* config/arm/arm.md (addsi3_cbranch_scratch): Correct constraints.
[official-gcc.git] / gcc / ada / checks.adb
blob357d9f290ecfa37fc5bb34b94c4d9246e7c98c7c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Util; use Exp_Util;
33 with Elists; use Elists;
34 with Eval_Fat; use Eval_Fat;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Sinput; use Sinput;
53 with Snames; use Snames;
54 with Sprint; use Sprint;
55 with Stand; use Stand;
56 with Targparm; use Targparm;
57 with Tbuild; use Tbuild;
58 with Ttypes; use Ttypes;
59 with Urealp; use Urealp;
60 with Validsw; use Validsw;
62 package body Checks is
64 -- General note: many of these routines are concerned with generating
65 -- checking code to make sure that constraint error is raised at runtime.
66 -- Clearly this code is only needed if the expander is active, since
67 -- otherwise we will not be generating code or going into the runtime
68 -- execution anyway.
70 -- We therefore disconnect most of these checks if the expander is
71 -- inactive. This has the additional benefit that we do not need to
72 -- worry about the tree being messed up by previous errors (since errors
73 -- turn off expansion anyway).
75 -- There are a few exceptions to the above rule. For instance routines
76 -- such as Apply_Scalar_Range_Check that do not insert any code can be
77 -- safely called even when the Expander is inactive (but Errors_Detected
78 -- is 0). The benefit of executing this code when expansion is off, is
79 -- the ability to emit constraint error warning for static expressions
80 -- even when we are not generating code.
82 -------------------------------------
83 -- Suppression of Redundant Checks --
84 -------------------------------------
86 -- This unit implements a limited circuit for removal of redundant
87 -- checks. The processing is based on a tracing of simple sequential
88 -- flow. For any sequence of statements, we save expressions that are
89 -- marked to be checked, and then if the same expression appears later
90 -- with the same check, then under certain circumstances, the second
91 -- check can be suppressed.
93 -- Basically, we can suppress the check if we know for certain that
94 -- the previous expression has been elaborated (together with its
95 -- check), and we know that the exception frame is the same, and that
96 -- nothing has happened to change the result of the exception.
98 -- Let us examine each of these three conditions in turn to describe
99 -- how we ensure that this condition is met.
101 -- First, we need to know for certain that the previous expression has
102 -- been executed. This is done principly by the mechanism of calling
103 -- Conditional_Statements_Begin at the start of any statement sequence
104 -- and Conditional_Statements_End at the end. The End call causes all
105 -- checks remembered since the Begin call to be discarded. This does
106 -- miss a few cases, notably the case of a nested BEGIN-END block with
107 -- no exception handlers. But the important thing is to be conservative.
108 -- The other protection is that all checks are discarded if a label
109 -- is encountered, since then the assumption of sequential execution
110 -- is violated, and we don't know enough about the flow.
112 -- Second, we need to know that the exception frame is the same. We
113 -- do this by killing all remembered checks when we enter a new frame.
114 -- Again, that's over-conservative, but generally the cases we can help
115 -- with are pretty local anyway (like the body of a loop for example).
117 -- Third, we must be sure to forget any checks which are no longer valid.
118 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
119 -- used to note any changes to local variables. We only attempt to deal
120 -- with checks involving local variables, so we do not need to worry
121 -- about global variables. Second, a call to any non-global procedure
122 -- causes us to abandon all stored checks, since such a all may affect
123 -- the values of any local variables.
125 -- The following define the data structures used to deal with remembering
126 -- checks so that redundant checks can be eliminated as described above.
128 -- Right now, the only expressions that we deal with are of the form of
129 -- simple local objects (either declared locally, or IN parameters) or
130 -- such objects plus/minus a compile time known constant. We can do
131 -- more later on if it seems worthwhile, but this catches many simple
132 -- cases in practice.
134 -- The following record type reflects a single saved check. An entry
135 -- is made in the stack of saved checks if and only if the expression
136 -- has been elaborated with the indicated checks.
138 type Saved_Check is record
139 Killed : Boolean;
140 -- Set True if entry is killed by Kill_Checks
142 Entity : Entity_Id;
143 -- The entity involved in the expression that is checked
145 Offset : Uint;
146 -- A compile time value indicating the result of adding or
147 -- subtracting a compile time value. This value is to be
148 -- added to the value of the Entity. A value of zero is
149 -- used for the case of a simple entity reference.
151 Check_Type : Character;
152 -- This is set to 'R' for a range check (in which case Target_Type
153 -- is set to the target type for the range check) or to 'O' for an
154 -- overflow check (in which case Target_Type is set to Empty).
156 Target_Type : Entity_Id;
157 -- Used only if Do_Range_Check is set. Records the target type for
158 -- the check. We need this, because a check is a duplicate only if
159 -- it has a the same target type (or more accurately one with a
160 -- range that is smaller or equal to the stored target type of a
161 -- saved check).
162 end record;
164 -- The following table keeps track of saved checks. Rather than use an
165 -- extensible table. We just use a table of fixed size, and we discard
166 -- any saved checks that do not fit. That's very unlikely to happen and
167 -- this is only an optimization in any case.
169 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
170 -- Array of saved checks
172 Num_Saved_Checks : Nat := 0;
173 -- Number of saved checks
175 -- The following stack keeps track of statement ranges. It is treated
176 -- as a stack. When Conditional_Statements_Begin is called, an entry
177 -- is pushed onto this stack containing the value of Num_Saved_Checks
178 -- at the time of the call. Then when Conditional_Statements_End is
179 -- called, this value is popped off and used to reset Num_Saved_Checks.
181 -- Note: again, this is a fixed length stack with a size that should
182 -- always be fine. If the value of the stack pointer goes above the
183 -- limit, then we just forget all saved checks.
185 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
186 Saved_Checks_TOS : Nat := 0;
188 -----------------------
189 -- Local Subprograms --
190 -----------------------
192 procedure Apply_Float_Conversion_Check
193 (Ck_Node : Node_Id;
194 Target_Typ : Entity_Id);
195 -- The checks on a conversion from a floating-point type to an integer
196 -- type are delicate. They have to be performed before conversion, they
197 -- have to raise an exception when the operand is a NaN, and rounding must
198 -- be taken into account to determine the safe bounds of the operand.
200 procedure Apply_Selected_Length_Checks
201 (Ck_Node : Node_Id;
202 Target_Typ : Entity_Id;
203 Source_Typ : Entity_Id;
204 Do_Static : Boolean);
205 -- This is the subprogram that does all the work for Apply_Length_Check
206 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
207 -- described for the above routines. The Do_Static flag indicates that
208 -- only a static check is to be done.
210 procedure Apply_Selected_Range_Checks
211 (Ck_Node : Node_Id;
212 Target_Typ : Entity_Id;
213 Source_Typ : Entity_Id;
214 Do_Static : Boolean);
215 -- This is the subprogram that does all the work for Apply_Range_Check.
216 -- Expr, Target_Typ and Source_Typ are as described for the above
217 -- routine. The Do_Static flag indicates that only a static check is
218 -- to be done.
220 procedure Find_Check
221 (Expr : Node_Id;
222 Check_Type : Character;
223 Target_Type : Entity_Id;
224 Entry_OK : out Boolean;
225 Check_Num : out Nat;
226 Ent : out Entity_Id;
227 Ofs : out Uint);
228 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
229 -- to see if a check is of the form for optimization, and if so, to see
230 -- if it has already been performed. Expr is the expression to check,
231 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
232 -- Target_Type is the target type for a range check, and Empty for an
233 -- overflow check. If the entry is not of the form for optimization,
234 -- then Entry_OK is set to False, and the remaining out parameters
235 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
236 -- entity and offset from the expression. Check_Num is the number of
237 -- a matching saved entry in Saved_Checks, or zero if no such entry
238 -- is located.
240 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
241 -- If a discriminal is used in constraining a prival, Return reference
242 -- to the discriminal of the protected body (which renames the parameter
243 -- of the enclosing protected operation). This clumsy transformation is
244 -- needed because privals are created too late and their actual subtypes
245 -- are not available when analysing the bodies of the protected operations.
246 -- To be cleaned up???
248 function Guard_Access
249 (Cond : Node_Id;
250 Loc : Source_Ptr;
251 Ck_Node : Node_Id) return Node_Id;
252 -- In the access type case, guard the test with a test to ensure
253 -- that the access value is non-null, since the checks do not
254 -- not apply to null access values.
256 procedure Install_Null_Excluding_Check (N : Node_Id);
257 -- Determines whether an access node requires a runtime access check and
258 -- if so inserts the appropriate run-time check
260 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
261 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
262 -- Constraint_Error node.
264 function Selected_Length_Checks
265 (Ck_Node : Node_Id;
266 Target_Typ : Entity_Id;
267 Source_Typ : Entity_Id;
268 Warn_Node : Node_Id) return Check_Result;
269 -- Like Apply_Selected_Length_Checks, except it doesn't modify
270 -- anything, just returns a list of nodes as described in the spec of
271 -- this package for the Range_Check function.
273 function Selected_Range_Checks
274 (Ck_Node : Node_Id;
275 Target_Typ : Entity_Id;
276 Source_Typ : Entity_Id;
277 Warn_Node : Node_Id) return Check_Result;
278 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
279 -- just returns a list of nodes as described in the spec of this package
280 -- for the Range_Check function.
282 ------------------------------
283 -- Access_Checks_Suppressed --
284 ------------------------------
286 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
287 begin
288 if Present (E) and then Checks_May_Be_Suppressed (E) then
289 return Is_Check_Suppressed (E, Access_Check);
290 else
291 return Scope_Suppress (Access_Check);
292 end if;
293 end Access_Checks_Suppressed;
295 -------------------------------------
296 -- Accessibility_Checks_Suppressed --
297 -------------------------------------
299 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
300 begin
301 if Present (E) and then Checks_May_Be_Suppressed (E) then
302 return Is_Check_Suppressed (E, Accessibility_Check);
303 else
304 return Scope_Suppress (Accessibility_Check);
305 end if;
306 end Accessibility_Checks_Suppressed;
308 -------------------------
309 -- Append_Range_Checks --
310 -------------------------
312 procedure Append_Range_Checks
313 (Checks : Check_Result;
314 Stmts : List_Id;
315 Suppress_Typ : Entity_Id;
316 Static_Sloc : Source_Ptr;
317 Flag_Node : Node_Id)
319 Internal_Flag_Node : constant Node_Id := Flag_Node;
320 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
322 Checks_On : constant Boolean :=
323 (not Index_Checks_Suppressed (Suppress_Typ))
324 or else
325 (not Range_Checks_Suppressed (Suppress_Typ));
327 begin
328 -- For now we just return if Checks_On is false, however this should
329 -- be enhanced to check for an always True value in the condition
330 -- and to generate a compilation warning???
332 if not Checks_On then
333 return;
334 end if;
336 for J in 1 .. 2 loop
337 exit when No (Checks (J));
339 if Nkind (Checks (J)) = N_Raise_Constraint_Error
340 and then Present (Condition (Checks (J)))
341 then
342 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
343 Append_To (Stmts, Checks (J));
344 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
345 end if;
347 else
348 Append_To
349 (Stmts,
350 Make_Raise_Constraint_Error (Internal_Static_Sloc,
351 Reason => CE_Range_Check_Failed));
352 end if;
353 end loop;
354 end Append_Range_Checks;
356 ------------------------
357 -- Apply_Access_Check --
358 ------------------------
360 procedure Apply_Access_Check (N : Node_Id) is
361 P : constant Node_Id := Prefix (N);
363 begin
364 if Inside_A_Generic then
365 return;
366 end if;
368 if Is_Entity_Name (P) then
369 Check_Unset_Reference (P);
370 end if;
372 -- We do not need access checks if prefix is known to be non-null
374 if Known_Non_Null (P) then
375 return;
377 -- We do not need access checks if they are suppressed on the type
379 elsif Access_Checks_Suppressed (Etype (P)) then
380 return;
382 -- We do not need checks if we are not generating code (i.e. the
383 -- expander is not active). This is not just an optimization, there
384 -- are cases (e.g. with pragma Debug) where generating the checks
385 -- can cause real trouble).
