This leaves their
6240 -- expansion simple and clean.
6242 and then not Is_Thunk
(Current_Scope
)
6245 Return_Object_Entity
: constant Entity_Id
:=
6246 Make_Temporary
(Loc
, 'R', Exp
);
6248 Obj_Decl
: constant Node_Id
:=
6249 Make_Object_Declaration
(Loc
,
6250 Defining_Identifier
=> Return_Object_Entity
,
6251 Object_Definition
=> Subtype_Ind
,
6254 Ext
: constant Node_Id
:=
6255 Make_Extended_Return_Statement
(Loc
,
6256 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6257 -- Do not perform this high-level optimization if the result type
6258 -- is an interface because the "this" pointer must be displaced.
6267 -- Here we have a simple return statement that is part of the expansion
6268 -- of an extended return statement (either written by the user, or
6269 -- generated by the above code).
6271 -- Always normalize C/Fortran boolean result. This is not always needed,
6272 -- but it seems a good idea to minimize the passing around of non-
6273 -- normalized values, and in any case this handles the processing of
6274 -- barrier functions for protected types, which turn the condition into
6275 -- a return statement.
6277 if Is_Boolean_Type
(Exptyp
)
6278 and then Nonzero_Is_True
(Exptyp
)
6280 Adjust_Condition
(Exp
);
6281 Adjust_Result_Type
(Exp
, Exptyp
);
6284 -- Do validity check if enabled for returns
6286 if Validity_Checks_On
6287 and then Validity_Check_Returns
6292 -- Check the result expression of a scalar function against the subtype
6293 -- of the function by inserting a conversion. This conversion must
6294 -- eventually be performed for other classes of types, but for now it's
6295 -- only done for scalars.
6298 if Is_Scalar_Type
(Exptyp
) then
6299 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6301 -- The expression is resolved to ensure that the conversion gets
6302 -- expanded to generate a possible constraint check.
6304 Analyze_And_Resolve
(Exp
, R_Type
);
6307 -- Deal with returning variable length objects and controlled types
6309 -- Nothing to do if we are returning by reference, or this is not a
6310 -- type that requires special processing (indicated by the fact that
6311 -- it requires a cleanup scope for the secondary stack case).
6313 if Is_Limited_View
(Exptyp
)
6314 or else Is_Limited_Interface
(Exptyp
)
6318 -- No copy needed for thunks returning interface type objects since
6319 -- the object is returned by reference and the maximum functionality
6320 -- required is just to displace the pointer.
6322 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6325 -- If the call is within a thunk and the type is a limited view, the
6326 -- backend will eventually see the non-limited view of the type.
6328 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
6331 elsif not Requires_Transient_Scope
(R_Type
) then
6333 -- Mutable records with variable-length components are not returned
6334 -- on the sec-stack, so we need to make sure that the back end will
6335 -- only copy back the size of the actual value, and not the maximum
6336 -- size. We create an actual subtype for this purpose. However we
6337 -- need not do it if the expression is a function call since this
6338 -- will be done in the called function and doing it here too would
6339 -- cause a temporary with maximum size to be created.
6342 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6346 if Nkind
(Exp
) /= N_Function_Call
6347 and then Has_Discriminants
(Ubt
)
6348 and then not Is_Constrained
(Ubt
)
6349 and then not Has_Unchecked_Union
(Ubt
)
6351 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6352 Ent
:= Defining_Identifier
(Decl
);
6353 Insert_Action
(Exp
, Decl
);
6354 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6355 Analyze_And_Resolve
(Exp
);
6359 -- Here if secondary stack is used
6362 -- Prevent the reclamation of the secondary stack by all enclosing
6363 -- blocks and loops as well as the related function; otherwise the
6364 -- result would be reclaimed too early.
6366 Set_Enclosing_Sec_Stack_Return
(N
);
6368 -- Optimize the case where the result is a function call. In this
6369 -- case either the result is already on the secondary stack, or is
6370 -- already being returned with the stack pointer depressed and no
6371 -- further processing is required except to set the By_Ref flag
6372 -- to ensure that gigi does not attempt an extra unnecessary copy.
6373 -- (actually not just unnecessary but harmfully wrong in the case
6374 -- of a controlled type, where gigi does not know how to do a copy).
6375 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6376 -- for array types if the constrained status of the target type is
6377 -- different from that of the expression.
6379 if Requires_Transient_Scope
(Exptyp
)
6381 (not Is_Array_Type
(Exptyp
)
6382 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6383 or else CW_Or_Has_Controlled_Part
(Utyp
))
6384 and then Nkind
(Exp
) = N_Function_Call
6388 -- Remove side effects from the expression now so that other parts
6389 -- of the expander do not have to reanalyze this node without this
6392 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6394 -- For controlled types, do the allocation on the secondary stack
6395 -- manually in order to call adjust at the right time:
6397 -- type Anon1 is access R_Type;
6398 -- for Anon1'Storage_pool use ss_pool;
6399 -- Anon2 : anon1 := new R_Type'(expr);
6400 -- return Anon2.all;
6402 -- We do the same for classwide types that are not potentially
6403 -- controlled (by the virtue of restriction No_Finalization) because
6404 -- gigi is not able to properly allocate class-wide types.
6406 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6408 Loc
: constant Source_Ptr
:= Sloc
(N
);
6409 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6410 Alloc_Node
: Node_Id
;
6414 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6416 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6418 -- This is an allocator for the secondary stack, and it's fine
6419 -- to have Comes_From_Source set False on it, as gigi knows not
6420 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6423 Make_Allocator
(Loc
,
6425 Make_Qualified_Expression
(Loc
,
6426 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6427 Expression
=> Relocate_Node
(Exp
)));
6429 -- We do not want discriminant checks on the declaration,
6430 -- given that it gets its value from the allocator.
6432 Set_No_Initialization
(Alloc_Node
);
6434 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6436 Insert_List_Before_And_Analyze
(N
, New_List
(
6437 Make_Full_Type_Declaration
(Loc
,
6438 Defining_Identifier
=> Acc_Typ
,
6440 Make_Access_To_Object_Definition
(Loc
,
6441 Subtype_Indication
=> Subtype_Ind
)),
6443 Make_Object_Declaration
(Loc
,
6444 Defining_Identifier
=> Temp
,
6445 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6446 Expression
=> Alloc_Node
)));
6449 Make_Explicit_Dereference
(Loc
,
6450 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6452 -- Ada 2005 (AI-251): If the type of the returned object is
6453 -- an interface then add an implicit type conversion to force
6454 -- displacement of the "this" pointer.
6456 if Is_Interface
(R_Type
) then
6457 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6460 Analyze_And_Resolve
(Exp
, R_Type
);
6463 -- Otherwise use the gigi mechanism to allocate result on the
6467 Check_Restriction
(No_Secondary_Stack
, N
);
6468 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6469 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6473 -- Implement the rules of 6.5(8-10), which require a tag check in
6474 -- the case of a limited tagged return type, and tag reassignment for
6475 -- nonlimited tagged results. These actions are needed when the return
6476 -- type is a specific tagged type and the result expression is a
6477 -- conversion or a formal parameter, because in that case the tag of
6478 -- the expression might differ from the tag of the specific result type.
6480 if Is_Tagged_Type
(Utyp
)
6481 and then not Is_Class_Wide_Type
(Utyp
)
6482 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6483 N_Unchecked_Type_Conversion
)
6484 or else (Is_Entity_Name
(Exp
)
6485 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6487 -- When the return type is limited, perform a check that the tag of
6488 -- the result is the same as the tag of the return type.
6490 if Is_Limited_Type
(R_Type
) then
6492 Make_Raise_Constraint_Error
(Loc
,
6496 Make_Selected_Component
(Loc
,
6497 Prefix
=> Duplicate_Subexpr
(Exp
),
6498 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6500 Make_Attribute_Reference
(Loc
,
6502 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6503 Attribute_Name
=> Name_Tag
)),
6504 Reason
=> CE_Tag_Check_Failed
));
6506 -- If the result type is a specific nonlimited tagged type, then we
6507 -- have to ensure that the tag of the result is that of the result
6508 -- type. This is handled by making a copy of the expression in
6509 -- the case where it might have a different tag, namely when the
6510 -- expression is a conversion or a formal parameter. We create a new
6511 -- object of the result type and initialize it from the expression,
6512 -- which will implicitly force the tag to be set appropriately.
6516 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6517 Result_Id
: constant Entity_Id
:=
6518 Make_Temporary
(Loc
, 'R', ExpR
);
6519 Result_Exp
: constant Node_Id
:=
6520 New_Occurrence_Of
(Result_Id
, Loc
);
6521 Result_Obj
: constant Node_Id
:=
6522 Make_Object_Declaration
(Loc
,
6523 Defining_Identifier
=> Result_Id
,
6524 Object_Definition
=>
6525 New_Occurrence_Of
(R_Type
, Loc
),
6526 Constant_Present
=> True,
6527 Expression
=> ExpR
);
6530 Set_Assignment_OK
(Result_Obj
);
6531 Insert_Action
(Exp
, Result_Obj
);
6533 Rewrite
(Exp
, Result_Exp
);
6534 Analyze_And_Resolve
(Exp
, R_Type
);
6538 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6539 -- a check that the level of the return expression's underlying type
6540 -- is not deeper than the level of the master enclosing the function.
