* sh.h (PRINT_OPERAND_PUNCT_VALID_P): Allow '\''.
[official-gcc.git] / gcc / config / sh / sh.h
blob91d81e14032b58a11b21bd49a21a4a4ac99f8bc4
1 /* Definitions of target machine for GNU compiler for Hitachi / SuperH SH.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because hconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_define ("__sh__"); \
38 builtin_assert ("cpu=sh"); \
39 builtin_assert ("machine=sh"); \
40 switch ((int) sh_cpu) \
41 { \
42 case PROCESSOR_SH1: \
43 builtin_define ("__sh1__"); \
44 break; \
45 case PROCESSOR_SH2: \
46 builtin_define ("__sh2__"); \
47 break; \
48 case PROCESSOR_SH3: \
49 builtin_define ("__sh3__"); \
50 builtin_define ("__SH3__"); \
51 if (TARGET_HARD_SH4) \
52 builtin_define ("__SH4_NOFPU__"); \
53 break; \
54 case PROCESSOR_SH3E: \
55 builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
56 break; \
57 case PROCESSOR_SH4: \
58 builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
59 break; \
60 case PROCESSOR_SH5: \
61 { \
62 builtin_define_with_value ("__SH5__", \
63 TARGET_SHMEDIA64 ? "64" : "32", 0); \
64 builtin_define_with_value ("__SHMEDIA__", \
65 TARGET_SHMEDIA ? "1" : "0", 0); \
66 if (! TARGET_FPU_DOUBLE) \
67 builtin_define ("__SH4_NOFPU__"); \
68 } \
69 } \
70 if (TARGET_HITACHI) \
71 builtin_define ("__HITACHI__"); \
72 builtin_define (TARGET_LITTLE_ENDIAN \
73 ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
74 if (flag_pic) \
75 { \
76 builtin_define ("__pic__"); \
77 builtin_define ("__PIC__"); \
78 } \
79 TARGET_OBJFMT_CPP_BUILTINS (); \
80 } while (0)
82 /* We can not debug without a frame pointer. */
83 /* #define CAN_DEBUG_WITHOUT_FP */
85 #define CONDITIONAL_REGISTER_USAGE do \
86 { \
87 int regno; \
88 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
89 if (! VALID_REGISTER_P (regno)) \
90 fixed_regs[regno] = call_used_regs[regno] = 1; \
91 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
92 if (TARGET_SH5) \
93 call_used_regs[FIRST_GENERAL_REG + 8] \
94 = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
95 if (TARGET_SHMEDIA) \
96 { \
97 regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
98 CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
99 regno_reg_class[FIRST_FP_REG] = FP_REGS; \
101 if (flag_pic) \
102 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
103 /* Hitachi saves and restores mac registers on call. */ \
104 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
106 call_used_regs[MACH_REG] = 0; \
107 call_used_regs[MACL_REG] = 0; \
109 if (TARGET_SHMEDIA) \
111 for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
112 if (! fixed_regs[regno] && call_used_regs[regno]) \
113 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
115 else \
116 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
117 if (! fixed_regs[regno] && call_used_regs[regno]) \
118 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
119 } while (0)
121 /* ??? Need to write documentation for all SH options and add it to the
122 invoke.texi file. */
124 /* Run-time compilation parameters selecting different hardware subsets. */
126 extern int target_flags;
127 #define ISIZE_BIT (1<<1)
128 #define DALIGN_BIT (1<<6)
129 #define SH1_BIT (1<<8)
130 #define SH2_BIT (1<<9)
131 #define SH3_BIT (1<<10)
132 #define SH3E_BIT (1<<11)
133 #define HARD_SH4_BIT (1<<5)
134 #define FPU_SINGLE_BIT (1<<7)
135 #define SH4_BIT (1<<12)
136 #define FMOVD_BIT (1<<4)
137 #define SH5_BIT (1<<0)
138 #define SPACE_BIT (1<<13)
139 #define BIGTABLE_BIT (1<<14)
140 #define RELAX_BIT (1<<15)
141 #define USERMODE_BIT (1<<16)
142 #define HITACHI_BIT (1<<22)
143 #define NOMACSAVE_BIT (1<<23)
144 #define PREFERGOT_BIT (1<<24)
145 #define PADSTRUCT_BIT (1<<28)
146 #define LITTLE_ENDIAN_BIT (1<<29)
147 #define IEEE_BIT (1<<30)
149 /* Nonzero if we should dump out instruction size info. */
150 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
152 /* Nonzero to align doubles on 64 bit boundaries. */
153 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
155 /* Nonzero if we should generate code using type 1 insns. */
156 #define TARGET_SH1 (target_flags & SH1_BIT)
158 /* Nonzero if we should generate code using type 2 insns. */
159 #define TARGET_SH2 (target_flags & SH2_BIT)
161 /* Nonzero if we should generate code using type 3 insns. */
162 #define TARGET_SH3 (target_flags & SH3_BIT)
164 /* Nonzero if we should generate code using type 3E insns. */
165 #define TARGET_SH3E ((target_flags & SH3E_BIT) && (target_flags & SH1_BIT))
167 /* Nonzero if the cache line size is 32. */
168 #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT || TARGET_SH5)
170 /* Nonzero if we schedule for a superscalar implementation. */
171 #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
173 /* Nonzero if the target has separate instruction and data caches. */
174 #define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
176 /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */
177 #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
179 /* Nonzero if the default precision of th FPU is single */
180 #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
182 /* Nonzero if a double-precision FPU is available. */
183 #define TARGET_FPU_DOUBLE (target_flags & SH4_BIT)
185 /* Nonzero if an FPU is available. */
186 #define TARGET_FPU_ANY (TARGET_SH3E || TARGET_FPU_DOUBLE)
188 /* Nonzero if we should generate code using type 4 insns. */
189 #define TARGET_SH4 ((target_flags & SH4_BIT) && (target_flags & SH1_BIT))
191 /* Nonzero if we should generate code for a SH5 CPU (either ISA). */
192 #define TARGET_SH5 (target_flags & SH5_BIT)
194 /* Nonzero if we should generate code using the SHcompact instruction
195 set and 32-bit ABI. */
196 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
198 /* Nonzero if we should generate code using the SHmedia instruction
199 set and ABI. */
200 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
202 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
203 ABI. */
204 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 \
205 && (target_flags & SH3E_BIT))
207 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
208 ABI. */
209 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 \
210 && ! (target_flags & SH3E_BIT))
212 /* Nonzero if we should generate code using SHmedia FPU instructions. */
213 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
214 /* Nonzero if we should generate fmovd. */
215 #define TARGET_FMOVD (target_flags & FMOVD_BIT)
217 /* Nonzero if we respect NANs. */
218 #define TARGET_IEEE (target_flags & IEEE_BIT)
220 /* Nonzero if we should generate smaller code rather than faster code. */
221 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
223 /* Nonzero to use long jump tables. */
224 #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
226 /* Nonzero to generate pseudo-ops needed by the assembler and linker
227 to do function call relaxing. */
228 #define TARGET_RELAX (target_flags & RELAX_BIT)
230 /* Nonzero if using Hitachi's calling convention. */
231 #define TARGET_HITACHI (target_flags & HITACHI_BIT)
233 /* Nonzero if not saving macl/mach when using -mhitachi */
234 #define TARGET_NOMACSAVE (target_flags & NOMACSAVE_BIT)
236 /* Nonzero if padding structures to a multiple of 4 bytes. This is
237 incompatible with Hitachi's compiler, and gives unusual structure layouts
238 which confuse programmers.
239 ??? This option is not useful, but is retained in case there are people
240 who are still relying on it. It may be deleted in the future. */
241 #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
243 /* Nonzero if generating code for a little endian SH. */
244 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
246 /* Nonzero if we should do everything in userland. */
247 #define TARGET_USERMODE (target_flags & USERMODE_BIT)
249 /* Nonzero if we should prefer @GOT calls when generating PIC. */
250 #define TARGET_PREFERGOT (target_flags & PREFERGOT_BIT)
252 #define SELECT_SH1 (SH1_BIT)
253 #define SELECT_SH2 (SH2_BIT | SELECT_SH1)
254 #define SELECT_SH3 (SH3_BIT | SELECT_SH2)
255 #define SELECT_SH3E (SH3E_BIT | FPU_SINGLE_BIT | SELECT_SH3)
256 #define SELECT_SH4_NOFPU (HARD_SH4_BIT | SELECT_SH3)
257 #define SELECT_SH4_SINGLE_ONLY (HARD_SH4_BIT | SELECT_SH3E)
258 #define SELECT_SH4 (SH4_BIT|SH3E_BIT|HARD_SH4_BIT | SELECT_SH3)
259 #define SELECT_SH4_SINGLE (FPU_SINGLE_BIT | SELECT_SH4)
260 #define SELECT_SH5_64 (SH5_BIT | SH4_BIT)
261 #define SELECT_SH5_64_NOFPU (SH5_BIT)
262 #define SELECT_SH5_32 (SH5_BIT | SH4_BIT | SH3E_BIT)
263 #define SELECT_SH5_32_NOFPU (SH5_BIT | SH3E_BIT)
264 #define SELECT_SH5_COMPACT (SH5_BIT | SH4_BIT | SELECT_SH3E)
265 #define SELECT_SH5_COMPACT_NOFPU (SH5_BIT | SELECT_SH3)
267 /* Reset all target-selection flags. */
268 #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH3E_BIT | SH4_BIT \
269 | HARD_SH4_BIT | FPU_SINGLE_BIT | SH5_BIT)
271 #define TARGET_SWITCHES \
272 { {"1", TARGET_NONE, "" }, \
273 {"1", SELECT_SH1, "" }, \
274 {"2", TARGET_NONE, "" }, \
275 {"2", SELECT_SH2, "" }, \
276 {"3", TARGET_NONE, "" }, \
277 {"3", SELECT_SH3, "" }, \
278 {"3e", TARGET_NONE, "" }, \
279 {"3e", SELECT_SH3E, "" }, \
280 {"4-single-only", TARGET_NONE, "" }, \
281 {"4-single-only", SELECT_SH4_SINGLE_ONLY, "" }, \
282 {"4-single", TARGET_NONE, "" }, \
283 {"4-single", SELECT_SH4_SINGLE, "" },\
284 {"4-nofpu", TARGET_NONE, "" }, \
285 {"4-nofpu", SELECT_SH4_NOFPU, "" },\
286 {"4", TARGET_NONE, "" }, \
287 {"4", SELECT_SH4, "" }, \
288 {"5-64media", TARGET_NONE, "" }, \
289 {"5-64media", SELECT_SH5_64, "Generate 64-bit SHmedia code" }, \
290 {"5-64media-nofpu", TARGET_NONE, "" }, \
291 {"5-64media-nofpu", SELECT_SH5_64_NOFPU, "Generate 64-bit FPU-less SHmedia code" }, \
292 {"5-32media", TARGET_NONE, "" }, \
293 {"5-32media", SELECT_SH5_32, "Generate 32-bit SHmedia code" }, \
294 {"5-32media-nofpu", TARGET_NONE, "" }, \
295 {"5-32media-nofpu", SELECT_SH5_32_NOFPU, "Generate 32-bit FPU-less SHmedia code" }, \
296 {"5-compact", TARGET_NONE, "" }, \
297 {"5-compact", SELECT_SH5_COMPACT, "Generate SHcompact code" }, \
298 {"5-compact-nofpu", TARGET_NONE, "" }, \
299 {"5-compact-nofpu", SELECT_SH5_COMPACT_NOFPU, "Generate FPU-less SHcompact code" }, \
300 {"b", -LITTLE_ENDIAN_BIT, "" }, \
301 {"bigtable", BIGTABLE_BIT, "" }, \
302 {"dalign", DALIGN_BIT, "" }, \
303 {"fmovd", FMOVD_BIT, "" }, \
304 {"hitachi", HITACHI_BIT, "" }, \
305 {"nomacsave", NOMACSAVE_BIT, "" }, \
306 {"ieee", IEEE_BIT, "" }, \
307 {"isize", ISIZE_BIT, "" }, \
308 {"l", LITTLE_ENDIAN_BIT, "" }, \
309 {"no-ieee", -IEEE_BIT, "" }, \
310 {"padstruct", PADSTRUCT_BIT, "" }, \
311 {"prefergot", PREFERGOT_BIT, "" }, \
312 {"relax", RELAX_BIT, "" }, \
313 {"space", SPACE_BIT, "" }, \
314 {"usermode", USERMODE_BIT, "" }, \
315 SUBTARGET_SWITCHES \
316 {"", TARGET_DEFAULT, "" } \
319 /* This are meant to be redefined in the host dependent files */
320 #define SUBTARGET_SWITCHES
322 /* This defaults us to big-endian. */
323 #ifndef TARGET_ENDIAN_DEFAULT
324 #define TARGET_ENDIAN_DEFAULT 0
325 #endif
327 #ifndef TARGET_CPU_DEFAULT
328 #define TARGET_CPU_DEFAULT SELECT_SH1
329 #endif
331 #define TARGET_DEFAULT (TARGET_CPU_DEFAULT|TARGET_ENDIAN_DEFAULT)
333 #define CPP_SPEC " %(subtarget_cpp_spec) "
335 #ifndef SUBTARGET_CPP_SPEC
336 #define SUBTARGET_CPP_SPEC ""
337 #endif
339 #ifndef SUBTARGET_EXTRA_SPECS
340 #define SUBTARGET_EXTRA_SPECS
341 #endif
343 #define EXTRA_SPECS \
344 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
345 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
346 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
347 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
348 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
349 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
350 SUBTARGET_EXTRA_SPECS
352 #define ASM_SPEC "%(subtarget_asm_endian_spec) %{mrelax:-relax}"
354 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
355 #if TARGET_ENDIAN_DEFAULT == LITTLE_ENDIAN_BIT
356 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
357 #else
358 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
359 #endif
360 #endif
362 #define LINK_EMUL_PREFIX "sh%{ml:l}"
364 #if TARGET_CPU_DEFAULT & SH5_BIT
365 #if TARGET_CPU_DEFAULT & SH3E_BIT
366 #define LINK_DEFAULT_CPU_EMUL "32"
367 #else
368 #define LINK_DEFAULT_CPU_EMUL "64"
369 #endif /* SH3E_BIT */
370 #else
371 #define LINK_DEFAULT_CPU_EMUL ""
372 #endif /* SH5_BIT */
374 #define SUBTARGET_LINK_EMUL_SUFFIX ""
375 #define SUBTARGET_LINK_SPEC ""
377 /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
378 so that we can undo the damage without code replication. */
379 #define LINK_SPEC SH_LINK_SPEC
381 #define SH_LINK_SPEC "\
382 -m %(link_emul_prefix)\
383 %{m5-compact*|m5-32media*:32}\
384 %{m5-64media*:64}\
385 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
386 %(subtarget_link_emul_suffix) \
387 %{mrelax:-relax} %(subtarget_link_spec)"
389 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
390 do { \
391 if (LEVEL) \
392 flag_omit_frame_pointer = -1; \
393 if (SIZE) \
394 target_flags |= SPACE_BIT; \
395 } while (0)
397 #define ASSEMBLER_DIALECT assembler_dialect
399 extern int assembler_dialect;
401 #define OVERRIDE_OPTIONS \
402 do { \
403 int regno; \
405 sh_cpu = CPU_SH1; \
406 assembler_dialect = 0; \
407 if (TARGET_SH2) \
408 sh_cpu = CPU_SH2; \
409 if (TARGET_SH3) \
410 sh_cpu = CPU_SH3; \
411 if (TARGET_SH3E) \
412 sh_cpu = CPU_SH3E; \
413 if (TARGET_SH4) \
415 assembler_dialect = 1; \
416 sh_cpu = CPU_SH4; \
418 if (TARGET_SH5) \
420 sh_cpu = CPU_SH5; \
421 target_flags |= DALIGN_BIT; \
422 if (TARGET_FPU_ANY) \
423 target_flags |= FMOVD_BIT; \
424 if (TARGET_SHMEDIA) \
426 /* There are no delay slots on SHmedia. */ \
427 flag_delayed_branch = 0; \
428 /* Relaxation isn't yet supported for SHmedia */ \
429 target_flags &= ~RELAX_BIT; \
431 if (profile_flag || profile_arc_flag) \
433 warning ("Profiling is not supported on this target."); \
434 profile_flag = profile_arc_flag = 0; \
437 else \
439 /* Only the sh64-elf assembler fully supports .quad properly. */\
440 targetm.asm_out.aligned_op.di = NULL; \
441 targetm.asm_out.unaligned_op.di = NULL; \
444 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
445 if (! VALID_REGISTER_P (regno)) \
446 sh_register_names[regno][0] = '\0'; \
448 for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
449 if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
450 sh_additional_register_names[regno][0] = '\0'; \
452 if (flag_omit_frame_pointer < 0) \
454 /* The debugging information is sufficient, \
455 but gdb doesn't implement this yet */ \
456 if (0) \
457 flag_omit_frame_pointer \
458 = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \
459 || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
460 else \
461 flag_omit_frame_pointer = 0; \
464 if (flag_pic && ! TARGET_PREFERGOT) \
465 flag_no_function_cse = 1; \
467 /* Never run scheduling before reload, since that can \
468 break global alloc, and generates slower code anyway due \
469 to the pressure on R0. */ \
470 flag_schedule_insns = 0; \
471 } while (0)
473 /* Target machine storage layout. */
475 /* Define this if most significant bit is lowest numbered
476 in instructions that operate on numbered bit-fields. */
478 #define BITS_BIG_ENDIAN 0
480 /* Define this if most significant byte of a word is the lowest numbered. */
481 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
483 /* Define this if most significant word of a multiword number is the lowest
484 numbered. */
485 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
487 /* Define this to set the endianness to use in libgcc2.c, which can
488 not depend on target_flags. */
489 #if defined(__LITTLE_ENDIAN__)
490 #define LIBGCC2_WORDS_BIG_ENDIAN 0
491 #else
492 #define LIBGCC2_WORDS_BIG_ENDIAN 1
493 #endif
495 #define MAX_BITS_PER_WORD 64
497 #define MAX_LONG_TYPE_SIZE MAX_BITS_PER_WORD
499 /* Width in bits of an `int'. We want just 32-bits, even if words are
500 longer. */
501 #define INT_TYPE_SIZE 32
503 /* Width in bits of a `long'. */
504 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
506 /* Width in bits of a `long long'. */
507 #define LONG_LONG_TYPE_SIZE 64
509 /* Width in bits of a `long double'. */
510 #define LONG_DOUBLE_TYPE_SIZE 64
512 /* Width of a word, in units (bytes). */
513 #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
514 #define MIN_UNITS_PER_WORD 4
516 /* Width in bits of a pointer.