387 elsif not Expander_Active then
388 return;
389 end if;
391 -- Case where P is an entity name
393 if Is_Entity_Name (P) then
394 declare
395 Ent : constant Entity_Id := Entity (P);
397 begin
398 if Access_Checks_Suppressed (Ent) then
399 return;
400 end if;
402 -- Otherwise we are going to generate an access check, and
403 -- are we have done it, the entity will now be known non null
404 -- But we have to check for safe sequential semantics here!
406 if Safe_To_Capture_Value (N, Ent) then
407 Set_Is_Known_Non_Null (Ent);
408 end if;
409 end;
410 end if;
412 -- Access check is required
414 Install_Null_Excluding_Check (P);
415 end Apply_Access_Check;
417 -------------------------------
418 -- Apply_Accessibility_Check --
419 -------------------------------
421 procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
422 Loc : constant Source_Ptr := Sloc (N);
423 Param_Ent : constant Entity_Id := Param_Entity (N);
424 Param_Level : Node_Id;
425 Type_Level : Node_Id;
427 begin
428 if Inside_A_Generic then
429 return;
431 -- Only apply the run-time check if the access parameter
432 -- has an associated extra access level parameter and
433 -- when the level of the type is less deep than the level
434 -- of the access parameter.
436 elsif Present (Param_Ent)
437 and then Present (Extra_Accessibility (Param_Ent))
438 and then UI_Gt (Object_Access_Level (N),
439 Type_Access_Level (Typ))
440 and then not Accessibility_Checks_Suppressed (Param_Ent)
441 and then not Accessibility_Checks_Suppressed (Typ)
442 then
443 Param_Level :=
444 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
446 Type_Level :=
447 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
449 -- Raise Program_Error if the accessibility level of the
450 -- the access parameter is deeper than the level of the
451 -- target access type.
453 Insert_Action (N,
454 Make_Raise_Program_Error (Loc,
455 Condition =>
456 Make_Op_Gt (Loc,
457 Left_Opnd => Param_Level,
458 Right_Opnd => Type_Level),
459 Reason => PE_Accessibility_Check_Failed));
461 Analyze_And_Resolve (N);
462 end if;
463 end Apply_Accessibility_Check;
465 ---------------------------
466 -- Apply_Alignment_Check --
467 ---------------------------
469 procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
470 AC : constant Node_Id := Address_Clause (E);
471 Expr : Node_Id;
472 Loc : Source_Ptr;
474 Alignment_Required : constant Boolean := Maximum_Alignment > 1;
475 -- Constant to show whether target requires alignment checks
477 begin
478 -- See if check needed. Note that we never need a check if the
479 -- maximum alignment is one, since the check will always succeed
481 if No (AC)
482 or else not Check_Address_Alignment (AC)
483 or else not Alignment_Required
484 then
485 return;
486 end if;
488 Loc := Sloc (AC);
489 Expr := Expression (AC);
491 if Nkind (Expr) = N_Unchecked_Type_Conversion then
492 Expr := Expression (Expr);
494 elsif Nkind (Expr) = N_Function_Call
495 and then Is_Entity_Name (Name (Expr))
496 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
497 then
498 Expr := First (Parameter_Associations (Expr));
500 if Nkind (Expr) = N_Parameter_Association then
501 Expr := Explicit_Actual_Parameter (Expr);
502 end if;
503 end if;
505 -- Here Expr is the address value. See if we know that the
506 -- value is unacceptable at compile time.
508 if Compile_Time_Known_Value (Expr)
509 and then Known_Alignment (E)
510 then
511 if Expr_Value (Expr) mod Alignment (E) /= 0 then
512 Insert_Action (N,
513 Make_Raise_Program_Error (Loc,
514 Reason => PE_Misaligned_Address_Value));
515 Error_Msg_NE
516 ("?specified address for& not " &
517 "consistent with alignment ('R'M 13.3(27))", Expr, E);
518 end if;
520 -- Here we do not know if the value is acceptable, generate
521 -- code to raise PE if alignment is inappropriate.
523 else
524 -- Skip generation of this code if we don't want elab code
526 if not Restriction_Active (No_Elaboration_Code) then
527 Insert_After_And_Analyze (N,
528 Make_Raise_Program_Error (Loc,
529 Condition =>
530 Make_Op_Ne (Loc,
531 Left_Opnd =>
532 Make_Op_Mod (Loc,
533 Left_Opnd =>
534 Unchecked_Convert_To
535 (RTE (RE_Integer_Address),
536 Duplicate_Subexpr_No_Checks (Expr)),
537 Right_Opnd =>
538 Make_Attribute_Reference (Loc,
539 Prefix => New_Occurrence_Of (E, Loc),
540 Attribute_Name => Name_Alignment)),
541 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
542 Reason => PE_Misaligned_Address_Value),
543 Suppress => All_Checks);
544 end if;
545 end if;
547 return;
549 exception
550 when RE_Not_Available =>
551 return;
552 end Apply_Alignment_Check;
554 -------------------------------------
555 -- Apply_Arithmetic_Overflow_Check --
556 -------------------------------------
558 -- This routine is called only if the type is an integer type, and
559 -- a software arithmetic overflow check must be performed for op
560 -- (add, subtract, multiply). The check is performed only if
561 -- Software_Overflow_Checking is enabled and Do_Overflow_Check
562 -- is set. In this case we expand the operation into a more complex
563 -- sequence of tests that ensures that overflow is properly caught.
565 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
566 Loc : constant Source_Ptr := Sloc (N);
567 Typ : constant Entity_Id := Etype (N);
568 Rtyp : constant Entity_Id := Root_Type (Typ);
569 Siz : constant Int := UI_To_Int (Esize (Rtyp));
570 Dsiz : constant Int := Siz * 2;
571 Opnod : Node_Id;
572 Ctyp : Entity_Id;
573 Opnd : Node_Id;
574 Cent : RE_Id;
576 begin
577 -- Skip this if overflow checks are done in back end, or the overflow
578 -- flag is not set anyway, or we are not doing code expansion.
580 if Backend_Overflow_Checks_On_Target
581 or else not Do_Overflow_Check (N)
582 or else not Expander_Active
583 then
584 return;
585 end if;
587 -- Otherwise, we generate the full general code for front end overflow
588 -- detection, which works by doing arithmetic in a larger type:
590 -- x op y
592 -- is expanded into
594 -- Typ (Checktyp (x) op Checktyp (y));
596 -- where Typ is the type of the original expression, and Checktyp is
597 -- an integer type of sufficient length to hold the largest possible
598 -- result.
600 -- In the case where check type exceeds the size of Long_Long_Integer,
601 -- we use a different approach, expanding to:
603 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
605 -- where xxx is Add, Multiply or Subtract as appropriate
607 -- Find check type if one exists
609 if Dsiz <= Standard_Integer_Size then
610 Ctyp := Standard_Integer;
612 elsif Dsiz <= Standard_Long_Long_Integer_Size then
613 Ctyp := Standard_Long_Long_Integer;
615 -- No check type exists, use runtime call
617 else
618 if Nkind (N) = N_Op_Add then
619 Cent := RE_Add_With_Ovflo_Check;
621 elsif Nkind (N) = N_Op_Multiply then
622 Cent := RE_Multiply_With_Ovflo_Check;
624 else
625 pragma Assert (Nkind (N) = N_Op_Subtract);
626 Cent := RE_Subtract_With_Ovflo_Check;
627 end if;
629 Rewrite (N,
630 OK_Convert_To (Typ,
631 Make_Function_Call (Loc,
632 Name => New_Reference_To (RTE (Cent), Loc),
633 Parameter_Associations => New_List (
634 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
635 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
637 Analyze_And_Resolve (N, Typ);
638 return;
639 end if;
641 -- If we fall through, we have the case where we do the arithmetic in
642 -- the next higher type and get the check by conversion. In these cases
643 -- Ctyp is set to the type to be used as the check type.
645 Opnod := Relocate_Node (N);
647 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
649 Analyze (Opnd);
650 Set_Etype (Opnd, Ctyp);
651 Set_Analyzed (Opnd, True);
652 Set_Left_Opnd (Opnod, Opnd);
654 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
656 Analyze (Opnd);
657 Set_Etype (Opnd, Ctyp);
658 Set_Analyzed (Opnd, True);
659 Set_Right_Opnd (Opnod, Opnd);
661 -- The type of the operation changes to the base type of the check
662 -- type, and we reset the overflow check indication, since clearly
663 -- no overflow is possible now that we are using a double length
664 -- type. We also set the Analyzed flag to avoid a recursive attempt
665 -- to expand the node.
667 Set_Etype (Opnod, Base_Type (Ctyp));
668 Set_Do_Overflow_Check (Opnod, False);
669 Set_Analyzed (Opnod, True);
671 -- Now build the outer conversion
673 Opnd := OK_Convert_To (Typ, Opnod);
674 Analyze (Opnd);
675 Set_Etype (Opnd, Typ);
677 -- In the discrete type case, we directly generate the range check
678 -- for the outer operand. This range check will implement the required
679 -- overflow check.
681 if Is_Discrete_Type (Typ) then
682 Rewrite (N, Opnd);
683 Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
685 -- For other types, we enable overflow checking on the conversion,
686 -- after setting the node as analyzed to prevent recursive attempts
687 -- to expand the conversion node.
689 else
690 Set_Analyzed (Opnd, True);
691 Enable_Overflow_Check (Opnd);
692 Rewrite (N, Opnd);
693 end if;
695 exception
696 when RE_Not_Available =>
697 return;
698 end Apply_Arithmetic_Overflow_Check;
700 ----------------------------
701 -- Apply_Array_Size_Check --
702 ----------------------------
704 -- Note: Really of course this entre check should be in the backend,
705 -- and perhaps this is not quite the right value, but it is good
706 -- enough to catch the normal cases (and the relevant ACVC tests!)
708 -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
709 -- is computed in 32 bits without an overflow check. That's a real
710 -- problem for Ada. So what we do in GNAT 3 is to approximate the
711 -- size of an array by manually multiplying the element size by the
712 -- number of elements, and comparing that against the allowed limits.
714 -- In GNAT 5, the size in byte is still computed in 32 bits without
715 -- an overflow check in the dynamic case, but the size in bits is
716 -- computed in 64 bits. We assume that's good enough, so we use the
717 -- size in bits for the test.
719 procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
720 Loc : constant Source_Ptr := Sloc (N);
721 Ctyp : constant Entity_Id := Component_Type (Typ);
722 Ent : constant Entity_Id := Defining_Identifier (N);
723 Decl : Node_Id;
724 Lo : Node_Id;
725 Hi : Node_Id;
726 Lob : Uint;
727 Hib : Uint;
728 Siz : Uint;
729 Xtyp : Entity_Id;
730 Indx : Node_Id;
731 Sizx : Node_Id;
732 Code : Node_Id;
734 Static : Boolean := True;
735 -- Set false if any index subtye bound is non-static
737 Umark : constant Uintp.Save_Mark := Uintp.Mark;
738 -- We can throw away all the Uint computations here, since they are
739 -- done only to generate boolean test results.
741 Check_Siz : Uint;
742 -- Size to check against
744 function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
745 -- Determines if Decl is an address clause or Import/Interface pragma
746 -- that references the defining identifier of the current declaration.