6541 -- Always generate the check when the type of the return expression
6542 -- is class-wide, when it's a type conversion, or when it's a formal
6543 -- parameter. Otherwise, suppress the check in the case where the
6544 -- return expression has a specific type whose level is known not to
6545 -- be statically deeper than the function's result type.
6547 -- No runtime check needed in interface thunks since it is performed
6548 -- by the target primitive associated with the thunk.
6550 -- Note: accessibility check is skipped in the VM case, since there
6551 -- does not seem to be any practical way to implement this check.
6553 elsif Ada_Version
>= Ada_2005
6554 and then Tagged_Type_Expansion
6555 and then Is_Class_Wide_Type
(R_Type
)
6556 and then not Is_Thunk
(Current_Scope
)
6557 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6559 (Is_Class_Wide_Type
(Etype
(Exp
))
6560 or else Nkind_In
(Exp
, N_Type_Conversion
,
6561 N_Unchecked_Type_Conversion
)
6562 or else (Is_Entity_Name
(Exp
)
6563 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6564 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6565 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6571 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6572 -- "this" to reference the base of the object. This is required to
6573 -- get access to the TSD of the object.
6575 if Is_Class_Wide_Type
(Etype
(Exp
))
6576 and then Is_Interface
(Etype
(Exp
))
6578 -- If the expression is an explicit dereference then we can
6579 -- directly displace the pointer to reference the base of
6582 if Nkind
(Exp
) = N_Explicit_Dereference
then
6584 Make_Explicit_Dereference
(Loc
,
6586 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6587 Make_Function_Call
(Loc
,
6589 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6590 Parameter_Associations
=> New_List
(
6591 Unchecked_Convert_To
(RTE
(RE_Address
),
6592 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6594 -- Similar case to the previous one but the expression is a
6595 -- renaming of an explicit dereference.
6597 elsif Nkind
(Exp
) = N_Identifier
6598 and then Present
(Renamed_Object
(Entity
(Exp
)))
6599 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6600 = N_Explicit_Dereference
6603 Make_Explicit_Dereference
(Loc
,
6605 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6606 Make_Function_Call
(Loc
,
6608 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6609 Parameter_Associations
=> New_List
(
6610 Unchecked_Convert_To
(RTE
(RE_Address
),
6613 (Renamed_Object
(Entity
(Exp
)))))))));
6615 -- Common case: obtain the address of the actual object and
6616 -- displace the pointer to reference the base of the object.
6620 Make_Explicit_Dereference
(Loc
,
6622 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6623 Make_Function_Call
(Loc
,
6625 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6626 Parameter_Associations
=> New_List
(
6627 Make_Attribute_Reference
(Loc
,
6628 Prefix
=> Duplicate_Subexpr
(Exp
),
6629 Attribute_Name
=> Name_Address
)))));
6633 Make_Attribute_Reference
(Loc
,
6634 Prefix
=> Duplicate_Subexpr
(Exp
),
6635 Attribute_Name
=> Name_Tag
);
6639 Make_Raise_Program_Error
(Loc
,
6642 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6644 Make_Integer_Literal
(Loc
,
6645 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6646 Reason
=> PE_Accessibility_Check_Failed
));
6649 -- AI05-0073: If function has a controlling access result, check that
6650 -- the tag of the return value, if it is not null, matches designated
6651 -- type of return type.
6653 -- The return expression is referenced twice in the code below, so it
6654 -- must be made free of side effects. Given that different compilers
6655 -- may evaluate these parameters in different order, both occurrences
6658 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6659 and then Has_Controlling_Result
(Scope_Id
)
6662 Make_Raise_Constraint_Error
(Loc
,
6667 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6668 Right_Opnd
=> Make_Null
(Loc
)),
6670 Right_Opnd
=> Make_Op_Ne
(Loc
,
6672 Make_Selected_Component
(Loc
,
6673 Prefix
=> Duplicate_Subexpr
(Exp
),
6674 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6677 Make_Attribute_Reference
(Loc
,
6679 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6680 Attribute_Name
=> Name_Tag
))),
6682 Reason
=> CE_Tag_Check_Failed
),
6683 Suppress
=> All_Checks
);
6686 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6687 -- ensure that the function result does not outlive an
6688 -- object designated by one of it discriminants.
6690 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6691 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6694 Discrim_Source
: Node_Id
;
6696 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6697 -- Check the given accessibility level against the level
6698 -- determined by the point of call. (AI05-0234).
6700 --------------------------------
6701 -- Check_Against_Result_Level --
6702 --------------------------------
6704 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6707 Make_Raise_Program_Error
(Loc
,
6713 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6714 Reason
=> PE_Accessibility_Check_Failed
));
6715 end Check_Against_Result_Level
;
6718 Discrim_Source
:= Exp
;
6719 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6720 Discrim_Source
:= Expression
(Discrim_Source
);
6723 if Nkind
(Discrim_Source
) = N_Identifier
6724 and then Is_Return_Object
(Entity
(Discrim_Source
))
6726 Discrim_Source
:= Entity
(Discrim_Source
);
6728 if Is_Constrained
(Etype
(Discrim_Source
)) then
6729 Discrim_Source
:= Etype
(Discrim_Source
);
6731 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6734 elsif Nkind
(Discrim_Source
) = N_Identifier
6735 and then Nkind_In
(Original_Node
(Discrim_Source
),
6736 N_Aggregate
, N_Extension_Aggregate
)
6738 Discrim_Source
:= Original_Node
(Discrim_Source
);
6740 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6741 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6743 Discrim_Source
:= Original_Node
(Discrim_Source
);
6746 while Nkind_In
(Discrim_Source
, N_Qualified_Expression
,
6748 N_Unchecked_Type_Conversion
)
6750 Discrim_Source
:= Expression
(Discrim_Source
);
6753 case Nkind
(Discrim_Source
) is
6754 when N_Defining_Identifier
=>
6755 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6756 and then Has_Discriminants
(Discrim_Source
)
6757 and then Is_Constrained
(Discrim_Source
));
6760 Discrim
: Entity_Id
:=
6761 First_Discriminant
(Base_Type
(R_Type
));
6762 Disc_Elmt
: Elmt_Id
:=
6763 First_Elmt
(Discriminant_Constraint
6767 if Ekind
(Etype
(Discrim
)) =
6768 E_Anonymous_Access_Type
6770 Check_Against_Result_Level
6771 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
6774 Next_Elmt
(Disc_Elmt
);
6775 Next_Discriminant
(Discrim
);
6776 exit when not Present
(Discrim
);
6781 | N_Extension_Aggregate
6783 -- Unimplemented: extension aggregate case where discrims
6784 -- come from ancestor part, not extension part.
6787 Discrim
: Entity_Id
:=
6788 First_Discriminant
(Base_Type
(R_Type
));
6790 Disc_Exp
: Node_Id
:= Empty
;
6792 Positionals_Exhausted
6793 : Boolean := not Present
(Expressions
6796 function Associated_Expr
6797 (Comp_Id
: Entity_Id
;
6798 Associations
: List_Id
) return Node_Id
;
6800 -- Given a component and a component associations list,
6801 -- locate the expression for that component; returns
6802 -- Empty if no such expression is found.
6804 ---------------------
6805 -- Associated_Expr --
6806 ---------------------
6808 function Associated_Expr
6809 (Comp_Id
: Entity_Id
;
6810 Associations
: List_Id
) return Node_Id
6816 -- Simple linear search seems ok here
6818 Assoc
:= First
(Associations
);
6819 while Present
(Assoc
) loop
6820 Choice
:= First
(Choices
(Assoc
));
6821 while Present
(Choice
) loop
6822 if (Nkind
(Choice
) = N_Identifier
6823 and then Chars
(Choice
) = Chars
(Comp_Id
))
6824 or else (Nkind
(Choice
) = N_Others_Choice
)
6826 return Expression
(Assoc
);
6836 end Associated_Expr
;
6838 -- Start of processing for Expand_Simple_Function_Return
6841 if not Positionals_Exhausted
then
6842 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
6846 if Positionals_Exhausted
then
6850 Component_Associations
(Discrim_Source
));
6853 if Ekind
(Etype
(Discrim
)) =
6854 E_Anonymous_Access_Type
6856 Check_Against_Result_Level
6857 (Dynamic_Accessibility_Level
(Disc_Exp
));
6860 Next_Discriminant
(Discrim
);
6861 exit when not Present
(Discrim
);
6863 if not Positionals_Exhausted
then
6865 Positionals_Exhausted
:= not Present
(Disc_Exp
);
6870 when N_Function_Call
=>
6872 -- No check needed (check performed by callee)
6878 Level
: constant Node_Id
:=
6879 Make_Integer_Literal
(Loc
,
6880 Object_Access_Level
(Discrim_Source
));
6883 -- Unimplemented: check for name prefix that includes
6884 -- a dereference of an access value with a dynamic
6885 -- accessibility level (e.g., an access param or a
6886 -- saooaaat) and use dynamic level in that case. For
6888 -- return Access_Param.all(Some_Index).Some_Component;
6891 Set_Etype
(Level
, Standard_Natural
);
6892 Check_Against_Result_Level
(Level
);
6898 -- If we are returning an object that may not be bit-aligned, then copy
6899 -- the value into a temporary first. This copy may need to expand to a
6900 -- loop of component operations.