517 See also the macro `Pmode' defined below. */
518 #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
520 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
521 #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
523 /* Boundary (in *bits*) on which stack pointer should be aligned. */
524 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
526 /* The log (base 2) of the cache line size, in bytes. Processors prior to
527 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
528 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
529 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
531 /* Allocation boundary (in *bits*) for the code of a function.
532 32 bit alignment is faster, because instructions are always fetched as a
533 pair from a longword boundary. */
534 #define FUNCTION_BOUNDARY \
535 (TARGET_SMALLCODE ? 16 << TARGET_SHMEDIA : (1 << CACHE_LOG) * 8)
537 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
538 the vbit must go into the delta field of
539 pointers-to-member-functions. */
540 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
541 (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
543 /* Alignment of field after `int : 0' in a structure. */
544 #define EMPTY_FIELD_BOUNDARY 32
546 /* No data type wants to be aligned rounder than this. */
547 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
549 /* The best alignment to use in cases where we have a choice. */
550 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
552 /* Make strings word-aligned so strcpy from constants will be faster. */
553 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
554 ((TREE_CODE (EXP) == STRING_CST \
555 && (ALIGN) < FASTEST_ALIGNMENT) \
556 ? FASTEST_ALIGNMENT : (ALIGN))
558 /* Make arrays of chars word-aligned for the same reasons. */
559 #define DATA_ALIGNMENT(TYPE, ALIGN) \
560 (TREE_CODE (TYPE) == ARRAY_TYPE \
561 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
562 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
564 /* Number of bits which any structure or union's size must be a
565 multiple of. Each structure or union's size is rounded up to a
566 multiple of this. */
567 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
569 /* Set this nonzero if move instructions will actually fail to work
570 when given unaligned data. */
571 #define STRICT_ALIGNMENT 1
573 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
574 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
575 barrier_align (LABEL_AFTER_BARRIER)
577 #define LOOP_ALIGN(A_LABEL) \
578 ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
579 ? 0 : sh_loop_align (A_LABEL))
581 #define LABEL_ALIGN(A_LABEL) \
583 (PREV_INSN (A_LABEL) \
584 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
585 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
586 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
587 /* explicit alignment insn in constant tables. */ \
588 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
589 : 0)
591 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
592 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
594 /* The base two logarithm of the known minimum alignment of an insn length. */
595 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
596 (GET_CODE (A_INSN) == INSN \
597 ? 1 << TARGET_SHMEDIA \
598 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
599 ? 1 << TARGET_SHMEDIA \
600 : CACHE_LOG)
602 /* Standard register usage. */
604 /* Register allocation for the Hitachi calling convention:
606 r0 arg return
607 r1..r3 scratch
608 r4..r7 args in
609 r8..r13 call saved
610 r14 frame pointer/call saved
611 r15 stack pointer
612 ap arg pointer (doesn't really exist, always eliminated)
613 pr subroutine return address
614 t t bit
615 mach multiply/accumulate result, high part
616 macl multiply/accumulate result, low part.
617 fpul fp/int communication register
618 rap return address pointer register
619 fr0 fp arg return
620 fr1..fr3 scratch floating point registers
621 fr4..fr11 fp args in
622 fr12..fr15 call saved floating point registers */
624 #define MAX_REGISTER_NAME_LENGTH 5
625 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
627 #define SH_REGISTER_NAMES_INITIALIZER \
629 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
630 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
631 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
632 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
633 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
634 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
635 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
636 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
637 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
638 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
639 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
640 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
641 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
642 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
643 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
644 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
645 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
646 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
647 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
648 "rap" \
651 #define DEBUG_REGISTER_NAMES SH_REGISTER_NAMES_INITIALIZER
653 #define REGNAMES_ARR_INDEX_1(index) \
654 (sh_register_names[index])
655 #define REGNAMES_ARR_INDEX_2(index) \
656 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
657 #define REGNAMES_ARR_INDEX_4(index) \
658 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
659 #define REGNAMES_ARR_INDEX_8(index) \
660 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
661 #define REGNAMES_ARR_INDEX_16(index) \
662 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
663 #define REGNAMES_ARR_INDEX_32(index) \
664 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
665 #define REGNAMES_ARR_INDEX_64(index) \
666 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
668 #define REGISTER_NAMES \
670 REGNAMES_ARR_INDEX_64 (0), \
671 REGNAMES_ARR_INDEX_64 (64), \
672 REGNAMES_ARR_INDEX_8 (128), \
673 REGNAMES_ARR_INDEX_8 (136), \
674 REGNAMES_ARR_INDEX_8 (144), \
675 REGNAMES_ARR_INDEX_1 (152) \
678 #define ADDREGNAMES_SIZE 32
679 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
680 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
681 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
683 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
685 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
686 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
687 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
688 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
691 #define ADDREGNAMES_REGNO(index) \
692 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
693 : (-1))
695 #define ADDREGNAMES_ARR_INDEX_1(index) \
696 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
697 #define ADDREGNAMES_ARR_INDEX_2(index) \
698 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
699 #define ADDREGNAMES_ARR_INDEX_4(index) \
700 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
701 #define ADDREGNAMES_ARR_INDEX_8(index) \
702 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
703 #define ADDREGNAMES_ARR_INDEX_16(index) \
704 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
705 #define ADDREGNAMES_ARR_INDEX_32(index) \
706 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
708 #define ADDITIONAL_REGISTER_NAMES \
710 ADDREGNAMES_ARR_INDEX_32 (0) \
713 /* Number of actual hardware registers.
714 The hardware registers are assigned numbers for the compiler
715 from 0 to just below FIRST_PSEUDO_REGISTER.
716 All registers that the compiler knows about must be given numbers,
717 even those that are not normally considered general registers. */
719 /* There are many other relevant definitions in sh.md's md_constants. */
721 #define FIRST_GENERAL_REG R0_REG
722 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
723 #define FIRST_FP_REG DR0_REG
724 #define LAST_FP_REG (FIRST_FP_REG + \
725 (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH3E ? 15 : -1))
726 #define FIRST_XD_REG XD0_REG
727 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
728 #define FIRST_TARGET_REG TR0_REG
729 #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
731 #define GENERAL_REGISTER_P(REGNO) \
732 IN_RANGE ((REGNO), FIRST_GENERAL_REG, LAST_GENERAL_REG)
734 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
735 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG))
737 #define FP_REGISTER_P(REGNO) \
738 ((REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG)
740 #define XD_REGISTER_P(REGNO) \
741 ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG)
743 #define FP_OR_XD_REGISTER_P(REGNO) \
744 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
746 #define FP_ANY_REGISTER_P(REGNO) \
747 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
749 #define SPECIAL_REGISTER_P(REGNO) \
750 ((REGNO) == GBR_REG || (REGNO) == T_REG \
751 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
753 #define TARGET_REGISTER_P(REGNO) \
754 ((REGNO) >= FIRST_TARGET_REG && (REGNO) <= LAST_TARGET_REG)
756 #define SHMEDIA_REGISTER_P(REGNO) \
757 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
758 || TARGET_REGISTER_P (REGNO))
760 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
761 that should be fixed. */
762 #define VALID_REGISTER_P(REGNO) \
763 (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
764 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
765 || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
766 || (TARGET_SH3E && (REGNO) == FPUL_REG))
768 /* The mode that should be generally used to store a register by
769 itself in the stack, or to load it back. */
770 #define REGISTER_NATURAL_MODE(REGNO) \
771 (FP_REGISTER_P (REGNO) ? SFmode \
772 : XD_REGISTER_P (REGNO) ? DFmode \
773 : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
774 ? DImode \
775 : SImode)
777 #define FIRST_PSEUDO_REGISTER 153
779 /* 1 for registers that have pervasive standard uses
780 and are not available for the register allocator.
782 Mach register is fixed 'cause it's only 10 bits wide for SH1.
783 It is 32 bits wide for SH2. */
785 #define FIXED_REGISTERS \
787 /* Regular registers. */ \
788 0, 0, 0, 0, 0, 0, 0, 0, \
789 0, 0, 0, 0, 0, 0, 0, 1, \
790 /* r16 is reserved, r18 is the former pr. */ \
791 1, 0, 0, 0, 0, 0, 0, 0, \
792 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
793 /* r26 is a global variable data pointer; r27 is for constants. */ \
794 1, 1, 1, 1, 0, 0, 0, 0, \
795 0, 0, 0, 0, 0, 0, 0, 0, \
796 0, 0, 0, 0, 0, 0, 0, 0, \
797 0, 0, 0, 0, 0, 0, 0, 0, \
798 0, 0, 0, 0, 0, 0, 0, 1, \
799 /* FP registers. */ \
800 0, 0, 0, 0, 0, 0, 0, 0, \
801 0, 0, 0, 0, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, \
803 0, 0, 0, 0, 0, 0, 0, 0, \
804 0, 0, 0, 0, 0, 0, 0, 0, \
805 0, 0, 0, 0, 0, 0, 0, 0, \
806 0, 0, 0, 0, 0, 0, 0, 0, \
807 0, 0, 0, 0, 0, 0, 0, 0, \
808 /* Branch target registers. */ \
809 0, 0, 0, 0, 0, 0, 0, 0, \
810 /* XD registers. */ \
811 0, 0, 0, 0, 0, 0, 0, 0, \
812 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
813 1, 1, 1, 1, 1, 1, 0, 1, \
814 /*"rap" */ \
815 1, \
818 /* 1 for registers not available across function calls.
819 These must include the FIXED_REGISTERS and also any
820 registers that can be used without being saved.
821 The latter must include the registers where values are returned
822 and the register where structure-value addresses are passed.