748 --------------------------
749 -- Is_Address_Or_Import --
750 --------------------------
752 function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
753 begin
754 if Nkind (Decl) = N_At_Clause then
755 return Chars (Identifier (Decl)) = Chars (Ent);
757 elsif Nkind (Decl) = N_Attribute_Definition_Clause then
758 return
759 Chars (Decl) = Name_Address
760 and then
761 Nkind (Name (Decl)) = N_Identifier
762 and then
763 Chars (Name (Decl)) = Chars (Ent);
765 elsif Nkind (Decl) = N_Pragma then
766 if (Chars (Decl) = Name_Import
767 or else
768 Chars (Decl) = Name_Interface)
769 and then Present (Pragma_Argument_Associations (Decl))
770 then
771 declare
772 F : constant Node_Id :=
773 First (Pragma_Argument_Associations (Decl));
775 begin
776 return
777 Present (F)
778 and then
779 Present (Next (F))
780 and then
781 Nkind (Expression (Next (F))) = N_Identifier
782 and then
783 Chars (Expression (Next (F))) = Chars (Ent);
784 end;
786 else
787 return False;
788 end if;
790 else
791 return False;
792 end if;
793 end Is_Address_Or_Import;
795 -- Start of processing for Apply_Array_Size_Check
797 begin
798 -- No need for a check if not expanding
800 if not Expander_Active then
801 return;
802 end if;
804 -- No need for a check if checks are suppressed
806 if Storage_Checks_Suppressed (Typ) then
807 return;
808 end if;
810 -- It is pointless to insert this check inside an init proc, because
811 -- that's too late, we have already built the object to be the right
812 -- size, and if it's too large, too bad!
814 if Inside_Init_Proc then
815 return;
816 end if;
818 -- Look head for pragma interface/import or address clause applying
819 -- to this entity. If found, we suppress the check entirely. For now
820 -- we only look ahead 20 declarations to stop this becoming too slow
821 -- Note that eventually this whole routine gets moved to gigi.
823 Decl := N;
824 for Ctr in 1 .. 20 loop
825 Next (Decl);
826 exit when No (Decl);
828 if Is_Address_Or_Import (Decl) then
829 return;
830 end if;
831 end loop;
833 -- GCC 3 case
835 if Opt.GCC_Version = 3 then
837 -- No problem if size is known at compile time (even if the front
838 -- end does not know it) because the back end does do overflow
839 -- checking on the size in bytes if it is compile time known.
841 if Size_Known_At_Compile_Time (Typ) then
842 return;
843 end if;
844 end if;
846 -- Following code is temporarily deleted, since GCC 3 is returning
847 -- zero for size in bits of large dynamic arrays. ???
849 -- -- Otherwise we check for the size in bits exceeding 2**31-1 * 8.
850 -- -- This is the case in which we could end up with problems from
851 -- -- an unnoticed overflow in computing the size in bytes
853 -- Check_Siz := (Uint_2 ** 31 - Uint_1) * Uint_8;
855 -- Sizx :=
856 -- Make_Attribute_Reference (Loc,
857 -- Prefix => New_Occurrence_Of (Typ, Loc),
858 -- Attribute_Name => Name_Size);
860 -- GCC 2 case (for now this is for GCC 3 dynamic case as well)
862 begin
863 -- First step is to calculate the maximum number of elements. For
864 -- this calculation, we use the actual size of the subtype if it is
865 -- static, and if a bound of a subtype is non-static, we go to the
866 -- bound of the base type.
868 Siz := Uint_1;
869 Indx := First_Index (Typ);
870 while Present (Indx) loop
871 Xtyp := Etype (Indx);
872 Lo := Type_Low_Bound (Xtyp);
873 Hi := Type_High_Bound (Xtyp);
875 -- If any bound raises constraint error, we will never get this
876 -- far, so there is no need to generate any kind of check.
878 if Raises_Constraint_Error (Lo)
879 or else
880 Raises_Constraint_Error (Hi)
881 then
882 Uintp.Release (Umark);
883 return;
884 end if;
886 -- Otherwise get bounds values
888 if Is_Static_Expression (Lo) then
889 Lob := Expr_Value (Lo);
890 else
891 Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
892 Static := False;
893 end if;
895 if Is_Static_Expression (Hi) then
896 Hib := Expr_Value (Hi);
897 else
898 Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
899 Static := False;
900 end if;
902 Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
903 Next_Index (Indx);
904 end loop;
906 -- Compute the limit against which we want to check. For subprograms,
907 -- where the array will go on the stack, we use 8*2**24, which (in
908 -- bits) is the size of a 16 megabyte array.
910 if Is_Subprogram (Scope (Ent)) then
911 Check_Siz := Uint_2 ** 27;
912 else
913 Check_Siz := Uint_2 ** 31;
914 end if;
916 -- If we have all static bounds and Siz is too large, then we know
917 -- we know we have a storage error right now, so generate message
919 if Static and then Siz >= Check_Siz then
920 Insert_Action (N,
921 Make_Raise_Storage_Error (Loc,
922 Reason => SE_Object_Too_Large));
923 Error_Msg_N ("?Storage_Error will be raised at run-time", N);
924 Uintp.Release (Umark);
925 return;
926 end if;
928 -- Case of component size known at compile time. If the array
929 -- size is definitely in range, then we do not need a check.
931 if Known_Esize (Ctyp)
932 and then Siz * Esize (Ctyp) < Check_Siz
933 then
934 Uintp.Release (Umark);
935 return;
936 end if;
938 -- Here if a dynamic check is required
940 -- What we do is to build an expression for the size of the array,
941 -- which is computed as the 'Size of the array component, times
942 -- the size of each dimension.
944 Uintp.Release (Umark);
946 Sizx :=
947 Make_Attribute_Reference (Loc,
948 Prefix => New_Occurrence_Of (Ctyp, Loc),
949 Attribute_Name => Name_Size);
951 Indx := First_Index (Typ);
952 for J in 1 .. Number_Dimensions (Typ) loop
953 if Sloc (Etype (Indx)) = Sloc (N) then
954 Ensure_Defined (Etype (Indx), N);
955 end if;
957 Sizx :=
958 Make_Op_Multiply (Loc,
959 Left_Opnd => Sizx,
960 Right_Opnd =>
961 Make_Attribute_Reference (Loc,
962 Prefix => New_Occurrence_Of (Typ, Loc),
963 Attribute_Name => Name_Length,
964 Expressions => New_List (
965 Make_Integer_Literal (Loc, J))));
966 Next_Index (Indx);
967 end loop;
968 end;
970 -- Common code to actually emit the check
972 Code :=
973 Make_Raise_Storage_Error (Loc,
974 Condition =>
975 Make_Op_Ge (Loc,
976 Left_Opnd => Sizx,
977 Right_Opnd =>
978 Make_Integer_Literal (Loc,
979 Intval => Check_Siz)),
980 Reason => SE_Object_Too_Large);
982 Set_Size_Check_Code (Defining_Identifier (N), Code);
983 Insert_Action (N, Code, Suppress => All_Checks);
984 end Apply_Array_Size_Check;
986 ----------------------------
987 -- Apply_Constraint_Check --
988 ----------------------------
990 procedure Apply_Constraint_Check
991 (N : Node_Id;
992 Typ : Entity_Id;
993 No_Sliding : Boolean := False)
995 Desig_Typ : Entity_Id;
997 begin
998 if Inside_A_Generic then
999 return;
1001 elsif Is_Scalar_Type (Typ) then
1002 Apply_Scalar_Range_Check (N, Typ);
1004 elsif Is_Array_Type (Typ) then
1006 -- A useful optimization: an aggregate with only an Others clause
1007 -- always has the right bounds.
1009 if Nkind (N) = N_Aggregate
1010 and then No (Expressions (N))
1011 and then Nkind
1012 (First (Choices (First (Component_Associations (N)))))
1013 = N_Others_Choice
1014 then
1015 return;
1016 end if;
1018 if Is_Constrained (Typ) then
1019 Apply_Length_Check (N, Typ);
1021 if No_Sliding then
1022 Apply_Range_Check (N, Typ);
1023 end if;
1024 else
1025 Apply_Range_Check (N, Typ);
1026 end if;
1028 elsif (Is_Record_Type (Typ)
1029 or else Is_Private_Type (Typ))
1030 and then Has_Discriminants (Base_Type (Typ))
1031 and then Is_Constrained (Typ)
1032 then
1033 Apply_Discriminant_Check (N, Typ);
1035 elsif Is_Access_Type (Typ) then
1037 Desig_Typ := Designated_Type (Typ);
1039 -- No checks necessary if expression statically null
1041 if Nkind (N) = N_Null then
1042 null;
1044 -- No sliding possible on access to arrays
1046 elsif Is_Array_Type (Desig_Typ) then
1047 if Is_Constrained (Desig_Typ) then
1048 Apply_Length_Check (N, Typ);
1049 end if;
1051 Apply_Range_Check (N, Typ);
1053 elsif Has_Discriminants (Base_Type (Desig_Typ))
1054 and then Is_Constrained (Desig_Typ)
1055 then
1056 Apply_Discriminant_Check (N, Typ);
1057 end if;
1059 if Can_Never_Be_Null (Typ)
1060 and then not Can_Never_Be_Null (Etype (N))
1061 then
1062 Install_Null_Excluding_Check (N);
1063 end if;
1064 end if;
1065 end Apply_Constraint_Check;
1067 ------------------------------
1068 -- Apply_Discriminant_Check --
1069 ------------------------------
1071 procedure Apply_Discriminant_Check
1072 (N : Node_Id;
1073 Typ : Entity_Id;
1074 Lhs : Node_Id := Empty)
1076 Loc : constant Source_Ptr := Sloc (N);
1077 Do_Access : constant Boolean := Is_Access_Type (Typ);
1078 S_Typ : Entity_Id := Etype (N);
1079 Cond : Node_Id;
1080 T_Typ : Entity_Id;
1082 function Is_Aliased_Unconstrained_Component return Boolean;
1083 -- It is possible for an aliased component to have a nominal
1084 -- unconstrained subtype (through instantiation). If this is a
1085 -- discriminated component assigned in the expansion of an aggregate
1086 -- in an initialization, the check must be suppressed. This unusual
1087 -- situation requires a predicate of its own (see 7503-008).
1089 ----------------------------------------
1090 -- Is_Aliased_Unconstrained_Component --
1091 ----------------------------------------
1093 function Is_Aliased_Unconstrained_Component return Boolean is
1094 Comp : Entity_Id;
1095 Pref : Node_Id;
1097 begin
1098 if Nkind (Lhs) /= N_Selected_Component then
1099 return False;
1100 else
1101 Comp := Entity (Selector_Name (Lhs));
1102 Pref := Prefix (Lhs);
1103 end if;
1105 if Ekind (Comp) /= E_Component
1106 or else not Is_Aliased (Comp)
1107 then
1108 return False;
1109 end if;
1111 return not Comes_From_Source (Pref)
1112 and then In_Instance
1113 and then not Is_Constrained (Etype (Comp));
1114 end Is_Aliased_Unconstrained_Component;
1116 -- Start of processing for Apply_Discriminant_Check
1118 begin
1119 if Do_Access then
1120 T_Typ := Designated_Type (Typ);
1121 else
1122 T_Typ := Typ;
1123 end if;
1125 -- Nothing to do if discriminant checks are suppressed or else no code
1126 -- is to be generated
1128 if not Expander_Active
1129 or else Discriminant_Checks_Suppressed (T_Typ)
1130 then
1131 return;
1132 end if;
1134 -- No discriminant checks necessary for access when expression
1135 -- is statically Null. This is not only an optimization, this is
1136 -- fundamental because otherwise discriminant checks may be generated
1137 -- in init procs for types containing an access to a non-frozen yet
1138 -- record, causing a deadly forward reference.
1140 -- Also, if the expression is of an access type whose designated
1141 -- type is incomplete, then the access value must be null and
1142 -- we suppress the check.