6902 if Is_Possibly_Unaligned_Slice
(Exp
)
6903 or else Is_Possibly_Unaligned_Object
(Exp
)
6906 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6907 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6910 Make_Object_Declaration
(Loc
,
6911 Defining_Identifier
=> Tnn
,
6912 Constant_Present
=> True,
6913 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6914 Expression
=> ExpR
),
6915 Suppress
=> All_Checks
);
6916 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6920 -- Call the _Postconditions procedure if the related function has
6921 -- contract assertions that need to be verified on exit.
6923 if Ekind
(Scope_Id
) = E_Function
6924 and then Present
(Postconditions_Proc
(Scope_Id
))
6926 -- In the case of discriminated objects, we have created a
6927 -- constrained subtype above, and used the underlying type. This
6928 -- transformation is post-analysis and harmless, except that now the
6929 -- call to the post-condition will be analyzed and the type kinds
6932 if Nkind
(Exp
) = N_Unchecked_Type_Conversion
6933 and then Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(Exp
))
6935 Rewrite
(Exp
, Expression
(Relocate_Node
(Exp
)));
6938 -- We are going to reference the returned value twice in this case,
6939 -- once in the call to _Postconditions, and once in the actual return
6940 -- statement, but we can't have side effects happening twice.
6942 Force_Evaluation
(Exp
, Mode
=> Strict
);
6944 -- Generate call to _Postconditions
6947 Make_Procedure_Call_Statement
(Loc
,
6949 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
6950 Parameter_Associations
=> New_List
(New_Copy_Tree
(Exp
))));
6953 -- Ada 2005 (AI-251): If this return statement corresponds with an
6954 -- simple return statement associated with an extended return statement
6955 -- and the type of the returned object is an interface then generate an
6956 -- implicit conversion to force displacement of the "this" pointer.
6958 if Ada_Version
>= Ada_2005
6959 and then Comes_From_Extended_Return_Statement
(N
)
6960 and then Nkind
(Expression
(N
)) = N_Identifier
6961 and then Is_Interface
(Utyp
)
6962 and then Utyp
/= Underlying_Type
(Exptyp
)
6964 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
6965 Analyze_And_Resolve
(Exp
);
6967 end Expand_Simple_Function_Return
;
6969 --------------------------------------------
6970 -- Has_Unconstrained_Access_Discriminants --
6971 --------------------------------------------
6973 function Has_Unconstrained_Access_Discriminants
6974 (Subtyp
: Entity_Id
) return Boolean
6979 if Has_Discriminants
(Subtyp
)
6980 and then not Is_Constrained
(Subtyp
)
6982 Discr
:= First_Discriminant
(Subtyp
);
6983 while Present
(Discr
) loop
6984 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
6988 Next_Discriminant
(Discr
);
6993 end Has_Unconstrained_Access_Discriminants
;
6995 --------------------------------
6996 -- Is_Build_In_Place_Function --
6997 --------------------------------
6999 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
7001 -- This function is called from Expand_Subtype_From_Expr during
7002 -- semantic analysis, even when expansion is off. In those cases
7003 -- the build_in_place expansion will not take place.
7005 if not Expander_Active
then
7009 -- For now we test whether E denotes a function or access-to-function
7010 -- type whose result subtype is inherently limited. Later this test
7011 -- may be revised to allow composite nonlimited types. Functions with
7012 -- a foreign convention or whose result type has a foreign convention
7015 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
7016 or else (Ekind
(E
) = E_Subprogram_Type
7017 and then Etype
(E
) /= Standard_Void_Type
)
7019 -- Note: If the function has a foreign convention, it cannot build
7020 -- its result in place, so you're on your own. On the other hand,
7021 -- if only the return type has a foreign convention, its layout is
7022 -- intended to be compatible with the other language, but the build-
7023 -- in place machinery can ensure that the object is not copied.
7025 if Has_Foreign_Convention
(E
) then
7028 -- In Ada 2005 all functions with an inherently limited return type
7029 -- must be handled using a build-in-place profile, including the case
7030 -- of a function with a limited interface result, where the function
7031 -- may return objects of nonlimited descendants.
7034 return Is_Limited_View
(Etype
(E
))
7035 and then Ada_Version
>= Ada_2005
7036 and then not Debug_Flag_Dot_L
;
7042 end Is_Build_In_Place_Function
;
7044 -------------------------------------
7045 -- Is_Build_In_Place_Function_Call --
7046 -------------------------------------
7048 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
7049 Exp_Node
: Node_Id
:= N
;
7050 Function_Id
: Entity_Id
;
7053 -- Return False if the expander is currently inactive, since awareness
7054 -- of build-in-place treatment is only relevant during expansion. Note
7055 -- that Is_Build_In_Place_Function, which is called as part of this
7056 -- function, is also conditioned this way, but we need to check here as
7057 -- well to avoid blowing up on processing protected calls when expansion
7058 -- is disabled (such as with -gnatc) since those would trip over the
7059 -- raise of Program_Error below.
7061 -- In SPARK mode, build-in-place calls are not expanded, so that we
7062 -- may end up with a call that is neither resolved to an entity, nor
7063 -- an indirect call.
7065 if not Expander_Active
then
7069 -- Step past qualification, type conversion (which can occur in actual
7070 -- parameter contexts), and unchecked conversion (which can occur in
7071 -- cases of calls to 'Input).
7073 if Nkind_In
(Exp_Node
, N_Qualified_Expression
,
7075 N_Unchecked_Type_Conversion
)
7077 Exp_Node
:= Expression
(N
);
7080 if Nkind
(Exp_Node
) /= N_Function_Call
then
7084 if Is_Entity_Name
(Name
(Exp_Node
)) then
7085 Function_Id
:= Entity
(Name
(Exp_Node
));
7087 -- In the case of an explicitly dereferenced call, use the subprogram
7088 -- type generated for the dereference.
7090 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
7091 Function_Id
:= Etype
(Name
(Exp_Node
));
7093 -- This may be a call to a protected function.
7095 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
7096 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
7099 raise Program_Error
;
7102 return Is_Build_In_Place_Function
(Function_Id
);
7104 end Is_Build_In_Place_Function_Call
;
7106 -----------------------
7107 -- Freeze_Subprogram --
7108 -----------------------
7110 procedure Freeze_Subprogram
(N
: Node_Id
) is
7111 Loc
: constant Source_Ptr
:= Sloc
(N
);
7113 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
7114 -- (Ada 2005): Register a predefined primitive in all the secondary
7115 -- dispatch tables of its primitive type.
7117 ----------------------------------
7118 -- Register_Predefined_DT_Entry --
7119 ----------------------------------
7121 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
7122 Iface_DT_Ptr
: Elmt_Id
;
7123 Tagged_Typ
: Entity_Id
;
7124 Thunk_Id
: Entity_Id
;
7125 Thunk_Code
: Node_Id
;
7128 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
7130 if No
(Access_Disp_Table
(Tagged_Typ
))
7131 or else not Has_Interfaces
(Tagged_Typ
)
7132 or else not RTE_Available
(RE_Interface_Tag
)
7133 or else Restriction_Active
(No_Dispatching_Calls
)
7138 -- Skip the first two access-to-dispatch-table pointers since they
7139 -- leads to the primary dispatch table (predefined DT and user
7140 -- defined DT). We are only concerned with the secondary dispatch
7141 -- table pointers. Note that the access-to- dispatch-table pointer
7142 -- corresponds to the first implemented interface retrieved below.
7145 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
7147 while Present
(Iface_DT_Ptr
)
7148 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
7150 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7151 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
7153 if Present
(Thunk_Code
) then
7154 Insert_Actions_After
(N
, New_List
(
7157 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7159 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
7160 Position
=> DT_Position
(Prim
),
7162 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7163 Make_Attribute_Reference
(Loc
,
7164 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
7165 Attribute_Name
=> Name_Unrestricted_Access
))),
7167 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7170 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
7172 Position
=> DT_Position
(Prim
),
7174 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7175 Make_Attribute_Reference
(Loc
,
7176 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
7177 Attribute_Name
=> Name_Unrestricted_Access
)))));
7180 -- Skip the tag of the predefined primitives dispatch table
7182 Next_Elmt
(Iface_DT_Ptr
);
7183 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7185 -- Skip tag of the no-thunks dispatch table
7187 Next_Elmt
(Iface_DT_Ptr
);
7188 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7190 -- Skip tag of predefined primitives no-thunks dispatch table
7192 Next_Elmt
(Iface_DT_Ptr
);
7193 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7195 Next_Elmt
(Iface_DT_Ptr
);
7197 end Register_Predefined_DT_Entry
;
7201 Subp
: constant Entity_Id
:= Entity
(N
);
7203 -- Start of processing for Freeze_Subprogram
7206 -- We suppress the initialization of the dispatch table entry when
7207 -- not Tagged_Type_Expansion because the dispatching mechanism is
7208 -- handled internally by the target.
