rs6000.h (FUNCTION_VALUE): Remove macro.
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob9116f476cbc584c8c15e1725c88c673ca4b20340
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
28 /* Note that some other tm.h files include this one and then override
29 many of the definitions. */
31 /* Definitions for the object file format. These are set at
32 compile-time. */
34 #define OBJECT_XCOFF 1
35 #define OBJECT_ELF 2
36 #define OBJECT_PEF 3
37 #define OBJECT_MACHO 4
39 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
48 /* Control whether function entry points use a "dot" symbol when
49 ABI_AIX. */
50 #define DOT_SYMBOLS 1
52 /* Default string to use for cpu if not specified. */
53 #ifndef TARGET_CPU_DEFAULT
54 #define TARGET_CPU_DEFAULT ((char *)0)
55 #endif
57 /* If configured for PPC405, support PPC405CR Erratum77. */
58 #ifdef CONFIG_PPC405CR
59 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60 #else
61 #define PPC405_ERRATUM77 0
62 #endif
64 #ifndef TARGET_PAIRED_FLOAT
65 #define TARGET_PAIRED_FLOAT 0
66 #endif
68 #ifdef HAVE_AS_POPCNTB
69 #define ASM_CPU_POWER5_SPEC "-mpower5"
70 #else
71 #define ASM_CPU_POWER5_SPEC "-mpower4"
72 #endif
74 #ifdef HAVE_AS_DFP
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #else
77 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78 #endif
80 #ifdef HAVE_AS_POPCNTD
81 #define ASM_CPU_POWER7_SPEC "-mpower7"
82 #else
83 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84 #endif
86 /* Common ASM definitions used by ASM_SPEC among the various targets for
87 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
88 provide the default assembler options if the user uses -mcpu=native, so if
89 you make changes here, make them also there. */
90 #define ASM_CPU_SPEC \
91 "%{!mcpu*: \
92 %{mpower: %{!mpower2: -mpwr}} \
93 %{mpower2: -mpwrx} \
94 %{mpowerpc64*: -mppc64} \
95 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower*: %(asm_default)}}} \
98 %{mcpu=native: %(asm_cpu_native)} \
99 %{mcpu=common: -mcom} \
100 %{mcpu=cell: -mcell} \
101 %{mcpu=power: -mpwr} \
102 %{mcpu=power2: -mpwrx} \
103 %{mcpu=power3: -mppc64} \
104 %{mcpu=power4: -mpower4} \
105 %{mcpu=power5: %(asm_cpu_power5)} \
106 %{mcpu=power5+: %(asm_cpu_power5)} \
107 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
108 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
109 %{mcpu=power7: %(asm_cpu_power7)} \
110 %{mcpu=powerpc: -mppc} \
111 %{mcpu=rios: -mpwr} \
112 %{mcpu=rios1: -mpwr} \
113 %{mcpu=rios2: -mpwrx} \
114 %{mcpu=rsc: -mpwr} \
115 %{mcpu=rsc1: -mpwr} \
116 %{mcpu=rs64a: -mppc64} \
117 %{mcpu=401: -mppc} \
118 %{mcpu=403: -m403} \
119 %{mcpu=405: -m405} \
120 %{mcpu=405fp: -m405} \
121 %{mcpu=440: -m440} \
122 %{mcpu=440fp: -m440} \
123 %{mcpu=464: -m440} \
124 %{mcpu=464fp: -m440} \
125 %{mcpu=505: -mppc} \
126 %{mcpu=601: -m601} \
127 %{mcpu=602: -mppc} \
128 %{mcpu=603: -mppc} \
129 %{mcpu=603e: -mppc} \
130 %{mcpu=ec603e: -mppc} \
131 %{mcpu=604: -mppc} \
132 %{mcpu=604e: -mppc} \
133 %{mcpu=620: -mppc64} \
134 %{mcpu=630: -mppc64} \
135 %{mcpu=740: -mppc} \
136 %{mcpu=750: -mppc} \
137 %{mcpu=G3: -mppc} \
138 %{mcpu=7400: -mppc -maltivec} \
139 %{mcpu=7450: -mppc -maltivec} \
140 %{mcpu=G4: -mppc -maltivec} \
141 %{mcpu=801: -mppc} \
142 %{mcpu=821: -mppc} \
143 %{mcpu=823: -mppc} \
144 %{mcpu=860: -mppc} \
145 %{mcpu=970: -mpower4 -maltivec} \
146 %{mcpu=G5: -mpower4 -maltivec} \
147 %{mcpu=8540: -me500} \
148 %{mcpu=8548: -me500} \
149 %{mcpu=e300c2: -me300} \
150 %{mcpu=e300c3: -me300} \
151 %{mcpu=e500mc: -me500mc} \
152 %{maltivec: -maltivec} \
153 -many"
155 #define CPP_DEFAULT_SPEC ""
157 #define ASM_DEFAULT_SPEC ""
159 /* This macro defines names of additional specifications to put in the specs
160 that can be used in various specifications like CC1_SPEC. Its definition
161 is an initializer with a subgrouping for each command option.
163 Each subgrouping contains a string constant, that defines the
164 specification name, and a string constant that used by the GCC driver
165 program.
167 Do not define this macro if it does not need to do anything. */
169 #define SUBTARGET_EXTRA_SPECS
171 #define EXTRA_SPECS \
172 { "cpp_default", CPP_DEFAULT_SPEC }, \
173 { "asm_cpu", ASM_CPU_SPEC }, \
174 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
175 { "asm_default", ASM_DEFAULT_SPEC }, \
176 { "cc1_cpu", CC1_CPU_SPEC }, \
177 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
178 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
179 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
180 SUBTARGET_EXTRA_SPECS
182 /* -mcpu=native handling only makes sense with compiler running on
183 an PowerPC chip. If changing this condition, also change
184 the condition in driver-rs6000.c. */
185 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
186 /* In driver-rs6000.c. */
187 extern const char *host_detect_local_cpu (int argc, const char **argv);
188 #define EXTRA_SPEC_FUNCTIONS \
189 { "local_cpu_detect", host_detect_local_cpu },
190 #define HAVE_LOCAL_CPU_DETECT
191 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
193 #else
194 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
195 #endif
197 #ifndef CC1_CPU_SPEC
198 #ifdef HAVE_LOCAL_CPU_DETECT
199 #define CC1_CPU_SPEC \
200 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
201 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
202 #else
203 #define CC1_CPU_SPEC ""
204 #endif
205 #endif
207 /* Architecture type. */
209 /* Define TARGET_MFCRF if the target assembler does not support the
210 optional field operand for mfcr. */
212 #ifndef HAVE_AS_MFCRF
213 #undef TARGET_MFCRF
214 #define TARGET_MFCRF 0
215 #endif
217 /* Define TARGET_POPCNTB if the target assembler does not support the
218 popcount byte instruction. */
220 #ifndef HAVE_AS_POPCNTB
221 #undef TARGET_POPCNTB
222 #define TARGET_POPCNTB 0
223 #endif
225 /* Define TARGET_FPRND if the target assembler does not support the
226 fp rounding instructions. */
228 #ifndef HAVE_AS_FPRND
229 #undef TARGET_FPRND
230 #define TARGET_FPRND 0
231 #endif
233 /* Define TARGET_CMPB if the target assembler does not support the
234 cmpb instruction. */
236 #ifndef HAVE_AS_CMPB
237 #undef TARGET_CMPB
238 #define TARGET_CMPB 0
239 #endif
241 /* Define TARGET_MFPGPR if the target assembler does not support the
242 mffpr and mftgpr instructions. */
244 #ifndef HAVE_AS_MFPGPR
245 #undef TARGET_MFPGPR
246 #define TARGET_MFPGPR 0
247 #endif
249 /* Define TARGET_DFP if the target assembler does not support decimal
250 floating point instructions. */
251 #ifndef HAVE_AS_DFP
252 #undef TARGET_DFP
253 #define TARGET_DFP 0
254 #endif
256 /* Define TARGET_POPCNTD if the target assembler does not support the
257 popcount word and double word instructions. */
259 #ifndef HAVE_AS_POPCNTD
260 #undef TARGET_POPCNTD
261 #define TARGET_POPCNTD 0
262 #endif
264 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
265 not, generate the lwsync code as an integer constant. */
266 #ifdef HAVE_AS_LWSYNC
267 #define TARGET_LWSYNC_INSTRUCTION 1
268 #else
269 #define TARGET_LWSYNC_INSTRUCTION 0
270 #endif
272 /* Define TARGET_TLS_MARKERS if the target assembler does not support
273 arg markers for __tls_get_addr calls. */
274 #ifndef HAVE_AS_TLS_MARKERS
275 #undef TARGET_TLS_MARKERS
276 #define TARGET_TLS_MARKERS 0
277 #else
278 #define TARGET_TLS_MARKERS tls_markers
279 #endif
281 #ifndef TARGET_SECURE_PLT
282 #define TARGET_SECURE_PLT 0
283 #endif
285 #define TARGET_32BIT (! TARGET_64BIT)
287 #ifndef HAVE_AS_TLS
288 #define HAVE_AS_TLS 0
289 #endif
291 /* Return 1 for a symbol ref for a thread-local storage symbol. */
292 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
293 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
295 #ifdef IN_LIBGCC2
296 /* For libgcc2 we make sure this is a compile time constant */
297 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
298 #undef TARGET_POWERPC64
299 #define TARGET_POWERPC64 1
300 #else
301 #undef TARGET_POWERPC64
302 #define TARGET_POWERPC64 0
303 #endif
304 #else
305 /* The option machinery will define this. */
306 #endif
308 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
310 /* Processor type. Order must match cpu attribute in MD file. */
311 enum processor_type
313 PROCESSOR_RIOS1,
314 PROCESSOR_RIOS2,
315 PROCESSOR_RS64A,
316 PROCESSOR_MPCCORE,
317 PROCESSOR_PPC403,
318 PROCESSOR_PPC405,
319 PROCESSOR_PPC440,
320 PROCESSOR_PPC601,
321 PROCESSOR_PPC603,
322 PROCESSOR_PPC604,
323 PROCESSOR_PPC604e,
324 PROCESSOR_PPC620,
325 PROCESSOR_PPC630,
326 PROCESSOR_PPC750,
327 PROCESSOR_PPC7400,
328 PROCESSOR_PPC7450,
329 PROCESSOR_PPC8540,
330 PROCESSOR_PPCE300C2,
331 PROCESSOR_PPCE300C3,
332 PROCESSOR_PPCE500MC,
333 PROCESSOR_POWER4,
334 PROCESSOR_POWER5,
335 PROCESSOR_POWER6,
336 PROCESSOR_POWER7,
337 PROCESSOR_CELL
340 /* FPU operations supported.
341 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
342 also test TARGET_HARD_FLOAT. */
343 #define TARGET_SINGLE_FLOAT 1
344 #define TARGET_DOUBLE_FLOAT 1
345 #define TARGET_SINGLE_FPU 0
346 #define TARGET_SIMPLE_FPU 0
347 #define TARGET_XILINX_FPU 0
349 extern enum processor_type rs6000_cpu;
351 /* Recast the processor type to the cpu attribute. */
352 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
354 /* Define generic processor types based upon current deployment. */
355 #define PROCESSOR_COMMON PROCESSOR_PPC601
356 #define PROCESSOR_POWER PROCESSOR_RIOS1
357 #define PROCESSOR_POWERPC PROCESSOR_PPC604
358 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
360 /* Define the default processor. This is overridden by other tm.h files. */
361 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
362 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
364 /* FP processor type. */
365 enum fpu_type_t
367 FPU_NONE, /* No FPU */
368 FPU_SF_LITE, /* Limited Single Precision FPU */
369 FPU_DF_LITE, /* Limited Double Precision FPU */
370 FPU_SF_FULL, /* Full Single Precision FPU */
371 FPU_DF_FULL /* Full Double Single Precision FPU */
374 extern enum fpu_type_t fpu_type;
376 /* Specify the dialect of assembler to use. New mnemonics is dialect one
377 and the old mnemonics are dialect zero. */
378 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
380 /* Types of costly dependences. */
381 enum rs6000_dependence_cost
383 max_dep_latency = 1000,
384 no_dep_costly,
385 all_deps_costly,
386 true_store_to_load_dep_costly,
387 store_to_load_dep_costly
390 /* Types of nop insertion schemes in sched target hook sched_finish. */
391 enum rs6000_nop_insertion
393 sched_finish_regroup_exact = 1000,
394 sched_finish_pad_groups,
395 sched_finish_none
398 /* Dispatch group termination caused by an insn. */
399 enum group_termination
401 current_group,
402 previous_group
405 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
406 struct rs6000_cpu_select
408 const char *string;
409 const char *name;
410 int set_tune_p;
411 int set_arch_p;
414 extern struct rs6000_cpu_select rs6000_select[];
416 /* Debug support */
417 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
418 extern int rs6000_debug_stack; /* debug stack applications */
419 extern int rs6000_debug_arg; /* debug argument handling */
420 extern int rs6000_debug_reg; /* debug register handling */
421 extern int rs6000_debug_addr; /* debug memory addressing */
422 extern int rs6000_debug_cost; /* debug rtx_costs */
424 #define TARGET_DEBUG_STACK rs6000_debug_stack
425 #define TARGET_DEBUG_ARG rs6000_debug_arg
426 #define TARGET_DEBUG_REG rs6000_debug_reg
427 #define TARGET_DEBUG_ADDR rs6000_debug_addr
428 #define TARGET_DEBUG_COST rs6000_debug_cost
430 extern const char *rs6000_traceback_name; /* Type of traceback table. */
432 /* These are separate from target_flags because we've run out of bits
433 there. */
434 extern int rs6000_long_double_type_size;
435 extern int rs6000_ieeequad;
436 extern int rs6000_altivec_abi;
437 extern int rs6000_spe_abi;
438 extern int rs6000_spe;
439 extern int rs6000_float_gprs;
440 extern int rs6000_alignment_flags;
441 extern const char *rs6000_sched_insert_nops_str;
442 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
443 extern int rs6000_xilinx_fpu;
445 /* Describe which vector unit to use for a given machine mode. */
446 enum rs6000_vector {
447 VECTOR_NONE, /* Type is not a vector or not supported */
448 VECTOR_ALTIVEC, /* Use altivec for vector processing */
449 VECTOR_VSX, /* Use VSX for vector processing */
450 VECTOR_PAIRED, /* Use paired floating point for vectors */
451 VECTOR_SPE, /* Use SPE for vector processing */
452 VECTOR_OTHER /* Some other vector unit */
455 extern enum rs6000_vector rs6000_vector_unit[];
457 #define VECTOR_UNIT_NONE_P(MODE) \
458 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
460 #define VECTOR_UNIT_VSX_P(MODE) \
461 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
463 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
464 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
466 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
468 || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
470 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
471 same unit as the vector unit we are using, but we may want to migrate to
472 using VSX style loads even for types handled by altivec. */
473 extern enum rs6000_vector rs6000_vector_mem[];
475 #define VECTOR_MEM_NONE_P(MODE) \
476 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
478 #define VECTOR_MEM_VSX_P(MODE) \
479 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
481 #define VECTOR_MEM_ALTIVEC_P(MODE) \
482 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
484 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
485 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
486 || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
488 /* Return the alignment of a given vector type, which is set based on the
489 vector unit use. VSX for instance can load 32 or 64 bit aligned words
490 without problems, while Altivec requires 128-bit aligned vectors. */
491 extern int rs6000_vector_align[];
493 #define VECTOR_ALIGN(MODE) \
494 ((rs6000_vector_align[(MODE)] != 0) \
495 ? rs6000_vector_align[(MODE)] \
496 : (int)GET_MODE_BITSIZE ((MODE)))
498 /* Alignment options for fields in structures for sub-targets following
499 AIX-like ABI.
500 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
501 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
503 Override the macro definitions when compiling libobjc to avoid undefined
504 reference to rs6000_alignment_flags due to library's use of GCC alignment
505 macros which use the macros below. */
507 #ifndef IN_TARGET_LIBS
508 #define MASK_ALIGN_POWER 0x00000000
509 #define MASK_ALIGN_NATURAL 0x00000001
510 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
511 #else
512 #define TARGET_ALIGN_NATURAL 0
513 #endif
515 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
516 #define TARGET_IEEEQUAD rs6000_ieeequad
517 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
518 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
520 #define TARGET_SPE_ABI 0
521 #define TARGET_SPE 0
522 #define TARGET_E500 0
523 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
524 #define TARGET_FPRS 1
525 #define TARGET_E500_SINGLE 0
526 #define TARGET_E500_DOUBLE 0
527 #define CHECK_E500_OPTIONS do { } while (0)
529 /* E500 processors only support plain "sync", not lwsync. */
530 #define TARGET_NO_LWSYNC TARGET_E500
532 /* Sometimes certain combinations of command options do not make sense
533 on a particular target machine. You can define a macro
534 `OVERRIDE_OPTIONS' to take account of this. This macro, if
535 defined, is executed once just after all the command options have
536 been parsed.