1144 if Nkind (N) = N_Null then
1145 return;
1147 elsif Is_Access_Type (S_Typ) then
1148 S_Typ := Designated_Type (S_Typ);
1150 if Ekind (S_Typ) = E_Incomplete_Type then
1151 return;
1152 end if;
1153 end if;
1155 -- If an assignment target is present, then we need to generate
1156 -- the actual subtype if the target is a parameter or aliased
1157 -- object with an unconstrained nominal subtype.
1159 if Present (Lhs)
1160 and then (Present (Param_Entity (Lhs))
1161 or else (not Is_Constrained (T_Typ)
1162 and then Is_Aliased_View (Lhs)
1163 and then not Is_Aliased_Unconstrained_Component))
1164 then
1165 T_Typ := Get_Actual_Subtype (Lhs);
1166 end if;
1168 -- Nothing to do if the type is unconstrained (this is the case
1169 -- where the actual subtype in the RM sense of N is unconstrained
1170 -- and no check is required).
1172 if not Is_Constrained (T_Typ) then
1173 return;
1174 end if;
1176 -- Nothing to do if the type is an Unchecked_Union
1178 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1179 return;
1180 end if;
1182 -- Suppress checks if the subtypes are the same.
1183 -- the check must be preserved in an assignment to a formal, because
1184 -- the constraint is given by the actual.
1186 if Nkind (Original_Node (N)) /= N_Allocator
1187 and then (No (Lhs)
1188 or else not Is_Entity_Name (Lhs)
1189 or else No (Param_Entity (Lhs)))
1190 then
1191 if (Etype (N) = Typ
1192 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1193 and then not Is_Aliased_View (Lhs)
1194 then
1195 return;
1196 end if;
1198 -- We can also eliminate checks on allocators with a subtype mark
1199 -- that coincides with the context type. The context type may be a
1200 -- subtype without a constraint (common case, a generic actual).
1202 elsif Nkind (Original_Node (N)) = N_Allocator
1203 and then Is_Entity_Name (Expression (Original_Node (N)))
1204 then
1205 declare
1206 Alloc_Typ : constant Entity_Id :=
1207 Entity (Expression (Original_Node (N)));
1209 begin
1210 if Alloc_Typ = T_Typ
1211 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1212 and then Is_Entity_Name (
1213 Subtype_Indication (Parent (T_Typ)))
1214 and then Alloc_Typ = Base_Type (T_Typ))
1216 then
1217 return;
1218 end if;
1219 end;
1220 end if;
1222 -- See if we have a case where the types are both constrained, and
1223 -- all the constraints are constants. In this case, we can do the
1224 -- check successfully at compile time.
1226 -- We skip this check for the case where the node is a rewritten`
1227 -- allocator, because it already carries the context subtype, and
1228 -- extracting the discriminants from the aggregate is messy.
1230 if Is_Constrained (S_Typ)
1231 and then Nkind (Original_Node (N)) /= N_Allocator
1232 then
1233 declare
1234 DconT : Elmt_Id;
1235 Discr : Entity_Id;
1236 DconS : Elmt_Id;
1237 ItemS : Node_Id;
1238 ItemT : Node_Id;
1240 begin
1241 -- S_Typ may not have discriminants in the case where it is a
1242 -- private type completed by a default discriminated type. In
1243 -- that case, we need to get the constraints from the
1244 -- underlying_type. If the underlying type is unconstrained (i.e.
1245 -- has no default discriminants) no check is needed.
1247 if Has_Discriminants (S_Typ) then
1248 Discr := First_Discriminant (S_Typ);
1249 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1251 else
1252 Discr := First_Discriminant (Underlying_Type (S_Typ));
1253 DconS :=
1254 First_Elmt
1255 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1257 if No (DconS) then
1258 return;
1259 end if;
1261 -- A further optimization: if T_Typ is derived from S_Typ
1262 -- without imposing a constraint, no check is needed.
1264 if Nkind (Original_Node (Parent (T_Typ))) =
1265 N_Full_Type_Declaration
1266 then
1267 declare
1268 Type_Def : constant Node_Id :=
1269 Type_Definition
1270 (Original_Node (Parent (T_Typ)));
1271 begin
1272 if Nkind (Type_Def) = N_Derived_Type_Definition
1273 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1274 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1275 then
1276 return;
1277 end if;
1278 end;
1279 end if;
1280 end if;
1282 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1284 while Present (Discr) loop
1285 ItemS := Node (DconS);
1286 ItemT := Node (DconT);
1288 exit when
1289 not Is_OK_Static_Expression (ItemS)
1290 or else
1291 not Is_OK_Static_Expression (ItemT);
1293 if Expr_Value (ItemS) /= Expr_Value (ItemT) then
1294 if Do_Access then -- needs run-time check.
1295 exit;
1296 else
1297 Apply_Compile_Time_Constraint_Error
1298 (N, "incorrect value for discriminant&?",
1299 CE_Discriminant_Check_Failed, Ent => Discr);
1300 return;
1301 end if;
1302 end if;
1304 Next_Elmt (DconS);
1305 Next_Elmt (DconT);
1306 Next_Discriminant (Discr);
1307 end loop;
1309 if No (Discr) then
1310 return;
1311 end if;
1312 end;
1313 end if;
1315 -- Here we need a discriminant check. First build the expression
1316 -- for the comparisons of the discriminants:
1318 -- (n.disc1 /= typ.disc1) or else
1319 -- (n.disc2 /= typ.disc2) or else
1320 -- ...
1321 -- (n.discn /= typ.discn)
1323 Cond := Build_Discriminant_Checks (N, T_Typ);
1325 -- If Lhs is set and is a parameter, then the condition is
1326 -- guarded by: lhs'constrained and then (condition built above)
1328 if Present (Param_Entity (Lhs)) then
1329 Cond :=
1330 Make_And_Then (Loc,
1331 Left_Opnd =>
1332 Make_Attribute_Reference (Loc,
1333 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1334 Attribute_Name => Name_Constrained),
1335 Right_Opnd => Cond);
1336 end if;
1338 if Do_Access then
1339 Cond := Guard_Access (Cond, Loc, N);
1340 end if;
1342 Insert_Action (N,
1343 Make_Raise_Constraint_Error (Loc,
1344 Condition => Cond,
1345 Reason => CE_Discriminant_Check_Failed));
1346 end Apply_Discriminant_Check;
1348 ------------------------
1349 -- Apply_Divide_Check --
1350 ------------------------
1352 procedure Apply_Divide_Check (N : Node_Id) is
1353 Loc : constant Source_Ptr := Sloc (N);
1354 Typ : constant Entity_Id := Etype (N);
1355 Left : constant Node_Id := Left_Opnd (N);
1356 Right : constant Node_Id := Right_Opnd (N);
1358 LLB : Uint;
1359 Llo : Uint;
1360 Lhi : Uint;
1361 LOK : Boolean;
1362 Rlo : Uint;
1363 Rhi : Uint;
1364 ROK : Boolean;
1366 begin
1367 if Expander_Active
1368 and not Backend_Divide_Checks_On_Target
1369 then
1370 Determine_Range (Right, ROK, Rlo, Rhi);
1372 -- See if division by zero possible, and if so generate test. This
1373 -- part of the test is not controlled by the -gnato switch.
1375 if Do_Division_Check (N) then
1376 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1377 Insert_Action (N,
1378 Make_Raise_Constraint_Error (Loc,
1379 Condition =>
1380 Make_Op_Eq (Loc,
1381 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1382 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1383 Reason => CE_Divide_By_Zero));
1384 end if;
1385 end if;
1387 -- Test for extremely annoying case of xxx'First divided by -1
1389 if Do_Overflow_Check (N) then
1391 if Nkind (N) = N_Op_Divide
1392 and then Is_Signed_Integer_Type (Typ)
1393 then
1394 Determine_Range (Left, LOK, Llo, Lhi);
1395 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1397 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1398 and then
1399 ((not LOK) or else (Llo = LLB))
1400 then
1401 Insert_Action (N,
1402 Make_Raise_Constraint_Error (Loc,
1403 Condition =>
1404 Make_And_Then (Loc,
1406 Make_Op_Eq (Loc,
1407 Left_Opnd =>
1408 Duplicate_Subexpr_Move_Checks (Left),
1409 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1411 Make_Op_Eq (Loc,
1412 Left_Opnd =>
1413 Duplicate_Subexpr (Right),
1414 Right_Opnd =>
1415 Make_Integer_Literal (Loc, -1))),
1416 Reason => CE_Overflow_Check_Failed));
1417 end if;
1418 end if;
1419 end if;
1420 end if;
1421 end Apply_Divide_Check;
1423 ----------------------------------
1424 -- Apply_Float_Conversion_Check --
1425 ----------------------------------
1427 -- Let F and I be the source and target types of the conversion.
1428 -- The Ada standard specifies that a floating-point value X is rounded
1429 -- to the nearest integer, with halfway cases being rounded away from
1430 -- zero. The rounded value of X is checked against I'Range.
1432 -- The catch in the above paragraph is that there is no good way
1433 -- to know whether the round-to-integer operation resulted in
1434 -- overflow. A remedy is to perform a range check in the floating-point
1435 -- domain instead, however:
1436 -- (1) The bounds may not be known at compile time
1437 -- (2) The check must take into account possible rounding.
1438 -- (3) The range of type I may not be exactly representable in F.
1439 -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
1440 -- not be in range, depending on the sign of I'First and I'Last.
1441 -- (5) X may be a NaN, which will fail any comparison
1443 -- The following steps take care of these issues converting X:
1444 -- (1) If either I'First or I'Last is not known at compile time, use
1445 -- I'Base instead of I in the next three steps and perform a
1446 -- regular range check against I'Range after conversion.
1447 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1448 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1449 -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
1450 -- take one of the closest floating-point numbers to T, and see if
1451 -- it is in range or not.
1452 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1453 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1454 -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
1455 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1456 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1458 procedure Apply_Float_Conversion_Check
1459 (Ck_Node : Node_Id;
1460 Target_Typ : Entity_Id)
1462 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1463 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1464 Loc : constant Source_Ptr := Sloc (Ck_Node);
1465 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1466 Target_Base : constant Entity_Id := Implementation_Base_Type
1467 (Target_Typ);
1468 Max_Bound : constant Uint := UI_Expon
1469 (Machine_Radix (Expr_Type),
1470 Machine_Mantissa (Expr_Type) - 1) - 1;
1471 -- Largest bound, so bound plus or minus half is a machine number of F
1473 Ifirst,
1474 Ilast : Uint; -- Bounds of integer type
1475 Lo, Hi : Ureal; -- Bounds to check in floating-point domain
1476 Lo_OK,
1477 Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
1479 Lo_Chk,
1480 Hi_Chk : Node_Id; -- Expressions that are False iff check fails
1482 Reason : RT_Exception_Code;
1484 begin
1485 if not Compile_Time_Known_Value (LB)
1486 or not Compile_Time_Known_Value (HB)
1487 then
1488 declare
1489 -- First check that the value falls in the range of the base
1490 -- type, to prevent overflow during conversion and then
1491 -- perform a regular range check against the (dynamic) bounds.