7210 if Is_Dispatching_Operation
(Subp
)
7211 and then not Is_Abstract_Subprogram
(Subp
)
7212 and then Present
(DTC_Entity
(Subp
))
7213 and then Present
(Scope
(DTC_Entity
(Subp
)))
7214 and then Tagged_Type_Expansion
7215 and then not Restriction_Active
(No_Dispatching_Calls
)
7216 and then RTE_Available
(RE_Tag
)
7219 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
7222 -- Handle private overridden primitives
7224 if not Is_CPP_Class
(Typ
) then
7225 Check_Overriding_Operation
(Subp
);
7228 -- We assume that imported CPP primitives correspond with objects
7229 -- whose constructor is in the CPP side; therefore we don't need
7230 -- to generate code to register them in the dispatch table.
7232 if Is_CPP_Class
(Typ
) then
7235 -- Handle CPP primitives found in derivations of CPP_Class types.
7236 -- These primitives must have been inherited from some parent, and
7237 -- there is no need to register them in the dispatch table because
7238 -- Build_Inherit_Prims takes care of initializing these slots.
7240 elsif Is_Imported
(Subp
)
7241 and then (Convention
(Subp
) = Convention_CPP
7242 or else Convention
(Subp
) = Convention_C
)
7246 -- Generate code to register the primitive in non statically
7247 -- allocated dispatch tables
7249 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
7251 -- When a primitive is frozen, enter its name in its dispatch
7254 if not Is_Interface
(Typ
)
7255 or else Present
(Interface_Alias
(Subp
))
7257 if Is_Predefined_Dispatching_Operation
(Subp
) then
7258 Register_Predefined_DT_Entry
(Subp
);
7261 Insert_Actions_After
(N
,
7262 Register_Primitive
(Loc
, Prim
=> Subp
));
7268 -- Mark functions that return by reference. Note that it cannot be part
7269 -- of the normal semantic analysis of the spec since the underlying
7270 -- returned type may not be known yet (for private types).
7273 Typ
: constant Entity_Id
:= Etype
(Subp
);
7274 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
7277 if Is_Limited_View
(Typ
) then
7278 Set_Returns_By_Ref
(Subp
);
7280 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
7281 Set_Returns_By_Ref
(Subp
);
7285 -- Wnen freezing a null procedure, analyze its delayed aspects now
7286 -- because we may not have reached the end of the declarative list when
7287 -- delayed aspects are normally analyzed. This ensures that dispatching
7288 -- calls are properly rewritten when the generated _Postcondition
7289 -- procedure is analyzed in the null procedure body.
7291 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
7292 and then Null_Present
(Parent
(Subp
))
7294 Analyze_Entry_Or_Subprogram_Contract
(Subp
);
7296 end Freeze_Subprogram
;
7298 -----------------------
7299 -- Is_Null_Procedure --
7300 -----------------------
7302 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
7303 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
7306 if Ekind
(Subp
) /= E_Procedure
then
7309 -- Check if this is a declared null procedure
7311 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
7312 if not Null_Present
(Specification
(Decl
)) then
7315 elsif No
(Body_To_Inline
(Decl
)) then
7318 -- Check if the body contains only a null statement, followed by
7319 -- the return statement added during expansion.
7323 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
7329 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
7332 -- We must skip SCIL nodes because they are currently
7333 -- implemented as special N_Null_Statement nodes.
7337 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
7338 Stat2
:= Next_Non_SCIL_Node
(Stat
);
7341 Is_Empty_List
(Declarations
(Orig_Bod
))
7342 and then Nkind
(Stat
) = N_Null_Statement
7346 (Nkind
(Stat2
) = N_Simple_Return_Statement
7347 and then No
(Next
(Stat2
))));
7355 end Is_Null_Procedure
;
7357 -------------------------------------------
7358 -- Make_Build_In_Place_Call_In_Allocator --
7359 -------------------------------------------
7361 procedure Make_Build_In_Place_Call_In_Allocator
7362 (Allocator
: Node_Id
;
7363 Function_Call
: Node_Id
)
7365 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
7367 Func_Call
: Node_Id
:= Function_Call
;
7368 Ref_Func_Call
: Node_Id
;
7369 Function_Id
: Entity_Id
;
7370 Result_Subt
: Entity_Id
;
7371 New_Allocator
: Node_Id
;
7372 Return_Obj_Access
: Entity_Id
; -- temp for function result
7373 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
7374 Alloc_Form
: BIP_Allocation_Form
;
7375 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
7376 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
7377 Chain
: Entity_Id
; -- activation chain, in case of tasks
7380 -- Step past qualification or unchecked conversion (the latter can occur
7381 -- in cases of calls to 'Input).
7383 if Nkind_In
(Func_Call
,
7384 N_Qualified_Expression
,
7386 N_Unchecked_Type_Conversion
)
7388 Func_Call
:= Expression
(Func_Call
);
7391 -- If the call has already been processed to add build-in-place actuals
7392 -- then return. This should not normally occur in an allocator context,
7393 -- but we add the protection as a defensive measure.
7395 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7399 -- Mark the call as processed as a build-in-place call
7401 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7403 Loc
:= Sloc
(Function_Call
);
7405 if Is_Entity_Name
(Name
(Func_Call
)) then
7406 Function_Id
:= Entity
(Name
(Func_Call
));
7408 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7409 Function_Id
:= Etype
(Name
(Func_Call
));
7412 raise Program_Error
;
7415 Result_Subt
:= Available_View
(Etype
(Function_Id
));
7417 -- Create a temp for the function result. In the caller-allocates case,
7418 -- this will be initialized to the result of a new uninitialized
7419 -- allocator. Note: we do not use Allocator as the Related_Node of
7420 -- Return_Obj_Access in call to Make_Temporary below as this would
7421 -- create a sort of infinite "recursion".
7423 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
7424 Set_Etype
(Return_Obj_Access
, Acc_Type
);
7426 -- When the result subtype is constrained, the return object is
7427 -- allocated on the caller side, and access to it is passed to the
7430 -- Here and in related routines, we must examine the full view of the
7431 -- type, because the view at the point of call may differ from that
7432 -- that in the function body, and the expansion mechanism depends on
7433 -- the characteristics of the full view.
7435 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7437 -- Replace the initialized allocator of form "new T'(Func (...))"
7438 -- with an uninitialized allocator of form "new T", where T is the
7439 -- result subtype of the called function. The call to the function
7440 -- is handled separately further below.
7443 Make_Allocator
(Loc
,
7444 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7445 Set_No_Initialization
(New_Allocator
);
7447 -- Copy attributes to new allocator. Note that the new allocator
7448 -- logically comes from source if the original one did, so copy the
7449 -- relevant flag. This ensures proper treatment of the restriction
7450 -- No_Implicit_Heap_Allocations in this case.
7452 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
7453 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
7454 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
7456 Rewrite
(Allocator
, New_Allocator
);
7458 -- Initial value of the temp is the result of the uninitialized
7461 Temp_Init
:= Relocate_Node
(Allocator
);
7463 -- Indicate that caller allocates, and pass in the return object
7465 Alloc_Form
:= Caller_Allocation
;
7466 Pool
:= Make_Null
(No_Location
);
7467 Return_Obj_Actual
:=
7468 Make_Unchecked_Type_Conversion
(Loc
,
7469 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7471 Make_Explicit_Dereference
(Loc
,
7472 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
7474 -- When the result subtype is unconstrained, the function itself must
7475 -- perform the allocation of the return object, so we pass parameters
7481 -- Case of a user-defined storage pool. Pass an allocation parameter
7482 -- indicating that the function should allocate its result in the
7483 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7484 -- pool may not be aliased.
7486 if Present
(Associated_Storage_Pool
(Acc_Type
)) then
7487 Alloc_Form
:= User_Storage_Pool
;
7489 Make_Attribute_Reference
(Loc
,
7492 (Associated_Storage_Pool
(Acc_Type
), Loc
),
7493 Attribute_Name
=> Name_Unrestricted_Access
);
7495 -- No user-defined pool; pass an allocation parameter indicating that
7496 -- the function should allocate its result on the heap.
7499 Alloc_Form
:= Global_Heap
;
7500 Pool
:= Make_Null
(No_Location
);
7503 -- The caller does not provide the return object in this case, so we
7504 -- have to pass null for the object access actual.