538 Do not use this macro to turn on various extra optimizations for
539 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
541 On the RS/6000 this is used to define the target cpu type. */
543 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
545 /* Define this to change the optimizations performed by default. */
546 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
548 /* Show we can debug even without a frame pointer. */
549 #define CAN_DEBUG_WITHOUT_FP
551 /* Target pragma. */
552 #define REGISTER_TARGET_PRAGMAS() do { \
553 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
554 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
555 } while (0)
557 /* Target #defines. */
558 #define TARGET_CPU_CPP_BUILTINS() \
559 rs6000_cpu_cpp_builtins (pfile)
561 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
562 we're compiling for. Some configurations may need to override it. */
563 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
564 do \
566 if (BYTES_BIG_ENDIAN) \
568 builtin_define ("__BIG_ENDIAN__"); \
569 builtin_define ("_BIG_ENDIAN"); \
570 builtin_assert ("machine=bigendian"); \
572 else \
574 builtin_define ("__LITTLE_ENDIAN__"); \
575 builtin_define ("_LITTLE_ENDIAN"); \
576 builtin_assert ("machine=littleendian"); \
579 while (0)
581 /* Target machine storage layout. */
583 /* Define this macro if it is advisable to hold scalars in registers
584 in a wider mode than that declared by the program. In such cases,
585 the value is constrained to be within the bounds of the declared
586 type, but kept valid in the wider mode. The signedness of the
587 extension may differ from that of the type. */
589 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
590 if (GET_MODE_CLASS (MODE) == MODE_INT \
591 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
592 (MODE) = TARGET_32BIT ? SImode : DImode;
594 /* Define this if most significant bit is lowest numbered
595 in instructions that operate on numbered bit-fields. */
596 /* That is true on RS/6000. */
597 #define BITS_BIG_ENDIAN 1
599 /* Define this if most significant byte of a word is the lowest numbered. */
600 /* That is true on RS/6000. */
601 #define BYTES_BIG_ENDIAN 1
603 /* Define this if most significant word of a multiword number is lowest
604 numbered.
606 For RS/6000 we can decide arbitrarily since there are no machine
607 instructions for them. Might as well be consistent with bits and bytes. */
608 #define WORDS_BIG_ENDIAN 1
610 #define MAX_BITS_PER_WORD 64
612 /* Width of a word, in units (bytes). */
613 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
614 #ifdef IN_LIBGCC2
615 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
616 #else
617 #define MIN_UNITS_PER_WORD 4
618 #endif
619 #define UNITS_PER_FP_WORD 8
620 #define UNITS_PER_ALTIVEC_WORD 16
621 #define UNITS_PER_VSX_WORD 16
622 #define UNITS_PER_SPE_WORD 8
623 #define UNITS_PER_PAIRED_WORD 8
625 /* Type used for ptrdiff_t, as a string used in a declaration. */
626 #define PTRDIFF_TYPE "int"
628 /* Type used for size_t, as a string used in a declaration. */
629 #define SIZE_TYPE "long unsigned int"
631 /* Type used for wchar_t, as a string used in a declaration. */
632 #define WCHAR_TYPE "short unsigned int"
634 /* Width of wchar_t in bits. */
635 #define WCHAR_TYPE_SIZE 16
637 /* A C expression for the size in bits of the type `short' on the
638 target machine. If you don't define this, the default is half a
639 word. (If this would be less than one storage unit, it is
640 rounded up to one unit.) */
641 #define SHORT_TYPE_SIZE 16
643 /* A C expression for the size in bits of the type `int' on the
644 target machine. If you don't define this, the default is one
645 word. */
646 #define INT_TYPE_SIZE 32
648 /* A C expression for the size in bits of the type `long' on the
649 target machine. If you don't define this, the default is one
650 word. */
651 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
653 /* A C expression for the size in bits of the type `long long' on the
654 target machine. If you don't define this, the default is two
655 words. */
656 #define LONG_LONG_TYPE_SIZE 64
658 /* A C expression for the size in bits of the type `float' on the
659 target machine. If you don't define this, the default is one
660 word. */
661 #define FLOAT_TYPE_SIZE 32
663 /* A C expression for the size in bits of the type `double' on the
664 target machine. If you don't define this, the default is two
665 words. */
666 #define DOUBLE_TYPE_SIZE 64
668 /* A C expression for the size in bits of the type `long double' on
669 the target machine. If you don't define this, the default is two
670 words. */
671 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
673 /* Define this to set long double type size to use in libgcc2.c, which can
674 not depend on target_flags. */
675 #ifdef __LONG_DOUBLE_128__
676 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
677 #else
678 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
679 #endif
681 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
682 #define WIDEST_HARDWARE_FP_SIZE 64
684 /* Width in bits of a pointer.
685 See also the macro `Pmode' defined below. */
686 extern unsigned rs6000_pointer_size;
687 #define POINTER_SIZE rs6000_pointer_size
689 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
690 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
692 /* Boundary (in *bits*) on which stack pointer should be aligned. */
693 #define STACK_BOUNDARY \
694 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
695 ? 64 : 128)
697 /* Allocation boundary (in *bits*) for the code of a function. */
698 #define FUNCTION_BOUNDARY 32
700 /* No data type wants to be aligned rounder than this. */
701 #define BIGGEST_ALIGNMENT 128
703 /* A C expression to compute the alignment for a variables in the
704 local store. TYPE is the data type, and ALIGN is the alignment
705 that the object would ordinarily have. */
706 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
707 DATA_ALIGNMENT (TYPE, ALIGN)
709 /* Alignment of field after `int : 0' in a structure. */
710 #define EMPTY_FIELD_BOUNDARY 32
712 /* Every structure's size must be a multiple of this. */
713 #define STRUCTURE_SIZE_BOUNDARY 8
715 /* Return 1 if a structure or array containing FIELD should be
716 accessed using `BLKMODE'.
718 For the SPE, simd types are V2SI, and gcc can be tempted to put the
719 entire thing in a DI and use subregs to access the internals.
720 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
721 back-end. Because a single GPR can hold a V2SI, but not a DI, the
722 best thing to do is set structs to BLKmode and avoid Severe Tire
723 Damage.
725 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
726 fit into 1, whereas DI still needs two. */
727 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
728 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
729 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
731 /* A bit-field declared as `int' forces `int' alignment for the struct. */
732 #define PCC_BITFIELD_TYPE_MATTERS 1
734 /* Make strings word-aligned so strcpy from constants will be faster.
735 Make vector constants quadword aligned. */
736 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
737 (TREE_CODE (EXP) == STRING_CST \
738 && (STRICT_ALIGNMENT || !optimize_size) \
739 && (ALIGN) < BITS_PER_WORD \
740 ? BITS_PER_WORD \
741 : (ALIGN))
743 /* Make arrays of chars word-aligned for the same reasons.
744 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
745 64 bits. */
746 #define DATA_ALIGNMENT(TYPE, ALIGN) \
747 (TREE_CODE (TYPE) == VECTOR_TYPE \
748 ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
749 || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
750 ? 64 : 128) \
751 : ((TARGET_E500_DOUBLE \
752 && TREE_CODE (TYPE) == REAL_TYPE \
753 && TYPE_MODE (TYPE) == DFmode) \
754 ? 64 \
755 : (TREE_CODE (TYPE) == ARRAY_TYPE \
756 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
757 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
759 /* Nonzero if move instructions will actually fail to work
760 when given unaligned data. */
761 #define STRICT_ALIGNMENT 0
763 /* Define this macro to be the value 1 if unaligned accesses have a cost
764 many times greater than aligned accesses, for example if they are
765 emulated in a trap handler. */
766 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
767 memory instructions trap on unaligned accesses; VSX memory instructions are
768 aligned to 4 or 8 bytes. */
769 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
770 (STRICT_ALIGNMENT \
771 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
772 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
773 || (MODE) == DImode) \
774 && (ALIGN) < 32) \
775 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
778 /* Standard register usage. */
780 /* Number of actual hardware registers.
781 The hardware registers are assigned numbers for the compiler
782 from 0 to just below FIRST_PSEUDO_REGISTER.
783 All registers that the compiler knows about must be given numbers,
784 even those that are not normally considered general registers.
786 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
787 an MQ register, a count register, a link register, and 8 condition
788 register fields, which we view here as separate registers. AltiVec
789 adds 32 vector registers and a VRsave register.
791 In addition, the difference between the frame and argument pointers is
792 a function of the number of registers saved, so we need to have a
793 register for AP that will later be eliminated in favor of SP or FP.
794 This is a normal register, but it is fixed.
796 We also create a pseudo register for float/int conversions, that will
797 really represent the memory location used. It is represented here as
798 a register, in order to work around problems in allocating stack storage
799 in inline functions.
801 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
802 pointer, which is eventually eliminated in favor of SP or FP. */
804 #define FIRST_PSEUDO_REGISTER 114
806 /* This must be included for pre gcc 3.0 glibc compatibility. */
807 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
809 /* Add 32 dwarf columns for synthetic SPE registers. */
810 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
812 /* The SPE has an additional 32 synthetic registers, with DWARF debug
813 info numbering for these registers starting at 1200. While eh_frame
814 register numbering need not be the same as the debug info numbering,
815 we choose to number these regs for eh_frame at 1200 too. This allows
816 future versions of the rs6000 backend to add hard registers and
817 continue to use the gcc hard register numbering for eh_frame. If the
818 extra SPE registers in eh_frame were numbered starting from the
819 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
820 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
821 avoid invalidating older SPE eh_frame info.
823 We must map them here to avoid huge unwinder tables mostly consisting
824 of unused space. */
825 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
826 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
828 /* Use standard DWARF numbering for DWARF debugging information. */
829 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
831 /* Use gcc hard register numbering for eh_frame. */
832 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
834 /* Map register numbers held in the call frame info that gcc has
835 collected using DWARF_FRAME_REGNUM to those that should be output in
836 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
837 for .eh_frame, but use the numbers mandated by the various ABIs for
838 .debug_frame. rs6000_emit_prologue has translated any combination of
839 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
840 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
841 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
842 ((FOR_EH) ? (REGNO) \
843 : (REGNO) == CR2_REGNO ? 64 \
844 : DBX_REGISTER_NUMBER (REGNO))
846 /* 1 for registers that have pervasive standard uses
847 and are not available for the register allocator.
849 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
850 as a local register; for all other OS's r2 is the TOC pointer.
852 cr5 is not supposed to be used.
854 On System V implementations, r13 is fixed and not available for use. */
856 #define FIXED_REGISTERS \
857 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
858 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
861 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
862 /* AltiVec registers. */ \
863 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865 1, 1 \
866 , 1, 1, 1 \
869 /* 1 for registers not available across function calls.
870 These must include the FIXED_REGISTERS and also any
871 registers that can be used without being saved.
872 The latter must include the registers where values are returned
873 and the register where structure-value addresses are passed.
874 Aside from that, you can include as many other registers as you like. */
876 #define CALL_USED_REGISTERS \
877 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
880 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
881 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
882 /* AltiVec registers. */ \
883 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
885 1, 1 \
886 , 1, 1, 1 \
889 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
890 the entire set of `FIXED_REGISTERS' be included.
891 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
892 This macro is optional. If not specified, it defaults to the value
893 of `CALL_USED_REGISTERS'. */
895 #define CALL_REALLY_USED_REGISTERS \
896 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
897 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
899 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
900 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
901 /* AltiVec registers. */ \
902 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
903 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
904 0, 0 \
905 , 0, 0, 0 \
908 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
910 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
911 #define FIRST_SAVED_FP_REGNO (14+32)
912 #define FIRST_SAVED_GP_REGNO 13
914 /* List the order in which to allocate registers. Each register must be
915 listed once, even those in FIXED_REGISTERS.
917 We allocate in the following order:
918 fp0 (not saved or used for anything)
919 fp13 - fp2 (not saved; incoming fp arg registers)
920 fp1 (not saved; return value)
921 fp31 - fp14 (saved; order given to save least number)
922 cr7, cr6 (not saved or special)
923 cr1 (not saved, but used for FP operations)
924 cr0 (not saved, but used for arithmetic operations)
925 cr4, cr3, cr2 (saved)
926 r0 (not saved; cannot be base reg)
927 r9 (not saved; best for TImode)
928 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
929 r3 (not saved; return value register)
930 r31 - r13 (saved; order given to save least number)
931 r12 (not saved; if used for DImode or DFmode would use r13)
932 mq (not saved; best to use it if we can)
933 ctr (not saved; when we have the choice ctr is better)
934 lr (saved)
935 cr5, r1, r2, ap, xer (fixed)
936 v0 - v1 (not saved or used for anything)
937 v13 - v3 (not saved; incoming vector arg registers)
938 v2 (not saved; incoming vector arg reg; return value)
939 v19 - v14 (not saved or used for anything)
940 v31 - v20 (saved; order given to save least number)
941 vrsave, vscr (fixed)
942 spe_acc, spefscr (fixed)
943 sfp (fixed)
946 #if FIXED_R2 == 1
947 #define MAYBE_R2_AVAILABLE
948 #define MAYBE_R2_FIXED 2,
949 #else
950 #define MAYBE_R2_AVAILABLE 2,
951 #define MAYBE_R2_FIXED
952 #endif
954 #define REG_ALLOC_ORDER \
955 {32, \
956 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
957 33, \
958 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
959 50, 49, 48, 47, 46, \
960 75, 74, 69, 68, 72, 71, 70, \
961 0, MAYBE_R2_AVAILABLE \
962 9, 11, 10, 8, 7, 6, 5, 4, \
963 3, \
964 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
965 18, 17, 16, 15, 14, 13, 12, \
966 64, 66, 65, \
967 73, 1, MAYBE_R2_FIXED 67, 76, \
968 /* AltiVec registers. */ \
969 77, 78, \
970 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
971 79, \
972 96, 95, 94, 93, 92, 91, \
973 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
974 109, 110, \
975 111, 112, 113 \
978 /* True if register is floating-point. */
979 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
981 /* True if register is a condition register. */
982 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
984 /* True if register is a condition register, but not cr0. */
985 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
987 /* True if register is an integer register. */
988 #define INT_REGNO_P(N) \
989 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
991 /* SPE SIMD registers are just the GPRs. */
992 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
994 /* PAIRED SIMD registers are just the FPRs. */
995 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
997 /* True if register is the XER register. */
998 #define XER_REGNO_P(N) ((N) == XER_REGNO)
1000 /* True if register is an AltiVec register. */
1001 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1003 /* True if register is a VSX register. */
1004 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1006 /* Alternate name for any vector register supporting floating point, no matter
1007 which instruction set(s) are available. */
1008 #define VFLOAT_REGNO_P(N) \
1009 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1011 /* Alternate name for any vector register supporting integer, no matter which
1012 instruction set(s) are available. */
1013 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1015 /* Alternate name for any vector register supporting logical operations, no
1016 matter which instruction set(s) are available. */
1017 #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1019 /* Return number of consecutive hard regs needed starting at reg REGNO
1020 to hold something of mode MODE. */
1022 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1024 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1025 ((TARGET_32BIT && TARGET_POWERPC64 \
1026 && (GET_MODE_SIZE (MODE) > 4) \
1027 && INT_REGNO_P (REGNO)) ? 1 : 0)
1029 #define VSX_VECTOR_MODE(MODE) \
1030 ((MODE) == V4SFmode \
1031 || (MODE) == V2DFmode) \
1033 #define VSX_SCALAR_MODE(MODE) \
1034 ((MODE) == DFmode)
1036 #define VSX_MODE(MODE) \
1037 (VSX_VECTOR_MODE (MODE) \
1038 || VSX_SCALAR_MODE (MODE))
1040 #define VSX_MOVE_MODE(MODE) \
1041 (VSX_VECTOR_MODE (MODE) \
1042 || VSX_SCALAR_MODE (MODE) \
1043 || ALTIVEC_VECTOR_MODE (MODE) \
1044 || (MODE) == TImode)
1046 #define ALTIVEC_VECTOR_MODE(MODE) \
1047 ((MODE) == V16QImode \
1048 || (MODE) == V8HImode \
1049 || (MODE) == V4SFmode \
1050 || (MODE) == V4SImode)
1052 #define SPE_VECTOR_MODE(MODE) \
1053 ((MODE) == V4HImode \
1054 || (MODE) == V2SFmode \
1055 || (MODE) == V1DImode \
1056 || (MODE) == V2SImode)
1058 #define PAIRED_VECTOR_MODE(MODE) \
1059 ((MODE) == V2SFmode)
1061 #define UNITS_PER_SIMD_WORD(MODE) \
1062 (TARGET_VSX ? UNITS_PER_VSX_WORD \
1063 : (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
1064 : (TARGET_SPE ? UNITS_PER_SPE_WORD \
1065 : (TARGET_PAIRED_FLOAT ? UNITS_PER_PAIRED_WORD \
1066 : UNITS_PER_WORD))))
1068 /* Value is TRUE if hard register REGNO can hold a value of
1069 machine-mode MODE. */
1070 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1071 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1073 /* Value is 1 if it is a good idea to tie two pseudo registers
1074 when one has mode MODE1 and one has mode MODE2.