823 Aside from that, you can include as many other registers as you like. */
825 #define CALL_USED_REGISTERS \
827 /* Regular registers. */ \
828 1, 1, 1, 1, 1, 1, 1, 1, \
829 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
830 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
831 across SH5 function calls. */ \
832 0, 0, 0, 0, 0, 0, 0, 1, \
833 1, 1, 0, 1, 1, 1, 1, 1, \
834 1, 1, 1, 1, 0, 0, 0, 0, \
835 0, 0, 0, 0, 1, 1, 1, 1, \
836 1, 1, 1, 1, 0, 0, 0, 0, \
837 0, 0, 0, 0, 0, 0, 0, 0, \
838 0, 0, 0, 0, 1, 1, 1, 1, \
839 /* FP registers. */ \
840 1, 1, 1, 1, 1, 1, 1, 1, \
841 1, 1, 1, 1, 0, 0, 0, 0, \
842 1, 1, 1, 1, 1, 1, 1, 1, \
843 1, 1, 1, 1, 1, 1, 1, 1, \
844 1, 1, 1, 1, 0, 0, 0, 0, \
845 0, 0, 0, 0, 0, 0, 0, 0, \
846 0, 0, 0, 0, 0, 0, 0, 0, \
847 0, 0, 0, 0, 0, 0, 0, 0, \
848 /* Branch target registers. */ \
849 1, 1, 1, 1, 1, 0, 0, 0, \
850 /* XD registers. */ \
851 1, 1, 1, 1, 1, 1, 0, 0, \
852 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
853 1, 1, 0, 1, 1, 1, 1, 1, \
854 /*"rap" */ \
855 1, \
858 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
859 across SHcompact function calls. We can't tell whether a called
860 function is SHmedia or SHcompact, so we assume it may be when
861 compiling SHmedia code with the 32-bit ABI, since that's the only
862 ABI that can be linked with SHcompact code. */
863 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
864 (TARGET_SHMEDIA32 \
865 && GET_MODE_SIZE (MODE) > 4 \
866 && (((REGNO) >= FIRST_GENERAL_REG + 10 \
867 && (REGNO) <= FIRST_GENERAL_REG + 14) \
868 || (REGNO) == PR_MEDIA_REG))
870 /* Return number of consecutive hard regs needed starting at reg REGNO
871 to hold something of mode MODE.
872 This is ordinarily the length in words of a value of mode MODE
873 but can be less for certain modes in special long registers.
875 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
877 #define HARD_REGNO_NREGS(REGNO, MODE) \
878 (XD_REGISTER_P (REGNO) \
879 ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
880 : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
881 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
882 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
884 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
885 We can allow any mode in any general register. The special registers
886 only allow SImode. Don't allow any mode in the PR. */
888 /* We cannot hold DCmode values in the XD registers because alter_reg
889 handles subregs of them incorrectly. We could work around this by
890 spacing the XD registers like the DR registers, but this would require
891 additional memory in every compilation to hold larger register vectors.
892 We could hold SFmode / SCmode values in XD registers, but that
893 would require a tertiary reload when reloading from / to memory,
894 and a secondary reload to reload from / to general regs; that
895 seems to be a loosing proposition. */
896 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
897 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
898 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
899 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
900 ? 1 \
901 : (MODE) == V2SFmode \
902 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
903 : (MODE) == V4SFmode \
904 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
905 : (MODE) == V16SFmode \
906 ? (TARGET_SHMEDIA \
907 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
908 : (REGNO) == FIRST_XD_REG) \
909 : FP_REGISTER_P (REGNO) \
910 ? ((MODE) == SFmode \
911 || (TARGET_SHMEDIA && (MODE) == SImode) \
912 || ((TARGET_SH3E || TARGET_SHMEDIA) && (MODE) == SCmode) \
913 || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode \
914 || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
915 || (MODE) == V2SFmode))) \
916 && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
917 : XD_REGISTER_P (REGNO) \
918 ? (MODE) == DFmode \
919 : TARGET_REGISTER_P (REGNO) \
920 ? ((MODE) == DImode || (MODE) == SImode) \
921 : (REGNO) == PR_REG ? 0 \
922 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
923 : 1)
925 /* Value is 1 if MODE is a supported vector mode. */
926 #define VECTOR_MODE_SUPPORTED_P(MODE) \
927 ((TARGET_FPU_ANY \
928 && ((MODE) == V2SFmode || (MODE) == V4SFmode || (MODE) == V16SFmode)) \
929 || (TARGET_SHMEDIA \
930 && ((MODE) == V8QImode || (MODE) == V2HImode || (MODE) == V4HImode \
931 || (MODE) == V2SImode)))
933 /* Value is 1 if it is a good idea to tie two pseudo registers
934 when one has mode MODE1 and one has mode MODE2.
935 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
936 for any hard reg, then this must be 0 for correct output.
937 That's the case for xd registers: we don't hold SFmode values in
938 them, so we can't tie an SFmode pseudos with one in another
939 floating-point mode. */
941 #define MODES_TIEABLE_P(MODE1, MODE2) \
942 ((MODE1) == (MODE2) \
943 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
944 && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
945 && (GET_MODE_SIZE (MODE2) <= 4)) \
946 : ((MODE1) != SFmode && (MODE2) != SFmode))))
948 /* A C expression that is nonzero if hard register NEW_REG can be
949 considered for use as a rename register for OLD_REG register */
951 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
952 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
954 /* Specify the registers used for certain standard purposes.
955 The values of these macros are register numbers. */
957 /* Define this if the program counter is overloaded on a register. */
958 /* #define PC_REGNUM 15*/
960 /* Register to use for pushing function arguments. */
961 #define STACK_POINTER_REGNUM SP_REG
963 /* Base register for access to local variables of the function. */
964 #define FRAME_POINTER_REGNUM FP_REG
966 /* Fake register that holds the address on the stack of the
967 current function's return address. */
968 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
970 /* Register to hold the addressing base for position independent
971 code access to data items. */
972 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
974 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
976 /* Value should be nonzero if functions must have frame pointers.
977 Zero means the frame pointer need not be set up (and parms may be accessed
978 via the stack pointer) in functions that seem suitable. */
980 #define FRAME_POINTER_REQUIRED 0
982 /* Definitions for register eliminations.
984 We have three registers that can be eliminated on the SH. First, the
985 frame pointer register can often be eliminated in favor of the stack
986 pointer register. Secondly, the argument pointer register can always be
987 eliminated; it is replaced with either the stack or frame pointer.
988 Third, there is the return address pointer, which can also be replaced
989 with either the stack or the frame pointer. */
991 /* This is an array of structures. Each structure initializes one pair
992 of eliminable registers. The "from" register number is given first,
993 followed by "to". Eliminations of the same "from" register are listed
994 in order of preference. */
996 /* If you add any registers here that are not actually hard registers,
997 and that have any alternative of elimination that doesn't always
998 apply, you need to amend calc_live_regs to exclude it, because
999 reload spills all eliminable registers where it sees an
1000 can_eliminate == 0 entry, thus making them 'live' .
1001 If you add any hard registers that can be eliminated in different
1002 ways, you have to patch reload to spill them only when all alternatives
1003 of elimination fail. */
1005 #define ELIMINABLE_REGS \
1006 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1007 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1008 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1009 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1010 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
1012 /* Given FROM and TO register numbers, say whether this elimination
1013 is allowed. */
1014 #define CAN_ELIMINATE(FROM, TO) \
1015 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1017 /* Define the offset between two registers, one to be eliminated, and the other
1018 its replacement, at the start of a routine. */
1020 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1021 OFFSET = initial_elimination_offset ((FROM), (TO))
1023 /* Base register for access to arguments of the function. */
1024 #define ARG_POINTER_REGNUM AP_REG
1026 /* Register in which the static-chain is passed to a function. */
1027 #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
1029 /* The register in which a struct value address is passed. */
1031 #define STRUCT_VALUE_REGNUM 2
1033 /* If the structure value address is not passed in a register, define
1034 `STRUCT_VALUE' as an expression returning an RTX for the place
1035 where the address is passed. If it returns 0, the address is
1036 passed as an "invisible" first argument. */
1038 /* The Hitachi calling convention doesn't quite fit into this scheme since
1039 the address is passed like an invisible argument, but one that is always
1040 passed in memory. */
1041 #define STRUCT_VALUE \
1042 (TARGET_HITACHI ? 0 : gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM))
1044 #define RETURN_IN_MEMORY(TYPE) \
1045 (TARGET_SH5 \
1046 ? ((TYPE_MODE (TYPE) == BLKmode \
1047 ? (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
1048 : GET_MODE_SIZE (TYPE_MODE (TYPE))) > 8) \
1049 : (TYPE_MODE (TYPE) == BLKmode \
1050 || TARGET_HITACHI && TREE_CODE (TYPE) == RECORD_TYPE))
1052 /* Don't default to pcc-struct-return, because we have already specified
1053 exactly how to return structures in the RETURN_IN_MEMORY macro. */
1055 #define DEFAULT_PCC_STRUCT_RETURN 0
1057 #define SHMEDIA_REGS_STACK_ADJUST() \
1058 (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
1059 ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1060 + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1061 : 0)
1064 /* Define the classes of registers for register constraints in the
1065 machine description. Also define ranges of constants.
1067 One of the classes must always be named ALL_REGS and include all hard regs.
1068 If there is more than one class, another class must be named NO_REGS
1069 and contain no registers.
1071 The name GENERAL_REGS must be the name of a class (or an alias for
1072 another name such as ALL_REGS). This is the class of registers
1073 that is allowed by "g" or "r" in a register constraint.
1074 Also, registers outside this class are allocated only when
1075 instructions express preferences for them.
1077 The classes must be numbered in nondecreasing order; that is,
1078 a larger-numbered class must never be contained completely
1079 in a smaller-numbered class.
1081 For any two classes, it is very desirable that there be another
1082 class that represents their union. */
1084 /* The SH has two sorts of general registers, R0 and the rest. R0 can
1085 be used as the destination of some of the arithmetic ops. There are
1086 also some special purpose registers; the T bit register, the
1087 Procedure Return Register and the Multiply Accumulate Registers. */
1088 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1089 reg_class_subunion. We don't want to have an actual union class
1090 of these, because it would only be used when both classes are calculated
1091 to give the same cost, but there is only one FPUL register.
1092 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1093 applying to the actual instruction alternative considered. E.g., the
1094 y/r alternative of movsi_ie is considered to have no more cost that
1095 the r/r alternative, which is patently untrue. */
1097 enum reg_class
1099 NO_REGS,
1100 R0_REGS,
1101 PR_REGS,
1102 T_REGS,
1103 MAC_REGS,
1104 FPUL_REGS,
1105 SIBCALL_REGS,
1106 GENERAL_REGS,
1107 FP0_REGS,
1108 FP_REGS,
1109 DF_REGS,
1110 FPSCR_REGS,
1111 GENERAL_FP_REGS,
1112 TARGET_REGS,
1113 ALL_REGS,
1114 LIM_REG_CLASSES
1117 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1119 /* Give names of register classes as strings for dump file. */
1120 #define REG_CLASS_NAMES \
1122 "NO_REGS", \
1123 "R0_REGS", \
1124 "PR_REGS", \
1125 "T_REGS", \
1126 "MAC_REGS", \
1127 "FPUL_REGS", \
1128 "SIBCALL_REGS", \
1129 "GENERAL_REGS", \
1130 "FP0_REGS", \
1131 "FP_REGS", \
1132 "DF_REGS", \
1133 "FPSCR_REGS", \
1134 "GENERAL_FP_REGS", \
1135 "TARGET_REGS", \
1136 "ALL_REGS", \
1139 /* Define which registers fit in which classes.
1140 This is an initializer for a vector of HARD_REG_SET
1141 of length N_REG_CLASSES. */
1143 #define REG_CLASS_CONTENTS \
1145 /* NO_REGS: */ \
1146 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1147 /* R0_REGS: */ \
1148 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1149 /* PR_REGS: */ \
1150 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1151 /* T_REGS: */ \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1153 /* MAC_REGS: */ \
1154 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1155 /* FPUL_REGS: */ \
1156 { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
1157 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1159 /* GENERAL_REGS: */ \
1160 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x01020000 }, \
1161 /* FP0_REGS: */ \
1162 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1163 /* FP_REGS: */ \
1164 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1165 /* DF_REGS: */ \
1166 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1167 /* FPSCR_REGS: */ \
1168 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1169 /* GENERAL_FP_REGS: */ \
1170 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 }, \
1171 /* TARGET_REGS: */ \
1172 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1173 /* ALL_REGS: */ \
1174 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff }, \
1177 /* The same information, inverted:
1178 Return the class number of the smallest class containing
1179 reg number REGNO. This could be a conditional expression
1180 or could index an array. */
1182 extern int regno_reg_class[FIRST_PSEUDO_REGISTER];
1183 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1185 /* When defined, the compiler allows registers explicitly used in the
1186 rtl to be used as spill registers but prevents the compiler from
1187 extending the lifetime of these registers. */
1189 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1191 /* The order in which register should be allocated. */
1192 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1193 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1194 spilled or used otherwise, we better have the FP_REGS allocated first. */
1195 #define REG_ALLOC_ORDER \
1196 { 65, 66, 67, 68, 69, 70, 71, 64, \
1197 72, 73, 74, 75, 76, 77, 78, 79, \
1198 136,137,138,139,140,141,142,143, \
1199 80, 81, 82, 83, 84, 85, 86, 87, \
1200 88, 89, 90, 91, 92, 93, 94, 95, \
1201 96, 97, 98, 99,100,101,102,103, \
1202 104,105,106,107,108,109,110,111, \
1203 112,113,114,115,116,117,118,119, \
1204 120,121,122,123,124,125,126,127, \
1205 151, 1, 2, 3, 7, 6, 5, 4, \
1206 0, 8, 9, 10, 11, 12, 13, 14, \
1207 16, 17, 18, 19, 20, 21, 22, 23, \
1208 24, 25, 26, 27, 28, 29, 30, 31, \
1209 32, 33, 34, 35, 36, 37, 38, 39, \
1210 40, 41, 42, 43, 44, 45, 46, 47, \
1211 48, 49, 50, 51, 52, 53, 54, 55, \
1212 56, 57, 58, 59, 60, 61, 62, 63, \
1213 150, 15,145,146,147,144,148,149, \
1214 128,129,130,131,132,133,134,135, \
1215 152 }
1217 /* The class value for index registers, and the one for base regs. */
1218 #define INDEX_REG_CLASS (TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1219 #define BASE_REG_CLASS GENERAL_REGS
1221 /* Get reg_class from a letter such as appears in the machine
1222 description. */
1223 extern const enum reg_class reg_class_from_letter[];
1225 #define REG_CLASS_FROM_LETTER(C) \
1226 ( ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1228 /* The letters I, J, K, L and M in a register constraint string
1229 can be used to stand for particular ranges of immediate operands.
1230 This macro defines what the ranges are.
1231 C is the letter, and VALUE is a constant value.
1232 Return 1 if VALUE is in the range specified by C.
1233 I: arithmetic operand -127..128, as used in add, sub, etc
1234 J: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1235 K: shift operand 1,2,8 or 16
1236 L: logical operand 0..255, as used in and, or, etc.
1237 M: constant 1
1238 N: constant 0
1239 O: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1240 P: arithmetic operand -512..511, as used in SHmedia andi, ori
1243 #define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1244 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1245 #define CONST_OK_FOR_J(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1246 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1247 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1248 #define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1249 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1250 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1251 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1252 #define CONST_OK_FOR_O(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1253 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1254 #define CONST_OK_FOR_P(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1255 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1256 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1257 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1258 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1259 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1260 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1261 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1262 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1263 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1264 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1265 : 0)
1267 /* Similar, but for floating constants, and defining letters G and H.