7506 Return_Obj_Actual
:= Empty
;
7509 -- Declare the temp object
7511 Insert_Action
(Allocator
,
7512 Make_Object_Declaration
(Loc
,
7513 Defining_Identifier
=> Return_Obj_Access
,
7514 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
7515 Expression
=> Temp_Init
));
7517 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
7519 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7520 -- then generate an implicit conversion to force displacement of the
7523 if Is_Interface
(Designated_Type
(Acc_Type
)) then
7526 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
7530 Assign
: constant Node_Id
:=
7531 Make_Assignment_Statement
(Loc
,
7532 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
7533 Expression
=> Ref_Func_Call
);
7534 -- Assign the result of the function call into the temp. In the
7535 -- caller-allocates case, this is overwriting the temp with its
7536 -- initial value, which has no effect. In the callee-allocates case,
7537 -- this is setting the temp to point to the object allocated by the
7541 -- Actions to be inserted. If there are no tasks, this is just the
7542 -- assignment statement. If the allocated object has tasks, we need
7543 -- to wrap the assignment in a block that activates them. The
7544 -- activation chain of that block must be passed to the function,
7545 -- rather than some outer chain.
7547 if Has_Task
(Result_Subt
) then
7548 Actions
:= New_List
;
7549 Build_Task_Allocate_Block_With_Init_Stmts
7550 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
7551 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
7553 Actions
:= New_List
(Assign
);
7557 Insert_Actions
(Allocator
, Actions
);
7560 -- When the function has a controlling result, an allocation-form
7561 -- parameter must be passed indicating that the caller is allocating
7562 -- the result object. This is needed because such a function can be
7563 -- called as a dispatching operation and must be treated similarly
7564 -- to functions with unconstrained result subtypes.
7566 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7567 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
7569 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7570 (Func_Call
, Function_Id
, Acc_Type
);
7572 Add_Task_Actuals_To_Build_In_Place_Call
7573 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
7576 -- Add an implicit actual to the function call that provides access
7577 -- to the allocated object. An unchecked conversion to the (specific)
7578 -- result subtype of the function is inserted to handle cases where
7579 -- the access type of the allocator has a class-wide designated type.
7581 Add_Access_Actual_To_Build_In_Place_Call
7582 (Func_Call
, Function_Id
, Return_Obj_Actual
);
7584 -- Finally, replace the allocator node with a reference to the temp
7586 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
7588 Analyze_And_Resolve
(Allocator
, Acc_Type
);
7589 end Make_Build_In_Place_Call_In_Allocator
;
7591 ---------------------------------------------------
7592 -- Make_Build_In_Place_Call_In_Anonymous_Context --
7593 ---------------------------------------------------
7595 procedure Make_Build_In_Place_Call_In_Anonymous_Context
7596 (Function_Call
: Node_Id
)
7599 Func_Call
: Node_Id
:= Function_Call
;
7600 Function_Id
: Entity_Id
;
7601 Result_Subt
: Entity_Id
;
7602 Return_Obj_Id
: Entity_Id
;
7603 Return_Obj_Decl
: Entity_Id
;
7606 -- True if result subtype is definite, or has a size that does not
7607 -- require secondary stack usage (i.e. no variant part or components
7608 -- whose type depends on discriminants). In particular, untagged types
7609 -- with only access discriminants do not require secondary stack use.
7610 -- Note that if the return type is tagged we must always use the sec.
7611 -- stack because the call may dispatch on result.
7614 -- Step past qualification, type conversion (which can occur in actual
7615 -- parameter contexts), and unchecked conversion (which can occur in
7616 -- cases of calls to 'Input).
7618 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7620 N_Unchecked_Type_Conversion
)
7622 Func_Call
:= Expression
(Func_Call
);
7625 -- If the call has already been processed to add build-in-place actuals
7626 -- then return. One place this can occur is for calls to build-in-place
7627 -- functions that occur within a call to a protected operation, where
7628 -- due to rewriting and expansion of the protected call there can be
7629 -- more than one call to Expand_Actuals for the same set of actuals.
7631 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7635 -- Mark the call as processed as a build-in-place call
7637 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7639 Loc
:= Sloc
(Function_Call
);
7641 if Is_Entity_Name
(Name
(Func_Call
)) then
7642 Function_Id
:= Entity
(Name
(Func_Call
));
7644 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7645 Function_Id
:= Etype
(Name
(Func_Call
));
7648 raise Program_Error
;
7651 Result_Subt
:= Etype
(Function_Id
);
7653 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
7654 and then not Is_Tagged_Type
(Result_Subt
))
7655 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
7657 -- If the build-in-place function returns a controlled object, then the
7658 -- object needs to be finalized immediately after the context. Since
7659 -- this case produces a transient scope, the servicing finalizer needs
7660 -- to name the returned object. Create a temporary which is initialized
7661 -- with the function call:
7663 -- Temp_Id : Func_Type := BIP_Func_Call;
7665 -- The initialization expression of the temporary will be rewritten by
7666 -- the expander using the appropriate mechanism in Make_Build_In_Place_
7667 -- Call_In_Object_Declaration.
7669 if Needs_Finalization
(Result_Subt
) then
7671 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
7672 Temp_Decl
: Node_Id
;
7675 -- Reset the guard on the function call since the following does
7676 -- not perform actual call expansion.
7678 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
7681 Make_Object_Declaration
(Loc
,
7682 Defining_Identifier
=> Temp_Id
,
7683 Object_Definition
=>
7684 New_Occurrence_Of
(Result_Subt
, Loc
),
7686 New_Copy_Tree
(Function_Call
));
7688 Insert_Action
(Function_Call
, Temp_Decl
);
7690 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
7691 Analyze
(Function_Call
);
7694 -- When the result subtype is definite, an object of the subtype is
7695 -- declared and an access value designating it is passed as an actual.
7699 -- Create a temporary object to hold the function result
7701 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
7702 Set_Etype
(Return_Obj_Id
, Result_Subt
);
7705 Make_Object_Declaration
(Loc
,
7706 Defining_Identifier
=> Return_Obj_Id
,
7707 Aliased_Present
=> True,
7708 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7710 Set_No_Initialization
(Return_Obj_Decl
);
7712 Insert_Action
(Func_Call
, Return_Obj_Decl
);
7714 -- When the function has a controlling result, an allocation-form
7715 -- parameter must be passed indicating that the caller is allocating
7716 -- the result object. This is needed because such a function can be
7717 -- called as a dispatching operation and must be treated similarly
7718 -- to functions with unconstrained result subtypes.
7720 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7721 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
7723 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7724 (Func_Call
, Function_Id
);
7726 Add_Task_Actuals_To_Build_In_Place_Call
7727 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7729 -- Add an implicit actual to the function call that provides access
7730 -- to the caller's return object.
7732 Add_Access_Actual_To_Build_In_Place_Call
7733 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
7735 -- When the result subtype is unconstrained, the function must allocate
7736 -- the return object in the secondary stack, so appropriate implicit
7737 -- parameters are added to the call to indicate that. A transient
7738 -- scope is established to ensure eventual cleanup of the result.
7741 -- Pass an allocation parameter indicating that the function should
7742 -- allocate its result on the secondary stack.
7744 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7745 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
7747 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7748 (Func_Call
, Function_Id
);
7750 Add_Task_Actuals_To_Build_In_Place_Call
7751 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7753 -- Pass a null value to the function since no return object is
7754 -- available on the caller side.
7756 Add_Access_Actual_To_Build_In_Place_Call
7757 (Func_Call
, Function_Id
, Empty
);
7759 end Make_Build_In_Place_Call_In_Anonymous_Context
;
7761 --------------------------------------------
7762 -- Make_Build_In_Place_Call_In_Assignment --
7763 --------------------------------------------
7765 procedure Make_Build_In_Place_Call_In_Assignment
7767 Function_Call
: Node_Id
)
7769 Lhs
: constant Node_Id
:= Name
(Assign
);
7770 Func_Call
: Node_Id
:= Function_Call
;
7771 Func_Id
: Entity_Id
;
7775 Ptr_Typ
: Entity_Id
;
7776 Ptr_Typ_Decl
: Node_Id
;
7778 Result_Subt
: Entity_Id
;
7782 -- Step past qualification or unchecked conversion (the latter can occur
7783 -- in cases of calls to 'Input).
7785 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7786 N_Unchecked_Type_Conversion
)
7788 Func_Call
:= Expression
(Func_Call
);
7791 -- If the call has already been processed to add build-in-place actuals
7792 -- then return. This should not normally occur in an assignment context,
7793 -- but we add the protection as a defensive measure.
7795 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7799 -- Mark the call as processed as a build-in-place call
7801 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7803 Loc
:= Sloc
(Function_Call
);
7805 if Is_Entity_Name
(Name
(Func_Call
)) then
7806 Func_Id
:= Entity
(Name
(Func_Call
));
7808 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7809 Func_Id
:= Etype
(Name
(Func_Call
));
7812 raise Program_Error
;
7815 Result_Subt
:= Etype
(Func_Id
);
7817 -- When the result subtype is unconstrained, an additional actual must
7818 -- be passed to indicate that the caller is providing the return object.
7819 -- This parameter must also be passed when the called function has a
7820 -- controlling result, because dispatching calls to the function needs
7821 -- to be treated effectively the same as calls to class-wide functions.
7823 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7824 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
7826 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7827 (Func_Call
, Func_Id
);
7829 Add_Task_Actuals_To_Build_In_Place_Call
7830 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7832 -- Add an implicit actual to the function call that provides access to
7833 -- the caller's return object.
7835 Add_Access_Actual_To_Build_In_Place_Call
7838 Make_Unchecked_Type_Conversion
(Loc
,
7839 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7840 Expression
=> Relocate_Node
(Lhs
)));
7842 -- Create an access type designating the function's result subtype
7844 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
7847 Make_Full_Type_Declaration
(Loc
,
7848 Defining_Identifier
=> Ptr_Typ
,
7850 Make_Access_To_Object_Definition
(Loc
,
7851 All_Present
=> True,
7852 Subtype_Indication
=>
7853 New_Occurrence_Of
(Result_Subt
, Loc
)));
7854 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
7856 -- Finally, create an access object initialized to a reference to the
7857 -- function call. We know this access value is non-null, so mark the
7858 -- entity accordingly to suppress junk access checks.
7860 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
7862 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
7863 Set_Etype
(Obj_Id
, Ptr_Typ
);
7864 Set_Is_Known_Non_Null
(Obj_Id
);
7867 Make_Object_Declaration
(Loc
,
7868 Defining_Identifier
=> Obj_Id
,
7869 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
7870 Expression
=> New_Expr
);
7871 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
7873 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
7875 -- Retrieve the target of the assignment
7877 if Nkind
(Lhs
) = N_Selected_Component
then
7878 Target
:= Selector_Name
(Lhs
);
7879 elsif Nkind
(Lhs
) = N_Type_Conversion
then
7880 Target
:= Expression
(Lhs
);
7885 -- If we are assigning to a return object or this is an expression of
7886 -- an extension aggregate, the target should either be an identifier
7887 -- or a simple expression. All other cases imply a different scenario.
7889 if Nkind
(Target
) in N_Has_Entity
then
7890 Target
:= Entity
(Target
);
7894 end Make_Build_In_Place_Call_In_Assignment
;
7896 ----------------------------------------------------
7897 -- Make_Build_In_Place_Call_In_Object_Declaration --
7898 ----------------------------------------------------
7900 procedure Make_Build_In_Place_Call_In_Object_Declaration
7901 (Obj_Decl
: Node_Id
;
7902 Function_Call
: Node_Id
)
7904 Obj_Def_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
7905 Encl_Func
: constant Entity_Id
:= Enclosing_Subprogram
(Obj_Def_Id
);
7906 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
7907 Obj_Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
7909 Call_Deref
: Node_Id
;
7910 Caller_Object
: Node_Id
;
7912 Fmaster_Actual
: Node_Id
:= Empty
;
7913 Func_Call
: Node_Id
:= Function_Call
;
7914 Function_Id
: Entity_Id
;
7915 Pool_Actual
: Node_Id
;
7916 Ptr_Typ
: Entity_Id
;
7917 Ptr_Typ_Decl
: Node_Id
;
7918 Pass_Caller_Acc
: Boolean := False;
7920 Result_Subt
: Entity_Id
;
7923 -- True if result subtype is definite, or has a size that does not
7924 -- require secondary stack usage (i.e. no variant part or components
7925 -- whose type depends on discriminants). In particular, untagged types
7926 -- with only access discriminants do not require secondary stack use.
7927 -- Note that if the return type is tagged we must always use the sec.
7928 -- stack because the call may dispatch on result.
7931 -- Step past qualification or unchecked conversion (the latter can occur
7932 -- in cases of calls to 'Input).
7934 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7935 N_Unchecked_Type_Conversion
)
7937 Func_Call
:= Expression
(Func_Call
);
7940 -- If the call has already been processed to add build-in-place actuals
7941 -- then return. This should not normally occur in an object declaration,
7942 -- but we add the protection as a defensive measure.
7944 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7948 -- Mark the call as processed as a build-in-place call
7950 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7952 if Is_Entity_Name
(Name
(Func_Call
)) then
7953 Function_Id
:= Entity
(Name
(Func_Call
));
7955 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7956 Function_Id
:= Etype
(Name
(Func_Call
));
7959 raise Program_Error
;
7962 Result_Subt
:= Etype
(Function_Id
);
7964 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
7965 and then not Is_Tagged_Type
(Result_Subt
))
7966 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
7968 -- Create an access type designating the function's result subtype. We
7969 -- use the type of the original call because it may be a call to an
7970 -- inherited operation, which the expansion has replaced with the parent
7971 -- operation that yields the parent type. Note that this access type
7972 -- must be declared before we establish a transient scope, so that it
7973 -- receives the proper accessibility level.
7975 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
7977 Make_Full_Type_Declaration
(Loc
,
7978 Defining_Identifier
=> Ptr_Typ
,
7980 Make_Access_To_Object_Definition
(Loc
,
7981 All_Present
=> True,
7982 Subtype_Indication
=>
7983 New_Occurrence_Of
(Etype
(Function_Call
), Loc
)));
7985 -- The access type and its accompanying object must be inserted after
7986 -- the object declaration in the constrained case, so that the function
7987 -- call can be passed access to the object. In the indefinite case,
7988 -- or if the object declaration is for a return object, the access type
7989 -- and object must be inserted before the object, since the object
7990 -- declaration is rewritten to be a renaming of a dereference of the
7991 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
7992 -- the result object is in a different (transient) scope, so won't
7996 and then not Is_Return_Object
(Defining_Identifier
(Obj_Decl
))
7998 Insert_After_And_Analyze
(Obj_Decl
, Ptr_Typ_Decl
);
8000 Insert_Action
(Obj_Decl
, Ptr_Typ_Decl
);
8003 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8004 -- elaborated in an inner (transient) scope and thus won't cause
8005 -- freezing by itself.
8008 Ptr_Typ_Freeze_Ref
: constant Node_Id
:=
8009 New_Occurrence_Of
(Ptr_Typ
, Loc
);
8011 Set_Parent
(Ptr_Typ_Freeze_Ref
, Ptr_Typ_Decl
);
8012 Freeze_Expression
(Ptr_Typ_Freeze_Ref
);
8015 -- If the object is a return object of an enclosing build-in-place
8016 -- function, then the implicit build-in-place parameters of the
8017 -- enclosing function are simply passed along to the called function.
8018 -- (Unfortunately, this won't cover the case of extension aggregates
8019 -- where the ancestor part is a build-in-place indefinite function
8020 -- call that should be passed along the caller's parameters. Currently
8021 -- those get mishandled by reassigning the result of the call to the
8022 -- aggregate return object, when the call result should really be
8023 -- directly built in place in the aggregate and not in a temporary. ???)
8025 if Is_Return_Object
(Defining_Identifier
(Obj_Decl
)) then
8026 Pass_Caller_Acc
:= True;
8028 -- When the enclosing function has a BIP_Alloc_Form formal then we
8029 -- pass it along to the callee (such as when the enclosing function
8030 -- has an unconstrained or tagged result type).
8032 if Needs_BIP_Alloc_Form
(Encl_Func
) then
8033 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
8036 (Build_In_Place_Formal
(Encl_Func
, BIP_Storage_Pool
), Loc
);
8038 -- The build-in-place pool formal is not built on e.g. ZFP
8041 Pool_Actual
:= Empty
;
8044 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8045 (Function_Call
=> Func_Call
,
8046 Function_Id
=> Function_Id
,
8049 (Build_In_Place_Formal
(Encl_Func
, BIP_Alloc_Form
), Loc
),
8050 Pool_Actual
=> Pool_Actual
);
8052 -- Otherwise, if enclosing function has a definite result subtype,
8053 -- then caller allocation will be used.
8056 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8057 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8060 if Needs_BIP_Finalization_Master
(Encl_Func
) then
8063 (Build_In_Place_Formal
8064 (Encl_Func
, BIP_Finalization_Master
), Loc
);
8067 -- Retrieve the BIPacc formal from the enclosing function and convert
8068 -- it to the access type of the callee's BIP_Object_Access formal.
8071 Make_Unchecked_Type_Conversion
(Loc
,
8075 (Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
)),
8079 (Build_In_Place_Formal
(Encl_Func
, BIP_Object_Access
),
8082 -- In the definite case, add an implicit actual to the function call
8083 -- that provides access to the declared object. An unchecked conversion
8084 -- to the (specific) result type of the function is inserted to handle
8085 -- the case where the object is declared with a class-wide type.
8089 Make_Unchecked_Type_Conversion
(Loc
,
8090 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8091 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
8093 -- When the function has a controlling result, an allocation-form
8094 -- parameter must be passed indicating that the caller is allocating
8095 -- the result object. This is needed because such a function can be
8096 -- called as a dispatching operation and must be treated similarly
8097 -- to functions with indefinite result subtypes.
8099 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8100 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8102 -- The allocation for indefinite library-level objects occurs on the
8103 -- heap as opposed to the secondary stack. This accommodates DLLs where
8104 -- the secondary stack is destroyed after each library unload. This is
8105 -- a hybrid mechanism where a stack-allocated object lives on the heap.
8107 elsif Is_Library_Level_Entity
(Defining_Identifier
(Obj_Decl
))
8108 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
8110 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8111 (Func_Call
, Function_Id
, Alloc_Form
=> Global_Heap
);
8112 Caller_Object
:= Empty
;
8114 -- Create a finalization master for the access result type to ensure
8115 -- that the heap allocation can properly chain the object and later
8116 -- finalize it when the library unit goes out of scope.
8118 if Needs_Finalization
(Etype
(Func_Call
)) then
8119 Build_Finalization_Master
8121 For_Lib_Level
=> True,
8122 Insertion_Node
=> Ptr_Typ_Decl
);
8125 Make_Attribute_Reference
(Loc
,
8127 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
8128 Attribute_Name
=> Name_Unrestricted_Access
);
8131 -- In other indefinite cases, pass an indication to do the allocation
8132 -- on the secondary stack and set Caller_Object to Empty so that a null
8133 -- value will be passed for the caller's object address. A transient
8134 -- scope is established to ensure eventual cleanup of the result.
8137 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8138 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8139 Caller_Object
:= Empty
;
8141 Establish_Transient_Scope
(Obj_Decl
, Sec_Stack
=> True);
8144 -- Pass along any finalization master actual, which is needed in the
8145 -- case where the called function initializes a return object of an
8146 -- enclosing build-in-place function.
8148 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8149 (Func_Call
=> Func_Call
,
8150 Func_Id
=> Function_Id
,
8151 Master_Exp
=> Fmaster_Actual
);
8153 if Nkind
(Parent
(Obj_Decl
)) = N_Extended_Return_Statement
8154 and then Has_Task
(Result_Subt
)
8156 -- Here we're passing along the master that was passed in to this
8159 Add_Task_Actuals_To_Build_In_Place_Call
8160 (Func_Call
, Function_Id
,
8163 (Build_In_Place_Formal
(Encl_Func
, BIP_Task_Master
), Loc
));
8166 Add_Task_Actuals_To_Build_In_Place_Call
8167 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8170 Add_Access_Actual_To_Build_In_Place_Call
8171 (Func_Call
, Function_Id
, Caller_Object
, Is_Access
=> Pass_Caller_Acc
);
8173 -- Finally, create an access object initialized to a reference to the
8174 -- function call. We know this access value cannot be null, so mark the
8175 -- entity accordingly to suppress the access check.
8177 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
8178 Set_Etype
(Def_Id
, Ptr_Typ
);
8179 Set_Is_Known_Non_Null
(Def_Id
);
8182 Make_Object_Declaration
(Loc
,
8183 Defining_Identifier
=> Def_Id
,
8184 Constant_Present
=> True,
8185 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8187 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
8189 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
8191 -- If the result subtype of the called function is definite and is not
8192 -- itself the return expression of an enclosing BIP function, then mark
8193 -- the object as having no initialization.
8196 and then not Is_Return_Object
(Defining_Identifier
(Obj_Decl
))
8198 -- The related object declaration is encased in a transient block
8199 -- because the build-in-place function call contains at least one
8200 -- nested function call that produces a controlled transient
8203 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8205 -- Since the build-in-place expansion decouples the call from the
8206 -- object declaration, the finalization machinery lacks the context
8207 -- which prompted the generation of the transient block. To resolve
8208 -- this scenario, store the build-in-place call.
8210 if Scope_Is_Transient
and then Node_To_Be_Wrapped
= Obj_Decl
then
8211 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
8214 Set_Expression
(Obj_Decl
, Empty
);
8215 Set_No_Initialization
(Obj_Decl
);
8217 -- In case of an indefinite result subtype, or if the call is the
8218 -- return expression of an enclosing BIP function, rewrite the object
8219 -- declaration as an object renaming where the renamed object is a
8220 -- dereference of <function_Call>'reference:
8222 -- Obj : Subt renames <function_call>'Ref.all;
8226 Make_Explicit_Dereference
(Obj_Loc
,
8227 Prefix
=> New_Occurrence_Of
(Def_Id
, Obj_Loc
));
8230 Make_Object_Renaming_Declaration
(Obj_Loc
,
8231 Defining_Identifier
=> Make_Temporary
(Obj_Loc
, 'D'),
8232 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Obj_Loc
),
8233 Name
=> Call_Deref
));
8235 Set_Renamed_Object
(Defining_Identifier
(Obj_Decl
), Call_Deref
);
8237 -- If the original entity comes from source, then mark the new
8238 -- entity as needing debug information, even though it's defined
8239 -- by a generated renaming that does not come from source, so that
8240 -- the Materialize_Entity flag will be set on the entity when
8241 -- Debug_Renaming_Declaration is called during analysis.
8243 if Comes_From_Source
(Obj_Def_Id
) then
8244 Set_Debug_Info_Needed
(Defining_Identifier
(Obj_Decl
));
8249 -- Replace the internal identifier of the renaming declaration's
8250 -- entity with identifier of the original object entity. We also have
8251 -- to exchange the entities containing their defining identifiers to
8252 -- ensure the correct replacement of the object declaration by the
8253 -- object renaming declaration to avoid homograph conflicts (since
8254 -- the object declaration's defining identifier was already entered
8255 -- in current scope). The Next_Entity links of the two entities also
8256 -- have to be swapped since the entities are part of the return
8257 -- scope's entity list and the list structure would otherwise be
8258 -- corrupted. Finally, the homonym chain must be preserved as well.
8261 Ren_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
8262 Next_Id
: constant Entity_Id
:= Next_Entity
(Ren_Id
);
8265 Set_Chars
(Ren_Id
, Chars
(Obj_Def_Id
));
8267 -- Swap next entity links in preparation for exchanging entities
8269 Set_Next_Entity
(Ren_Id
, Next_Entity
(Obj_Def_Id
));
8270 Set_Next_Entity
(Obj_Def_Id
, Next_Id
);
8271 Set_Homonym
(Ren_Id
, Homonym
(Obj_Def_Id
));
8273 Exchange_Entities
(Ren_Id
, Obj_Def_Id
);
8275 -- Preserve source indication of original declaration, so that
8276 -- xref information is properly generated for the right entity.
8278 Preserve_Comes_From_Source
(Obj_Decl
, Original_Node
(Obj_Decl
));
8279 Preserve_Comes_From_Source
(Obj_Def_Id
, Original_Node
(Obj_Decl
));
8281 Set_Comes_From_Source
(Ren_Id
, False);
8285 -- If the object entity has a class-wide Etype, then we need to change
8286 -- it to the result subtype of the function call, because otherwise the
8287 -- object will be class-wide without an explicit initialization and
8288 -- won't be allocated properly by the back end. It seems unclean to make
8289 -- such a revision to the type at this point, and we should try to
8290 -- improve this treatment when build-in-place functions with class-wide
8291 -- results are implemented. ???
8293 if Is_Class_Wide_Type
(Etype
(Defining_Identifier
(Obj_Decl
))) then
8294 Set_Etype
(Defining_Identifier
(Obj_Decl
), Result_Subt
);
8296 end Make_Build_In_Place_Call_In_Object_Declaration
;
8298 --------------------------------------------
8299 -- Make_CPP_Constructor_Call_In_Allocator --
8300 --------------------------------------------
8302 procedure Make_CPP_Constructor_Call_In_Allocator
8303 (Allocator
: Node_Id
;
8304 Function_Call
: Node_Id
)
8306 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8307 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8308 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
8309 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
8311 New_Allocator
: Node_Id
;
8312 Return_Obj_Access
: Entity_Id
;
8316 pragma Assert
(Nkind
(Allocator
) = N_Allocator
8317 and then Nkind
(Function_Call
) = N_Function_Call
);
8318 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
8319 and then Is_Constructor
(Function_Id
));
8320 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
8322 -- Replace the initialized allocator of form "new T'(Func (...))" with
8323 -- an uninitialized allocator of form "new T", where T is the result
8324 -- subtype of the called function. The call to the function is handled
8325 -- separately further below.
8328 Make_Allocator
(Loc
,
8329 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8330 Set_No_Initialization
(New_Allocator
);
8332 -- Copy attributes to new allocator. Note that the new allocator
8333 -- logically comes from source if the original one did, so copy the
8334 -- relevant flag. This ensures proper treatment of the restriction
8335 -- No_Implicit_Heap_Allocations in this case.
8337 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8338 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8339 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8341 Rewrite
(Allocator
, New_Allocator
);
8343 -- Create a new access object and initialize it to the result of the
8344 -- new uninitialized allocator. Note: we do not use Allocator as the
8345 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8346 -- as this would create a sort of infinite "recursion".
8348 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8349 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8352 -- Rnnn : constant ptr_T := new (T);
8353 -- Init (Rnn.all,...);
8356 Make_Object_Declaration
(Loc
,
8357 Defining_Identifier
=> Return_Obj_Access
,
8358 Constant_Present
=> True,
8359 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8360 Expression
=> Relocate_Node
(Allocator
));
8361 Insert_Action
(Allocator
, Tmp_Obj
);
8363 Insert_List_After_And_Analyze
(Tmp_Obj
,
8364 Build_Initialization_Call
(Loc
,
8366 Make_Explicit_Dereference
(Loc
,
8367 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
8368 Typ
=> Etype
(Function_Id
),
8369 Constructor_Ref
=> Function_Call
));
8371 -- Finally, replace the allocator node with a reference to the result of
8372 -- the function call itself (which will effectively be an access to the
8373 -- object created by the allocator).
8375 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8377 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8378 -- generate an implicit conversion to force displacement of the "this"
8381 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8382 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
8385 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8386 end Make_CPP_Constructor_Call_In_Allocator
;
8388 -----------------------------------
8389 -- Needs_BIP_Finalization_Master --
8390 -----------------------------------
8392 function Needs_BIP_Finalization_Master
8393 (Func_Id
: Entity_Id
) return Boolean
8395 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8396 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8398 -- A formal giving the finalization master is needed for build-in-place
8399 -- functions whose result type needs finalization or is a tagged type.
8400 -- Tagged primitive build-in-place functions need such a formal because
8401 -- they can be called by a dispatching call, and extensions may require
8402 -- finalization even if the root type doesn't. This means they're also
8403 -- needed for tagged nonprimitive build-in-place functions with tagged
8404 -- results, since such functions can be called via access-to-function
8405 -- types, and those can be used to call primitives, so masters have to
8406 -- be passed to all such build-in-place functions, primitive or not.
8409 not Restriction_Active
(No_Finalization
)
8410 and then (Needs_Finalization
(Func_Typ
)
8411 or else Is_Tagged_Type
(Func_Typ
));
8412 end Needs_BIP_Finalization_Master
;
8414 --------------------------
8415 -- Needs_BIP_Alloc_Form --
8416 --------------------------
8418 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
8419 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8420 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8422 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
8423 end Needs_BIP_Alloc_Form
;
8425 --------------------------------------
8426 -- Needs_Result_Accessibility_Level --
8427 --------------------------------------
8429 function Needs_Result_Accessibility_Level
8430 (Func_Id
: Entity_Id
) return Boolean
8432 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8434 function Has_Unconstrained_Access_Discriminant_Component
8435 (Comp_Typ
: Entity_Id
) return Boolean;
8436 -- Returns True if any component of the type has an unconstrained access
8439 -----------------------------------------------------
8440 -- Has_Unconstrained_Access_Discriminant_Component --
8441 -----------------------------------------------------
8443 function Has_Unconstrained_Access_Discriminant_Component
8444 (Comp_Typ
: Entity_Id
) return Boolean
8447 if not Is_Limited_Type
(Comp_Typ
) then
8450 -- Only limited types can have access discriminants with
8453 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
8456 elsif Is_Array_Type
(Comp_Typ
) then
8457 return Has_Unconstrained_Access_Discriminant_Component
8458 (Underlying_Type
(Component_Type
(Comp_Typ
)));
8460 elsif Is_Record_Type
(Comp_Typ
) then
8465 Comp
:= First_Component
(Comp_Typ
);
8466 while Present
(Comp
) loop
8467 if Has_Unconstrained_Access_Discriminant_Component
8468 (Underlying_Type
(Etype
(Comp
)))
8473 Next_Component
(Comp
);
8479 end Has_Unconstrained_Access_Discriminant_Component
;
8481 Feature_Disabled
: constant Boolean := True;
8484 -- Start of processing for Needs_Result_Accessibility_Level
8487 -- False if completion unavailable (how does this happen???)
8489 if not Present
(Func_Typ
) then
8492 elsif Feature_Disabled
then
8495 -- False if not a function, also handle enum-lit renames case
8497 elsif Func_Typ
= Standard_Void_Type
8498 or else Is_Scalar_Type
(Func_Typ
)
8502 -- Handle a corner case, a cross-dialect subp renaming. For example,
8503 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
8504 -- an Ada 2005 (or earlier) unit references predefined run-time units.
8506 elsif Present
(Alias
(Func_Id
)) then
8508 -- Unimplemented: a cross-dialect subp renaming which does not set
8509 -- the Alias attribute (e.g., a rename of a dereference of an access
8510 -- to subprogram value). ???
8512 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
8514 -- Remaining cases require Ada 2012 mode
8516 elsif Ada_Version
< Ada_2012
then
8519 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
8520 or else Is_Tagged_Type
(Func_Typ
)
8522 -- In the case of, say, a null tagged record result type, the need
8523 -- for this extra parameter might not be obvious. This function
8524 -- returns True for all tagged types for compatibility reasons.
8525 -- A function with, say, a tagged null controlling result type might
8526 -- be overridden by a primitive of an extension having an access
8527 -- discriminant and the overrider and overridden must have compatible
8528 -- calling conventions (including implicitly declared parameters).
8529 -- Similarly, values of one access-to-subprogram type might designate
8530 -- both a primitive subprogram of a given type and a function
8531 -- which is, for example, not a primitive subprogram of any type.
8532 -- Again, this requires calling convention compatibility.
8533 -- It might be possible to solve these issues by introducing
8534 -- wrappers, but that is not the approach that was chosen.
8538 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
8541 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
8544 -- False for all other cases
8549 end Needs_Result_Accessibility_Level
;
8551 ---------------------------------
8552 -- Rewrite_Function_Call_For_C --
8553 ---------------------------------
8555 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
) is
8556 Orig_Func
: constant Entity_Id
:= Entity
(Name
(N
));
8557 Func_Id
: constant Entity_Id
:= Ultimate_Alias
(Orig_Func
);
8558 Par
: constant Node_Id
:= Parent
(N
);
8559 Proc_Id
: constant Entity_Id
:= Corresponding_Procedure
(Func_Id
);
8560 Loc
: constant Source_Ptr
:= Sloc
(Par
);
8562 Last_Actual
: Node_Id
;
8563 Last_Formal
: Entity_Id
;
8565 -- Start of processing for Rewrite_Function_Call_For_C
8568 -- The actuals may be given by named associations, so the added actual
8569 -- that is the target of the return value of the call must be a named
8570 -- association as well, so we retrieve the name of the generated
8573 Last_Formal
:= First_Formal
(Proc_Id
);
8574 while Present
(Next_Formal
(Last_Formal
)) loop
8575 Last_Formal
:= Next_Formal
(Last_Formal
);
8578 Actuals
:= Parameter_Associations
(N
);
8580 -- The original function may lack parameters
8582 if No
(Actuals
) then
8583 Actuals
:= New_List
;
8586 -- If the function call is the expression of an assignment statement,
8587 -- transform the assignment into a procedure call. Generate:
8589 -- LHS := Func_Call (...);
8591 -- Proc_Call (..., LHS);
8593 -- If function is inherited, a conversion may be necessary.
8595 if Nkind
(Par
) = N_Assignment_Statement
then
8596 Last_Actual
:= Name
(Par
);
8598 if not Comes_From_Source
(Orig_Func
)
8599 and then Etype
(Orig_Func
) /= Etype
(Func_Id
)
8602 Make_Type_Conversion
(Loc
,
8603 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
8608 Make_Parameter_Association
(Loc
,
8610 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
8611 Explicit_Actual_Parameter
=> Last_Actual
));
8614 Make_Procedure_Call_Statement
(Loc
,
8615 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
8616 Parameter_Associations
=> Actuals
));
8619 -- Otherwise the context is an expression. Generate a temporary and a
8620 -- procedure call to obtain the function result. Generate:
8622 -- ... Func_Call (...) ...
8625 -- Proc_Call (..., Temp);
8630 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
8639 Make_Object_Declaration
(Loc
,
8640 Defining_Identifier
=> Temp_Id
,
8641 Object_Definition
=>
8642 New_Occurrence_Of
(Etype
(Func_Id
), Loc
));
8645 -- Proc_Call (..., Temp);
8648 Make_Parameter_Association
(Loc
,
8650 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
8651 Explicit_Actual_Parameter
=>
8652 New_Occurrence_Of
(Temp_Id
, Loc
)));
8655 Make_Procedure_Call_Statement
(Loc
,
8656 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
8657 Parameter_Associations
=> Actuals
);
8659 Insert_Actions
(Par
, New_List
(Decl
, Call
));
8660 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
8663 end Rewrite_Function_Call_For_C
;
8665 ------------------------------------
8666 -- Set_Enclosing_Sec_Stack_Return --
8667 ------------------------------------
8669 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
) is
8673 -- Due to a possible mix of internally generated blocks, source blocks
8674 -- and loops, the scope stack may not be contiguous as all labels are
8675 -- inserted at the top level within the related function. Instead,
8676 -- perform a parent-based traversal and mark all appropriate constructs.
8678 while Present
(P
) loop
8680 -- Mark the label of a source or internally generated block or
8683 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
8684 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
8686 -- Mark the enclosing function
8688 elsif Nkind
(P
) = N_Subprogram_Body
then
8689 if Present
(Corresponding_Spec
(P
)) then
8690 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
8692 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
8695 -- Do not go beyond the enclosing function
8702 end Set_Enclosing_Sec_Stack_Return
;