1075 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1076 for any hard reg, then this must be 0 for correct output. */
1077 #define MODES_TIEABLE_P(MODE1, MODE2) \
1078 (SCALAR_FLOAT_MODE_P (MODE1) \
1079 ? SCALAR_FLOAT_MODE_P (MODE2) \
1080 : SCALAR_FLOAT_MODE_P (MODE2) \
1081 ? SCALAR_FLOAT_MODE_P (MODE1) \
1082 : GET_MODE_CLASS (MODE1) == MODE_CC \
1083 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1084 : GET_MODE_CLASS (MODE2) == MODE_CC \
1085 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1086 : SPE_VECTOR_MODE (MODE1) \
1087 ? SPE_VECTOR_MODE (MODE2) \
1088 : SPE_VECTOR_MODE (MODE2) \
1089 ? SPE_VECTOR_MODE (MODE1) \
1090 : ALTIVEC_VECTOR_MODE (MODE1) \
1091 ? ALTIVEC_VECTOR_MODE (MODE2) \
1092 : ALTIVEC_VECTOR_MODE (MODE2) \
1093 ? ALTIVEC_VECTOR_MODE (MODE1) \
1094 : VSX_VECTOR_MODE (MODE1) \
1095 ? VSX_VECTOR_MODE (MODE2) \
1096 : VSX_VECTOR_MODE (MODE2) \
1097 ? VSX_VECTOR_MODE (MODE1) \
1098 : 1)
1100 /* Post-reload, we can't use any new AltiVec registers, as we already
1101 emitted the vrsave mask. */
1103 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1104 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1106 /* A C expression returning the cost of moving data from a register of class
1107 CLASS1 to one of CLASS2. */
1109 #define REGISTER_MOVE_COST rs6000_register_move_cost
1111 /* A C expressions returning the cost of moving data of MODE from a register to
1112 or from memory. */
1114 #define MEMORY_MOVE_COST rs6000_memory_move_cost
1116 /* Specify the cost of a branch insn; roughly the number of extra insns that
1117 should be added to avoid a branch.
1119 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1120 unscheduled conditional branch. */
1122 #define BRANCH_COST(speed_p, predictable_p) 3
1124 /* Override BRANCH_COST heuristic which empirically produces worse
1125 performance for removing short circuiting from the logical ops. */
1127 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1129 /* A fixed register used at epilogue generation to address SPE registers
1130 with negative offsets. The 64-bit load/store instructions on the SPE
1131 only take positive offsets (and small ones at that), so we need to
1132 reserve a register for consing up negative offsets. */
1134 #define FIXED_SCRATCH 0
1136 /* Define this macro to change register usage conditional on target
1137 flags. */
1139 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1141 /* Specify the registers used for certain standard purposes.
1142 The values of these macros are register numbers. */
1144 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1145 /* #define PC_REGNUM */
1147 /* Register to use for pushing function arguments. */
1148 #define STACK_POINTER_REGNUM 1
1150 /* Base register for access to local variables of the function. */
1151 #define HARD_FRAME_POINTER_REGNUM 31
1153 /* Base register for access to local variables of the function. */
1154 #define FRAME_POINTER_REGNUM 113
1156 /* Base register for access to arguments of the function. */
1157 #define ARG_POINTER_REGNUM 67
1159 /* Place to put static chain when calling a function that requires it. */
1160 #define STATIC_CHAIN_REGNUM 11
1163 /* Define the classes of registers for register constraints in the
1164 machine description. Also define ranges of constants.
1166 One of the classes must always be named ALL_REGS and include all hard regs.
1167 If there is more than one class, another class must be named NO_REGS
1168 and contain no registers.
1170 The name GENERAL_REGS must be the name of a class (or an alias for
1171 another name such as ALL_REGS). This is the class of registers
1172 that is allowed by "g" or "r" in a register constraint.
1173 Also, registers outside this class are allocated only when
1174 instructions express preferences for them.
1176 The classes must be numbered in nondecreasing order; that is,
1177 a larger-numbered class must never be contained completely
1178 in a smaller-numbered class.
1180 For any two classes, it is very desirable that there be another
1181 class that represents their union. */
1183 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1184 condition registers, plus three special registers, MQ, CTR, and the link
1185 register. AltiVec adds a vector register class. VSX registers overlap the
1186 FPR registers and the Altivec registers.
1188 However, r0 is special in that it cannot be used as a base register.
1189 So make a class for registers valid as base registers.
1191 Also, cr0 is the only condition code register that can be used in
1192 arithmetic insns, so make a separate class for it. */
1194 enum reg_class
1196 NO_REGS,
1197 BASE_REGS,
1198 GENERAL_REGS,
1199 FLOAT_REGS,
1200 ALTIVEC_REGS,
1201 VSX_REGS,
1202 VRSAVE_REGS,
1203 VSCR_REGS,
1204 SPE_ACC_REGS,
1205 SPEFSCR_REGS,
1206 NON_SPECIAL_REGS,
1207 MQ_REGS,
1208 LINK_REGS,
1209 CTR_REGS,
1210 LINK_OR_CTR_REGS,
1211 SPECIAL_REGS,
1212 SPEC_OR_GEN_REGS,
1213 CR0_REGS,
1214 CR_REGS,
1215 NON_FLOAT_REGS,
1216 XER_REGS,
1217 ALL_REGS,
1218 LIM_REG_CLASSES
1221 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1223 /* Give names of register classes as strings for dump file. */
1225 #define REG_CLASS_NAMES \
1227 "NO_REGS", \
1228 "BASE_REGS", \
1229 "GENERAL_REGS", \
1230 "FLOAT_REGS", \
1231 "ALTIVEC_REGS", \
1232 "VSX_REGS", \
1233 "VRSAVE_REGS", \
1234 "VSCR_REGS", \
1235 "SPE_ACC_REGS", \
1236 "SPEFSCR_REGS", \
1237 "NON_SPECIAL_REGS", \
1238 "MQ_REGS", \
1239 "LINK_REGS", \
1240 "CTR_REGS", \
1241 "LINK_OR_CTR_REGS", \
1242 "SPECIAL_REGS", \
1243 "SPEC_OR_GEN_REGS", \
1244 "CR0_REGS", \
1245 "CR_REGS", \
1246 "NON_FLOAT_REGS", \
1247 "XER_REGS", \
1248 "ALL_REGS" \
1251 /* Define which registers fit in which classes.
1252 This is an initializer for a vector of HARD_REG_SET
1253 of length N_REG_CLASSES. */
1255 #define REG_CLASS_CONTENTS \
1257 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1258 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1259 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1260 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1261 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1262 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1263 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1264 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1265 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1266 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1267 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1268 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1269 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1270 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1271 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1272 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1273 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1274 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1275 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1276 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1277 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1278 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1281 /* The following macro defines cover classes for Integrated Register
1282 Allocator. Cover classes is a set of non-intersected register
1283 classes covering all hard registers used for register allocation
1284 purpose. Any move between two registers of a cover class should be
1285 cheaper than load or store of the registers. The macro value is
1286 array of register classes with LIM_REG_CLASSES used as the end
1287 marker.
1289 We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to
1290 account for the Altivec and Floating registers being subsets of the VSX
1291 register set. */
1293 #define IRA_COVER_CLASSES_PRE_VSX \
1295 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, /* VSX_REGS, */ \
1296 /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1297 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1298 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1301 #define IRA_COVER_CLASSES_VSX \
1303 GENERAL_REGS, SPECIAL_REGS, /* FLOAT_REGS, ALTIVEC_REGS, */ VSX_REGS, \
1304 /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1305 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1306 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1309 /* The same information, inverted:
1310 Return the class number of the smallest class containing
1311 reg number REGNO. This could be a conditional expression
1312 or could index an array. */
1314 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1316 #if ENABLE_CHECKING
1317 #define REGNO_REG_CLASS(REGNO) \
1318 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1319 rs6000_regno_regclass[(REGNO)])
1321 #else
1322 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1323 #endif
1325 /* Register classes for various constraints that are based on the target
1326 switches. */
1327 enum r6000_reg_class_enum {
1328 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1329 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1330 RS6000_CONSTRAINT_v, /* Altivec registers */
1331 RS6000_CONSTRAINT_wa, /* Any VSX register */
1332 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1333 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1334 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1335 RS6000_CONSTRAINT_MAX
1338 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1340 /* The class value for index registers, and the one for base regs. */
1341 #define INDEX_REG_CLASS GENERAL_REGS
1342 #define BASE_REG_CLASS BASE_REGS
1344 /* Return whether a given register class can hold VSX objects. */
1345 #define VSX_REG_CLASS_P(CLASS) \
1346 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1348 /* Given an rtx X being reloaded into a reg required to be
1349 in class CLASS, return the class of reg to actually use.
1350 In general this is just CLASS; but on some machines
1351 in some cases it is preferable to use a more restrictive class.
1353 On the RS/6000, we have to return NO_REGS when we want to reload a
1354 floating-point CONST_DOUBLE to force it to be copied to memory.
1356 We also don't want to reload integer values into floating-point
1357 registers if we can at all help it. In fact, this can
1358 cause reload to die, if it tries to generate a reload of CTR
1359 into a FP register and discovers it doesn't have the memory location
1360 required.
1362 ??? Would it be a good idea to have reload do the converse, that is
1363 try to reload floating modes into FP registers if possible?
1366 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1367 rs6000_preferred_reload_class_ptr (X, CLASS)
1369 /* Return the register class of a scratch register needed to copy IN into
1370 or out of a register in CLASS in MODE. If it can be done directly,
1371 NO_REGS is returned. */
1373 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1374 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1376 /* If we are copying between FP or AltiVec registers and anything
1377 else, we need a memory location. The exception is when we are
1378 targeting ppc64 and the move to/from fpr to gpr instructions
1379 are available.*/
1381 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1382 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1384 /* For cpus that cannot load/store SDmode values from the 64-bit
1385 FP registers without using a full 64-bit load/store, we need
1386 to allocate a full 64-bit stack slot for them. */
1388 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1389 rs6000_secondary_memory_needed_rtx (MODE)
1391 /* Return the maximum number of consecutive registers
1392 needed to represent mode MODE in a register of class CLASS.
1394 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1395 a single reg is enough for two words, unless we have VSX, where the FP
1396 registers can hold 128 bits. */
1397 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1399 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1401 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1402 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1404 /* Stack layout; function entry, exit and calling. */
1406 /* Enumeration to give which calling sequence to use. */
1407 enum rs6000_abi {
1408 ABI_NONE,
1409 ABI_AIX, /* IBM's AIX */
1410 ABI_V4, /* System V.4/eabi */
1411 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1414 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1416 /* Define this if pushing a word on the stack
1417 makes the stack pointer a smaller address. */
1418 #define STACK_GROWS_DOWNWARD
1420 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1421 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1423 /* Define this to nonzero if the nominal address of the stack frame
1424 is at the high-address end of the local variables;
1425 that is, each additional local variable allocated
1426 goes at a more negative offset in the frame.
1428 On the RS/6000, we grow upwards, from the area after the outgoing
1429 arguments. */
1430 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1432 /* Size of the outgoing register save area */
1433 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1434 || DEFAULT_ABI == ABI_DARWIN) \
1435 ? (TARGET_64BIT ? 64 : 32) \
1436 : 0)
1438 /* Size of the fixed area on the stack */
1439 #define RS6000_SAVE_AREA \
1440 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1441 << (TARGET_64BIT ? 1 : 0))
1443 /* MEM representing address to save the TOC register */
1444 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1445 plus_constant (stack_pointer_rtx, \
1446 (TARGET_32BIT ? 20 : 40)))
1448 /* Align an address */
1449 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1451 /* Offset within stack frame to start allocating local variables at.
1452 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1453 first local allocated. Otherwise, it is the offset to the BEGINNING
1454 of the first local allocated.
1456 On the RS/6000, the frame pointer is the same as the stack pointer,
1457 except for dynamic allocations. So we start after the fixed area and
1458 outgoing parameter area. */
1460 #define STARTING_FRAME_OFFSET \
1461 (FRAME_GROWS_DOWNWARD \
1462 ? 0 \
1463 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1464 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1465 + RS6000_SAVE_AREA))
1467 /* Offset from the stack pointer register to an item dynamically
1468 allocated on the stack, e.g., by `alloca'.
1470 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1471 length of the outgoing arguments. The default is correct for most
1472 machines. See `function.c' for details. */
1473 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1474 (RS6000_ALIGN (crtl->outgoing_args_size, \
1475 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1476 + (STACK_POINTER_OFFSET))
1478 /* If we generate an insn to push BYTES bytes,
1479 this says how many the stack pointer really advances by.
1480 On RS/6000, don't define this because there are no push insns. */
1481 /* #define PUSH_ROUNDING(BYTES) */
1483 /* Offset of first parameter from the argument pointer register value.
1484 On the RS/6000, we define the argument pointer to the start of the fixed
1485 area. */
1486 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1488 /* Offset from the argument pointer register value to the top of
1489 stack. This is different from FIRST_PARM_OFFSET because of the
1490 register save area. */
1491 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1493 /* Define this if stack space is still allocated for a parameter passed
1494 in a register. The value is the number of bytes allocated to this
1495 area. */
1496 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1498 /* Define this if the above stack space is to be considered part of the
1499 space allocated by the caller. */
1500 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1502 /* This is the difference between the logical top of stack and the actual sp.
1504 For the RS/6000, sp points past the fixed area. */
1505 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1507 /* Define this if the maximum size of all the outgoing args is to be
1508 accumulated and pushed during the prologue. The amount can be
1509 found in the variable crtl->outgoing_args_size. */
1510 #define ACCUMULATE_OUTGOING_ARGS 1
1512 /* Value is the number of bytes of arguments automatically
1513 popped when returning from a subroutine call.
1514 FUNDECL is the declaration node of the function (as a tree),
1515 FUNTYPE is the data type of the function (as a tree),
1516 or for a library call it is an identifier node for the subroutine name.
1517 SIZE is the number of bytes of arguments passed on the stack. */
1519 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1521 /* Define how to find the value returned by a library function
1522 assuming the value has mode MODE. */
1524 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1526 /* DRAFT_V4_STRUCT_RET defaults off. */
1527 #define DRAFT_V4_STRUCT_RET 0
1529 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1530 #define DEFAULT_PCC_STRUCT_RETURN 0
1532 /* Mode of stack savearea.
1533 FUNCTION is VOIDmode because calling convention maintains SP.
1534 BLOCK needs Pmode for SP.
1535 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1536 #define STACK_SAVEAREA_MODE(LEVEL) \
1537 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1538 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1540 /* Minimum and maximum general purpose registers used to hold arguments. */
1541 #define GP_ARG_MIN_REG 3
1542 #define GP_ARG_MAX_REG 10
1543 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1545 /* Minimum and maximum floating point registers used to hold arguments. */
1546 #define FP_ARG_MIN_REG 33
1547 #define FP_ARG_AIX_MAX_REG 45
1548 #define FP_ARG_V4_MAX_REG 40
1549 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1550 || DEFAULT_ABI == ABI_DARWIN) \
1551 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1552 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1554 /* Minimum and maximum AltiVec registers used to hold arguments. */
1555 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1556 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1557 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1559 /* Return registers */
1560 #define GP_ARG_RETURN GP_ARG_MIN_REG
1561 #define FP_ARG_RETURN FP_ARG_MIN_REG
1562 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1564 /* Flags for the call/call_value rtl operations set up by function_arg */
1565 #define CALL_NORMAL 0x00000000 /* no special processing */
1566 /* Bits in 0x00000001 are unused. */
1567 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1568 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1569 #define CALL_LONG 0x00000008 /* always call indirect */
1570 #define CALL_LIBCALL 0x00000010 /* libcall */
1572 /* We don't have prologue and epilogue functions to save/restore
1573 everything for most ABIs. */
1574 #define WORLD_SAVE_P(INFO) 0
1576 /* 1 if N is a possible register number for a function value
1577 as seen by the caller.
1579 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1580 #define FUNCTION_VALUE_REGNO_P(N) \
1581 ((N) == GP_ARG_RETURN \
1582 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1583 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1585 /* 1 if N is a possible register number for function argument passing.
1586 On RS/6000, these are r3-r10 and fp1-fp13.
1587 On AltiVec, v2 - v13 are used for passing vectors. */
1588 #define FUNCTION_ARG_REGNO_P(N) \
1589 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1590 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1591 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1592 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1593 && TARGET_HARD_FLOAT && TARGET_FPRS))
1595 /* Define a data type for recording info about an argument list
1596 during the scan of that argument list. This data type should
1597 hold all necessary information about the function itself
1598 and about the args processed so far, enough to enable macros
1599 such as FUNCTION_ARG to determine where the next arg should go.
1601 On the RS/6000, this is a structure. The first element is the number of
1602 total argument words, the second is used to store the next
1603 floating-point register number, and the third says how many more args we
1604 have prototype types for.
1606 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1607 the next available GP register, `fregno' is the next available FP
1608 register, and `words' is the number of words used on the stack.
1610 The varargs/stdarg support requires that this structure's size
1611 be a multiple of sizeof(int). */
1613 typedef struct rs6000_args
1615 int words; /* # words used for passing GP registers */
1616 int fregno; /* next available FP register */
1617 int vregno; /* next available AltiVec register */
1618 int nargs_prototype; /* # args left in the current prototype */
1619 int prototype; /* Whether a prototype was defined */
1620 int stdarg; /* Whether function is a stdarg function. */
1621 int call_cookie; /* Do special things for this call */
1622 int sysv_gregno; /* next available GP register */
1623 int intoffset; /* running offset in struct (darwin64) */
1624 int use_stack; /* any part of struct on stack (darwin64) */
1625 int named; /* false for varargs params */
1626 } CUMULATIVE_ARGS;
1628 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1629 for a call to a function whose data type is FNTYPE.
1630 For a library call, FNTYPE is 0. */
1632 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1633 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1635 /* Similar, but when scanning the definition of a procedure. We always
1636 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1638 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1639 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1641 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1643 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1644 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1646 /* Update the data in CUM to advance over an argument
1647 of mode MODE and data type TYPE.
1648 (TYPE is null for libcalls where that information may not be available.) */
1650 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1651 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1653 /* Determine where to put an argument to a function.
1654 Value is zero to push the argument on the stack,
1655 or a hard register in which to store the argument.
1657 MODE is the argument's machine mode.
1658 TYPE is the data type of the argument (as a tree).
1659 This is null for libcalls where that information may
1660 not be available.
1661 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1662 the preceding args and about the function being called.
1663 NAMED is nonzero if this argument is a named parameter
1664 (otherwise it is an extra parameter matching an ellipsis).
1666 On RS/6000 the first eight words of non-FP are normally in registers
1667 and the rest are pushed. The first 13 FP args are in registers.
1669 If this is floating-point and no prototype is specified, we use
1670 both an FP and integer register (or possibly FP reg and stack). Library
1671 functions (when TYPE is zero) always have the proper types for args,
1672 so we can pass the FP value just in one register. emit_library_function
1673 doesn't support EXPR_LIST anyway. */
1675 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1676 function_arg (&CUM, MODE, TYPE, NAMED)
1678 /* If defined, a C expression which determines whether, and in which
1679 direction, to pad out an argument with extra space. The value
1680 should be of type `enum direction': either `upward' to pad above
1681 the argument, `downward' to pad below, or `none' to inhibit
1682 padding. */
1684 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1686 /* If defined, a C expression that gives the alignment boundary, in bits,
1687 of an argument with the specified mode and type. If it is not defined,
1688 PARM_BOUNDARY is used for all arguments. */
1690 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1691 function_arg_boundary (MODE, TYPE)
1693 #define PAD_VARARGS_DOWN \
1694 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1696 /* Output assembler code to FILE to increment profiler label # LABELNO
1697 for profiling a function entry. */
1699 #define FUNCTION_PROFILER(FILE, LABELNO) \
1700 output_function_profiler ((FILE), (LABELNO));
1702 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1703 the stack pointer does not matter. No definition is equivalent to
1704 always zero.
1706 On the RS/6000, this is nonzero because we can restore the stack from
1707 its backpointer, which we maintain. */
1708 #define EXIT_IGNORE_STACK 1
1710 /* Define this macro as a C expression that is nonzero for registers
1711 that are used by the epilogue or the return' pattern. The stack
1712 and frame pointer registers are already be assumed to be used as
1713 needed. */
1715 #define EPILOGUE_USES(REGNO) \
1716 ((reload_completed && (REGNO) == LR_REGNO) \
1717 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1718 || (crtl->calls_eh_return \
1719 && TARGET_AIX \
1720 && (REGNO) == 2))
1723 /* Length in units of the trampoline for entering a nested function. */
1725 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1727 /* Definitions for __builtin_return_address and __builtin_frame_address.
1728 __builtin_return_address (0) should give link register (65), enable
1729 this. */
1730 /* This should be uncommented, so that the link register is used, but
1731 currently this would result in unmatched insns and spilling fixed
1732 registers so we'll leave it for another day. When these problems are
1733 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1734 (mrs) */
1735 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1737 /* Number of bytes into the frame return addresses can be found. See
1738 rs6000_stack_info in rs6000.c for more information on how the different
1739 abi's store the return address. */
1740 #define RETURN_ADDRESS_OFFSET \
1741 ((DEFAULT_ABI == ABI_AIX \
1742 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1743 (DEFAULT_ABI == ABI_V4) ? 4 : \
1744 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1746 /* The current return address is in link register (65). The return address
1747 of anything farther back is accessed normally at an offset of 8 from the
1748 frame pointer. */
1749 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1750 (rs6000_return_addr (COUNT, FRAME))
1753 /* Definitions for register eliminations.
1755 We have two registers that can be eliminated on the RS/6000. First, the
1756 frame pointer register can often be eliminated in favor of the stack
1757 pointer register. Secondly, the argument pointer register can always be
1758 eliminated; it is replaced with either the stack or frame pointer.
1760 In addition, we use the elimination mechanism to see if r30 is needed
1761 Initially we assume that it isn't. If it is, we spill it. This is done
1762 by making it an eliminable register. We replace it with itself so that
1763 if it isn't needed, then existing uses won't be modified. */
1765 /* This is an array of structures. Each structure initializes one pair
1766 of eliminable registers. The "from" register number is given first,
1767 followed by "to". Eliminations of the same "from" register are listed
1768 in order of preference. */
1769 #define ELIMINABLE_REGS \
1770 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1771 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1772 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1773 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1774 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1775 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1777 /* Define the offset between two registers, one to be eliminated, and the other
1778 its replacement, at the start of a routine. */
1779 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1780 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1782 /* Addressing modes, and classification of registers for them. */
1784 #define HAVE_PRE_DECREMENT 1
1785 #define HAVE_PRE_INCREMENT 1
1786 #define HAVE_PRE_MODIFY_DISP 1
1787 #define HAVE_PRE_MODIFY_REG 1
1789 /* Macros to check register numbers against specific register classes. */
1791 /* These assume that REGNO is a hard or pseudo reg number.
1792 They give nonzero only if REGNO is a hard reg of the suitable class
1793 or a pseudo reg currently allocated to a suitable hard reg.
1794 Since they use reg_renumber, they are safe only once reg_renumber
1795 has been allocated, which happens in local-alloc.c. */
1797 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1798 ((REGNO) < FIRST_PSEUDO_REGISTER \
1799 ? (REGNO) <= 31 || (REGNO) == 67 \
1800 || (REGNO) == FRAME_POINTER_REGNUM \
1801 : (reg_renumber[REGNO] >= 0 \
1802 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1803 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1805 #define REGNO_OK_FOR_BASE_P(REGNO) \
1806 ((REGNO) < FIRST_PSEUDO_REGISTER \
1807 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1808 || (REGNO) == FRAME_POINTER_REGNUM \
1809 : (reg_renumber[REGNO] > 0 \
1810 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1811 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1813 /* Nonzero if X is a hard reg that can be used as an index
1814 or if it is a pseudo reg in the non-strict case. */
1815 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1816 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1817 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1819 /* Nonzero if X is a hard reg that can be used as a base reg
1820 or if it is a pseudo reg in the non-strict case. */
1821 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1822 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1823 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1826 /* Maximum number of registers that can appear in a valid memory address. */
1828 #define MAX_REGS_PER_ADDRESS 2
1830 /* Recognize any constant value that is a valid address. */
1832 #define CONSTANT_ADDRESS_P(X) \
1833 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1834 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1835 || GET_CODE (X) == HIGH)
1837 /* Nonzero if the constant value X is a legitimate general operand.
1838 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1840 On the RS/6000, all integer constants are acceptable, most won't be valid
1841 for particular insns, though. Only easy FP constants are
1842 acceptable. */
1844 #define LEGITIMATE_CONSTANT_P(X) \
1845 (((GET_CODE (X) != CONST_DOUBLE \
1846 && GET_CODE (X) != CONST_VECTOR) \
1847 || GET_MODE (X) == VOIDmode \
1848 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1849 || easy_fp_constant (X, GET_MODE (X)) \
1850 || easy_vector_constant (X, GET_MODE (X))) \
1851 && !rs6000_tls_referenced_p (X))
1853 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1854 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1855 && EASY_VECTOR_15((n) >> 1) \
1856 && ((n) & 1) == 0)
1858 #define EASY_VECTOR_MSB(n,mode) \
1859 (((unsigned HOST_WIDE_INT)n) == \
1860 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1863 /* Try a machine-dependent way of reloading an illegitimate address
1864 operand. If we find one, push the reload and jump to WIN. This
1865 macro is used in only one place: `find_reloads_address' in reload.c.
1867 Implemented on rs6000 by rs6000_legitimize_reload_address.
1868 Note that (X) is evaluated twice; this is safe in current usage. */
1870 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1871 do { \
1872 int win; \
1873 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1874 (int)(TYPE), (IND_LEVELS), &win); \
1875 if ( win ) \
1876 goto WIN; \
1877 } while (0)
1879 /* Go to LABEL if ADDR (a legitimate address expression)
1880 has an effect that depends on the machine mode it is used for. */
1882 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1883 do { \
1884 if (rs6000_mode_dependent_address_ptr (ADDR)) \
1885 goto LABEL; \
1886 } while (0)
1888 #define FIND_BASE_TERM rs6000_find_base_term
1890 /* The register number of the register used to address a table of
1891 static data addresses in memory. In some cases this register is
1892 defined by a processor's "application binary interface" (ABI).
1893 When this macro is defined, RTL is generated for this register
1894 once, as with the stack pointer and frame pointer registers. If
1895 this macro is not defined, it is up to the machine-dependent files
1896 to allocate such a register (if necessary). */
1898 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1899 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1901 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1903 /* Define this macro if the register defined by
1904 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1905 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1907 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1909 /* A C expression that is nonzero if X is a legitimate immediate
1910 operand on the target machine when generating position independent
1911 code. You can assume that X satisfies `CONSTANT_P', so you need
1912 not check this. You can also assume FLAG_PIC is true, so you need
1913 not check it either. You need not define this macro if all
1914 constants (including `SYMBOL_REF') can be immediate operands when
1915 generating position independent code. */
1917 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1919 /* Define this if some processing needs to be done immediately before
1920 emitting code for an insn. */
1922 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1923 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1925 /* Specify the machine mode that this machine uses
1926 for the index in the tablejump instruction. */
1927 #define CASE_VECTOR_MODE SImode
1929 /* Define as C expression which evaluates to nonzero if the tablejump
1930 instruction expects the table to contain offsets from the address of the
1931 table.
1932 Do not define this if the table should contain absolute addresses. */
1933 #define CASE_VECTOR_PC_RELATIVE 1
1935 /* Define this as 1 if `char' should by default be signed; else as 0. */
1936 #define DEFAULT_SIGNED_CHAR 0
1938 /* This flag, if defined, says the same insns that convert to a signed fixnum
1939 also convert validly to an unsigned one. */
1941 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1943 /* An integer expression for the size in bits of the largest integer machine
1944 mode that should actually be used. */
1946 /* Allow pairs of registers to be used, which is the intent of the default. */
1947 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1949 /* Max number of bytes we can move from memory to memory
1950 in one reasonably fast instruction. */
1951 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1952 #define MAX_MOVE_MAX 8
1954 /* Nonzero if access to memory by bytes is no faster than for words.
1955 Also nonzero if doing byte operations (specifically shifts) in registers
1956 is undesirable. */
1957 #define SLOW_BYTE_ACCESS 1
1959 /* Define if operations between registers always perform the operation
1960 on the full register even if a narrower mode is specified. */
1961 #define WORD_REGISTER_OPERATIONS
1963 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1964 will either zero-extend or sign-extend. The value of this macro should
1965 be the code that says which one of the two operations is implicitly
1966 done, UNKNOWN if none. */
1967 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1969 /* Define if loading short immediate values into registers sign extends. */
1970 #define SHORT_IMMEDIATES_SIGN_EXTEND
1972 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1973 is done just by pretending it is already truncated. */
1974 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1976 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1977 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1978 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1980 /* The CTZ patterns return -1 for input of zero. */
1981 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1983 /* Specify the machine mode that pointers have.
1984 After generation of rtl, the compiler makes no further distinction
1985 between pointers and any other objects of this machine mode. */
1986 extern unsigned rs6000_pmode;
1987 #define Pmode ((enum machine_mode)rs6000_pmode)
1989 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1990 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1992 /* Mode of a function address in a call instruction (for indexing purposes).
1993 Doesn't matter on RS/6000. */
1994 #define FUNCTION_MODE SImode
1996 /* Define this if addresses of constant functions
1997 shouldn't be put through pseudo regs where they can be cse'd.
1998 Desirable on machines where ordinary constants are expensive
1999 but a CALL with constant address is cheap. */
2000 #define NO_FUNCTION_CSE
2002 /* Define this to be nonzero if shift instructions ignore all but the low-order
2003 few bits.
2005 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2006 have been dropped from the PowerPC architecture. */
2008 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2010 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2011 should be adjusted to reflect any required changes. This macro is used when
2012 there is some systematic length adjustment required that would be difficult
2013 to express in the length attribute. */
2015 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2017 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2018 COMPARE, return the mode to be used for the comparison. For
2019 floating-point, CCFPmode should be used. CCUNSmode should be used
2020 for unsigned comparisons. CCEQmode should be used when we are
2021 doing an inequality comparison on the result of a
2022 comparison. CCmode should be used in all other cases. */
2024 #define SELECT_CC_MODE(OP,X,Y) \
2025 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2026 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2027 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2028 ? CCEQmode : CCmode))
2030 /* Can the condition code MODE be safely reversed? This is safe in
2031 all cases on this port, because at present it doesn't use the
2032 trapping FP comparisons (fcmpo). */
2033 #define REVERSIBLE_CC_MODE(MODE) 1
2035 /* Given a condition code and a mode, return the inverse condition. */
2036 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2039 /* Control the assembler format that we output. */
2041 /* A C string constant describing how to begin a comment in the target
2042 assembler language. The compiler assumes that the comment will end at
2043 the end of the line. */
2044 #define ASM_COMMENT_START " #"
2046 /* Flag to say the TOC is initialized */
2047 extern int toc_initialized;
2049 /* Macro to output a special constant pool entry. Go to WIN if we output
2050 it. Otherwise, it is written the usual way.
2052 On the RS/6000, toc entries are handled this way. */
2054 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2055 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2057 output_toc (FILE, X, LABELNO, MODE); \
2058 goto WIN; \
2062 #ifdef HAVE_GAS_WEAK
2063 #define RS6000_WEAK 1
2064 #else
2065 #define RS6000_WEAK 0
2066 #endif
2068 #if RS6000_WEAK
2069 /* Used in lieu of ASM_WEAKEN_LABEL. */
2070 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2071 do \
2073 fputs ("\t.weak\t", (FILE)); \
2074 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2075 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2076 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2078 if (TARGET_XCOFF) \
2079 fputs ("[DS]", (FILE)); \
2080 fputs ("\n\t.weak\t.", (FILE)); \
2081 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2083 fputc ('\n', (FILE)); \
2084 if (VAL) \
2086 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2087 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2088 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2090 fputs ("\t.set\t.", (FILE)); \
2091 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2092 fputs (",.", (FILE)); \
2093 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2094 fputc ('\n', (FILE)); \
2098 while (0)
2099 #endif
2101 #if HAVE_GAS_WEAKREF
2102 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2103 do \
2105 fputs ("\t.weakref\t", (FILE)); \
2106 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2107 fputs (", ", (FILE)); \
2108 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2109 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2110 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2112 fputs ("\n\t.weakref\t.", (FILE)); \
2113 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2114 fputs (", .", (FILE)); \
2115 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2117 fputc ('\n', (FILE)); \
2118 } while (0)
2119 #endif
2121 /* This implements the `alias' attribute. */
2122 #undef ASM_OUTPUT_DEF_FROM_DECLS
2123 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2124 do \
2126 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2127 const char *name = IDENTIFIER_POINTER (TARGET); \
2128 if (TREE_CODE (DECL) == FUNCTION_DECL \
2129 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2131 if (TREE_PUBLIC (DECL)) \
2133 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2135 fputs ("\t.globl\t.", FILE); \
2136 RS6000_OUTPUT_BASENAME (FILE, alias); \
2137 putc ('\n', FILE); \
2140 else if (TARGET_XCOFF) \
2142 fputs ("\t.lglobl\t.", FILE); \
2143 RS6000_OUTPUT_BASENAME (FILE, alias); \
2144 putc ('\n', FILE); \
2146 fputs ("\t.set\t.", FILE); \
2147 RS6000_OUTPUT_BASENAME (FILE, alias); \
2148 fputs (",.", FILE); \
2149 RS6000_OUTPUT_BASENAME (FILE, name); \
2150 fputc ('\n', FILE); \
2152 ASM_OUTPUT_DEF (FILE, alias, name); \
2154 while (0)
2156 #define TARGET_ASM_FILE_START rs6000_file_start
2158 /* Output to assembler file text saying following lines
2159 may contain character constants, extra white space, comments, etc. */
2161 #define ASM_APP_ON ""
2163 /* Output to assembler file text saying following lines
2164 no longer contain unusual constructs. */
2166 #define ASM_APP_OFF ""
2168 /* How to refer to registers in assembler output.
2169 This sequence is indexed by compiler's hard-register-number (see above). */
2171 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2173 #define REGISTER_NAMES \
2175 &rs6000_reg_names[ 0][0], /* r0 */ \
2176 &rs6000_reg_names[ 1][0], /* r1 */ \
2177 &rs6000_reg_names[ 2][0], /* r2 */ \
2178 &rs6000_reg_names[ 3][0], /* r3 */ \
2179 &rs6000_reg_names[ 4][0], /* r4 */ \
2180 &rs6000_reg_names[ 5][0], /* r5 */ \
2181 &rs6000_reg_names[ 6][0], /* r6 */ \
2182 &rs6000_reg_names[ 7][0], /* r7 */ \
2183 &rs6000_reg_names[ 8][0], /* r8 */ \
2184 &rs6000_reg_names[ 9][0], /* r9 */ \
2185 &rs6000_reg_names[10][0], /* r10 */ \
2186 &rs6000_reg_names[11][0], /* r11 */ \
2187 &rs6000_reg_names[12][0], /* r12 */ \
2188 &rs6000_reg_names[13][0], /* r13 */ \
2189 &rs6000_reg_names[14][0], /* r14 */ \
2190 &rs6000_reg_names[15][0], /* r15 */ \
2191 &rs6000_reg_names[16][0], /* r16 */ \
2192 &rs6000_reg_names[17][0], /* r17 */ \
2193 &rs6000_reg_names[18][0], /* r18 */ \
2194 &rs6000_reg_names[19][0], /* r19 */ \
2195 &rs6000_reg_names[20][0], /* r20 */ \
2196 &rs6000_reg_names[21][0], /* r21 */ \
2197 &rs6000_reg_names[22][0], /* r22 */ \
2198 &rs6000_reg_names[23][0], /* r23 */ \
2199 &rs6000_reg_names[24][0], /* r24 */ \
2200 &rs6000_reg_names[25][0], /* r25 */ \
2201 &rs6000_reg_names[26][0], /* r26 */ \
2202 &rs6000_reg_names[27][0], /* r27 */ \
2203 &rs6000_reg_names[28][0], /* r28 */ \
2204 &rs6000_reg_names[29][0], /* r29 */ \
2205 &rs6000_reg_names[30][0], /* r30 */ \
2206 &rs6000_reg_names[31][0], /* r31 */ \
2208 &rs6000_reg_names[32][0], /* fr0 */ \
2209 &rs6000_reg_names[33][0], /* fr1 */ \
2210 &rs6000_reg_names[34][0], /* fr2 */ \
2211 &rs6000_reg_names[35][0], /* fr3 */ \
2212 &rs6000_reg_names[36][0], /* fr4 */ \
2213 &rs6000_reg_names[37][0], /* fr5 */ \
2214 &rs6000_reg_names[38][0], /* fr6 */ \
2215 &rs6000_reg_names[39][0], /* fr7 */ \
2216 &rs6000_reg_names[40][0], /* fr8 */ \
2217 &rs6000_reg_names[41][0], /* fr9 */ \
2218 &rs6000_reg_names[42][0], /* fr10 */ \
2219 &rs6000_reg_names[43][0], /* fr11 */ \
2220 &rs6000_reg_names[44][0], /* fr12 */ \
2221 &rs6000_reg_names[45][0], /* fr13 */ \
2222 &rs6000_reg_names[46][0], /* fr14 */ \
2223 &rs6000_reg_names[47][0], /* fr15 */ \
2224 &rs6000_reg_names[48][0], /* fr16 */ \
2225 &rs6000_reg_names[49][0], /* fr17 */ \
2226 &rs6000_reg_names[50][0], /* fr18 */ \
2227 &rs6000_reg_names[51][0], /* fr19 */ \
2228 &rs6000_reg_names[52][0], /* fr20 */ \
2229 &rs6000_reg_names[53][0], /* fr21 */ \
2230 &rs6000_reg_names[54][0], /* fr22 */ \
2231 &rs6000_reg_names[55][0], /* fr23 */ \
2232 &rs6000_reg_names[56][0], /* fr24 */ \
2233 &rs6000_reg_names[57][0], /* fr25 */ \
2234 &rs6000_reg_names[58][0], /* fr26 */ \
2235 &rs6000_reg_names[59][0], /* fr27 */ \
2236 &rs6000_reg_names[60][0], /* fr28 */ \
2237 &rs6000_reg_names[61][0], /* fr29 */ \
2238 &rs6000_reg_names[62][0], /* fr30 */ \
2239 &rs6000_reg_names[63][0], /* fr31 */ \
2241 &rs6000_reg_names[64][0], /* mq */ \
2242 &rs6000_reg_names[65][0], /* lr */ \
2243 &rs6000_reg_names[66][0], /* ctr */ \
2244 &rs6000_reg_names[67][0], /* ap */ \
2246 &rs6000_reg_names[68][0], /* cr0 */ \
2247 &rs6000_reg_names[69][0], /* cr1 */ \
2248 &rs6000_reg_names[70][0], /* cr2 */ \
2249 &rs6000_reg_names[71][0], /* cr3 */ \
2250 &rs6000_reg_names[72][0], /* cr4 */ \
2251 &rs6000_reg_names[73][0], /* cr5 */ \
2252 &rs6000_reg_names[74][0], /* cr6 */ \
2253 &rs6000_reg_names[75][0], /* cr7 */ \
2255 &rs6000_reg_names[76][0], /* xer */ \
2257 &rs6000_reg_names[77][0], /* v0 */ \
2258 &rs6000_reg_names[78][0], /* v1 */ \
2259 &rs6000_reg_names[79][0], /* v2 */ \
2260 &rs6000_reg_names[80][0], /* v3 */ \
2261 &rs6000_reg_names[81][0], /* v4 */ \
2262 &rs6000_reg_names[82][0], /* v5 */ \
2263 &rs6000_reg_names[83][0], /* v6 */ \
2264 &rs6000_reg_names[84][0], /* v7 */ \
2265 &rs6000_reg_names[85][0], /* v8 */ \
2266 &rs6000_reg_names[86][0], /* v9 */ \
2267 &rs6000_reg_names[87][0], /* v10 */ \
2268 &rs6000_reg_names[88][0], /* v11 */ \
2269 &rs6000_reg_names[89][0], /* v12 */ \
2270 &rs6000_reg_names[90][0], /* v13 */ \
2271 &rs6000_reg_names[91][0], /* v14 */ \
2272 &rs6000_reg_names[92][0], /* v15 */ \
2273 &rs6000_reg_names[93][0], /* v16 */ \
2274 &rs6000_reg_names[94][0], /* v17 */ \
2275 &rs6000_reg_names[95][0], /* v18 */ \
2276 &rs6000_reg_names[96][0], /* v19 */ \
2277 &rs6000_reg_names[97][0], /* v20 */ \
2278 &rs6000_reg_names[98][0], /* v21 */ \
2279 &rs6000_reg_names[99][0], /* v22 */ \
2280 &rs6000_reg_names[100][0], /* v23 */ \
2281 &rs6000_reg_names[101][0], /* v24 */ \
2282 &rs6000_reg_names[102][0], /* v25 */ \
2283 &rs6000_reg_names[103][0], /* v26 */ \
2284 &rs6000_reg_names[104][0], /* v27 */ \
2285 &rs6000_reg_names[105][0], /* v28 */ \
2286 &rs6000_reg_names[106][0], /* v29 */ \
2287 &rs6000_reg_names[107][0], /* v30 */ \
2288 &rs6000_reg_names[108][0], /* v31 */ \
2289 &rs6000_reg_names[109][0], /* vrsave */ \
2290 &rs6000_reg_names[110][0], /* vscr */ \
2291 &rs6000_reg_names[111][0], /* spe_acc */ \
2292 &rs6000_reg_names[112][0], /* spefscr */ \
2293 &rs6000_reg_names[113][0], /* sfp */ \
2296 /* Table of additional register names to use in user input. */
2298 #define ADDITIONAL_REGISTER_NAMES \
2299 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2300 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2301 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2302 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2303 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2304 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2305 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2306 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2307 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2308 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2309 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2310 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2311 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2312 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2313 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2314 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2315 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2316 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2317 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2318 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2319 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2320 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2321 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2322 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2323 {"vrsave", 109}, {"vscr", 110}, \
2324 {"spe_acc", 111}, {"spefscr", 112}, \
2325 /* no additional names for: mq, lr, ctr, ap */ \
2326 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2327 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2328 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2329 /* VSX registers overlaid on top of FR, Altivec registers */ \
2330 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2331 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2332 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2333 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2334 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2335 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2336 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2337 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2338 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2339 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2340 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2341 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2342 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2343 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2344 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2345 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2347 /* Text to write out after a CALL that may be replaced by glue code by
2348 the loader. This depends on the AIX version. */
2349 #define RS6000_CALL_GLUE "cror 31,31,31"
2351 /* This is how to output an element of a case-vector that is relative. */
2353 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2354 do { char buf[100]; \
2355 fputs ("\t.long ", FILE); \
2356 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2357 assemble_name (FILE, buf); \
2358 putc ('-', FILE); \
2359 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2360 assemble_name (FILE, buf); \
2361 putc ('\n', FILE); \
2362 } while (0)
2364 /* This is how to output an assembler line
2365 that says to advance the location counter
2366 to a multiple of 2**LOG bytes. */
2368 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2369 if ((LOG) != 0) \
2370 fprintf (FILE, "\t.align %d\n", (LOG))
2372 /* Pick up the return address upon entry to a procedure. Used for
2373 dwarf2 unwind information. This also enables the table driven
2374 mechanism. */
2376 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2377 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2379 /* Describe how we implement __builtin_eh_return. */
2380 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2381 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2383 /* Print operand X (an rtx) in assembler syntax to file FILE.
2384 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2385 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2387 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2389 /* Define which CODE values are valid. */
2391 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2392 ((CODE) == '.' || (CODE) == '&')
2394 /* Print a memory address as an operand to reference that memory location. */
2396 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2398 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2399 do \
2400 if (!rs6000_output_addr_const_extra (STREAM, X)) \
2401 goto FAIL; \
2402 while (0)
2404 /* uncomment for disabling the corresponding default options */
2405 /* #define MACHINE_no_sched_interblock */
2406 /* #define MACHINE_no_sched_speculative */
2407 /* #define MACHINE_no_sched_speculative_load */
2409 /* General flags. */
2410 extern int flag_pic;
2411 extern int optimize;
2412 extern int flag_expensive_optimizations;
2413 extern int frame_pointer_needed;
2415 enum rs6000_builtins
2417 /* AltiVec builtins. */
2418 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2419 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2420 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2421 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2422 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2423 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2424 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2425 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2426 ALTIVEC_BUILTIN_VADDUBM,
2427 ALTIVEC_BUILTIN_VADDUHM,
2428 ALTIVEC_BUILTIN_VADDUWM,
2429 ALTIVEC_BUILTIN_VADDFP,
2430 ALTIVEC_BUILTIN_VADDCUW,
2431 ALTIVEC_BUILTIN_VADDUBS,
2432 ALTIVEC_BUILTIN_VADDSBS,
2433 ALTIVEC_BUILTIN_VADDUHS,
2434 ALTIVEC_BUILTIN_VADDSHS,
2435 ALTIVEC_BUILTIN_VADDUWS,
2436 ALTIVEC_BUILTIN_VADDSWS,
2437 ALTIVEC_BUILTIN_VAND,
2438 ALTIVEC_BUILTIN_VANDC,
2439 ALTIVEC_BUILTIN_VAVGUB,
2440 ALTIVEC_BUILTIN_VAVGSB,
2441 ALTIVEC_BUILTIN_VAVGUH,
2442 ALTIVEC_BUILTIN_VAVGSH,
2443 ALTIVEC_BUILTIN_VAVGUW,
2444 ALTIVEC_BUILTIN_VAVGSW,
2445 ALTIVEC_BUILTIN_VCFUX,
2446 ALTIVEC_BUILTIN_VCFSX,
2447 ALTIVEC_BUILTIN_VCTSXS,
2448 ALTIVEC_BUILTIN_VCTUXS,
2449 ALTIVEC_BUILTIN_VCMPBFP,
2450 ALTIVEC_BUILTIN_VCMPEQUB,
2451 ALTIVEC_BUILTIN_VCMPEQUH,
2452 ALTIVEC_BUILTIN_VCMPEQUW,
2453 ALTIVEC_BUILTIN_VCMPEQFP,
2454 ALTIVEC_BUILTIN_VCMPGEFP,
2455 ALTIVEC_BUILTIN_VCMPGTUB,
2456 ALTIVEC_BUILTIN_VCMPGTSB,
2457 ALTIVEC_BUILTIN_VCMPGTUH,
2458 ALTIVEC_BUILTIN_VCMPGTSH,
2459 ALTIVEC_BUILTIN_VCMPGTUW,
2460 ALTIVEC_BUILTIN_VCMPGTSW,
2461 ALTIVEC_BUILTIN_VCMPGTFP,
2462 ALTIVEC_BUILTIN_VEXPTEFP,
2463 ALTIVEC_BUILTIN_VLOGEFP,
2464 ALTIVEC_BUILTIN_VMADDFP,
2465 ALTIVEC_BUILTIN_VMAXUB,
2466 ALTIVEC_BUILTIN_VMAXSB,
2467 ALTIVEC_BUILTIN_VMAXUH,
2468 ALTIVEC_BUILTIN_VMAXSH,
2469 ALTIVEC_BUILTIN_VMAXUW,
2470 ALTIVEC_BUILTIN_VMAXSW,
2471 ALTIVEC_BUILTIN_VMAXFP,
2472 ALTIVEC_BUILTIN_VMHADDSHS,
2473 ALTIVEC_BUILTIN_VMHRADDSHS,
2474 ALTIVEC_BUILTIN_VMLADDUHM,
2475 ALTIVEC_BUILTIN_VMRGHB,
2476 ALTIVEC_BUILTIN_VMRGHH,
2477 ALTIVEC_BUILTIN_VMRGHW,
2478 ALTIVEC_BUILTIN_VMRGLB,
2479 ALTIVEC_BUILTIN_VMRGLH,
2480 ALTIVEC_BUILTIN_VMRGLW,
2481 ALTIVEC_BUILTIN_VMSUMUBM,
2482 ALTIVEC_BUILTIN_VMSUMMBM,
2483 ALTIVEC_BUILTIN_VMSUMUHM,
2484 ALTIVEC_BUILTIN_VMSUMSHM,
2485 ALTIVEC_BUILTIN_VMSUMUHS,
2486 ALTIVEC_BUILTIN_VMSUMSHS,
2487 ALTIVEC_BUILTIN_VMINUB,
2488 ALTIVEC_BUILTIN_VMINSB,
2489 ALTIVEC_BUILTIN_VMINUH,
2490 ALTIVEC_BUILTIN_VMINSH,
2491 ALTIVEC_BUILTIN_VMINUW,
2492 ALTIVEC_BUILTIN_VMINSW,
2493 ALTIVEC_BUILTIN_VMINFP,
2494 ALTIVEC_BUILTIN_VMULEUB,
2495 ALTIVEC_BUILTIN_VMULEUB_UNS,
2496 ALTIVEC_BUILTIN_VMULESB,
2497 ALTIVEC_BUILTIN_VMULEUH,
2498 ALTIVEC_BUILTIN_VMULEUH_UNS,
2499 ALTIVEC_BUILTIN_VMULESH,
2500 ALTIVEC_BUILTIN_VMULOUB,
2501 ALTIVEC_BUILTIN_VMULOUB_UNS,
2502 ALTIVEC_BUILTIN_VMULOSB,
2503 ALTIVEC_BUILTIN_VMULOUH,
2504 ALTIVEC_BUILTIN_VMULOUH_UNS,
2505 ALTIVEC_BUILTIN_VMULOSH,
2506 ALTIVEC_BUILTIN_VNMSUBFP,
2507 ALTIVEC_BUILTIN_VNOR,
2508 ALTIVEC_BUILTIN_VOR,
2509 ALTIVEC_BUILTIN_VSEL_2DF, /* needed for VSX */
2510 ALTIVEC_BUILTIN_VSEL_2DI, /* needed for VSX */
2511 ALTIVEC_BUILTIN_VSEL_4SI,
2512 ALTIVEC_BUILTIN_VSEL_4SF,
2513 ALTIVEC_BUILTIN_VSEL_8HI,
2514 ALTIVEC_BUILTIN_VSEL_16QI,
2515 ALTIVEC_BUILTIN_VSEL_2DI_UNS,
2516 ALTIVEC_BUILTIN_VSEL_4SI_UNS,
2517 ALTIVEC_BUILTIN_VSEL_8HI_UNS,
2518 ALTIVEC_BUILTIN_VSEL_16QI_UNS,
2519 ALTIVEC_BUILTIN_VPERM_2DF, /* needed for VSX */
2520 ALTIVEC_BUILTIN_VPERM_2DI, /* needed for VSX */
2521 ALTIVEC_BUILTIN_VPERM_4SI,
2522 ALTIVEC_BUILTIN_VPERM_4SF,
2523 ALTIVEC_BUILTIN_VPERM_8HI,
2524 ALTIVEC_BUILTIN_VPERM_16QI,
2525 ALTIVEC_BUILTIN_VPERM_2DI_UNS,
2526 ALTIVEC_BUILTIN_VPERM_4SI_UNS,
2527 ALTIVEC_BUILTIN_VPERM_8HI_UNS,
2528 ALTIVEC_BUILTIN_VPERM_16QI_UNS,
2529 ALTIVEC_BUILTIN_VPKUHUM,
2530 ALTIVEC_BUILTIN_VPKUWUM,
2531 ALTIVEC_BUILTIN_VPKPX,
2532 ALTIVEC_BUILTIN_VPKUHSS,
2533 ALTIVEC_BUILTIN_VPKSHSS,
2534 ALTIVEC_BUILTIN_VPKUWSS,
2535 ALTIVEC_BUILTIN_VPKSWSS,
2536 ALTIVEC_BUILTIN_VPKUHUS,
2537 ALTIVEC_BUILTIN_VPKSHUS,
2538 ALTIVEC_BUILTIN_VPKUWUS,
2539 ALTIVEC_BUILTIN_VPKSWUS,
2540 ALTIVEC_BUILTIN_VREFP,
2541 ALTIVEC_BUILTIN_VRFIM,
2542 ALTIVEC_BUILTIN_VRFIN,
2543 ALTIVEC_BUILTIN_VRFIP,
2544 ALTIVEC_BUILTIN_VRFIZ,
2545 ALTIVEC_BUILTIN_VRLB,
2546 ALTIVEC_BUILTIN_VRLH,
2547 ALTIVEC_BUILTIN_VRLW,
2548 ALTIVEC_BUILTIN_VRSQRTEFP,
2549 ALTIVEC_BUILTIN_VSLB,
2550 ALTIVEC_BUILTIN_VSLH,
2551 ALTIVEC_BUILTIN_VSLW,
2552 ALTIVEC_BUILTIN_VSL,
2553 ALTIVEC_BUILTIN_VSLO,
2554 ALTIVEC_BUILTIN_VSPLTB,
2555 ALTIVEC_BUILTIN_VSPLTH,
2556 ALTIVEC_BUILTIN_VSPLTW,
2557 ALTIVEC_BUILTIN_VSPLTISB,
2558 ALTIVEC_BUILTIN_VSPLTISH,
2559 ALTIVEC_BUILTIN_VSPLTISW,
2560 ALTIVEC_BUILTIN_VSRB,
2561 ALTIVEC_BUILTIN_VSRH,
2562 ALTIVEC_BUILTIN_VSRW,
2563 ALTIVEC_BUILTIN_VSRAB,
2564 ALTIVEC_BUILTIN_VSRAH,
2565 ALTIVEC_BUILTIN_VSRAW,
2566 ALTIVEC_BUILTIN_VSR,
2567 ALTIVEC_BUILTIN_VSRO,
2568 ALTIVEC_BUILTIN_VSUBUBM,
2569 ALTIVEC_BUILTIN_VSUBUHM,
2570 ALTIVEC_BUILTIN_VSUBUWM,
2571 ALTIVEC_BUILTIN_VSUBFP,
2572 ALTIVEC_BUILTIN_VSUBCUW,
2573 ALTIVEC_BUILTIN_VSUBUBS,
2574 ALTIVEC_BUILTIN_VSUBSBS,
2575 ALTIVEC_BUILTIN_VSUBUHS,
2576 ALTIVEC_BUILTIN_VSUBSHS,
2577 ALTIVEC_BUILTIN_VSUBUWS,
2578 ALTIVEC_BUILTIN_VSUBSWS,
2579 ALTIVEC_BUILTIN_VSUM4UBS,
2580 ALTIVEC_BUILTIN_VSUM4SBS,
2581 ALTIVEC_BUILTIN_VSUM4SHS,
2582 ALTIVEC_BUILTIN_VSUM2SWS,
2583 ALTIVEC_BUILTIN_VSUMSWS,
2584 ALTIVEC_BUILTIN_VXOR,
2585 ALTIVEC_BUILTIN_VSLDOI_16QI,
2586 ALTIVEC_BUILTIN_VSLDOI_8HI,
2587 ALTIVEC_BUILTIN_VSLDOI_4SI,
2588 ALTIVEC_BUILTIN_VSLDOI_4SF,
2589 ALTIVEC_BUILTIN_VUPKHSB,
2590 ALTIVEC_BUILTIN_VUPKHPX,
2591 ALTIVEC_BUILTIN_VUPKHSH,
2592 ALTIVEC_BUILTIN_VUPKLSB,
2593 ALTIVEC_BUILTIN_VUPKLPX,
2594 ALTIVEC_BUILTIN_VUPKLSH,
2595 ALTIVEC_BUILTIN_MTVSCR,
2596 ALTIVEC_BUILTIN_MFVSCR,
2597 ALTIVEC_BUILTIN_DSSALL,
2598 ALTIVEC_BUILTIN_DSS,
2599 ALTIVEC_BUILTIN_LVSL,
2600 ALTIVEC_BUILTIN_LVSR,
2601 ALTIVEC_BUILTIN_DSTT,
2602 ALTIVEC_BUILTIN_DSTST,
2603 ALTIVEC_BUILTIN_DSTSTT,
2604 ALTIVEC_BUILTIN_DST,
2605 ALTIVEC_BUILTIN_LVEBX,
2606 ALTIVEC_BUILTIN_LVEHX,
2607 ALTIVEC_BUILTIN_LVEWX,
2608 ALTIVEC_BUILTIN_LVXL,
2609 ALTIVEC_BUILTIN_LVX,
2610 ALTIVEC_BUILTIN_STVX,
2611 ALTIVEC_BUILTIN_LVLX,
2612 ALTIVEC_BUILTIN_LVLXL,
2613 ALTIVEC_BUILTIN_LVRX,
2614 ALTIVEC_BUILTIN_LVRXL,
2615 ALTIVEC_BUILTIN_STVEBX,
2616 ALTIVEC_BUILTIN_STVEHX,
2617 ALTIVEC_BUILTIN_STVEWX,
2618 ALTIVEC_BUILTIN_STVXL,
2619 ALTIVEC_BUILTIN_STVLX,
2620 ALTIVEC_BUILTIN_STVLXL,
2621 ALTIVEC_BUILTIN_STVRX,
2622 ALTIVEC_BUILTIN_STVRXL,
2623 ALTIVEC_BUILTIN_VCMPBFP_P,
2624 ALTIVEC_BUILTIN_VCMPEQFP_P,
2625 ALTIVEC_BUILTIN_VCMPEQUB_P,
2626 ALTIVEC_BUILTIN_VCMPEQUH_P,
2627 ALTIVEC_BUILTIN_VCMPEQUW_P,
2628 ALTIVEC_BUILTIN_VCMPGEFP_P,
2629 ALTIVEC_BUILTIN_VCMPGTFP_P,
2630 ALTIVEC_BUILTIN_VCMPGTSB_P,
2631 ALTIVEC_BUILTIN_VCMPGTSH_P,
2632 ALTIVEC_BUILTIN_VCMPGTSW_P,
2633 ALTIVEC_BUILTIN_VCMPGTUB_P,
2634 ALTIVEC_BUILTIN_VCMPGTUH_P,
2635 ALTIVEC_BUILTIN_VCMPGTUW_P,
2636 ALTIVEC_BUILTIN_ABSS_V4SI,
2637 ALTIVEC_BUILTIN_ABSS_V8HI,
2638 ALTIVEC_BUILTIN_ABSS_V16QI,
2639 ALTIVEC_BUILTIN_ABS_V4SI,
2640 ALTIVEC_BUILTIN_ABS_V4SF,
2641 ALTIVEC_BUILTIN_ABS_V8HI,
2642 ALTIVEC_BUILTIN_ABS_V16QI,
2643 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2644 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2645 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2646 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2647 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2648 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2649 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2650 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2651 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2652 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2653 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2654 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2655 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2656 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2657 ALTIVEC_BUILTIN_COPYSIGN_V4SF,
2659 /* Altivec overloaded builtins. */
2660 ALTIVEC_BUILTIN_VCMPEQ_P,
2661 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2662 ALTIVEC_BUILTIN_VCMPGT_P,
2663 ALTIVEC_BUILTIN_VCMPGE_P,
2664 ALTIVEC_BUILTIN_VEC_ABS,
2665 ALTIVEC_BUILTIN_VEC_ABSS,
2666 ALTIVEC_BUILTIN_VEC_ADD,
2667 ALTIVEC_BUILTIN_VEC_ADDC,
2668 ALTIVEC_BUILTIN_VEC_ADDS,
2669 ALTIVEC_BUILTIN_VEC_AND,
2670 ALTIVEC_BUILTIN_VEC_ANDC,
2671 ALTIVEC_BUILTIN_VEC_AVG,
2672 ALTIVEC_BUILTIN_VEC_EXTRACT,
2673 ALTIVEC_BUILTIN_VEC_CEIL,
2674 ALTIVEC_BUILTIN_VEC_CMPB,
2675 ALTIVEC_BUILTIN_VEC_CMPEQ,
2676 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2677 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2678 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2679 ALTIVEC_BUILTIN_VEC_CMPGE,
2680 ALTIVEC_BUILTIN_VEC_CMPGT,
2681 ALTIVEC_BUILTIN_VEC_CMPLE,
2682 ALTIVEC_BUILTIN_VEC_CMPLT,
2683 ALTIVEC_BUILTIN_VEC_COPYSIGN,
2684 ALTIVEC_BUILTIN_VEC_CTF,
2685 ALTIVEC_BUILTIN_VEC_CTS,
2686 ALTIVEC_BUILTIN_VEC_CTU,
2687 ALTIVEC_BUILTIN_VEC_DST,
2688 ALTIVEC_BUILTIN_VEC_DSTST,
2689 ALTIVEC_BUILTIN_VEC_DSTSTT,
2690 ALTIVEC_BUILTIN_VEC_DSTT,
2691 ALTIVEC_BUILTIN_VEC_EXPTE,
2692 ALTIVEC_BUILTIN_VEC_FLOOR,
2693 ALTIVEC_BUILTIN_VEC_LD,
2694 ALTIVEC_BUILTIN_VEC_LDE,
2695 ALTIVEC_BUILTIN_VEC_LDL,
2696 ALTIVEC_BUILTIN_VEC_LOGE,
2697 ALTIVEC_BUILTIN_VEC_LVEBX,
2698 ALTIVEC_BUILTIN_VEC_LVEHX,
2699 ALTIVEC_BUILTIN_VEC_LVEWX,
2700 ALTIVEC_BUILTIN_VEC_LVLX,
2701 ALTIVEC_BUILTIN_VEC_LVLXL,
2702 ALTIVEC_BUILTIN_VEC_LVRX,
2703 ALTIVEC_BUILTIN_VEC_LVRXL,
2704 ALTIVEC_BUILTIN_VEC_LVSL,
2705 ALTIVEC_BUILTIN_VEC_LVSR,
2706 ALTIVEC_BUILTIN_VEC_MADD,
2707 ALTIVEC_BUILTIN_VEC_MADDS,
2708 ALTIVEC_BUILTIN_VEC_MAX,
2709 ALTIVEC_BUILTIN_VEC_MERGEH,
2710 ALTIVEC_BUILTIN_VEC_MERGEL,
2711 ALTIVEC_BUILTIN_VEC_MIN,
2712 ALTIVEC_BUILTIN_VEC_MLADD,
2713 ALTIVEC_BUILTIN_VEC_MPERM,
2714 ALTIVEC_BUILTIN_VEC_MRADDS,
2715 ALTIVEC_BUILTIN_VEC_MRGHB,
2716 ALTIVEC_BUILTIN_VEC_MRGHH,
2717 ALTIVEC_BUILTIN_VEC_MRGHW,
2718 ALTIVEC_BUILTIN_VEC_MRGLB,
2719 ALTIVEC_BUILTIN_VEC_MRGLH,
2720 ALTIVEC_BUILTIN_VEC_MRGLW,
2721 ALTIVEC_BUILTIN_VEC_MSUM,
2722 ALTIVEC_BUILTIN_VEC_MSUMS,
2723 ALTIVEC_BUILTIN_VEC_MTVSCR,
2724 ALTIVEC_BUILTIN_VEC_MULE,
2725 ALTIVEC_BUILTIN_VEC_MULO,
2726 ALTIVEC_BUILTIN_VEC_NEARBYINT,
2727 ALTIVEC_BUILTIN_VEC_NMSUB,
2728 ALTIVEC_BUILTIN_VEC_NOR,
2729 ALTIVEC_BUILTIN_VEC_OR,
2730 ALTIVEC_BUILTIN_VEC_PACK,
2731 ALTIVEC_BUILTIN_VEC_PACKPX,
2732 ALTIVEC_BUILTIN_VEC_PACKS,
2733 ALTIVEC_BUILTIN_VEC_PACKSU,
2734 ALTIVEC_BUILTIN_VEC_PERM,
2735 ALTIVEC_BUILTIN_VEC_RE,
2736 ALTIVEC_BUILTIN_VEC_RL,
2737 ALTIVEC_BUILTIN_VEC_RINT,
2738 ALTIVEC_BUILTIN_VEC_ROUND,
2739 ALTIVEC_BUILTIN_VEC_RSQRTE,
2740 ALTIVEC_BUILTIN_VEC_SEL,
2741 ALTIVEC_BUILTIN_VEC_SL,
2742 ALTIVEC_BUILTIN_VEC_SLD,
2743 ALTIVEC_BUILTIN_VEC_SLL,
2744 ALTIVEC_BUILTIN_VEC_SLO,
2745 ALTIVEC_BUILTIN_VEC_SPLAT,
2746 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2747 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2748 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2749 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2750 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2751 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2752 ALTIVEC_BUILTIN_VEC_SPLTB,
2753 ALTIVEC_BUILTIN_VEC_SPLTH,
2754 ALTIVEC_BUILTIN_VEC_SPLTW,
2755 ALTIVEC_BUILTIN_VEC_SQRT,
2756 ALTIVEC_BUILTIN_VEC_SR,
2757 ALTIVEC_BUILTIN_VEC_SRA,
2758 ALTIVEC_BUILTIN_VEC_SRL,
2759 ALTIVEC_BUILTIN_VEC_SRO,
2760 ALTIVEC_BUILTIN_VEC_ST,
2761 ALTIVEC_BUILTIN_VEC_STE,
2762 ALTIVEC_BUILTIN_VEC_STL,
2763 ALTIVEC_BUILTIN_VEC_STVEBX,
2764 ALTIVEC_BUILTIN_VEC_STVEHX,
2765 ALTIVEC_BUILTIN_VEC_STVEWX,
2766 ALTIVEC_BUILTIN_VEC_STVLX,
2767 ALTIVEC_BUILTIN_VEC_STVLXL,
2768 ALTIVEC_BUILTIN_VEC_STVRX,
2769 ALTIVEC_BUILTIN_VEC_STVRXL,
2770 ALTIVEC_BUILTIN_VEC_SUB,
2771 ALTIVEC_BUILTIN_VEC_SUBC,
2772 ALTIVEC_BUILTIN_VEC_SUBS,
2773 ALTIVEC_BUILTIN_VEC_SUM2S,
2774 ALTIVEC_BUILTIN_VEC_SUM4S,
2775 ALTIVEC_BUILTIN_VEC_SUMS,
2776 ALTIVEC_BUILTIN_VEC_TRUNC,
2777 ALTIVEC_BUILTIN_VEC_UNPACKH,
2778 ALTIVEC_BUILTIN_VEC_UNPACKL,
2779 ALTIVEC_BUILTIN_VEC_VADDFP,
2780 ALTIVEC_BUILTIN_VEC_VADDSBS,
2781 ALTIVEC_BUILTIN_VEC_VADDSHS,
2782 ALTIVEC_BUILTIN_VEC_VADDSWS,
2783 ALTIVEC_BUILTIN_VEC_VADDUBM,
2784 ALTIVEC_BUILTIN_VEC_VADDUBS,
2785 ALTIVEC_BUILTIN_VEC_VADDUHM,
2786 ALTIVEC_BUILTIN_VEC_VADDUHS,
2787 ALTIVEC_BUILTIN_VEC_VADDUWM,
2788 ALTIVEC_BUILTIN_VEC_VADDUWS,
2789 ALTIVEC_BUILTIN_VEC_VAVGSB,
2790 ALTIVEC_BUILTIN_VEC_VAVGSH,
2791 ALTIVEC_BUILTIN_VEC_VAVGSW,
2792 ALTIVEC_BUILTIN_VEC_VAVGUB,
2793 ALTIVEC_BUILTIN_VEC_VAVGUH,
2794 ALTIVEC_BUILTIN_VEC_VAVGUW,
2795 ALTIVEC_BUILTIN_VEC_VCFSX,
2796 ALTIVEC_BUILTIN_VEC_VCFUX,
2797 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2798 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2799 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2800 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2801 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2802 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2803 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2804 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2805 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2806 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2807 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2808 ALTIVEC_BUILTIN_VEC_VMAXFP,
2809 ALTIVEC_BUILTIN_VEC_VMAXSB,
2810 ALTIVEC_BUILTIN_VEC_VMAXSH,
2811 ALTIVEC_BUILTIN_VEC_VMAXSW,
2812 ALTIVEC_BUILTIN_VEC_VMAXUB,
2813 ALTIVEC_BUILTIN_VEC_VMAXUH,
2814 ALTIVEC_BUILTIN_VEC_VMAXUW,
2815 ALTIVEC_BUILTIN_VEC_VMINFP,
2816 ALTIVEC_BUILTIN_VEC_VMINSB,
2817 ALTIVEC_BUILTIN_VEC_VMINSH,
2818 ALTIVEC_BUILTIN_VEC_VMINSW,
2819 ALTIVEC_BUILTIN_VEC_VMINUB,
2820 ALTIVEC_BUILTIN_VEC_VMINUH,
2821 ALTIVEC_BUILTIN_VEC_VMINUW,
2822 ALTIVEC_BUILTIN_VEC_VMRGHB,
2823 ALTIVEC_BUILTIN_VEC_VMRGHH,
2824 ALTIVEC_BUILTIN_VEC_VMRGHW,
2825 ALTIVEC_BUILTIN_VEC_VMRGLB,
2826 ALTIVEC_BUILTIN_VEC_VMRGLH,
2827 ALTIVEC_BUILTIN_VEC_VMRGLW,
2828 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2829 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2830 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2831 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2832 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2833 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2834 ALTIVEC_BUILTIN_VEC_VMULESB,
2835 ALTIVEC_BUILTIN_VEC_VMULESH,
2836 ALTIVEC_BUILTIN_VEC_VMULEUB,
2837 ALTIVEC_BUILTIN_VEC_VMULEUH,
2838 ALTIVEC_BUILTIN_VEC_VMULOSB,
2839 ALTIVEC_BUILTIN_VEC_VMULOSH,
2840 ALTIVEC_BUILTIN_VEC_VMULOUB,
2841 ALTIVEC_BUILTIN_VEC_VMULOUH,
2842 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2843 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2844 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2845 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2846 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2847 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2848 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2849 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2850 ALTIVEC_BUILTIN_VEC_VRLB,
2851 ALTIVEC_BUILTIN_VEC_VRLH,
2852 ALTIVEC_BUILTIN_VEC_VRLW,
2853 ALTIVEC_BUILTIN_VEC_VSLB,
2854 ALTIVEC_BUILTIN_VEC_VSLH,
2855 ALTIVEC_BUILTIN_VEC_VSLW,
2856 ALTIVEC_BUILTIN_VEC_VSPLTB,
2857 ALTIVEC_BUILTIN_VEC_VSPLTH,
2858 ALTIVEC_BUILTIN_VEC_VSPLTW,
2859 ALTIVEC_BUILTIN_VEC_VSRAB,
2860 ALTIVEC_BUILTIN_VEC_VSRAH,
2861 ALTIVEC_BUILTIN_VEC_VSRAW,
2862 ALTIVEC_BUILTIN_VEC_VSRB,
2863 ALTIVEC_BUILTIN_VEC_VSRH,
2864 ALTIVEC_BUILTIN_VEC_VSRW,
2865 ALTIVEC_BUILTIN_VEC_VSUBFP,
2866 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2867 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2868 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2869 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2870 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2871 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2872 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2873 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2874 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2875 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2876 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2877 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2878 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2879 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2880 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2881 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2882 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2883 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2884 ALTIVEC_BUILTIN_VEC_XOR,
2885 ALTIVEC_BUILTIN_VEC_STEP,
2886 ALTIVEC_BUILTIN_VEC_PROMOTE,
2887 ALTIVEC_BUILTIN_VEC_INSERT,
2888 ALTIVEC_BUILTIN_VEC_SPLATS,
2889 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_SPLATS,
2891 /* SPE builtins. */
2892 SPE_BUILTIN_EVADDW,
2893 SPE_BUILTIN_EVAND,
2894 SPE_BUILTIN_EVANDC,
2895 SPE_BUILTIN_EVDIVWS,
2896 SPE_BUILTIN_EVDIVWU,
2897 SPE_BUILTIN_EVEQV,
2898 SPE_BUILTIN_EVFSADD,
2899 SPE_BUILTIN_EVFSDIV,
2900 SPE_BUILTIN_EVFSMUL,
2901 SPE_BUILTIN_EVFSSUB,
2902 SPE_BUILTIN_EVLDDX,
2903 SPE_BUILTIN_EVLDHX,
2904 SPE_BUILTIN_EVLDWX,
2905 SPE_BUILTIN_EVLHHESPLATX,
2906 SPE_BUILTIN_EVLHHOSSPLATX,
2907 SPE_BUILTIN_EVLHHOUSPLATX,
2908 SPE_BUILTIN_EVLWHEX,
2909 SPE_BUILTIN_EVLWHOSX,
2910 SPE_BUILTIN_EVLWHOUX,
2911 SPE_BUILTIN_EVLWHSPLATX,
2912 SPE_BUILTIN_EVLWWSPLATX,
2913 SPE_BUILTIN_EVMERGEHI,
2914 SPE_BUILTIN_EVMERGEHILO,
2915 SPE_BUILTIN_EVMERGELO,
2916 SPE_BUILTIN_EVMERGELOHI,
2917 SPE_BUILTIN_EVMHEGSMFAA,
2918 SPE_BUILTIN_EVMHEGSMFAN,
2919 SPE_BUILTIN_EVMHEGSMIAA,
2920 SPE_BUILTIN_EVMHEGSMIAN,
2921 SPE_BUILTIN_EVMHEGUMIAA,
2922 SPE_BUILTIN_EVMHEGUMIAN,
2923 SPE_BUILTIN_EVMHESMF,
2924 SPE_BUILTIN_EVMHESMFA,
2925 SPE_BUILTIN_EVMHESMFAAW,
2926 SPE_BUILTIN_EVMHESMFANW,
2927 SPE_BUILTIN_EVMHESMI,
2928 SPE_BUILTIN_EVMHESMIA,
2929 SPE_BUILTIN_EVMHESMIAAW,
2930 SPE_BUILTIN_EVMHESMIANW,
2931 SPE_BUILTIN_EVMHESSF,
2932 SPE_BUILTIN_EVMHESSFA,
2933 SPE_BUILTIN_EVMHESSFAAW,
2934 SPE_BUILTIN_EVMHESSFANW,
2935 SPE_BUILTIN_EVMHESSIAAW,
2936 SPE_BUILTIN_EVMHESSIANW,
2937 SPE_BUILTIN_EVMHEUMI,
2938 SPE_BUILTIN_EVMHEUMIA,
2939 SPE_BUILTIN_EVMHEUMIAAW,
2940 SPE_BUILTIN_EVMHEUMIANW,
2941 SPE_BUILTIN_EVMHEUSIAAW,
2942 SPE_BUILTIN_EVMHEUSIANW,
2943 SPE_BUILTIN_EVMHOGSMFAA,
2944 SPE_BUILTIN_EVMHOGSMFAN,
2945 SPE_BUILTIN_EVMHOGSMIAA,
2946 SPE_BUILTIN_EVMHOGSMIAN,
2947 SPE_BUILTIN_EVMHOGUMIAA,
2948 SPE_BUILTIN_EVMHOGUMIAN,
2949 SPE_BUILTIN_EVMHOSMF,
2950 SPE_BUILTIN_EVMHOSMFA,
2951 SPE_BUILTIN_EVMHOSMFAAW,
2952 SPE_BUILTIN_EVMHOSMFANW,
2953 SPE_BUILTIN_EVMHOSMI,
2954 SPE_BUILTIN_EVMHOSMIA,
2955 SPE_BUILTIN_EVMHOSMIAAW,
2956 SPE_BUILTIN_EVMHOSMIANW,
2957 SPE_BUILTIN_EVMHOSSF,
2958 SPE_BUILTIN_EVMHOSSFA,
2959 SPE_BUILTIN_EVMHOSSFAAW,
2960 SPE_BUILTIN_EVMHOSSFANW,
2961 SPE_BUILTIN_EVMHOSSIAAW,
2962 SPE_BUILTIN_EVMHOSSIANW,
2963 SPE_BUILTIN_EVMHOUMI,
2964 SPE_BUILTIN_EVMHOUMIA,
2965 SPE_BUILTIN_EVMHOUMIAAW,
2966 SPE_BUILTIN_EVMHOUMIANW,
2967 SPE_BUILTIN_EVMHOUSIAAW,
2968 SPE_BUILTIN_EVMHOUSIANW,
2969 SPE_BUILTIN_EVMWHSMF,
2970 SPE_BUILTIN_EVMWHSMFA,
2971 SPE_BUILTIN_EVMWHSMI,
2972 SPE_BUILTIN_EVMWHSMIA,
2973 SPE_BUILTIN_EVMWHSSF,
2974 SPE_BUILTIN_EVMWHSSFA,
2975 SPE_BUILTIN_EVMWHUMI,
2976 SPE_BUILTIN_EVMWHUMIA,
2977 SPE_BUILTIN_EVMWLSMIAAW,
2978 SPE_BUILTIN_EVMWLSMIANW,
2979 SPE_BUILTIN_EVMWLSSIAAW,
2980 SPE_BUILTIN_EVMWLSSIANW,
2981 SPE_BUILTIN_EVMWLUMI,
2982 SPE_BUILTIN_EVMWLUMIA,
2983 SPE_BUILTIN_EVMWLUMIAAW,
2984 SPE_BUILTIN_EVMWLUMIANW,
2985 SPE_BUILTIN_EVMWLUSIAAW,
2986 SPE_BUILTIN_EVMWLUSIANW,
2987 SPE_BUILTIN_EVMWSMF,
2988 SPE_BUILTIN_EVMWSMFA,
2989 SPE_BUILTIN_EVMWSMFAA,
2990 SPE_BUILTIN_EVMWSMFAN,
2991 SPE_BUILTIN_EVMWSMI,
2992 SPE_BUILTIN_EVMWSMIA,
2993 SPE_BUILTIN_EVMWSMIAA,
2994 SPE_BUILTIN_EVMWSMIAN,
2995 SPE_BUILTIN_EVMWHSSFAA,
2996 SPE_BUILTIN_EVMWSSF,
2997 SPE_BUILTIN_EVMWSSFA,
2998 SPE_BUILTIN_EVMWSSFAA,
2999 SPE_BUILTIN_EVMWSSFAN,
3000 SPE_BUILTIN_EVMWUMI,
3001 SPE_BUILTIN_EVMWUMIA,
3002 SPE_BUILTIN_EVMWUMIAA,
3003 SPE_BUILTIN_EVMWUMIAN,
3004 SPE_BUILTIN_EVNAND,
3005 SPE_BUILTIN_EVNOR,
3006 SPE_BUILTIN_EVOR,
3007 SPE_BUILTIN_EVORC,
3008 SPE_BUILTIN_EVRLW,
3009 SPE_BUILTIN_EVSLW,
3010 SPE_BUILTIN_EVSRWS,
3011 SPE_BUILTIN_EVSRWU,
3012 SPE_BUILTIN_EVSTDDX,
3013 SPE_BUILTIN_EVSTDHX,
3014 SPE_BUILTIN_EVSTDWX,
3015 SPE_BUILTIN_EVSTWHEX,
3016 SPE_BUILTIN_EVSTWHOX,
3017 SPE_BUILTIN_EVSTWWEX,
3018 SPE_BUILTIN_EVSTWWOX,
3019 SPE_BUILTIN_EVSUBFW,
3020 SPE_BUILTIN_EVXOR,
3021 SPE_BUILTIN_EVABS,
3022 SPE_BUILTIN_EVADDSMIAAW,
3023 SPE_BUILTIN_EVADDSSIAAW,
3024 SPE_BUILTIN_EVADDUMIAAW,
3025 SPE_BUILTIN_EVADDUSIAAW,
3026 SPE_BUILTIN_EVCNTLSW,
3027 SPE_BUILTIN_EVCNTLZW,
3028 SPE_BUILTIN_EVEXTSB,
3029 SPE_BUILTIN_EVEXTSH,
3030 SPE_BUILTIN_EVFSABS,
3031 SPE_BUILTIN_EVFSCFSF,
3032 SPE_BUILTIN_EVFSCFSI,
3033 SPE_BUILTIN_EVFSCFUF,
3034 SPE_BUILTIN_EVFSCFUI,
3035 SPE_BUILTIN_EVFSCTSF,
3036 SPE_BUILTIN_EVFSCTSI,
3037 SPE_BUILTIN_EVFSCTSIZ,
3038 SPE_BUILTIN_EVFSCTUF,
3039 SPE_BUILTIN_EVFSCTUI,
3040 SPE_BUILTIN_EVFSCTUIZ,
3041 SPE_BUILTIN_EVFSNABS,
3042 SPE_BUILTIN_EVFSNEG,
3043 SPE_BUILTIN_EVMRA,
3044 SPE_BUILTIN_EVNEG,
3045 SPE_BUILTIN_EVRNDW,
3046 SPE_BUILTIN_EVSUBFSMIAAW,
3047 SPE_BUILTIN_EVSUBFSSIAAW,
3048 SPE_BUILTIN_EVSUBFUMIAAW,
3049 SPE_BUILTIN_EVSUBFUSIAAW,
3050 SPE_BUILTIN_EVADDIW,
3051 SPE_BUILTIN_EVLDD,
3052 SPE_BUILTIN_EVLDH,
3053 SPE_BUILTIN_EVLDW,
3054 SPE_BUILTIN_EVLHHESPLAT,
3055 SPE_BUILTIN_EVLHHOSSPLAT,
3056 SPE_BUILTIN_EVLHHOUSPLAT,
3057 SPE_BUILTIN_EVLWHE,
3058 SPE_BUILTIN_EVLWHOS,
3059 SPE_BUILTIN_EVLWHOU,
3060 SPE_BUILTIN_EVLWHSPLAT,
3061 SPE_BUILTIN_EVLWWSPLAT,
3062 SPE_BUILTIN_EVRLWI,
3063 SPE_BUILTIN_EVSLWI,
3064 SPE_BUILTIN_EVSRWIS,
3065 SPE_BUILTIN_EVSRWIU,
3066 SPE_BUILTIN_EVSTDD,
3067 SPE_BUILTIN_EVSTDH,
3068 SPE_BUILTIN_EVSTDW,
3069 SPE_BUILTIN_EVSTWHE,
3070 SPE_BUILTIN_EVSTWHO,
3071 SPE_BUILTIN_EVSTWWE,
3072 SPE_BUILTIN_EVSTWWO,
3073 SPE_BUILTIN_EVSUBIFW,
3075 /* Compares. */
3076 SPE_BUILTIN_EVCMPEQ,
3077 SPE_BUILTIN_EVCMPGTS,
3078 SPE_BUILTIN_EVCMPGTU,
3079 SPE_BUILTIN_EVCMPLTS,
3080 SPE_BUILTIN_EVCMPLTU,
3081 SPE_BUILTIN_EVFSCMPEQ,
3082 SPE_BUILTIN_EVFSCMPGT,
3083 SPE_BUILTIN_EVFSCMPLT,
3084 SPE_BUILTIN_EVFSTSTEQ,
3085 SPE_BUILTIN_EVFSTSTGT,
3086 SPE_BUILTIN_EVFSTSTLT,
3088 /* EVSEL compares. */
3089 SPE_BUILTIN_EVSEL_CMPEQ,
3090 SPE_BUILTIN_EVSEL_CMPGTS,
3091 SPE_BUILTIN_EVSEL_CMPGTU,
3092 SPE_BUILTIN_EVSEL_CMPLTS,
3093 SPE_BUILTIN_EVSEL_CMPLTU,
3094 SPE_BUILTIN_EVSEL_FSCMPEQ,
3095 SPE_BUILTIN_EVSEL_FSCMPGT,
3096 SPE_BUILTIN_EVSEL_FSCMPLT,
3097 SPE_BUILTIN_EVSEL_FSTSTEQ,
3098 SPE_BUILTIN_EVSEL_FSTSTGT,
3099 SPE_BUILTIN_EVSEL_FSTSTLT,
3101 SPE_BUILTIN_EVSPLATFI,
3102 SPE_BUILTIN_EVSPLATI,
3103 SPE_BUILTIN_EVMWHSSMAA,
3104 SPE_BUILTIN_EVMWHSMFAA,
3105 SPE_BUILTIN_EVMWHSMIAA,
3106 SPE_BUILTIN_EVMWHUSIAA,
3107 SPE_BUILTIN_EVMWHUMIAA,
3108 SPE_BUILTIN_EVMWHSSFAN,
3109 SPE_BUILTIN_EVMWHSSIAN,
3110 SPE_BUILTIN_EVMWHSMFAN,
3111 SPE_BUILTIN_EVMWHSMIAN,
3112 SPE_BUILTIN_EVMWHUSIAN,
3113 SPE_BUILTIN_EVMWHUMIAN,
3114 SPE_BUILTIN_EVMWHGSSFAA,
3115 SPE_BUILTIN_EVMWHGSMFAA,
3116 SPE_BUILTIN_EVMWHGSMIAA,
3117 SPE_BUILTIN_EVMWHGUMIAA,
3118 SPE_BUILTIN_EVMWHGSSFAN,
3119 SPE_BUILTIN_EVMWHGSMFAN,
3120 SPE_BUILTIN_EVMWHGSMIAN,
3121 SPE_BUILTIN_EVMWHGUMIAN,
3122 SPE_BUILTIN_MTSPEFSCR,
3123 SPE_BUILTIN_MFSPEFSCR,
3124 SPE_BUILTIN_BRINC,
3126 /* PAIRED builtins. */
3127 PAIRED_BUILTIN_DIVV2SF3,
3128 PAIRED_BUILTIN_ABSV2SF2,
3129 PAIRED_BUILTIN_NEGV2SF2,
3130 PAIRED_BUILTIN_SQRTV2SF2,
3131 PAIRED_BUILTIN_ADDV2SF3,
3132 PAIRED_BUILTIN_SUBV2SF3,
3133 PAIRED_BUILTIN_RESV2SF2,
3134 PAIRED_BUILTIN_MULV2SF3,
3135 PAIRED_BUILTIN_MSUB,
3136 PAIRED_BUILTIN_MADD,
3137 PAIRED_BUILTIN_NMSUB,
3138 PAIRED_BUILTIN_NMADD,
3139 PAIRED_BUILTIN_NABSV2SF2,
3140 PAIRED_BUILTIN_SUM0,
3141 PAIRED_BUILTIN_SUM1,
3142 PAIRED_BUILTIN_MULS0,
3143 PAIRED_BUILTIN_MULS1,
3144 PAIRED_BUILTIN_MERGE00,
3145 PAIRED_BUILTIN_MERGE01,
3146 PAIRED_BUILTIN_MERGE10,
3147 PAIRED_BUILTIN_MERGE11,
3148 PAIRED_BUILTIN_MADDS0,
3149 PAIRED_BUILTIN_MADDS1,
3150 PAIRED_BUILTIN_STX,
3151 PAIRED_BUILTIN_LX,
3152 PAIRED_BUILTIN_SELV2SF4,
3153 PAIRED_BUILTIN_CMPU0,
3154 PAIRED_BUILTIN_CMPU1,
3156 RS6000_BUILTIN_RECIP,
3157 RS6000_BUILTIN_RECIPF,
3158 RS6000_BUILTIN_RSQRTF,
3159 RS6000_BUILTIN_BSWAP_HI,
3161 /* VSX builtins. */
3162 VSX_BUILTIN_LXSDUX,
3163 VSX_BUILTIN_LXSDX,
3164 VSX_BUILTIN_LXVD2UX,
3165 VSX_BUILTIN_LXVD2X,
3166 VSX_BUILTIN_LXVDSX,
3167 VSX_BUILTIN_LXVW4UX,
3168 VSX_BUILTIN_LXVW4X,
3169 VSX_BUILTIN_STXSDUX,
3170 VSX_BUILTIN_STXSDX,
3171 VSX_BUILTIN_STXVD2UX,
3172 VSX_BUILTIN_STXVD2X,
3173 VSX_BUILTIN_STXVW4UX,
3174 VSX_BUILTIN_STXVW4X,
3175 VSX_BUILTIN_XSABSDP,
3176 VSX_BUILTIN_XSADDDP,
3177 VSX_BUILTIN_XSCMPODP,
3178 VSX_BUILTIN_XSCMPUDP,
3179 VSX_BUILTIN_XSCPSGNDP,
3180 VSX_BUILTIN_XSCVDPSP,
3181 VSX_BUILTIN_XSCVDPSXDS,
3182 VSX_BUILTIN_XSCVDPSXWS,
3183 VSX_BUILTIN_XSCVDPUXDS,
3184 VSX_BUILTIN_XSCVDPUXWS,
3185 VSX_BUILTIN_XSCVSPDP,
3186 VSX_BUILTIN_XSCVSXDDP,
3187 VSX_BUILTIN_XSCVUXDDP,
3188 VSX_BUILTIN_XSDIVDP,
3189 VSX_BUILTIN_XSMADDADP,
3190 VSX_BUILTIN_XSMADDMDP,
3191 VSX_BUILTIN_XSMAXDP,
3192 VSX_BUILTIN_XSMINDP,
3193 VSX_BUILTIN_XSMOVDP,
3194 VSX_BUILTIN_XSMSUBADP,
3195 VSX_BUILTIN_XSMSUBMDP,
3196 VSX_BUILTIN_XSMULDP,
3197 VSX_BUILTIN_XSNABSDP,
3198 VSX_BUILTIN_XSNEGDP,
3199 VSX_BUILTIN_XSNMADDADP,
3200 VSX_BUILTIN_XSNMADDMDP,
3201 VSX_BUILTIN_XSNMSUBADP,
3202 VSX_BUILTIN_XSNMSUBMDP,
3203 VSX_BUILTIN_XSRDPI,
3204 VSX_BUILTIN_XSRDPIC,
3205 VSX_BUILTIN_XSRDPIM,
3206 VSX_BUILTIN_XSRDPIP,
3207 VSX_BUILTIN_XSRDPIZ,
3208 VSX_BUILTIN_XSREDP,
3209 VSX_BUILTIN_XSRSQRTEDP,
3210 VSX_BUILTIN_XSSQRTDP,
3211 VSX_BUILTIN_XSSUBDP,
3212 VSX_BUILTIN_CPSGNDP,
3213 VSX_BUILTIN_CPSGNSP,
3214 VSX_BUILTIN_XSTDIVDP_FE,
3215 VSX_BUILTIN_XSTDIVDP_FG,
3216 VSX_BUILTIN_XSTSQRTDP_FE,
3217 VSX_BUILTIN_XSTSQRTDP_FG,
3218 VSX_BUILTIN_XVABSDP,
3219 VSX_BUILTIN_XVABSSP,
3220 VSX_BUILTIN_XVADDDP,
3221 VSX_BUILTIN_XVADDSP,
3222 VSX_BUILTIN_XVCMPEQDP,
3223 VSX_BUILTIN_XVCMPEQSP,
3224 VSX_BUILTIN_XVCMPGEDP,
3225 VSX_BUILTIN_XVCMPGESP,
3226 VSX_BUILTIN_XVCMPGTDP,
3227 VSX_BUILTIN_XVCMPGTSP,
3228 VSX_BUILTIN_XVCMPEQDP_P,
3229 VSX_BUILTIN_XVCMPEQSP_P,
3230 VSX_BUILTIN_XVCMPGEDP_P,
3231 VSX_BUILTIN_XVCMPGESP_P,
3232 VSX_BUILTIN_XVCMPGTDP_P,
3233 VSX_BUILTIN_XVCMPGTSP_P,
3234 VSX_BUILTIN_XVCPSGNDP,
3235 VSX_BUILTIN_XVCPSGNSP,
3236 VSX_BUILTIN_XVCVDPSP,
3237 VSX_BUILTIN_XVCVDPSXDS,
3238 VSX_BUILTIN_XVCVDPSXWS,
3239 VSX_BUILTIN_XVCVDPUXDS,
3240 VSX_BUILTIN_XVCVDPUXDS_UNS,
3241 VSX_BUILTIN_XVCVDPUXWS,
3242 VSX_BUILTIN_XVCVSPDP,
3243 VSX_BUILTIN_XVCVSPSXDS,
3244 VSX_BUILTIN_XVCVSPSXWS,
3245 VSX_BUILTIN_XVCVSPUXDS,
3246 VSX_BUILTIN_XVCVSPUXWS,
3247 VSX_BUILTIN_XVCVSXDDP,
3248 VSX_BUILTIN_XVCVSXDSP,
3249 VSX_BUILTIN_XVCVSXWDP,
3250 VSX_BUILTIN_XVCVSXWSP,
3251 VSX_BUILTIN_XVCVUXDDP,
3252 VSX_BUILTIN_XVCVUXDDP_UNS,
3253 VSX_BUILTIN_XVCVUXDSP,
3254 VSX_BUILTIN_XVCVUXWDP,
3255 VSX_BUILTIN_XVCVUXWSP,
3256 VSX_BUILTIN_XVDIVDP,
3257 VSX_BUILTIN_XVDIVSP,
3258 VSX_BUILTIN_XVMADDDP,
3259 VSX_BUILTIN_XVMADDSP,
3260 VSX_BUILTIN_XVMAXDP,
3261 VSX_BUILTIN_XVMAXSP,
3262 VSX_BUILTIN_XVMINDP,
3263 VSX_BUILTIN_XVMINSP,
3264 VSX_BUILTIN_XVMSUBDP,
3265 VSX_BUILTIN_XVMSUBSP,
3266 VSX_BUILTIN_XVMULDP,
3267 VSX_BUILTIN_XVMULSP,
3268 VSX_BUILTIN_XVNABSDP,
3269 VSX_BUILTIN_XVNABSSP,
3270 VSX_BUILTIN_XVNEGDP,
3271 VSX_BUILTIN_XVNEGSP,
3272 VSX_BUILTIN_XVNMADDDP,
3273 VSX_BUILTIN_XVNMADDSP,
3274 VSX_BUILTIN_XVNMSUBDP,
3275 VSX_BUILTIN_XVNMSUBSP,
3276 VSX_BUILTIN_XVRDPI,
3277 VSX_BUILTIN_XVRDPIC,
3278 VSX_BUILTIN_XVRDPIM,
3279 VSX_BUILTIN_XVRDPIP,
3280 VSX_BUILTIN_XVRDPIZ,
3281 VSX_BUILTIN_XVREDP,
3282 VSX_BUILTIN_XVRESP,
3283 VSX_BUILTIN_XVRSPI,
3284 VSX_BUILTIN_XVRSPIC,
3285 VSX_BUILTIN_XVRSPIM,
3286 VSX_BUILTIN_XVRSPIP,
3287 VSX_BUILTIN_XVRSPIZ,
3288 VSX_BUILTIN_XVRSQRTEDP,
3289 VSX_BUILTIN_XVRSQRTESP,
3290 VSX_BUILTIN_XVSQRTDP,
3291 VSX_BUILTIN_XVSQRTSP,
3292 VSX_BUILTIN_XVSUBDP,
3293 VSX_BUILTIN_XVSUBSP,
3294 VSX_BUILTIN_XVTDIVDP_FE,
3295 VSX_BUILTIN_XVTDIVDP_FG,
3296 VSX_BUILTIN_XVTDIVSP_FE,
3297 VSX_BUILTIN_XVTDIVSP_FG,
3298 VSX_BUILTIN_XVTSQRTDP_FE,
3299 VSX_BUILTIN_XVTSQRTDP_FG,
3300 VSX_BUILTIN_XVTSQRTSP_FE,
3301 VSX_BUILTIN_XVTSQRTSP_FG,
3302 VSX_BUILTIN_XXSEL_2DI,
3303 VSX_BUILTIN_XXSEL_2DF,
3304 VSX_BUILTIN_XXSEL_4SI,
3305 VSX_BUILTIN_XXSEL_4SF,
3306 VSX_BUILTIN_XXSEL_8HI,
3307 VSX_BUILTIN_XXSEL_16QI,
3308 VSX_BUILTIN_XXSEL_2DI_UNS,
3309 VSX_BUILTIN_XXSEL_4SI_UNS,
3310 VSX_BUILTIN_XXSEL_8HI_UNS,
3311 VSX_BUILTIN_XXSEL_16QI_UNS,
3312 VSX_BUILTIN_VPERM_2DI,
3313 VSX_BUILTIN_VPERM_2DF,
3314 VSX_BUILTIN_VPERM_4SI,
3315 VSX_BUILTIN_VPERM_4SF,
3316 VSX_BUILTIN_VPERM_8HI,
3317 VSX_BUILTIN_VPERM_16QI,
3318 VSX_BUILTIN_VPERM_2DI_UNS,
3319 VSX_BUILTIN_VPERM_4SI_UNS,
3320 VSX_BUILTIN_VPERM_8HI_UNS,
3321 VSX_BUILTIN_VPERM_16QI_UNS,
3322 VSX_BUILTIN_XXPERMDI_2DF,
3323 VSX_BUILTIN_XXPERMDI_2DI,
3324 VSX_BUILTIN_XXPERMDI_4SF,
3325 VSX_BUILTIN_XXPERMDI_4SI,
3326 VSX_BUILTIN_XXPERMDI_8HI,
3327 VSX_BUILTIN_XXPERMDI_16QI,
3328 VSX_BUILTIN_CONCAT_2DF,
3329 VSX_BUILTIN_CONCAT_2DI,
3330 VSX_BUILTIN_SET_2DF,
3331 VSX_BUILTIN_SET_2DI,
3332 VSX_BUILTIN_SPLAT_2DF,
3333 VSX_BUILTIN_SPLAT_2DI,
3334 VSX_BUILTIN_XXMRGHW_4SF,
3335 VSX_BUILTIN_XXMRGHW_4SI,
3336 VSX_BUILTIN_XXMRGLW_4SF,
3337 VSX_BUILTIN_XXMRGLW_4SI,
3338 VSX_BUILTIN_XXSLDWI_16QI,
3339 VSX_BUILTIN_XXSLDWI_8HI,
3340 VSX_BUILTIN_XXSLDWI_4SI,
3341 VSX_BUILTIN_XXSLDWI_4SF,
3342 VSX_BUILTIN_XXSLDWI_2DI,
3343 VSX_BUILTIN_XXSLDWI_2DF,
3344 VSX_BUILTIN_VEC_INIT_V2DF,
3345 VSX_BUILTIN_VEC_INIT_V2DI,
3346 VSX_BUILTIN_VEC_SET_V2DF,
3347 VSX_BUILTIN_VEC_SET_V2DI,
3348 VSX_BUILTIN_VEC_EXT_V2DF,
3349 VSX_BUILTIN_VEC_EXT_V2DI,
3351 /* VSX overloaded builtins, add the overloaded functions not present in
3352 Altivec. */
3353 VSX_BUILTIN_VEC_MUL,
3354 VSX_BUILTIN_OVERLOADED_FIRST = VSX_BUILTIN_VEC_MUL,
3355 VSX_BUILTIN_VEC_MSUB,
3356 VSX_BUILTIN_VEC_NMADD,
3357 VSX_BUITLIN_VEC_NMSUB,
3358 VSX_BUILTIN_VEC_DIV,
3359 VSX_BUILTIN_VEC_XXMRGHW,
3360 VSX_BUILTIN_VEC_XXMRGLW,
3361 VSX_BUILTIN_VEC_XXPERMDI,
3362 VSX_BUILTIN_VEC_XXSLDWI,
3363 VSX_BUILTIN_VEC_XXSPLTD,
3364 VSX_BUILTIN_VEC_XXSPLTW,
3365 VSX_BUILTIN_OVERLOADED_LAST = VSX_BUILTIN_VEC_XXSPLTW,
3367 /* Combined VSX/Altivec builtins. */
3368 VECTOR_BUILTIN_FLOAT_V4SI_V4SF,
3369 VECTOR_BUILTIN_UNSFLOAT_V4SI_V4SF,
3370 VECTOR_BUILTIN_FIX_V4SF_V4SI,
3371 VECTOR_BUILTIN_FIXUNS_V4SF_V4SI,
3373 /* Power7 builtins, that aren't VSX instructions. */
3374 POWER7_BUILTIN_BPERMD,
3376 RS6000_BUILTIN_COUNT
3379 enum rs6000_builtin_type_index
3381 RS6000_BTI_NOT_OPAQUE,
3382 RS6000_BTI_opaque_V2SI,
3383 RS6000_BTI_opaque_V2SF,
3384 RS6000_BTI_opaque_p_V2SI,
3385 RS6000_BTI_opaque_V4SI,
3386 RS6000_BTI_V16QI,
3387 RS6000_BTI_V2SI,
3388 RS6000_BTI_V2SF,
3389 RS6000_BTI_V2DI,
3390 RS6000_BTI_V2DF,
3391 RS6000_BTI_V4HI,
3392 RS6000_BTI_V4SI,
3393 RS6000_BTI_V4SF,
3394 RS6000_BTI_V8HI,
3395 RS6000_BTI_unsigned_V16QI,
3396 RS6000_BTI_unsigned_V8HI,
3397 RS6000_BTI_unsigned_V4SI,
3398 RS6000_BTI_unsigned_V2DI,
3399 RS6000_BTI_bool_char, /* __bool char */
3400 RS6000_BTI_bool_short, /* __bool short */
3401 RS6000_BTI_bool_int, /* __bool int */
3402 RS6000_BTI_bool_long, /* __bool long */
3403 RS6000_BTI_pixel, /* __pixel */
3404 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3405 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3406 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3407 RS6000_BTI_bool_V2DI, /* __vector __bool long */
3408 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3409 RS6000_BTI_long, /* long_integer_type_node */
3410 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3411 RS6000_BTI_INTQI, /* intQI_type_node */
3412 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3413 RS6000_BTI_INTHI, /* intHI_type_node */
3414 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3415 RS6000_BTI_INTSI, /* intSI_type_node */
3416 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3417 RS6000_BTI_INTDI, /* intDI_type_node */
3418 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
3419 RS6000_BTI_float, /* float_type_node */
3420 RS6000_BTI_double, /* double_type_node */
3421 RS6000_BTI_void, /* void_type_node */
3422 RS6000_BTI_MAX
3426 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3427 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3428 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3429 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3430 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3431 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
3432 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
3433 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3434 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3435 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3436 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3437 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3438 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3439 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3440 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3441 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3442 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
3443 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3444 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3445 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3446 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
3447 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3448 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3449 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3450 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3451 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
3452 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3454 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3455 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3456 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3457 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3458 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3459 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3460 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3461 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3462 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
3463 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
3464 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3465 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
3466 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3468 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3469 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];