1268 Here VALUE is the CONST_DOUBLE rtx itself. */
1270 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1271 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
1272 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
1273 : (C) == 'F')
1275 /* Given an rtx X being reloaded into a reg required to be
1276 in class CLASS, return the class of reg to actually use.
1277 In general this is just CLASS; but on some machines
1278 in some cases it is preferable to use a more restrictive class. */
1280 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1281 ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1282 && (GET_CODE (X) == CONST_DOUBLE \
1283 || GET_CODE (X) == SYMBOL_REF) \
1284 ? GENERAL_REGS \
1285 : (CLASS)) \
1287 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1288 ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \
1289 || (CLASS) == DF_REGS) \
1290 && (GET_CODE (X) == REG && GENERAL_OR_AP_REGISTER_P (REGNO (X)))) \
1291 || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
1292 && GET_CODE (X) == REG \
1293 && FP_REGISTER_P (REGNO (X)))) \
1294 && ! TARGET_SHMEDIA \
1295 && MODE == SFmode) \
1296 ? FPUL_REGS \
1297 : ((CLASS) == FPUL_REGS \
1298 && (GET_CODE (X) == MEM \
1299 || (GET_CODE (X) == REG \
1300 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1301 || REGNO (X) == T_REG \
1302 || system_reg_operand (X, VOIDmode))))) \
1303 ? GENERAL_REGS \
1304 : (((CLASS) == FP_REGS || (CLASS) == DF_REGS) && TARGET_SHMEDIA \
1305 && immediate_operand ((X), (MODE))) \
1306 ? GENERAL_REGS \
1307 : ((CLASS) == TARGET_REGS \
1308 || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
1309 ? ((target_operand ((X), (MODE)) \
1310 && ! target_reg_operand ((X), (MODE))) \
1311 ? NO_REGS : GENERAL_REGS) \
1312 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
1313 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
1314 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
1315 ? GENERAL_REGS : NO_REGS)
1317 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
1318 ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \
1319 && ! TARGET_SHMEDIA \
1320 && immediate_operand ((X), (MODE)) \
1321 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
1322 && (MODE) == SFmode && fldi_ok ())) \
1323 ? R0_REGS \
1324 : (CLASS == FPUL_REGS \
1325 && ((GET_CODE (X) == REG \
1326 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
1327 || REGNO (X) == T_REG)))) \
1328 ? GENERAL_REGS \
1329 : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \
1330 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \
1331 ? GENERAL_REGS \
1332 : R0_REGS) \
1333 : (CLASS == FPSCR_REGS \
1334 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1335 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1336 ? GENERAL_REGS \
1337 : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
1339 /* Return the maximum number of consecutive registers
1340 needed to represent mode MODE in a register of class CLASS.
1342 On SH this is the size of MODE in words. */
1343 #define CLASS_MAX_NREGS(CLASS, MODE) \
1344 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1346 /* If defined, gives a class of registers that cannot be used as the
1347 operand of a SUBREG that changes the mode of the object illegally. */
1349 #define CLASS_CANNOT_CHANGE_MODE DF_REGS
1351 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1353 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1354 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1356 /* Stack layout; function entry, exit and calling. */
1358 /* Define the number of registers that can hold parameters.
1359 These macros are used only in other macro definitions below. */
1361 #define NPARM_REGS(MODE) \
1362 (TARGET_FPU_ANY && (MODE) == SFmode \
1363 ? (TARGET_SH5 ? 12 : 8) \
1364 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1365 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1366 ? (TARGET_SH5 ? 12 : 8) \
1367 : (TARGET_SH5 ? 8 : 4))
1369 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1370 #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1372 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1373 #define FIRST_FP_RET_REG FIRST_FP_REG
1375 /* Define this if pushing a word on the stack
1376 makes the stack pointer a smaller address. */
1377 #define STACK_GROWS_DOWNWARD
1379 /* Define this macro if the addresses of local variable slots are at
1380 negative offsets from the frame pointer.
1382 The SH only has positive indexes, so grow the frame up. */
1383 /* #define FRAME_GROWS_DOWNWARD */
1385 /* Offset from the frame pointer to the first local variable slot to
1386 be allocated. */
1387 #define STARTING_FRAME_OFFSET 0
1389 /* If we generate an insn to push BYTES bytes,
1390 this says how many the stack pointer really advances by. */
1391 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1392 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1393 do correct alignment. */
1394 #if 0
1395 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1396 #endif
1398 /* Offset of first parameter from the argument pointer register value. */
1399 #define FIRST_PARM_OFFSET(FNDECL) 0
1401 /* Value is the number of byte of arguments automatically
1402 popped when returning from a subroutine call.
1403 FUNDECL is the declaration node of the function (as a tree),
1404 FUNTYPE is the data type of the function (as a tree),
1405 or for a library call it is an identifier node for the subroutine name.
1406 SIZE is the number of bytes of arguments passed on the stack.
1408 On the SH, the caller does not pop any of its arguments that were passed
1409 on the stack. */
1410 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1412 /* Value is the number of bytes of arguments automatically popped when
1413 calling a subroutine.
1414 CUM is the accumulated argument list.
1416 On SHcompact, the call trampoline pops arguments off the stack. */
1417 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1419 /* Nonzero if we do not know how to pass TYPE solely in registers.
1420 Values that come in registers with inconvenient padding are stored
1421 to memory at the function start. */
1423 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1424 ((TYPE) != 0 \
1425 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1426 || TREE_ADDRESSABLE (TYPE)))
1427 /* Some subroutine macros specific to this machine. */
1429 #define BASE_RETURN_VALUE_REG(MODE) \
1430 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1431 ? FIRST_FP_RET_REG \
1432 : TARGET_FPU_ANY && (MODE) == SCmode \
1433 ? FIRST_FP_RET_REG \
1434 : (TARGET_FPU_DOUBLE \
1435 && ((MODE) == DFmode || (MODE) == SFmode \
1436 || (MODE) == DCmode || (MODE) == SCmode )) \
1437 ? FIRST_FP_RET_REG \
1438 : FIRST_RET_REG)
1440 #define BASE_ARG_REG(MODE) \
1441 ((TARGET_SH3E && ((MODE) == SFmode)) \
1442 ? FIRST_FP_PARM_REG \
1443 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1444 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1445 ? FIRST_FP_PARM_REG \
1446 : FIRST_PARM_REG)
1448 /* Define how to find the value returned by a function.
1449 VALTYPE is the data type of the value (as a tree).
1450 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1451 otherwise, FUNC is 0.
1452 For the SH, this is like LIBCALL_VALUE, except that we must change the
1453 mode like PROMOTE_MODE does.
1454 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1455 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1457 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1458 gen_rtx (REG, \
1459 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1460 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \
1461 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1462 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1463 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1464 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1465 || TREE_CODE (VALTYPE) == REAL_TYPE \
1466 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1467 ? (TARGET_SHMEDIA ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1468 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1470 /* Define how to find the value returned by a library function
1471 assuming the value has mode MODE. */
1472 #define LIBCALL_VALUE(MODE) \
1473 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1475 /* 1 if N is a possible register number for a function value. */
1476 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1477 ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG) \
1478 || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1480 /* 1 if N is a possible register number for function argument passing. */
1481 #define FUNCTION_ARG_REGNO_P(REGNO) \
1482 (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG \
1483 + NPARM_REGS (SImode))) \
1484 || (TARGET_FPU_ANY \
1485 && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG \
1486 + NPARM_REGS (SFmode))))
1488 /* Define a data type for recording info about an argument list
1489 during the scan of that argument list. This data type should
1490 hold all necessary information about the function itself
1491 and about the args processed so far, enough to enable macros
1492 such as FUNCTION_ARG to determine where the next arg should go.
1494 On SH, this is a single integer, which is a number of words
1495 of arguments scanned so far (including the invisible argument,
1496 if any, which holds the structure-value-address).
1497 Thus NARGREGS or more means all following args should go on the stack. */
1499 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1500 struct sh_args {
1501 int arg_count[2];
1502 int force_mem;
1503 /* Non-zero if a prototype is available for the function. */
1504 int prototype_p;
1505 /* The number of an odd floating-point register, that should be used
1506 for the next argument of type float. */
1507 int free_single_fp_reg;
1508 /* Whether we're processing an outgoing function call. */
1509 int outgoing;
1510 /* The number of general-purpose registers that should have been
1511 used to pass partial arguments, that are passed totally on the
1512 stack. On SHcompact, a call trampoline will pop them off the
1513 stack before calling the actual function, and, if the called
1514 function is implemented in SHcompact mode, the incoming arguments
1515 decoder will push such arguments back onto the stack. For
1516 incoming arguments, STACK_REGS also takes into account other
1517 arguments passed by reference, that the decoder will also push
1518 onto the stack. */
1519 int stack_regs;
1520 /* The number of general-purpose registers that should have been
1521 used to pass arguments, if the arguments didn't have to be passed
1522 by reference. */
1523 int byref_regs;
1524 /* Set by SHCOMPACT_BYREF if the current argument is to be passed by
1525 reference. */
1526 int byref;
1528 /* call_cookie is a bitmask used by call expanders, as well as
1529 function prologue and epilogues, to allow SHcompact to comply
1530 with the SH5 32-bit ABI, that requires 64-bit registers to be
1531 used even though only the lower 32-bit half is visible in
1532 SHcompact mode. The strategy is to call SHmedia trampolines.
1534 The alternatives for each of the argument-passing registers are
1535 (a) leave it unchanged; (b) pop it off the stack; (c) load its
1536 contents from the address in it; (d) add 8 to it, storing the
1537 result in the next register, then (c); (e) copy it from some
1538 floating-point register,
1540 Regarding copies from floating-point registers, r2 may only be
1541 copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
1542 copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
1543 dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1544 r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1545 dr10.
1547 The bit mask is structured as follows:
1549 - 1 bit to tell whether to set up a return trampoline.
1551 - 3 bits to count the number consecutive registers to pop off the
1552 stack.
1554 - 4 bits for each of r9, r8, r7 and r6.
1556 - 3 bits for each of r5, r4, r3 and r2.
1558 - 3 bits set to 0 (the most significant ones)
1560 3 2 1 0
1561 1098 7654 3210 9876 5432 1098 7654 3210
1562 FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1563 2223 3344 4555 6666 7777 8888 9999 SSS-
1565 - If F is set, the register must be copied from an FP register,
1566 whose number is encoded in the remaining bits.
1568 - Else, if L is set, the register must be loaded from the address
1569 contained in it. If the P bit is *not* set, the address of the
1570 following dword should be computed first, and stored in the
1571 following register.
1573 - Else, if P is set, the register alone should be popped off the
1574 stack.
1576 - After all this processing, the number of registers represented
1577 in SSS will be popped off the stack. This is an optimization
1578 for pushing/popping consecutive registers, typically used for
1579 varargs and large arguments partially passed in registers.
1581 - If T is set, a return trampoline will be set up for 64-bit
1582 return values to be split into 2 32-bit registers. */
1583 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1584 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1585 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1586 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1587 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1588 (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1589 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1590 (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1591 #define CALL_COOKIE_INT_REG(REG, VAL) \
1592 ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1593 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1594 (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1595 long call_cookie;
1598 #define CUMULATIVE_ARGS struct sh_args
1600 #define GET_SH_ARG_CLASS(MODE) \
1601 ((TARGET_FPU_ANY && (MODE) == SFmode) \
1602 ? SH_ARG_FLOAT \
1603 /* There's no mention of complex float types in the SH5 ABI, so we
1604 should presumably handle them as aggregate types. */ \
1605 : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1606 ? SH_ARG_INT \
1607 : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1608 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1609 ? SH_ARG_FLOAT : SH_ARG_INT)
1611 #define ROUND_ADVANCE(SIZE) \
1612 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1614 /* Round a register number up to a proper boundary for an arg of mode
1615 MODE.
1617 The SH doesn't care about double alignment, so we only
1618 round doubles to even regs when asked to explicitly. */
1620 #define ROUND_REG(CUM, MODE) \
1621 (((TARGET_ALIGN_DOUBLE \
1622 || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \
1623 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1624 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1625 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1626 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1627 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1629 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1630 for a call to a function whose data type is FNTYPE.
1631 For a library call, FNTYPE is 0.
1633 On SH, the offset always starts at 0: the first parm reg is always
1634 the same reg for a given argument class.
1636 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1638 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1639 do { \
1640 (CUM).arg_count[(int) SH_ARG_INT] = 0; \
1641 (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
1642 (CUM).force_mem \
1643 = (TARGET_HITACHI && FNTYPE \
1644 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1645 (CUM).prototype_p = (FNTYPE) && TYPE_ARG_TYPES (FNTYPE); \
1646 (CUM).arg_count[(int) SH_ARG_INT] \
1647 = (TARGET_SH5 && (FNTYPE) \
1648 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1649 (CUM).free_single_fp_reg = 0; \
1650 (CUM).outgoing = 1; \
1651 (CUM).stack_regs = 0; \
1652 (CUM).byref_regs = 0; \
1653 (CUM).byref = 0; \
1654 (CUM).call_cookie \
1655 = (CALL_COOKIE_RET_TRAMP \
1656 (TARGET_SHCOMPACT && (FNTYPE) \
1657 && (CUM).arg_count[(int) SH_ARG_INT] == 0 \
1658 && (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
1659 ? int_size_in_bytes (TREE_TYPE (FNTYPE)) \
1660 : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (FNTYPE)))) > 4 \
1661 && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE \
1662 (FNTYPE))) \
1663 == FIRST_RET_REG))); \
1664 } while (0)
1666 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1667 do { \
1668 INIT_CUMULATIVE_ARGS ((CUM), NULL_TREE, (LIBNAME), 0); \
1669 (CUM).call_cookie \
1670 = (CALL_COOKIE_RET_TRAMP \
1671 (TARGET_SHCOMPACT && GET_MODE_SIZE (MODE) > 4 \
1672 && BASE_RETURN_VALUE_REG (MODE) == FIRST_RET_REG)); \
1673 } while (0)
1675 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1676 do { \
1677 INIT_CUMULATIVE_ARGS ((CUM), (FNTYPE), (LIBNAME), 0); \
1678 (CUM).outgoing = 0; \
1679 } while (0)
1681 /* FIXME: This is overly conservative. A SHcompact function that
1682 receives arguments ``by reference'' will have them stored in its
1683 own stack frame, so it must not pass pointers or references to
1684 these arguments to other functions by means of sibling calls. */
1685 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1686 (! TARGET_SHCOMPACT || current_function_args_info.stack_regs == 0)
1688 /* Update the data in CUM to advance over an argument
1689 of mode MODE and data type TYPE.
1690 (TYPE is null for libcalls where that information may not be
1691 available.) */
1693 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1694 if ((CUM).force_mem) \
1695 (CUM).force_mem = 0; \
1696 else if (TARGET_SH5) \
1698 tree TYPE_ = ((CUM).byref && (TYPE) \
1699 ? TREE_TYPE (TYPE) \
1700 : (TYPE)); \
1701 enum machine_mode MODE_ = ((CUM).byref && (TYPE) \
1702 ? TYPE_MODE (TYPE_) \
1703 : (MODE)); \
1704 int dwords = (((CUM).byref \
1705 ? (CUM).byref \
1706 : (MODE_) == BLKmode \
1707 ? int_size_in_bytes (TYPE_) \
1708 : GET_MODE_SIZE (MODE_)) + 7) / 8; \
1709 int numregs = MIN (dwords, NPARM_REGS (SImode) \
1710 - (CUM).arg_count[(int) SH_ARG_INT]); \
1712 if (numregs) \
1714 (CUM).arg_count[(int) SH_ARG_INT] += numregs; \
1715 if (TARGET_SHCOMPACT \
1716 && SHCOMPACT_FORCE_ON_STACK (MODE_, TYPE_)) \
1718 (CUM).call_cookie \
1719 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1720 - numregs), 1); \
1721 /* N.B. We want this also for outgoing. */\
1722 (CUM).stack_regs += numregs; \
1724 else if ((CUM).byref) \
1726 if (! (CUM).outgoing) \
1727 (CUM).stack_regs += numregs; \
1728 (CUM).byref_regs += numregs; \
1729 (CUM).byref = 0; \
1730 do \
1731 (CUM).call_cookie \
1732 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1733 - numregs), 2); \
1734 while (--numregs); \
1735 (CUM).call_cookie \
1736 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1737 - 1), 1); \
1739 else if (dwords > numregs) \
1741 int pushregs = numregs; \
1743 if (TARGET_SHCOMPACT) \
1744 (CUM).stack_regs += numregs; \
1745 while (pushregs < NPARM_REGS (SImode) - 1 \
1746 && (CALL_COOKIE_INT_REG_GET \
1747 ((CUM).call_cookie, \
1748 NPARM_REGS (SImode) - pushregs) \
1749 == 1)) \
1751 (CUM).call_cookie \
1752 &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) \
1753 - pushregs, 1); \
1754 pushregs++; \
1756 if (numregs == NPARM_REGS (SImode)) \
1757 (CUM).call_cookie \
1758 |= CALL_COOKIE_INT_REG (0, 1) \
1759 | CALL_COOKIE_STACKSEQ (numregs - 1); \
1760 else \
1761 (CUM).call_cookie \
1762 |= CALL_COOKIE_STACKSEQ (numregs); \
1765 if (GET_SH_ARG_CLASS (MODE_) == SH_ARG_FLOAT \
1766 && ((NAMED) || ! (CUM).prototype_p)) \
1768 if ((MODE_) == SFmode && (CUM).free_single_fp_reg) \
1769 (CUM).free_single_fp_reg = 0; \
1770 else if ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1771 < NPARM_REGS (SFmode)) \
1773 int numfpregs \
1774 = MIN ((GET_MODE_SIZE (MODE_) + 7) / 8 * 2, \
1775 NPARM_REGS (SFmode) \
1776 - (CUM).arg_count[(int) SH_ARG_FLOAT]); \
1778 (CUM).arg_count[(int) SH_ARG_FLOAT] += numfpregs; \
1780 if (TARGET_SHCOMPACT && ! (CUM).prototype_p) \
1782 if ((CUM).outgoing && numregs > 0) \
1783 do \
1785 (CUM).call_cookie \
1786 |= (CALL_COOKIE_INT_REG \
1787 ((CUM).arg_count[(int) SH_ARG_INT] \
1788 - numregs + ((numfpregs - 2) / 2), \
1789 4 + ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1790 - numfpregs) / 2)); \
1792 while (numfpregs -= 2); \
1794 else if ((MODE_) == SFmode && (NAMED) \
1795 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1796 < NPARM_REGS (SFmode))) \
1797 (CUM).free_single_fp_reg \
1798 = FIRST_FP_PARM_REG - numfpregs \
1799 + (CUM).arg_count[(int) SH_ARG_FLOAT] + 1; \
1803 else if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
1804 ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1805 = (ROUND_REG ((CUM), (MODE)) \
1806 + ((MODE) == BLKmode \
1807 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1808 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1810 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1811 This macro is only used in this file. */
1813 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1814 (((TYPE) == 0 \
1815 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1816 && (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE)))) \
1817 && ! (CUM).force_mem \
1818 && (TARGET_SH3E \
1819 ? ((MODE) == BLKmode \
1820 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1821 + int_size_in_bytes (TYPE)) \
1822 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1823 : ((ROUND_REG((CUM), (MODE)) \
1824 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1825 <= NPARM_REGS (MODE))) \
1826 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1828 /* Define where to put the arguments to a function.
1829 Value is zero to push the argument on the stack,
1830 or a hard register in which to store the argument.
1832 MODE is the argument's machine mode.
1833 TYPE is the data type of the argument (as a tree).
1834 This is null for libcalls where that information may
1835 not be available.
1836 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1837 the preceding args and about the function being called.
1838 NAMED is nonzero if this argument is a named parameter
1839 (otherwise it is an extra parameter matching an ellipsis).
1841 On SH the first args are normally in registers
1842 and the rest are pushed. Any arg that starts within the first
1843 NPARM_REGS words is at least partially passed in a register unless
1844 its data type forbids. */
1846 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1847 ((! TARGET_SH5 \
1848 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1849 && ((NAMED) \
1850 || (! TARGET_HITACHI && (TARGET_SH3E || ! current_function_varargs)))) \
1851 ? gen_rtx_REG ((MODE), \
1852 ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \
1853 ^ ((MODE) == SFmode && TARGET_SH4 \
1854 && TARGET_LITTLE_ENDIAN != 0))) \
1855 : TARGET_SH5 \
1856 ? ((MODE) == VOIDmode && TARGET_SHCOMPACT \
1857 ? GEN_INT ((CUM).call_cookie) \
1858 /* The following test assumes unnamed arguments are promoted to \
1859 DFmode. */ \
1860 : (MODE) == SFmode && (CUM).free_single_fp_reg \
1861 ? SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), (CUM).free_single_fp_reg) \
1862 : (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1863 && ((NAMED) || ! (CUM).prototype_p) \
1864 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode)) \
1865 ? ((! (CUM).prototype_p && TARGET_SHMEDIA) \
1866 ? SH5_PROTOTYPELESS_FLOAT_ARG ((CUM), (MODE)) \
1867 : SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), \
1868 FIRST_FP_PARM_REG \
1869 + (CUM).arg_count[(int) SH_ARG_FLOAT])) \
1870 : ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1871 && (! TARGET_SHCOMPACT \
1872 || (! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1873 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1874 (TYPE), (NAMED))))) \
1875 ? gen_rtx_REG ((MODE), (FIRST_PARM_REG \
1876 + (CUM).arg_count[(int) SH_ARG_INT])) \
1877 : 0) \
1878 : 0)
1880 /* Whether an argument must be passed by reference. On SHcompact, we
1881 pretend arguments wider than 32-bits that would have been passed in
1882 registers are passed by reference, so that an SHmedia trampoline
1883 loads them into the full 64-bits registers. */
1884 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED) \
1885 (MUST_PASS_IN_STACK ((MODE), (TYPE)) \
1886 || SHCOMPACT_BYREF ((CUM), (MODE), (TYPE), (NAMED)))
1888 #define SHCOMPACT_BYREF(CUM, MODE, TYPE, NAMED) \
1889 ((CUM).byref \
1890 = (TARGET_SHCOMPACT \
1891 && (CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1892 && (! (NAMED) || GET_SH_ARG_CLASS (MODE) == SH_ARG_INT \
1893 || (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \
1894 && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1895 >= NPARM_REGS (SFmode)))) \
1896 && ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1897 : GET_MODE_SIZE (MODE)) > 4 \
1898 && ! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \
1899 && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \
1900 (TYPE), (NAMED))) \
1901 ? ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
1902 : GET_MODE_SIZE (MODE)) \
1903 : 0)
1905 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
1906 register in SHcompact mode, it must be padded in the most
1907 significant end. This means that passing it by reference wouldn't
1908 pad properly on a big-endian machine. In this particular case, we
1909 pass this argument on the stack, in a way that the call trampoline
1910 will load its value into the appropriate register. */
1911 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
1912 ((MODE) == BLKmode \
1913 && TARGET_SHCOMPACT \
1914 && ! TARGET_LITTLE_ENDIAN \
1915 && int_size_in_bytes (TYPE) > 4 \
1916 && int_size_in_bytes (TYPE) < 8)
1918 /* Minimum alignment for an argument to be passed by callee-copy
1919 reference. We need such arguments to be aligned to 8 byte
1920 boundaries, because they'll be loaded using quad loads. */
1921 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1923 #define FUNCTION_ARG_CALLEE_COPIES(CUM,MODE,TYPE,NAMED) \
1924 ((CUM).outgoing \
1925 && (((MODE) == BLKmode ? TYPE_ALIGN (TYPE) \
1926 : GET_MODE_ALIGNMENT (MODE)) \
1927 % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0))
1929 /* The SH5 ABI requires floating-point arguments to be passed to
1930 functions without a prototype in both an FP register and a regular
1931 register or the stack. When passing the argument in both FP and
1932 general-purpose registers, list the FP register first. */
1933 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
1934 (gen_rtx_PARALLEL \
1935 ((MODE), \
1936 gen_rtvec (2, \
1937 gen_rtx_EXPR_LIST \
1938 (VOIDmode, \
1939 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1940 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1941 + (CUM).arg_count[(int) SH_ARG_FLOAT]) \
1942 : NULL_RTX), \
1943 const0_rtx), \
1944 gen_rtx_EXPR_LIST \
1945 (VOIDmode, \
1946 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1947 ? gen_rtx_REG ((MODE), FIRST_PARM_REG \
1948 + (CUM).arg_count[(int) SH_ARG_INT]) \
1949 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
1950 + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
1951 const0_rtx))))
1953 /* The SH5 ABI requires regular registers or stack slots to be
1954 reserved for floating-point arguments. Registers are taken care of
1955 in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
1956 Unfortunately, there's no way to just reserve a stack slot, so
1957 we'll end up needlessly storing a copy of the argument in the
1958 stack. For incoming arguments, however, the PARALLEL will be
1959 optimized to the register-only form, and the value in the stack
1960 slot won't be used at all. */
1961 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
1962 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1963 ? gen_rtx_REG ((MODE), (REG)) \
1964 : gen_rtx_PARALLEL ((MODE), \
1965 gen_rtvec (2, \
1966 gen_rtx_EXPR_LIST \
1967 (VOIDmode, NULL_RTX, \
1968 const0_rtx), \
1969 gen_rtx_EXPR_LIST \
1970 (VOIDmode, gen_rtx_REG ((MODE), \
1971 (REG)), \
1972 const0_rtx))))
1974 #define STRICT_ARGUMENT_NAMING TARGET_SH5
1976 #define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI && ! TARGET_SH5)
1978 /* For an arg passed partly in registers and partly in memory,
1979 this is the number of registers used.
1980 For args passed entirely in registers or entirely in memory, zero.
1982 We sometimes split args. */
1984 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1985 ((! TARGET_SH5 \
1986 && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1987 && ! TARGET_SH4 \
1988 && (ROUND_REG ((CUM), (MODE)) \
1989 + ((MODE) != BLKmode \
1990 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1991 : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
1992 > NPARM_REGS (MODE))) \
1993 ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
1994 : (SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), (TYPE), (NAMED)) \
1995 && ! TARGET_SHCOMPACT) \
1996 ? NPARM_REGS (SImode) - (CUM).arg_count[(int) SH_ARG_INT] \
1997 : 0)
1999 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2000 (TARGET_SH5 && (MODE) == BLKmode \
2001 && ((CUM).arg_count[(int) SH_ARG_INT] \
2002 + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
2004 /* Perform any needed actions needed for a function that is receiving a
2005 variable number of arguments. */
2007 /* We actually emit the code in sh_expand_prologue. We used to use
2008 a static variable to flag that we need to emit this code, but that
2009 doesn't when inlining, when functions are deferred and then emitted
2010 later. Fortunately, we already have two flags that are part of struct
2011 function that tell if a function uses varargs or stdarg. */
2012 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) do \
2013 if (! current_function_varargs && ! current_function_stdarg) \
2014 abort (); \
2015 while (0)
2017 /* Define the `__builtin_va_list' type for the ABI. */
2018 #define BUILD_VA_LIST_TYPE(VALIST) \
2019 (VALIST) = sh_build_va_list ()
2021 /* Implement `va_start' for varargs and stdarg. */
2022 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2023 sh_va_start (stdarg, valist, nextarg)
2025 /* Implement `va_arg'. */
2026 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2027 sh_va_arg (valist, type)
2029 /* Call the function profiler with a given profile label.
2030 We use two .aligns, so as to make sure that both the .long is aligned
2031 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
2032 from the trapa instruction. */
2034 #define FUNCTION_PROFILER(STREAM,LABELNO) \
2036 fprintf((STREAM), "\t.align\t2\n"); \
2037 fprintf((STREAM), "\ttrapa\t#33\n"); \
2038 fprintf((STREAM), "\t.align\t2\n"); \
2039 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2042 /* Define this macro if the code for function profiling should come
2043 before the function prologue. Normally, the profiling code comes
2044 after. */
2046 #define PROFILE_BEFORE_PROLOGUE
2048 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2049 the stack pointer does not matter. The value is tested only in
2050 functions that have frame pointers.
2051 No definition is equivalent to always zero. */
2053 #define EXIT_IGNORE_STACK 1
2056 On the SH, the trampoline looks like
2057 2 0002 D202 mov.l l2,r2
2058 1 0000 D301 mov.l l1,r3
2059 3 0004 422B jmp @r2
2060 4 0006 0009 nop
2061 5 0008 00000000 l1: .long area
2062 6 000c 00000000 l2: .long function */
2064 /* Length in units of the trampoline for entering a nested function. */
2065 #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 32 : 16)
2067 /* Alignment required for a trampoline in bits . */
2068 #define TRAMPOLINE_ALIGNMENT \
2069 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 : 64)
2071 /* Emit RTL insns to initialize the variable parts of a trampoline.
2072 FNADDR is an RTX for the address of the function's pure code.
2073 CXT is an RTX for the static chain value for the function. */
2075 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) do \
2077 if (TARGET_SH5) \
2079 rtx tramp_templ = gen_rtx_SYMBOL_REF (Pmode, \
2080 "__GCC_nested_trampoline"); \
2081 int fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode); \
2083 tramp_templ = gen_datalabel_ref (tramp_templ); \
2084 emit_block_move (gen_rtx_MEM (BLKmode, (TRAMP)), \
2085 gen_rtx_MEM (BLKmode, tramp_templ), \
2086 GEN_INT (fixed_len)); \
2087 emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), \
2088 fixed_len)), \
2089 (FNADDR)); \
2090 emit_move_insn (gen_rtx_MEM (Pmode, \
2091 plus_constant ((TRAMP), \
2092 fixed_len \
2093 + GET_MODE_SIZE (Pmode))), \
2094 (CXT)); \
2095 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2096 break; \
2098 emit_move_insn (gen_rtx_MEM (SImode, (TRAMP)), \
2099 GEN_INT (trunc_int_for_mode \
2100 (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,\
2101 SImode))); \
2102 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 4)), \
2103 GEN_INT (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009));\
2104 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 8)), \
2105 (CXT)); \
2106 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 12)), \
2107 (FNADDR)); \
2108 if (TARGET_HARVARD) \
2110 if (TARGET_USERMODE) \
2111 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__ic_invalidate"),\
2112 0, VOIDmode, 1, (TRAMP), SImode); \
2113 else \
2114 emit_insn (gen_ic_invalidate_line (TRAMP)); \
2116 } while (0)
2118 /* On SH5, trampolines are SHmedia code, so add 1 to the address. */
2120 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
2122 if (TARGET_SH5) \
2123 (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), GEN_INT (1), \
2124 gen_reg_rtx (Pmode), 0, \
2125 OPTAB_LIB_WIDEN); \
2126 } while (0)
2128 /* A C expression whose value is RTL representing the value of the return
2129 address for the frame COUNT steps up from the current frame.
2130 FRAMEADDR is already the frame pointer of the COUNT frame, so we
2131 can ignore COUNT. */
2133 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2134 (((COUNT) == 0) \
2135 ? get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG) \
2136 : (rtx) 0)
2138 /* A C expression whose value is RTL representing the location of the
2139 incoming return address at the beginning of any function, before the
2140 prologue. This RTL is either a REG, indicating that the return
2141 value is saved in REG, or a MEM representing a location in
2142 the stack. */
2143 #define INCOMING_RETURN_ADDR_RTX \
2144 gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2146 /* Generate necessary RTL for __builtin_saveregs(). */
2147 #define EXPAND_BUILTIN_SAVEREGS() sh_builtin_saveregs ()
2149 /* Addressing modes, and classification of registers for them. */
2150 #define HAVE_POST_INCREMENT TARGET_SH1
2151 /*#define HAVE_PRE_INCREMENT 1*/
2152 /*#define HAVE_POST_DECREMENT 1*/
2153 #define HAVE_PRE_DECREMENT TARGET_SH1
2155 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
2156 ? 0 : TARGET_SH1)
2157 #define USE_LOAD_PRE_DECREMENT(mode) 0
2158 #define USE_STORE_POST_INCREMENT(mode) 0
2159 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
2160 ? 0 : TARGET_SH1)
2162 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \
2163 < (TARGET_SMALLCODE ? 2 : \
2164 ((ALIGN >= 32) ? 16 : 2)))
2166 /* Macros to check register numbers against specific register classes. */
2168 /* These assume that REGNO is a hard or pseudo reg number.
2169 They give nonzero only if REGNO is a hard reg of the suitable class
2170 or a pseudo reg currently allocated to a suitable hard reg.
2171 Since they use reg_renumber, they are safe only once reg_renumber
2172 has been allocated, which happens in local-alloc.c. */
2174 #define REGNO_OK_FOR_BASE_P(REGNO) \
2175 (GENERAL_OR_AP_REGISTER_P (REGNO) \
2176 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2177 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2178 (TARGET_SHMEDIA \
2179 ? (GENERAL_REGISTER_P (REGNO) \
2180 || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2181 : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2183 /* Maximum number of registers that can appear in a valid memory
2184 address. */
2186 #define MAX_REGS_PER_ADDRESS 2
2188 /* Recognize any constant value that is a valid address. */
2190 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
2192 /* Nonzero if the constant value X is a legitimate general operand. */
2194 #define LEGITIMATE_CONSTANT_P(X) \
2195 (TARGET_SHMEDIA \
2196 ? (GET_MODE (X) != DFmode \
2197 || (X) == CONST0_RTX (GET_MODE (X)) \
2198 || ! TARGET_SHMEDIA_FPU \
2199 || TARGET_SHMEDIA64) \
2200 : (GET_CODE (X) != CONST_DOUBLE \
2201 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
2202 || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X)))))
2204 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2205 and check its validity for a certain class.
2206 We have two alternate definitions for each of them.
2207 The usual definition accepts all pseudo regs; the other rejects
2208 them unless they have been allocated suitable hard regs.
2209 The symbol REG_OK_STRICT causes the latter definition to be used. */
2211 #ifndef REG_OK_STRICT
2213 /* Nonzero if X is a hard reg that can be used as a base reg
2214 or if it is a pseudo reg. */
2215 #define REG_OK_FOR_BASE_P(X) \
2216 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2218 /* Nonzero if X is a hard reg that can be used as an index
2219 or if it is a pseudo reg. */
2220 #define REG_OK_FOR_INDEX_P(X) \
2221 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2222 : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2224 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2225 or if X is a pseudo reg. */
2226 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2227 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2228 : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2230 #else
2232 /* Nonzero if X is a hard reg that can be used as a base reg. */
2233 #define REG_OK_FOR_BASE_P(X) \
2234 REGNO_OK_FOR_BASE_P (REGNO (X))
2236 /* Nonzero if X is a hard reg that can be used as an index. */
2237 #define REG_OK_FOR_INDEX_P(X) \
2238 REGNO_OK_FOR_INDEX_P (REGNO (X))
2240 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
2241 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2242 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2244 #endif
2246 /* The 'Q' constraint is a pc relative load operand. */
2247 #define EXTRA_CONSTRAINT_Q(OP) \
2248 (GET_CODE (OP) == MEM \
2249 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
2250 || (GET_CODE (XEXP ((OP), 0)) == CONST \
2251 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
2252 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2253 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2255 /* The `S' constraint is a 16-bit constant, literal or symbolic. */
2256 #define EXTRA_CONSTRAINT_S(OP) \
2257 (GET_CODE (OP) == CONST \
2258 && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2259 && GET_MODE (XEXP ((OP), 0)) == DImode \
2260 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2261 && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2262 && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2263 || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2264 && (MOVI_SHORI_BASE_OPERAND_P \
2265 (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2266 && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2267 1)) == CONST_INT)))
2269 /* Check whether OP is a datalabel unspec. */
2270 #define DATALABEL_REF_NO_CONST_P(OP) \
2271 (GET_CODE (OP) == UNSPEC \
2272 && XINT ((OP), 1) == UNSPEC_DATALABEL \
2273 && XVECLEN ((OP), 0) == 1 \
2274 && (GET_CODE (XVECEXP ((OP), 0, 0)) == SYMBOL_REF \
2275 || GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF))
2277 /* Check whether OP is a datalabel unspec, possibly enclosed within a
2278 CONST. */
2279 #define DATALABEL_REF_P(OP) \
2280 ((GET_CODE (OP) == CONST && DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0))) \
2281 || DATALABEL_REF_NO_CONST_P (OP))
2283 #define GOT_ENTRY_P(OP) \
2284 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2285 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2287 #define GOTPLT_ENTRY_P(OP) \
2288 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2289 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2291 #define GOTOFF_P(OP) \
2292 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2293 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTOFF)
2295 #define PIC_ADDR_P(OP) \
2296 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2297 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2299 #define NON_PIC_REFERENCE_P(OP) \
2300 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2301 || DATALABEL_REF_P (OP) \
2302 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2303 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2304 || DATALABEL_REF_P (XEXP (XEXP ((OP), 0), 0))) \
2305 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2307 #define PIC_REFERENCE_P(OP) \
2308 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2309 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2311 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2312 (flag_pic ? PIC_REFERENCE_P (OP) : NON_PIC_REFERENCE_P (OP))
2314 /* The `T' constraint is a label or a symbol. */
2315 #define EXTRA_CONSTRAINT_T(OP) \
2316 (NON_PIC_REFERENCE_P (OP))
2318 /* A zero in any shape or form. */
2319 #define EXTRA_CONSTRAINT_U(OP) \
2320 ((OP) == const0_rtx \
2321 || (GET_CODE (OP) == SUBREG && VECTOR_MODE_SUPPORTED_P(GET_MODE (OP)) \
2322 && SUBREG_REG (OP) == const0_rtx && SUBREG_BYTE (OP) == 0) \
2323 || GET_CODE (OP) == CONST_VECTOR && zero_vec_operand ((OP), VOIDmode))
2325 /* Any vector constant we can handle. */
2326 #define EXTRA_CONSTRAINT_W(OP) \
2327 (GET_CODE (OP) == CONST_VECTOR \
2328 && (sh_rep_vec ((OP), VOIDmode) \
2329 || (HOST_BITS_PER_WIDE_INT >= 64 \
2330 ? sh_const_vec ((OP), VOIDmode) \
2331 : sh_1el_vec ((OP), VOIDmode))))
2333 #define EXTRA_CONSTRAINT(OP, C) \
2334 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2335 : (C) == 'S' ? EXTRA_CONSTRAINT_S (OP) \
2336 : (C) == 'T' ? EXTRA_CONSTRAINT_T (OP) \
2337 : (C) == 'U' ? EXTRA_CONSTRAINT_U (OP) \
2338 : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2339 : 0)
2341 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2342 that is a valid memory address for an instruction.
2343 The MODE argument is the machine mode for the MEM expression
2344 that wants to use this address. */
2346 #define MODE_DISP_OK_4(X,MODE) \
2347 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2348 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
2350 #define MODE_DISP_OK_8(X,MODE) \
2351 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2352 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2354 #define BASE_REGISTER_RTX_P(X) \
2355 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2356 || (GET_CODE (X) == SUBREG \
2357 && GET_CODE (SUBREG_REG (X)) == REG \
2358 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2360 /* Since this must be r0, which is a single register class, we must check
2361 SUBREGs more carefully, to be sure that we don't accept one that extends
2362 outside the class. */
2363 #define INDEX_REGISTER_RTX_P(X) \
2364 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2365 || (GET_CODE (X) == SUBREG \
2366 && GET_CODE (SUBREG_REG (X)) == REG \
2367 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2369 /* Jump to LABEL if X is a valid address RTX. This must also take
2370 REG_OK_STRICT into account when deciding about valid registers, but it uses
2371 the above macros so we are in luck.
2373 Allow REG
2374 REG+disp
2375 REG+r0
2376 REG++
2377 --REG */
2379 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
2380 into the FRx registers. We implement this by setting the maximum offset
2381 to zero when the value is SFmode. This also restricts loading of SFmode
2382 values into the integer registers, but that can't be helped. */
2384 /* The SH allows a displacement in a QI or HI amode, but only when the
2385 other operand is R0. GCC doesn't handle this very well, so we forgo
2386 all of that.
2388 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2389 DI can be any number 0..60. */
2391 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
2392 do { \
2393 if (GET_CODE (OP) == CONST_INT) \
2395 if (TARGET_SHMEDIA) \
2397 int MODE_SIZE = GET_MODE_SIZE (MODE); \
2398 if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
2399 && INTVAL (OP) >= -512 * MODE_SIZE \
2400 && INTVAL (OP) < 512 * MODE_SIZE) \
2401 goto LABEL; \
2402 else \
2403 break; \
2405 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
2406 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
2408 } while(0)
2410 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2412 if (BASE_REGISTER_RTX_P (X)) \
2413 goto LABEL; \
2414 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
2415 && ! TARGET_SHMEDIA \
2416 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
2417 goto LABEL; \
2418 else if (GET_CODE (X) == PLUS \
2419 && ((MODE) != PSImode || reload_completed)) \
2421 rtx xop0 = XEXP ((X), 0); \
2422 rtx xop1 = XEXP ((X), 1); \
2423 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
2424 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
2425 if (GET_MODE_SIZE (MODE) <= 4 \
2426 || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
2427 || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)) \
2429 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2430 goto LABEL; \
2431 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2432 goto LABEL; \
2437 /* Try machine-dependent ways of modifying an illegitimate address
2438 to be legitimate. If we find one, return the new, valid address.
2439 This macro is used in only one place: `memory_address' in explow.c.
2441 OLDX is the address as it was before break_out_memory_refs was called.
2442 In some cases it is useful to look at this to decide what needs to be done.
2444 MODE and WIN are passed so that this macro can use
2445 GO_IF_LEGITIMATE_ADDRESS.
2447 It is always safe for this macro to do nothing. It exists to recognize
2448 opportunities to optimize the output.
2450 For the SH, if X is almost suitable for indexing, but the offset is
2451 out of range, convert it into a normal form so that cse has a chance
2452 of reducing the number of address registers used. */
2454 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2456 if (flag_pic) \
2457 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2458 if (GET_CODE (X) == PLUS \
2459 && (GET_MODE_SIZE (MODE) == 4 \
2460 || GET_MODE_SIZE (MODE) == 8) \
2461 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
2462 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
2463 && ! TARGET_SHMEDIA \
2464 && ! (TARGET_SH4 && (MODE) == DFmode) \
2465 && ! (TARGET_SH3E && (MODE) == SFmode)) \
2467 rtx index_rtx = XEXP ((X), 1); \
2468 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2469 rtx sum; \
2471 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
2472 /* On rare occasions, we might get an unaligned pointer \
2473 that is indexed in a way to give an aligned address. \
2474 Therefore, keep the lower two bits in offset_base. */ \
2475 /* Instead of offset_base 128..131 use 124..127, so that \
2476 simple add suffices. */ \
2477 if (offset > 127) \
2479 offset_base = ((offset + 4) & ~60) - 4; \
2481 else \
2482 offset_base = offset & ~60; \
2483 /* Sometimes the normal form does not suit DImode. We \
2484 could avoid that by using smaller ranges, but that \
2485 would give less optimized code when SImode is \
2486 prevalent. */ \
2487 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2489 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
2490 GEN_INT (offset_base), NULL_RTX, 0, \
2491 OPTAB_LIB_WIDEN); \
2493 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2494 goto WIN; \
2499 /* A C compound statement that attempts to replace X, which is an address
2500 that needs reloading, with a valid memory address for an operand of
2501 mode MODE. WIN is a C statement label elsewhere in the code.
2503 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2504 of the address. That will allow inheritance of the address reloads. */
2506 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2508 if (GET_CODE (X) == PLUS \
2509 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2510 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2511 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2512 && ! TARGET_SHMEDIA \
2513 && ! (TARGET_SH4 && (MODE) == DFmode) \
2514 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \
2516 rtx index_rtx = XEXP (X, 1); \
2517 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2518 rtx sum; \
2520 if (TARGET_SH3E && MODE == SFmode) \
2522 X = copy_rtx (X); \
2523 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
2524 INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2525 (TYPE)); \
2526 goto WIN; \
2528 /* Instead of offset_base 128..131 use 124..127, so that \
2529 simple add suffices. */ \
2530 if (offset > 127) \
2532 offset_base = ((offset + 4) & ~60) - 4; \
2534 else \
2535 offset_base = offset & ~60; \
2536 /* Sometimes the normal form does not suit DImode. We \
2537 could avoid that by using smaller ranges, but that \
2538 would give less optimized code when SImode is \
2539 prevalent. */ \
2540 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2542 sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
2543 GEN_INT (offset_base)); \
2544 X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
2545 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
2546 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2547 (TYPE)); \
2548 goto WIN; \
2551 /* We must re-recognize what we created before. */ \
2552 else if (GET_CODE (X) == PLUS \
2553 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2554 && GET_CODE (XEXP (X, 0)) == PLUS \
2555 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2556 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
2557 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2558 && ! TARGET_SHMEDIA \
2559 && ! (TARGET_SH3E && MODE == SFmode)) \
2561 /* Because this address is so complex, we know it must have \
2562 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
2563 it is already unshared, and needs no further unsharing. */ \
2564 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2565 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2566 goto WIN; \
2570 /* Go to LABEL if ADDR (a legitimate address expression)
2571 has an effect that depends on the machine mode it is used for.
2573 ??? Strictly speaking, we should also include all indexed addressing,
2574 because the index scale factor is the length of the operand.
2575 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2576 high if we did that. So we rely on reload to fix things up. */
2578 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2580 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
2581 goto LABEL; \
2584 /* Specify the machine mode that this machine uses
2585 for the index in the tablejump instruction. */
2586 #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
2588 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2589 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2590 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2591 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2592 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2593 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2594 : SImode)
2596 /* Define as C expression which evaluates to nonzero if the tablejump
2597 instruction expects the table to contain offsets from the address of the
2598 table.
2599 Do not define this if the table should contain absolute addresses. */
2600 #define CASE_VECTOR_PC_RELATIVE 1
2602 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
2603 #define FLOAT_TYPE_SIZE 32
2605 /* Since the SH3e has only `float' support, it is desirable to make all
2606 floating point types equivalent to `float'. */
2607 #define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
2609 /* 'char' is signed by default. */
2610 #define DEFAULT_SIGNED_CHAR 1
2612 /* The type of size_t unsigned int. */
2613 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2615 #undef PTRDIFF_TYPE
2616 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2618 #define WCHAR_TYPE "short unsigned int"
2619 #define WCHAR_TYPE_SIZE 16
2621 #define SH_ELF_WCHAR_TYPE "long int"
2623 /* Don't cse the address of the function being compiled. */
2624 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
2626 /* Max number of bytes we can move from memory to memory
2627 in one reasonably fast instruction. */
2628 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2630 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
2631 MOVE_MAX is not a compile-time constant. */
2632 #define MAX_MOVE_MAX 8
2634 /* Max number of bytes we want move_by_pieces to be able to copy
2635 efficiently. */
2636 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2638 /* Define if operations between registers always perform the operation
2639 on the full register even if a narrower mode is specified. */
2640 #define WORD_REGISTER_OPERATIONS
2642 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2643 will either zero-extend or sign-extend. The value of this macro should
2644 be the code that says which one of the two operations is implicitly
2645 done, NIL if none. */
2646 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2648 /* Define if loading short immediate values into registers sign extends. */
2649 #define SHORT_IMMEDIATES_SIGN_EXTEND
2651 /* Nonzero if access to memory by bytes is no faster than for words. */
2652 #define SLOW_BYTE_ACCESS 1
2654 /* We assume that the store-condition-codes instructions store 0 for false
2655 and some other value for true. This is the value stored for true. */
2657 #define STORE_FLAG_VALUE 1
2659 /* Immediate shift counts are truncated by the output routines (or was it
2660 the assembler?). Shift counts in a register are truncated by SH. Note
2661 that the native compiler puts too large (> 32) immediate shift counts
2662 into a register and shifts by the register, letting the SH decide what
2663 to do instead of doing that itself. */
2664 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2665 However, the SH3 has hardware shifts that do not truncate exactly as gcc
2666 expects - the sign bit is significant - so it appears that we need to
2667 leave this zero for correct SH3 code. */
2668 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
2670 /* All integers have the same format so truncation is easy. */
2671 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
2673 /* Define this if addresses of constant functions
2674 shouldn't be put through pseudo regs where they can be cse'd.
2675 Desirable on machines where ordinary constants are expensive
2676 but a CALL with constant address is cheap. */
2677 /*#define NO_FUNCTION_CSE 1*/
2679 /* Chars and shorts should be passed as ints. */
2680 #define PROMOTE_PROTOTYPES 1
2682 /* The machine modes of pointers and functions. */
2683 #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
2684 #define FUNCTION_MODE Pmode
2686 /* The relative costs of various types of constants. */
2688 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2689 case CONST_INT: \
2690 if (TARGET_SHMEDIA) \
2692 if (INTVAL (RTX) == 0) \
2693 return 0; \
2694 if ((OUTER_CODE) == AND && and_operand ((RTX), DImode)) \
2695 return 0; \
2696 if (((OUTER_CODE) == IOR || (OUTER_CODE) == XOR \
2697 || (OUTER_CODE) == PLUS) \
2698 && CONST_OK_FOR_P (INTVAL (RTX))) \
2699 return 0; \
2700 if (CONST_OK_FOR_J (INTVAL (RTX))) \
2701 return COSTS_N_INSNS ((OUTER_CODE) != SET); \
2702 else if (CONST_OK_FOR_J (INTVAL (RTX) >> 16)) \
2703 return COSTS_N_INSNS (2); \
2704 else if (CONST_OK_FOR_J ((INTVAL (RTX) >> 16) >> 16)) \
2705 return COSTS_N_INSNS (3); \
2706 else \
2707 return COSTS_N_INSNS (4); \
2709 if (CONST_OK_FOR_I (INTVAL (RTX))) \
2710 return 0; \
2711 else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
2712 && CONST_OK_FOR_L (INTVAL (RTX))) \
2713 return 1; \
2714 else \
2715 return 8; \
2716 case CONST: \
2717 case LABEL_REF: \
2718 case SYMBOL_REF: \
2719 if (TARGET_SHMEDIA64) \
2720 return COSTS_N_INSNS (4); \
2721 if (TARGET_SHMEDIA32) \
2722 return COSTS_N_INSNS (2); \
2723 return 5; \
2724 case CONST_DOUBLE: \
2725 if (TARGET_SHMEDIA) \
2726 return COSTS_N_INSNS (4); \
2727 else \
2728 return 10;
2730 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2731 case PLUS: \
2732 return COSTS_N_INSNS (addsubcosts (X)); \
2733 case AND: \
2734 return COSTS_N_INSNS (andcosts (X)); \
2735 case MULT: \
2736 return COSTS_N_INSNS (multcosts (X)); \
2737 case ASHIFT: \
2738 case ASHIFTRT: \
2739 case LSHIFTRT: \
2740 return COSTS_N_INSNS (shiftcosts (X)); \
2741 case DIV: \
2742 case UDIV: \
2743 case MOD: \
2744 case UMOD: \
2745 return COSTS_N_INSNS (20); \
2746 case FLOAT: \
2747 case FIX: \
2748 return 100;
2750 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2751 are actually function calls with some special constraints on arguments
2752 and register usage.
2754 These macros tell reorg that the references to arguments and
2755 register clobbers for insns of type sfunc do not appear to happen
2756 until after the millicode call. This allows reorg to put insns
2757 which set the argument registers into the delay slot of the millicode
2758 call -- thus they act more like traditional CALL_INSNs.
2760 get_attr_is_sfunc will try to recognize the given insn, so make sure to
2761 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2762 in particular. */
2764 #define INSN_SETS_ARE_DELAYED(X) \
2765 ((GET_CODE (X) == INSN \
2766 && GET_CODE (PATTERN (X)) != SEQUENCE \
2767 && GET_CODE (PATTERN (X)) != USE \
2768 && GET_CODE (PATTERN (X)) != CLOBBER \
2769 && get_attr_is_sfunc (X)))
2771 #define INSN_REFERENCES_ARE_DELAYED(X) \
2772 ((GET_CODE (X) == INSN \
2773 && GET_CODE (PATTERN (X)) != SEQUENCE \
2774 && GET_CODE (PATTERN (X)) != USE \
2775 && GET_CODE (PATTERN (X)) != CLOBBER \
2776 && get_attr_is_sfunc (X)))
2779 /* Position Independent Code. */
2781 /* The prefix used to mark SYMBOL_REFs that refer to data symbols. */
2782 #define SH_DATALABEL_ENCODING "#"
2784 /* Return true if SYM_NAME starts with SH_DATALABEL_ENCODING. */
2785 #define DATALABEL_SYMNAME_P(SYM_NAME) \
2786 (SH_DATALABEL_ENCODING[1] ? (abort (), 0) : \
2787 (SYM_NAME)[0] == SH_DATALABEL_ENCODING[0])
2789 /* Skip an optional SH_DATALABEL_ENCODING in the beginning of
2790 SYM_NAME. Then, remove a leading *, like the default definition in
2791 output.h. */
2792 #define STRIP_DATALABEL_ENCODING(VAR, SYM_NAME) \
2793 (VAR) = (SYM_NAME) + (DATALABEL_SYMNAME_P (SYM_NAME) \
2794 ? strlen (SH_DATALABEL_ENCODING) : 0)
2796 /* We can't directly access anything that contains a symbol,
2797 nor can we indirect via the constant pool. */
2798 #define LEGITIMATE_PIC_OPERAND_P(X) \
2799 (! nonpic_symbol_mentioned_p (X) \
2800 && (GET_CODE (X) != SYMBOL_REF \
2801 || ! CONSTANT_POOL_ADDRESS_P (X) \
2802 || ! nonpic_symbol_mentioned_p (get_pool_constant (X))))
2804 #define SYMBOLIC_CONST_P(X) \
2805 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
2806 && nonpic_symbol_mentioned_p (X))
2808 /* Compute the cost of an address. For the SH, all valid addresses are
2809 the same cost. Use a slightly higher cost for reg + reg addressing,
2810 since it increases pressure on r0. */
2812 #define ADDRESS_COST(X) (GET_CODE (X) == PLUS && ! CONSTANT_P (XEXP (X, 1)) \
2813 && ! TARGET_SHMEDIA \
2814 ? 1 : 0)
2816 /* Compute extra cost of moving data between one register class
2817 and another. */
2819 /* Regclass always uses 2 for moves in the same register class;
2820 If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
2821 it uses this information. Hence, the general register <-> floating point
2822 register information here is not used for SFmode. */
2823 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2824 (((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REGS)) ? 10 \
2825 : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
2826 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2827 || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \
2828 && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \
2829 || (SRCCLASS) == DF_REGS))) \
2830 ? (TARGET_SHMEDIA ? 2 \
2831 : TARGET_FMOVD ? 8 : 12) \
2832 : (((DSTCLASS) == FPUL_REGS \
2833 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
2834 || (SRCCLASS == FPUL_REGS \
2835 && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \
2836 ? 5 \
2837 : (((DSTCLASS) == FPUL_REGS \
2838 && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS \
2839 || (SRCCLASS) == T_REGS)) \
2840 || ((SRCCLASS) == FPUL_REGS \
2841 && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \
2842 ? 7 \
2843 : (((SRCCLASS) == TARGET_REGS && (DSTCLASS) != GENERAL_REGS) \
2844 || ((DSTCLASS) == TARGET_REGS && (SRCCLASS) != GENERAL_REGS)) \
2845 ? 20 \
2846 : (((SRCCLASS) == FPSCR_REGS && (DSTCLASS) != GENERAL_REGS) \
2847 || ((DSTCLASS) == FPSCR_REGS && (SRCCLASS) != GENERAL_REGS)) \
2848 ? 4 \
2849 : 2) * ((MODE) == V16SFmode ? 8 : (MODE) == V4SFmode ? 2 : 1))
2851 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
2852 would be so that people with slow memory systems could generate
2853 different code that does fewer memory accesses. */
2855 /* A C expression for the cost of a branch instruction. A value of 1
2856 is the default; other values are interpreted relative to that.
2857 The SH1 does not have delay slots, hence we get a pipeline stall
2858 at every branch. The SH4 is superscalar, so the single delay slot
2859 is not sufficient to keep both pipelines filled. */
2860 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2862 /* Assembler output control. */
2864 /* A C string constant describing how to begin a comment in the target
2865 assembler language. The compiler assumes that the comment will end at
2866 the end of the line. */
2867 #define ASM_COMMENT_START "!"
2869 /* The text to go at the start of the assembler file. */
2870 #define ASM_FILE_START(STREAM) \
2871 output_file_start (STREAM)
2873 #define ASM_APP_ON ""
2874 #define ASM_APP_OFF ""
2875 #define FILE_ASM_OP "\t.file\n"
2876 #define SET_ASM_OP "\t.set\t"
2878 /* How to change between sections. */
2880 #define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2881 #define DATA_SECTION_ASM_OP "\t.data"
2883 #if defined CRT_BEGIN || defined CRT_END
2884 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
2885 # undef TEXT_SECTION_ASM_OP
2886 # if __SHMEDIA__ == 1 && __SH5__ == 32
2887 # define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2888 # else
2889 # define TEXT_SECTION_ASM_OP "\t.text"
2890 # endif
2891 #endif
2894 /* If defined, a C expression whose value is a string containing the
2895 assembler operation to identify the following data as
2896 uninitialized global data. If not defined, and neither
2897 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2898 uninitialized global data will be output in the data section if
2899 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2900 used. */
2901 #ifndef BSS_SECTION_ASM_OP
2902 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
2903 #endif
2905 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2906 separate, explicit argument. If you define this macro, it is used
2907 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2908 handling the required alignment of the variable. The alignment is
2909 specified as the number of bits.
2911 Try to use function `asm_output_aligned_bss' defined in file
2912 `varasm.c' when defining this macro. */
2913 #ifndef ASM_OUTPUT_ALIGNED_BSS
2914 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2915 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2916 #endif
2918 /* Define this so that jump tables go in same section as the current function,
2919 which could be text or it could be a user defined section. */
2920 #define JUMP_TABLES_IN_TEXT_SECTION 1
2922 #undef DO_GLOBAL_CTORS_BODY
2923 #define DO_GLOBAL_CTORS_BODY \
2925 typedef (*pfunc)(); \
2926 extern pfunc __ctors[]; \
2927 extern pfunc __ctors_end[]; \
2928 pfunc *p; \
2929 for (p = __ctors_end; p > __ctors; ) \
2931 (*--p)(); \
2935 #undef DO_GLOBAL_DTORS_BODY
2936 #define DO_GLOBAL_DTORS_BODY \
2938 typedef (*pfunc)(); \
2939 extern pfunc __dtors[]; \
2940 extern pfunc __dtors_end[]; \
2941 pfunc *p; \
2942 for (p = __dtors; p < __dtors_end; p++) \
2944 (*p)(); \
2948 #define ASM_OUTPUT_REG_PUSH(file, v) \
2949 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));
2951 #define ASM_OUTPUT_REG_POP(file, v) \
2952 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));
2954 /* DBX register number for a given compiler register number. */
2955 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2956 to match gdb. */
2957 /* svr4.h undefines this macro, yet we really want to use the same numbers
2958 for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
2959 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2961 #define SH_DBX_REGISTER_NUMBER(REGNO) \
2962 (GENERAL_REGISTER_P (REGNO) \
2963 ? ((REGNO) - FIRST_GENERAL_REG) \
2964 : FP_REGISTER_P (REGNO) \
2965 ? ((REGNO) - FIRST_FP_REG + (TARGET_SH5 ? (TARGET_SHCOMPACT ? 245 \
2966 : 77) : 25)) \
2967 : XD_REGISTER_P (REGNO) \
2968 ? ((REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
2969 : TARGET_REGISTER_P (REGNO) \
2970 ? ((REGNO) - FIRST_TARGET_REG + 68) \
2971 : (REGNO) == PR_REG \
2972 ? (TARGET_SH5 ? 241 : 17) \
2973 : (REGNO) == T_REG \
2974 ? (TARGET_SH5 ? 242 : 18) \
2975 : (REGNO) == GBR_REG \
2976 ? (TARGET_SH5 ? 238 : 19) \
2977 : (REGNO) == MACH_REG \
2978 ? (TARGET_SH5 ? 239 : 20) \
2979 : (REGNO) == MACL_REG \
2980 ? (TARGET_SH5 ? 240 : 21) \
2981 : (REGNO) == FPUL_REG \
2982 ? (TARGET_SH5 ? 244 : 23) \
2983 : (abort(), -1))
2985 /* This is how to output a reference to a user-level label named NAME. */
2986 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
2987 do \
2989 char * lname; \
2991 STRIP_DATALABEL_ENCODING (lname, (NAME)); \
2992 if (lname[0] == '*') \
2993 fputs (lname + 1, (FILE)); \
2994 else \
2995 asm_fprintf ((FILE), "%U%s", lname); \
2997 while (0)
2999 /* This is how to output a reference to a symbol_ref. On SH5,
3000 references to non-code symbols must be preceded by `datalabel'. */
3001 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
3002 do \
3004 if (TARGET_SH5 \
3005 && (DATALABEL_SYMNAME_P (XSTR ((SYM), 0)) \
3006 || CONSTANT_POOL_ADDRESS_P (SYM))) \
3007 fputs ("datalabel ", (FILE)); \
3008 assemble_name ((FILE), XSTR ((SYM), 0)); \
3010 while (0)
3012 /* Output a label definition. */
3013 #define ASM_OUTPUT_LABEL(FILE,NAME) \
3014 do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
3016 /* This is how to output an assembler line
3017 that says to advance the location counter
3018 to a multiple of 2**LOG bytes. */
3020 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3021 if ((LOG) != 0) \
3022 fprintf ((FILE), "\t.align %d\n", (LOG))
3024 /* Output a globalising directive for a label. */
3025 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3026 (fprintf ((STREAM), "\t.global\t"), \
3027 assemble_name ((STREAM), (NAME)), \
3028 fputc ('\n', (STREAM)))
3030 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
3032 /* Construct a private name. */
3033 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
3034 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
3035 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
3037 /* Output a relative address table. */
3039 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
3040 switch (GET_MODE (BODY)) \
3042 case SImode: \
3043 if (TARGET_SH5) \
3045 asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
3046 (VALUE), (REL)); \
3047 break; \
3049 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3050 break; \
3051 case HImode: \
3052 if (TARGET_SH5) \
3054 asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
3055 (VALUE), (REL)); \
3056 break; \
3058 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3059 break; \
3060 case QImode: \
3061 if (TARGET_SH5) \
3063 asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
3064 (VALUE), (REL)); \
3065 break; \
3067 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3068 break; \
3069 default: \
3070 break; \
3073 /* Output an absolute table element. */
3075 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
3076 if (TARGET_BIGTABLE) \
3077 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
3078 else \
3079 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
3082 /* A C statement to be executed just prior to the output of
3083 assembler code for INSN, to modify the extracted operands so
3084 they will be output differently.
3086 Here the argument OPVEC is the vector containing the operands
3087 extracted from INSN, and NOPERANDS is the number of elements of
3088 the vector which contain meaningful data for this insn.
3089 The contents of this vector are what will be used to convert the insn
3090 template into assembler code, so you can change the assembler output
3091 by changing the contents of the vector. */
3093 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3094 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3096 /* Print operand X (an rtx) in assembler syntax to file FILE.
3097 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3098 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3100 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
3102 /* Print a memory address as an operand to reference that memory location. */
3104 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
3106 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3107 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
3108 || (CHAR) == '$'|| (CHAR) == '\'')
3110 /* Recognize machine-specific patterns that may appear within
3111 constants. Used for PIC-specific UNSPECs. */
3112 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3113 do \
3114 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3116 switch (XINT ((X), 1)) \
3118 case UNSPEC_DATALABEL: \
3119 fputs ("datalabel ", (STREAM)); \
3120 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3121 break; \
3122 case UNSPEC_PIC: \
3123 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
3124 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3125 break; \
3126 case UNSPEC_GOT: \
3127 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3128 fputs ("@GOT", (STREAM)); \
3129 break; \
3130 case UNSPEC_GOTOFF: \
3131 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3132 fputs ("@GOTOFF", (STREAM)); \
3133 break; \
3134 case UNSPEC_PLT: \
3135 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3136 fputs ("@PLT", (STREAM)); \
3137 break; \
3138 case UNSPEC_GOTPLT: \
3139 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3140 fputs ("@GOTPLT", (STREAM)); \
3141 break; \
3142 case UNSPEC_CALLER: \
3144 char name[32]; \
3145 /* LPCS stands for Label for PIC Call Site. */ \
3146 ASM_GENERATE_INTERNAL_LABEL \
3147 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
3148 assemble_name ((STREAM), name); \
3150 break; \
3151 default: \
3152 goto FAIL; \
3154 break; \
3156 else \
3157 goto FAIL; \
3158 while (0)
3161 extern struct rtx_def *sh_compare_op0;
3162 extern struct rtx_def *sh_compare_op1;
3164 /* Which processor to schedule for. The elements of the enumeration must
3165 match exactly the cpu attribute in the sh.md file. */
3167 enum processor_type {
3168 PROCESSOR_SH1,
3169 PROCESSOR_SH2,
3170 PROCESSOR_SH3,
3171 PROCESSOR_SH3E,
3172 PROCESSOR_SH4,
3173 PROCESSOR_SH5
3176 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3177 extern enum processor_type sh_cpu;
3179 extern int optimize; /* needed for gen_casesi. */
3181 enum mdep_reorg_phase_e
3183 SH_BEFORE_MDEP_REORG,
3184 SH_INSERT_USES_LABELS,
3185 SH_SHORTEN_BRANCHES0,
3186 SH_FIXUP_PCLOAD,
3187 SH_SHORTEN_BRANCHES1,
3188 SH_AFTER_MDEP_REORG
3191 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3193 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
3195 /* Generate calls to memcpy, memcmp and memset. */
3197 #define TARGET_MEM_FUNCTIONS
3199 /* Handle Hitachi compiler's pragmas. */
3200 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
3201 cpp_register_pragma (PFILE, 0, "interrupt", sh_pr_interrupt); \
3202 cpp_register_pragma (PFILE, 0, "trapa", sh_pr_trapa); \
3203 cpp_register_pragma (PFILE, 0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3204 } while (0)
3206 /* Set when processing a function with pragma interrupt turned on. */
3208 extern int pragma_interrupt;
3210 /* Set when processing a function with interrupt attribute. */
3212 extern int current_function_interrupt;
3214 /* Set to an RTX containing the address of the stack to switch to
3215 for interrupt functions. */
3216 extern struct rtx_def *sp_switch;
3218 extern int rtx_equal_function_value_matters;
3221 /* Instructions with unfilled delay slots take up an
3222 extra two bytes for the nop in the delay slot.
3223 sh-dsp parallel processing insns are four bytes long. */
3225 #define ADJUST_INSN_LENGTH(X, LENGTH) \
3226 (LENGTH) += sh_insn_length_adjustment (X);
3228 /* Define the codes that are matched by predicates in sh.c. */
3229 #define PREDICATE_CODES \
3230 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3231 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3232 {"arith_reg_dest", {SUBREG, REG}}, \
3233 {"arith_reg_operand", {SUBREG, REG}}, \
3234 {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_VECTOR}}, \
3235 {"binary_float_operator", {PLUS, MULT}}, \
3236 {"commutative_float_operator", {PLUS, MULT}}, \
3237 {"equality_comparison_operator", {EQ,NE}}, \
3238 {"extend_reg_operand", {SUBREG, REG, TRUNCATE}}, \
3239 {"extend_reg_or_0_operand", {SUBREG, REG, TRUNCATE, CONST_INT}}, \
3240 {"fp_arith_reg_operand", {SUBREG, REG}}, \
3241 {"fpscr_operand", {REG}}, \
3242 {"fpul_operand", {REG}}, \
3243 {"general_movsrc_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
3244 {"general_movdst_operand", {SUBREG, REG, MEM}}, \
3245 {"greater_comparison_operator", {GT,GE,GTU,GEU}}, \
3246 {"less_comparison_operator", {LT,LE,LTU,LEU}}, \
3247 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3248 {"mextr_bit_offset", {CONST_INT}}, \
3249 {"noncommutative_float_operator", {MINUS, DIV}}, \
3250 {"shmedia_6bit_operand", {SUBREG, REG, CONST_INT}}, \
3251 {"target_reg_operand", {SUBREG, REG}}, \
3252 {"target_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST, UNSPEC}},\
3253 {"register_operand", {SUBREG, REG}}, \
3254 {"sh_const_vec", {CONST_VECTOR}}, \
3255 {"sh_1el_vec", {CONST_VECTOR, PARALLEL}}, \
3256 {"sh_rep_vec", {CONST_VECTOR, PARALLEL}}, \
3257 {"symbol_ref_operand", {SYMBOL_REF}}, \
3258 {"zero_vec_operand", {CONST_VECTOR}},
3260 /* Define this macro if it is advisable to hold scalars in registers
3261 in a wider mode than that declared by the program. In such cases,
3262 the value is constrained to be within the bounds of the declared
3263 type, but kept valid in the wider mode. The signedness of the
3264 extension may differ from that of the type.
3266 Leaving the unsignedp unchanged gives better code than always setting it
3267 to 0. This is despite the fact that we have only signed char and short
3268 load instructions. */
3269 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3270 if (GET_MODE_CLASS (MODE) == MODE_INT \
3271 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3272 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
3273 (MODE) = (TARGET_SH1 ? SImode : DImode);
3275 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
3276 extensions applied to char/short functions arguments. Defining
3277 PROMOTE_FUNCTION_RETURN does the same for function returns. */
3279 #define PROMOTE_FUNCTION_ARGS
3280 #define PROMOTE_FUNCTION_RETURN
3282 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
3283 and poping arguments. However, we do have push/pop instructions, and
3284 rather limited offsets (4 bits) in load/store instructions, so it isn't
3285 clear if this would give better code. If implemented, should check for
3286 compatibility problems. */
3288 #define SH_DYNAMIC_SHIFT_COST \
3289 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3292 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3294 #define OPTIMIZE_MODE_SWITCHING(ENTITY) TARGET_SH4
3296 #define NORMAL_MODE(ENTITY) \
3297 (sh_cfun_interrupt_handler_p () ? FP_MODE_NONE \
3298 : TARGET_FPU_SINGLE ? FP_MODE_SINGLE \
3299 : FP_MODE_DOUBLE)
3301 #define EPILOGUE_USES(REGNO) ((TARGET_SH3E || TARGET_SH4) \
3302 && (REGNO) == FPSCR_REG)
3304 #define MODE_NEEDED(ENTITY, INSN) \
3305 (recog_memoized (INSN) >= 0 \
3306 ? get_attr_fp_mode (INSN) \
3307 : FP_MODE_NONE)
3309 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3310 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3312 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3313 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3315 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3316 sh_can_redirect_branch ((INSN), (SEQ))
3318 #define DWARF_FRAME_RETURN_COLUMN (TARGET_SH5 ? PR_MEDIA_REG : PR_REG)
3320 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3321 /* SH constant pool breaks the devices in crtstuff.c to control section
3322 in where code resides. We have to write it as asm code. */
3323 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3324 asm (SECTION_OP "\n\
3325 mov.l 1f,r1\n\
3326 mova 2f,r0\n\
3327 braf r1\n\
3328 lds r0,pr\n\
3329 0: .p2align 2\n\
3330 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
3331 2:\n" TEXT_SECTION_ASM_OP);
3332 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3334 #define ALLOCATE_INITIAL_VALUE(hard_reg) \
3335 (REGNO (hard_reg) == (TARGET_SH5 ? PR_MEDIA_REG : PR_REG) \
3336 ? (current_function_is_leaf && ! sh_pr_n_sets () \
3337 ? (hard_reg) \
3338 : gen_rtx_MEM (Pmode, TARGET_SH5 \
3339 ? (plus_constant (arg_pointer_rtx, \
3340 TARGET_SHMEDIA64 ? -8 : -4)) \
3341 : frame_pointer_rtx)) \
3342 : NULL_RTX)
3344 #endif /* ! GCC_SH_H */