1493 Par : constant Node_Id := Parent (Ck_Node);
1495 pragma Assert (Target_Base /= Target_Typ);
1496 pragma Assert (Nkind (Par) = N_Type_Conversion);
1498 Temp : constant Entity_Id :=
1499 Make_Defining_Identifier (Loc,
1500 Chars => New_Internal_Name ('T'));
1502 begin
1503 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1504 Set_Etype (Temp, Target_Base);
1506 Insert_Action (Parent (Par),
1507 Make_Object_Declaration (Loc,
1508 Defining_Identifier => Temp,
1509 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1510 Expression => New_Copy_Tree (Par)),
1511 Suppress => All_Checks);
1513 Insert_Action (Par,
1514 Make_Raise_Constraint_Error (Loc,
1515 Condition =>
1516 Make_Not_In (Loc,
1517 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1518 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1519 Reason => CE_Range_Check_Failed));
1520 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1522 return;
1523 end;
1524 end if;
1526 -- Get the bounds of the target type
1528 Ifirst := Expr_Value (LB);
1529 Ilast := Expr_Value (HB);
1531 -- Check against lower bound
1533 if abs (Ifirst) < Max_Bound then
1534 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1535 Lo_OK := (Ifirst > 0);
1536 else
1537 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1538 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1539 end if;
1541 if Lo_OK then
1543 -- Lo_Chk := (X >= Lo)
1545 Lo_Chk := Make_Op_Ge (Loc,
1546 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1547 Right_Opnd => Make_Real_Literal (Loc, Lo));
1549 else
1550 -- Lo_Chk := (X > Lo)
1552 Lo_Chk := Make_Op_Gt (Loc,
1553 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1554 Right_Opnd => Make_Real_Literal (Loc, Lo));
1555 end if;
1557 -- Check against higher bound
1559 if abs (Ilast) < Max_Bound then
1560 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1561 Hi_OK := (Ilast < 0);
1562 else
1563 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1564 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1565 end if;
1567 if Hi_OK then
1569 -- Hi_Chk := (X <= Hi)
1571 Hi_Chk := Make_Op_Le (Loc,
1572 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1573 Right_Opnd => Make_Real_Literal (Loc, Hi));
1575 else
1576 -- Hi_Chk := (X < Hi)
1578 Hi_Chk := Make_Op_Lt (Loc,
1579 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1580 Right_Opnd => Make_Real_Literal (Loc, Hi));
1581 end if;
1583 -- If the bounds of the target type are the same as those of the
1584 -- base type, the check is an overflow check as a range check is
1585 -- not performed in these cases.
1587 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1588 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1589 then
1590 Reason := CE_Overflow_Check_Failed;
1591 else
1592 Reason := CE_Range_Check_Failed;
1593 end if;
1595 -- Raise CE if either conditions does not hold
1597 Insert_Action (Ck_Node,
1598 Make_Raise_Constraint_Error (Loc,
1599 Condition => Make_Op_Not (Loc, Make_Op_And (Loc, Lo_Chk, Hi_Chk)),
1600 Reason => Reason));
1601 end Apply_Float_Conversion_Check;
1603 ------------------------
1604 -- Apply_Length_Check --
1605 ------------------------
1607 procedure Apply_Length_Check
1608 (Ck_Node : Node_Id;
1609 Target_Typ : Entity_Id;
1610 Source_Typ : Entity_Id := Empty)
1612 begin
1613 Apply_Selected_Length_Checks
1614 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1615 end Apply_Length_Check;
1617 -----------------------
1618 -- Apply_Range_Check --
1619 -----------------------
1621 procedure Apply_Range_Check
1622 (Ck_Node : Node_Id;
1623 Target_Typ : Entity_Id;
1624 Source_Typ : Entity_Id := Empty)
1626 begin
1627 Apply_Selected_Range_Checks
1628 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1629 end Apply_Range_Check;
1631 ------------------------------
1632 -- Apply_Scalar_Range_Check --
1633 ------------------------------
1635 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
1636 -- flag off if it is already set on.
1638 procedure Apply_Scalar_Range_Check
1639 (Expr : Node_Id;
1640 Target_Typ : Entity_Id;
1641 Source_Typ : Entity_Id := Empty;
1642 Fixed_Int : Boolean := False)
1644 Parnt : constant Node_Id := Parent (Expr);
1645 S_Typ : Entity_Id;
1646 Arr : Node_Id := Empty; -- initialize to prevent warning
1647 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1648 OK : Boolean;
1650 Is_Subscr_Ref : Boolean;
1651 -- Set true if Expr is a subscript
1653 Is_Unconstrained_Subscr_Ref : Boolean;
1654 -- Set true if Expr is a subscript of an unconstrained array. In this
1655 -- case we do not attempt to do an analysis of the value against the
1656 -- range of the subscript, since we don't know the actual subtype.
1658 Int_Real : Boolean;
1659 -- Set to True if Expr should be regarded as a real value
1660 -- even though the type of Expr might be discrete.
1662 procedure Bad_Value;
1663 -- Procedure called if value is determined to be out of range
1665 ---------------
1666 -- Bad_Value --
1667 ---------------
1669 procedure Bad_Value is
1670 begin
1671 Apply_Compile_Time_Constraint_Error
1672 (Expr, "value not in range of}?", CE_Range_Check_Failed,
1673 Ent => Target_Typ,
1674 Typ => Target_Typ);
1675 end Bad_Value;
1677 -- Start of processing for Apply_Scalar_Range_Check
1679 begin
1680 if Inside_A_Generic then
1681 return;
1683 -- Return if check obviously not needed. Note that we do not check
1684 -- for the expander being inactive, since this routine does not
1685 -- insert any code, but it does generate useful warnings sometimes,
1686 -- which we would like even if we are in semantics only mode.
1688 elsif Target_Typ = Any_Type
1689 or else not Is_Scalar_Type (Target_Typ)
1690 or else Raises_Constraint_Error (Expr)
1691 then
1692 return;
1693 end if;
1695 -- Now, see if checks are suppressed
1697 Is_Subscr_Ref :=
1698 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1700 if Is_Subscr_Ref then
1701 Arr := Prefix (Parnt);
1702 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1703 end if;
1705 if not Do_Range_Check (Expr) then
1707 -- Subscript reference. Check for Index_Checks suppressed
1709 if Is_Subscr_Ref then
1711 -- Check array type and its base type
1713 if Index_Checks_Suppressed (Arr_Typ)
1714 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1715 then
1716 return;
1718 -- Check array itself if it is an entity name
1720 elsif Is_Entity_Name (Arr)
1721 and then Index_Checks_Suppressed (Entity (Arr))
1722 then
1723 return;
1725 -- Check expression itself if it is an entity name
1727 elsif Is_Entity_Name (Expr)
1728 and then Index_Checks_Suppressed (Entity (Expr))
1729 then
1730 return;
1731 end if;
1733 -- All other cases, check for Range_Checks suppressed
1735 else
1736 -- Check target type and its base type
1738 if Range_Checks_Suppressed (Target_Typ)
1739 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1740 then
1741 return;
1743 -- Check expression itself if it is an entity name
1745 elsif Is_Entity_Name (Expr)
1746 and then Range_Checks_Suppressed (Entity (Expr))
1747 then
1748 return;
1750 -- If Expr is part of an assignment statement, then check
1751 -- left side of assignment if it is an entity name.
1753 elsif Nkind (Parnt) = N_Assignment_Statement
1754 and then Is_Entity_Name (Name (Parnt))
1755 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1756 then
1757 return;
1758 end if;
1759 end if;
1760 end if;
1762 -- Do not set range checks if they are killed
1764 if Nkind (Expr) = N_Unchecked_Type_Conversion
1765 and then Kill_Range_Check (Expr)
1766 then
1767 return;
1768 end if;
1770 -- Do not set range checks for any values from System.Scalar_Values
1771 -- since the whole idea of such values is to avoid checking them!
1773 if Is_Entity_Name (Expr)
1774 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1775 then
1776 return;
1777 end if;
1779 -- Now see if we need a check
1781 if No (Source_Typ) then
1782 S_Typ := Etype (Expr);
1783 else
1784 S_Typ := Source_Typ;
1785 end if;
1787 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1788 return;
1789 end if;
1791 Is_Unconstrained_Subscr_Ref :=
1792 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1794 -- Always do a range check if the source type includes infinities
1795 -- and the target type does not include infinities. We do not do
1796 -- this if range checks are killed.
1798 if Is_Floating_Point_Type (S_Typ)
1799 and then Has_Infinities (S_Typ)
1800 and then not Has_Infinities (Target_Typ)
1801 then
1802 Enable_Range_Check (Expr);
1803 end if;
1805 -- Return if we know expression is definitely in the range of
1806 -- the target type as determined by Determine_Range. Right now
1807 -- we only do this for discrete types, and not fixed-point or
1808 -- floating-point types.
1810 -- The additional less-precise tests below catch these cases.
1812 -- Note: skip this if we are given a source_typ, since the point
1813 -- of supplying a Source_Typ is to stop us looking at the expression.
1814 -- could sharpen this test to be out parameters only ???
1816 if Is_Discrete_Type (Target_Typ)
1817 and then Is_Discrete_Type (Etype (Expr))
1818 and then not Is_Unconstrained_Subscr_Ref
1819 and then No (Source_Typ)
1820 then
1821 declare
1822 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1823 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1824 Lo : Uint;
1825 Hi : Uint;
1827 begin
1828 if Compile_Time_Known_Value (Tlo)
1829 and then Compile_Time_Known_Value (Thi)
1830 then
1831 declare
1832 Lov : constant Uint := Expr_Value (Tlo);
1833 Hiv : constant Uint := Expr_Value (Thi);
1835 begin
1836 -- If range is null, we for sure have a constraint error
1837 -- (we don't even need to look at the value involved,
1838 -- since all possible values will raise CE).
1840 if Lov > Hiv then
1841 Bad_Value;
1842 return;
1843 end if;
1845 -- Otherwise determine range of value
1847 Determine_Range (Expr, OK, Lo, Hi);
1849 if OK then
1851 -- If definitely in range, all OK
1853 if Lo >= Lov and then Hi <= Hiv then
1854 return;
1856 -- If definitely not in range, warn
1858 elsif Lov > Hi or else Hiv < Lo then
1859 Bad_Value;
1860 return;
1862 -- Otherwise we don't know
1864 else
1865 null;
1866 end if;
1867 end if;
1868 end;
1869 end if;
1870 end;
1871 end if;
1873 Int_Real :=
1874 Is_Floating_Point_Type (S_Typ)
1875 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1877 -- Check if we can determine at compile time whether Expr is in the
1878 -- range of the target type. Note that if S_Typ is within the bounds
1879 -- of Target_Typ then this must be the case. This check is meaningful
1880 -- only if this is not a conversion between integer and real types.
1882 if not Is_Unconstrained_Subscr_Ref
1883 and then
1884 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
1885 and then
1886 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
1887 or else
1888 Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
1889 then
1890 return;
1892 elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
1893 Bad_Value;
1894 return;
1896 -- In the floating-point case, we only do range checks if the
1897 -- type is constrained. We definitely do NOT want range checks
1898 -- for unconstrained types, since we want to have infinities
1900 elsif Is_Floating_Point_Type (S_Typ) then
1901 if Is_Constrained (S_Typ) then
1902 Enable_Range_Check (Expr);
1903 end if;
1905 -- For all other cases we enable a range check unconditionally
1907 else
1908 Enable_Range_Check (Expr);
1909 return;
1910 end if;
1911 end Apply_Scalar_Range_Check;
1913 ----------------------------------
1914 -- Apply_Selected_Length_Checks --
1915 ----------------------------------
1917 procedure Apply_Selected_Length_Checks
1918 (Ck_Node : Node_Id;
1919 Target_Typ : Entity_Id;
1920 Source_Typ : Entity_Id;
1921 Do_Static : Boolean)
1923 Cond : Node_Id;
1924 R_Result : Check_Result;
1925 R_Cno : Node_Id;
1927 Loc : constant Source_Ptr := Sloc (Ck_Node);
1928 Checks_On : constant Boolean :=
1929 (not Index_Checks_Suppressed (Target_Typ))
1930 or else
1931 (not Length_Checks_Suppressed (Target_Typ));
1933 begin
1934 if not Expander_Active then
1935 return;
1936 end if;
1938 R_Result :=
1939 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
1941 for J in 1 .. 2 loop
1942 R_Cno := R_Result (J);
1943 exit when No (R_Cno);
1945 -- A length check may mention an Itype which is attached to a
1946 -- subsequent node. At the top level in a package this can cause
1947 -- an order-of-elaboration problem, so we make sure that the itype
1948 -- is referenced now.
1950 if Ekind (Current_Scope) = E_Package
1951 and then Is_Compilation_Unit (Current_Scope)
1952 then
1953 Ensure_Defined (Target_Typ, Ck_Node);
1955 if Present (Source_Typ) then
1956 Ensure_Defined (Source_Typ, Ck_Node);
1958 elsif Is_Itype (Etype (Ck_Node)) then
1959 Ensure_Defined (Etype (Ck_Node), Ck_Node);
1960 end if;
1961 end if;
1963 -- If the item is a conditional raise of constraint error,
1964 -- then have a look at what check is being performed and
1965 -- ???
1967 if Nkind (R_Cno) = N_Raise_Constraint_Error
1968 and then Present (Condition (R_Cno))
1969 then
1970 Cond := Condition (R_Cno);
1972 if not Has_Dynamic_Length_Check (Ck_Node)
1973 and then Checks_On
1974 then
1975 Insert_Action (Ck_Node, R_Cno);
1977 if not Do_Static then
1978 Set_Has_Dynamic_Length_Check (Ck_Node);
1979 end if;
1980 end if;
1982 -- Output a warning if the condition is known to be True
1984 if Is_Entity_Name (Cond)
1985 and then Entity (Cond) = Standard_True
1986 then
1987 Apply_Compile_Time_Constraint_Error
1988 (Ck_Node, "wrong length for array of}?",
1989 CE_Length_Check_Failed,
1990 Ent => Target_Typ,
1991 Typ => Target_Typ);
1993 -- If we were only doing a static check, or if checks are not
1994 -- on, then we want to delete the check, since it is not needed.
1995 -- We do this by replacing the if statement by a null statement
1997 elsif Do_Static or else not Checks_On then
1998 Rewrite (R_Cno, Make_Null_Statement (Loc));
1999 end if;
2001 else
2002 Install_Static_Check (R_Cno, Loc);
2003 end if;
2005 end loop;
2007 end Apply_Selected_Length_Checks;
2009 ---------------------------------
2010 -- Apply_Selected_Range_Checks --
2011 ---------------------------------
2013 procedure Apply_Selected_Range_Checks
2014 (Ck_Node : Node_Id;
2015 Target_Typ : Entity_Id;
2016 Source_Typ : Entity_Id;
2017 Do_Static : Boolean)
2019 Cond : Node_Id;
2020 R_Result : Check_Result;
2021 R_Cno : Node_Id;
2023 Loc : constant Source_Ptr := Sloc (Ck_Node);
2024 Checks_On : constant Boolean :=
2025 (not Index_Checks_Suppressed (Target_Typ))
2026 or else
2027 (not Range_Checks_Suppressed (Target_Typ));
2029 begin
2030 if not Expander_Active or else not Checks_On then
2031 return;
2032 end if;
2034 R_Result :=
2035 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2037 for J in 1 .. 2 loop
2039 R_Cno := R_Result (J);
2040 exit when No (R_Cno);
2042 -- If the item is a conditional raise of constraint error,
2043 -- then have a look at what check is being performed and
2044 -- ???
2046 if Nkind (R_Cno) = N_Raise_Constraint_Error
2047 and then Present (Condition (R_Cno))
2048 then
2049 Cond := Condition (R_Cno);
2051 if not Has_Dynamic_Range_Check (Ck_Node) then
2052 Insert_Action (Ck_Node, R_Cno);
2054 if not Do_Static then
2055 Set_Has_Dynamic_Range_Check (Ck_Node);
2056 end if;
2057 end if;
2059 -- Output a warning if the condition is known to be True
2061 if Is_Entity_Name (Cond)
2062 and then Entity (Cond) = Standard_True
2063 then
2064 -- Since an N_Range is technically not an expression, we
2065 -- have to set one of the bounds to C_E and then just flag
2066 -- the N_Range. The warning message will point to the
2067 -- lower bound and complain about a range, which seems OK.
2069 if Nkind (Ck_Node) = N_Range then
2070 Apply_Compile_Time_Constraint_Error
2071 (Low_Bound (Ck_Node), "static range out of bounds of}?",
2072 CE_Range_Check_Failed,
2073 Ent => Target_Typ,
2074 Typ => Target_Typ);
2076 Set_Raises_Constraint_Error (Ck_Node);
2078 else
2079 Apply_Compile_Time_Constraint_Error
2080 (Ck_Node, "static value out of range of}?",
2081 CE_Range_Check_Failed,
2082 Ent => Target_Typ,
2083 Typ => Target_Typ);
2084 end if;
2086 -- If we were only doing a static check, or if checks are not
2087 -- on, then we want to delete the check, since it is not needed.
2088 -- We do this by replacing the if statement by a null statement
2090 elsif Do_Static or else not Checks_On then
2091 Rewrite (R_Cno, Make_Null_Statement (Loc));
2092 end if;
2094 else
2095 Install_Static_Check (R_Cno, Loc);
2096 end if;
2097 end loop;
2098 end Apply_Selected_Range_Checks;
2100 -------------------------------
2101 -- Apply_Static_Length_Check --
2102 -------------------------------
2104 procedure Apply_Static_Length_Check
2105 (Expr : Node_Id;
2106 Target_Typ : Entity_Id;
2107 Source_Typ : Entity_Id := Empty)
2109 begin
2110 Apply_Selected_Length_Checks
2111 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2112 end Apply_Static_Length_Check;
2114 -------------------------------------
2115 -- Apply_Subscript_Validity_Checks --
2116 -------------------------------------
2118 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2119 Sub : Node_Id;
2121 begin
2122 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2124 -- Loop through subscripts
2126 Sub := First (Expressions (Expr));
2127 while Present (Sub) loop
2129 -- Check one subscript. Note that we do not worry about
2130 -- enumeration type with holes, since we will convert the
2131 -- value to a Pos value for the subscript, and that convert
2132 -- will do the necessary validity check.
2134 Ensure_Valid (Sub, Holes_OK => True);
2136 -- Move to next subscript
2138 Sub := Next (Sub);
2139 end loop;
2140 end Apply_Subscript_Validity_Checks;
2142 ----------------------------------
2143 -- Apply_Type_Conversion_Checks --
2144 ----------------------------------
2146 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2147 Target_Type : constant Entity_Id := Etype (N);
2148 Target_Base : constant Entity_Id := Base_Type (Target_Type);
2149 Expr : constant Node_Id := Expression (N);
2150 Expr_Type : constant Entity_Id := Etype (Expr);
2152 begin
2153 if Inside_A_Generic then
2154 return;
2156 -- Skip these checks if serious errors detected, there are some nasty
2157 -- situations of incomplete trees that blow things up.
2159 elsif Serious_Errors_Detected > 0 then
2160 return;
2162 -- Scalar type conversions of the form Target_Type (Expr) require
2163 -- a range check if we cannot be sure that Expr is in the base type
2164 -- of Target_Typ and also that Expr is in the range of Target_Typ.
2165 -- These are not quite the same condition from an implementation
2166 -- point of view, but clearly the second includes the first.
2168 elsif Is_Scalar_Type (Target_Type) then
2169 declare
2170 Conv_OK : constant Boolean := Conversion_OK (N);
2171 -- If the Conversion_OK flag on the type conversion is set
2172 -- and no floating point type is involved in the type conversion
2173 -- then fixed point values must be read as integral values.
2175 Float_To_Int : constant Boolean :=
2176 Is_Floating_Point_Type (Expr_Type)
2177 and then Is_Integer_Type (Target_Type);
2179 begin
2180 if not Overflow_Checks_Suppressed (Target_Base)
2181 and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
2182 and then not Float_To_Int
2183 then
2184 Set_Do_Overflow_Check (N);
2185 end if;
2187 if not Range_Checks_Suppressed (Target_Type)
2188 and then not Range_Checks_Suppressed (Expr_Type)
2189 then
2190 if Float_To_Int then
2191 Apply_Float_Conversion_Check (Expr, Target_Type);
2192 else
2193 Apply_Scalar_Range_Check
2194 (Expr, Target_Type, Fixed_Int => Conv_OK);
2195 end if;
2196 end if;
2197 end;
2199 elsif Comes_From_Source (N)
2200 and then Is_Record_Type (Target_Type)
2201 and then Is_Derived_Type (Target_Type)
2202 and then not Is_Tagged_Type (Target_Type)
2203 and then not Is_Constrained (Target_Type)
2204 and then Present (Stored_Constraint (Target_Type))
2205 then
2206 -- An unconstrained derived type may have inherited discriminant
2207 -- Build an actual discriminant constraint list using the stored
2208 -- constraint, to verify that the expression of the parent type
2209 -- satisfies the constraints imposed by the (unconstrained!)
2210 -- derived type. This applies to value conversions, not to view
2211 -- conversions of tagged types.
2213 declare
2214 Loc : constant Source_Ptr := Sloc (N);
2215 Cond : Node_Id;
2216 Constraint : Elmt_Id;
2217 Discr_Value : Node_Id;
2218 Discr : Entity_Id;
2220 New_Constraints : constant Elist_Id := New_Elmt_List;
2221 Old_Constraints : constant Elist_Id :=
2222 Discriminant_Constraint (Expr_Type);
2224 begin
2225 Constraint := First_Elmt (Stored_Constraint (Target_Type));
2227 while Present (Constraint) loop
2228 Discr_Value := Node (Constraint);
2230 if Is_Entity_Name (Discr_Value)
2231 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2232 then
2233 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2235 if Present (Discr)
2236 and then Scope (Discr) = Base_Type (Expr_Type)
2237 then
2238 -- Parent is constrained by new discriminant. Obtain
2239 -- Value of original discriminant in expression. If
2240 -- the new discriminant has been used to constrain more
2241 -- than one of the stored discriminants, this will
2242 -- provide the required consistency check.
2244 Append_Elmt (
2245 Make_Selected_Component (Loc,
2246 Prefix =>
2247 Duplicate_Subexpr_No_Checks
2248 (Expr, Name_Req => True),
2249 Selector_Name =>
2250 Make_Identifier (Loc, Chars (Discr))),
2251 New_Constraints);
2253 else
2254 -- Discriminant of more remote ancestor ???
2256 return;
2257 end if;
2259 -- Derived type definition has an explicit value for
2260 -- this stored discriminant.
2262 else
2263 Append_Elmt
2264 (Duplicate_Subexpr_No_Checks (Discr_Value),
2265 New_Constraints);
2266 end if;
2268 Next_Elmt (Constraint);
2269 end loop;
2271 -- Use the unconstrained expression type to retrieve the
2272 -- discriminants of the parent, and apply momentarily the
2273 -- discriminant constraint synthesized above.
2275 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2276 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2277 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2279 Insert_Action (N,
2280 Make_Raise_Constraint_Error (Loc,
2281 Condition => Cond,
2282 Reason => CE_Discriminant_Check_Failed));
2283 end;
2285 -- For arrays, conversions are applied during expansion, to take
2286 -- into accounts changes of representation. The checks become range
2287 -- checks on the base type or length checks on the subtype, depending
2288 -- on whether the target type is unconstrained or constrained.
2290 else
2291 null;
2292 end if;
2293 end Apply_Type_Conversion_Checks;
2295 ----------------------------------------------
2296 -- Apply_Universal_Integer_Attribute_Checks --
2297 ----------------------------------------------
2299 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2300 Loc : constant Source_Ptr := Sloc (N);
2301 Typ : constant Entity_Id := Etype (N);
2303 begin
2304 if Inside_A_Generic then
2305 return;
2307 -- Nothing to do if checks are suppressed
2309 elsif Range_Checks_Suppressed (Typ)
2310 and then Overflow_Checks_Suppressed (Typ)
2311 then
2312 return;
2314 -- Nothing to do if the attribute does not come from source. The
2315 -- internal attributes we generate of this type do not need checks,
2316 -- and furthermore the attempt to check them causes some circular
2317 -- elaboration orders when dealing with packed types.
2319 elsif not Comes_From_Source (N) then
2320 return;
2322 -- If the prefix is a selected component that depends on a discriminant
2323 -- the check may improperly expose a discriminant instead of using
2324 -- the bounds of the object itself. Set the type of the attribute to
2325 -- the base type of the context, so that a check will be imposed when
2326 -- needed (e.g. if the node appears as an index).
2328 elsif Nkind (Prefix (N)) = N_Selected_Component
2329 and then Ekind (Typ) = E_Signed_Integer_Subtype
2330 and then Depends_On_Discriminant (Scalar_Range (Typ))
2331 then
2332 Set_Etype (N, Base_Type (Typ));
2334 -- Otherwise, replace the attribute node with a type conversion
2335 -- node whose expression is the attribute, retyped to universal
2336 -- integer, and whose subtype mark is the target type. The call
2337 -- to analyze this conversion will set range and overflow checks
2338 -- as required for proper detection of an out of range value.
2340 else
2341 Set_Etype (N, Universal_Integer);
2342 Set_Analyzed (N, True);
2344 Rewrite (N,
2345 Make_Type_Conversion (Loc,
2346 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2347 Expression => Relocate_Node (N)));
2349 Analyze_And_Resolve (N, Typ);
2350 return;
2351 end if;
2353 end Apply_Universal_Integer_Attribute_Checks;
2355 -------------------------------
2356 -- Build_Discriminant_Checks --
2357 -------------------------------
2359 function Build_Discriminant_Checks
2360 (N : Node_Id;
2361 T_Typ : Entity_Id) return Node_Id
2363 Loc : constant Source_Ptr := Sloc (N);
2364 Cond : Node_Id;
2365 Disc : Elmt_Id;
2366 Disc_Ent : Entity_Id;
2367 Dref : Node_Id;
2368 Dval : Node_Id;
2370 begin
2371 Cond := Empty;
2372 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2374 -- For a fully private type, use the discriminants of the parent type
2376 if Is_Private_Type (T_Typ)
2377 and then No (Full_View (T_Typ))
2378 then
2379 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2380 else
2381 Disc_Ent := First_Discriminant (T_Typ);
2382 end if;
2384 while Present (Disc) loop
2385 Dval := Node (Disc);
2387 if Nkind (Dval) = N_Identifier
2388 and then Ekind (Entity (Dval)) = E_Discriminant
2389 then
2390 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2391 else
2392 Dval := Duplicate_Subexpr_No_Checks (Dval);
2393 end if;
2395 -- If we have an Unchecked_Union node, we can infer the discriminants
2396 -- of the node.
2398 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2399 Dref := New_Copy (
2400 Get_Discriminant_Value (
2401 First_Discriminant (T_Typ),
2402 T_Typ,
2403 Stored_Constraint (T_Typ)));
2405 else
2406 Dref :=
2407 Make_Selected_Component (Loc,
2408 Prefix =>
2409 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2410 Selector_Name =>
2411 Make_Identifier (Loc, Chars (Disc_Ent)));
2413 Set_Is_In_Discriminant_Check (Dref);
2414 end if;
2416 Evolve_Or_Else (Cond,
2417 Make_Op_Ne (Loc,
2418 Left_Opnd => Dref,
2419 Right_Opnd => Dval));
2421 Next_Elmt (Disc);
2422 Next_Discriminant (Disc_Ent);
2423 end loop;
2425 return Cond;
2426 end Build_Discriminant_Checks;
2428 -----------------------------------
2429 -- Check_Valid_Lvalue_Subscripts --
2430 -----------------------------------
2432 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2433 begin
2434 -- Skip this if range checks are suppressed
2436 if Range_Checks_Suppressed (Etype (Expr)) then
2437 return;
2439 -- Only do this check for expressions that come from source. We
2440 -- assume that expander generated assignments explicitly include
2441 -- any necessary checks. Note that this is not just an optimization,
2442 -- it avoids infinite recursions!
2444 elsif not Comes_From_Source (Expr) then
2445 return;
2447 -- For a selected component, check the prefix
2449 elsif Nkind (Expr) = N_Selected_Component then
2450 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2451 return;
2453 -- Case of indexed component
2455 elsif Nkind (Expr) = N_Indexed_Component then
2456 Apply_Subscript_Validity_Checks (Expr);
2458 -- Prefix may itself be or contain an indexed component, and
2459 -- these subscripts need checking as well
2461 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2462 end if;
2463 end Check_Valid_Lvalue_Subscripts;
2465 ----------------------------------
2466 -- Null_Exclusion_Static_Checks --
2467 ----------------------------------
2469 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2470 K : constant Node_Kind := Nkind (N);
2471 Typ : Entity_Id;
2472 Related_Nod : Node_Id;
2473 Has_Null_Exclusion : Boolean := False;
2475 type Msg_Kind is (Components, Formals, Objects);
2476 Msg_K : Msg_Kind := Objects;
2477 -- Used by local subprograms to generate precise error messages
2479 procedure Check_Must_Be_Access
2480 (Typ : Entity_Id;
2481 Has_Null_Exclusion : Boolean);
2482 -- ??? local subprograms must have comment on spec
2484 procedure Check_Already_Null_Excluding_Type
2485 (Typ : Entity_Id;
2486 Has_Null_Exclusion : Boolean;
2487 Related_Nod : Node_Id);
2488 -- ??? local subprograms must have comment on spec
2490 procedure Check_Must_Be_Initialized
2491 (N : Node_Id;
2492 Related_Nod : Node_Id);
2493 -- ??? local subprograms must have comment on spec
2495 procedure Check_Null_Not_Allowed (N : Node_Id);
2496 -- ??? local subprograms must have comment on spec
2498 -- ??? following bodies lack comments
2500 --------------------------
2501 -- Check_Must_Be_Access --
2502 --------------------------
2504 procedure Check_Must_Be_Access
2505 (Typ : Entity_Id;
2506 Has_Null_Exclusion : Boolean)
2508 begin
2509 if Has_Null_Exclusion
2510 and then not Is_Access_Type (Typ)
2511 then
2512 Error_Msg_N ("(Ada 2005) must be an access type", Related_Nod);
2513 end if;
2514 end Check_Must_Be_Access;
2516 ---------------------------------------
2517 -- Check_Already_Null_Excluding_Type --
2518 ---------------------------------------
2520 procedure Check_Already_Null_Excluding_Type
2521 (Typ : Entity_Id;
2522 Has_Null_Exclusion : Boolean;
2523 Related_Nod : Node_Id)
2525 begin
2526 if Has_Null_Exclusion
2527 and then Can_Never_Be_Null (Typ)
2528 then
2529 Error_Msg_N
2530 ("(Ada 2005) already a null-excluding type", Related_Nod);
2531 end if;
2532 end Check_Already_Null_Excluding_Type;
2534 -------------------------------
2535 -- Check_Must_Be_Initialized --
2536 -------------------------------
2538 procedure Check_Must_Be_Initialized
2539 (N : Node_Id;
2540 Related_Nod : Node_Id)
2542 Expr : constant Node_Id := Expression (N);
2544 begin
2545 pragma Assert (Nkind (N) = N_Component_Declaration
2546 or else Nkind (N) = N_Object_Declaration);
2548 if not Present (Expr) then
2549 case Msg_K is
2550 when Components =>
2551 Error_Msg_N
2552 ("(Ada 2005) null-excluding components must be " &
2553 "initialized", Related_Nod);
2555 when Formals =>
2556 Error_Msg_N
2557 ("(Ada 2005) null-excluding formals must be initialized",
2558 Related_Nod);
2560 when Objects =>
2561 Error_Msg_N
2562 ("(Ada 2005) null-excluding objects must be initialized",
2563 Related_Nod);
2564 end case;
2565 end if;
2566 end Check_Must_Be_Initialized;
2568 ----------------------------
2569 -- Check_Null_Not_Allowed --
2570 ----------------------------
2572 procedure Check_Null_Not_Allowed (N : Node_Id) is
2573 Expr : constant Node_Id := Expression (N);
2575 begin
2576 if Present (Expr)
2577 and then Nkind (Expr) = N_Null
2578 then
2579 case Msg_K is
2580 when Components =>
2581 Error_Msg_N
2582 ("(Ada 2005) NULL not allowed in null-excluding " &
2583 "components", Expr);
2585 when Formals =>
2586 Error_Msg_N
2587 ("(Ada 2005) NULL not allowed in null-excluding formals",
2588 Expr);
2590 when Objects =>
2591 Error_Msg_N
2592 ("(Ada 2005) NULL not allowed in null-excluding objects",
2593 Expr);
2594 end case;
2595 end if;
2596 end Check_Null_Not_Allowed;
2598 -- Start of processing for Null_Exclusion_Static_Checks
2600 begin
2601 pragma Assert (K = N_Component_Declaration
2602 or else K = N_Parameter_Specification
2603 or else K = N_Object_Declaration
2604 or else K = N_Discriminant_Specification
2605 or else K = N_Allocator);
2607 case K is
2608 when N_Component_Declaration =>
2609 Msg_K := Components;
2611 if not Present (Access_Definition (Component_Definition (N))) then
2612 Has_Null_Exclusion := Null_Exclusion_Present
2613 (Component_Definition (N));
2614 Typ := Etype (Subtype_Indication (Component_Definition (N)));
2615 Related_Nod := Subtype_Indication (Component_Definition (N));
2616 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2617 Check_Already_Null_Excluding_Type
2618 (Typ, Has_Null_Exclusion, Related_Nod);
2619 Check_Must_Be_Initialized (N, Related_Nod);
2620 end if;
2622 Check_Null_Not_Allowed (N);
2624 when N_Parameter_Specification =>
2625 Msg_K := Formals;
2626 Has_Null_Exclusion := Null_Exclusion_Present (N);
2627 Typ := Entity (Parameter_Type (N));
2628 Related_Nod := Parameter_Type (N);
2629 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2630 Check_Already_Null_Excluding_Type
2631 (Typ, Has_Null_Exclusion, Related_Nod);
2632 Check_Null_Not_Allowed (N);
2634 when N_Object_Declaration =>
2635 Msg_K := Objects;
2636 Has_Null_Exclusion := Null_Exclusion_Present (N);
2637 Typ := Entity (Object_Definition (N));
2638 Related_Nod := Object_Definition (N);
2639 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2640 Check_Already_Null_Excluding_Type
2641 (Typ, Has_Null_Exclusion, Related_Nod);
2642 Check_Must_Be_Initialized (N, Related_Nod);
2643 Check_Null_Not_Allowed (N);
2645 when N_Discriminant_Specification =>
2646 Msg_K := Components;
2648 if Nkind (Discriminant_Type (N)) /= N_Access_Definition then
2649 Has_Null_Exclusion := Null_Exclusion_Present (N);
2650 Typ := Etype (Defining_Identifier (N));
2651 Related_Nod := Discriminant_Type (N);
2652 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2653 Check_Already_Null_Excluding_Type
2654 (Typ, Has_Null_Exclusion, Related_Nod);
2655 end if;
2657 Check_Null_Not_Allowed (N);
2659 when N_Allocator =>
2660 Msg_K := Objects;
2661 Has_Null_Exclusion := Null_Exclusion_Present (N);
2662 Typ := Etype (Expression (N));
2664 if Nkind (Expression (N)) = N_Qualified_Expression then
2665 Related_Nod := Subtype_Mark (Expression (N));
2666 else
2667 Related_Nod := Expression (N);
2668 end if;
2670 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2671 Check_Already_Null_Excluding_Type
2672 (Typ, Has_Null_Exclusion, Related_Nod);
2673 Check_Null_Not_Allowed (N);
2675 when others =>
2676 raise Program_Error;
2677 end case;
2678 end Null_Exclusion_Static_Checks;
2680 ----------------------------------
2681 -- Conditional_Statements_Begin --
2682 ----------------------------------
2684 procedure Conditional_Statements_Begin is
2685 begin
2686 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2688 -- If stack overflows, kill all checks, that way we know to
2689 -- simply reset the number of saved checks to zero on return.
2690 -- This should never occur in practice.
2692 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2693 Kill_All_Checks;
2695 -- In the normal case, we just make a new stack entry saving
2696 -- the current number of saved checks for a later restore.
2698 else
2699 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2701 if Debug_Flag_CC then
2702 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2703 Num_Saved_Checks);
2704 end if;
2705 end if;
2706 end Conditional_Statements_Begin;
2708 --------------------------------
2709 -- Conditional_Statements_End --
2710 --------------------------------
2712 procedure Conditional_Statements_End is
2713 begin
2714 pragma Assert (Saved_Checks_TOS > 0);
2716 -- If the saved checks stack overflowed, then we killed all
2717 -- checks, so setting the number of saved checks back to
2718 -- zero is correct. This should never occur in practice.
2720 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2721 Num_Saved_Checks := 0;
2723 -- In the normal case, restore the number of saved checks
2724 -- from the top stack entry.
2726 else
2727 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2728 if Debug_Flag_CC then
2729 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2730 Num_Saved_Checks);
2731 end if;
2732 end if;
2734 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2735 end Conditional_Statements_End;
2737 ---------------------
2738 -- Determine_Range --
2739 ---------------------
2741 Cache_Size : constant := 2 ** 10;
2742 type Cache_Index is range 0 .. Cache_Size - 1;
2743 -- Determine size of below cache (power of 2 is more efficient!)
2745 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
2746 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2747 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2748 -- The above arrays are used to implement a small direct cache
2749 -- for Determine_Range calls. Because of the way Determine_Range
2750 -- recursively traces subexpressions, and because overflow checking
2751 -- calls the routine on the way up the tree, a quadratic behavior
2752 -- can otherwise be encountered in large expressions. The cache
2753 -- entry for node N is stored in the (N mod Cache_Size) entry, and
2754 -- can be validated by checking the actual node value stored there.
2756 procedure Determine_Range
2757 (N : Node_Id;
2758 OK : out Boolean;
2759 Lo : out Uint;
2760 Hi : out Uint)
2762 Typ : constant Entity_Id := Etype (N);
2764 Lo_Left : Uint;
2765 Hi_Left : Uint;
2766 -- Lo and Hi bounds of left operand
2768 Lo_Right : Uint;
2769 Hi_Right : Uint;
2770 -- Lo and Hi bounds of right (or only) operand
2772 Bound : Node_Id;
2773 -- Temp variable used to hold a bound node
2775 Hbound : Uint;
2776 -- High bound of base type of expression
2778 Lor : Uint;
2779 Hir : Uint;
2780 -- Refined values for low and high bounds, after tightening
2782 OK1 : Boolean;
2783 -- Used in lower level calls to indicate if call succeeded
2785 Cindex : Cache_Index;
2786 -- Used to search cache
2788 function OK_Operands return Boolean;
2789 -- Used for binary operators. Determines the ranges of the left and
2790 -- right operands, and if they are both OK, returns True, and puts
2791 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
2793 -----------------
2794 -- OK_Operands --
2795 -----------------
2797 function OK_Operands return Boolean is
2798 begin
2799 Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
2801 if not OK1 then
2802 return False;
2803 end if;
2805 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2806 return OK1;
2807 end OK_Operands;
2809 -- Start of processing for Determine_Range
2811 begin
2812 -- Prevent junk warnings by initializing range variables
2814 Lo := No_Uint;
2815 Hi := No_Uint;
2816 Lor := No_Uint;
2817 Hir := No_Uint;
2819 -- If the type is not discrete, or is undefined, then we can't
2820 -- do anything about determining the range.
2822 if No (Typ) or else not Is_Discrete_Type (Typ)
2823 or else Error_Posted (N)
2824 then
2825 OK := False;
2826 return;
2827 end if;
2829 -- For all other cases, we can determine the range
2831 OK := True;
2833 -- If value is compile time known, then the possible range is the
2834 -- one value that we know this expression definitely has!
2836 if Compile_Time_Known_Value (N) then
2837 Lo := Expr_Value (N);
2838 Hi := Lo;
2839 return;
2840 end if;
2842 -- Return if already in the cache
2844 Cindex := Cache_Index (N mod Cache_Size);
2846 if Determine_Range_Cache_N (Cindex) = N then
2847 Lo := Determine_Range_Cache_Lo (Cindex);
2848 Hi := Determine_Range_Cache_Hi (Cindex);
2849 return;
2850 end if;
2852 -- Otherwise, start by finding the bounds of the type of the
2853 -- expression, the value cannot be outside this range (if it
2854 -- is, then we have an overflow situation, which is a separate
2855 -- check, we are talking here only about the expression value).
2857 -- We use the actual bound unless it is dynamic, in which case
2858 -- use the corresponding base type bound if possible. If we can't
2859 -- get a bound then we figure we can't determine the range (a
2860 -- peculiar case, that perhaps cannot happen, but there is no
2861 -- point in bombing in this optimization circuit.
2863 -- First the low bound
2865 Bound := Type_Low_Bound (Typ);
2867 if Compile_Time_Known_Value (Bound) then
2868 Lo := Expr_Value (Bound);
2870 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
2871 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
2873 else
2874 OK := False;
2875 return;
2876 end if;
2878 -- Now the high bound
2880 Bound := Type_High_Bound (Typ);
2882 -- We need the high bound of the base type later on, and this should
2883 -- always be compile time known. Again, it is not clear that this
2884 -- can ever be false, but no point in bombing.
2886 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
2887 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
2888 Hi := Hbound;
2890 else
2891 OK := False;
2892 return;
2893 end if;
2895 -- If we have a static subtype, then that may have a tighter bound
2896 -- so use the upper bound of the subtype instead in this case.
2898 if Compile_Time_Known_Value (Bound) then
2899 Hi := Expr_Value (Bound);
2900 end if;
2902 -- We may be able to refine this value in certain situations. If
2903 -- refinement is possible, then Lor and Hir are set to possibly
2904 -- tighter bounds, and OK1 is set to True.
2906 case Nkind (N) is
2908 -- For unary plus, result is limited by range of operand
2910 when N_Op_Plus =>
2911 Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
2913 -- For unary minus, determine range of operand, and negate it
2915 when N_Op_Minus =>
2916 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2918 if OK1 then
2919 Lor := -Hi_Right;
2920 Hir := -Lo_Right;
2921 end if;
2923 -- For binary addition, get range of each operand and do the
2924 -- addition to get the result range.
2926 when N_Op_Add =>
2927 if OK_Operands then
2928 Lor := Lo_Left + Lo_Right;
2929 Hir := Hi_Left + Hi_Right;
2930 end if;
2932 -- Division is tricky. The only case we consider is where the
2933 -- right operand is a positive constant, and in this case we
2934 -- simply divide the bounds of the left operand
2936 when N_Op_Divide =>
2937 if OK_Operands then
2938 if Lo_Right = Hi_Right
2939 and then Lo_Right > 0
2940 then
2941 Lor := Lo_Left / Lo_Right;
2942 Hir := Hi_Left / Lo_Right;
2944 else
2945 OK1 := False;
2946 end if;
2947 end if;
2949 -- For binary subtraction, get range of each operand and do
2950 -- the worst case subtraction to get the result range.
2952 when N_Op_Subtract =>
2953 if OK_Operands then
2954 Lor := Lo_Left - Hi_Right;
2955 Hir := Hi_Left - Lo_Right;
2956 end if;
2958 -- For MOD, if right operand is a positive constant, then
2959 -- result must be in the allowable range of mod results.
2961 when N_Op_Mod =>
2962 if OK_Operands then
2963 if Lo_Right = Hi_Right
2964 and then Lo_Right /= 0
2965 then
2966 if Lo_Right > 0 then
2967 Lor := Uint_0;
2968 Hir := Lo_Right - 1;
2970 else -- Lo_Right < 0
2971 Lor := Lo_Right + 1;
2972 Hir := Uint_0;
2973 end if;
2975 else
2976 OK1 := False;
2977 end if;
2978 end if;
2980 -- For REM, if right operand is a positive constant, then
2981 -- result must be in the allowable range of mod results.
2983 when N_Op_Rem =>
2984 if OK_Operands then
2985 if Lo_Right = Hi_Right
2986 and then Lo_Right /= 0
2987 then
2988 declare
2989 Dval : constant Uint := (abs Lo_Right) - 1;
2991 begin
2992 -- The sign of the result depends on the sign of the
2993 -- dividend (but not on the sign of the divisor, hence
2994 -- the abs operation above).
2996 if Lo_Left < 0 then
2997 Lor := -Dval;
2998 else
2999 Lor := Uint_0;
3000 end if;
3002 if Hi_Left < 0 then
3003 Hir := Uint_0;
3004 else
3005 Hir := Dval;
3006 end if;
3007 end;
3009 else
3010 OK1 := False;
3011 end if;
3012 end if;
3014 -- Attribute reference cases
3016 when N_Attribute_Reference =>
3017 case Attribute_Name (N) is
3019 -- For Pos/Val attributes, we can refine the range using the
3020 -- possible range of values of the attribute expression
3022 when Name_Pos | Name_Val =>
3023 Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
3025 -- For Length attribute, use the bounds of the corresponding
3026 -- index type to refine the range.
3028 when Name_Length =>
3029 declare
3030 Atyp : Entity_Id := Etype (Prefix (N));
3031 Inum : Nat;
3032 Indx : Node_Id;
3034 LL, LU : Uint;
3035 UL, UU : Uint;
3037 begin
3038 if Is_Access_Type (Atyp) then
3039 Atyp := Designated_Type (Atyp);
3040 end if;
3042 -- For string literal, we know exact value
3044 if Ekind (Atyp) = E_String_Literal_Subtype then
3045 OK := True;
3046 Lo := String_Literal_Length (Atyp);
3047 Hi := String_Literal_Length (Atyp);
3048 return;
3049 end if;
3051 -- Otherwise check for expression given
3053 if No (Expressions (N)) then
3054 Inum := 1;
3055 else
3056 Inum :=
3057 UI_To_Int (Expr_Value (First (Expressions (N))));
3058 end if;
3060 Indx := First_Index (Atyp);
3061 for J in 2 .. Inum loop
3062 Indx := Next_Index (Indx);
3063 end loop;
3065 Determine_Range
3066 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
3068 if OK1 then
3069 Determine_Range
3070 (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
3072 if OK1 then
3074 -- The maximum value for Length is the biggest
3075 -- possible gap between the values of the bounds.
3076 -- But of course, this value cannot be negative.
3078 Hir := UI_Max (Uint_0, UU - LL);
3080 -- For constrained arrays, the minimum value for
3081 -- Length is taken from the actual value of the
3082 -- bounds, since the index will be exactly of
3083 -- this subtype.
3085 if Is_Constrained (Atyp) then
3086 Lor := UI_Max (Uint_0, UL - LU);
3088 -- For an unconstrained array, the minimum value
3089 -- for length is always zero.
3091 else
3092 Lor := Uint_0;
3093 end if;
3094 end if;
3095 end if;
3096 end;
3098 -- No special handling for other attributes
3099 -- Probably more opportunities exist here ???
3101 when others =>
3102 OK1 := False;
3104 end case;
3106 -- For type conversion from one discrete type to another, we
3107 -- can refine the range using the converted value.
3109 when N_Type_Conversion =>
3110 Determine_Range (Expression (N), OK1, