IBM Z: Fix usage of "f" constraint with long doubles
[official-gcc.git] / gcc / ada / freeze.adb
blob8dc8a2223960dc3020c4f0d4ad6771a2c935bbd8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Stringt; use Stringt;
66 with Targparm; use Targparm;
67 with Tbuild; use Tbuild;
68 with Ttypes; use Ttypes;
69 with Uintp; use Uintp;
70 with Urealp; use Urealp;
71 with Warnsw; use Warnsw;
73 package body Freeze is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
80 -- Typ is a type that is being frozen. If no size clause is given,
81 -- but a default Esize has been computed, then this default Esize is
82 -- adjusted up if necessary to be consistent with a given alignment,
83 -- but never to a value greater than System_Max_Integer_Size. This is
84 -- used for all discrete types and for fixed-point types.
86 procedure Build_And_Analyze_Renamed_Body
87 (Decl : Node_Id;
88 New_S : Entity_Id;
89 After : in out Node_Id);
90 -- Build body for a renaming declaration, insert in tree and analyze
92 procedure Check_Address_Clause (E : Entity_Id);
93 -- Apply legality checks to address clauses for object declarations,
94 -- at the point the object is frozen. Also ensure any initialization is
95 -- performed only after the object has been frozen.
97 procedure Check_Component_Storage_Order
98 (Encl_Type : Entity_Id;
99 Comp : Entity_Id;
100 ADC : Node_Id;
101 Comp_ADC_Present : out Boolean);
102 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
103 -- clause, verify that the component type has an explicit and compatible
104 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
105 -- entity of the component under consideration. For an Encl_Type that
106 -- does not have a Scalar_Storage_Order attribute definition clause,
107 -- verify that the component also does not have such a clause.
108 -- ADC is the attribute definition clause if present (or Empty). On return,
109 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
110 -- attribute definition clause.
112 procedure Check_Debug_Info_Needed (T : Entity_Id);
113 -- As each entity is frozen, this routine is called to deal with the
114 -- setting of Debug_Info_Needed for the entity. This flag is set if
115 -- the entity comes from source, or if we are in Debug_Generated_Code
116 -- mode or if the -gnatdV debug flag is set. However, it never sets
117 -- the flag if Debug_Info_Off is set. This procedure also ensures that
118 -- subsidiary entities have the flag set as required.
120 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
121 -- When an expression function is frozen by a use of it, the expression
122 -- itself is frozen. Check that the expression does not include references
123 -- to deferred constants without completion. We report this at the freeze
124 -- point of the function, to provide a better error message.
126 -- In most cases the expression itself is frozen by the time the function
127 -- itself is frozen, because the formals will be frozen by then. However,
128 -- Attribute references to outer types are freeze points for those types;
129 -- this routine generates the required freeze nodes for them.
131 procedure Check_Inherited_Conditions (R : Entity_Id);
132 -- For a tagged derived type, create wrappers for inherited operations
133 -- that have a class-wide condition, so it can be properly rewritten if
134 -- it involves calls to other overriding primitives.
136 procedure Check_Strict_Alignment (E : Entity_Id);
137 -- E is a base type. If E is tagged or has a component that is aliased
138 -- or tagged or contains something this is aliased or tagged, set
139 -- Strict_Alignment.
141 procedure Check_Unsigned_Type (E : Entity_Id);
142 pragma Inline (Check_Unsigned_Type);
143 -- If E is a fixed-point or discrete type, then all the necessary work
144 -- to freeze it is completed except for possible setting of the flag
145 -- Is_Unsigned_Type, which is done by this procedure. The call has no
146 -- effect if the entity E is not a discrete or fixed-point type.
148 procedure Freeze_And_Append
149 (Ent : Entity_Id;
150 N : Node_Id;
151 Result : in out List_Id);
152 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
153 -- nodes to Result, modifying Result from No_List if necessary. N has
154 -- the same usage as in Freeze_Entity.
156 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
157 -- Freeze enumeration type. The Esize field is set as processing
158 -- proceeds (i.e. set by default when the type is declared and then
159 -- adjusted by rep clauses. What this procedure does is to make sure
160 -- that if a foreign convention is specified, and no specific size
161 -- is given, then the size must be at least Integer'Size.
163 procedure Freeze_Static_Object (E : Entity_Id);
164 -- If an object is frozen which has Is_Statically_Allocated set, then
165 -- all referenced types must also be marked with this flag. This routine
166 -- is in charge of meeting this requirement for the object entity E.
168 procedure Freeze_Subprogram (E : Entity_Id);
169 -- Perform freezing actions for a subprogram (create extra formals,
170 -- and set proper default mechanism values). Note that this routine
171 -- is not called for internal subprograms, for which neither of these
172 -- actions is needed (or desirable, we do not want for example to have
173 -- these extra formals present in initialization procedures, where they
174 -- would serve no purpose). In this call E is either a subprogram or
175 -- a subprogram type (i.e. an access to a subprogram).
177 function Is_Fully_Defined (T : Entity_Id) return Boolean;
178 -- True if T is not private and has no private components, or has a full
179 -- view. Used to determine whether the designated type of an access type
180 -- should be frozen when the access type is frozen. This is done when an
181 -- allocator is frozen, or an expression that may involve attributes of
182 -- the designated type. Otherwise freezing the access type does not freeze
183 -- the designated type.
185 procedure Process_Default_Expressions
186 (E : Entity_Id;
187 After : in out Node_Id);
188 -- This procedure is called for each subprogram to complete processing of
189 -- default expressions at the point where all types are known to be frozen.
190 -- The expressions must be analyzed in full, to make sure that all error
191 -- processing is done (they have only been preanalyzed). If the expression
192 -- is not an entity or literal, its analysis may generate code which must
193 -- not be executed. In that case we build a function body to hold that
194 -- code. This wrapper function serves no other purpose (it used to be
195 -- called to evaluate the default, but now the default is inlined at each
196 -- point of call).
198 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
199 -- Typ is a record or array type that is being frozen. This routine sets
200 -- the default component alignment from the scope stack values if the
201 -- alignment is otherwise not specified.
203 procedure Set_SSO_From_Default (T : Entity_Id);
204 -- T is a record or array type that is being frozen. If it is a base type,
205 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
206 -- will be set appropriately. Note that an explicit occurrence of aspect
207 -- Scalar_Storage_Order or an explicit setting of this aspect with an
208 -- attribute definition clause occurs, then these two flags are reset in
209 -- any case, so call will have no effect.
211 procedure Undelay_Type (T : Entity_Id);
212 -- T is a type of a component that we know to be an Itype. We don't want
213 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
214 -- Full_View or Corresponding_Record_Type.
216 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
217 -- Expr is the expression for an address clause for entity Nam whose type
218 -- is Typ. If Typ has a default initialization, and there is no explicit
219 -- initialization in the source declaration, check whether the address
220 -- clause might cause overlaying of an entity, and emit a warning on the
221 -- side effect that the initialization will cause.
223 -------------------------------
224 -- Adjust_Esize_For_Alignment --
225 -------------------------------
227 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
228 Align : Uint;
230 begin
231 if Known_Esize (Typ) and then Known_Alignment (Typ) then
232 Align := Alignment_In_Bits (Typ);
234 if Align > Esize (Typ) and then Align <= System_Max_Integer_Size then
235 Set_Esize (Typ, Align);
236 end if;
237 end if;
238 end Adjust_Esize_For_Alignment;
240 ------------------------------------
241 -- Build_And_Analyze_Renamed_Body --
242 ------------------------------------
244 procedure Build_And_Analyze_Renamed_Body
245 (Decl : Node_Id;
246 New_S : Entity_Id;
247 After : in out Node_Id)
249 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
250 Ent : constant Entity_Id := Defining_Entity (Decl);
251 Body_Node : Node_Id;
252 Renamed_Subp : Entity_Id;
254 begin
255 -- If the renamed subprogram is intrinsic, there is no need for a
256 -- wrapper body: we set the alias that will be called and expanded which
257 -- completes the declaration. This transformation is only legal if the
258 -- renamed entity has already been elaborated.
260 -- Note that it is legal for a renaming_as_body to rename an intrinsic
261 -- subprogram, as long as the renaming occurs before the new entity
262 -- is frozen (RM 8.5.4 (5)).
264 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
265 and then Is_Entity_Name (Name (Body_Decl))
266 then
267 Renamed_Subp := Entity (Name (Body_Decl));
268 else
269 Renamed_Subp := Empty;
270 end if;
272 if Present (Renamed_Subp)
273 and then Is_Intrinsic_Subprogram (Renamed_Subp)
274 and then
275 (not In_Same_Source_Unit (Renamed_Subp, Ent)
276 or else Sloc (Renamed_Subp) < Sloc (Ent))
278 -- We can make the renaming entity intrinsic if the renamed function
279 -- has an interface name, or if it is one of the shift/rotate
280 -- operations known to the compiler.
282 and then
283 (Present (Interface_Name (Renamed_Subp))
284 or else Chars (Renamed_Subp) in Name_Rotate_Left
285 | Name_Rotate_Right
286 | Name_Shift_Left
287 | Name_Shift_Right
288 | Name_Shift_Right_Arithmetic)
289 then
290 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
292 if Present (Alias (Renamed_Subp)) then
293 Set_Alias (Ent, Alias (Renamed_Subp));
294 else
295 Set_Alias (Ent, Renamed_Subp);
296 end if;
298 Set_Is_Intrinsic_Subprogram (Ent);
299 Set_Has_Completion (Ent);
301 else
302 Body_Node := Build_Renamed_Body (Decl, New_S);
303 Insert_After (After, Body_Node);
304 Mark_Rewrite_Insertion (Body_Node);
305 Analyze (Body_Node);
306 After := Body_Node;
307 end if;
308 end Build_And_Analyze_Renamed_Body;
310 ------------------------
311 -- Build_Renamed_Body --
312 ------------------------
314 function Build_Renamed_Body
315 (Decl : Node_Id;
316 New_S : Entity_Id) return Node_Id
318 Loc : constant Source_Ptr := Sloc (New_S);
319 -- We use for the source location of the renamed body, the location of
320 -- the spec entity. It might seem more natural to use the location of
321 -- the renaming declaration itself, but that would be wrong, since then
322 -- the body we create would look as though it was created far too late,
323 -- and this could cause problems with elaboration order analysis,
324 -- particularly in connection with instantiations.
326 N : constant Node_Id := Unit_Declaration_Node (New_S);
327 Nam : constant Node_Id := Name (N);
328 Old_S : Entity_Id;
329 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
330 Actuals : List_Id := No_List;
331 Call_Node : Node_Id;
332 Call_Name : Node_Id;
333 Body_Node : Node_Id;
334 Formal : Entity_Id;
335 O_Formal : Entity_Id;
336 Param_Spec : Node_Id;
338 Pref : Node_Id := Empty;
339 -- If the renamed entity is a primitive operation given in prefix form,
340 -- the prefix is the target object and it has to be added as the first
341 -- actual in the generated call.
343 begin
344 -- Determine the entity being renamed, which is the target of the call
345 -- statement. If the name is an explicit dereference, this is a renaming
346 -- of a subprogram type rather than a subprogram. The name itself is
347 -- fully analyzed.
349 if Nkind (Nam) = N_Selected_Component then
350 Old_S := Entity (Selector_Name (Nam));
352 elsif Nkind (Nam) = N_Explicit_Dereference then
353 Old_S := Etype (Nam);
355 elsif Nkind (Nam) = N_Indexed_Component then
356 if Is_Entity_Name (Prefix (Nam)) then
357 Old_S := Entity (Prefix (Nam));
358 else
359 Old_S := Entity (Selector_Name (Prefix (Nam)));
360 end if;
362 elsif Nkind (Nam) = N_Character_Literal then
363 Old_S := Etype (New_S);
365 else
366 Old_S := Entity (Nam);
367 end if;
369 if Is_Entity_Name (Nam) then
371 -- If the renamed entity is a predefined operator, retain full name
372 -- to ensure its visibility.
374 if Ekind (Old_S) = E_Operator
375 and then Nkind (Nam) = N_Expanded_Name
376 then
377 Call_Name := New_Copy (Name (N));
378 else
379 Call_Name := New_Occurrence_Of (Old_S, Loc);
380 end if;
382 else
383 if Nkind (Nam) = N_Selected_Component
384 and then Present (First_Formal (Old_S))
385 and then
386 (Is_Controlling_Formal (First_Formal (Old_S))
387 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
388 then
390 -- Retrieve the target object, to be added as a first actual
391 -- in the call.
393 Call_Name := New_Occurrence_Of (Old_S, Loc);
394 Pref := Prefix (Nam);
396 else
397 Call_Name := New_Copy (Name (N));
398 end if;
400 -- Original name may have been overloaded, but is fully resolved now
402 Set_Is_Overloaded (Call_Name, False);
403 end if;
405 -- For simple renamings, subsequent calls can be expanded directly as
406 -- calls to the renamed entity. The body must be generated in any case
407 -- for calls that may appear elsewhere. This is not done in the case
408 -- where the subprogram is an instantiation because the actual proper
409 -- body has not been built yet. This is also not done in GNATprove mode
410 -- as we need to check other conditions for creating a body to inline
411 -- in that case, which are controlled in Analyze_Subprogram_Body_Helper.
413 if Ekind (Old_S) in E_Function | E_Procedure
414 and then Nkind (Decl) = N_Subprogram_Declaration
415 and then not Is_Generic_Instance (Old_S)
416 and then not GNATprove_Mode
417 then
418 Set_Body_To_Inline (Decl, Old_S);
419 end if;
421 -- Check whether the return type is a limited view. If the subprogram
422 -- is already frozen the generated body may have a non-limited view
423 -- of the type, that must be used, because it is the one in the spec
424 -- of the renaming declaration.
426 if Ekind (Old_S) = E_Function
427 and then Is_Entity_Name (Result_Definition (Spec))
428 then
429 declare
430 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
431 begin
432 if Has_Non_Limited_View (Ret_Type) then
433 Set_Result_Definition
434 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
435 end if;
436 end;
437 end if;
439 -- The body generated for this renaming is an internal artifact, and
440 -- does not constitute a freeze point for the called entity.
442 Set_Must_Not_Freeze (Call_Name);
444 Formal := First_Formal (Defining_Entity (Decl));
446 if Present (Pref) then
447 declare
448 Pref_Type : constant Entity_Id := Etype (Pref);
449 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
451 begin
452 -- The controlling formal may be an access parameter, or the
453 -- actual may be an access value, so adjust accordingly.
455 if Is_Access_Type (Pref_Type)
456 and then not Is_Access_Type (Form_Type)
457 then
458 Actuals := New_List
459 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
461 elsif Is_Access_Type (Form_Type)
462 and then not Is_Access_Type (Pref)
463 then
464 Actuals :=
465 New_List (
466 Make_Attribute_Reference (Loc,
467 Attribute_Name => Name_Access,
468 Prefix => Relocate_Node (Pref)));
469 else
470 Actuals := New_List (Pref);
471 end if;
472 end;
474 elsif Present (Formal) then
475 Actuals := New_List;
477 else
478 Actuals := No_List;
479 end if;
481 if Present (Formal) then
482 while Present (Formal) loop
483 Append (New_Occurrence_Of (Formal, Loc), Actuals);
484 Next_Formal (Formal);
485 end loop;
486 end if;
488 -- If the renamed entity is an entry, inherit its profile. For other
489 -- renamings as bodies, both profiles must be subtype conformant, so it
490 -- is not necessary to replace the profile given in the declaration.
491 -- However, default values that are aggregates are rewritten when
492 -- partially analyzed, so we recover the original aggregate to insure
493 -- that subsequent conformity checking works. Similarly, if the default
494 -- expression was constant-folded, recover the original expression.
496 Formal := First_Formal (Defining_Entity (Decl));
498 if Present (Formal) then
499 O_Formal := First_Formal (Old_S);
500 Param_Spec := First (Parameter_Specifications (Spec));
501 while Present (Formal) loop
502 if Is_Entry (Old_S) then
503 if Nkind (Parameter_Type (Param_Spec)) /=
504 N_Access_Definition
505 then
506 Set_Etype (Formal, Etype (O_Formal));
507 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
508 end if;
510 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
511 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
512 Nkind (Default_Value (O_Formal))
513 then
514 Set_Expression (Param_Spec,
515 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
516 end if;
518 Next_Formal (Formal);
519 Next_Formal (O_Formal);
520 Next (Param_Spec);
521 end loop;
522 end if;
524 -- If the renamed entity is a function, the generated body contains a
525 -- return statement. Otherwise, build a procedure call. If the entity is
526 -- an entry, subsequent analysis of the call will transform it into the
527 -- proper entry or protected operation call. If the renamed entity is
528 -- a character literal, return it directly.
530 if Ekind (Old_S) = E_Function
531 or else Ekind (Old_S) = E_Operator
532 or else (Ekind (Old_S) = E_Subprogram_Type
533 and then Etype (Old_S) /= Standard_Void_Type)
534 then
535 Call_Node :=
536 Make_Simple_Return_Statement (Loc,
537 Expression =>
538 Make_Function_Call (Loc,
539 Name => Call_Name,
540 Parameter_Associations => Actuals));
542 elsif Ekind (Old_S) = E_Enumeration_Literal then
543 Call_Node :=
544 Make_Simple_Return_Statement (Loc,
545 Expression => New_Occurrence_Of (Old_S, Loc));
547 elsif Nkind (Nam) = N_Character_Literal then
548 Call_Node :=
549 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
551 else
552 Call_Node :=
553 Make_Procedure_Call_Statement (Loc,
554 Name => Call_Name,
555 Parameter_Associations => Actuals);
556 end if;
558 -- Create entities for subprogram body and formals
560 Set_Defining_Unit_Name (Spec,
561 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
563 Param_Spec := First (Parameter_Specifications (Spec));
564 while Present (Param_Spec) loop
565 Set_Defining_Identifier (Param_Spec,
566 Make_Defining_Identifier (Loc,
567 Chars => Chars (Defining_Identifier (Param_Spec))));
568 Next (Param_Spec);
569 end loop;
571 Body_Node :=
572 Make_Subprogram_Body (Loc,
573 Specification => Spec,
574 Declarations => New_List,
575 Handled_Statement_Sequence =>
576 Make_Handled_Sequence_Of_Statements (Loc,
577 Statements => New_List (Call_Node)));
579 if Nkind (Decl) /= N_Subprogram_Declaration then
580 Rewrite (N,
581 Make_Subprogram_Declaration (Loc,
582 Specification => Specification (N)));
583 end if;
585 -- Link the body to the entity whose declaration it completes. If
586 -- the body is analyzed when the renamed entity is frozen, it may
587 -- be necessary to restore the proper scope (see package Exp_Ch13).
589 if Nkind (N) = N_Subprogram_Renaming_Declaration
590 and then Present (Corresponding_Spec (N))
591 then
592 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
593 else
594 Set_Corresponding_Spec (Body_Node, New_S);
595 end if;
597 return Body_Node;
598 end Build_Renamed_Body;
600 --------------------------
601 -- Check_Address_Clause --
602 --------------------------
604 procedure Check_Address_Clause (E : Entity_Id) is
605 Addr : constant Node_Id := Address_Clause (E);
606 Typ : constant Entity_Id := Etype (E);
607 Decl : Node_Id;
608 Expr : Node_Id;
609 Init : Node_Id;
610 Lhs : Node_Id;
611 Tag_Assign : Node_Id;
613 begin
614 if Present (Addr) then
616 -- For a deferred constant, the initialization value is on full view
618 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
619 Decl := Declaration_Node (Full_View (E));
620 else
621 Decl := Declaration_Node (E);
622 end if;
624 Expr := Expression (Addr);
626 if Needs_Constant_Address (Decl, Typ) then
627 Check_Constant_Address_Clause (Expr, E);
629 -- Has_Delayed_Freeze was set on E when the address clause was
630 -- analyzed, and must remain set because we want the address
631 -- clause to be elaborated only after any entity it references
632 -- has been elaborated.
633 end if;
635 -- If Rep_Clauses are to be ignored, remove address clause from
636 -- list attached to entity, because it may be illegal for gigi,
637 -- for example by breaking order of elaboration.
639 if Ignore_Rep_Clauses then
640 declare
641 Rep : Node_Id;
643 begin
644 Rep := First_Rep_Item (E);
646 if Rep = Addr then
647 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
649 else
650 while Present (Rep)
651 and then Next_Rep_Item (Rep) /= Addr
652 loop
653 Next_Rep_Item (Rep);
654 end loop;
655 end if;
657 if Present (Rep) then
658 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
659 end if;
660 end;
662 -- And now remove the address clause
664 Kill_Rep_Clause (Addr);
666 elsif not Error_Posted (Expr)
667 and then not Needs_Finalization (Typ)
668 then
669 Warn_Overlay (Expr, Typ, Name (Addr));
670 end if;
672 Init := Expression (Decl);
674 -- If a variable, or a non-imported constant, overlays a constant
675 -- object and has an initialization value, then the initialization
676 -- may end up writing into read-only memory. Detect the cases of
677 -- statically identical values and remove the initialization. In
678 -- the other cases, give a warning. We will give other warnings
679 -- later for the variable if it is assigned.
681 if (Ekind (E) = E_Variable
682 or else (Ekind (E) = E_Constant
683 and then not Is_Imported (E)))
684 and then Overlays_Constant (E)
685 and then Present (Init)
686 then
687 declare
688 O_Ent : Entity_Id;
689 Off : Boolean;
691 begin
692 Find_Overlaid_Entity (Addr, O_Ent, Off);
694 if Ekind (O_Ent) = E_Constant
695 and then Etype (O_Ent) = Typ
696 and then Present (Constant_Value (O_Ent))
697 and then Compile_Time_Compare
698 (Init,
699 Constant_Value (O_Ent),
700 Assume_Valid => True) = EQ
701 then
702 Set_No_Initialization (Decl);
703 return;
705 elsif Comes_From_Source (Init)
706 and then Address_Clause_Overlay_Warnings
707 then
708 Error_Msg_Sloc := Sloc (Addr);
709 Error_Msg_NE
710 ("??constant& may be modified via address clause#",
711 Decl, O_Ent);
712 end if;
713 end;
714 end if;
716 -- Remove side effects from initial expression, except in the case of
717 -- limited build-in-place calls and aggregates, which have their own
718 -- expansion elsewhere. This exception is necessary to avoid copying
719 -- limited objects.
721 if Present (Init)
722 and then not Is_Limited_View (Typ)
723 then
724 -- Capture initialization value at point of declaration, and make
725 -- explicit assignment legal, because object may be a constant.
727 Remove_Side_Effects (Init);
728 Lhs := New_Occurrence_Of (E, Sloc (Decl));
729 Set_Assignment_OK (Lhs);
731 -- Move initialization to freeze actions, once the object has
732 -- been frozen and the address clause alignment check has been
733 -- performed.
735 Append_Freeze_Action (E,
736 Make_Assignment_Statement (Sloc (Decl),
737 Name => Lhs,
738 Expression => Expression (Decl)));
740 Set_No_Initialization (Decl);
742 -- If the object is tagged, check whether the tag must be
743 -- reassigned explicitly.
745 Tag_Assign := Make_Tag_Assignment (Decl);
746 if Present (Tag_Assign) then
747 Append_Freeze_Action (E, Tag_Assign);
748 end if;
749 end if;
750 end if;
751 end Check_Address_Clause;
753 -----------------------------
754 -- Check_Compile_Time_Size --
755 -----------------------------
757 procedure Check_Compile_Time_Size (T : Entity_Id) is
759 procedure Set_Small_Size (T : Entity_Id; S : Uint);
760 -- Sets the compile time known size in the RM_Size field of T, checking
761 -- for a size clause that was given which attempts to give a small size.
763 function Size_Known (T : Entity_Id) return Boolean;
764 -- Recursive function that does all the work
766 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
767 -- If T is a constrained subtype, its size is not known if any of its
768 -- discriminant constraints is not static and it is not a null record.
769 -- The test is conservative and doesn't check that the components are
770 -- in fact constrained by non-static discriminant values. Could be made
771 -- more precise ???
773 --------------------
774 -- Set_Small_Size --
775 --------------------
777 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
778 begin
779 if S > System_Max_Integer_Size then
780 return;
782 -- Check for bad size clause given
784 elsif Has_Size_Clause (T) then
785 if RM_Size (T) < S then
786 Error_Msg_Uint_1 := S;
787 Error_Msg_NE (Size_Too_Small_Message, Size_Clause (T), T);
788 end if;
790 -- Set size if not set already
792 elsif Unknown_RM_Size (T) then
793 Set_RM_Size (T, S);
794 end if;
795 end Set_Small_Size;
797 ----------------
798 -- Size_Known --
799 ----------------
801 function Size_Known (T : Entity_Id) return Boolean is
802 Index : Entity_Id;
803 Comp : Entity_Id;
804 Ctyp : Entity_Id;
805 Low : Node_Id;
806 High : Node_Id;
808 begin
809 if Size_Known_At_Compile_Time (T) then
810 return True;
812 -- Always True for elementary types, even generic formal elementary
813 -- types. We used to return False in the latter case, but the size
814 -- is known at compile time, even in the template, we just do not
815 -- know the exact size but that's not the point of this routine.
817 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
818 return True;
820 -- Array types
822 elsif Is_Array_Type (T) then
824 -- String literals always have known size, and we can set it
826 if Ekind (T) = E_String_Literal_Subtype then
827 Set_Small_Size
828 (T, Component_Size (T) * String_Literal_Length (T));
829 return True;
831 -- Unconstrained types never have known at compile time size
833 elsif not Is_Constrained (T) then
834 return False;
836 -- Don't do any recursion on type with error posted, since we may
837 -- have a malformed type that leads us into a loop.
839 elsif Error_Posted (T) then
840 return False;
842 -- Otherwise if component size unknown, then array size unknown
844 elsif not Size_Known (Component_Type (T)) then
845 return False;
846 end if;
848 -- Check for all indexes static, and also compute possible size
849 -- (in case it is not greater than System_Max_Integer_Size and
850 -- thus may be packable).
852 declare
853 Size : Uint := Component_Size (T);
854 Dim : Uint;
856 begin
857 Index := First_Index (T);
858 while Present (Index) loop
859 if Nkind (Index) = N_Range then
860 Get_Index_Bounds (Index, Low, High);
862 elsif Error_Posted (Scalar_Range (Etype (Index))) then
863 return False;
865 else
866 Low := Type_Low_Bound (Etype (Index));
867 High := Type_High_Bound (Etype (Index));
868 end if;
870 if not Compile_Time_Known_Value (Low)
871 or else not Compile_Time_Known_Value (High)
872 or else Etype (Index) = Any_Type
873 then
874 return False;
876 else
877 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
879 if Dim >= 0 then
880 Size := Size * Dim;
881 else
882 Size := Uint_0;
883 end if;
884 end if;
886 Next_Index (Index);
887 end loop;
889 Set_Small_Size (T, Size);
890 return True;
891 end;
893 -- For non-generic private types, go to underlying type if present
895 elsif Is_Private_Type (T)
896 and then not Is_Generic_Type (T)
897 and then Present (Underlying_Type (T))
898 then
899 -- Don't do any recursion on type with error posted, since we may
900 -- have a malformed type that leads us into a loop.
902 if Error_Posted (T) then
903 return False;
904 else
905 return Size_Known (Underlying_Type (T));
906 end if;
908 -- Record types
910 elsif Is_Record_Type (T) then
912 -- A class-wide type is never considered to have a known size
914 if Is_Class_Wide_Type (T) then
915 return False;
917 -- A subtype of a variant record must not have non-static
918 -- discriminated components.
920 elsif T /= Base_Type (T)
921 and then not Static_Discriminated_Components (T)
922 then
923 return False;
925 -- Don't do any recursion on type with error posted, since we may
926 -- have a malformed type that leads us into a loop.
928 elsif Error_Posted (T) then
929 return False;
930 end if;
932 -- Now look at the components of the record
934 declare
935 -- The following two variables are used to keep track of the
936 -- size of packed records if we can tell the size of the packed
937 -- record in the front end. Packed_Size_Known is True if so far
938 -- we can figure out the size. It is initialized to True for a
939 -- packed record, unless the record has either discriminants or
940 -- independent components, or is a strict-alignment type, since
941 -- it cannot be fully packed in this case.
943 -- The reason we eliminate the discriminated case is that
944 -- we don't know the way the back end lays out discriminated
945 -- packed records. If Packed_Size_Known is True, then
946 -- Packed_Size is the size in bits so far.
948 Packed_Size_Known : Boolean :=
949 Is_Packed (T)
950 and then not Has_Discriminants (T)
951 and then not Has_Independent_Components (T)
952 and then not Strict_Alignment (T);
954 Packed_Size : Uint := Uint_0;
955 -- Size in bits so far
957 begin
958 -- Test for variant part present
960 if Has_Discriminants (T)
961 and then Present (Parent (T))
962 and then Nkind (Parent (T)) = N_Full_Type_Declaration
963 and then Nkind (Type_Definition (Parent (T))) =
964 N_Record_Definition
965 and then not Null_Present (Type_Definition (Parent (T)))
966 and then
967 Present (Variant_Part
968 (Component_List (Type_Definition (Parent (T)))))
969 then
970 -- If variant part is present, and type is unconstrained,
971 -- then we must have defaulted discriminants, or a size
972 -- clause must be present for the type, or else the size
973 -- is definitely not known at compile time.
975 if not Is_Constrained (T)
976 and then
977 No (Discriminant_Default_Value (First_Discriminant (T)))
978 and then Unknown_RM_Size (T)
979 then
980 return False;
981 end if;
982 end if;
984 -- Loop through components
986 Comp := First_Component_Or_Discriminant (T);
987 while Present (Comp) loop
988 Ctyp := Etype (Comp);
990 -- We do not know the packed size if there is a component
991 -- clause present (we possibly could, but this would only
992 -- help in the case of a record with partial rep clauses.
993 -- That's because in the case of full rep clauses, the
994 -- size gets figured out anyway by a different circuit).
996 if Present (Component_Clause (Comp)) then
997 Packed_Size_Known := False;
998 end if;
1000 -- We do not know the packed size for an independent
1001 -- component or if it is of a strict-alignment type,
1002 -- since packing does not touch these (RM 13.2(7)).
1004 if Is_Independent (Comp)
1005 or else Is_Independent (Ctyp)
1006 or else Strict_Alignment (Ctyp)
1007 then
1008 Packed_Size_Known := False;
1009 end if;
1011 -- We need to identify a component that is an array where
1012 -- the index type is an enumeration type with non-standard
1013 -- representation, and some bound of the type depends on a
1014 -- discriminant.
1016 -- This is because gigi computes the size by doing a
1017 -- substitution of the appropriate discriminant value in
1018 -- the size expression for the base type, and gigi is not
1019 -- clever enough to evaluate the resulting expression (which
1020 -- involves a call to rep_to_pos) at compile time.
1022 -- It would be nice if gigi would either recognize that
1023 -- this expression can be computed at compile time, or
1024 -- alternatively figured out the size from the subtype
1025 -- directly, where all the information is at hand ???
1027 if Is_Array_Type (Etype (Comp))
1028 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1029 then
1030 declare
1031 Ocomp : constant Entity_Id :=
1032 Original_Record_Component (Comp);
1033 OCtyp : constant Entity_Id := Etype (Ocomp);
1034 Ind : Node_Id;
1035 Indtyp : Entity_Id;
1036 Lo, Hi : Node_Id;
1038 begin
1039 Ind := First_Index (OCtyp);
1040 while Present (Ind) loop
1041 Indtyp := Etype (Ind);
1043 if Is_Enumeration_Type (Indtyp)
1044 and then Has_Non_Standard_Rep (Indtyp)
1045 then
1046 Lo := Type_Low_Bound (Indtyp);
1047 Hi := Type_High_Bound (Indtyp);
1049 if Is_Entity_Name (Lo)
1050 and then Ekind (Entity (Lo)) = E_Discriminant
1051 then
1052 return False;
1054 elsif Is_Entity_Name (Hi)
1055 and then Ekind (Entity (Hi)) = E_Discriminant
1056 then
1057 return False;
1058 end if;
1059 end if;
1061 Next_Index (Ind);
1062 end loop;
1063 end;
1064 end if;
1066 -- Clearly size of record is not known if the size of one of
1067 -- the components is not known.
1069 if not Size_Known (Ctyp) then
1070 return False;
1071 end if;
1073 -- Accumulate packed size if possible
1075 if Packed_Size_Known then
1077 -- We can deal with elementary types, small packed arrays
1078 -- if the representation is a modular type and also small
1079 -- record types as checked by Set_Small_Size.
1081 if Is_Elementary_Type (Ctyp)
1082 or else (Is_Array_Type (Ctyp)
1083 and then Present
1084 (Packed_Array_Impl_Type (Ctyp))
1085 and then Is_Modular_Integer_Type
1086 (Packed_Array_Impl_Type (Ctyp)))
1087 or else Is_Record_Type (Ctyp)
1088 then
1089 -- If RM_Size is known and static, then we can keep
1090 -- accumulating the packed size.
1092 if Known_Static_RM_Size (Ctyp) then
1094 Packed_Size := Packed_Size + RM_Size (Ctyp);
1096 -- If we have a field whose RM_Size is not known then
1097 -- we can't figure out the packed size here.
1099 else
1100 Packed_Size_Known := False;
1101 end if;
1103 -- For other types we can't figure out the packed size
1105 else
1106 Packed_Size_Known := False;
1107 end if;
1108 end if;
1110 Next_Component_Or_Discriminant (Comp);
1111 end loop;
1113 if Packed_Size_Known then
1114 Set_Small_Size (T, Packed_Size);
1115 end if;
1117 return True;
1118 end;
1120 -- All other cases, size not known at compile time
1122 else
1123 return False;
1124 end if;
1125 end Size_Known;
1127 -------------------------------------
1128 -- Static_Discriminated_Components --
1129 -------------------------------------
1131 function Static_Discriminated_Components
1132 (T : Entity_Id) return Boolean
1134 Constraint : Elmt_Id;
1136 begin
1137 if Has_Discriminants (T)
1138 and then Present (Discriminant_Constraint (T))
1139 and then Present (First_Component (T))
1140 then
1141 Constraint := First_Elmt (Discriminant_Constraint (T));
1142 while Present (Constraint) loop
1143 if not Compile_Time_Known_Value (Node (Constraint)) then
1144 return False;
1145 end if;
1147 Next_Elmt (Constraint);
1148 end loop;
1149 end if;
1151 return True;
1152 end Static_Discriminated_Components;
1154 -- Start of processing for Check_Compile_Time_Size
1156 begin
1157 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1158 end Check_Compile_Time_Size;
1160 -----------------------------------
1161 -- Check_Component_Storage_Order --
1162 -----------------------------------
1164 procedure Check_Component_Storage_Order
1165 (Encl_Type : Entity_Id;
1166 Comp : Entity_Id;
1167 ADC : Node_Id;
1168 Comp_ADC_Present : out Boolean)
1170 Comp_Base : Entity_Id;
1171 Comp_ADC : Node_Id;
1172 Encl_Base : Entity_Id;
1173 Err_Node : Node_Id;
1175 Component_Aliased : Boolean;
1177 Comp_Byte_Aligned : Boolean := False;
1178 -- Set for the record case, True if Comp is aligned on byte boundaries
1179 -- (in which case it is allowed to have different storage order).
1181 Comp_SSO_Differs : Boolean;
1182 -- Set True when the component is a nested composite, and it does not
1183 -- have the same scalar storage order as Encl_Type.
1185 begin
1186 -- Record case
1188 if Present (Comp) then
1189 Err_Node := Comp;
1190 Comp_Base := Etype (Comp);
1192 if Is_Tag (Comp) then
1193 Comp_Byte_Aligned := True;
1194 Component_Aliased := False;
1196 else
1197 -- If a component clause is present, check if the component starts
1198 -- and ends on byte boundaries. Otherwise conservatively assume it
1199 -- does so only in the case where the record is not packed.
1201 if Present (Component_Clause (Comp)) then
1202 Comp_Byte_Aligned :=
1203 (Normalized_First_Bit (Comp) mod System_Storage_Unit = 0)
1204 and then
1205 (Esize (Comp) mod System_Storage_Unit = 0);
1206 else
1207 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1208 end if;
1210 Component_Aliased := Is_Aliased (Comp);
1211 end if;
1213 -- Array case
1215 else
1216 Err_Node := Encl_Type;
1217 Comp_Base := Component_Type (Encl_Type);
1219 Component_Aliased := Has_Aliased_Components (Encl_Type);
1220 end if;
1222 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1223 -- the attribute definition clause is attached to the first subtype.
1224 -- Also, if the base type is incomplete or private, go to full view
1225 -- if known
1227 Encl_Base := Base_Type (Encl_Type);
1228 if Present (Underlying_Type (Encl_Base)) then
1229 Encl_Base := Underlying_Type (Encl_Base);
1230 end if;
1232 Comp_Base := Base_Type (Comp_Base);
1233 if Present (Underlying_Type (Comp_Base)) then
1234 Comp_Base := Underlying_Type (Comp_Base);
1235 end if;
1237 Comp_ADC :=
1238 Get_Attribute_Definition_Clause
1239 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1240 Comp_ADC_Present := Present (Comp_ADC);
1242 -- Case of record or array component: check storage order compatibility.
1243 -- But, if the record has Complex_Representation, then it is treated as
1244 -- a scalar in the back end so the storage order is irrelevant.
1246 if (Is_Record_Type (Comp_Base)
1247 and then not Has_Complex_Representation (Comp_Base))
1248 or else Is_Array_Type (Comp_Base)
1249 then
1250 Comp_SSO_Differs :=
1251 Reverse_Storage_Order (Encl_Base) /=
1252 Reverse_Storage_Order (Comp_Base);
1254 -- Parent and extension must have same storage order
1256 if Present (Comp) and then Chars (Comp) = Name_uParent then
1257 if Comp_SSO_Differs then
1258 Error_Msg_N
1259 ("record extension must have same scalar storage order as "
1260 & "parent", Err_Node);
1261 end if;
1263 -- If component and composite SSO differs, check that component
1264 -- falls on byte boundaries and isn't bit packed.
1266 elsif Comp_SSO_Differs then
1268 -- Component SSO differs from enclosing composite:
1270 -- Reject if composite is a bit-packed array, as it is rewritten
1271 -- into an array of scalars.
1273 if Is_Bit_Packed_Array (Encl_Base) then
1274 Error_Msg_N
1275 ("type of packed array must have same scalar storage order "
1276 & "as component", Err_Node);
1278 -- Reject if not byte aligned
1280 elsif Is_Record_Type (Encl_Base)
1281 and then not Comp_Byte_Aligned
1282 then
1283 Error_Msg_N
1284 ("type of non-byte-aligned component must have same scalar "
1285 & "storage order as enclosing composite", Err_Node);
1287 -- Warn if specified only for the outer composite
1289 elsif Present (ADC) and then No (Comp_ADC) then
1290 Error_Msg_NE
1291 ("scalar storage order specified for & does not apply to "
1292 & "component?", Err_Node, Encl_Base);
1293 end if;
1294 end if;
1296 -- Enclosing type has explicit SSO: non-composite component must not
1297 -- be aliased.
1299 elsif Present (ADC) and then Component_Aliased then
1300 Error_Msg_N
1301 ("aliased component not permitted for type with explicit "
1302 & "Scalar_Storage_Order", Err_Node);
1303 end if;
1304 end Check_Component_Storage_Order;
1306 -----------------------------
1307 -- Check_Debug_Info_Needed --
1308 -----------------------------
1310 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1311 begin
1312 if Debug_Info_Off (T) then
1313 return;
1315 elsif Comes_From_Source (T)
1316 or else Debug_Generated_Code
1317 or else Debug_Flag_VV
1318 or else Needs_Debug_Info (T)
1319 then
1320 Set_Debug_Info_Needed (T);
1321 end if;
1322 end Check_Debug_Info_Needed;
1324 -------------------------------
1325 -- Check_Expression_Function --
1326 -------------------------------
1328 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1329 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1330 -- Function to search for deferred constant
1332 -------------------
1333 -- Find_Constant --
1334 -------------------
1336 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1337 begin
1338 -- When a constant is initialized with the result of a dispatching
1339 -- call, the constant declaration is rewritten as a renaming of the
1340 -- displaced function result. This scenario is not a premature use of
1341 -- a constant even though the Has_Completion flag is not set.
1343 if Is_Entity_Name (Nod)
1344 and then Present (Entity (Nod))
1345 and then Ekind (Entity (Nod)) = E_Constant
1346 and then Scope (Entity (Nod)) = Current_Scope
1347 and then Nkind (Declaration_Node (Entity (Nod))) =
1348 N_Object_Declaration
1349 and then not Is_Imported (Entity (Nod))
1350 and then not Has_Completion (Entity (Nod))
1351 and then not Is_Frozen (Entity (Nod))
1352 then
1353 Error_Msg_NE
1354 ("premature use of& in call or instance", N, Entity (Nod));
1356 elsif Nkind (Nod) = N_Attribute_Reference then
1357 Analyze (Prefix (Nod));
1359 if Is_Entity_Name (Prefix (Nod))
1360 and then Is_Type (Entity (Prefix (Nod)))
1361 then
1362 Freeze_Before (N, Entity (Prefix (Nod)));
1363 end if;
1364 end if;
1366 return OK;
1367 end Find_Constant;
1369 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1371 -- Local variables
1373 Decl : Node_Id;
1375 -- Start of processing for Check_Expression_Function
1377 begin
1378 Decl := Original_Node (Unit_Declaration_Node (Nam));
1380 -- The subprogram body created for the expression function is not
1381 -- itself a freeze point.
1383 if Scope (Nam) = Current_Scope
1384 and then Nkind (Decl) = N_Expression_Function
1385 and then Nkind (N) /= N_Subprogram_Body
1386 then
1387 Check_Deferred (Expression (Decl));
1388 end if;
1389 end Check_Expression_Function;
1391 --------------------------------
1392 -- Check_Inherited_Conditions --
1393 --------------------------------
1395 procedure Check_Inherited_Conditions (R : Entity_Id) is
1396 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1397 Decls : List_Id;
1398 Needs_Wrapper : Boolean;
1399 Op_Node : Elmt_Id;
1400 Par_Prim : Entity_Id;
1401 Prim : Entity_Id;
1403 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id);
1404 -- Build corresponding pragmas for an operation whose ancestor has
1405 -- class-wide pre/postconditions. If the operation is inherited, the
1406 -- pragmas force the creation of a wrapper for the inherited operation.
1407 -- If the ancestor is being overridden, the pragmas are constructed only
1408 -- to verify their legality, in case they contain calls to other
1409 -- primitives that may haven been overridden.
1411 ---------------------------------------
1412 -- Build_Inherited_Condition_Pragmas --
1413 ---------------------------------------
1415 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id) is
1416 A_Post : Node_Id;
1417 A_Pre : Node_Id;
1418 New_Prag : Node_Id;
1420 begin
1421 A_Pre := Get_Class_Wide_Pragma (Par_Prim, Pragma_Precondition);
1423 if Present (A_Pre) then
1424 New_Prag := New_Copy_Tree (A_Pre);
1425 Build_Class_Wide_Expression
1426 (Prag => New_Prag,
1427 Subp => Prim,
1428 Par_Subp => Par_Prim,
1429 Adjust_Sloc => False,
1430 Needs_Wrapper => Needs_Wrapper);
1432 if Needs_Wrapper
1433 and then not Comes_From_Source (Subp)
1434 and then Expander_Active
1435 then
1436 Append (New_Prag, Decls);
1437 end if;
1438 end if;
1440 A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition);
1442 if Present (A_Post) then
1443 New_Prag := New_Copy_Tree (A_Post);
1444 Build_Class_Wide_Expression
1445 (Prag => New_Prag,
1446 Subp => Prim,
1447 Par_Subp => Par_Prim,
1448 Adjust_Sloc => False,
1449 Needs_Wrapper => Needs_Wrapper);
1451 if Needs_Wrapper
1452 and then not Comes_From_Source (Subp)
1453 and then Expander_Active
1454 then
1455 Append (New_Prag, Decls);
1456 end if;
1457 end if;
1458 end Build_Inherited_Condition_Pragmas;
1460 -- Start of processing for Check_Inherited_Conditions
1462 begin
1463 Op_Node := First_Elmt (Prim_Ops);
1464 while Present (Op_Node) loop
1465 Prim := Node (Op_Node);
1467 -- Map the overridden primitive to the overriding one. This takes
1468 -- care of all overridings and is done only once.
1470 if Present (Overridden_Operation (Prim))
1471 and then Comes_From_Source (Prim)
1472 then
1473 Par_Prim := Overridden_Operation (Prim);
1474 Update_Primitives_Mapping (Par_Prim, Prim);
1475 end if;
1477 Next_Elmt (Op_Node);
1478 end loop;
1480 -- Perform validity checks on the inherited conditions of overriding
1481 -- operations, for conformance with LSP, and apply SPARK-specific
1482 -- restrictions on inherited conditions.
1484 Op_Node := First_Elmt (Prim_Ops);
1485 while Present (Op_Node) loop
1486 Prim := Node (Op_Node);
1488 if Present (Overridden_Operation (Prim))
1489 and then Comes_From_Source (Prim)
1490 then
1491 Par_Prim := Overridden_Operation (Prim);
1493 -- Analyze the contract items of the overridden operation, before
1494 -- they are rewritten as pragmas.
1496 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1498 -- In GNATprove mode this is where we can collect the inherited
1499 -- conditions, because we do not create the Check pragmas that
1500 -- normally convey the modified class-wide conditions on
1501 -- overriding operations.
1503 if GNATprove_Mode then
1504 Collect_Inherited_Class_Wide_Conditions (Prim);
1506 -- Otherwise build the corresponding pragmas to check for legality
1507 -- of the inherited condition.
1509 else
1510 Build_Inherited_Condition_Pragmas (Prim);
1511 end if;
1512 end if;
1514 Next_Elmt (Op_Node);
1515 end loop;
1517 -- Now examine the inherited operations to check whether they require
1518 -- a wrapper to handle inherited conditions that call other primitives,
1519 -- so that LSP can be verified/enforced.
1521 Op_Node := First_Elmt (Prim_Ops);
1523 while Present (Op_Node) loop
1524 Decls := Empty_List;
1525 Prim := Node (Op_Node);
1526 Needs_Wrapper := False;
1528 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1529 Par_Prim := Alias (Prim);
1531 -- Analyze the contract items of the parent operation, and
1532 -- determine whether a wrapper is needed. This is determined
1533 -- when the condition is rewritten in sem_prag, using the
1534 -- mapping between overridden and overriding operations built
1535 -- in the loop above.
1537 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1538 Build_Inherited_Condition_Pragmas (Prim);
1539 end if;
1541 if Needs_Wrapper
1542 and then not Is_Abstract_Subprogram (Par_Prim)
1543 and then Expander_Active
1544 then
1545 -- We need to build a new primitive that overrides the inherited
1546 -- one, and whose inherited expression has been updated above.
1547 -- These expressions are the arguments of pragmas that are part
1548 -- of the declarations of the wrapper. The wrapper holds a single
1549 -- statement that is a call to the class-wide clone, where the
1550 -- controlling actuals are conversions to the corresponding type
1551 -- in the parent primitive:
1553 -- procedure New_Prim (F1 : T1; ...);
1554 -- procedure New_Prim (F1 : T1; ...) is
1555 -- pragma Check (Precondition, Expr);
1556 -- begin
1557 -- Par_Prim_Clone (Par_Type (F1), ...);
1558 -- end;
1560 -- If the primitive is a function the statement is a return
1561 -- statement with a call.
1563 declare
1564 Loc : constant Source_Ptr := Sloc (R);
1565 Par_R : constant Node_Id := Parent (R);
1566 New_Body : Node_Id;
1567 New_Decl : Node_Id;
1568 New_Spec : Node_Id;
1570 begin
1571 New_Spec := Build_Overriding_Spec (Par_Prim, R);
1572 New_Decl :=
1573 Make_Subprogram_Declaration (Loc,
1574 Specification => New_Spec);
1576 -- Insert the declaration and the body of the wrapper after
1577 -- type declaration that generates inherited operation. For
1578 -- a null procedure, the declaration implies a null body.
1580 if Nkind (New_Spec) = N_Procedure_Specification
1581 and then Null_Present (New_Spec)
1582 then
1583 Insert_After_And_Analyze (Par_R, New_Decl);
1585 else
1586 -- Build body as wrapper to a call to the already built
1587 -- class-wide clone.
1589 New_Body :=
1590 Build_Class_Wide_Clone_Call
1591 (Loc, Decls, Par_Prim, New_Spec);
1593 Insert_List_After_And_Analyze
1594 (Par_R, New_List (New_Decl, New_Body));
1595 end if;
1596 end;
1597 end if;
1599 Next_Elmt (Op_Node);
1600 end loop;
1601 end Check_Inherited_Conditions;
1603 ----------------------------
1604 -- Check_Strict_Alignment --
1605 ----------------------------
1607 procedure Check_Strict_Alignment (E : Entity_Id) is
1608 Comp : Entity_Id;
1610 begin
1611 -- Bit-packed array types do not require strict alignment, even if they
1612 -- are by-reference types, because they are accessed in a special way.
1614 if Is_By_Reference_Type (E) and then not Is_Bit_Packed_Array (E) then
1615 Set_Strict_Alignment (E);
1617 elsif Is_Array_Type (E) then
1618 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1620 -- ??? AI12-001: Any component of a packed type that contains an
1621 -- aliased part must be aligned according to the alignment of its
1622 -- subtype (RM 13.2(7)). This means that the following test:
1624 -- if Has_Aliased_Components (E) then
1625 -- Set_Strict_Alignment (E);
1626 -- end if;
1628 -- should be implemented here. Unfortunately it would break Florist,
1629 -- which has the bad habit of overaligning all the types it declares
1630 -- on 32-bit platforms. Other legacy codebases could also be affected
1631 -- because this check has historically been missing in GNAT.
1633 elsif Is_Record_Type (E) then
1634 Comp := First_Component (E);
1635 while Present (Comp) loop
1636 if not Is_Type (Comp)
1637 and then (Is_Aliased (Comp)
1638 or else Strict_Alignment (Etype (Comp)))
1639 then
1640 Set_Strict_Alignment (E);
1641 return;
1642 end if;
1644 Next_Component (Comp);
1645 end loop;
1646 end if;
1647 end Check_Strict_Alignment;
1649 -------------------------
1650 -- Check_Unsigned_Type --
1651 -------------------------
1653 procedure Check_Unsigned_Type (E : Entity_Id) is
1654 Ancestor : Entity_Id;
1655 Lo_Bound : Node_Id;
1656 Btyp : Entity_Id;
1658 begin
1659 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1660 return;
1661 end if;
1663 -- Do not attempt to analyze case where range was in error
1665 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1666 return;
1667 end if;
1669 -- The situation that is nontrivial is something like:
1671 -- subtype x1 is integer range -10 .. +10;
1672 -- subtype x2 is x1 range 0 .. V1;
1673 -- subtype x3 is x2 range V2 .. V3;
1674 -- subtype x4 is x3 range V4 .. V5;
1676 -- where Vn are variables. Here the base type is signed, but we still
1677 -- know that x4 is unsigned because of the lower bound of x2.
1679 -- The only way to deal with this is to look up the ancestor chain
1681 Ancestor := E;
1682 loop
1683 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1684 return;
1685 end if;
1687 Lo_Bound := Type_Low_Bound (Ancestor);
1689 if Compile_Time_Known_Value (Lo_Bound) then
1690 if Expr_Rep_Value (Lo_Bound) >= 0 then
1691 Set_Is_Unsigned_Type (E, True);
1692 end if;
1694 return;
1696 else
1697 Ancestor := Ancestor_Subtype (Ancestor);
1699 -- If no ancestor had a static lower bound, go to base type
1701 if No (Ancestor) then
1703 -- Note: the reason we still check for a compile time known
1704 -- value for the base type is that at least in the case of
1705 -- generic formals, we can have bounds that fail this test,
1706 -- and there may be other cases in error situations.
1708 Btyp := Base_Type (E);
1710 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1711 return;
1712 end if;
1714 Lo_Bound := Type_Low_Bound (Base_Type (E));
1716 if Compile_Time_Known_Value (Lo_Bound)
1717 and then Expr_Rep_Value (Lo_Bound) >= 0
1718 then
1719 Set_Is_Unsigned_Type (E, True);
1720 end if;
1722 return;
1723 end if;
1724 end if;
1725 end loop;
1726 end Check_Unsigned_Type;
1728 ------------------------------
1729 -- Is_Full_Access_Aggregate --
1730 ------------------------------
1732 function Is_Full_Access_Aggregate (N : Node_Id) return Boolean is
1733 Loc : constant Source_Ptr := Sloc (N);
1734 New_N : Node_Id;
1735 Par : Node_Id;
1736 Temp : Entity_Id;
1737 Typ : Entity_Id;
1739 begin
1740 Par := Parent (N);
1742 -- Array may be qualified, so find outer context
1744 if Nkind (Par) = N_Qualified_Expression then
1745 Par := Parent (Par);
1746 end if;
1748 if not Comes_From_Source (Par) then
1749 return False;
1750 end if;
1752 case Nkind (Par) is
1753 when N_Assignment_Statement =>
1754 Typ := Etype (Name (Par));
1756 if not Is_Full_Access (Typ)
1757 and then not (Is_Entity_Name (Name (Par))
1758 and then Is_Full_Access (Entity (Name (Par))))
1759 then
1760 return False;
1761 end if;
1763 when N_Object_Declaration =>
1764 Typ := Etype (Defining_Identifier (Par));
1766 if not Is_Full_Access (Typ)
1767 and then not Is_Full_Access (Defining_Identifier (Par))
1768 then
1769 return False;
1770 end if;
1772 when others =>
1773 return False;
1774 end case;
1776 Temp := Make_Temporary (Loc, 'T', N);
1777 New_N :=
1778 Make_Object_Declaration (Loc,
1779 Defining_Identifier => Temp,
1780 Constant_Present => True,
1781 Object_Definition => New_Occurrence_Of (Typ, Loc),
1782 Expression => Relocate_Node (N));
1783 Insert_Before (Par, New_N);
1784 Analyze (New_N);
1786 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1787 return True;
1788 end Is_Full_Access_Aggregate;
1790 -----------------------------------------------
1791 -- Explode_Initialization_Compound_Statement --
1792 -----------------------------------------------
1794 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1795 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1797 begin
1798 if Present (Init_Stmts)
1799 and then Nkind (Init_Stmts) = N_Compound_Statement
1800 then
1801 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1803 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1804 -- just removing it, because Freeze_All may rely on this particular
1805 -- Node_Id still being present in the enclosing list to know where to
1806 -- stop freezing.
1808 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1810 Set_Initialization_Statements (E, Empty);
1811 end if;
1812 end Explode_Initialization_Compound_Statement;
1814 ----------------
1815 -- Freeze_All --
1816 ----------------
1818 -- Note: the easy coding for this procedure would be to just build a
1819 -- single list of freeze nodes and then insert them and analyze them
1820 -- all at once. This won't work, because the analysis of earlier freeze
1821 -- nodes may recursively freeze types which would otherwise appear later
1822 -- on in the freeze list. So we must analyze and expand the freeze nodes
1823 -- as they are generated.
1825 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1826 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1827 -- This is the internal recursive routine that does freezing of entities
1828 -- (but NOT the analysis of default expressions, which should not be
1829 -- recursive, we don't want to analyze those till we are sure that ALL
1830 -- the types are frozen).
1832 --------------------
1833 -- Freeze_All_Ent --
1834 --------------------
1836 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1837 E : Entity_Id;
1838 Flist : List_Id;
1839 Lastn : Node_Id;
1841 procedure Process_Flist;
1842 -- If freeze nodes are present, insert and analyze, and reset cursor
1843 -- for next insertion.
1845 -------------------
1846 -- Process_Flist --
1847 -------------------
1849 procedure Process_Flist is
1850 begin
1851 if Is_Non_Empty_List (Flist) then
1852 Lastn := Next (After);
1853 Insert_List_After_And_Analyze (After, Flist);
1855 if Present (Lastn) then
1856 After := Prev (Lastn);
1857 else
1858 After := Last (List_Containing (After));
1859 end if;
1860 end if;
1861 end Process_Flist;
1863 -- Start of processing for Freeze_All_Ent
1865 begin
1866 E := From;
1867 while Present (E) loop
1869 -- If the entity is an inner package which is not a package
1870 -- renaming, then its entities must be frozen at this point. Note
1871 -- that such entities do NOT get frozen at the end of the nested
1872 -- package itself (only library packages freeze).
1874 -- Same is true for task declarations, where anonymous records
1875 -- created for entry parameters must be frozen.
1877 if Ekind (E) = E_Package
1878 and then No (Renamed_Object (E))
1879 and then not Is_Child_Unit (E)
1880 and then not Is_Frozen (E)
1881 then
1882 Push_Scope (E);
1884 Install_Visible_Declarations (E);
1885 Install_Private_Declarations (E);
1886 Freeze_All (First_Entity (E), After);
1888 End_Package_Scope (E);
1890 if Is_Generic_Instance (E)
1891 and then Has_Delayed_Freeze (E)
1892 then
1893 Set_Has_Delayed_Freeze (E, False);
1894 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1895 end if;
1897 elsif Ekind (E) in Task_Kind
1898 and then Nkind (Parent (E)) in
1899 N_Single_Task_Declaration | N_Task_Type_Declaration
1900 then
1901 Push_Scope (E);
1902 Freeze_All (First_Entity (E), After);
1903 End_Scope;
1905 -- For a derived tagged type, we must ensure that all the
1906 -- primitive operations of the parent have been frozen, so that
1907 -- their addresses will be in the parent's dispatch table at the
1908 -- point it is inherited.
1910 elsif Ekind (E) = E_Record_Type
1911 and then Is_Tagged_Type (E)
1912 and then Is_Tagged_Type (Etype (E))
1913 and then Is_Derived_Type (E)
1914 then
1915 declare
1916 Prim_List : constant Elist_Id :=
1917 Primitive_Operations (Etype (E));
1919 Prim : Elmt_Id;
1920 Subp : Entity_Id;
1922 begin
1923 Prim := First_Elmt (Prim_List);
1924 while Present (Prim) loop
1925 Subp := Node (Prim);
1927 if Comes_From_Source (Subp)
1928 and then not Is_Frozen (Subp)
1929 then
1930 Flist := Freeze_Entity (Subp, After);
1931 Process_Flist;
1932 end if;
1934 Next_Elmt (Prim);
1935 end loop;
1936 end;
1937 end if;
1939 if not Is_Frozen (E) then
1940 Flist := Freeze_Entity (E, After);
1941 Process_Flist;
1943 -- If already frozen, and there are delayed aspects, this is where
1944 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1945 -- for a description of how we handle aspect visibility).
1947 elsif Has_Delayed_Aspects (E) then
1948 declare
1949 Ritem : Node_Id;
1951 begin
1952 Ritem := First_Rep_Item (E);
1953 while Present (Ritem) loop
1954 if Nkind (Ritem) = N_Aspect_Specification
1955 and then Entity (Ritem) = E
1956 and then Is_Delayed_Aspect (Ritem)
1957 then
1958 Check_Aspect_At_End_Of_Declarations (Ritem);
1959 end if;
1961 Next_Rep_Item (Ritem);
1962 end loop;
1963 end;
1964 end if;
1966 -- If an incomplete type is still not frozen, this may be a
1967 -- premature freezing because of a body declaration that follows.
1968 -- Indicate where the freezing took place. Freezing will happen
1969 -- if the body comes from source, but not if it is internally
1970 -- generated, for example as the body of a type invariant.
1972 -- If the freezing is caused by the end of the current declarative
1973 -- part, it is a Taft Amendment type, and there is no error.
1975 if not Is_Frozen (E)
1976 and then Ekind (E) = E_Incomplete_Type
1977 then
1978 declare
1979 Bod : constant Node_Id := Next (After);
1981 begin
1982 -- The presence of a body freezes all entities previously
1983 -- declared in the current list of declarations, but this
1984 -- does not apply if the body does not come from source.
1985 -- A type invariant is transformed into a subprogram body
1986 -- which is placed at the end of the private part of the
1987 -- current package, but this body does not freeze incomplete
1988 -- types that may be declared in this private part.
1990 if Comes_From_Source (Bod)
1991 and then Nkind (Bod) in N_Entry_Body
1992 | N_Package_Body
1993 | N_Protected_Body
1994 | N_Subprogram_Body
1995 | N_Task_Body
1996 | N_Body_Stub
1997 and then
1998 In_Same_List (After, Parent (E))
1999 then
2000 Error_Msg_Sloc := Sloc (Next (After));
2001 Error_Msg_NE
2002 ("type& is frozen# before its full declaration",
2003 Parent (E), E);
2004 end if;
2005 end;
2006 end if;
2008 Next_Entity (E);
2009 end loop;
2010 end Freeze_All_Ent;
2012 -- Local variables
2014 Decl : Node_Id;
2015 E : Entity_Id;
2016 Item : Entity_Id;
2018 -- Start of processing for Freeze_All
2020 begin
2021 Freeze_All_Ent (From, After);
2023 -- Now that all types are frozen, we can deal with default expressions
2024 -- that require us to build a default expression functions. This is the
2025 -- point at which such functions are constructed (after all types that
2026 -- might be used in such expressions have been frozen).
2028 -- For subprograms that are renaming_as_body, we create the wrapper
2029 -- bodies as needed.
2031 -- We also add finalization chains to access types whose designated
2032 -- types are controlled. This is normally done when freezing the type,
2033 -- but this misses recursive type definitions where the later members
2034 -- of the recursion introduce controlled components.
2036 -- Loop through entities
2038 E := From;
2039 while Present (E) loop
2040 if Is_Subprogram (E) then
2041 if not Default_Expressions_Processed (E) then
2042 Process_Default_Expressions (E, After);
2043 end if;
2045 if not Has_Completion (E) then
2046 Decl := Unit_Declaration_Node (E);
2048 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
2049 if Error_Posted (Decl) then
2050 Set_Has_Completion (E);
2051 else
2052 Build_And_Analyze_Renamed_Body (Decl, E, After);
2053 end if;
2055 elsif Nkind (Decl) = N_Subprogram_Declaration
2056 and then Present (Corresponding_Body (Decl))
2057 and then
2058 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2059 N_Subprogram_Renaming_Declaration
2060 then
2061 Build_And_Analyze_Renamed_Body
2062 (Decl, Corresponding_Body (Decl), After);
2063 end if;
2064 end if;
2066 -- Freeze the default expressions of entries, entry families, and
2067 -- protected subprograms.
2069 elsif Is_Concurrent_Type (E) then
2070 Item := First_Entity (E);
2071 while Present (Item) loop
2072 if (Is_Entry (Item) or else Is_Subprogram (Item))
2073 and then not Default_Expressions_Processed (Item)
2074 then
2075 Process_Default_Expressions (Item, After);
2076 end if;
2078 Next_Entity (Item);
2079 end loop;
2080 end if;
2082 -- Historical note: We used to create a finalization master for an
2083 -- access type whose designated type is not controlled, but contains
2084 -- private controlled compoments. This form of postprocessing is no
2085 -- longer needed because the finalization master is now created when
2086 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2088 Next_Entity (E);
2089 end loop;
2090 end Freeze_All;
2092 -----------------------
2093 -- Freeze_And_Append --
2094 -----------------------
2096 procedure Freeze_And_Append
2097 (Ent : Entity_Id;
2098 N : Node_Id;
2099 Result : in out List_Id)
2101 L : constant List_Id := Freeze_Entity (Ent, N);
2102 begin
2103 if Is_Non_Empty_List (L) then
2104 if Result = No_List then
2105 Result := L;
2106 else
2107 Append_List (L, Result);
2108 end if;
2109 end if;
2110 end Freeze_And_Append;
2112 -------------------
2113 -- Freeze_Before --
2114 -------------------
2116 procedure Freeze_Before
2117 (N : Node_Id;
2118 T : Entity_Id;
2119 Do_Freeze_Profile : Boolean := True)
2121 -- Freeze T, then insert the generated Freeze nodes before the node N.
2122 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2123 -- indicates whether its profile should be frozen at the same time.
2125 Freeze_Nodes : constant List_Id :=
2126 Freeze_Entity (T, N, Do_Freeze_Profile);
2127 Pack : constant Entity_Id := Scope (T);
2129 begin
2130 if Ekind (T) = E_Function then
2131 Check_Expression_Function (N, T);
2132 end if;
2134 if Is_Non_Empty_List (Freeze_Nodes) then
2136 -- If the entity is a type declared in an inner package, it may be
2137 -- frozen by an outer declaration before the package itself is
2138 -- frozen. Install the package scope to analyze the freeze nodes,
2139 -- which may include generated subprograms such as predicate
2140 -- functions, etc.
2142 if Is_Type (T) and then From_Nested_Package (T) then
2143 Push_Scope (Pack);
2144 Install_Visible_Declarations (Pack);
2145 Install_Private_Declarations (Pack);
2146 Insert_Actions (N, Freeze_Nodes);
2147 End_Package_Scope (Pack);
2149 else
2150 Insert_Actions (N, Freeze_Nodes);
2151 end if;
2152 end if;
2153 end Freeze_Before;
2155 -------------------
2156 -- Freeze_Entity --
2157 -------------------
2159 -- WARNING: This routine manages Ghost regions. Return statements must be
2160 -- replaced by gotos which jump to the end of the routine and restore the
2161 -- Ghost mode.
2163 function Freeze_Entity
2164 (E : Entity_Id;
2165 N : Node_Id;
2166 Do_Freeze_Profile : Boolean := True) return List_Id
2168 Loc : constant Source_Ptr := Sloc (N);
2170 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2171 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
2172 -- Save the Ghost-related attributes to restore on exit
2174 Atype : Entity_Id;
2175 Comp : Entity_Id;
2176 F_Node : Node_Id;
2177 Formal : Entity_Id;
2178 Indx : Node_Id;
2180 Result : List_Id := No_List;
2181 -- List of freezing actions, left at No_List if none
2183 Test_E : Entity_Id := E;
2184 -- This could use a comment ???
2186 procedure Add_To_Result (Fnod : Node_Id);
2187 -- Add freeze action Fnod to list Result
2189 function After_Last_Declaration return Boolean;
2190 -- If Loc is a freeze_entity that appears after the last declaration
2191 -- in the scope, inhibit error messages on late completion.
2193 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2194 -- Check that an Access or Unchecked_Access attribute with a prefix
2195 -- which is the current instance type can only be applied when the type
2196 -- is limited.
2198 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2199 -- Give a warning for pragma Convention with language C or C++ applied
2200 -- to a discriminated record type. This is suppressed for the unchecked
2201 -- union case, since the whole point in this case is interface C. We
2202 -- also do not generate this within instantiations, since we will have
2203 -- generated a message on the template.
2205 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2206 -- Give warning for modulus of 8, 16, 32, 64 or 128 given as an explicit
2207 -- integer literal without an explicit corresponding size clause. The
2208 -- caller has checked that Utype is a modular integer type.
2210 procedure Freeze_Array_Type (Arr : Entity_Id);
2211 -- Freeze array type, including freezing index and component types
2213 procedure Freeze_Object_Declaration (E : Entity_Id);
2214 -- Perform checks and generate freeze node if needed for a constant or
2215 -- variable declared by an object declaration.
2217 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2218 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2219 -- package. Recurse on inner generic packages.
2221 function Freeze_Profile (E : Entity_Id) return Boolean;
2222 -- Freeze formals and return type of subprogram. If some type in the
2223 -- profile is incomplete and we are in an instance, freezing of the
2224 -- entity will take place elsewhere, and the function returns False.
2226 procedure Freeze_Record_Type (Rec : Entity_Id);
2227 -- Freeze record type, including freezing component types, and freezing
2228 -- primitive operations if this is a tagged type.
2230 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2231 -- Determine whether an arbitrary entity is subject to Boolean aspect
2232 -- Import and its value is specified as True.
2234 procedure Inherit_Freeze_Node
2235 (Fnod : Node_Id;
2236 Typ : Entity_Id);
2237 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2238 -- that any attributes attached to Typ's original node are preserved.
2240 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2241 -- If E is an entity for an imported subprogram with pre/post-conditions
2242 -- then this procedure will create a wrapper to ensure that proper run-
2243 -- time checking of the pre/postconditions. See body for details.
2245 -------------------
2246 -- Add_To_Result --
2247 -------------------
2249 procedure Add_To_Result (Fnod : Node_Id) is
2250 begin
2251 Append_New_To (Result, Fnod);
2252 end Add_To_Result;
2254 ----------------------------
2255 -- After_Last_Declaration --
2256 ----------------------------
2258 function After_Last_Declaration return Boolean is
2259 Spec : constant Node_Id := Parent (Current_Scope);
2261 begin
2262 if Nkind (Spec) = N_Package_Specification then
2263 if Present (Private_Declarations (Spec)) then
2264 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2265 elsif Present (Visible_Declarations (Spec)) then
2266 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2267 else
2268 return False;
2269 end if;
2271 else
2272 return False;
2273 end if;
2274 end After_Last_Declaration;
2276 ----------------------------
2277 -- Check_Current_Instance --
2278 ----------------------------
2280 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2282 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2283 -- Determine whether Typ is compatible with the rules for aliased
2284 -- views of types as defined in RM 3.10 in the various dialects.
2286 function Process (N : Node_Id) return Traverse_Result;
2287 -- Process routine to apply check to given node
2289 -----------------------------
2290 -- Is_Aliased_View_Of_Type --
2291 -----------------------------
2293 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2294 Typ_Decl : constant Node_Id := Parent (Typ);
2296 begin
2297 -- Common case
2299 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2300 and then Limited_Present (Type_Definition (Typ_Decl))
2301 then
2302 return True;
2304 -- The following paragraphs describe what a legal aliased view of
2305 -- a type is in the various dialects of Ada.
2307 -- Ada 95
2309 -- The current instance of a limited type, and a formal parameter
2310 -- or generic formal object of a tagged type.
2312 -- Ada 95 limited type
2313 -- * Type with reserved word "limited"
2314 -- * A protected or task type
2315 -- * A composite type with limited component
2317 elsif Ada_Version <= Ada_95 then
2318 return Is_Limited_Type (Typ);
2320 -- Ada 2005
2322 -- The current instance of a limited tagged type, a protected
2323 -- type, a task type, or a type that has the reserved word
2324 -- "limited" in its full definition ... a formal parameter or
2325 -- generic formal object of a tagged type.
2327 -- Ada 2005 limited type
2328 -- * Type with reserved word "limited", "synchronized", "task"
2329 -- or "protected"
2330 -- * A composite type with limited component
2331 -- * A derived type whose parent is a non-interface limited type
2333 elsif Ada_Version = Ada_2005 then
2334 return
2335 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2336 or else
2337 (Is_Derived_Type (Typ)
2338 and then not Is_Interface (Etype (Typ))
2339 and then Is_Limited_Type (Etype (Typ)));
2341 -- Ada 2012 and beyond
2343 -- The current instance of an immutably limited type ... a formal
2344 -- parameter or generic formal object of a tagged type.
2346 -- Ada 2012 limited type
2347 -- * Type with reserved word "limited", "synchronized", "task"
2348 -- or "protected"
2349 -- * A composite type with limited component
2350 -- * A derived type whose parent is a non-interface limited type
2351 -- * An incomplete view
2353 -- Ada 2012 immutably limited type
2354 -- * Explicitly limited record type
2355 -- * Record extension with "limited" present
2356 -- * Non-formal limited private type that is either tagged
2357 -- or has at least one access discriminant with a default
2358 -- expression
2359 -- * Task type, protected type or synchronized interface
2360 -- * Type derived from immutably limited type
2362 else
2363 return
2364 Is_Immutably_Limited_Type (Typ)
2365 or else Is_Incomplete_Type (Typ);
2366 end if;
2367 end Is_Aliased_View_Of_Type;
2369 -------------
2370 -- Process --
2371 -------------
2373 function Process (N : Node_Id) return Traverse_Result is
2374 begin
2375 case Nkind (N) is
2376 when N_Attribute_Reference =>
2377 if Attribute_Name (N) in Name_Access | Name_Unchecked_Access
2378 and then Is_Entity_Name (Prefix (N))
2379 and then Is_Type (Entity (Prefix (N)))
2380 and then Entity (Prefix (N)) = E
2381 then
2382 if Ada_Version < Ada_2012 then
2383 Error_Msg_N
2384 ("current instance must be a limited type",
2385 Prefix (N));
2386 else
2387 Error_Msg_N
2388 ("current instance must be an immutably limited "
2389 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2390 end if;
2392 return Abandon;
2394 else
2395 return OK;
2396 end if;
2398 when others =>
2399 return OK;
2400 end case;
2401 end Process;
2403 procedure Traverse is new Traverse_Proc (Process);
2405 -- Local variables
2407 Rec_Type : constant Entity_Id :=
2408 Scope (Defining_Identifier (Comp_Decl));
2410 -- Start of processing for Check_Current_Instance
2412 begin
2413 if not Is_Aliased_View_Of_Type (Rec_Type) then
2414 Traverse (Comp_Decl);
2415 end if;
2416 end Check_Current_Instance;
2418 ---------------------------------
2419 -- Check_Suspicious_Convention --
2420 ---------------------------------
2422 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2423 begin
2424 if Has_Discriminants (Rec_Type)
2425 and then Is_Base_Type (Rec_Type)
2426 and then not Is_Unchecked_Union (Rec_Type)
2427 and then (Convention (Rec_Type) = Convention_C
2428 or else
2429 Convention (Rec_Type) = Convention_CPP)
2430 and then Comes_From_Source (Rec_Type)
2431 and then not In_Instance
2432 and then not Has_Warnings_Off (Rec_Type)
2433 then
2434 declare
2435 Cprag : constant Node_Id :=
2436 Get_Rep_Pragma (Rec_Type, Name_Convention);
2437 A2 : Node_Id;
2439 begin
2440 if Present (Cprag) then
2441 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2443 if Convention (Rec_Type) = Convention_C then
2444 Error_Msg_N
2445 ("?x?discriminated record has no direct equivalent in "
2446 & "C", A2);
2447 else
2448 Error_Msg_N
2449 ("?x?discriminated record has no direct equivalent in "
2450 & "C++", A2);
2451 end if;
2453 Error_Msg_NE
2454 ("\?x?use of convention for type& is dubious",
2455 A2, Rec_Type);
2456 end if;
2457 end;
2458 end if;
2459 end Check_Suspicious_Convention;
2461 ------------------------------
2462 -- Check_Suspicious_Modulus --
2463 ------------------------------
2465 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2466 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2468 begin
2469 if not Warn_On_Suspicious_Modulus_Value then
2470 return;
2471 end if;
2473 if Nkind (Decl) = N_Full_Type_Declaration then
2474 declare
2475 Tdef : constant Node_Id := Type_Definition (Decl);
2477 begin
2478 if Nkind (Tdef) = N_Modular_Type_Definition then
2479 declare
2480 Modulus : constant Node_Id :=
2481 Original_Node (Expression (Tdef));
2483 begin
2484 if Nkind (Modulus) = N_Integer_Literal then
2485 declare
2486 Modv : constant Uint := Intval (Modulus);
2487 Sizv : constant Uint := RM_Size (Utype);
2489 begin
2490 -- First case, modulus and size are the same. This
2491 -- happens if you have something like mod 32, with
2492 -- an explicit size of 32, this is for sure a case
2493 -- where the warning is given, since it is seems
2494 -- very unlikely that someone would want e.g. a
2495 -- five bit type stored in 32 bits. It is much
2496 -- more likely they wanted a 32-bit type.
2498 if Modv = Sizv then
2499 null;
2501 -- Second case, the modulus is 32 or 64 and no
2502 -- size clause is present. This is a less clear
2503 -- case for giving the warning, but in the case
2504 -- of 32/64 (5-bit or 6-bit types) these seem rare
2505 -- enough that it is a likely error (and in any
2506 -- case using 2**5 or 2**6 in these cases seems
2507 -- clearer. We don't include 8 or 16 here, simply
2508 -- because in practice 3-bit and 4-bit types are
2509 -- more common and too many false positives if
2510 -- we warn in these cases.
2512 elsif not Has_Size_Clause (Utype)
2513 and then (Modv = Uint_32 or else Modv = Uint_64)
2514 then
2515 null;
2517 -- No warning needed
2519 else
2520 return;
2521 end if;
2523 -- If we fall through, give warning
2525 Error_Msg_Uint_1 := Modv;
2526 Error_Msg_N
2527 ("?M?2 '*'*^' may have been intended here",
2528 Modulus);
2529 end;
2530 end if;
2531 end;
2532 end if;
2533 end;
2534 end if;
2535 end Check_Suspicious_Modulus;
2537 -----------------------
2538 -- Freeze_Array_Type --
2539 -----------------------
2541 procedure Freeze_Array_Type (Arr : Entity_Id) is
2542 FS : constant Entity_Id := First_Subtype (Arr);
2543 Ctyp : constant Entity_Id := Component_Type (Arr);
2544 Clause : Entity_Id;
2546 Non_Standard_Enum : Boolean := False;
2547 -- Set true if any of the index types is an enumeration type with a
2548 -- non-standard representation.
2550 begin
2551 Freeze_And_Append (Ctyp, N, Result);
2553 Indx := First_Index (Arr);
2554 while Present (Indx) loop
2555 Freeze_And_Append (Etype (Indx), N, Result);
2557 if Is_Enumeration_Type (Etype (Indx))
2558 and then Has_Non_Standard_Rep (Etype (Indx))
2559 then
2560 Non_Standard_Enum := True;
2561 end if;
2563 Next_Index (Indx);
2564 end loop;
2566 -- Processing that is done only for base types
2568 if Ekind (Arr) = E_Array_Type then
2570 -- Deal with default setting of reverse storage order
2572 Set_SSO_From_Default (Arr);
2574 -- Propagate flags for component type
2576 if Is_Controlled (Ctyp)
2577 or else Has_Controlled_Component (Ctyp)
2578 then
2579 Set_Has_Controlled_Component (Arr);
2580 end if;
2582 if Has_Unchecked_Union (Ctyp) then
2583 Set_Has_Unchecked_Union (Arr);
2584 end if;
2586 -- The array type requires its own invariant procedure in order to
2587 -- verify the component invariant over all elements. In GNATprove
2588 -- mode, the component invariants are checked by other means. They
2589 -- should not be added to the array type invariant procedure, so
2590 -- that the procedure can be used to check the array type
2591 -- invariants if any.
2593 if Has_Invariants (Ctyp)
2594 and then not GNATprove_Mode
2595 then
2596 Set_Has_Own_Invariants (Arr);
2597 end if;
2599 -- Warn for pragma Pack overriding foreign convention
2601 if Has_Foreign_Convention (Ctyp)
2602 and then Has_Pragma_Pack (Arr)
2603 then
2604 declare
2605 CN : constant Name_Id :=
2606 Get_Convention_Name (Convention (Ctyp));
2607 PP : constant Node_Id :=
2608 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2609 begin
2610 if Present (PP) then
2611 Error_Msg_Name_1 := CN;
2612 Error_Msg_Sloc := Sloc (Arr);
2613 Error_Msg_N
2614 ("pragma Pack affects convention % components #??", PP);
2615 Error_Msg_Name_1 := CN;
2616 Error_Msg_N
2617 ("\array components may not have % compatible "
2618 & "representation??", PP);
2619 end if;
2620 end;
2621 end if;
2623 -- Check for Aliased or Atomic_Components or Full Access with
2624 -- unsuitable packing or explicit component size clause given.
2626 if (Has_Aliased_Components (Arr)
2627 or else Has_Atomic_Components (Arr)
2628 or else Is_Full_Access (Ctyp))
2629 and then
2630 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2631 then
2632 Alias_Atomic_Check : declare
2634 procedure Complain_CS (T : String);
2635 -- Outputs error messages for incorrect CS clause or pragma
2636 -- Pack for aliased or full access components (T is either
2637 -- "aliased" or "atomic" or "volatile full access");
2639 -----------------
2640 -- Complain_CS --
2641 -----------------
2643 procedure Complain_CS (T : String) is
2644 begin
2645 if Has_Component_Size_Clause (Arr) then
2646 Clause :=
2647 Get_Attribute_Definition_Clause
2648 (FS, Attribute_Component_Size);
2650 Error_Msg_N
2651 ("incorrect component size for "
2652 & T & " components", Clause);
2653 Error_Msg_Uint_1 := Esize (Ctyp);
2654 Error_Msg_N
2655 ("\only allowed value is^", Clause);
2657 else
2658 Error_Msg_N
2659 ("?cannot pack " & T & " components (RM 13.2(7))",
2660 Get_Rep_Pragma (FS, Name_Pack));
2661 Set_Is_Packed (Arr, False);
2662 end if;
2663 end Complain_CS;
2665 -- Start of processing for Alias_Atomic_Check
2667 begin
2668 -- If object size of component type isn't known, we cannot
2669 -- be sure so we defer to the back end.
2671 if not Known_Static_Esize (Ctyp) then
2672 null;
2674 -- Case where component size has no effect. First check for
2675 -- object size of component type multiple of the storage
2676 -- unit size.
2678 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2680 -- OK in both packing case and component size case if RM
2681 -- size is known and static and same as the object size.
2683 and then
2684 ((Known_Static_RM_Size (Ctyp)
2685 and then Esize (Ctyp) = RM_Size (Ctyp))
2687 -- Or if we have an explicit component size clause and
2688 -- the component size and object size are equal.
2690 or else
2691 (Has_Component_Size_Clause (Arr)
2692 and then Component_Size (Arr) = Esize (Ctyp)))
2693 then
2694 null;
2696 elsif Has_Aliased_Components (Arr) then
2697 Complain_CS ("aliased");
2699 elsif Has_Atomic_Components (Arr)
2700 or else Is_Atomic (Ctyp)
2701 then
2702 Complain_CS ("atomic");
2704 elsif Is_Volatile_Full_Access (Ctyp) then
2705 Complain_CS ("volatile full access");
2706 end if;
2707 end Alias_Atomic_Check;
2708 end if;
2710 -- Check for Independent_Components/Independent with unsuitable
2711 -- packing or explicit component size clause given.
2713 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2714 and then
2715 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2716 then
2717 begin
2718 -- If object size of component type isn't known, we cannot
2719 -- be sure so we defer to the back end.
2721 if not Known_Static_Esize (Ctyp) then
2722 null;
2724 -- Case where component size has no effect. First check for
2725 -- object size of component type multiple of the storage
2726 -- unit size.
2728 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2730 -- OK in both packing case and component size case if RM
2731 -- size is known and multiple of the storage unit size.
2733 and then
2734 ((Known_Static_RM_Size (Ctyp)
2735 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2737 -- Or if we have an explicit component size clause and
2738 -- the component size is larger than the object size.
2740 or else
2741 (Has_Component_Size_Clause (Arr)
2742 and then Component_Size (Arr) >= Esize (Ctyp)))
2743 then
2744 null;
2746 else
2747 if Has_Component_Size_Clause (Arr) then
2748 Clause :=
2749 Get_Attribute_Definition_Clause
2750 (FS, Attribute_Component_Size);
2752 Error_Msg_N
2753 ("incorrect component size for "
2754 & "independent components", Clause);
2755 Error_Msg_Uint_1 := Esize (Ctyp);
2756 Error_Msg_N
2757 ("\minimum allowed is^", Clause);
2759 else
2760 Error_Msg_N
2761 ("?cannot pack independent components (RM 13.2(7))",
2762 Get_Rep_Pragma (FS, Name_Pack));
2763 Set_Is_Packed (Arr, False);
2764 end if;
2765 end if;
2766 end;
2767 end if;
2769 -- If packing was requested or if the component size was
2770 -- set explicitly, then see if bit packing is required. This
2771 -- processing is only done for base types, since all of the
2772 -- representation aspects involved are type-related.
2774 -- This is not just an optimization, if we start processing the
2775 -- subtypes, they interfere with the settings on the base type
2776 -- (this is because Is_Packed has a slightly different meaning
2777 -- before and after freezing).
2779 declare
2780 Csiz : Uint;
2781 Esiz : Uint;
2783 begin
2784 if Is_Packed (Arr)
2785 and then Known_Static_RM_Size (Ctyp)
2786 and then not Has_Component_Size_Clause (Arr)
2787 then
2788 Csiz := UI_Max (RM_Size (Ctyp), 1);
2790 elsif Known_Component_Size (Arr) then
2791 Csiz := Component_Size (Arr);
2793 elsif not Known_Static_Esize (Ctyp) then
2794 Csiz := Uint_0;
2796 else
2797 Esiz := Esize (Ctyp);
2799 -- We can set the component size if it is less than 16,
2800 -- rounding it up to the next storage unit size.
2802 if Esiz <= 8 then
2803 Csiz := Uint_8;
2804 elsif Esiz <= 16 then
2805 Csiz := Uint_16;
2806 else
2807 Csiz := Uint_0;
2808 end if;
2810 -- Set component size up to match alignment if it would
2811 -- otherwise be less than the alignment. This deals with
2812 -- cases of types whose alignment exceeds their size (the
2813 -- padded type cases).
2815 if Csiz /= 0 then
2816 declare
2817 A : constant Uint := Alignment_In_Bits (Ctyp);
2818 begin
2819 if Csiz < A then
2820 Csiz := A;
2821 end if;
2822 end;
2823 end if;
2824 end if;
2826 -- Case of component size that may result in bit packing
2828 if 1 <= Csiz and then Csiz <= System_Max_Integer_Size then
2829 declare
2830 Ent : constant Entity_Id :=
2831 First_Subtype (Arr);
2832 Pack_Pragma : constant Node_Id :=
2833 Get_Rep_Pragma (Ent, Name_Pack);
2834 Comp_Size_C : constant Node_Id :=
2835 Get_Attribute_Definition_Clause
2836 (Ent, Attribute_Component_Size);
2838 begin
2839 -- Warn if we have pack and component size so that the
2840 -- pack is ignored.
2842 -- Note: here we must check for the presence of a
2843 -- component size before checking for a Pack pragma to
2844 -- deal with the case where the array type is a derived
2845 -- type whose parent is currently private.
2847 if Present (Comp_Size_C)
2848 and then Has_Pragma_Pack (Ent)
2849 and then Warn_On_Redundant_Constructs
2850 then
2851 Error_Msg_Sloc := Sloc (Comp_Size_C);
2852 Error_Msg_NE
2853 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2854 Error_Msg_N
2855 ("\?r?explicit component size given#!", Pack_Pragma);
2856 Set_Is_Packed (Base_Type (Ent), False);
2857 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2858 end if;
2860 -- Set component size if not already set by a component
2861 -- size clause.
2863 if not Present (Comp_Size_C) then
2864 Set_Component_Size (Arr, Csiz);
2865 end if;
2867 -- Check for base type of 8, 16, 32 bits, where an
2868 -- unsigned subtype has a length one less than the
2869 -- base type (e.g. Natural subtype of Integer).
2871 -- In such cases, if a component size was not set
2872 -- explicitly, then generate a warning.
2874 if Has_Pragma_Pack (Arr)
2875 and then not Present (Comp_Size_C)
2876 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2877 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2878 then
2879 Error_Msg_Uint_1 := Csiz;
2881 if Present (Pack_Pragma) then
2882 Error_Msg_N
2883 ("??pragma Pack causes component size to be ^!",
2884 Pack_Pragma);
2885 Error_Msg_N
2886 ("\??use Component_Size to set desired value!",
2887 Pack_Pragma);
2888 end if;
2889 end if;
2891 -- Bit packing is never needed for 8, 16, 32, 64 or 128
2893 if Addressable (Csiz) then
2895 -- If the Esize of the component is known and equal to
2896 -- the component size then even packing is not needed.
2898 if Known_Static_Esize (Ctyp)
2899 and then Esize (Ctyp) = Csiz
2900 then
2901 -- Here the array was requested to be packed, but
2902 -- the packing request had no effect whatsoever,
2903 -- so flag Is_Packed is reset.
2905 -- Note: semantically this means that we lose track
2906 -- of the fact that a derived type inherited pragma
2907 -- Pack that was non-effective, but that is fine.
2909 -- We regard a Pack pragma as a request to set a
2910 -- representation characteristic, and this request
2911 -- may be ignored.
2913 Set_Is_Packed (Base_Type (Arr), False);
2914 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2915 else
2916 Set_Is_Packed (Base_Type (Arr), True);
2917 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2918 end if;
2920 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2922 -- Bit packing is not needed for multiples of the storage
2923 -- unit if the type is composite because the back end can
2924 -- byte pack composite types efficiently. That's not true
2925 -- for discrete types because every read would generate a
2926 -- lot of instructions, so we keep using the manipulation
2927 -- routines of the runtime for them.
2929 elsif Csiz mod System_Storage_Unit = 0
2930 and then Is_Composite_Type (Ctyp)
2931 then
2932 Set_Is_Packed (Base_Type (Arr), True);
2933 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2934 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2936 -- In all other cases, bit packing is needed
2938 else
2939 Set_Is_Packed (Base_Type (Arr), True);
2940 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2941 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2942 end if;
2943 end;
2944 end if;
2945 end;
2947 -- Warn for case of atomic type
2949 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2951 if Present (Clause)
2952 and then not Addressable (Component_Size (FS))
2953 then
2954 Error_Msg_NE
2955 ("non-atomic components of type& may not be "
2956 & "accessible by separate tasks??", Clause, Arr);
2958 if Has_Component_Size_Clause (Arr) then
2959 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2960 (FS, Attribute_Component_Size));
2961 Error_Msg_N ("\because of component size clause#??", Clause);
2963 elsif Has_Pragma_Pack (Arr) then
2964 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2965 Error_Msg_N ("\because of pragma Pack#??", Clause);
2966 end if;
2967 end if;
2969 -- Check for scalar storage order
2971 declare
2972 Dummy : Boolean;
2973 begin
2974 Check_Component_Storage_Order
2975 (Encl_Type => Arr,
2976 Comp => Empty,
2977 ADC => Get_Attribute_Definition_Clause
2978 (First_Subtype (Arr),
2979 Attribute_Scalar_Storage_Order),
2980 Comp_ADC_Present => Dummy);
2981 end;
2983 -- Processing that is done only for subtypes
2985 else
2986 -- Acquire alignment from base type
2988 if Unknown_Alignment (Arr) then
2989 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2990 Adjust_Esize_Alignment (Arr);
2991 end if;
2992 end if;
2994 -- Specific checks for bit-packed arrays
2996 if Is_Bit_Packed_Array (Arr) then
2998 -- Check number of elements for bit-packed arrays that come from
2999 -- source and have compile time known ranges. The bit-packed
3000 -- arrays circuitry does not support arrays with more than
3001 -- Integer'Last + 1 elements, and when this restriction is
3002 -- violated, causes incorrect data access.
3004 -- For the case where this is not compile time known, a run-time
3005 -- check should be generated???
3007 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
3008 declare
3009 Elmts : Uint;
3010 Index : Node_Id;
3011 Ilen : Node_Id;
3012 Ityp : Entity_Id;
3014 begin
3015 Elmts := Uint_1;
3016 Index := First_Index (Arr);
3017 while Present (Index) loop
3018 Ityp := Etype (Index);
3020 -- Never generate an error if any index is of a generic
3021 -- type. We will check this in instances.
3023 if Is_Generic_Type (Ityp) then
3024 Elmts := Uint_0;
3025 exit;
3026 end if;
3028 Ilen :=
3029 Make_Attribute_Reference (Loc,
3030 Prefix => New_Occurrence_Of (Ityp, Loc),
3031 Attribute_Name => Name_Range_Length);
3032 Analyze_And_Resolve (Ilen);
3034 -- No attempt is made to check number of elements if not
3035 -- compile time known.
3037 if Nkind (Ilen) /= N_Integer_Literal then
3038 Elmts := Uint_0;
3039 exit;
3040 end if;
3042 Elmts := Elmts * Intval (Ilen);
3043 Next_Index (Index);
3044 end loop;
3046 if Elmts > Intval (High_Bound
3047 (Scalar_Range (Standard_Integer))) + 1
3048 then
3049 Error_Msg_N
3050 ("bit packed array type may not have "
3051 & "more than Integer''Last+1 elements", Arr);
3052 end if;
3053 end;
3054 end if;
3056 -- Check size
3058 if Known_RM_Size (Arr) then
3059 declare
3060 SizC : constant Node_Id := Size_Clause (Arr);
3061 Discard : Boolean;
3063 begin
3064 -- It is not clear if it is possible to have no size clause
3065 -- at this stage, but it is not worth worrying about. Post
3066 -- error on the entity name in the size clause if present,
3067 -- else on the type entity itself.
3069 if Present (SizC) then
3070 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
3071 else
3072 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
3073 end if;
3074 end;
3075 end if;
3076 end if;
3078 -- If any of the index types was an enumeration type with a non-
3079 -- standard rep clause, then we indicate that the array type is
3080 -- always packed (even if it is not bit-packed).
3082 if Non_Standard_Enum then
3083 Set_Has_Non_Standard_Rep (Base_Type (Arr));
3084 Set_Is_Packed (Base_Type (Arr));
3085 end if;
3087 Set_Component_Alignment_If_Not_Set (Arr);
3089 -- If the array is packed and bit-packed or packed to eliminate holes
3090 -- in the non-contiguous enumeration index types, we must create the
3091 -- packed array type to be used to actually implement the type. This
3092 -- is only needed for real array types (not for string literal types,
3093 -- since they are present only for the front end).
3095 if Is_Packed (Arr)
3096 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
3097 and then Ekind (Arr) /= E_String_Literal_Subtype
3098 then
3099 Create_Packed_Array_Impl_Type (Arr);
3100 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
3102 -- Make sure that we have the necessary routines to implement the
3103 -- packing, and complain now if not. Note that we only test this
3104 -- for constrained array types.
3106 if Is_Constrained (Arr)
3107 and then Is_Bit_Packed_Array (Arr)
3108 and then Present (Packed_Array_Impl_Type (Arr))
3109 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
3110 then
3111 declare
3112 CS : constant Uint := Component_Size (Arr);
3113 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
3115 begin
3116 if RE /= RE_Null
3117 and then not RTE_Available (RE)
3118 then
3119 Error_Msg_CRT
3120 ("packing of " & UI_Image (CS) & "-bit components",
3121 First_Subtype (Etype (Arr)));
3123 -- Cancel the packing
3125 Set_Is_Packed (Base_Type (Arr), False);
3126 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3127 Set_Packed_Array_Impl_Type (Arr, Empty);
3128 goto Skip_Packed;
3129 end if;
3130 end;
3131 end if;
3133 -- Size information of packed array type is copied to the array
3134 -- type, since this is really the representation. But do not
3135 -- override explicit existing size values. If the ancestor subtype
3136 -- is constrained the Packed_Array_Impl_Type will be inherited
3137 -- from it, but the size may have been provided already, and
3138 -- must not be overridden either.
3140 if not Has_Size_Clause (Arr)
3141 and then
3142 (No (Ancestor_Subtype (Arr))
3143 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3144 then
3145 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3146 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
3147 end if;
3149 if not Has_Alignment_Clause (Arr) then
3150 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
3151 end if;
3152 end if;
3154 <<Skip_Packed>>
3156 -- A Ghost type cannot have a component of protected or task type
3157 -- (SPARK RM 6.9(19)).
3159 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3160 Error_Msg_N
3161 ("ghost array type & cannot have concurrent component type",
3162 Arr);
3163 end if;
3164 end Freeze_Array_Type;
3166 -------------------------------
3167 -- Freeze_Object_Declaration --
3168 -------------------------------
3170 procedure Freeze_Object_Declaration (E : Entity_Id) is
3171 procedure Check_Large_Modular_Array (Typ : Entity_Id);
3172 -- Check that the size of array type Typ can be computed without
3173 -- overflow, and generates a Storage_Error otherwise. This is only
3174 -- relevant for array types whose index has System_Max_Integer_Size
3175 -- bits, where wrap-around arithmetic might yield a meaningless value
3176 -- for the length of the array, or its corresponding attribute.
3178 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id);
3179 -- Ensure that the initialization state of variable Var_Id subject
3180 -- to pragma Thread_Local_Storage agrees with the semantics of the
3181 -- pragma.
3183 function Has_Default_Initialization
3184 (Obj_Id : Entity_Id) return Boolean;
3185 -- Determine whether object Obj_Id default initialized
3187 -------------------------------
3188 -- Check_Large_Modular_Array --
3189 -------------------------------
3191 procedure Check_Large_Modular_Array (Typ : Entity_Id) is
3192 Obj_Loc : constant Source_Ptr := Sloc (E);
3193 Idx_Typ : Entity_Id;
3195 begin
3196 -- Nothing to do when expansion is disabled because this routine
3197 -- generates a runtime check.
3199 if not Expander_Active then
3200 return;
3202 -- Nothing to do for String literal subtypes because their index
3203 -- cannot be a modular type.
3205 elsif Ekind (Typ) = E_String_Literal_Subtype then
3206 return;
3208 -- Nothing to do for an imported object because the object will
3209 -- be created on the exporting side.
3211 elsif Is_Imported (E) then
3212 return;
3214 -- Nothing to do for unconstrained array types. This case arises
3215 -- when the object declaration is illegal.
3217 elsif not Is_Constrained (Typ) then
3218 return;
3219 end if;
3221 Idx_Typ := Etype (First_Index (Typ));
3223 -- To prevent arithmetic overflow with large values, we raise
3224 -- Storage_Error under the following guard:
3226 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
3228 -- This takes care of the boundary case, but it is preferable to
3229 -- use a smaller limit, because even on 64-bit architectures an
3230 -- array of more than 2 ** 30 bytes is likely to raise
3231 -- Storage_Error.
3233 if Is_Modular_Integer_Type (Idx_Typ)
3234 and then RM_Size (Idx_Typ) = RM_Size (Standard_Long_Long_Integer)
3235 then
3236 Insert_Action (Declaration_Node (E),
3237 Make_Raise_Storage_Error (Obj_Loc,
3238 Condition =>
3239 Make_Op_Ge (Obj_Loc,
3240 Left_Opnd =>
3241 Make_Op_Subtract (Obj_Loc,
3242 Left_Opnd =>
3243 Make_Op_Divide (Obj_Loc,
3244 Left_Opnd =>
3245 Make_Attribute_Reference (Obj_Loc,
3246 Prefix =>
3247 New_Occurrence_Of (Typ, Obj_Loc),
3248 Attribute_Name => Name_Last),
3249 Right_Opnd =>
3250 Make_Integer_Literal (Obj_Loc, Uint_2)),
3251 Right_Opnd =>
3252 Make_Op_Divide (Obj_Loc,
3253 Left_Opnd =>
3254 Make_Attribute_Reference (Obj_Loc,
3255 Prefix =>
3256 New_Occurrence_Of (Typ, Obj_Loc),
3257 Attribute_Name => Name_First),
3258 Right_Opnd =>
3259 Make_Integer_Literal (Obj_Loc, Uint_2))),
3260 Right_Opnd =>
3261 Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
3262 Reason => SE_Object_Too_Large));
3263 end if;
3264 end Check_Large_Modular_Array;
3266 ---------------------------------------
3267 -- Check_Pragma_Thread_Local_Storage --
3268 ---------------------------------------
3270 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id) is
3271 function Has_Incompatible_Initialization
3272 (Var_Decl : Node_Id) return Boolean;
3273 -- Determine whether variable Var_Id with declaration Var_Decl is
3274 -- initialized with a value that violates the semantics of pragma
3275 -- Thread_Local_Storage.
3277 -------------------------------------
3278 -- Has_Incompatible_Initialization --
3279 -------------------------------------
3281 function Has_Incompatible_Initialization
3282 (Var_Decl : Node_Id) return Boolean
3284 Init_Expr : constant Node_Id := Expression (Var_Decl);
3286 begin
3287 -- The variable is default-initialized. This directly violates
3288 -- the semantics of the pragma.
3290 if Has_Default_Initialization (Var_Id) then
3291 return True;
3293 -- The variable has explicit initialization. In this case only
3294 -- a handful of values satisfy the semantics of the pragma.
3296 elsif Has_Init_Expression (Var_Decl)
3297 and then Present (Init_Expr)
3298 then
3299 -- "null" is a legal form of initialization
3301 if Nkind (Init_Expr) = N_Null then
3302 return False;
3304 -- A static expression is a legal form of initialization
3306 elsif Is_Static_Expression (Init_Expr) then
3307 return False;
3309 -- A static aggregate is a legal form of initialization
3311 elsif Nkind (Init_Expr) = N_Aggregate
3312 and then Compile_Time_Known_Aggregate (Init_Expr)
3313 then
3314 return False;
3316 -- All other initialization expressions violate the semantic
3317 -- of the pragma.
3319 else
3320 return True;
3321 end if;
3323 -- The variable lacks any kind of initialization, which agrees
3324 -- with the semantics of the pragma.
3326 else
3327 return False;
3328 end if;
3329 end Has_Incompatible_Initialization;
3331 -- Local declarations
3333 Var_Decl : constant Node_Id := Declaration_Node (Var_Id);
3335 -- Start of processing for Check_Pragma_Thread_Local_Storage
3337 begin
3338 -- A variable whose initialization is suppressed lacks any kind of
3339 -- initialization.
3341 if Suppress_Initialization (Var_Id) then
3342 null;
3344 -- The variable has default initialization, or is explicitly
3345 -- initialized to a value other than null, static expression,
3346 -- or a static aggregate.
3348 elsif Has_Incompatible_Initialization (Var_Decl) then
3349 Error_Msg_NE
3350 ("Thread_Local_Storage variable& is improperly initialized",
3351 Var_Decl, Var_Id);
3352 Error_Msg_NE
3353 ("\only allowed initialization is explicit NULL, static "
3354 & "expression or static aggregate", Var_Decl, Var_Id);
3355 end if;
3356 end Check_Pragma_Thread_Local_Storage;
3358 --------------------------------
3359 -- Has_Default_Initialization --
3360 --------------------------------
3362 function Has_Default_Initialization
3363 (Obj_Id : Entity_Id) return Boolean
3365 Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
3366 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3368 begin
3369 return
3370 Comes_From_Source (Obj_Id)
3371 and then not Is_Imported (Obj_Id)
3372 and then not Has_Init_Expression (Obj_Decl)
3373 and then
3374 ((Has_Non_Null_Base_Init_Proc (Obj_Typ)
3375 and then not No_Initialization (Obj_Decl)
3376 and then not Initialization_Suppressed (Obj_Typ))
3377 or else
3378 (Needs_Simple_Initialization (Obj_Typ)
3379 and then not Is_Internal (Obj_Id)));
3380 end Has_Default_Initialization;
3382 -- Local variables
3384 Typ : constant Entity_Id := Etype (E);
3385 Def : Node_Id;
3387 -- Start of processing for Freeze_Object_Declaration
3389 begin
3390 -- Abstract type allowed only for C++ imported variables or constants
3392 -- Note: we inhibit this check for objects that do not come from
3393 -- source because there is at least one case (the expansion of
3394 -- x'Class'Input where x is abstract) where we legitimately
3395 -- generate an abstract object.
3397 if Is_Abstract_Type (Typ)
3398 and then Comes_From_Source (Parent (E))
3399 and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
3400 then
3401 Def := Object_Definition (Parent (E));
3403 Error_Msg_N ("type of object cannot be abstract", Def);
3405 if Is_CPP_Class (Etype (E)) then
3406 Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
3408 elsif Present (Expression (Parent (E))) then
3409 Error_Msg_N -- CODEFIX
3410 ("\maybe a class-wide type was meant", Def);
3411 end if;
3412 end if;
3414 -- For object created by object declaration, perform required
3415 -- categorization (preelaborate and pure) checks. Defer these
3416 -- checks to freeze time since pragma Import inhibits default
3417 -- initialization and thus pragma Import affects these checks.
3419 Validate_Object_Declaration (Declaration_Node (E));
3421 -- If there is an address clause, check that it is valid and if need
3422 -- be move initialization to the freeze node.
3424 Check_Address_Clause (E);
3426 -- Similar processing is needed for aspects that may affect object
3427 -- layout, like Address, if there is an initialization expression.
3428 -- We don't do this if there is a pragma Linker_Section, because it
3429 -- would prevent the back end from statically initializing the
3430 -- object; we don't want elaboration code in that case.
3432 if Has_Delayed_Aspects (E)
3433 and then Expander_Active
3434 and then Is_Array_Type (Typ)
3435 and then Present (Expression (Declaration_Node (E)))
3436 and then No (Linker_Section_Pragma (E))
3437 then
3438 declare
3439 Decl : constant Node_Id := Declaration_Node (E);
3440 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3442 begin
3443 -- Capture initialization value at point of declaration, and
3444 -- make explicit assignment legal, because object may be a
3445 -- constant.
3447 Remove_Side_Effects (Expression (Decl));
3448 Set_Assignment_OK (Lhs);
3450 -- Move initialization to freeze actions
3452 Append_Freeze_Action (E,
3453 Make_Assignment_Statement (Loc,
3454 Name => Lhs,
3455 Expression => Expression (Decl)));
3457 Set_No_Initialization (Decl);
3458 -- Set_Is_Frozen (E, False);
3459 end;
3460 end if;
3462 -- Reset Is_True_Constant for non-constant aliased object. We
3463 -- consider that the fact that a non-constant object is aliased may
3464 -- indicate that some funny business is going on, e.g. an aliased
3465 -- object is passed by reference to a procedure which captures the
3466 -- address of the object, which is later used to assign a new value,
3467 -- even though the compiler thinks that it is not modified. Such
3468 -- code is highly dubious, but we choose to make it "work" for
3469 -- non-constant aliased objects.
3471 -- Note that we used to do this for all aliased objects, whether or
3472 -- not constant, but this caused anomalies down the line because we
3473 -- ended up with static objects that were not Is_True_Constant. Not
3474 -- resetting Is_True_Constant for (aliased) constant objects ensures
3475 -- that this anomaly never occurs.
3477 -- However, we don't do that for internal entities. We figure that if
3478 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3479 -- a dispatch table entry, then we mean it.
3481 if Ekind (E) /= E_Constant
3482 and then (Is_Aliased (E) or else Is_Aliased (Typ))
3483 and then not Is_Internal_Name (Chars (E))
3484 then
3485 Set_Is_True_Constant (E, False);
3486 end if;
3488 -- If the object needs any kind of default initialization, an error
3489 -- must be issued if No_Default_Initialization applies. The check
3490 -- doesn't apply to imported objects, which are not ever default
3491 -- initialized, and is why the check is deferred until freezing, at
3492 -- which point we know if Import applies. Deferred constants are also
3493 -- exempted from this test because their completion is explicit, or
3494 -- through an import pragma.
3496 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3497 null;
3499 elsif Has_Default_Initialization (E) then
3500 Check_Restriction
3501 (No_Default_Initialization, Declaration_Node (E));
3502 end if;
3504 -- Ensure that a variable subject to pragma Thread_Local_Storage
3506 -- * Lacks default initialization, or
3508 -- * The initialization expression is either "null", a static
3509 -- constant, or a compile-time known aggregate.
3511 if Has_Pragma_Thread_Local_Storage (E) then
3512 Check_Pragma_Thread_Local_Storage (E);
3513 end if;
3515 -- For imported objects, set Is_Public unless there is also an
3516 -- address clause, which means that there is no external symbol
3517 -- needed for the Import (Is_Public may still be set for other
3518 -- unrelated reasons). Note that we delayed this processing
3519 -- till freeze time so that we can be sure not to set the flag
3520 -- if there is an address clause. If there is such a clause,
3521 -- then the only purpose of the Import pragma is to suppress
3522 -- implicit initialization.
3524 if Is_Imported (E) and then No (Address_Clause (E)) then
3525 Set_Is_Public (E);
3526 end if;
3528 -- For source objects that are not Imported and are library level, if
3529 -- no linker section pragma was given inherit the appropriate linker
3530 -- section from the corresponding type.
3532 if Comes_From_Source (E)
3533 and then not Is_Imported (E)
3534 and then Is_Library_Level_Entity (E)
3535 and then No (Linker_Section_Pragma (E))
3536 then
3537 Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
3538 end if;
3540 -- For convention C objects of an enumeration type, warn if the size
3541 -- is not integer size and no explicit size given. Skip warning for
3542 -- Boolean and Character, and assume programmer expects 8-bit sizes
3543 -- for these cases.
3545 if (Convention (E) = Convention_C
3546 or else
3547 Convention (E) = Convention_CPP)
3548 and then Is_Enumeration_Type (Typ)
3549 and then not Is_Character_Type (Typ)
3550 and then not Is_Boolean_Type (Typ)
3551 and then Esize (Typ) < Standard_Integer_Size
3552 and then not Has_Size_Clause (E)
3553 then
3554 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3555 Error_Msg_N
3556 ("??convention C enumeration object has size less than ^", E);
3557 Error_Msg_N ("\??use explicit size clause to set size", E);
3558 end if;
3560 -- Declaring too big an array in disabled ghost code is OK
3562 if Is_Array_Type (Typ) and then not Is_Ignored_Ghost_Entity (E) then
3563 Check_Large_Modular_Array (Typ);
3564 end if;
3565 end Freeze_Object_Declaration;
3567 -----------------------------
3568 -- Freeze_Generic_Entities --
3569 -----------------------------
3571 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3572 E : Entity_Id;
3573 F : Node_Id;
3574 Flist : List_Id;
3576 begin
3577 Flist := New_List;
3578 E := First_Entity (Pack);
3579 while Present (E) loop
3580 if Is_Type (E) and then not Is_Generic_Type (E) then
3581 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3582 Set_Entity (F, E);
3583 Append_To (Flist, F);
3585 elsif Ekind (E) = E_Generic_Package then
3586 Append_List_To (Flist, Freeze_Generic_Entities (E));
3587 end if;
3589 Next_Entity (E);
3590 end loop;
3592 return Flist;
3593 end Freeze_Generic_Entities;
3595 --------------------
3596 -- Freeze_Profile --
3597 --------------------
3599 function Freeze_Profile (E : Entity_Id) return Boolean is
3600 F_Type : Entity_Id;
3601 R_Type : Entity_Id;
3602 Warn_Node : Node_Id;
3604 begin
3605 -- Loop through formals
3607 Formal := First_Formal (E);
3608 while Present (Formal) loop
3609 F_Type := Etype (Formal);
3611 -- AI05-0151: incomplete types can appear in a profile. By the
3612 -- time the entity is frozen, the full view must be available,
3613 -- unless it is a limited view.
3615 if Is_Incomplete_Type (F_Type)
3616 and then Present (Full_View (F_Type))
3617 and then not From_Limited_With (F_Type)
3618 then
3619 F_Type := Full_View (F_Type);
3620 Set_Etype (Formal, F_Type);
3621 end if;
3623 if not From_Limited_With (F_Type) then
3624 Freeze_And_Append (F_Type, N, Result);
3625 end if;
3627 if Is_Private_Type (F_Type)
3628 and then Is_Private_Type (Base_Type (F_Type))
3629 and then No (Full_View (Base_Type (F_Type)))
3630 and then not Is_Generic_Type (F_Type)
3631 and then not Is_Derived_Type (F_Type)
3632 then
3633 -- If the type of a formal is incomplete, subprogram is being
3634 -- frozen prematurely. Within an instance (but not within a
3635 -- wrapper package) this is an artifact of our need to regard
3636 -- the end of an instantiation as a freeze point. Otherwise it
3637 -- is a definite error.
3639 if In_Instance then
3640 Set_Is_Frozen (E, False);
3641 Result := No_List;
3642 return False;
3644 elsif not After_Last_Declaration
3645 and then not Freezing_Library_Level_Tagged_Type
3646 then
3647 Error_Msg_Node_1 := F_Type;
3648 Error_Msg
3649 ("type & must be fully defined before this point", Loc);
3650 end if;
3651 end if;
3653 -- Check suspicious parameter for C function. These tests apply
3654 -- only to exported/imported subprograms.
3656 if Warn_On_Export_Import
3657 and then Comes_From_Source (E)
3658 and then Convention (E) in Convention_C_Family
3659 and then (Is_Imported (E) or else Is_Exported (E))
3660 and then Convention (E) /= Convention (Formal)
3661 and then not Has_Warnings_Off (E)
3662 and then not Has_Warnings_Off (F_Type)
3663 and then not Has_Warnings_Off (Formal)
3664 then
3665 -- Qualify mention of formals with subprogram name
3667 Error_Msg_Qual_Level := 1;
3669 -- Check suspicious use of fat C pointer, but do not emit
3670 -- a warning on an access to subprogram when unnesting is
3671 -- active.
3673 if Is_Access_Type (F_Type)
3674 and then Esize (F_Type) > Ttypes.System_Address_Size
3675 and then (not Unnest_Subprogram_Mode
3676 or else not Is_Access_Subprogram_Type (F_Type))
3677 then
3678 Error_Msg_N
3679 ("?x?type of & does not correspond to C pointer!", Formal);
3681 -- Check suspicious return of boolean
3683 elsif Root_Type (F_Type) = Standard_Boolean
3684 and then Convention (F_Type) = Convention_Ada
3685 and then not Has_Warnings_Off (F_Type)
3686 and then not Has_Size_Clause (F_Type)
3687 then
3688 Error_Msg_N
3689 ("& is an 8-bit Ada Boolean?x?", Formal);
3690 Error_Msg_N
3691 ("\use appropriate corresponding type in C "
3692 & "(e.g. char)?x?", Formal);
3694 -- Check suspicious tagged type
3696 elsif (Is_Tagged_Type (F_Type)
3697 or else
3698 (Is_Access_Type (F_Type)
3699 and then Is_Tagged_Type (Designated_Type (F_Type))))
3700 and then Convention (E) = Convention_C
3701 then
3702 Error_Msg_N
3703 ("?x?& involves a tagged type which does not "
3704 & "correspond to any C type!", Formal);
3706 -- Check wrong convention subprogram pointer
3708 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3709 and then not Has_Foreign_Convention (F_Type)
3710 then
3711 Error_Msg_N
3712 ("?x?subprogram pointer & should "
3713 & "have foreign convention!", Formal);
3714 Error_Msg_Sloc := Sloc (F_Type);
3715 Error_Msg_NE
3716 ("\?x?add Convention pragma to declaration of &#",
3717 Formal, F_Type);
3718 end if;
3720 -- Turn off name qualification after message output
3722 Error_Msg_Qual_Level := 0;
3723 end if;
3725 -- Check for unconstrained array in exported foreign convention
3726 -- case.
3728 if Has_Foreign_Convention (E)
3729 and then not Is_Imported (E)
3730 and then Is_Array_Type (F_Type)
3731 and then not Is_Constrained (F_Type)
3732 and then Warn_On_Export_Import
3733 then
3734 Error_Msg_Qual_Level := 1;
3736 -- If this is an inherited operation, place the warning on
3737 -- the derived type declaration, rather than on the original
3738 -- subprogram.
3740 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3741 then
3742 Warn_Node := Parent (E);
3744 if Formal = First_Formal (E) then
3745 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3746 end if;
3747 else
3748 Warn_Node := Formal;
3749 end if;
3751 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3752 Warn_Node, Formal);
3753 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3754 Warn_Node, Formal);
3755 Error_Msg_Qual_Level := 0;
3756 end if;
3758 if not From_Limited_With (F_Type) then
3759 if Is_Access_Type (F_Type) then
3760 F_Type := Designated_Type (F_Type);
3761 end if;
3763 -- If the formal is an anonymous_access_to_subprogram
3764 -- freeze the subprogram type as well, to prevent
3765 -- scope anomalies in gigi, because there is no other
3766 -- clear point at which it could be frozen.
3768 if Is_Itype (Etype (Formal))
3769 and then Ekind (F_Type) = E_Subprogram_Type
3770 then
3771 Freeze_And_Append (F_Type, N, Result);
3772 end if;
3773 end if;
3775 Next_Formal (Formal);
3776 end loop;
3778 -- Case of function: similar checks on return type
3780 if Ekind (E) = E_Function then
3782 -- Freeze return type
3784 R_Type := Etype (E);
3786 -- AI05-0151: the return type may have been incomplete at the
3787 -- point of declaration. Replace it with the full view, unless the
3788 -- current type is a limited view. In that case the full view is
3789 -- in a different unit, and gigi finds the non-limited view after
3790 -- the other unit is elaborated.
3792 if Ekind (R_Type) = E_Incomplete_Type
3793 and then Present (Full_View (R_Type))
3794 and then not From_Limited_With (R_Type)
3795 then
3796 R_Type := Full_View (R_Type);
3797 Set_Etype (E, R_Type);
3798 end if;
3800 Freeze_And_Append (R_Type, N, Result);
3802 -- Check suspicious return type for C function
3804 if Warn_On_Export_Import
3805 and then Comes_From_Source (E)
3806 and then Convention (E) in Convention_C_Family
3807 and then (Is_Imported (E) or else Is_Exported (E))
3808 then
3809 -- Check suspicious return of fat C pointer
3811 if Is_Access_Type (R_Type)
3812 and then Esize (R_Type) > Ttypes.System_Address_Size
3813 and then not Has_Warnings_Off (E)
3814 and then not Has_Warnings_Off (R_Type)
3815 then
3816 Error_Msg_N
3817 ("?x?return type of& does not correspond to C pointer!",
3820 -- Check suspicious return of boolean
3822 elsif Root_Type (R_Type) = Standard_Boolean
3823 and then Convention (R_Type) = Convention_Ada
3824 and then not Has_Warnings_Off (E)
3825 and then not Has_Warnings_Off (R_Type)
3826 and then not Has_Size_Clause (R_Type)
3827 then
3828 declare
3829 N : constant Node_Id :=
3830 Result_Definition (Declaration_Node (E));
3831 begin
3832 Error_Msg_NE
3833 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3834 Error_Msg_NE
3835 ("\use appropriate corresponding type in C "
3836 & "(e.g. char)?x?", N, E);
3837 end;
3839 -- Check suspicious return tagged type
3841 elsif (Is_Tagged_Type (R_Type)
3842 or else (Is_Access_Type (R_Type)
3843 and then
3844 Is_Tagged_Type
3845 (Designated_Type (R_Type))))
3846 and then Convention (E) = Convention_C
3847 and then not Has_Warnings_Off (E)
3848 and then not Has_Warnings_Off (R_Type)
3849 then
3850 Error_Msg_N ("?x?return type of & does not "
3851 & "correspond to C type!", E);
3853 -- Check return of wrong convention subprogram pointer
3855 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3856 and then not Has_Foreign_Convention (R_Type)
3857 and then not Has_Warnings_Off (E)
3858 and then not Has_Warnings_Off (R_Type)
3859 then
3860 Error_Msg_N ("?x?& should return a foreign "
3861 & "convention subprogram pointer", E);
3862 Error_Msg_Sloc := Sloc (R_Type);
3863 Error_Msg_NE
3864 ("\?x?add Convention pragma to declaration of& #",
3865 E, R_Type);
3866 end if;
3867 end if;
3869 -- Give warning for suspicious return of a result of an
3870 -- unconstrained array type in a foreign convention function.
3872 if Has_Foreign_Convention (E)
3874 -- We are looking for a return of unconstrained array
3876 and then Is_Array_Type (R_Type)
3877 and then not Is_Constrained (R_Type)
3879 -- Exclude imported routines, the warning does not belong on
3880 -- the import, but rather on the routine definition.
3882 and then not Is_Imported (E)
3884 -- Check that general warning is enabled, and that it is not
3885 -- suppressed for this particular case.
3887 and then Warn_On_Export_Import
3888 and then not Has_Warnings_Off (E)
3889 and then not Has_Warnings_Off (R_Type)
3890 then
3891 Error_Msg_N
3892 ("?x?foreign convention function& should not return "
3893 & "unconstrained array!", E);
3894 end if;
3895 end if;
3897 -- Check suspicious use of Import in pure unit (cases where the RM
3898 -- allows calls to be omitted).
3900 if Is_Imported (E)
3902 -- It might be suspicious if the compilation unit has the Pure
3903 -- aspect/pragma.
3905 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3907 -- The RM allows omission of calls only in the case of
3908 -- library-level subprograms (see RM-10.2.1(18)).
3910 and then Is_Library_Level_Entity (E)
3912 -- Ignore internally generated entity. This happens in some cases
3913 -- of subprograms in specs, where we generate an implied body.
3915 and then Comes_From_Source (Import_Pragma (E))
3917 -- Assume run-time knows what it is doing
3919 and then not GNAT_Mode
3921 -- Assume explicit Pure_Function means import is pure
3923 and then not Has_Pragma_Pure_Function (E)
3925 -- Don't need warning in relaxed semantics mode
3927 and then not Relaxed_RM_Semantics
3929 -- Assume convention Intrinsic is OK, since this is specialized.
3930 -- This deals with the DEC unit current_exception.ads
3932 and then Convention (E) /= Convention_Intrinsic
3934 -- Assume that ASM interface knows what it is doing. This deals
3935 -- with e.g. unsigned.ads in the AAMP back end.
3937 and then Convention (E) /= Convention_Assembler
3938 then
3939 Error_Msg_N
3940 ("pragma Import in Pure unit??", Import_Pragma (E));
3941 Error_Msg_NE
3942 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3943 Import_Pragma (E), E);
3944 end if;
3946 return True;
3947 end Freeze_Profile;
3949 ------------------------
3950 -- Freeze_Record_Type --
3951 ------------------------
3953 procedure Freeze_Record_Type (Rec : Entity_Id) is
3954 ADC : Node_Id;
3955 Comp : Entity_Id;
3956 IR : Node_Id;
3957 Prev : Entity_Id;
3959 Junk : Boolean;
3960 pragma Warnings (Off, Junk);
3962 Aliased_Component : Boolean := False;
3963 -- Set True if we find at least one component which is aliased. This
3964 -- is used to prevent Implicit_Packing of the record, since packing
3965 -- cannot modify the size of alignment of an aliased component.
3967 All_Elem_Components : Boolean := True;
3968 -- True if all components are of a type whose underlying type is
3969 -- elementary.
3971 All_Sized_Components : Boolean := True;
3972 -- True if all components have a known RM_Size
3974 All_Storage_Unit_Components : Boolean := True;
3975 -- True if all components have an RM_Size that is a multiple of the
3976 -- storage unit.
3978 Elem_Component_Total_Esize : Uint := Uint_0;
3979 -- Accumulates total Esize values of all elementary components. Used
3980 -- for processing of Implicit_Packing.
3982 Placed_Component : Boolean := False;
3983 -- Set True if we find at least one component with a component
3984 -- clause (used to warn about useless Bit_Order pragmas, and also
3985 -- to detect cases where Implicit_Packing may have an effect).
3987 Sized_Component_Total_RM_Size : Uint := Uint_0;
3988 -- Accumulates total RM_Size values of all sized components. Used
3989 -- for processing of Implicit_Packing.
3991 Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
3992 -- Accumulates total RM_Size values of all sized components, rounded
3993 -- individually to a multiple of the storage unit.
3995 SSO_ADC : Node_Id;
3996 -- Scalar_Storage_Order attribute definition clause for the record
3998 SSO_ADC_Component : Boolean := False;
3999 -- Set True if we find at least one component whose type has a
4000 -- Scalar_Storage_Order attribute definition clause.
4002 Unplaced_Component : Boolean := False;
4003 -- Set True if we find at least one component with no component
4004 -- clause (used to warn about useless Pack pragmas).
4006 function Check_Allocator (N : Node_Id) return Node_Id;
4007 -- If N is an allocator, possibly wrapped in one or more level of
4008 -- qualified expression(s), return the inner allocator node, else
4009 -- return Empty.
4011 procedure Check_Itype (Typ : Entity_Id);
4012 -- If the component subtype is an access to a constrained subtype of
4013 -- an already frozen type, make the subtype frozen as well. It might
4014 -- otherwise be frozen in the wrong scope, and a freeze node on
4015 -- subtype has no effect. Similarly, if the component subtype is a
4016 -- regular (not protected) access to subprogram, set the anonymous
4017 -- subprogram type to frozen as well, to prevent an out-of-scope
4018 -- freeze node at some eventual point of call. Protected operations
4019 -- are handled elsewhere.
4021 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
4022 -- Make sure that all types mentioned in Discrete_Choices of the
4023 -- variants referenceed by the Variant_Part VP are frozen. This is
4024 -- a recursive routine to deal with nested variants.
4026 ---------------------
4027 -- Check_Allocator --
4028 ---------------------
4030 function Check_Allocator (N : Node_Id) return Node_Id is
4031 Inner : Node_Id;
4032 begin
4033 Inner := N;
4034 loop
4035 if Nkind (Inner) = N_Allocator then
4036 return Inner;
4037 elsif Nkind (Inner) = N_Qualified_Expression then
4038 Inner := Expression (Inner);
4039 else
4040 return Empty;
4041 end if;
4042 end loop;
4043 end Check_Allocator;
4045 -----------------
4046 -- Check_Itype --
4047 -----------------
4049 procedure Check_Itype (Typ : Entity_Id) is
4050 Desig : constant Entity_Id := Designated_Type (Typ);
4052 begin
4053 if not Is_Frozen (Desig)
4054 and then Is_Frozen (Base_Type (Desig))
4055 then
4056 Set_Is_Frozen (Desig);
4058 -- In addition, add an Itype_Reference to ensure that the
4059 -- access subtype is elaborated early enough. This cannot be
4060 -- done if the subtype may depend on discriminants.
4062 if Ekind (Comp) = E_Component
4063 and then Is_Itype (Etype (Comp))
4064 and then not Has_Discriminants (Rec)
4065 then
4066 IR := Make_Itype_Reference (Sloc (Comp));
4067 Set_Itype (IR, Desig);
4068 Add_To_Result (IR);
4069 end if;
4071 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
4072 and then Convention (Desig) /= Convention_Protected
4073 then
4074 Set_Is_Frozen (Desig);
4075 end if;
4076 end Check_Itype;
4078 ------------------------------------
4079 -- Freeze_Choices_In_Variant_Part --
4080 ------------------------------------
4082 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
4083 pragma Assert (Nkind (VP) = N_Variant_Part);
4085 Variant : Node_Id;
4086 Choice : Node_Id;
4087 CL : Node_Id;
4089 begin
4090 -- Loop through variants
4092 Variant := First_Non_Pragma (Variants (VP));
4093 while Present (Variant) loop
4095 -- Loop through choices, checking that all types are frozen
4097 Choice := First_Non_Pragma (Discrete_Choices (Variant));
4098 while Present (Choice) loop
4099 if Nkind (Choice) in N_Has_Etype
4100 and then Present (Etype (Choice))
4101 then
4102 Freeze_And_Append (Etype (Choice), N, Result);
4103 end if;
4105 Next_Non_Pragma (Choice);
4106 end loop;
4108 -- Check for nested variant part to process
4110 CL := Component_List (Variant);
4112 if not Null_Present (CL) then
4113 if Present (Variant_Part (CL)) then
4114 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
4115 end if;
4116 end if;
4118 Next_Non_Pragma (Variant);
4119 end loop;
4120 end Freeze_Choices_In_Variant_Part;
4122 -- Start of processing for Freeze_Record_Type
4124 begin
4125 -- Freeze components and embedded subtypes
4127 Comp := First_Entity (Rec);
4128 Prev := Empty;
4129 while Present (Comp) loop
4130 if Is_Aliased (Comp) then
4131 Aliased_Component := True;
4132 end if;
4134 -- Handle the component and discriminant case
4136 if Ekind (Comp) in E_Component | E_Discriminant then
4137 declare
4138 CC : constant Node_Id := Component_Clause (Comp);
4140 begin
4141 -- Freezing a record type freezes the type of each of its
4142 -- components. However, if the type of the component is
4143 -- part of this record, we do not want or need a separate
4144 -- Freeze_Node. Note that Is_Itype is wrong because that's
4145 -- also set in private type cases. We also can't check for
4146 -- the Scope being exactly Rec because of private types and
4147 -- record extensions.
4149 if Is_Itype (Etype (Comp))
4150 and then Is_Record_Type (Underlying_Type
4151 (Scope (Etype (Comp))))
4152 then
4153 Undelay_Type (Etype (Comp));
4154 end if;
4156 Freeze_And_Append (Etype (Comp), N, Result);
4158 -- Warn for pragma Pack overriding foreign convention
4160 if Has_Foreign_Convention (Etype (Comp))
4161 and then Has_Pragma_Pack (Rec)
4163 -- Don't warn for aliased components, since override
4164 -- cannot happen in that case.
4166 and then not Is_Aliased (Comp)
4167 then
4168 declare
4169 CN : constant Name_Id :=
4170 Get_Convention_Name (Convention (Etype (Comp)));
4171 PP : constant Node_Id :=
4172 Get_Pragma (Rec, Pragma_Pack);
4173 begin
4174 if Present (PP) then
4175 Error_Msg_Name_1 := CN;
4176 Error_Msg_Sloc := Sloc (Comp);
4177 Error_Msg_N
4178 ("pragma Pack affects convention % component#??",
4179 PP);
4180 Error_Msg_Name_1 := CN;
4181 Error_Msg_NE
4182 ("\component & may not have % compatible "
4183 & "representation??", PP, Comp);
4184 end if;
4185 end;
4186 end if;
4188 -- Check for error of component clause given for variable
4189 -- sized type. We have to delay this test till this point,
4190 -- since the component type has to be frozen for us to know
4191 -- if it is variable length.
4193 if Present (CC) then
4194 Placed_Component := True;
4196 -- We omit this test in a generic context, it will be
4197 -- applied at instantiation time.
4199 if Inside_A_Generic then
4200 null;
4202 -- Also omit this test in CodePeer mode, since we do not
4203 -- have sufficient info on size and rep clauses.
4205 elsif CodePeer_Mode then
4206 null;
4208 -- Do the check
4210 elsif not
4211 Size_Known_At_Compile_Time
4212 (Underlying_Type (Etype (Comp)))
4213 then
4214 Error_Msg_N
4215 ("component clause not allowed for variable " &
4216 "length component", CC);
4217 end if;
4219 else
4220 Unplaced_Component := True;
4221 end if;
4223 -- Case of component requires byte alignment
4225 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
4227 -- Set the enclosing record to also require byte align
4229 Set_Must_Be_On_Byte_Boundary (Rec);
4231 -- Check for component clause that is inconsistent with
4232 -- the required byte boundary alignment.
4234 if Present (CC)
4235 and then Normalized_First_Bit (Comp) mod
4236 System_Storage_Unit /= 0
4237 then
4238 Error_Msg_N
4239 ("component & must be byte aligned",
4240 Component_Name (Component_Clause (Comp)));
4241 end if;
4242 end if;
4243 end;
4244 end if;
4246 -- Gather data for possible Implicit_Packing later. Note that at
4247 -- this stage we might be dealing with a real component, or with
4248 -- an implicit subtype declaration.
4250 if Known_Static_RM_Size (Etype (Comp)) then
4251 declare
4252 Comp_Type : constant Entity_Id := Etype (Comp);
4253 Comp_Size : constant Uint := RM_Size (Comp_Type);
4254 SSU : constant Int := Ttypes.System_Storage_Unit;
4256 begin
4257 Sized_Component_Total_RM_Size :=
4258 Sized_Component_Total_RM_Size + Comp_Size;
4260 Sized_Component_Total_Round_RM_Size :=
4261 Sized_Component_Total_Round_RM_Size +
4262 (Comp_Size + SSU - 1) / SSU * SSU;
4264 if Present (Underlying_Type (Comp_Type))
4265 and then Is_Elementary_Type (Underlying_Type (Comp_Type))
4266 then
4267 Elem_Component_Total_Esize :=
4268 Elem_Component_Total_Esize + Esize (Comp_Type);
4269 else
4270 All_Elem_Components := False;
4272 if Comp_Size mod SSU /= 0 then
4273 All_Storage_Unit_Components := False;
4274 end if;
4275 end if;
4276 end;
4277 else
4278 All_Sized_Components := False;
4279 end if;
4281 -- If the component is an Itype with Delayed_Freeze and is either
4282 -- a record or array subtype and its base type has not yet been
4283 -- frozen, we must remove this from the entity list of this record
4284 -- and put it on the entity list of the scope of its base type.
4285 -- Note that we know that this is not the type of a component
4286 -- since we cleared Has_Delayed_Freeze for it in the previous
4287 -- loop. Thus this must be the Designated_Type of an access type,
4288 -- which is the type of a component.
4290 if Is_Itype (Comp)
4291 and then Is_Type (Scope (Comp))
4292 and then Is_Composite_Type (Comp)
4293 and then Base_Type (Comp) /= Comp
4294 and then Has_Delayed_Freeze (Comp)
4295 and then not Is_Frozen (Base_Type (Comp))
4296 then
4297 declare
4298 Will_Be_Frozen : Boolean := False;
4299 S : Entity_Id;
4301 begin
4302 -- We have a difficult case to handle here. Suppose Rec is
4303 -- subtype being defined in a subprogram that's created as
4304 -- part of the freezing of Rec'Base. In that case, we know
4305 -- that Comp'Base must have already been frozen by the time
4306 -- we get to elaborate this because Gigi doesn't elaborate
4307 -- any bodies until it has elaborated all of the declarative
4308 -- part. But Is_Frozen will not be set at this point because
4309 -- we are processing code in lexical order.
4311 -- We detect this case by going up the Scope chain of Rec
4312 -- and seeing if we have a subprogram scope before reaching
4313 -- the top of the scope chain or that of Comp'Base. If we
4314 -- do, then mark that Comp'Base will actually be frozen. If
4315 -- so, we merely undelay it.
4317 S := Scope (Rec);
4318 while Present (S) loop
4319 if Is_Subprogram (S) then
4320 Will_Be_Frozen := True;
4321 exit;
4322 elsif S = Scope (Base_Type (Comp)) then
4323 exit;
4324 end if;
4326 S := Scope (S);
4327 end loop;
4329 if Will_Be_Frozen then
4330 Undelay_Type (Comp);
4332 else
4333 if Present (Prev) then
4334 Link_Entities (Prev, Next_Entity (Comp));
4335 else
4336 Set_First_Entity (Rec, Next_Entity (Comp));
4337 end if;
4339 -- Insert in entity list of scope of base type (which
4340 -- must be an enclosing scope, because still unfrozen).
4342 Append_Entity (Comp, Scope (Base_Type (Comp)));
4343 end if;
4344 end;
4346 -- If the component is an access type with an allocator as default
4347 -- value, the designated type will be frozen by the corresponding
4348 -- expression in init_proc. In order to place the freeze node for
4349 -- the designated type before that for the current record type,
4350 -- freeze it now.
4352 -- Same process if the component is an array of access types,
4353 -- initialized with an aggregate. If the designated type is
4354 -- private, it cannot contain allocators, and it is premature
4355 -- to freeze the type, so we check for this as well.
4357 elsif Is_Access_Type (Etype (Comp))
4358 and then Present (Parent (Comp))
4359 and then Present (Expression (Parent (Comp)))
4360 then
4361 declare
4362 Alloc : constant Node_Id :=
4363 Check_Allocator (Expression (Parent (Comp)));
4365 begin
4366 if Present (Alloc) then
4368 -- If component is pointer to a class-wide type, freeze
4369 -- the specific type in the expression being allocated.
4370 -- The expression may be a subtype indication, in which
4371 -- case freeze the subtype mark.
4373 if Is_Class_Wide_Type
4374 (Designated_Type (Etype (Comp)))
4375 then
4376 if Is_Entity_Name (Expression (Alloc)) then
4377 Freeze_And_Append
4378 (Entity (Expression (Alloc)), N, Result);
4380 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4381 then
4382 Freeze_And_Append
4383 (Entity (Subtype_Mark (Expression (Alloc))),
4384 N, Result);
4385 end if;
4387 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4388 Check_Itype (Etype (Comp));
4390 else
4391 Freeze_And_Append
4392 (Designated_Type (Etype (Comp)), N, Result);
4393 end if;
4394 end if;
4395 end;
4397 elsif Is_Access_Type (Etype (Comp))
4398 and then Is_Itype (Designated_Type (Etype (Comp)))
4399 then
4400 Check_Itype (Etype (Comp));
4402 -- Freeze the designated type when initializing a component with
4403 -- an aggregate in case the aggregate contains allocators.
4405 -- type T is ...;
4406 -- type T_Ptr is access all T;
4407 -- type T_Array is array ... of T_Ptr;
4409 -- type Rec is record
4410 -- Comp : T_Array := (others => ...);
4411 -- end record;
4413 elsif Is_Array_Type (Etype (Comp))
4414 and then Is_Access_Type (Component_Type (Etype (Comp)))
4415 then
4416 declare
4417 Comp_Par : constant Node_Id := Parent (Comp);
4418 Desig_Typ : constant Entity_Id :=
4419 Designated_Type
4420 (Component_Type (Etype (Comp)));
4422 begin
4423 -- The only case when this sort of freezing is not done is
4424 -- when the designated type is class-wide and the root type
4425 -- is the record owning the component. This scenario results
4426 -- in a circularity because the class-wide type requires
4427 -- primitives that have not been created yet as the root
4428 -- type is in the process of being frozen.
4430 -- type Rec is tagged;
4431 -- type Rec_Ptr is access all Rec'Class;
4432 -- type Rec_Array is array ... of Rec_Ptr;
4434 -- type Rec is record
4435 -- Comp : Rec_Array := (others => ...);
4436 -- end record;
4438 if Is_Class_Wide_Type (Desig_Typ)
4439 and then Root_Type (Desig_Typ) = Rec
4440 then
4441 null;
4443 elsif Is_Fully_Defined (Desig_Typ)
4444 and then Present (Comp_Par)
4445 and then Nkind (Comp_Par) = N_Component_Declaration
4446 and then Present (Expression (Comp_Par))
4447 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4448 then
4449 Freeze_And_Append (Desig_Typ, N, Result);
4450 end if;
4451 end;
4452 end if;
4454 Prev := Comp;
4455 Next_Entity (Comp);
4456 end loop;
4458 SSO_ADC :=
4459 Get_Attribute_Definition_Clause
4460 (Rec, Attribute_Scalar_Storage_Order);
4462 -- If the record type has Complex_Representation, then it is treated
4463 -- as a scalar in the back end so the storage order is irrelevant.
4465 if Has_Complex_Representation (Rec) then
4466 if Present (SSO_ADC) then
4467 Error_Msg_N
4468 ("??storage order has no effect with Complex_Representation",
4469 SSO_ADC);
4470 end if;
4472 else
4473 -- Deal with default setting of reverse storage order
4475 Set_SSO_From_Default (Rec);
4477 -- Check consistent attribute setting on component types
4479 declare
4480 Comp_ADC_Present : Boolean;
4481 begin
4482 Comp := First_Component (Rec);
4483 while Present (Comp) loop
4484 Check_Component_Storage_Order
4485 (Encl_Type => Rec,
4486 Comp => Comp,
4487 ADC => SSO_ADC,
4488 Comp_ADC_Present => Comp_ADC_Present);
4489 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4490 Next_Component (Comp);
4491 end loop;
4492 end;
4494 -- Now deal with reverse storage order/bit order issues
4496 if Present (SSO_ADC) then
4498 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4499 -- if the former is specified.
4501 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4503 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4504 -- apply to some ancestor type.
4506 Error_Msg_Sloc := Sloc (SSO_ADC);
4507 Error_Msg_N
4508 ("scalar storage order for& specified# inconsistent with "
4509 & "bit order", Rec);
4510 end if;
4512 -- Warn if there is a Scalar_Storage_Order attribute definition
4513 -- clause but no component clause, no component that itself has
4514 -- such an attribute definition, and no pragma Pack.
4516 if not (Placed_Component
4517 or else
4518 SSO_ADC_Component
4519 or else
4520 Is_Packed (Rec))
4521 then
4522 Error_Msg_N
4523 ("??scalar storage order specified but no component "
4524 & "clause", SSO_ADC);
4525 end if;
4526 end if;
4527 end if;
4529 -- Deal with Bit_Order aspect
4531 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4533 if Present (ADC) and then Base_Type (Rec) = Rec then
4534 if not (Placed_Component
4535 or else Present (SSO_ADC)
4536 or else Is_Packed (Rec))
4537 then
4538 -- Warn if clause has no effect when no component clause is
4539 -- present, but suppress warning if the Bit_Order is required
4540 -- due to the presence of a Scalar_Storage_Order attribute.
4542 Error_Msg_N
4543 ("??bit order specification has no effect", ADC);
4544 Error_Msg_N
4545 ("\??since no component clauses were specified", ADC);
4547 -- Here is where we do the processing to adjust component clauses
4548 -- for reversed bit order, when not using reverse SSO. If an error
4549 -- has been reported on Rec already (such as SSO incompatible with
4550 -- bit order), don't bother adjusting as this may generate extra
4551 -- noise.
4553 elsif Reverse_Bit_Order (Rec)
4554 and then not Reverse_Storage_Order (Rec)
4555 and then not Error_Posted (Rec)
4556 then
4557 Adjust_Record_For_Reverse_Bit_Order (Rec);
4559 -- Case where we have both an explicit Bit_Order and the same
4560 -- Scalar_Storage_Order: leave record untouched, the back-end
4561 -- will take care of required layout conversions.
4563 else
4564 null;
4566 end if;
4567 end if;
4569 -- Check for useless pragma Pack when all components placed. We only
4570 -- do this check for record types, not subtypes, since a subtype may
4571 -- have all its components placed, and it still makes perfectly good
4572 -- sense to pack other subtypes or the parent type. We do not give
4573 -- this warning if Optimize_Alignment is set to Space, since the
4574 -- pragma Pack does have an effect in this case (it always resets
4575 -- the alignment to one).
4577 if Ekind (Rec) = E_Record_Type
4578 and then Is_Packed (Rec)
4579 and then not Unplaced_Component
4580 and then Optimize_Alignment /= 'S'
4581 then
4582 -- Reset packed status. Probably not necessary, but we do it so
4583 -- that there is no chance of the back end doing something strange
4584 -- with this redundant indication of packing.
4586 Set_Is_Packed (Rec, False);
4588 -- Give warning if redundant constructs warnings on
4590 if Warn_On_Redundant_Constructs then
4591 Error_Msg_N -- CODEFIX
4592 ("??pragma Pack has no effect, no unplaced components",
4593 Get_Rep_Pragma (Rec, Name_Pack));
4594 end if;
4595 end if;
4597 -- If this is the record corresponding to a remote type, freeze the
4598 -- remote type here since that is what we are semantically freezing.
4599 -- This prevents the freeze node for that type in an inner scope.
4601 if Ekind (Rec) = E_Record_Type then
4602 if Present (Corresponding_Remote_Type (Rec)) then
4603 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4604 end if;
4606 -- Check for controlled components, unchecked unions, and type
4607 -- invariants.
4609 Comp := First_Component (Rec);
4610 while Present (Comp) loop
4612 -- Do not set Has_Controlled_Component on a class-wide
4613 -- equivalent type. See Make_CW_Equivalent_Type.
4615 if not Is_Class_Wide_Equivalent_Type (Rec)
4616 and then
4617 (Has_Controlled_Component (Etype (Comp))
4618 or else
4619 (Chars (Comp) /= Name_uParent
4620 and then Is_Controlled (Etype (Comp)))
4621 or else
4622 (Is_Protected_Type (Etype (Comp))
4623 and then
4624 Present (Corresponding_Record_Type (Etype (Comp)))
4625 and then
4626 Has_Controlled_Component
4627 (Corresponding_Record_Type (Etype (Comp)))))
4628 then
4629 Set_Has_Controlled_Component (Rec);
4630 end if;
4632 if Has_Unchecked_Union (Etype (Comp)) then
4633 Set_Has_Unchecked_Union (Rec);
4634 end if;
4636 -- The record type requires its own invariant procedure in
4637 -- order to verify the invariant of each individual component.
4638 -- Do not consider internal components such as _parent because
4639 -- parent class-wide invariants are always inherited.
4640 -- In GNATprove mode, the component invariants are checked by
4641 -- other means. They should not be added to the record type
4642 -- invariant procedure, so that the procedure can be used to
4643 -- check the recordy type invariants if any.
4645 if Comes_From_Source (Comp)
4646 and then Has_Invariants (Etype (Comp))
4647 and then not GNATprove_Mode
4648 then
4649 Set_Has_Own_Invariants (Rec);
4650 end if;
4652 -- Scan component declaration for likely misuses of current
4653 -- instance, either in a constraint or a default expression.
4655 if Has_Per_Object_Constraint (Comp) then
4656 Check_Current_Instance (Parent (Comp));
4657 end if;
4659 Next_Component (Comp);
4660 end loop;
4661 end if;
4663 -- Enforce the restriction that access attributes with a current
4664 -- instance prefix can only apply to limited types. This comment
4665 -- is floating here, but does not seem to belong here???
4667 -- Set component alignment if not otherwise already set
4669 Set_Component_Alignment_If_Not_Set (Rec);
4671 -- For first subtypes, check if there are any fixed-point fields with
4672 -- component clauses, where we must check the size. This is not done
4673 -- till the freeze point since for fixed-point types, we do not know
4674 -- the size until the type is frozen. Similar processing applies to
4675 -- bit-packed arrays.
4677 if Is_First_Subtype (Rec) then
4678 Comp := First_Component (Rec);
4679 while Present (Comp) loop
4680 if Present (Component_Clause (Comp))
4681 and then (Is_Fixed_Point_Type (Etype (Comp))
4682 or else Is_Bit_Packed_Array (Etype (Comp)))
4683 then
4684 Check_Size
4685 (Component_Name (Component_Clause (Comp)),
4686 Etype (Comp),
4687 Esize (Comp),
4688 Junk);
4689 end if;
4691 Next_Component (Comp);
4692 end loop;
4693 end if;
4695 -- See if Size is too small as is (and implicit packing might help)
4697 if not Is_Packed (Rec)
4699 -- No implicit packing if even one component is explicitly placed
4701 and then not Placed_Component
4703 -- Or even one component is aliased
4705 and then not Aliased_Component
4707 -- Must have size clause and all sized components
4709 and then Has_Size_Clause (Rec)
4710 and then All_Sized_Components
4712 -- Do not try implicit packing on records with discriminants, too
4713 -- complicated, especially in the variant record case.
4715 and then not Has_Discriminants (Rec)
4717 -- We want to implicitly pack if the specified size of the record
4718 -- is less than the sum of the object sizes (no point in packing
4719 -- if this is not the case), if we can compute it, i.e. if we have
4720 -- only elementary components. Otherwise, we have at least one
4721 -- composite component and we want to implicitly pack only if bit
4722 -- packing is required for it, as we are sure in this case that
4723 -- the back end cannot do the expected layout without packing.
4725 and then
4726 ((All_Elem_Components
4727 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4728 or else
4729 (not All_Elem_Components
4730 and then not All_Storage_Unit_Components
4731 and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
4733 -- And the total RM size cannot be greater than the specified size
4734 -- since otherwise packing will not get us where we have to be.
4736 and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
4738 -- Never do implicit packing in CodePeer or SPARK modes since
4739 -- we don't do any packing in these modes, since this generates
4740 -- over-complex code that confuses static analysis, and in
4741 -- general, neither CodePeer not GNATprove care about the
4742 -- internal representation of objects.
4744 and then not (CodePeer_Mode or GNATprove_Mode)
4745 then
4746 -- If implicit packing enabled, do it
4748 if Implicit_Packing then
4749 Set_Is_Packed (Rec);
4751 -- Otherwise flag the size clause
4753 else
4754 declare
4755 Sz : constant Node_Id := Size_Clause (Rec);
4756 begin
4757 Error_Msg_NE -- CODEFIX
4758 ("size given for& too small", Sz, Rec);
4759 Error_Msg_N -- CODEFIX
4760 ("\use explicit pragma Pack "
4761 & "or use pragma Implicit_Packing", Sz);
4762 end;
4763 end if;
4764 end if;
4766 -- The following checks are relevant only when SPARK_Mode is on as
4767 -- they are not standard Ada legality rules.
4769 if SPARK_Mode = On then
4771 -- A discriminated type cannot be effectively volatile
4772 -- (SPARK RM 7.1.3(5)).
4774 if Is_Effectively_Volatile (Rec) then
4775 if Has_Discriminants (Rec) then
4776 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4777 end if;
4779 -- A non-effectively volatile record type cannot contain
4780 -- effectively volatile components (SPARK RM 7.1.3(6)).
4782 else
4783 Comp := First_Component (Rec);
4784 while Present (Comp) loop
4785 if Comes_From_Source (Comp)
4786 and then Is_Effectively_Volatile (Etype (Comp))
4787 then
4788 Error_Msg_Name_1 := Chars (Rec);
4789 Error_Msg_N
4790 ("component & of non-volatile type % cannot be "
4791 & "volatile", Comp);
4792 end if;
4794 Next_Component (Comp);
4795 end loop;
4796 end if;
4798 -- A type which does not yield a synchronized object cannot have
4799 -- a component that yields a synchronized object (SPARK RM 9.5).
4801 if not Yields_Synchronized_Object (Rec) then
4802 Comp := First_Component (Rec);
4803 while Present (Comp) loop
4804 if Comes_From_Source (Comp)
4805 and then Yields_Synchronized_Object (Etype (Comp))
4806 then
4807 Error_Msg_Name_1 := Chars (Rec);
4808 Error_Msg_N
4809 ("component & of non-synchronized type % cannot be "
4810 & "synchronized", Comp);
4811 end if;
4813 Next_Component (Comp);
4814 end loop;
4815 end if;
4817 -- A Ghost type cannot have a component of protected or task type
4818 -- (SPARK RM 6.9(19)).
4820 if Is_Ghost_Entity (Rec) then
4821 Comp := First_Component (Rec);
4822 while Present (Comp) loop
4823 if Comes_From_Source (Comp)
4824 and then Is_Concurrent_Type (Etype (Comp))
4825 then
4826 Error_Msg_Name_1 := Chars (Rec);
4827 Error_Msg_N
4828 ("component & of ghost type % cannot be concurrent",
4829 Comp);
4830 end if;
4832 Next_Component (Comp);
4833 end loop;
4834 end if;
4835 end if;
4837 -- Make sure that if we have an iterator aspect, then we have
4838 -- either Constant_Indexing or Variable_Indexing.
4840 declare
4841 Iterator_Aspect : Node_Id;
4843 begin
4844 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4846 if No (Iterator_Aspect) then
4847 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4848 end if;
4850 if Present (Iterator_Aspect) then
4851 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4852 or else
4853 Has_Aspect (Rec, Aspect_Variable_Indexing)
4854 then
4855 null;
4856 else
4857 Error_Msg_N
4858 ("Iterator_Element requires indexing aspect",
4859 Iterator_Aspect);
4860 end if;
4861 end if;
4862 end;
4864 -- All done if not a full record definition
4866 if Ekind (Rec) /= E_Record_Type then
4867 return;
4868 end if;
4870 -- Finally we need to check the variant part to make sure that
4871 -- all types within choices are properly frozen as part of the
4872 -- freezing of the record type.
4874 Check_Variant_Part : declare
4875 D : constant Node_Id := Declaration_Node (Rec);
4876 T : Node_Id;
4877 C : Node_Id;
4879 begin
4880 -- Find component list
4882 C := Empty;
4884 if Nkind (D) = N_Full_Type_Declaration then
4885 T := Type_Definition (D);
4887 if Nkind (T) = N_Record_Definition then
4888 C := Component_List (T);
4890 elsif Nkind (T) = N_Derived_Type_Definition
4891 and then Present (Record_Extension_Part (T))
4892 then
4893 C := Component_List (Record_Extension_Part (T));
4894 end if;
4895 end if;
4897 -- Case of variant part present
4899 if Present (C) and then Present (Variant_Part (C)) then
4900 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4901 end if;
4903 -- Note: we used to call Check_Choices here, but it is too early,
4904 -- since predicated subtypes are frozen here, but their freezing
4905 -- actions are in Analyze_Freeze_Entity, which has not been called
4906 -- yet for entities frozen within this procedure, so we moved that
4907 -- call to the Analyze_Freeze_Entity for the record type.
4909 end Check_Variant_Part;
4911 -- Check that all the primitives of an interface type are abstract
4912 -- or null procedures.
4914 if Is_Interface (Rec)
4915 and then not Error_Posted (Parent (Rec))
4916 then
4917 declare
4918 Elmt : Elmt_Id;
4919 Subp : Entity_Id;
4921 begin
4922 Elmt := First_Elmt (Primitive_Operations (Rec));
4923 while Present (Elmt) loop
4924 Subp := Node (Elmt);
4926 if not Is_Abstract_Subprogram (Subp)
4928 -- Avoid reporting the error on inherited primitives
4930 and then Comes_From_Source (Subp)
4931 then
4932 Error_Msg_Name_1 := Chars (Subp);
4934 if Ekind (Subp) = E_Procedure then
4935 if not Null_Present (Parent (Subp)) then
4936 Error_Msg_N
4937 ("interface procedure % must be abstract or null",
4938 Parent (Subp));
4939 end if;
4940 else
4941 Error_Msg_N
4942 ("interface function % must be abstract",
4943 Parent (Subp));
4944 end if;
4945 end if;
4947 Next_Elmt (Elmt);
4948 end loop;
4949 end;
4950 end if;
4952 -- For a derived tagged type, check whether inherited primitives
4953 -- might require a wrapper to handle class-wide conditions.
4955 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4956 Check_Inherited_Conditions (Rec);
4957 end if;
4958 end Freeze_Record_Type;
4960 -------------------------------
4961 -- Has_Boolean_Aspect_Import --
4962 -------------------------------
4964 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4965 Decl : constant Node_Id := Declaration_Node (E);
4966 Asp : Node_Id;
4967 Expr : Node_Id;
4969 begin
4970 if Has_Aspects (Decl) then
4971 Asp := First (Aspect_Specifications (Decl));
4972 while Present (Asp) loop
4973 Expr := Expression (Asp);
4975 -- The value of aspect Import is True when the expression is
4976 -- either missing or it is explicitly set to True.
4978 if Get_Aspect_Id (Asp) = Aspect_Import
4979 and then (No (Expr)
4980 or else (Compile_Time_Known_Value (Expr)
4981 and then Is_True (Expr_Value (Expr))))
4982 then
4983 return True;
4984 end if;
4986 Next (Asp);
4987 end loop;
4988 end if;
4990 return False;
4991 end Has_Boolean_Aspect_Import;
4993 -------------------------
4994 -- Inherit_Freeze_Node --
4995 -------------------------
4997 procedure Inherit_Freeze_Node
4998 (Fnod : Node_Id;
4999 Typ : Entity_Id)
5001 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
5003 begin
5004 Set_Freeze_Node (Typ, Fnod);
5005 Set_Entity (Fnod, Typ);
5007 -- The input type had an existing node. Propagate relevant attributes
5008 -- from the old freeze node to the inherited freeze node.
5010 -- ??? if both freeze nodes have attributes, would they differ?
5012 if Present (Typ_Fnod) then
5014 -- Attribute Access_Types_To_Process
5016 if Present (Access_Types_To_Process (Typ_Fnod))
5017 and then No (Access_Types_To_Process (Fnod))
5018 then
5019 Set_Access_Types_To_Process (Fnod,
5020 Access_Types_To_Process (Typ_Fnod));
5021 end if;
5023 -- Attribute Actions
5025 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
5026 Set_Actions (Fnod, Actions (Typ_Fnod));
5027 end if;
5029 -- Attribute First_Subtype_Link
5031 if Present (First_Subtype_Link (Typ_Fnod))
5032 and then No (First_Subtype_Link (Fnod))
5033 then
5034 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
5035 end if;
5037 -- Attribute TSS_Elist
5039 if Present (TSS_Elist (Typ_Fnod))
5040 and then No (TSS_Elist (Fnod))
5041 then
5042 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
5043 end if;
5044 end if;
5045 end Inherit_Freeze_Node;
5047 ------------------------------
5048 -- Wrap_Imported_Subprogram --
5049 ------------------------------
5051 -- The issue here is that our normal approach of checking preconditions
5052 -- and postconditions does not work for imported procedures, since we
5053 -- are not generating code for the body. To get around this we create
5054 -- a wrapper, as shown by the following example:
5056 -- procedure K (A : Integer);
5057 -- pragma Import (C, K);
5059 -- The spec is rewritten by removing the effects of pragma Import, but
5060 -- leaving the convention unchanged, as though the source had said:
5062 -- procedure K (A : Integer);
5063 -- pragma Convention (C, K);
5065 -- and we create a body, added to the entity K freeze actions, which
5066 -- looks like:
5068 -- procedure K (A : Integer) is
5069 -- procedure K (A : Integer);
5070 -- pragma Import (C, K);
5071 -- begin
5072 -- K (A);
5073 -- end K;
5075 -- Now the contract applies in the normal way to the outer procedure,
5076 -- and the inner procedure has no contracts, so there is no problem
5077 -- in just calling it to get the original effect.
5079 -- In the case of a function, we create an appropriate return statement
5080 -- for the subprogram body that calls the inner procedure.
5082 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
5083 function Copy_Import_Pragma return Node_Id;
5084 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
5086 ------------------------
5087 -- Copy_Import_Pragma --
5088 ------------------------
5090 function Copy_Import_Pragma return Node_Id is
5092 -- The subprogram should have an import pragma, otherwise it does
5093 -- need a wrapper.
5095 Prag : constant Node_Id := Import_Pragma (E);
5096 pragma Assert (Present (Prag));
5098 -- Save all semantic fields of the pragma
5100 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
5101 Save_From : constant Boolean := From_Aspect_Specification (Prag);
5102 Save_Prag : constant Node_Id := Next_Pragma (Prag);
5103 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
5105 Result : Node_Id;
5107 begin
5108 -- Reset all semantic fields. This avoids a potential infinite
5109 -- loop when the pragma comes from an aspect as the duplication
5110 -- will copy the aspect, then copy the corresponding pragma and
5111 -- so on.
5113 Set_Corresponding_Aspect (Prag, Empty);
5114 Set_From_Aspect_Specification (Prag, False);
5115 Set_Next_Pragma (Prag, Empty);
5116 Set_Next_Rep_Item (Prag, Empty);
5118 Result := Copy_Separate_Tree (Prag);
5120 -- Restore the original semantic fields
5122 Set_Corresponding_Aspect (Prag, Save_Asp);
5123 Set_From_Aspect_Specification (Prag, Save_From);
5124 Set_Next_Pragma (Prag, Save_Prag);
5125 Set_Next_Rep_Item (Prag, Save_Rep);
5127 return Result;
5128 end Copy_Import_Pragma;
5130 -- Local variables
5132 Loc : constant Source_Ptr := Sloc (E);
5133 CE : constant Name_Id := Chars (E);
5134 Bod : Node_Id;
5135 Forml : Entity_Id;
5136 Parms : List_Id;
5137 Prag : Node_Id;
5138 Spec : Node_Id;
5139 Stmt : Node_Id;
5141 -- Start of processing for Wrap_Imported_Subprogram
5143 begin
5144 -- Nothing to do if not imported
5146 if not Is_Imported (E) then
5147 return;
5149 -- Test enabling conditions for wrapping
5151 elsif Is_Subprogram (E)
5152 and then Present (Contract (E))
5153 and then Present (Pre_Post_Conditions (Contract (E)))
5154 and then not GNATprove_Mode
5155 then
5156 -- Here we do the wrap
5158 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5159 -- here are fully analyzed, but we definitely want fully syntactic
5160 -- unanalyzed trees in the body we construct, so that the analysis
5161 -- generates the right visibility, and that is exactly what the
5162 -- calls to Copy_Separate_Tree give us.
5164 Prag := Copy_Import_Pragma;
5166 -- Fix up spec so it is no longer imported and has convention Ada
5168 Set_Has_Completion (E, False);
5169 Set_Import_Pragma (E, Empty);
5170 Set_Interface_Name (E, Empty);
5171 Set_Is_Imported (E, False);
5172 Set_Convention (E, Convention_Ada);
5174 -- Grab the subprogram declaration and specification
5176 Spec := Declaration_Node (E);
5178 -- Build parameter list that we need
5180 Parms := New_List;
5181 Forml := First_Formal (E);
5182 while Present (Forml) loop
5183 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
5184 Next_Formal (Forml);
5185 end loop;
5187 -- Build the call
5189 -- An imported function whose result type is anonymous access
5190 -- creates a new anonymous access type when it is relocated into
5191 -- the declarations of the body generated below. As a result, the
5192 -- accessibility level of these two anonymous access types may not
5193 -- be compatible even though they are essentially the same type.
5194 -- Use an unchecked type conversion to reconcile this case. Note
5195 -- that the conversion is safe because in the named access type
5196 -- case, both the body and imported function utilize the same
5197 -- type.
5199 if Ekind (E) in E_Function | E_Generic_Function then
5200 Stmt :=
5201 Make_Simple_Return_Statement (Loc,
5202 Expression =>
5203 Unchecked_Convert_To (Etype (E),
5204 Make_Function_Call (Loc,
5205 Name => Make_Identifier (Loc, CE),
5206 Parameter_Associations => Parms)));
5208 else
5209 Stmt :=
5210 Make_Procedure_Call_Statement (Loc,
5211 Name => Make_Identifier (Loc, CE),
5212 Parameter_Associations => Parms);
5213 end if;
5215 -- Now build the body
5217 Bod :=
5218 Make_Subprogram_Body (Loc,
5219 Specification =>
5220 Copy_Separate_Tree (Spec),
5221 Declarations => New_List (
5222 Make_Subprogram_Declaration (Loc,
5223 Specification => Copy_Separate_Tree (Spec)),
5224 Prag),
5225 Handled_Statement_Sequence =>
5226 Make_Handled_Sequence_Of_Statements (Loc,
5227 Statements => New_List (Stmt),
5228 End_Label => Make_Identifier (Loc, CE)));
5230 -- Append the body to freeze result
5232 Add_To_Result (Bod);
5233 return;
5235 -- Case of imported subprogram that does not get wrapped
5237 else
5238 -- Set Is_Public. All imported entities need an external symbol
5239 -- created for them since they are always referenced from another
5240 -- object file. Note this used to be set when we set Is_Imported
5241 -- back in Sem_Prag, but now we delay it to this point, since we
5242 -- don't want to set this flag if we wrap an imported subprogram.
5244 Set_Is_Public (E);
5245 end if;
5246 end Wrap_Imported_Subprogram;
5248 -- Start of processing for Freeze_Entity
5250 begin
5251 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5252 -- now to ensure that any nodes generated during freezing are properly
5253 -- flagged as Ghost.
5255 Set_Ghost_Mode (E);
5257 -- We are going to test for various reasons why this entity need not be
5258 -- frozen here, but in the case of an Itype that's defined within a
5259 -- record, that test actually applies to the record.
5261 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5262 Test_E := Scope (E);
5264 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5265 and then Is_Record_Type (Underlying_Type (Scope (E)))
5266 then
5267 Test_E := Underlying_Type (Scope (E));
5268 end if;
5270 -- Do not freeze if already frozen since we only need one freeze node
5272 if Is_Frozen (E) then
5273 Result := No_List;
5274 goto Leave;
5276 -- Do not freeze if we are preanalyzing without freezing
5278 elsif Inside_Preanalysis_Without_Freezing > 0 then
5279 Result := No_List;
5280 goto Leave;
5282 elsif Ekind (E) = E_Generic_Package then
5283 Result := Freeze_Generic_Entities (E);
5284 goto Leave;
5286 -- It is improper to freeze an external entity within a generic because
5287 -- its freeze node will appear in a non-valid context. The entity will
5288 -- be frozen in the proper scope after the current generic is analyzed.
5289 -- However, aspects must be analyzed because they may be queried later
5290 -- within the generic itself, and the corresponding pragma or attribute
5291 -- definition has not been analyzed yet. After this, indicate that the
5292 -- entity has no further delayed aspects, to prevent a later aspect
5293 -- analysis out of the scope of the generic.
5295 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
5296 if Has_Delayed_Aspects (E) then
5297 Analyze_Aspects_At_Freeze_Point (E);
5298 Set_Has_Delayed_Aspects (E, False);
5299 end if;
5301 Result := No_List;
5302 goto Leave;
5304 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5305 -- the instance, the same applies to the subtype renaming the actual.
5307 elsif Is_Private_Type (E)
5308 and then Is_Generic_Actual_Type (E)
5309 and then No (Full_View (Base_Type (E)))
5310 and then Ada_Version >= Ada_2012
5311 then
5312 Result := No_List;
5313 goto Leave;
5315 -- Formal subprograms are never frozen
5317 elsif Is_Formal_Subprogram (E) then
5318 Result := No_List;
5319 goto Leave;
5321 -- Generic types are never frozen as they lack delayed semantic checks
5323 elsif Is_Generic_Type (E) then
5324 Result := No_List;
5325 goto Leave;
5327 -- Do not freeze a global entity within an inner scope created during
5328 -- expansion. A call to subprogram E within some internal procedure
5329 -- (a stream attribute for example) might require freezing E, but the
5330 -- freeze node must appear in the same declarative part as E itself.
5331 -- The two-pass elaboration mechanism in gigi guarantees that E will
5332 -- be frozen before the inner call is elaborated. We exclude constants
5333 -- from this test, because deferred constants may be frozen early, and
5334 -- must be diagnosed (e.g. in the case of a deferred constant being used
5335 -- in a default expression). If the enclosing subprogram comes from
5336 -- source, or is a generic instance, then the freeze point is the one
5337 -- mandated by the language, and we freeze the entity. A subprogram that
5338 -- is a child unit body that acts as a spec does not have a spec that
5339 -- comes from source, but can only come from source.
5341 elsif In_Open_Scopes (Scope (Test_E))
5342 and then Scope (Test_E) /= Current_Scope
5343 and then Ekind (Test_E) /= E_Constant
5344 then
5345 declare
5346 S : Entity_Id;
5348 begin
5349 S := Current_Scope;
5350 while Present (S) loop
5351 if Is_Overloadable (S) then
5352 if Comes_From_Source (S)
5353 or else Is_Generic_Instance (S)
5354 or else Is_Child_Unit (S)
5355 then
5356 exit;
5357 else
5358 Result := No_List;
5359 goto Leave;
5360 end if;
5361 end if;
5363 S := Scope (S);
5364 end loop;
5365 end;
5367 -- Similarly, an inlined instance body may make reference to global
5368 -- entities, but these references cannot be the proper freezing point
5369 -- for them, and in the absence of inlining freezing will take place in
5370 -- their own scope. Normally instance bodies are analyzed after the
5371 -- enclosing compilation, and everything has been frozen at the proper
5372 -- place, but with front-end inlining an instance body is compiled
5373 -- before the end of the enclosing scope, and as a result out-of-order
5374 -- freezing must be prevented.
5376 elsif Front_End_Inlining
5377 and then In_Instance_Body
5378 and then Present (Scope (Test_E))
5379 then
5380 declare
5381 S : Entity_Id;
5383 begin
5384 S := Scope (Test_E);
5385 while Present (S) loop
5386 if Is_Generic_Instance (S) then
5387 exit;
5388 else
5389 S := Scope (S);
5390 end if;
5391 end loop;
5393 if No (S) then
5394 Result := No_List;
5395 goto Leave;
5396 end if;
5397 end;
5398 end if;
5400 -- Add checks to detect proper initialization of scalars that may appear
5401 -- as subprogram parameters.
5403 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5404 Apply_Parameter_Validity_Checks (E);
5405 end if;
5407 -- Deal with delayed aspect specifications. The analysis of the aspect
5408 -- is required to be delayed to the freeze point, thus we analyze the
5409 -- pragma or attribute definition clause in the tree at this point. We
5410 -- also analyze the aspect specification node at the freeze point when
5411 -- the aspect doesn't correspond to pragma/attribute definition clause.
5412 -- In addition, a derived type may have inherited aspects that were
5413 -- delayed in the parent, so these must also be captured now.
5415 -- For a record type, we deal with the delayed aspect specifications on
5416 -- components first, which is consistent with the non-delayed case and
5417 -- makes it possible to have a single processing to detect conflicts.
5419 if Is_Record_Type (E) then
5420 declare
5421 Comp : Entity_Id;
5423 Rec_Pushed : Boolean := False;
5424 -- Set True if the record type E has been pushed on the scope
5425 -- stack. Needed for the analysis of delayed aspects specified
5426 -- to the components of Rec.
5428 begin
5429 Comp := First_Entity (E);
5430 while Present (Comp) loop
5431 if Ekind (Comp) = E_Component
5432 and then Has_Delayed_Aspects (Comp)
5433 then
5434 if not Rec_Pushed then
5435 Push_Scope (E);
5436 Rec_Pushed := True;
5438 -- The visibility to the discriminants must be restored
5439 -- in order to properly analyze the aspects.
5441 if Has_Discriminants (E) then
5442 Install_Discriminants (E);
5443 end if;
5444 end if;
5446 Analyze_Aspects_At_Freeze_Point (Comp);
5447 end if;
5449 Next_Entity (Comp);
5450 end loop;
5452 -- Pop the scope if Rec scope has been pushed on the scope stack
5453 -- during the delayed aspect analysis process.
5455 if Rec_Pushed then
5456 if Has_Discriminants (E) then
5457 Uninstall_Discriminants (E);
5458 end if;
5460 Pop_Scope;
5461 end if;
5462 end;
5463 end if;
5465 if Has_Delayed_Aspects (E)
5466 or else May_Inherit_Delayed_Rep_Aspects (E)
5467 then
5468 Analyze_Aspects_At_Freeze_Point (E);
5469 end if;
5471 -- Here to freeze the entity
5473 Set_Is_Frozen (E);
5475 -- Case of entity being frozen is other than a type
5477 if not Is_Type (E) then
5479 -- If entity is exported or imported and does not have an external
5480 -- name, now is the time to provide the appropriate default name.
5481 -- Skip this if the entity is stubbed, since we don't need a name
5482 -- for any stubbed routine. For the case on intrinsics, if no
5483 -- external name is specified, then calls will be handled in
5484 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5485 -- external name is provided, then Expand_Intrinsic_Call leaves
5486 -- calls in place for expansion by GIGI.
5488 if (Is_Imported (E) or else Is_Exported (E))
5489 and then No (Interface_Name (E))
5490 and then Convention (E) /= Convention_Stubbed
5491 and then Convention (E) /= Convention_Intrinsic
5492 then
5493 Set_Encoded_Interface_Name
5494 (E, Get_Default_External_Name (E));
5496 -- If entity is an atomic object appearing in a declaration and
5497 -- the expression is an aggregate, assign it to a temporary to
5498 -- ensure that the actual assignment is done atomically rather
5499 -- than component-wise (the assignment to the temp may be done
5500 -- component-wise, but that is harmless).
5502 elsif Is_Full_Access (E)
5503 and then Nkind (Parent (E)) = N_Object_Declaration
5504 and then Present (Expression (Parent (E)))
5505 and then Nkind (Expression (Parent (E))) = N_Aggregate
5506 and then Is_Full_Access_Aggregate (Expression (Parent (E)))
5507 then
5508 null;
5509 end if;
5511 -- Subprogram case
5513 if Is_Subprogram (E) then
5515 -- Check for needing to wrap imported subprogram
5517 Wrap_Imported_Subprogram (E);
5519 -- Freeze all parameter types and the return type (RM 13.14(14)).
5520 -- However skip this for internal subprograms. This is also where
5521 -- any extra formal parameters are created since we now know
5522 -- whether the subprogram will use a foreign convention.
5524 -- In Ada 2012, freezing a subprogram does not always freeze the
5525 -- corresponding profile (see AI05-019). An attribute reference
5526 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5527 -- indicates whether the profile should be frozen now.
5528 -- Other constructs that should not freeze ???
5530 -- This processing doesn't apply to internal entities (see below)
5532 if not Is_Internal (E) and then Do_Freeze_Profile then
5533 if not Freeze_Profile (E) then
5534 goto Leave;
5535 end if;
5536 end if;
5538 -- Must freeze its parent first if it is a derived subprogram
5540 if Present (Alias (E)) then
5541 Freeze_And_Append (Alias (E), N, Result);
5542 end if;
5544 -- We don't freeze internal subprograms, because we don't normally
5545 -- want addition of extra formals or mechanism setting to happen
5546 -- for those. However we do pass through predefined dispatching
5547 -- cases, since extra formals may be needed in some cases, such as
5548 -- for the stream 'Input function (build-in-place formals).
5550 if not Is_Internal (E)
5551 or else Is_Predefined_Dispatching_Operation (E)
5552 then
5553 Freeze_Subprogram (E);
5554 end if;
5556 -- If warning on suspicious contracts then check for the case of
5557 -- a postcondition other than False for a No_Return subprogram.
5559 if No_Return (E)
5560 and then Warn_On_Suspicious_Contract
5561 and then Present (Contract (E))
5562 then
5563 declare
5564 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5565 Exp : Node_Id;
5567 begin
5568 while Present (Prag) loop
5569 if Pragma_Name_Unmapped (Prag) in Name_Post
5570 | Name_Postcondition
5571 | Name_Refined_Post
5572 then
5573 Exp :=
5574 Expression
5575 (First (Pragma_Argument_Associations (Prag)));
5577 if Nkind (Exp) /= N_Identifier
5578 or else Chars (Exp) /= Name_False
5579 then
5580 Error_Msg_NE
5581 ("useless postcondition, & is marked "
5582 & "No_Return?T?", Exp, E);
5583 end if;
5584 end if;
5586 Prag := Next_Pragma (Prag);
5587 end loop;
5588 end;
5589 end if;
5591 -- Here for other than a subprogram or type
5593 else
5594 -- If entity has a type, and it is not a generic unit, then freeze
5595 -- it first (RM 13.14(10)).
5597 if Present (Etype (E))
5598 and then Ekind (E) /= E_Generic_Function
5599 then
5600 Freeze_And_Append (Etype (E), N, Result);
5602 -- For an object of an anonymous array type, aspects on the
5603 -- object declaration apply to the type itself. This is the
5604 -- case for Atomic_Components, Volatile_Components, and
5605 -- Independent_Components. In these cases analysis of the
5606 -- generated pragma will mark the anonymous types accordingly,
5607 -- and the object itself does not require a freeze node.
5609 if Ekind (E) = E_Variable
5610 and then Is_Itype (Etype (E))
5611 and then Is_Array_Type (Etype (E))
5612 and then Has_Delayed_Aspects (E)
5613 then
5614 Set_Has_Delayed_Aspects (E, False);
5615 Set_Has_Delayed_Freeze (E, False);
5616 Set_Freeze_Node (E, Empty);
5617 end if;
5618 end if;
5620 -- Special processing for objects created by object declaration
5622 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5623 Freeze_Object_Declaration (E);
5624 end if;
5626 -- Check that a constant which has a pragma Volatile[_Components]
5627 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5629 -- Note: Atomic[_Components] also sets Volatile[_Components]
5631 if Ekind (E) = E_Constant
5632 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5633 and then not Is_Imported (E)
5634 and then not Has_Boolean_Aspect_Import (E)
5635 then
5636 -- Make sure we actually have a pragma, and have not merely
5637 -- inherited the indication from elsewhere (e.g. an address
5638 -- clause, which is not good enough in RM terms).
5640 if Has_Rep_Pragma (E, Name_Atomic)
5641 or else
5642 Has_Rep_Pragma (E, Name_Atomic_Components)
5643 then
5644 Error_Msg_N
5645 ("standalone atomic constant must be " &
5646 "imported (RM C.6(13))", E);
5648 elsif Has_Rep_Pragma (E, Name_Volatile)
5649 or else
5650 Has_Rep_Pragma (E, Name_Volatile_Components)
5651 then
5652 Error_Msg_N
5653 ("standalone volatile constant must be " &
5654 "imported (RM C.6(13))", E);
5655 end if;
5656 end if;
5658 -- Static objects require special handling
5660 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5661 and then Is_Statically_Allocated (E)
5662 then
5663 Freeze_Static_Object (E);
5664 end if;
5666 -- Remaining step is to layout objects
5668 if Ekind (E) in E_Variable | E_Constant | E_Loop_Parameter
5669 or else Is_Formal (E)
5670 then
5671 Layout_Object (E);
5672 end if;
5674 -- For an object that does not have delayed freezing, and whose
5675 -- initialization actions have been captured in a compound
5676 -- statement, move them back now directly within the enclosing
5677 -- statement sequence.
5679 if Ekind (E) in E_Constant | E_Variable
5680 and then not Has_Delayed_Freeze (E)
5681 then
5682 Explode_Initialization_Compound_Statement (E);
5683 end if;
5685 -- Do not generate a freeze node for a generic unit
5687 if Is_Generic_Unit (E) then
5688 Result := No_List;
5689 goto Leave;
5690 end if;
5691 end if;
5693 -- Case of a type or subtype being frozen
5695 else
5696 -- Verify several SPARK legality rules related to Ghost types now
5697 -- that the type is frozen.
5699 Check_Ghost_Type (E);
5701 -- We used to check here that a full type must have preelaborable
5702 -- initialization if it completes a private type specified with
5703 -- pragma Preelaborable_Initialization, but that missed cases where
5704 -- the types occur within a generic package, since the freezing
5705 -- that occurs within a containing scope generally skips traversal
5706 -- of a generic unit's declarations (those will be frozen within
5707 -- instances). This check was moved to Analyze_Package_Specification.
5709 -- The type may be defined in a generic unit. This can occur when
5710 -- freezing a generic function that returns the type (which is
5711 -- defined in a parent unit). It is clearly meaningless to freeze
5712 -- this type. However, if it is a subtype, its size may be determi-
5713 -- nable and used in subsequent checks, so might as well try to
5714 -- compute it.
5716 -- In Ada 2012, Freeze_Entities is also used in the front end to
5717 -- trigger the analysis of aspect expressions, so in this case we
5718 -- want to continue the freezing process.
5720 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5721 -- In_Generic_Scope (E)???
5723 if Present (Scope (E))
5724 and then Is_Generic_Unit (Scope (E))
5725 and then
5726 (not Has_Predicates (E)
5727 and then not Has_Delayed_Freeze (E))
5728 then
5729 Check_Compile_Time_Size (E);
5730 Result := No_List;
5731 goto Leave;
5732 end if;
5734 -- Check for error of Type_Invariant'Class applied to an untagged
5735 -- type (check delayed to freeze time when full type is available).
5737 declare
5738 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5739 begin
5740 if Present (Prag)
5741 and then Class_Present (Prag)
5742 and then not Is_Tagged_Type (E)
5743 then
5744 Error_Msg_NE
5745 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5746 Error_Msg_N
5747 ("\can only be specified for a tagged type", Prag);
5748 end if;
5749 end;
5751 -- Deal with special cases of freezing for subtype
5753 if E /= Base_Type (E) then
5755 -- Before we do anything else, a specific test for the case of a
5756 -- size given for an array where the array would need to be packed
5757 -- in order for the size to be honored, but is not. This is the
5758 -- case where implicit packing may apply. The reason we do this so
5759 -- early is that, if we have implicit packing, the layout of the
5760 -- base type is affected, so we must do this before we freeze the
5761 -- base type.
5763 -- We could do this processing only if implicit packing is enabled
5764 -- since in all other cases, the error would be caught by the back
5765 -- end. However, we choose to do the check even if we do not have
5766 -- implicit packing enabled, since this allows us to give a more
5767 -- useful error message (advising use of pragma Implicit_Packing
5768 -- or pragma Pack).
5770 if Is_Array_Type (E) then
5771 declare
5772 Ctyp : constant Entity_Id := Component_Type (E);
5773 Rsiz : constant Uint := RM_Size (Ctyp);
5774 SZ : constant Node_Id := Size_Clause (E);
5775 Btyp : constant Entity_Id := Base_Type (E);
5777 Lo : Node_Id;
5778 Hi : Node_Id;
5779 Indx : Node_Id;
5781 Dim : Uint;
5782 Num_Elmts : Uint := Uint_1;
5783 -- Number of elements in array
5785 begin
5786 -- Check enabling conditions. These are straightforward
5787 -- except for the test for a limited composite type. This
5788 -- eliminates the rare case of a array of limited components
5789 -- where there are issues of whether or not we can go ahead
5790 -- and pack the array (since we can't freely pack and unpack
5791 -- arrays if they are limited).
5793 -- Note that we check the root type explicitly because the
5794 -- whole point is we are doing this test before we have had
5795 -- a chance to freeze the base type (and it is that freeze
5796 -- action that causes stuff to be inherited).
5798 -- The conditions on the size are identical to those used in
5799 -- Freeze_Array_Type to set the Is_Packed flag.
5801 if Has_Size_Clause (E)
5802 and then Known_Static_RM_Size (E)
5803 and then not Is_Packed (E)
5804 and then not Has_Pragma_Pack (E)
5805 and then not Has_Component_Size_Clause (E)
5806 and then Known_Static_RM_Size (Ctyp)
5807 and then Rsiz <= System_Max_Integer_Size
5808 and then not (Addressable (Rsiz)
5809 and then Known_Static_Esize (Ctyp)
5810 and then Esize (Ctyp) = Rsiz)
5811 and then not (Rsiz mod System_Storage_Unit = 0
5812 and then Is_Composite_Type (Ctyp))
5813 and then not Is_Limited_Composite (E)
5814 and then not Is_Packed (Root_Type (E))
5815 and then not Has_Component_Size_Clause (Root_Type (E))
5816 and then not (CodePeer_Mode or GNATprove_Mode)
5817 then
5818 -- Compute number of elements in array
5820 Indx := First_Index (E);
5821 while Present (Indx) loop
5822 Get_Index_Bounds (Indx, Lo, Hi);
5824 if not (Compile_Time_Known_Value (Lo)
5825 and then
5826 Compile_Time_Known_Value (Hi))
5827 then
5828 goto No_Implicit_Packing;
5829 end if;
5831 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5833 if Dim >= 0 then
5834 Num_Elmts := Num_Elmts * Dim;
5835 else
5836 Num_Elmts := Uint_0;
5837 end if;
5839 Next_Index (Indx);
5840 end loop;
5842 -- What we are looking for here is the situation where
5843 -- the RM_Size given would be exactly right if there was
5844 -- a pragma Pack, resulting in the component size being
5845 -- the RM_Size of the component type.
5847 if RM_Size (E) = Num_Elmts * Rsiz then
5849 -- For implicit packing mode, just set the component
5850 -- size and Freeze_Array_Type will do the rest.
5852 if Implicit_Packing then
5853 Set_Component_Size (Btyp, Rsiz);
5855 -- Otherwise give an error message
5857 else
5858 Error_Msg_NE
5859 ("size given for& too small", SZ, E);
5860 Error_Msg_N -- CODEFIX
5861 ("\use explicit pragma Pack or use pragma "
5862 & "Implicit_Packing", SZ);
5863 end if;
5864 end if;
5865 end if;
5866 end;
5867 end if;
5869 <<No_Implicit_Packing>>
5871 -- If ancestor subtype present, freeze that first. Note that this
5872 -- will also get the base type frozen. Need RM reference ???
5874 Atype := Ancestor_Subtype (E);
5876 if Present (Atype) then
5877 Freeze_And_Append (Atype, N, Result);
5879 -- No ancestor subtype present
5881 else
5882 -- See if we have a nearest ancestor that has a predicate.
5883 -- That catches the case of derived type with a predicate.
5884 -- Need RM reference here ???
5886 Atype := Nearest_Ancestor (E);
5888 if Present (Atype) and then Has_Predicates (Atype) then
5889 Freeze_And_Append (Atype, N, Result);
5890 end if;
5892 -- Freeze base type before freezing the entity (RM 13.14(15))
5894 if E /= Base_Type (E) then
5895 Freeze_And_Append (Base_Type (E), N, Result);
5896 end if;
5897 end if;
5899 -- A subtype inherits all the type-related representation aspects
5900 -- from its parents (RM 13.1(8)).
5902 Inherit_Aspects_At_Freeze_Point (E);
5904 -- For a derived type, freeze its parent type first (RM 13.14(15))
5906 elsif Is_Derived_Type (E) then
5907 Freeze_And_Append (Etype (E), N, Result);
5908 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5910 -- A derived type inherits each type-related representation aspect
5911 -- of its parent type that was directly specified before the
5912 -- declaration of the derived type (RM 13.1(15)).
5914 Inherit_Aspects_At_Freeze_Point (E);
5915 end if;
5917 -- Case of array type
5919 if Is_Array_Type (E) then
5920 Freeze_Array_Type (E);
5921 end if;
5923 -- Check for incompatible size and alignment for array/record type
5925 if Warn_On_Size_Alignment
5926 and then (Is_Array_Type (E) or else Is_Record_Type (E))
5927 and then Has_Size_Clause (E)
5928 and then Has_Alignment_Clause (E)
5930 -- If explicit Object_Size clause given assume that the programmer
5931 -- knows what he is doing, and expects the compiler behavior.
5933 and then not Has_Object_Size_Clause (E)
5935 -- It does not really make sense to warn for the minimum alignment
5936 -- since the programmer could not get rid of the warning.
5938 and then Alignment (E) > 1
5940 -- Check for size not a multiple of alignment
5942 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5943 then
5944 declare
5945 SC : constant Node_Id := Size_Clause (E);
5946 AC : constant Node_Id := Alignment_Clause (E);
5947 Loc : Node_Id;
5948 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5950 begin
5951 if Present (SC) and then Present (AC) then
5953 -- Give a warning
5955 if Sloc (SC) > Sloc (AC) then
5956 Loc := SC;
5957 Error_Msg_NE
5958 ("?Z?size is not a multiple of alignment for &",
5959 Loc, E);
5960 Error_Msg_Sloc := Sloc (AC);
5961 Error_Msg_Uint_1 := Alignment (E);
5962 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5964 else
5965 Loc := AC;
5966 Error_Msg_NE
5967 ("?Z?size is not a multiple of alignment for &",
5968 Loc, E);
5969 Error_Msg_Sloc := Sloc (SC);
5970 Error_Msg_Uint_1 := RM_Size (E);
5971 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5972 end if;
5974 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5975 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5976 end if;
5977 end;
5978 end if;
5980 -- For a class-wide type, the corresponding specific type is
5981 -- frozen as well (RM 13.14(15))
5983 if Is_Class_Wide_Type (E) then
5984 Freeze_And_Append (Root_Type (E), N, Result);
5986 -- If the base type of the class-wide type is still incomplete,
5987 -- the class-wide remains unfrozen as well. This is legal when
5988 -- E is the formal of a primitive operation of some other type
5989 -- which is being frozen.
5991 if not Is_Frozen (Root_Type (E)) then
5992 Set_Is_Frozen (E, False);
5993 goto Leave;
5994 end if;
5996 -- The equivalent type associated with a class-wide subtype needs
5997 -- to be frozen to ensure that its layout is done.
5999 if Ekind (E) = E_Class_Wide_Subtype
6000 and then Present (Equivalent_Type (E))
6001 then
6002 Freeze_And_Append (Equivalent_Type (E), N, Result);
6003 end if;
6005 -- Generate an itype reference for a library-level class-wide type
6006 -- at the freeze point. Otherwise the first explicit reference to
6007 -- the type may appear in an inner scope which will be rejected by
6008 -- the back-end.
6010 if Is_Itype (E)
6011 and then Is_Compilation_Unit (Scope (E))
6012 then
6013 declare
6014 Ref : constant Node_Id := Make_Itype_Reference (Loc);
6016 begin
6017 Set_Itype (Ref, E);
6019 -- From a gigi point of view, a class-wide subtype derives
6020 -- from its record equivalent type. As a result, the itype
6021 -- reference must appear after the freeze node of the
6022 -- equivalent type or gigi will reject the reference.
6024 if Ekind (E) = E_Class_Wide_Subtype
6025 and then Present (Equivalent_Type (E))
6026 then
6027 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
6028 else
6029 Add_To_Result (Ref);
6030 end if;
6031 end;
6032 end if;
6034 -- For a record type or record subtype, freeze all component types
6035 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
6036 -- using Is_Record_Type, because we don't want to attempt the freeze
6037 -- for the case of a private type with record extension (we will do
6038 -- that later when the full type is frozen).
6040 elsif Ekind (E) in E_Record_Type | E_Record_Subtype then
6041 if not In_Generic_Scope (E) then
6042 Freeze_Record_Type (E);
6043 end if;
6045 -- Report a warning if a discriminated record base type has a
6046 -- convention with language C or C++ applied to it. This check is
6047 -- done even within generic scopes (but not in instantiations),
6048 -- which is why we don't do it as part of Freeze_Record_Type.
6050 Check_Suspicious_Convention (E);
6052 -- For a concurrent type, freeze corresponding record type. This does
6053 -- not correspond to any specific rule in the RM, but the record type
6054 -- is essentially part of the concurrent type. Also freeze all local
6055 -- entities. This includes record types created for entry parameter
6056 -- blocks and whatever local entities may appear in the private part.
6058 elsif Is_Concurrent_Type (E) then
6059 if Present (Corresponding_Record_Type (E)) then
6060 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
6061 end if;
6063 Comp := First_Entity (E);
6064 while Present (Comp) loop
6065 if Is_Type (Comp) then
6066 Freeze_And_Append (Comp, N, Result);
6068 elsif (Ekind (Comp)) /= E_Function then
6070 -- The guard on the presence of the Etype seems to be needed
6071 -- for some CodePeer (-gnatcC) cases, but not clear why???
6073 if Present (Etype (Comp)) then
6074 if Is_Itype (Etype (Comp))
6075 and then Underlying_Type (Scope (Etype (Comp))) = E
6076 then
6077 Undelay_Type (Etype (Comp));
6078 end if;
6080 Freeze_And_Append (Etype (Comp), N, Result);
6081 end if;
6082 end if;
6084 Next_Entity (Comp);
6085 end loop;
6087 -- Private types are required to point to the same freeze node as
6088 -- their corresponding full views. The freeze node itself has to
6089 -- point to the partial view of the entity (because from the partial
6090 -- view, we can retrieve the full view, but not the reverse).
6091 -- However, in order to freeze correctly, we need to freeze the full
6092 -- view. If we are freezing at the end of a scope (or within the
6093 -- scope) of the private type, the partial and full views will have
6094 -- been swapped, the full view appears first in the entity chain and
6095 -- the swapping mechanism ensures that the pointers are properly set
6096 -- (on scope exit).
6098 -- If we encounter the partial view before the full view (e.g. when
6099 -- freezing from another scope), we freeze the full view, and then
6100 -- set the pointers appropriately since we cannot rely on swapping to
6101 -- fix things up (subtypes in an outer scope might not get swapped).
6103 -- If the full view is itself private, the above requirements apply
6104 -- to the underlying full view instead of the full view. But there is
6105 -- no swapping mechanism for the underlying full view so we need to
6106 -- set the pointers appropriately in both cases.
6108 elsif Is_Incomplete_Or_Private_Type (E)
6109 and then not Is_Generic_Type (E)
6110 then
6111 -- The construction of the dispatch table associated with library
6112 -- level tagged types forces freezing of all the primitives of the
6113 -- type, which may cause premature freezing of the partial view.
6114 -- For example:
6116 -- package Pkg is
6117 -- type T is tagged private;
6118 -- type DT is new T with private;
6119 -- procedure Prim (X : in out T; Y : in out DT'Class);
6120 -- private
6121 -- type T is tagged null record;
6122 -- Obj : T;
6123 -- type DT is new T with null record;
6124 -- end;
6126 -- In this case the type will be frozen later by the usual
6127 -- mechanism: an object declaration, an instantiation, or the
6128 -- end of a declarative part.
6130 if Is_Library_Level_Tagged_Type (E)
6131 and then not Present (Full_View (E))
6132 then
6133 Set_Is_Frozen (E, False);
6134 goto Leave;
6136 -- Case of full view present
6138 elsif Present (Full_View (E)) then
6140 -- If full view has already been frozen, then no further
6141 -- processing is required
6143 if Is_Frozen (Full_View (E)) then
6144 Set_Has_Delayed_Freeze (E, False);
6145 Set_Freeze_Node (E, Empty);
6147 -- Otherwise freeze full view and patch the pointers so that
6148 -- the freeze node will elaborate both views in the back end.
6149 -- However, if full view is itself private, freeze underlying
6150 -- full view instead and patch the pointers so that the freeze
6151 -- node will elaborate the three views in the back end.
6153 else
6154 declare
6155 Full : Entity_Id := Full_View (E);
6157 begin
6158 if Is_Private_Type (Full)
6159 and then Present (Underlying_Full_View (Full))
6160 then
6161 Full := Underlying_Full_View (Full);
6162 end if;
6164 Freeze_And_Append (Full, N, Result);
6166 if Full /= Full_View (E)
6167 and then Has_Delayed_Freeze (Full_View (E))
6168 then
6169 F_Node := Freeze_Node (Full);
6171 if Present (F_Node) then
6172 Inherit_Freeze_Node
6173 (Fnod => F_Node, Typ => Full_View (E));
6174 else
6175 Set_Has_Delayed_Freeze (Full_View (E), False);
6176 Set_Freeze_Node (Full_View (E), Empty);
6177 end if;
6178 end if;
6180 if Has_Delayed_Freeze (E) then
6181 F_Node := Freeze_Node (Full_View (E));
6183 if Present (F_Node) then
6184 Inherit_Freeze_Node (Fnod => F_Node, Typ => E);
6185 else
6186 -- {Incomplete,Private}_Subtypes with Full_Views
6187 -- constrained by discriminants.
6189 Set_Has_Delayed_Freeze (E, False);
6190 Set_Freeze_Node (E, Empty);
6191 end if;
6192 end if;
6193 end;
6194 end if;
6196 Check_Debug_Info_Needed (E);
6198 -- AI-117 requires that the convention of a partial view be the
6199 -- same as the convention of the full view. Note that this is a
6200 -- recognized breach of privacy, but it's essential for logical
6201 -- consistency of representation, and the lack of a rule in
6202 -- RM95 was an oversight.
6204 Set_Convention (E, Convention (Full_View (E)));
6206 Set_Size_Known_At_Compile_Time (E,
6207 Size_Known_At_Compile_Time (Full_View (E)));
6209 -- Size information is copied from the full view to the
6210 -- incomplete or private view for consistency.
6212 -- We skip this is the full view is not a type. This is very
6213 -- strange of course, and can only happen as a result of
6214 -- certain illegalities, such as a premature attempt to derive
6215 -- from an incomplete type.
6217 if Is_Type (Full_View (E)) then
6218 Set_Size_Info (E, Full_View (E));
6219 Set_RM_Size (E, RM_Size (Full_View (E)));
6220 end if;
6222 goto Leave;
6224 -- Case of underlying full view present
6226 elsif Is_Private_Type (E)
6227 and then Present (Underlying_Full_View (E))
6228 then
6229 if not Is_Frozen (Underlying_Full_View (E)) then
6230 Freeze_And_Append (Underlying_Full_View (E), N, Result);
6231 end if;
6233 -- Patch the pointers so that the freeze node will elaborate
6234 -- both views in the back end.
6236 if Has_Delayed_Freeze (E) then
6237 F_Node := Freeze_Node (Underlying_Full_View (E));
6239 if Present (F_Node) then
6240 Inherit_Freeze_Node
6241 (Fnod => F_Node,
6242 Typ => E);
6243 else
6244 Set_Has_Delayed_Freeze (E, False);
6245 Set_Freeze_Node (E, Empty);
6246 end if;
6247 end if;
6249 Check_Debug_Info_Needed (E);
6251 goto Leave;
6253 -- Case of no full view present. If entity is subtype or derived,
6254 -- it is safe to freeze, correctness depends on the frozen status
6255 -- of parent. Otherwise it is either premature usage, or a Taft
6256 -- amendment type, so diagnosis is at the point of use and the
6257 -- type might be frozen later.
6259 elsif E /= Base_Type (E) then
6260 declare
6261 Btyp : constant Entity_Id := Base_Type (E);
6263 begin
6264 -- However, if the base type is itself private and has no
6265 -- (underlying) full view either, wait until the full type
6266 -- declaration is seen and all the full views are created.
6268 if Is_Private_Type (Btyp)
6269 and then No (Full_View (Btyp))
6270 and then No (Underlying_Full_View (Btyp))
6271 and then Has_Delayed_Freeze (Btyp)
6272 and then No (Freeze_Node (Btyp))
6273 then
6274 Set_Is_Frozen (E, False);
6275 Result := No_List;
6276 goto Leave;
6277 end if;
6278 end;
6280 elsif Is_Derived_Type (E) then
6281 null;
6283 else
6284 Set_Is_Frozen (E, False);
6285 Result := No_List;
6286 goto Leave;
6287 end if;
6289 -- For access subprogram, freeze types of all formals, the return
6290 -- type was already frozen, since it is the Etype of the function.
6291 -- Formal types can be tagged Taft amendment types, but otherwise
6292 -- they cannot be incomplete.
6294 elsif Ekind (E) = E_Subprogram_Type then
6295 Formal := First_Formal (E);
6296 while Present (Formal) loop
6297 if Ekind (Etype (Formal)) = E_Incomplete_Type
6298 and then No (Full_View (Etype (Formal)))
6299 then
6300 if Is_Tagged_Type (Etype (Formal)) then
6301 null;
6303 -- AI05-151: Incomplete types are allowed in access to
6304 -- subprogram specifications.
6306 elsif Ada_Version < Ada_2012 then
6307 Error_Msg_NE
6308 ("invalid use of incomplete type&", E, Etype (Formal));
6309 end if;
6310 end if;
6312 Freeze_And_Append (Etype (Formal), N, Result);
6313 Next_Formal (Formal);
6314 end loop;
6316 Freeze_Subprogram (E);
6318 -- For access to a protected subprogram, freeze the equivalent type
6319 -- (however this is not set if we are not generating code or if this
6320 -- is an anonymous type used just for resolution).
6322 elsif Is_Access_Protected_Subprogram_Type (E) then
6323 if Present (Equivalent_Type (E)) then
6324 Freeze_And_Append (Equivalent_Type (E), N, Result);
6325 end if;
6326 end if;
6328 -- Generic types are never seen by the back-end, and are also not
6329 -- processed by the expander (since the expander is turned off for
6330 -- generic processing), so we never need freeze nodes for them.
6332 if Is_Generic_Type (E) then
6333 goto Leave;
6334 end if;
6336 -- Some special processing for non-generic types to complete
6337 -- representation details not known till the freeze point.
6339 if Is_Fixed_Point_Type (E) then
6340 Freeze_Fixed_Point_Type (E);
6342 elsif Is_Enumeration_Type (E) then
6343 Freeze_Enumeration_Type (E);
6345 elsif Is_Integer_Type (E) then
6346 Adjust_Esize_For_Alignment (E);
6348 if Is_Modular_Integer_Type (E)
6349 and then Warn_On_Suspicious_Modulus_Value
6350 then
6351 Check_Suspicious_Modulus (E);
6352 end if;
6354 -- The pool applies to named and anonymous access types, but not
6355 -- to subprogram and to internal types generated for 'Access
6356 -- references.
6358 elsif Is_Access_Object_Type (E)
6359 and then Ekind (E) /= E_Access_Attribute_Type
6360 then
6361 -- If a pragma Default_Storage_Pool applies, and this type has no
6362 -- Storage_Pool or Storage_Size clause (which must have occurred
6363 -- before the freezing point), then use the default. This applies
6364 -- only to base types.
6366 -- None of this applies to access to subprograms, for which there
6367 -- are clearly no pools.
6369 if Present (Default_Pool)
6370 and then Is_Base_Type (E)
6371 and then not Has_Storage_Size_Clause (E)
6372 and then No (Associated_Storage_Pool (E))
6373 then
6374 -- Case of pragma Default_Storage_Pool (null)
6376 if Nkind (Default_Pool) = N_Null then
6377 Set_No_Pool_Assigned (E);
6379 -- Case of pragma Default_Storage_Pool (Standard)
6381 elsif Entity (Default_Pool) = Standard_Standard then
6382 Set_Associated_Storage_Pool (E, RTE (RE_Global_Pool_Object));
6384 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6386 else
6387 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6388 end if;
6389 end if;
6391 -- Check restriction for standard storage pool
6393 if No (Associated_Storage_Pool (E)) then
6394 Check_Restriction (No_Standard_Storage_Pools, E);
6395 end if;
6397 -- Deal with error message for pure access type. This is not an
6398 -- error in Ada 2005 if there is no pool (see AI-366).
6400 if Is_Pure_Unit_Access_Type (E)
6401 and then (Ada_Version < Ada_2005
6402 or else not No_Pool_Assigned (E))
6403 and then not Is_Generic_Unit (Scope (E))
6404 then
6405 Error_Msg_N ("named access type not allowed in pure unit", E);
6407 if Ada_Version >= Ada_2005 then
6408 Error_Msg_N
6409 ("\would be legal if Storage_Size of 0 given??", E);
6411 elsif No_Pool_Assigned (E) then
6412 Error_Msg_N
6413 ("\would be legal in Ada 2005??", E);
6415 else
6416 Error_Msg_N
6417 ("\would be legal in Ada 2005 if "
6418 & "Storage_Size of 0 given??", E);
6419 end if;
6420 end if;
6421 end if;
6423 -- Case of composite types
6425 if Is_Composite_Type (E) then
6427 -- AI-117 requires that all new primitives of a tagged type must
6428 -- inherit the convention of the full view of the type. Inherited
6429 -- and overriding operations are defined to inherit the convention
6430 -- of their parent or overridden subprogram (also specified in
6431 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6432 -- and New_Overloaded_Entity). Here we set the convention of
6433 -- primitives that are still convention Ada, which will ensure
6434 -- that any new primitives inherit the type's convention. Class-
6435 -- wide types can have a foreign convention inherited from their
6436 -- specific type, but are excluded from this since they don't have
6437 -- any associated primitives.
6439 if Is_Tagged_Type (E)
6440 and then not Is_Class_Wide_Type (E)
6441 and then Convention (E) /= Convention_Ada
6442 then
6443 declare
6444 Prim_List : constant Elist_Id := Primitive_Operations (E);
6445 Prim : Elmt_Id;
6447 begin
6448 Prim := First_Elmt (Prim_List);
6449 while Present (Prim) loop
6450 if Convention (Node (Prim)) = Convention_Ada then
6451 Set_Convention (Node (Prim), Convention (E));
6452 end if;
6454 Next_Elmt (Prim);
6455 end loop;
6456 end;
6457 end if;
6459 -- If the type is a simple storage pool type, then this is where
6460 -- we attempt to locate and validate its Allocate, Deallocate, and
6461 -- Storage_Size operations (the first is required, and the latter
6462 -- two are optional). We also verify that the full type for a
6463 -- private type is allowed to be a simple storage pool type.
6465 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6466 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6467 then
6468 -- If the type is marked Has_Private_Declaration, then this is
6469 -- a full type for a private type that was specified with the
6470 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6471 -- pragma is allowed for the full type (for example, it can't
6472 -- be an array type, or a nonlimited record type).
6474 if Has_Private_Declaration (E) then
6475 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6476 and then not Is_Private_Type (E)
6477 then
6478 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6479 Error_Msg_N
6480 ("pragma% can only apply to full type that is an " &
6481 "explicitly limited type", E);
6482 end if;
6483 end if;
6485 Validate_Simple_Pool_Ops : declare
6486 Pool_Type : Entity_Id renames E;
6487 Address_Type : constant Entity_Id := RTE (RE_Address);
6488 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6490 procedure Validate_Simple_Pool_Op_Formal
6491 (Pool_Op : Entity_Id;
6492 Pool_Op_Formal : in out Entity_Id;
6493 Expected_Mode : Formal_Kind;
6494 Expected_Type : Entity_Id;
6495 Formal_Name : String;
6496 OK_Formal : in out Boolean);
6497 -- Validate one formal Pool_Op_Formal of the candidate pool
6498 -- operation Pool_Op. The formal must be of Expected_Type
6499 -- and have mode Expected_Mode. OK_Formal will be set to
6500 -- False if the formal doesn't match. If OK_Formal is False
6501 -- on entry, then the formal will effectively be ignored
6502 -- (because validation of the pool op has already failed).
6503 -- Upon return, Pool_Op_Formal will be updated to the next
6504 -- formal, if any.
6506 procedure Validate_Simple_Pool_Operation
6507 (Op_Name : Name_Id);
6508 -- Search for and validate a simple pool operation with the
6509 -- name Op_Name. If the name is Allocate, then there must be
6510 -- exactly one such primitive operation for the simple pool
6511 -- type. If the name is Deallocate or Storage_Size, then
6512 -- there can be at most one such primitive operation. The
6513 -- profile of the located primitive must conform to what
6514 -- is expected for each operation.
6516 ------------------------------------
6517 -- Validate_Simple_Pool_Op_Formal --
6518 ------------------------------------
6520 procedure Validate_Simple_Pool_Op_Formal
6521 (Pool_Op : Entity_Id;
6522 Pool_Op_Formal : in out Entity_Id;
6523 Expected_Mode : Formal_Kind;
6524 Expected_Type : Entity_Id;
6525 Formal_Name : String;
6526 OK_Formal : in out Boolean)
6528 begin
6529 -- If OK_Formal is False on entry, then simply ignore
6530 -- the formal, because an earlier formal has already
6531 -- been flagged.
6533 if not OK_Formal then
6534 return;
6536 -- If no formal is passed in, then issue an error for a
6537 -- missing formal.
6539 elsif not Present (Pool_Op_Formal) then
6540 Error_Msg_NE
6541 ("simple storage pool op missing formal " &
6542 Formal_Name & " of type&", Pool_Op, Expected_Type);
6543 OK_Formal := False;
6545 return;
6546 end if;
6548 if Etype (Pool_Op_Formal) /= Expected_Type then
6550 -- If the pool type was expected for this formal, then
6551 -- this will not be considered a candidate operation
6552 -- for the simple pool, so we unset OK_Formal so that
6553 -- the op and any later formals will be ignored.
6555 if Expected_Type = Pool_Type then
6556 OK_Formal := False;
6558 return;
6560 else
6561 Error_Msg_NE
6562 ("wrong type for formal " & Formal_Name &
6563 " of simple storage pool op; expected type&",
6564 Pool_Op_Formal, Expected_Type);
6565 end if;
6566 end if;
6568 -- Issue error if formal's mode is not the expected one
6570 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6571 Error_Msg_N
6572 ("wrong mode for formal of simple storage pool op",
6573 Pool_Op_Formal);
6574 end if;
6576 -- Advance to the next formal
6578 Next_Formal (Pool_Op_Formal);
6579 end Validate_Simple_Pool_Op_Formal;
6581 ------------------------------------
6582 -- Validate_Simple_Pool_Operation --
6583 ------------------------------------
6585 procedure Validate_Simple_Pool_Operation
6586 (Op_Name : Name_Id)
6588 Op : Entity_Id;
6589 Found_Op : Entity_Id := Empty;
6590 Formal : Entity_Id;
6591 Is_OK : Boolean;
6593 begin
6594 pragma Assert
6595 (Op_Name in Name_Allocate
6596 | Name_Deallocate
6597 | Name_Storage_Size);
6599 Error_Msg_Name_1 := Op_Name;
6601 -- For each homonym declared immediately in the scope
6602 -- of the simple storage pool type, determine whether
6603 -- the homonym is an operation of the pool type, and,
6604 -- if so, check that its profile is as expected for
6605 -- a simple pool operation of that name.
6607 Op := Get_Name_Entity_Id (Op_Name);
6608 while Present (Op) loop
6609 if Ekind (Op) in E_Function | E_Procedure
6610 and then Scope (Op) = Current_Scope
6611 then
6612 Formal := First_Entity (Op);
6614 Is_OK := True;
6616 -- The first parameter must be of the pool type
6617 -- in order for the operation to qualify.
6619 if Op_Name = Name_Storage_Size then
6620 Validate_Simple_Pool_Op_Formal
6621 (Op, Formal, E_In_Parameter, Pool_Type,
6622 "Pool", Is_OK);
6623 else
6624 Validate_Simple_Pool_Op_Formal
6625 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6626 "Pool", Is_OK);
6627 end if;
6629 -- If another operation with this name has already
6630 -- been located for the type, then flag an error,
6631 -- since we only allow the type to have a single
6632 -- such primitive.
6634 if Present (Found_Op) and then Is_OK then
6635 Error_Msg_NE
6636 ("only one % operation allowed for " &
6637 "simple storage pool type&", Op, Pool_Type);
6638 end if;
6640 -- In the case of Allocate and Deallocate, a formal
6641 -- of type System.Address is required.
6643 if Op_Name = Name_Allocate then
6644 Validate_Simple_Pool_Op_Formal
6645 (Op, Formal, E_Out_Parameter,
6646 Address_Type, "Storage_Address", Is_OK);
6648 elsif Op_Name = Name_Deallocate then
6649 Validate_Simple_Pool_Op_Formal
6650 (Op, Formal, E_In_Parameter,
6651 Address_Type, "Storage_Address", Is_OK);
6652 end if;
6654 -- In the case of Allocate and Deallocate, formals
6655 -- of type Storage_Count are required as the third
6656 -- and fourth parameters.
6658 if Op_Name /= Name_Storage_Size then
6659 Validate_Simple_Pool_Op_Formal
6660 (Op, Formal, E_In_Parameter,
6661 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6662 Validate_Simple_Pool_Op_Formal
6663 (Op, Formal, E_In_Parameter,
6664 Stg_Cnt_Type, "Alignment", Is_OK);
6665 end if;
6667 -- If no mismatched formals have been found (Is_OK)
6668 -- and no excess formals are present, then this
6669 -- operation has been validated, so record it.
6671 if not Present (Formal) and then Is_OK then
6672 Found_Op := Op;
6673 end if;
6674 end if;
6676 Op := Homonym (Op);
6677 end loop;
6679 -- There must be a valid Allocate operation for the type,
6680 -- so issue an error if none was found.
6682 if Op_Name = Name_Allocate
6683 and then not Present (Found_Op)
6684 then
6685 Error_Msg_N ("missing % operation for simple " &
6686 "storage pool type", Pool_Type);
6688 elsif Present (Found_Op) then
6690 -- Simple pool operations can't be abstract
6692 if Is_Abstract_Subprogram (Found_Op) then
6693 Error_Msg_N
6694 ("simple storage pool operation must not be " &
6695 "abstract", Found_Op);
6696 end if;
6698 -- The Storage_Size operation must be a function with
6699 -- Storage_Count as its result type.
6701 if Op_Name = Name_Storage_Size then
6702 if Ekind (Found_Op) = E_Procedure then
6703 Error_Msg_N
6704 ("% operation must be a function", Found_Op);
6706 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6707 Error_Msg_NE
6708 ("wrong result type for%, expected type&",
6709 Found_Op, Stg_Cnt_Type);
6710 end if;
6712 -- Allocate and Deallocate must be procedures
6714 elsif Ekind (Found_Op) = E_Function then
6715 Error_Msg_N
6716 ("% operation must be a procedure", Found_Op);
6717 end if;
6718 end if;
6719 end Validate_Simple_Pool_Operation;
6721 -- Start of processing for Validate_Simple_Pool_Ops
6723 begin
6724 Validate_Simple_Pool_Operation (Name_Allocate);
6725 Validate_Simple_Pool_Operation (Name_Deallocate);
6726 Validate_Simple_Pool_Operation (Name_Storage_Size);
6727 end Validate_Simple_Pool_Ops;
6728 end if;
6729 end if;
6731 -- Now that all types from which E may depend are frozen, see if
6732 -- strict alignment is required, a component clause on a record
6733 -- is correct, the size is known at compile time and if it must
6734 -- be unsigned, in that order.
6736 if Base_Type (E) = E then
6737 Check_Strict_Alignment (E);
6738 end if;
6740 if Ekind (E) in E_Record_Type | E_Record_Subtype then
6741 declare
6742 RC : constant Node_Id := Get_Record_Representation_Clause (E);
6743 begin
6744 if Present (RC) then
6745 Check_Record_Representation_Clause (RC);
6746 end if;
6747 end;
6748 end if;
6750 Check_Compile_Time_Size (E);
6752 Check_Unsigned_Type (E);
6754 -- Do not allow a size clause for a type which does not have a size
6755 -- that is known at compile time
6757 if (Has_Size_Clause (E) or else Has_Object_Size_Clause (E))
6758 and then not Size_Known_At_Compile_Time (E)
6759 then
6760 -- Suppress this message if errors posted on E, even if we are
6761 -- in all errors mode, since this is often a junk message
6763 if not Error_Posted (E) then
6764 Error_Msg_N
6765 ("size clause not allowed for variable length type",
6766 Size_Clause (E));
6767 end if;
6768 end if;
6770 -- Now we set/verify the representation information, in particular
6771 -- the size and alignment values. This processing is not required for
6772 -- generic types, since generic types do not play any part in code
6773 -- generation, and so the size and alignment values for such types
6774 -- are irrelevant. Ditto for types declared within a generic unit,
6775 -- which may have components that depend on generic parameters, and
6776 -- that will be recreated in an instance.
6778 if Inside_A_Generic then
6779 null;
6781 -- Otherwise we call the layout procedure
6783 else
6784 Layout_Type (E);
6785 end if;
6787 -- If this is an access to subprogram whose designated type is itself
6788 -- a subprogram type, the return type of this anonymous subprogram
6789 -- type must be decorated as well.
6791 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6792 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6793 then
6794 Layout_Type (Etype (Designated_Type (E)));
6795 end if;
6797 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6798 -- this is where we analyze the expression (after the type is frozen,
6799 -- since in the case of Default_Value, we are analyzing with the
6800 -- type itself, and we treat Default_Component_Value similarly for
6801 -- the sake of uniformity).
6803 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6804 declare
6805 Nam : Name_Id;
6806 Exp : Node_Id;
6807 Typ : Entity_Id;
6809 begin
6810 if Is_Scalar_Type (E) then
6811 Nam := Name_Default_Value;
6812 Typ := E;
6813 Exp := Default_Aspect_Value (Typ);
6814 else
6815 Nam := Name_Default_Component_Value;
6816 Typ := Component_Type (E);
6817 Exp := Default_Aspect_Component_Value (E);
6818 end if;
6820 Analyze_And_Resolve (Exp, Typ);
6822 if Etype (Exp) /= Any_Type then
6823 if not Is_OK_Static_Expression (Exp) then
6824 Error_Msg_Name_1 := Nam;
6825 Flag_Non_Static_Expr
6826 ("aspect% requires static expression", Exp);
6827 end if;
6828 end if;
6829 end;
6830 end if;
6832 -- End of freeze processing for type entities
6833 end if;
6835 -- Here is where we logically freeze the current entity. If it has a
6836 -- freeze node, then this is the point at which the freeze node is
6837 -- linked into the result list.
6839 if Has_Delayed_Freeze (E) then
6841 -- If a freeze node is already allocated, use it, otherwise allocate
6842 -- a new one. The preallocation happens in the case of anonymous base
6843 -- types, where we preallocate so that we can set First_Subtype_Link.
6844 -- Note that we reset the Sloc to the current freeze location.
6846 if Present (Freeze_Node (E)) then
6847 F_Node := Freeze_Node (E);
6848 Set_Sloc (F_Node, Loc);
6850 else
6851 F_Node := New_Node (N_Freeze_Entity, Loc);
6852 Set_Freeze_Node (E, F_Node);
6853 Set_Access_Types_To_Process (F_Node, No_Elist);
6854 Set_TSS_Elist (F_Node, No_Elist);
6855 Set_Actions (F_Node, No_List);
6856 end if;
6858 Set_Entity (F_Node, E);
6859 Add_To_Result (F_Node);
6861 -- A final pass over record types with discriminants. If the type
6862 -- has an incomplete declaration, there may be constrained access
6863 -- subtypes declared elsewhere, which do not depend on the discrimi-
6864 -- nants of the type, and which are used as component types (i.e.
6865 -- the full view is a recursive type). The designated types of these
6866 -- subtypes can only be elaborated after the type itself, and they
6867 -- need an itype reference.
6869 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6870 declare
6871 Comp : Entity_Id;
6872 IR : Node_Id;
6873 Typ : Entity_Id;
6875 begin
6876 Comp := First_Component (E);
6877 while Present (Comp) loop
6878 Typ := Etype (Comp);
6880 if Ekind (Comp) = E_Component
6881 and then Is_Access_Type (Typ)
6882 and then Scope (Typ) /= E
6883 and then Base_Type (Designated_Type (Typ)) = E
6884 and then Is_Itype (Designated_Type (Typ))
6885 then
6886 IR := Make_Itype_Reference (Sloc (Comp));
6887 Set_Itype (IR, Designated_Type (Typ));
6888 Append (IR, Result);
6889 end if;
6891 Next_Component (Comp);
6892 end loop;
6893 end;
6894 end if;
6895 end if;
6897 -- When a type is frozen, the first subtype of the type is frozen as
6898 -- well (RM 13.14(15)). This has to be done after freezing the type,
6899 -- since obviously the first subtype depends on its own base type.
6901 if Is_Type (E) then
6902 Freeze_And_Append (First_Subtype (E), N, Result);
6904 -- If we just froze a tagged non-class wide record, then freeze the
6905 -- corresponding class-wide type. This must be done after the tagged
6906 -- type itself is frozen, because the class-wide type refers to the
6907 -- tagged type which generates the class.
6909 if Is_Tagged_Type (E)
6910 and then not Is_Class_Wide_Type (E)
6911 and then Present (Class_Wide_Type (E))
6912 then
6913 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6914 end if;
6915 end if;
6917 Check_Debug_Info_Needed (E);
6919 -- If subprogram has address clause then reset Is_Public flag, since we
6920 -- do not want the backend to generate external references.
6922 if Is_Subprogram (E)
6923 and then Present (Address_Clause (E))
6924 and then not Is_Library_Level_Entity (E)
6925 then
6926 Set_Is_Public (E, False);
6927 end if;
6929 -- The Ghost mode of the enclosing context is ignored, while the
6930 -- entity being frozen is living. Insert the freezing action prior
6931 -- to the start of the enclosing ignored Ghost region. As a result
6932 -- the freezeing action will be preserved when the ignored Ghost
6933 -- context is eliminated. The insertion must take place even when
6934 -- the context is a spec expression, otherwise "Handling of Default
6935 -- and Per-Object Expressions" will suppress the insertion, and the
6936 -- freeze node will be dropped on the floor.
6938 if Saved_GM = Ignore
6939 and then Ghost_Mode /= Ignore
6940 and then Present (Ignored_Ghost_Region)
6941 then
6942 Insert_Actions
6943 (Assoc_Node => Ignored_Ghost_Region,
6944 Ins_Actions => Result,
6945 Spec_Expr_OK => True);
6947 Result := No_List;
6948 end if;
6950 <<Leave>>
6951 Restore_Ghost_Region (Saved_GM, Saved_IGR);
6953 return Result;
6954 end Freeze_Entity;
6956 -----------------------------
6957 -- Freeze_Enumeration_Type --
6958 -----------------------------
6960 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6961 begin
6962 -- By default, if no size clause is present, an enumeration type with
6963 -- Convention C is assumed to interface to a C enum and has integer
6964 -- size, except for a boolean type because it is assumed to interface
6965 -- to _Bool introduced in C99. This applies to types. For subtypes,
6966 -- verify that its base type has no size clause either. Treat other
6967 -- foreign conventions in the same way, and also make sure alignment
6968 -- is set right.
6970 if Has_Foreign_Convention (Typ)
6971 and then not Is_Boolean_Type (Typ)
6972 and then not Has_Size_Clause (Typ)
6973 and then not Has_Size_Clause (Base_Type (Typ))
6974 and then Esize (Typ) < Standard_Integer_Size
6976 -- Don't do this if Short_Enums on target
6978 and then not Target_Short_Enums
6979 then
6980 Init_Esize (Typ, Standard_Integer_Size);
6981 Set_Alignment (Typ, Alignment (Standard_Integer));
6983 -- Normal Ada case or size clause present or not Long_C_Enums on target
6985 else
6986 -- If the enumeration type interfaces to C, and it has a size clause
6987 -- that specifies less than int size, it warrants a warning. The
6988 -- user may intend the C type to be an enum or a char, so this is
6989 -- not by itself an error that the Ada compiler can detect, but it
6990 -- it is a worth a heads-up. For Boolean and Character types we
6991 -- assume that the programmer has the proper C type in mind.
6993 if Convention (Typ) = Convention_C
6994 and then Has_Size_Clause (Typ)
6995 and then Esize (Typ) /= Esize (Standard_Integer)
6996 and then not Is_Boolean_Type (Typ)
6997 and then not Is_Character_Type (Typ)
6999 -- Don't do this if Short_Enums on target
7001 and then not Target_Short_Enums
7002 then
7003 Error_Msg_N
7004 ("C enum types have the size of a C int??", Size_Clause (Typ));
7005 end if;
7007 Adjust_Esize_For_Alignment (Typ);
7008 end if;
7009 end Freeze_Enumeration_Type;
7011 -----------------------
7012 -- Freeze_Expression --
7013 -----------------------
7015 procedure Freeze_Expression (N : Node_Id) is
7017 function Find_Aggregate_Component_Desig_Type return Entity_Id;
7018 -- If the expression is an array aggregate, the type of the component
7019 -- expressions is also frozen. If the component type is an access type
7020 -- and the expressions include allocators, the designed type is frozen
7021 -- as well.
7023 function In_Expanded_Body (N : Node_Id) return Boolean;
7024 -- Given an N_Handled_Sequence_Of_Statements node, determines whether it
7025 -- is the statement sequence of an expander-generated subprogram: body
7026 -- created for an expression function, for a predicate function, an init
7027 -- proc, a stream subprogram, or a renaming as body. If so, this is not
7028 -- a freezing context and the entity will be frozen at a later point.
7030 function Has_Decl_In_List
7031 (E : Entity_Id;
7032 N : Node_Id;
7033 L : List_Id) return Boolean;
7034 -- Determines whether an entity E referenced in node N is declared in
7035 -- the list L.
7037 -----------------------------------------
7038 -- Find_Aggregate_Component_Desig_Type --
7039 -----------------------------------------
7041 function Find_Aggregate_Component_Desig_Type return Entity_Id is
7042 Assoc : Node_Id;
7043 Exp : Node_Id;
7045 begin
7046 if Present (Expressions (N)) then
7047 Exp := First (Expressions (N));
7048 while Present (Exp) loop
7049 if Nkind (Exp) = N_Allocator then
7050 return Designated_Type (Component_Type (Etype (N)));
7051 end if;
7053 Next (Exp);
7054 end loop;
7055 end if;
7057 if Present (Component_Associations (N)) then
7058 Assoc := First (Component_Associations (N));
7059 while Present (Assoc) loop
7060 if Nkind (Expression (Assoc)) = N_Allocator then
7061 return Designated_Type (Component_Type (Etype (N)));
7062 end if;
7064 Next (Assoc);
7065 end loop;
7066 end if;
7068 return Empty;
7069 end Find_Aggregate_Component_Desig_Type;
7071 ----------------------
7072 -- In_Expanded_Body --
7073 ----------------------
7075 function In_Expanded_Body (N : Node_Id) return Boolean is
7076 P : constant Node_Id := Parent (N);
7077 Id : Entity_Id;
7079 begin
7080 if Nkind (P) /= N_Subprogram_Body then
7081 return False;
7083 -- AI12-0157: An expression function that is a completion is a freeze
7084 -- point. If the body is the result of expansion, it is not.
7086 elsif Was_Expression_Function (P) then
7087 return not Comes_From_Source (P);
7089 -- This is the body of a generated predicate function
7091 elsif Present (Corresponding_Spec (P))
7092 and then Is_Predicate_Function (Corresponding_Spec (P))
7093 then
7094 return True;
7096 else
7097 Id := Defining_Unit_Name (Specification (P));
7099 -- The following are expander-created bodies, or bodies that
7100 -- are not freeze points.
7102 if Nkind (Id) = N_Defining_Identifier
7103 and then (Is_Init_Proc (Id)
7104 or else Is_TSS (Id, TSS_Stream_Input)
7105 or else Is_TSS (Id, TSS_Stream_Output)
7106 or else Is_TSS (Id, TSS_Stream_Read)
7107 or else Is_TSS (Id, TSS_Stream_Write)
7108 or else Nkind (Original_Node (P)) =
7109 N_Subprogram_Renaming_Declaration)
7110 then
7111 return True;
7112 else
7113 return False;
7114 end if;
7115 end if;
7116 end In_Expanded_Body;
7118 ----------------------
7119 -- Has_Decl_In_List --
7120 ----------------------
7122 function Has_Decl_In_List
7123 (E : Entity_Id;
7124 N : Node_Id;
7125 L : List_Id) return Boolean
7127 Decl_Node : Node_Id;
7129 begin
7130 -- If E is an itype, pretend that it is declared in N
7132 if Is_Itype (E) then
7133 Decl_Node := N;
7134 else
7135 Decl_Node := Declaration_Node (E);
7136 end if;
7138 return Is_List_Member (Decl_Node)
7139 and then List_Containing (Decl_Node) = L;
7140 end Has_Decl_In_List;
7142 -- Local variables
7144 In_Spec_Exp : constant Boolean := In_Spec_Expression;
7146 Desig_Typ : Entity_Id;
7147 Nam : Entity_Id;
7148 P : Node_Id;
7149 Parent_P : Node_Id;
7150 Typ : Entity_Id;
7152 Allocator_Typ : Entity_Id := Empty;
7154 Freeze_Outside : Boolean := False;
7155 -- This flag is set true if the entity must be frozen outside the
7156 -- current subprogram. This happens in the case of expander generated
7157 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
7158 -- not freeze all entities like other bodies, but which nevertheless
7159 -- may reference entities that have to be frozen before the body and
7160 -- obviously cannot be frozen inside the body.
7162 Freeze_Outside_Subp : Entity_Id := Empty;
7163 -- This entity is set if we are inside a subprogram body and the frozen
7164 -- entity is defined in the enclosing scope of this subprogram. In such
7165 -- case we must skip the subprogram body when climbing the parents chain
7166 -- to locate the correct placement for the freezing node.
7168 -- Start of processing for Freeze_Expression
7170 begin
7171 -- Immediate return if freezing is inhibited. This flag is set by the
7172 -- analyzer to stop freezing on generated expressions that would cause
7173 -- freezing if they were in the source program, but which are not
7174 -- supposed to freeze, since they are created.
7176 if Must_Not_Freeze (N) then
7177 return;
7178 end if;
7180 -- If expression is non-static, then it does not freeze in a default
7181 -- expression, see section "Handling of Default Expressions" in the
7182 -- spec of package Sem for further details. Note that we have to make
7183 -- sure that we actually have a real expression (if we have a subtype
7184 -- indication, we can't test Is_OK_Static_Expression). However, we
7185 -- exclude the case of the prefix of an attribute of a static scalar
7186 -- subtype from this early return, because static subtype attributes
7187 -- should always cause freezing, even in default expressions, but
7188 -- the attribute may not have been marked as static yet (because in
7189 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
7190 -- Freeze_Expression on the prefix).
7192 if In_Spec_Exp
7193 and then Nkind (N) in N_Subexpr
7194 and then not Is_OK_Static_Expression (N)
7195 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7196 or else not (Is_Entity_Name (N)
7197 and then Is_Type (Entity (N))
7198 and then Is_OK_Static_Subtype (Entity (N))))
7199 then
7200 return;
7201 end if;
7203 -- Freeze type of expression if not frozen already
7205 Typ := Empty;
7207 if Nkind (N) in N_Has_Etype then
7208 if not Is_Frozen (Etype (N)) then
7209 Typ := Etype (N);
7211 -- Base type may be an derived numeric type that is frozen at the
7212 -- point of declaration, but first_subtype is still unfrozen.
7214 elsif not Is_Frozen (First_Subtype (Etype (N))) then
7215 Typ := First_Subtype (Etype (N));
7216 end if;
7217 end if;
7219 -- For entity name, freeze entity if not frozen already. A special
7220 -- exception occurs for an identifier that did not come from source.
7221 -- We don't let such identifiers freeze a non-internal entity, i.e.
7222 -- an entity that did come from source, since such an identifier was
7223 -- generated by the expander, and cannot have any semantic effect on
7224 -- the freezing semantics. For example, this stops the parameter of
7225 -- an initialization procedure from freezing the variable.
7227 if Is_Entity_Name (N)
7228 and then not Is_Frozen (Entity (N))
7229 and then (Nkind (N) /= N_Identifier
7230 or else Comes_From_Source (N)
7231 or else not Comes_From_Source (Entity (N)))
7232 then
7233 Nam := Entity (N);
7235 if Present (Nam) and then Ekind (Nam) = E_Function then
7236 Check_Expression_Function (N, Nam);
7237 end if;
7239 else
7240 Nam := Empty;
7241 end if;
7243 -- For an allocator freeze designated type if not frozen already
7245 -- For an aggregate whose component type is an access type, freeze the
7246 -- designated type now, so that its freeze does not appear within the
7247 -- loop that might be created in the expansion of the aggregate. If the
7248 -- designated type is a private type without full view, the expression
7249 -- cannot contain an allocator, so the type is not frozen.
7251 -- For a function, we freeze the entity when the subprogram declaration
7252 -- is frozen, but a function call may appear in an initialization proc.
7253 -- before the declaration is frozen. We need to generate the extra
7254 -- formals, if any, to ensure that the expansion of the call includes
7255 -- the proper actuals. This only applies to Ada subprograms, not to
7256 -- imported ones.
7258 Desig_Typ := Empty;
7260 case Nkind (N) is
7261 when N_Allocator =>
7262 Desig_Typ := Designated_Type (Etype (N));
7264 if Nkind (Expression (N)) = N_Qualified_Expression then
7265 Allocator_Typ := Entity (Subtype_Mark (Expression (N)));
7266 end if;
7268 when N_Aggregate =>
7269 if Is_Array_Type (Etype (N))
7270 and then Is_Access_Type (Component_Type (Etype (N)))
7271 then
7272 -- Check whether aggregate includes allocators
7274 Desig_Typ := Find_Aggregate_Component_Desig_Type;
7275 end if;
7277 when N_Indexed_Component
7278 | N_Selected_Component
7279 | N_Slice
7281 if Is_Access_Type (Etype (Prefix (N))) then
7282 Desig_Typ := Designated_Type (Etype (Prefix (N)));
7283 end if;
7285 when N_Identifier =>
7286 if Present (Nam)
7287 and then Ekind (Nam) = E_Function
7288 and then Nkind (Parent (N)) = N_Function_Call
7289 and then Convention (Nam) = Convention_Ada
7290 then
7291 Create_Extra_Formals (Nam);
7292 end if;
7294 when others =>
7295 null;
7296 end case;
7298 if Desig_Typ /= Empty
7299 and then (Is_Frozen (Desig_Typ)
7300 or else (not Is_Fully_Defined (Desig_Typ)))
7301 then
7302 Desig_Typ := Empty;
7303 end if;
7305 -- All done if nothing needs freezing
7307 if No (Typ)
7308 and then No (Nam)
7309 and then No (Desig_Typ)
7310 and then No (Allocator_Typ)
7311 then
7312 return;
7313 end if;
7315 -- Check if we are inside a subprogram body and the frozen entity is
7316 -- defined in the enclosing scope of this subprogram. In such case we
7317 -- must skip the subprogram when climbing the parents chain to locate
7318 -- the correct placement for the freezing node.
7320 -- This is not needed for default expressions and other spec expressions
7321 -- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb)
7322 -- takes care of placing them at the proper place, after the generic
7323 -- unit.
7325 if Present (Nam)
7326 and then Scope (Nam) /= Current_Scope
7327 and then not (In_Spec_Exp and then Inside_A_Generic)
7328 then
7329 declare
7330 S : Entity_Id := Current_Scope;
7332 begin
7333 while Present (S)
7334 and then In_Same_Source_Unit (Nam, S)
7335 loop
7336 if Scope (S) = Scope (Nam) then
7337 if Is_Subprogram (S) and then Has_Completion (S) then
7338 Freeze_Outside_Subp := S;
7339 end if;
7341 exit;
7342 end if;
7344 S := Scope (S);
7345 end loop;
7346 end;
7347 end if;
7349 -- Examine the enclosing context by climbing the parent chain
7351 -- If we identified that we must freeze the entity outside of a given
7352 -- subprogram then we just climb up to that subprogram checking if some
7353 -- enclosing node is marked as Must_Not_Freeze (since in such case we
7354 -- must not freeze yet this entity).
7356 P := N;
7358 if Present (Freeze_Outside_Subp) then
7359 loop
7360 -- Do not freeze the current expression if another expression in
7361 -- the chain of parents must not be frozen.
7363 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7364 return;
7365 end if;
7367 Parent_P := Parent (P);
7369 -- If we don't have a parent, then we are not in a well-formed
7370 -- tree. This is an unusual case, but there are some legitimate
7371 -- situations in which this occurs, notably when the expressions
7372 -- in the range of a type declaration are resolved. We simply
7373 -- ignore the freeze request in this case.
7375 if No (Parent_P) then
7376 return;
7377 end if;
7379 -- If the parent is a subprogram body, the candidate insertion
7380 -- point is just ahead of it.
7382 if Nkind (Parent_P) = N_Subprogram_Body
7383 and then Unique_Defining_Entity (Parent_P) =
7384 Freeze_Outside_Subp
7385 then
7386 P := Parent_P;
7387 exit;
7388 end if;
7390 P := Parent_P;
7391 end loop;
7393 -- Otherwise the traversal serves two purposes - to detect scenarios
7394 -- where freezeing is not needed and to find the proper insertion point
7395 -- for the freeze nodes. Although somewhat similar to Insert_Actions,
7396 -- this traversal is freezing semantics-sensitive. Inserting freeze
7397 -- nodes blindly in the tree may result in types being frozen too early.
7399 else
7400 loop
7401 -- Do not freeze the current expression if another expression in
7402 -- the chain of parents must not be frozen.
7404 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7405 return;
7406 end if;
7408 Parent_P := Parent (P);
7410 -- If we don't have a parent, then we are not in a well-formed
7411 -- tree. This is an unusual case, but there are some legitimate
7412 -- situations in which this occurs, notably when the expressions
7413 -- in the range of a type declaration are resolved. We simply
7414 -- ignore the freeze request in this case. Is this right ???
7416 if No (Parent_P) then
7417 return;
7418 end if;
7420 -- See if we have got to an appropriate point in the tree
7422 case Nkind (Parent_P) is
7424 -- A special test for the exception of (RM 13.14(8)) for the
7425 -- case of per-object expressions (RM 3.8(18)) occurring in
7426 -- component definition or a discrete subtype definition. Note
7427 -- that we test for a component declaration which includes both
7428 -- cases we are interested in, and furthermore the tree does
7429 -- not have explicit nodes for either of these two constructs.
7431 when N_Component_Declaration =>
7433 -- The case we want to test for here is an identifier that
7434 -- is a per-object expression, this is either a discriminant
7435 -- that appears in a context other than the component
7436 -- declaration or it is a reference to the type of the
7437 -- enclosing construct.
7439 -- For either of these cases, we skip the freezing
7441 if not In_Spec_Expression
7442 and then Nkind (N) = N_Identifier
7443 and then (Present (Entity (N)))
7444 then
7445 -- We recognize the discriminant case by just looking for
7446 -- a reference to a discriminant. It can only be one for
7447 -- the enclosing construct. Skip freezing in this case.
7449 if Ekind (Entity (N)) = E_Discriminant then
7450 return;
7452 -- For the case of a reference to the enclosing record,
7453 -- (or task or protected type), we look for a type that
7454 -- matches the current scope.
7456 elsif Entity (N) = Current_Scope then
7457 return;
7458 end if;
7459 end if;
7461 -- If we have an enumeration literal that appears as the choice
7462 -- in the aggregate of an enumeration representation clause,
7463 -- then freezing does not occur (RM 13.14(10)).
7465 when N_Enumeration_Representation_Clause =>
7467 -- The case we are looking for is an enumeration literal
7469 if Nkind (N) in N_Identifier | N_Character_Literal
7470 and then Is_Enumeration_Type (Etype (N))
7471 then
7472 -- If enumeration literal appears directly as the choice,
7473 -- do not freeze (this is the normal non-overloaded case)
7475 if Nkind (Parent (N)) = N_Component_Association
7476 and then First (Choices (Parent (N))) = N
7477 then
7478 return;
7480 -- If enumeration literal appears as the name of function
7481 -- which is the choice, then also do not freeze. This
7482 -- happens in the overloaded literal case, where the
7483 -- enumeration literal is temporarily changed to a
7484 -- function call for overloading analysis purposes.
7486 elsif Nkind (Parent (N)) = N_Function_Call
7487 and then Nkind (Parent (Parent (N))) =
7488 N_Component_Association
7489 and then First (Choices (Parent (Parent (N)))) =
7490 Parent (N)
7491 then
7492 return;
7493 end if;
7494 end if;
7496 -- Normally if the parent is a handled sequence of statements,
7497 -- then the current node must be a statement, and that is an
7498 -- appropriate place to insert a freeze node.
7500 when N_Handled_Sequence_Of_Statements =>
7502 -- An exception occurs when the sequence of statements is
7503 -- for an expander generated body that did not do the usual
7504 -- freeze all operation. In this case we usually want to
7505 -- freeze outside this body, not inside it, and we skip
7506 -- past the subprogram body that we are inside.
7508 if In_Expanded_Body (Parent_P) then
7509 declare
7510 Subp_Body : constant Node_Id := Parent (Parent_P);
7511 Spec_Id : Entity_Id;
7513 begin
7514 -- Freeze the entity only when it is declared inside
7515 -- the body of the expander generated procedure. This
7516 -- case is recognized by the subprogram scope of the
7517 -- entity or its type, which is either the spec of an
7518 -- enclosing body, or (in the case of init_procs for
7519 -- which there is no separate spec) the current scope.
7521 if Nkind (Subp_Body) = N_Subprogram_Body then
7522 declare
7523 S : Entity_Id;
7525 begin
7526 Spec_Id := Corresponding_Spec (Subp_Body);
7528 if Present (Typ) then
7529 S := Scope (Typ);
7530 elsif Present (Nam) then
7531 S := Scope (Nam);
7532 else
7533 S := Standard_Standard;
7534 end if;
7536 while S /= Standard_Standard
7537 and then not Is_Subprogram (S)
7538 loop
7539 S := Scope (S);
7540 end loop;
7542 if S = Spec_Id then
7543 exit;
7545 elsif Present (Typ)
7546 and then Scope (Typ) = Current_Scope
7547 and then
7548 Defining_Entity (Subp_Body) = Current_Scope
7549 then
7550 exit;
7551 end if;
7552 end;
7553 end if;
7555 -- If the entity is not frozen by an expression
7556 -- function that is not a completion, continue
7557 -- climbing the tree.
7559 if Nkind (Subp_Body) = N_Subprogram_Body
7560 and then Was_Expression_Function (Subp_Body)
7561 then
7562 null;
7564 -- Freeze outside the body
7566 else
7567 Parent_P := Parent (Parent_P);
7568 Freeze_Outside := True;
7569 end if;
7570 end;
7572 -- Here if normal case where we are in handled statement
7573 -- sequence and want to do the insertion right there.
7575 else
7576 exit;
7577 end if;
7579 -- If parent is a body or a spec or a block, then the current
7580 -- node is a statement or declaration and we can insert the
7581 -- freeze node before it.
7583 when N_Block_Statement
7584 | N_Entry_Body
7585 | N_Package_Body
7586 | N_Package_Specification
7587 | N_Protected_Body
7588 | N_Subprogram_Body
7589 | N_Task_Body
7591 exit;
7593 -- The expander is allowed to define types in any statements
7594 -- list, so any of the following parent nodes also mark a
7595 -- freezing point if the actual node is in a list of
7596 -- statements or declarations.
7598 when N_Abortable_Part
7599 | N_Accept_Alternative
7600 | N_Case_Statement_Alternative
7601 | N_Compilation_Unit_Aux
7602 | N_Conditional_Entry_Call
7603 | N_Delay_Alternative
7604 | N_Elsif_Part
7605 | N_Entry_Call_Alternative
7606 | N_Exception_Handler
7607 | N_Extended_Return_Statement
7608 | N_Freeze_Entity
7609 | N_If_Statement
7610 | N_Selective_Accept
7611 | N_Triggering_Alternative
7613 exit when Is_List_Member (P);
7615 -- The freeze nodes produced by an expression coming from the
7616 -- Actions list of an N_Expression_With_Actions, short-circuit
7617 -- expression or N_Case_Expression_Alternative node must remain
7618 -- within the Actions list if they freeze an entity declared in
7619 -- this list, as inserting the freeze nodes further up the tree
7620 -- may lead to use before declaration issues for the entity.
7622 when N_Case_Expression_Alternative
7623 | N_Expression_With_Actions
7624 | N_Short_Circuit
7626 exit when (Present (Nam)
7627 and then
7628 Has_Decl_In_List (Nam, P, Actions (Parent_P)))
7629 or else (Present (Typ)
7630 and then
7631 Has_Decl_In_List (Typ, P, Actions (Parent_P)));
7633 -- Likewise for an N_If_Expression and its two Actions list
7635 when N_If_Expression =>
7636 declare
7637 L1 : constant List_Id := Then_Actions (Parent_P);
7638 L2 : constant List_Id := Else_Actions (Parent_P);
7640 begin
7641 exit when (Present (Nam)
7642 and then
7643 Has_Decl_In_List (Nam, P, L1))
7644 or else (Present (Typ)
7645 and then
7646 Has_Decl_In_List (Typ, P, L1))
7647 or else (Present (Nam)
7648 and then
7649 Has_Decl_In_List (Nam, P, L2))
7650 or else (Present (Typ)
7651 and then
7652 Has_Decl_In_List (Typ, P, L2));
7653 end;
7655 -- N_Loop_Statement is a special case: a type that appears in
7656 -- the source can never be frozen in a loop (this occurs only
7657 -- because of a loop expanded by the expander), so we keep on
7658 -- going. Otherwise we terminate the search. Same is true of
7659 -- any entity which comes from source (if it has a predefined
7660 -- type, this type does not appear to come from source, but the
7661 -- entity should not be frozen here).
7663 when N_Loop_Statement =>
7664 exit when not Comes_From_Source (Etype (N))
7665 and then (No (Nam) or else not Comes_From_Source (Nam));
7667 -- For all other cases, keep looking at parents
7669 when others =>
7670 null;
7671 end case;
7673 -- We fall through the case if we did not yet find the proper
7674 -- place in the free for inserting the freeze node, so climb.
7676 P := Parent_P;
7677 end loop;
7678 end if;
7680 -- If the expression appears in a record or an initialization procedure,
7681 -- the freeze nodes are collected and attached to the current scope, to
7682 -- be inserted and analyzed on exit from the scope, to insure that
7683 -- generated entities appear in the correct scope. If the expression is
7684 -- a default for a discriminant specification, the scope is still void.
7685 -- The expression can also appear in the discriminant part of a private
7686 -- or concurrent type.
7688 -- If the expression appears in a constrained subcomponent of an
7689 -- enclosing record declaration, the freeze nodes must be attached to
7690 -- the outer record type so they can eventually be placed in the
7691 -- enclosing declaration list.
7693 -- The other case requiring this special handling is if we are in a
7694 -- default expression, since in that case we are about to freeze a
7695 -- static type, and the freeze scope needs to be the outer scope, not
7696 -- the scope of the subprogram with the default parameter.
7698 -- For default expressions and other spec expressions in generic units,
7699 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7700 -- placing them at the proper place, after the generic unit.
7702 if (In_Spec_Exp and not Inside_A_Generic)
7703 or else Freeze_Outside
7704 or else (Is_Type (Current_Scope)
7705 and then (not Is_Concurrent_Type (Current_Scope)
7706 or else not Has_Completion (Current_Scope)))
7707 or else Ekind (Current_Scope) = E_Void
7708 then
7709 declare
7710 Freeze_Nodes : List_Id := No_List;
7711 Pos : Int := Scope_Stack.Last;
7713 begin
7714 if Present (Desig_Typ) then
7715 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7716 end if;
7718 if Present (Typ) then
7719 Freeze_And_Append (Typ, N, Freeze_Nodes);
7720 end if;
7722 if Present (Nam) then
7723 Freeze_And_Append (Nam, N, Freeze_Nodes);
7724 end if;
7726 -- The current scope may be that of a constrained component of
7727 -- an enclosing record declaration, or of a loop of an enclosing
7728 -- quantified expression, which is above the current scope in the
7729 -- scope stack. Indeed in the context of a quantified expression,
7730 -- a scope is created and pushed above the current scope in order
7731 -- to emulate the loop-like behavior of the quantified expression.
7732 -- If the expression is within a top-level pragma, as for a pre-
7733 -- condition on a library-level subprogram, nothing to do.
7735 if not Is_Compilation_Unit (Current_Scope)
7736 and then (Is_Record_Type (Scope (Current_Scope))
7737 or else Nkind (Parent (Current_Scope)) =
7738 N_Quantified_Expression)
7739 then
7740 Pos := Pos - 1;
7741 end if;
7743 if Is_Non_Empty_List (Freeze_Nodes) then
7745 -- When the current scope is transient, insert the freeze nodes
7746 -- prior to the expression that produced them. Transient scopes
7747 -- may create additional declarations when finalizing objects
7748 -- or managing the secondary stack. Inserting the freeze nodes
7749 -- of those constructs prior to the scope would result in a
7750 -- freeze-before-declaration, therefore the freeze node must
7751 -- remain interleaved with their constructs.
7753 if Scope_Is_Transient then
7754 Insert_Actions (N, Freeze_Nodes);
7756 elsif No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7757 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7758 Freeze_Nodes;
7759 else
7760 Append_List (Freeze_Nodes,
7761 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7762 end if;
7763 end if;
7764 end;
7766 return;
7767 end if;
7769 -- Now we have the right place to do the freezing. First, a special
7770 -- adjustment, if we are in spec-expression analysis mode, these freeze
7771 -- actions must not be thrown away (normally all inserted actions are
7772 -- thrown away in this mode. However, the freeze actions are from static
7773 -- expressions and one of the important reasons we are doing this
7774 -- special analysis is to get these freeze actions. Therefore we turn
7775 -- off the In_Spec_Expression mode to propagate these freeze actions.
7776 -- This also means they get properly analyzed and expanded.
7778 In_Spec_Expression := False;
7780 -- Freeze the subtype mark before a qualified expression on an
7781 -- allocator as per AARM 13.14(4.a). This is needed in particular to
7782 -- generate predicate functions.
7784 if Present (Allocator_Typ) then
7785 Freeze_Before (P, Allocator_Typ);
7786 end if;
7788 -- Freeze the designated type of an allocator (RM 13.14(13))
7790 if Present (Desig_Typ) then
7791 Freeze_Before (P, Desig_Typ);
7792 end if;
7794 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7795 -- the enumeration representation clause exception in the loop above.
7797 if Present (Typ) then
7798 Freeze_Before (P, Typ);
7799 end if;
7801 -- Freeze name if one is present (RM 13.14(11))
7803 if Present (Nam) then
7804 Freeze_Before (P, Nam);
7805 end if;
7807 -- Restore In_Spec_Expression flag
7809 In_Spec_Expression := In_Spec_Exp;
7810 end Freeze_Expression;
7812 -----------------------
7813 -- Freeze_Expr_Types --
7814 -----------------------
7816 procedure Freeze_Expr_Types
7817 (Def_Id : Entity_Id;
7818 Typ : Entity_Id;
7819 Expr : Node_Id;
7820 N : Node_Id)
7822 function Cloned_Expression return Node_Id;
7823 -- Build a duplicate of the expression of the return statement that has
7824 -- no defining entities shared with the original expression.
7826 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
7827 -- Freeze all types referenced in the subtree rooted at Node
7829 -----------------------
7830 -- Cloned_Expression --
7831 -----------------------
7833 function Cloned_Expression return Node_Id is
7834 function Clone_Id (Node : Node_Id) return Traverse_Result;
7835 -- Tree traversal routine that clones the defining identifier of
7836 -- iterator and loop parameter specification nodes.
7838 --------------
7839 -- Clone_Id --
7840 --------------
7842 function Clone_Id (Node : Node_Id) return Traverse_Result is
7843 begin
7844 if Nkind (Node) in
7845 N_Iterator_Specification | N_Loop_Parameter_Specification
7846 then
7847 Set_Defining_Identifier
7848 (Node, New_Copy (Defining_Identifier (Node)));
7849 end if;
7851 return OK;
7852 end Clone_Id;
7854 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
7856 -- Local variable
7858 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
7860 -- Start of processing for Cloned_Expression
7862 begin
7863 -- We must duplicate the expression with semantic information to
7864 -- inherit the decoration of global entities in generic instances.
7865 -- Set the parent of the new node to be the parent of the original
7866 -- to get the proper context, which is needed for complete error
7867 -- reporting and for semantic analysis.
7869 Set_Parent (Dup_Expr, Parent (Expr));
7871 -- Replace the defining identifier of iterators and loop param
7872 -- specifications by a clone to ensure that the cloned expression
7873 -- and the original expression don't have shared identifiers;
7874 -- otherwise, as part of the preanalysis of the expression, these
7875 -- shared identifiers may be left decorated with itypes which
7876 -- will not be available in the tree passed to the backend.
7878 Clone_Def_Ids (Dup_Expr);
7880 return Dup_Expr;
7881 end Cloned_Expression;
7883 ----------------------
7884 -- Freeze_Type_Refs --
7885 ----------------------
7887 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
7888 procedure Check_And_Freeze_Type (Typ : Entity_Id);
7889 -- Check that Typ is fully declared and freeze it if so
7891 ---------------------------
7892 -- Check_And_Freeze_Type --
7893 ---------------------------
7895 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
7896 begin
7897 -- Skip Itypes created by the preanalysis, and itypes whose
7898 -- scope is another type (i.e. component subtypes that depend
7899 -- on a discriminant),
7901 if Is_Itype (Typ)
7902 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
7903 or else Is_Type (Scope (Typ)))
7904 then
7905 return;
7906 end if;
7908 -- This provides a better error message than generating primitives
7909 -- whose compilation fails much later. Refine the error message if
7910 -- possible.
7912 Check_Fully_Declared (Typ, Node);
7914 if Error_Posted (Node) then
7915 if Has_Private_Component (Typ)
7916 and then not Is_Private_Type (Typ)
7917 then
7918 Error_Msg_NE ("\type& has private component", Node, Typ);
7919 end if;
7921 else
7922 Freeze_Before (N, Typ);
7923 end if;
7924 end Check_And_Freeze_Type;
7926 -- Start of processing for Freeze_Type_Refs
7928 begin
7929 -- Check that a type referenced by an entity can be frozen
7931 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
7932 -- The entity itself may be a type, as in a membership test
7933 -- or an attribute reference. Freezing its own type would be
7934 -- incomplete if the entity is derived or an extension.
7936 if Is_Type (Entity (Node)) then
7937 Check_And_Freeze_Type (Entity (Node));
7939 else
7940 Check_And_Freeze_Type (Etype (Entity (Node)));
7941 end if;
7943 -- Check that the enclosing record type can be frozen
7945 if Ekind (Entity (Node)) in E_Component | E_Discriminant then
7946 Check_And_Freeze_Type (Scope (Entity (Node)));
7947 end if;
7949 -- Freezing an access type does not freeze the designated type, but
7950 -- freezing conversions between access to interfaces requires that
7951 -- the interface types themselves be frozen, so that dispatch table
7952 -- entities are properly created.
7954 -- Unclear whether a more general rule is needed ???
7956 elsif Nkind (Node) = N_Type_Conversion
7957 and then Is_Access_Type (Etype (Node))
7958 and then Is_Interface (Designated_Type (Etype (Node)))
7959 then
7960 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7961 end if;
7963 -- An implicit dereference freezes the designated type. In the case
7964 -- of a dispatching call whose controlling argument is an access
7965 -- type, the dereference is not made explicit, so we must check for
7966 -- such a call and freeze the designated type.
7968 if Nkind (Node) in N_Has_Etype
7969 and then Present (Etype (Node))
7970 and then Is_Access_Type (Etype (Node))
7971 then
7972 if Nkind (Parent (Node)) = N_Function_Call
7973 and then Node = Controlling_Argument (Parent (Node))
7974 then
7975 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7977 -- An explicit dereference freezes the designated type as well,
7978 -- even though that type is not attached to an entity in the
7979 -- expression.
7981 elsif Nkind (Parent (Node)) = N_Explicit_Dereference then
7982 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7983 end if;
7985 -- An iterator specification freezes the iterator type, even though
7986 -- that type is not attached to an entity in the construct.
7988 elsif Nkind (Node) in N_Has_Etype
7989 and then Nkind (Parent (Node)) = N_Iterator_Specification
7990 and then Node = Name (Parent (Node))
7991 then
7992 declare
7993 Iter : constant Node_Id :=
7994 Find_Value_Of_Aspect (Etype (Node), Aspect_Default_Iterator);
7996 begin
7997 if Present (Iter) then
7998 Check_And_Freeze_Type (Etype (Iter));
7999 end if;
8000 end;
8001 end if;
8003 -- No point in posting several errors on the same expression
8005 if Serious_Errors_Detected > 0 then
8006 return Abandon;
8007 else
8008 return OK;
8009 end if;
8010 end Freeze_Type_Refs;
8012 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
8014 -- Local variables
8016 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
8017 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
8018 Dup_Expr : constant Node_Id := Cloned_Expression;
8020 -- Start of processing for Freeze_Expr_Types
8022 begin
8023 -- Preanalyze a duplicate of the expression to have available the
8024 -- minimum decoration needed to locate referenced unfrozen types
8025 -- without adding any decoration to the function expression.
8027 -- This routine is also applied to expressions in the contract for
8028 -- the subprogram. If that happens when expanding the code for
8029 -- pre/postconditions during expansion of the subprogram body, the
8030 -- subprogram is already installed.
8032 if Def_Id /= Current_Scope then
8033 Push_Scope (Def_Id);
8034 Install_Formals (Def_Id);
8036 Preanalyze_Spec_Expression (Dup_Expr, Typ);
8037 End_Scope;
8038 else
8039 Preanalyze_Spec_Expression (Dup_Expr, Typ);
8040 end if;
8042 -- Restore certain attributes of Def_Id since the preanalysis may
8043 -- have introduced itypes to this scope, thus modifying attributes
8044 -- First_Entity and Last_Entity.
8046 Set_First_Entity (Def_Id, Saved_First_Entity);
8047 Set_Last_Entity (Def_Id, Saved_Last_Entity);
8049 if Present (Last_Entity (Def_Id)) then
8050 Set_Next_Entity (Last_Entity (Def_Id), Empty);
8051 end if;
8053 -- Freeze all types referenced in the expression
8055 Freeze_References (Dup_Expr);
8056 end Freeze_Expr_Types;
8058 -----------------------------
8059 -- Freeze_Fixed_Point_Type --
8060 -----------------------------
8062 -- Certain fixed-point types and subtypes, including implicit base types
8063 -- and declared first subtypes, have not yet set up a range. This is
8064 -- because the range cannot be set until the Small and Size values are
8065 -- known, and these are not known till the type is frozen.
8067 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
8068 -- whose bounds are unanalyzed real literals. This routine will recognize
8069 -- this case, and transform this range node into a properly typed range
8070 -- with properly analyzed and resolved values.
8072 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
8073 Rng : constant Node_Id := Scalar_Range (Typ);
8074 Lo : constant Node_Id := Low_Bound (Rng);
8075 Hi : constant Node_Id := High_Bound (Rng);
8076 Btyp : constant Entity_Id := Base_Type (Typ);
8077 Brng : constant Node_Id := Scalar_Range (Btyp);
8078 BLo : constant Node_Id := Low_Bound (Brng);
8079 BHi : constant Node_Id := High_Bound (Brng);
8080 Par : constant Entity_Id := First_Subtype (Typ);
8081 Small : constant Ureal := Small_Value (Typ);
8082 Loval : Ureal;
8083 Hival : Ureal;
8084 Atype : Entity_Id;
8086 Orig_Lo : Ureal;
8087 Orig_Hi : Ureal;
8088 -- Save original bounds (for shaving tests)
8090 Actual_Size : Nat;
8091 -- Actual size chosen
8093 function Fsize (Lov, Hiv : Ureal) return Nat;
8094 -- Returns size of type with given bounds. Also leaves these
8095 -- bounds set as the current bounds of the Typ.
8097 function Larger (A, B : Ureal) return Boolean;
8098 -- Returns true if A > B with a margin of Typ'Small
8100 function Smaller (A, B : Ureal) return Boolean;
8101 -- Returns true if A < B with a margin of Typ'Small
8103 -----------
8104 -- Fsize --
8105 -----------
8107 function Fsize (Lov, Hiv : Ureal) return Nat is
8108 begin
8109 Set_Realval (Lo, Lov);
8110 Set_Realval (Hi, Hiv);
8111 return Minimum_Size (Typ);
8112 end Fsize;
8114 ------------
8115 -- Larger --
8116 ------------
8118 function Larger (A, B : Ureal) return Boolean is
8119 begin
8120 return A > B and then A - Small > B;
8121 end Larger;
8123 -------------
8124 -- Smaller --
8125 -------------
8127 function Smaller (A, B : Ureal) return Boolean is
8128 begin
8129 return A < B and then A + Small < B;
8130 end Smaller;
8132 -- Start of processing for Freeze_Fixed_Point_Type
8134 begin
8135 -- The type, or its first subtype if we are freezing the anonymous
8136 -- base, may have a delayed Small aspect. It must be analyzed now,
8137 -- so that all characteristics of the type (size, bounds) can be
8138 -- computed and validated in the call to Minimum_Size that follows.
8140 if Has_Delayed_Aspects (First_Subtype (Typ)) then
8141 Analyze_Aspects_At_Freeze_Point (First_Subtype (Typ));
8142 Set_Has_Delayed_Aspects (First_Subtype (Typ), False);
8143 end if;
8145 -- If Esize of a subtype has not previously been set, set it now
8147 if Unknown_Esize (Typ) then
8148 Atype := Ancestor_Subtype (Typ);
8150 if Present (Atype) then
8151 Set_Esize (Typ, Esize (Atype));
8152 else
8153 Set_Esize (Typ, Esize (Btyp));
8154 end if;
8155 end if;
8157 -- The 'small attribute may have been specified with an aspect,
8158 -- in which case it is processed after a subtype declaration, so
8159 -- inherit now the specified value.
8161 if Typ /= Par
8162 and then Present (Find_Aspect (Par, Aspect_Small))
8163 then
8164 Set_Small_Value (Typ, Small_Value (Par));
8165 end if;
8167 -- Immediate return if the range is already analyzed. This means that
8168 -- the range is already set, and does not need to be computed by this
8169 -- routine.
8171 if Analyzed (Rng) then
8172 return;
8173 end if;
8175 -- Immediate return if either of the bounds raises Constraint_Error
8177 if Raises_Constraint_Error (Lo)
8178 or else Raises_Constraint_Error (Hi)
8179 then
8180 return;
8181 end if;
8183 Loval := Realval (Lo);
8184 Hival := Realval (Hi);
8186 Orig_Lo := Loval;
8187 Orig_Hi := Hival;
8189 -- Ordinary fixed-point case
8191 if Is_Ordinary_Fixed_Point_Type (Typ) then
8193 -- For the ordinary fixed-point case, we are allowed to fudge the
8194 -- end-points up or down by small. Generally we prefer to fudge up,
8195 -- i.e. widen the bounds for non-model numbers so that the end points
8196 -- are included. However there are cases in which this cannot be
8197 -- done, and indeed cases in which we may need to narrow the bounds.
8198 -- The following circuit makes the decision.
8200 -- Note: our terminology here is that Incl_EP means that the bounds
8201 -- are widened by Small if necessary to include the end points, and
8202 -- Excl_EP means that the bounds are narrowed by Small to exclude the
8203 -- end-points if this reduces the size.
8205 -- Note that in the Incl case, all we care about is including the
8206 -- end-points. In the Excl case, we want to narrow the bounds as
8207 -- much as permitted by the RM, to give the smallest possible size.
8209 Fudge : declare
8210 Loval_Incl_EP : Ureal;
8211 Hival_Incl_EP : Ureal;
8213 Loval_Excl_EP : Ureal;
8214 Hival_Excl_EP : Ureal;
8216 Size_Incl_EP : Nat;
8217 Size_Excl_EP : Nat;
8219 Model_Num : Ureal;
8220 First_Subt : Entity_Id;
8221 Actual_Lo : Ureal;
8222 Actual_Hi : Ureal;
8224 begin
8225 -- First step. Base types are required to be symmetrical. Right
8226 -- now, the base type range is a copy of the first subtype range.
8227 -- This will be corrected before we are done, but right away we
8228 -- need to deal with the case where both bounds are non-negative.
8229 -- In this case, we set the low bound to the negative of the high
8230 -- bound, to make sure that the size is computed to include the
8231 -- required sign. Note that we do not need to worry about the
8232 -- case of both bounds negative, because the sign will be dealt
8233 -- with anyway. Furthermore we can't just go making such a bound
8234 -- symmetrical, since in a twos-complement system, there is an
8235 -- extra negative value which could not be accommodated on the
8236 -- positive side.
8238 if Typ = Btyp
8239 and then not UR_Is_Negative (Loval)
8240 and then Hival > Loval
8241 then
8242 Loval := -Hival;
8243 Set_Realval (Lo, Loval);
8244 end if;
8246 -- Compute the fudged bounds. If the bound is a model number, (or
8247 -- greater if given low bound, smaller if high bound) then we do
8248 -- nothing to include it, but we are allowed to backoff to the
8249 -- next adjacent model number when we exclude it. If it is not a
8250 -- model number then we straddle the two values with the model
8251 -- numbers on either side.
8253 Model_Num := UR_Trunc (Loval / Small) * Small;
8255 if UR_Ge (Loval, Model_Num) then
8256 Loval_Incl_EP := Model_Num;
8257 else
8258 Loval_Incl_EP := Model_Num - Small;
8259 end if;
8261 -- The low value excluding the end point is Small greater, but
8262 -- we do not do this exclusion if the low value is positive,
8263 -- since it can't help the size and could actually hurt by
8264 -- crossing the high bound.
8266 if UR_Is_Negative (Loval_Incl_EP) then
8267 Loval_Excl_EP := Loval_Incl_EP + Small;
8269 -- If the value went from negative to zero, then we have the
8270 -- case where Loval_Incl_EP is the model number just below
8271 -- zero, so we want to stick to the negative value for the
8272 -- base type to maintain the condition that the size will
8273 -- include signed values.
8275 if Typ = Btyp
8276 and then UR_Is_Zero (Loval_Excl_EP)
8277 then
8278 Loval_Excl_EP := Loval_Incl_EP;
8279 end if;
8281 else
8282 Loval_Excl_EP := Loval_Incl_EP;
8283 end if;
8285 -- Similar processing for upper bound and high value
8287 Model_Num := UR_Trunc (Hival / Small) * Small;
8289 if UR_Le (Hival, Model_Num) then
8290 Hival_Incl_EP := Model_Num;
8291 else
8292 Hival_Incl_EP := Model_Num + Small;
8293 end if;
8295 if UR_Is_Positive (Hival_Incl_EP) then
8296 Hival_Excl_EP := Hival_Incl_EP - Small;
8297 else
8298 Hival_Excl_EP := Hival_Incl_EP;
8299 end if;
8301 -- One further adjustment is needed. In the case of subtypes, we
8302 -- cannot go outside the range of the base type, or we get
8303 -- peculiarities, and the base type range is already set. This
8304 -- only applies to the Incl values, since clearly the Excl values
8305 -- are already as restricted as they are allowed to be.
8307 if Typ /= Btyp then
8308 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
8309 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
8310 end if;
8312 -- Get size including and excluding end points
8314 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
8315 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
8317 -- No need to exclude end-points if it does not reduce size
8319 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
8320 Loval_Excl_EP := Loval_Incl_EP;
8321 end if;
8323 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
8324 Hival_Excl_EP := Hival_Incl_EP;
8325 end if;
8327 -- Now we set the actual size to be used. We want to use the
8328 -- bounds fudged up to include the end-points but only if this
8329 -- can be done without violating a specifically given size
8330 -- size clause or causing an unacceptable increase in size.
8332 -- Case of size clause given
8334 if Has_Size_Clause (Typ) then
8336 -- Use the inclusive size only if it is consistent with
8337 -- the explicitly specified size.
8339 if Size_Incl_EP <= RM_Size (Typ) then
8340 Actual_Lo := Loval_Incl_EP;
8341 Actual_Hi := Hival_Incl_EP;
8342 Actual_Size := Size_Incl_EP;
8344 -- If the inclusive size is too large, we try excluding
8345 -- the end-points (will be caught later if does not work).
8347 else
8348 Actual_Lo := Loval_Excl_EP;
8349 Actual_Hi := Hival_Excl_EP;
8350 Actual_Size := Size_Excl_EP;
8351 end if;
8353 -- Case of size clause not given
8355 else
8356 -- If we have a base type whose corresponding first subtype
8357 -- has an explicit size that is large enough to include our
8358 -- end-points, then do so. There is no point in working hard
8359 -- to get a base type whose size is smaller than the specified
8360 -- size of the first subtype.
8362 First_Subt := First_Subtype (Typ);
8364 if Has_Size_Clause (First_Subt)
8365 and then Size_Incl_EP <= Esize (First_Subt)
8366 then
8367 Actual_Size := Size_Incl_EP;
8368 Actual_Lo := Loval_Incl_EP;
8369 Actual_Hi := Hival_Incl_EP;
8371 -- If excluding the end-points makes the size smaller and
8372 -- results in a size of 8,16,32,64, then we take the smaller
8373 -- size. For the 64 case, this is compulsory. For the other
8374 -- cases, it seems reasonable. We like to include end points
8375 -- if we can, but not at the expense of moving to the next
8376 -- natural boundary of size.
8378 elsif Size_Incl_EP /= Size_Excl_EP
8379 and then Addressable (Size_Excl_EP)
8380 then
8381 Actual_Size := Size_Excl_EP;
8382 Actual_Lo := Loval_Excl_EP;
8383 Actual_Hi := Hival_Excl_EP;
8385 -- Otherwise we can definitely include the end points
8387 else
8388 Actual_Size := Size_Incl_EP;
8389 Actual_Lo := Loval_Incl_EP;
8390 Actual_Hi := Hival_Incl_EP;
8391 end if;
8393 -- One pathological case: normally we never fudge a low bound
8394 -- down, since it would seem to increase the size (if it has
8395 -- any effect), but for ranges containing single value, or no
8396 -- values, the high bound can be small too large. Consider:
8398 -- type t is delta 2.0**(-14)
8399 -- range 131072.0 .. 0;
8401 -- That lower bound is *just* outside the range of 32 bits, and
8402 -- does need fudging down in this case. Note that the bounds
8403 -- will always have crossed here, since the high bound will be
8404 -- fudged down if necessary, as in the case of:
8406 -- type t is delta 2.0**(-14)
8407 -- range 131072.0 .. 131072.0;
8409 -- So we detect the situation by looking for crossed bounds,
8410 -- and if the bounds are crossed, and the low bound is greater
8411 -- than zero, we will always back it off by small, since this
8412 -- is completely harmless.
8414 if Actual_Lo > Actual_Hi then
8415 if UR_Is_Positive (Actual_Lo) then
8416 Actual_Lo := Loval_Incl_EP - Small;
8417 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8419 -- And of course, we need to do exactly the same parallel
8420 -- fudge for flat ranges in the negative region.
8422 elsif UR_Is_Negative (Actual_Hi) then
8423 Actual_Hi := Hival_Incl_EP + Small;
8424 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8425 end if;
8426 end if;
8427 end if;
8429 Set_Realval (Lo, Actual_Lo);
8430 Set_Realval (Hi, Actual_Hi);
8431 end Fudge;
8433 -- Enforce some limitations for ordinary fixed-point types. They come
8434 -- from an exact algorithm used to implement Text_IO.Fixed_IO and the
8435 -- Fore, Image and Value attributes. The requirement on the Small is
8436 -- to lie in the range 2**(-(Siz - 1)) .. 2**(Siz - 1) for a type of
8437 -- Siz bits (Siz=32,64,128) and the requirement on the bounds is to
8438 -- be smaller in magnitude than 10.0**N * 2**(Siz - 1), where N is
8439 -- given by the formula N = floor ((Siz - 1) * log 2 / log 10).
8441 -- If the bounds of a 32-bit type are too large, force 64-bit type
8443 if Actual_Size <= 32
8444 and then Small <= Ureal_2_31
8445 and then (Smaller (Expr_Value_R (Lo), Ureal_M_2_10_18)
8446 or else Larger (Expr_Value_R (Hi), Ureal_2_10_18))
8447 then
8448 Actual_Size := 33;
8449 end if;
8451 -- If the bounds of a 64-bit type are too large, force 128-bit type
8453 if System_Max_Integer_Size = 128
8454 and then Actual_Size <= 64
8455 and then Small <= Ureal_2_63
8456 and then (Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36)
8457 or else Larger (Expr_Value_R (Hi), Ureal_9_10_36))
8458 then
8459 Actual_Size := 65;
8460 end if;
8462 -- Give error messages for first subtypes and not base types, as the
8463 -- bounds of base types are always maximum for their size, see below.
8465 if System_Max_Integer_Size < 128 and then Typ /= Btyp then
8467 -- See the 128-bit case below for the reason why we cannot test
8468 -- against the 2**(-63) .. 2**63 range. This quirk should have
8469 -- been kludged around as in the 128-bit case below, but it was
8470 -- not and we end up with a ludicrous range as a result???
8472 if Small < Ureal_2_M_80 then
8473 Error_Msg_Name_1 := Name_Small;
8474 Error_Msg_N
8475 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", Typ);
8477 elsif Small > Ureal_2_80 then
8478 Error_Msg_Name_1 := Name_Small;
8479 Error_Msg_N
8480 ("`&''%` too large, maximum allowed is 2.0'*'*80", Typ);
8481 end if;
8483 if Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36) then
8484 Error_Msg_Name_1 := Name_First;
8485 Error_Msg_N
8486 ("`&''%` too small, minimum allowed is -9.0E+36", Typ);
8487 end if;
8489 if Larger (Expr_Value_R (Hi), Ureal_9_10_36) then
8490 Error_Msg_Name_1 := Name_Last;
8491 Error_Msg_N
8492 ("`&''%` too large, maximum allowed is 9.0E+36", Typ);
8493 end if;
8495 elsif System_Max_Integer_Size = 128 and then Typ /= Btyp then
8497 -- ACATS c35902d tests a delta equal to 2**(-(Max_Mantissa + 1))
8498 -- but we cannot really support anything smaller than Fine_Delta
8499 -- because of the way we implement I/O for fixed point types???
8501 if Small = Ureal_2_M_128 then
8502 null;
8504 elsif Small < Ureal_2_M_127 then
8505 Error_Msg_Name_1 := Name_Small;
8506 Error_Msg_N
8507 ("`&''%` too small, minimum allowed is 2.0'*'*(-127)", Typ);
8509 elsif Small > Ureal_2_127 then
8510 Error_Msg_Name_1 := Name_Small;
8511 Error_Msg_N
8512 ("`&''%` too large, maximum allowed is 2.0'*'*127", Typ);
8513 end if;
8515 if Actual_Size > 64
8516 and then (Norm_Num (Small) > Uint_2 ** 127
8517 or else Norm_Den (Small) > Uint_2 ** 127)
8518 and then Small /= Ureal_2_M_128
8519 then
8520 Error_Msg_Name_1 := Name_Small;
8521 Error_Msg_N
8522 ("`&''%` not the ratio of two 128-bit integers", Typ);
8523 end if;
8525 if Smaller (Expr_Value_R (Lo), Ureal_M_10_76) then
8526 Error_Msg_Name_1 := Name_First;
8527 Error_Msg_N
8528 ("`&''%` too small, minimum allowed is -1.0E+76", Typ);
8529 end if;
8531 if Larger (Expr_Value_R (Hi), Ureal_10_76) then
8532 Error_Msg_Name_1 := Name_Last;
8533 Error_Msg_N
8534 ("`&''%` too large, maximum allowed is 1.0E+76", Typ);
8535 end if;
8536 end if;
8538 -- For the decimal case, none of this fudging is required, since there
8539 -- are no end-point problems in the decimal case (the end-points are
8540 -- always included).
8542 else
8543 Actual_Size := Fsize (Loval, Hival);
8544 end if;
8546 -- At this stage, the actual size has been calculated and the proper
8547 -- required bounds are stored in the low and high bounds.
8549 if Actual_Size > System_Max_Integer_Size then
8550 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
8551 Error_Msg_Uint_2 := UI_From_Int (System_Max_Integer_Size);
8552 Error_Msg_N
8553 ("size required (^) for type& too large, maximum allowed is ^",
8554 Typ);
8555 Actual_Size := System_Max_Integer_Size;
8556 end if;
8558 -- Check size against explicit given size
8560 if Has_Size_Clause (Typ) then
8561 if Actual_Size > RM_Size (Typ) then
8562 Error_Msg_Uint_1 := RM_Size (Typ);
8563 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
8564 Error_Msg_NE
8565 ("size given (^) for type& too small, minimum allowed is ^",
8566 Size_Clause (Typ), Typ);
8568 else
8569 Actual_Size := UI_To_Int (Esize (Typ));
8570 end if;
8572 -- Increase size to next natural boundary if no size clause given
8574 else
8575 if Actual_Size <= 8 then
8576 Actual_Size := 8;
8577 elsif Actual_Size <= 16 then
8578 Actual_Size := 16;
8579 elsif Actual_Size <= 32 then
8580 Actual_Size := 32;
8581 elsif Actual_Size <= 64 then
8582 Actual_Size := 64;
8583 else
8584 Actual_Size := 128;
8585 end if;
8587 Init_Esize (Typ, Actual_Size);
8588 Adjust_Esize_For_Alignment (Typ);
8589 end if;
8591 -- If we have a base type, then expand the bounds so that they extend to
8592 -- the full width of the allocated size in bits, to avoid junk range
8593 -- checks on intermediate computations.
8595 if Typ = Btyp then
8596 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
8597 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
8598 end if;
8600 -- Final step is to reanalyze the bounds using the proper type
8601 -- and set the Corresponding_Integer_Value fields of the literals.
8603 Set_Etype (Lo, Empty);
8604 Set_Analyzed (Lo, False);
8605 Analyze (Lo);
8607 -- Resolve with universal fixed if the base type, and with the base
8608 -- type if we are freezing a subtype. Note we can't resolve the base
8609 -- type with itself, that would be a reference before definition.
8610 -- The resolution of the bounds of a subtype, if they are given by real
8611 -- literals, includes the setting of the Corresponding_Integer_Value,
8612 -- as for other literals of a fixed-point type.
8614 if Typ = Btyp then
8615 Resolve (Lo, Universal_Fixed);
8616 Set_Corresponding_Integer_Value
8617 (Lo, UR_To_Uint (Realval (Lo) / Small));
8618 else
8619 Resolve (Lo, Btyp);
8620 end if;
8622 -- Similar processing for high bound
8624 Set_Etype (Hi, Empty);
8625 Set_Analyzed (Hi, False);
8626 Analyze (Hi);
8628 if Typ = Btyp then
8629 Resolve (Hi, Universal_Fixed);
8630 Set_Corresponding_Integer_Value
8631 (Hi, UR_To_Uint (Realval (Hi) / Small));
8632 else
8633 Resolve (Hi, Btyp);
8634 end if;
8636 -- Set type of range to correspond to bounds
8638 Set_Etype (Rng, Etype (Lo));
8640 -- Set Esize to calculated size if not set already
8642 if Unknown_Esize (Typ) then
8643 Init_Esize (Typ, Actual_Size);
8644 end if;
8646 -- Set RM_Size if not already set. If already set, check value
8648 declare
8649 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
8651 begin
8652 if RM_Size (Typ) /= Uint_0 then
8653 if RM_Size (Typ) < Minsiz then
8654 Error_Msg_Uint_1 := RM_Size (Typ);
8655 Error_Msg_Uint_2 := Minsiz;
8656 Error_Msg_NE
8657 ("size given (^) for type& too small, minimum allowed is ^",
8658 Size_Clause (Typ), Typ);
8659 end if;
8661 else
8662 Set_RM_Size (Typ, Minsiz);
8663 end if;
8664 end;
8666 -- Check for shaving
8668 if Comes_From_Source (Typ) then
8670 -- In SPARK mode the given bounds must be strictly representable
8672 if SPARK_Mode = On then
8673 if Orig_Lo < Expr_Value_R (Lo) then
8674 Error_Msg_NE
8675 ("declared low bound of type & is outside type range",
8676 Lo, Typ);
8677 end if;
8679 if Orig_Hi > Expr_Value_R (Hi) then
8680 Error_Msg_NE
8681 ("declared high bound of type & is outside type range",
8682 Hi, Typ);
8683 end if;
8685 else
8686 if Orig_Lo < Expr_Value_R (Lo) then
8687 Error_Msg_N
8688 ("declared low bound of type & is outside type range??", Typ);
8689 Error_Msg_N
8690 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
8691 end if;
8693 if Orig_Hi > Expr_Value_R (Hi) then
8694 Error_Msg_N
8695 ("declared high bound of type & is outside type range??",
8696 Typ);
8697 Error_Msg_N
8698 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
8699 end if;
8700 end if;
8701 end if;
8702 end Freeze_Fixed_Point_Type;
8704 ------------------
8705 -- Freeze_Itype --
8706 ------------------
8708 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
8709 L : List_Id;
8711 begin
8712 Set_Has_Delayed_Freeze (T);
8713 L := Freeze_Entity (T, N);
8715 if Is_Non_Empty_List (L) then
8716 Insert_Actions (N, L);
8717 end if;
8718 end Freeze_Itype;
8720 --------------------------
8721 -- Freeze_Static_Object --
8722 --------------------------
8724 procedure Freeze_Static_Object (E : Entity_Id) is
8726 Cannot_Be_Static : exception;
8727 -- Exception raised if the type of a static object cannot be made
8728 -- static. This happens if the type depends on non-global objects.
8730 procedure Ensure_Expression_Is_SA (N : Node_Id);
8731 -- Called to ensure that an expression used as part of a type definition
8732 -- is statically allocatable, which means that the expression type is
8733 -- statically allocatable, and the expression is either static, or a
8734 -- reference to a library level constant.
8736 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
8737 -- Called to mark a type as static, checking that it is possible
8738 -- to set the type as static. If it is not possible, then the
8739 -- exception Cannot_Be_Static is raised.
8741 -----------------------------
8742 -- Ensure_Expression_Is_SA --
8743 -----------------------------
8745 procedure Ensure_Expression_Is_SA (N : Node_Id) is
8746 Ent : Entity_Id;
8748 begin
8749 Ensure_Type_Is_SA (Etype (N));
8751 if Is_OK_Static_Expression (N) then
8752 return;
8754 elsif Nkind (N) = N_Identifier then
8755 Ent := Entity (N);
8757 if Present (Ent)
8758 and then Ekind (Ent) = E_Constant
8759 and then Is_Library_Level_Entity (Ent)
8760 then
8761 return;
8762 end if;
8763 end if;
8765 raise Cannot_Be_Static;
8766 end Ensure_Expression_Is_SA;
8768 -----------------------
8769 -- Ensure_Type_Is_SA --
8770 -----------------------
8772 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
8773 N : Node_Id;
8774 C : Entity_Id;
8776 begin
8777 -- If type is library level, we are all set
8779 if Is_Library_Level_Entity (Typ) then
8780 return;
8781 end if;
8783 -- We are also OK if the type already marked as statically allocated,
8784 -- which means we processed it before.
8786 if Is_Statically_Allocated (Typ) then
8787 return;
8788 end if;
8790 -- Mark type as statically allocated
8792 Set_Is_Statically_Allocated (Typ);
8794 -- Check that it is safe to statically allocate this type
8796 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
8797 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
8798 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
8800 elsif Is_Array_Type (Typ) then
8801 N := First_Index (Typ);
8802 while Present (N) loop
8803 Ensure_Type_Is_SA (Etype (N));
8804 Next_Index (N);
8805 end loop;
8807 Ensure_Type_Is_SA (Component_Type (Typ));
8809 elsif Is_Access_Type (Typ) then
8810 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
8812 declare
8813 F : Entity_Id;
8814 T : constant Entity_Id := Etype (Designated_Type (Typ));
8816 begin
8817 if T /= Standard_Void_Type then
8818 Ensure_Type_Is_SA (T);
8819 end if;
8821 F := First_Formal (Designated_Type (Typ));
8822 while Present (F) loop
8823 Ensure_Type_Is_SA (Etype (F));
8824 Next_Formal (F);
8825 end loop;
8826 end;
8828 else
8829 Ensure_Type_Is_SA (Designated_Type (Typ));
8830 end if;
8832 elsif Is_Record_Type (Typ) then
8833 C := First_Entity (Typ);
8834 while Present (C) loop
8835 if Ekind (C) = E_Discriminant
8836 or else Ekind (C) = E_Component
8837 then
8838 Ensure_Type_Is_SA (Etype (C));
8840 elsif Is_Type (C) then
8841 Ensure_Type_Is_SA (C);
8842 end if;
8844 Next_Entity (C);
8845 end loop;
8847 elsif Ekind (Typ) = E_Subprogram_Type then
8848 Ensure_Type_Is_SA (Etype (Typ));
8850 C := First_Formal (Typ);
8851 while Present (C) loop
8852 Ensure_Type_Is_SA (Etype (C));
8853 Next_Formal (C);
8854 end loop;
8856 else
8857 raise Cannot_Be_Static;
8858 end if;
8859 end Ensure_Type_Is_SA;
8861 -- Start of processing for Freeze_Static_Object
8863 begin
8864 Ensure_Type_Is_SA (Etype (E));
8866 exception
8867 when Cannot_Be_Static =>
8869 -- If the object that cannot be static is imported or exported, then
8870 -- issue an error message saying that this object cannot be imported
8871 -- or exported. If it has an address clause it is an overlay in the
8872 -- current partition and the static requirement is not relevant.
8873 -- Do not issue any error message when ignoring rep clauses.
8875 if Ignore_Rep_Clauses then
8876 null;
8878 elsif Is_Imported (E) then
8879 if No (Address_Clause (E)) then
8880 Error_Msg_N
8881 ("& cannot be imported (local type is not constant)", E);
8882 end if;
8884 -- Otherwise must be exported, something is wrong if compiler
8885 -- is marking something as statically allocated which cannot be).
8887 else pragma Assert (Is_Exported (E));
8888 Error_Msg_N
8889 ("& cannot be exported (local type is not constant)", E);
8890 end if;
8891 end Freeze_Static_Object;
8893 -----------------------
8894 -- Freeze_Subprogram --
8895 -----------------------
8897 procedure Freeze_Subprogram (E : Entity_Id) is
8898 function Check_Extra_Formals (E : Entity_Id) return Boolean;
8899 -- Return True if the decoration of the attributes associated with extra
8900 -- formals are properly set.
8902 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
8903 -- Set the conventions of all anonymous access-to-subprogram formals and
8904 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8906 -------------------------
8907 -- Check_Extra_Formals --
8908 -------------------------
8910 function Check_Extra_Formals (E : Entity_Id) return Boolean is
8911 Last_Formal : Entity_Id := Empty;
8912 Formal : Entity_Id;
8913 Has_Extra_Formals : Boolean := False;
8915 begin
8916 -- No check required if expansion is disabled because extra
8917 -- formals are only generated when we are generating code.
8918 -- See Create_Extra_Formals.
8920 if not Expander_Active then
8921 return True;
8922 end if;
8924 -- Check attribute Extra_Formal: If available, it must be set only
8925 -- on the last formal of E.
8927 Formal := First_Formal (E);
8928 while Present (Formal) loop
8929 if Present (Extra_Formal (Formal)) then
8930 if Has_Extra_Formals then
8931 return False;
8932 end if;
8934 Has_Extra_Formals := True;
8935 end if;
8937 Last_Formal := Formal;
8938 Next_Formal (Formal);
8939 end loop;
8941 -- Check attribute Extra_Accessibility_Of_Result
8943 if Ekind (E) in E_Function | E_Subprogram_Type
8944 and then Needs_Result_Accessibility_Level (E)
8945 and then No (Extra_Accessibility_Of_Result (E))
8946 then
8947 return False;
8948 end if;
8950 -- Check attribute Extra_Formals: If E has extra formals, then this
8951 -- attribute must point to the first extra formal of E.
8953 if Has_Extra_Formals then
8954 return Present (Extra_Formals (E))
8955 and then Present (Extra_Formal (Last_Formal))
8956 and then Extra_Formal (Last_Formal) = Extra_Formals (E);
8958 -- When E has no formals, the first extra formal is available through
8959 -- the Extra_Formals attribute.
8961 elsif Present (Extra_Formals (E)) then
8962 return No (First_Formal (E));
8964 else
8965 return True;
8966 end if;
8967 end Check_Extra_Formals;
8969 ----------------------------
8970 -- Set_Profile_Convention --
8971 ----------------------------
8973 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
8974 Conv : constant Convention_Id := Convention (Subp_Id);
8976 procedure Set_Type_Convention (Typ : Entity_Id);
8977 -- Set the convention of anonymous access-to-subprogram type Typ and
8978 -- its designated type to Conv.
8980 -------------------------
8981 -- Set_Type_Convention --
8982 -------------------------
8984 procedure Set_Type_Convention (Typ : Entity_Id) is
8985 begin
8986 -- Set the convention on both the anonymous access-to-subprogram
8987 -- type and the subprogram type it points to because both types
8988 -- participate in conformance-related checks.
8990 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
8991 Set_Convention (Typ, Conv);
8992 Set_Convention (Designated_Type (Typ), Conv);
8993 end if;
8994 end Set_Type_Convention;
8996 -- Local variables
8998 Formal : Entity_Id;
9000 -- Start of processing for Set_Profile_Convention
9002 begin
9003 Formal := First_Formal (Subp_Id);
9004 while Present (Formal) loop
9005 Set_Type_Convention (Etype (Formal));
9006 Next_Formal (Formal);
9007 end loop;
9009 if Ekind (Subp_Id) = E_Function then
9010 Set_Type_Convention (Etype (Subp_Id));
9011 end if;
9012 end Set_Profile_Convention;
9014 -- Local variables
9016 F : Entity_Id;
9017 Retype : Entity_Id;
9019 -- Start of processing for Freeze_Subprogram
9021 begin
9022 -- Subprogram may not have an address clause unless it is imported
9024 if Present (Address_Clause (E)) then
9025 if not Is_Imported (E) then
9026 Error_Msg_N
9027 ("address clause can only be given for imported subprogram",
9028 Name (Address_Clause (E)));
9029 end if;
9030 end if;
9032 -- Reset the Pure indication on an imported subprogram unless an
9033 -- explicit Pure_Function pragma was present or the subprogram is an
9034 -- intrinsic. We do this because otherwise it is an insidious error
9035 -- to call a non-pure function from pure unit and have calls
9036 -- mysteriously optimized away. What happens here is that the Import
9037 -- can bypass the normal check to ensure that pure units call only pure
9038 -- subprograms.
9040 -- The reason for the intrinsic exception is that in general, intrinsic
9041 -- functions (such as shifts) are pure anyway. The only exceptions are
9042 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
9043 -- in any case, so no problem arises.
9045 if Is_Imported (E)
9046 and then Is_Pure (E)
9047 and then not Has_Pragma_Pure_Function (E)
9048 and then not Is_Intrinsic_Subprogram (E)
9049 then
9050 Set_Is_Pure (E, False);
9051 end if;
9053 -- For C++ constructors check that their external name has been given
9054 -- (either in pragma CPP_Constructor or in a pragma import).
9056 if Is_Constructor (E)
9057 and then Convention (E) = Convention_CPP
9058 and then
9059 (No (Interface_Name (E))
9060 or else String_Equal
9061 (L => Strval (Interface_Name (E)),
9062 R => Strval (Get_Default_External_Name (E))))
9063 then
9064 Error_Msg_N
9065 ("'C++ constructor must have external name or link name", E);
9066 end if;
9068 -- We also reset the Pure indication on a subprogram with an Address
9069 -- parameter, because the parameter may be used as a pointer and the
9070 -- referenced data may change even if the address value does not.
9072 -- Note that if the programmer gave an explicit Pure_Function pragma,
9073 -- then we believe the programmer, and leave the subprogram Pure. We
9074 -- also suppress this check on run-time files.
9076 if Is_Pure (E)
9077 and then Is_Subprogram (E)
9078 and then not Has_Pragma_Pure_Function (E)
9079 and then not Is_Internal_Unit (Current_Sem_Unit)
9080 then
9081 Check_Function_With_Address_Parameter (E);
9082 end if;
9084 -- Ensure that all anonymous access-to-subprogram types inherit the
9085 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
9086 -- not done for a defaulted convention Ada because those types also
9087 -- default to Ada. Convention Protected must not be propagated when
9088 -- the subprogram is an entry because this would be illegal. The only
9089 -- way to force convention Protected on these kinds of types is to
9090 -- include keyword "protected" in the access definition.
9092 if Convention (E) /= Convention_Ada
9093 and then Convention (E) /= Convention_Protected
9094 then
9095 Set_Profile_Convention (E);
9096 end if;
9098 -- For non-foreign convention subprograms, this is where we create
9099 -- the extra formals (for accessibility level and constrained bit
9100 -- information). We delay this till the freeze point precisely so
9101 -- that we know the convention.
9103 if not Has_Foreign_Convention (E) then
9104 if No (Extra_Formals (E)) then
9106 -- Extra formals are shared by derived subprograms; therefore, if
9107 -- the ultimate alias of E has been frozen before E then the extra
9108 -- formals have been added, but the attribute Extra_Formals is
9109 -- still unset (and must be set now).
9111 if Present (Alias (E))
9112 and then Is_Frozen (Ultimate_Alias (E))
9113 and then Present (Extra_Formals (Ultimate_Alias (E)))
9114 and then Last_Formal (Ultimate_Alias (E)) = Last_Formal (E)
9115 then
9116 Set_Extra_Formals (E, Extra_Formals (Ultimate_Alias (E)));
9118 if Ekind (E) = E_Function then
9119 Set_Extra_Accessibility_Of_Result (E,
9120 Extra_Accessibility_Of_Result (Ultimate_Alias (E)));
9121 end if;
9122 else
9123 Create_Extra_Formals (E);
9124 end if;
9125 end if;
9127 pragma Assert (Check_Extra_Formals (E));
9128 Set_Mechanisms (E);
9130 -- If this is convention Ada and a Valued_Procedure, that's odd
9132 if Ekind (E) = E_Procedure
9133 and then Is_Valued_Procedure (E)
9134 and then Convention (E) = Convention_Ada
9135 and then Warn_On_Export_Import
9136 then
9137 Error_Msg_N
9138 ("??Valued_Procedure has no effect for convention Ada", E);
9139 Set_Is_Valued_Procedure (E, False);
9140 end if;
9142 -- Case of foreign convention
9144 else
9145 Set_Mechanisms (E);
9147 -- For foreign conventions, warn about return of unconstrained array
9149 if Ekind (E) = E_Function then
9150 Retype := Underlying_Type (Etype (E));
9152 -- If no return type, probably some other error, e.g. a
9153 -- missing full declaration, so ignore.
9155 if No (Retype) then
9156 null;
9158 -- If the return type is generic, we have emitted a warning
9159 -- earlier on, and there is nothing else to check here. Specific
9160 -- instantiations may lead to erroneous behavior.
9162 elsif Is_Generic_Type (Etype (E)) then
9163 null;
9165 -- Display warning if returning unconstrained array
9167 elsif Is_Array_Type (Retype)
9168 and then not Is_Constrained (Retype)
9170 -- Check appropriate warning is enabled (should we check for
9171 -- Warnings (Off) on specific entities here, probably so???)
9173 and then Warn_On_Export_Import
9174 then
9175 Error_Msg_N
9176 ("?x?foreign convention function& should not return " &
9177 "unconstrained array", E);
9178 return;
9179 end if;
9180 end if;
9182 -- If any of the formals for an exported foreign convention
9183 -- subprogram have defaults, then emit an appropriate warning since
9184 -- this is odd (default cannot be used from non-Ada code)
9186 if Is_Exported (E) then
9187 F := First_Formal (E);
9188 while Present (F) loop
9189 if Warn_On_Export_Import
9190 and then Present (Default_Value (F))
9191 then
9192 Error_Msg_N
9193 ("?x?parameter cannot be defaulted in non-Ada call",
9194 Default_Value (F));
9195 end if;
9197 Next_Formal (F);
9198 end loop;
9199 end if;
9200 end if;
9202 -- Pragma Inline_Always is disallowed for dispatching subprograms
9203 -- because the address of such subprograms is saved in the dispatch
9204 -- table to support dispatching calls, and dispatching calls cannot
9205 -- be inlined. This is consistent with the restriction against using
9206 -- 'Access or 'Address on an Inline_Always subprogram.
9208 if Is_Dispatching_Operation (E)
9209 and then Has_Pragma_Inline_Always (E)
9210 then
9211 Error_Msg_N
9212 ("pragma Inline_Always not allowed for dispatching subprograms", E);
9213 end if;
9215 -- Because of the implicit representation of inherited predefined
9216 -- operators in the front-end, the overriding status of the operation
9217 -- may be affected when a full view of a type is analyzed, and this is
9218 -- not captured by the analysis of the corresponding type declaration.
9219 -- Therefore the correctness of a not-overriding indicator must be
9220 -- rechecked when the subprogram is frozen.
9222 if Nkind (E) = N_Defining_Operator_Symbol
9223 and then not Error_Posted (Parent (E))
9224 then
9225 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
9226 end if;
9228 Retype := Get_Fullest_View (Etype (E));
9230 if Transform_Function_Array
9231 and then Nkind (Parent (E)) = N_Function_Specification
9232 and then Is_Array_Type (Retype)
9233 and then Is_Constrained (Retype)
9234 and then not Is_Unchecked_Conversion_Instance (E)
9235 and then not Rewritten_For_C (E)
9236 then
9237 Build_Procedure_Form (Unit_Declaration_Node (E));
9238 end if;
9239 end Freeze_Subprogram;
9241 ----------------------
9242 -- Is_Fully_Defined --
9243 ----------------------
9245 function Is_Fully_Defined (T : Entity_Id) return Boolean is
9246 begin
9247 if Ekind (T) = E_Class_Wide_Type then
9248 return Is_Fully_Defined (Etype (T));
9250 elsif Is_Array_Type (T) then
9251 return Is_Fully_Defined (Component_Type (T));
9253 elsif Is_Record_Type (T)
9254 and not Is_Private_Type (T)
9255 then
9256 -- Verify that the record type has no components with private types
9257 -- without completion.
9259 declare
9260 Comp : Entity_Id;
9262 begin
9263 Comp := First_Component (T);
9264 while Present (Comp) loop
9265 if not Is_Fully_Defined (Etype (Comp)) then
9266 return False;
9267 end if;
9269 Next_Component (Comp);
9270 end loop;
9271 return True;
9272 end;
9274 -- For the designated type of an access to subprogram, all types in
9275 -- the profile must be fully defined.
9277 elsif Ekind (T) = E_Subprogram_Type then
9278 declare
9279 F : Entity_Id;
9281 begin
9282 F := First_Formal (T);
9283 while Present (F) loop
9284 if not Is_Fully_Defined (Etype (F)) then
9285 return False;
9286 end if;
9288 Next_Formal (F);
9289 end loop;
9291 return Is_Fully_Defined (Etype (T));
9292 end;
9294 else
9295 return not Is_Private_Type (T)
9296 or else Present (Full_View (Base_Type (T)));
9297 end if;
9298 end Is_Fully_Defined;
9300 ---------------------------------
9301 -- Process_Default_Expressions --
9302 ---------------------------------
9304 procedure Process_Default_Expressions
9305 (E : Entity_Id;
9306 After : in out Node_Id)
9308 Loc : constant Source_Ptr := Sloc (E);
9309 Dbody : Node_Id;
9310 Formal : Node_Id;
9311 Dcopy : Node_Id;
9312 Dnam : Entity_Id;
9314 begin
9315 Set_Default_Expressions_Processed (E);
9317 -- A subprogram instance and its associated anonymous subprogram share
9318 -- their signature. The default expression functions are defined in the
9319 -- wrapper packages for the anonymous subprogram, and should not be
9320 -- generated again for the instance.
9322 if Is_Generic_Instance (E)
9323 and then Present (Alias (E))
9324 and then Default_Expressions_Processed (Alias (E))
9325 then
9326 return;
9327 end if;
9329 Formal := First_Formal (E);
9330 while Present (Formal) loop
9331 if Present (Default_Value (Formal)) then
9333 -- We work with a copy of the default expression because we
9334 -- do not want to disturb the original, since this would mess
9335 -- up the conformance checking.
9337 Dcopy := New_Copy_Tree (Default_Value (Formal));
9339 -- The analysis of the expression may generate insert actions,
9340 -- which of course must not be executed. We wrap those actions
9341 -- in a procedure that is not called, and later on eliminated.
9342 -- The following cases have no side effects, and are analyzed
9343 -- directly.
9345 if Nkind (Dcopy) = N_Identifier
9346 or else Nkind (Dcopy) in N_Expanded_Name
9347 | N_Integer_Literal
9348 | N_Character_Literal
9349 | N_String_Literal
9350 | N_Real_Literal
9351 or else (Nkind (Dcopy) = N_Attribute_Reference
9352 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
9353 or else Known_Null (Dcopy)
9354 then
9355 -- If there is no default function, we must still do a full
9356 -- analyze call on the default value, to ensure that all error
9357 -- checks are performed, e.g. those associated with static
9358 -- evaluation. Note: this branch will always be taken if the
9359 -- analyzer is turned off (but we still need the error checks).
9361 -- Note: the setting of parent here is to meet the requirement
9362 -- that we can only analyze the expression while attached to
9363 -- the tree. Really the requirement is that the parent chain
9364 -- be set, we don't actually need to be in the tree.
9366 Set_Parent (Dcopy, Declaration_Node (Formal));
9367 Analyze (Dcopy);
9369 -- Default expressions are resolved with their own type if the
9370 -- context is generic, to avoid anomalies with private types.
9372 if Ekind (Scope (E)) = E_Generic_Package then
9373 Resolve (Dcopy);
9374 else
9375 Resolve (Dcopy, Etype (Formal));
9376 end if;
9378 -- If that resolved expression will raise constraint error,
9379 -- then flag the default value as raising constraint error.
9380 -- This allows a proper error message on the calls.
9382 if Raises_Constraint_Error (Dcopy) then
9383 Set_Raises_Constraint_Error (Default_Value (Formal));
9384 end if;
9386 -- If the default is a parameterless call, we use the name of
9387 -- the called function directly, and there is no body to build.
9389 elsif Nkind (Dcopy) = N_Function_Call
9390 and then No (Parameter_Associations (Dcopy))
9391 then
9392 null;
9394 -- Else construct and analyze the body of a wrapper procedure
9395 -- that contains an object declaration to hold the expression.
9396 -- Given that this is done only to complete the analysis, it is
9397 -- simpler to build a procedure than a function which might
9398 -- involve secondary stack expansion.
9400 else
9401 Dnam := Make_Temporary (Loc, 'D');
9403 Dbody :=
9404 Make_Subprogram_Body (Loc,
9405 Specification =>
9406 Make_Procedure_Specification (Loc,
9407 Defining_Unit_Name => Dnam),
9409 Declarations => New_List (
9410 Make_Object_Declaration (Loc,
9411 Defining_Identifier => Make_Temporary (Loc, 'T'),
9412 Object_Definition =>
9413 New_Occurrence_Of (Etype (Formal), Loc),
9414 Expression => New_Copy_Tree (Dcopy))),
9416 Handled_Statement_Sequence =>
9417 Make_Handled_Sequence_Of_Statements (Loc,
9418 Statements => Empty_List));
9420 Set_Scope (Dnam, Scope (E));
9421 Set_Assignment_OK (First (Declarations (Dbody)));
9422 Set_Is_Eliminated (Dnam);
9423 Insert_After (After, Dbody);
9424 Analyze (Dbody);
9425 After := Dbody;
9426 end if;
9427 end if;
9429 Next_Formal (Formal);
9430 end loop;
9431 end Process_Default_Expressions;
9433 ----------------------------------------
9434 -- Set_Component_Alignment_If_Not_Set --
9435 ----------------------------------------
9437 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
9438 begin
9439 -- Ignore if not base type, subtypes don't need anything
9441 if Typ /= Base_Type (Typ) then
9442 return;
9443 end if;
9445 -- Do not override existing representation
9447 if Is_Packed (Typ) then
9448 return;
9450 elsif Has_Specified_Layout (Typ) then
9451 return;
9453 elsif Component_Alignment (Typ) /= Calign_Default then
9454 return;
9456 else
9457 Set_Component_Alignment
9458 (Typ, Scope_Stack.Table
9459 (Scope_Stack.Last).Component_Alignment_Default);
9460 end if;
9461 end Set_Component_Alignment_If_Not_Set;
9463 --------------------------
9464 -- Set_SSO_From_Default --
9465 --------------------------
9467 procedure Set_SSO_From_Default (T : Entity_Id) is
9468 Reversed : Boolean;
9470 begin
9471 -- Set default SSO for an array or record base type, except in case of
9472 -- a type extension (which always inherits the SSO of its parent type).
9474 if Is_Base_Type (T)
9475 and then (Is_Array_Type (T)
9476 or else (Is_Record_Type (T)
9477 and then not (Is_Tagged_Type (T)
9478 and then Is_Derived_Type (T))))
9479 then
9480 Reversed :=
9481 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
9482 or else
9483 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
9485 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
9487 -- For a record type, if bit order is specified explicitly,
9488 -- then do not set SSO from default if not consistent. Note that
9489 -- we do not want to look at a Bit_Order attribute definition
9490 -- for a parent: if we were to inherit Bit_Order, then both
9491 -- SSO_Set_*_By_Default flags would have been cleared already
9492 -- (by Inherit_Aspects_At_Freeze_Point).
9494 and then not
9495 (Is_Record_Type (T)
9496 and then
9497 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
9498 and then Reverse_Bit_Order (T) /= Reversed)
9499 then
9500 -- If flags cause reverse storage order, then set the result. Note
9501 -- that we would have ignored the pragma setting the non default
9502 -- storage order in any case, hence the assertion at this point.
9504 pragma Assert
9505 (not Reversed or else Support_Nondefault_SSO_On_Target);
9507 Set_Reverse_Storage_Order (T, Reversed);
9509 -- For a record type, also set reversed bit order. Note: if a bit
9510 -- order has been specified explicitly, then this is a no-op.
9512 if Is_Record_Type (T) then
9513 Set_Reverse_Bit_Order (T, Reversed);
9514 end if;
9515 end if;
9516 end if;
9517 end Set_SSO_From_Default;
9519 ------------------
9520 -- Undelay_Type --
9521 ------------------
9523 procedure Undelay_Type (T : Entity_Id) is
9524 begin
9525 Set_Has_Delayed_Freeze (T, False);
9526 Set_Freeze_Node (T, Empty);
9528 -- Since we don't want T to have a Freeze_Node, we don't want its
9529 -- Full_View or Corresponding_Record_Type to have one either.
9531 -- ??? Fundamentally, this whole handling is unpleasant. What we really
9532 -- want is to be sure that for an Itype that's part of record R and is a
9533 -- subtype of type T, that it's frozen after the later of the freeze
9534 -- points of R and T. We have no way of doing that directly, so what we
9535 -- do is force most such Itypes to be frozen as part of freezing R via
9536 -- this procedure and only delay the ones that need to be delayed
9537 -- (mostly the designated types of access types that are defined as part
9538 -- of the record).
9540 if Is_Private_Type (T)
9541 and then Present (Full_View (T))
9542 and then Is_Itype (Full_View (T))
9543 and then Is_Record_Type (Scope (Full_View (T)))
9544 then
9545 Undelay_Type (Full_View (T));
9546 end if;
9548 if Is_Concurrent_Type (T)
9549 and then Present (Corresponding_Record_Type (T))
9550 and then Is_Itype (Corresponding_Record_Type (T))
9551 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
9552 then
9553 Undelay_Type (Corresponding_Record_Type (T));
9554 end if;
9555 end Undelay_Type;
9557 ------------------
9558 -- Warn_Overlay --
9559 ------------------
9561 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
9562 Ent : constant Entity_Id := Entity (Nam);
9563 -- The object to which the address clause applies
9565 Init : Node_Id;
9566 Old : Entity_Id := Empty;
9567 Decl : Node_Id;
9569 begin
9570 -- No warning if address clause overlay warnings are off
9572 if not Address_Clause_Overlay_Warnings then
9573 return;
9574 end if;
9576 -- No warning if there is an explicit initialization
9578 Init := Original_Node (Expression (Declaration_Node (Ent)));
9580 if Present (Init) and then Comes_From_Source (Init) then
9581 return;
9582 end if;
9584 -- We only give the warning for non-imported entities of a type for
9585 -- which a non-null base init proc is defined, or for objects of access
9586 -- types with implicit null initialization, or when Normalize_Scalars
9587 -- applies and the type is scalar or a string type (the latter being
9588 -- tested for because predefined String types are initialized by inline
9589 -- code rather than by an init_proc). Note that we do not give the
9590 -- warning for Initialize_Scalars, since we suppressed initialization
9591 -- in this case. Also, do not warn if Suppress_Initialization is set
9592 -- either on the type, or on the object via pragma or aspect.
9594 if Present (Expr)
9595 and then not Is_Imported (Ent)
9596 and then not Initialization_Suppressed (Typ)
9597 and then not (Ekind (Ent) = E_Variable
9598 and then Initialization_Suppressed (Ent))
9599 and then (Has_Non_Null_Base_Init_Proc (Typ)
9600 or else Is_Access_Type (Typ)
9601 or else (Normalize_Scalars
9602 and then (Is_Scalar_Type (Typ)
9603 or else Is_String_Type (Typ))))
9604 then
9605 if Nkind (Expr) = N_Attribute_Reference
9606 and then Is_Entity_Name (Prefix (Expr))
9607 then
9608 Old := Entity (Prefix (Expr));
9610 elsif Is_Entity_Name (Expr)
9611 and then Ekind (Entity (Expr)) = E_Constant
9612 then
9613 Decl := Declaration_Node (Entity (Expr));
9615 if Nkind (Decl) = N_Object_Declaration
9616 and then Present (Expression (Decl))
9617 and then Nkind (Expression (Decl)) = N_Attribute_Reference
9618 and then Is_Entity_Name (Prefix (Expression (Decl)))
9619 then
9620 Old := Entity (Prefix (Expression (Decl)));
9622 elsif Nkind (Expr) = N_Function_Call then
9623 return;
9624 end if;
9626 -- A function call (most likely to To_Address) is probably not an
9627 -- overlay, so skip warning. Ditto if the function call was inlined
9628 -- and transformed into an entity.
9630 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
9631 return;
9632 end if;
9634 -- If a pragma Import follows, we assume that it is for the current
9635 -- target of the address clause, and skip the warning. There may be
9636 -- a source pragma or an aspect that specifies import and generates
9637 -- the corresponding pragma. These will indicate that the entity is
9638 -- imported and that is checked above so that the spurious warning
9639 -- (generated when the entity is frozen) will be suppressed. The
9640 -- pragma may be attached to the aspect, so it is not yet a list
9641 -- member.
9643 if Is_List_Member (Parent (Expr)) then
9644 Decl := Next (Parent (Expr));
9646 if Present (Decl)
9647 and then Nkind (Decl) = N_Pragma
9648 and then Pragma_Name (Decl) = Name_Import
9649 then
9650 return;
9651 end if;
9652 end if;
9654 -- Otherwise give warning message
9656 if Present (Old) then
9657 Error_Msg_Node_2 := Old;
9658 Error_Msg_N
9659 ("default initialization of & may modify &??",
9660 Nam);
9661 else
9662 Error_Msg_N
9663 ("default initialization of & may modify overlaid storage??",
9664 Nam);
9665 end if;
9667 -- Add friendly warning if initialization comes from a packed array
9668 -- component.
9670 if Is_Record_Type (Typ) then
9671 declare
9672 Comp : Entity_Id;
9674 begin
9675 Comp := First_Component (Typ);
9676 while Present (Comp) loop
9677 if Nkind (Parent (Comp)) = N_Component_Declaration
9678 and then Present (Expression (Parent (Comp)))
9679 then
9680 exit;
9681 elsif Is_Array_Type (Etype (Comp))
9682 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
9683 then
9684 Error_Msg_NE
9685 ("\packed array component& " &
9686 "will be initialized to zero??",
9687 Nam, Comp);
9688 exit;
9689 else
9690 Next_Component (Comp);
9691 end if;
9692 end loop;
9693 end;
9694 end if;
9696 Error_Msg_N
9697 ("\use pragma Import for & to " &
9698 "suppress initialization (RM B.1(24))??",
9699 Nam);
9700 end if;
9701 end Warn_Overlay;
9703 end Freeze;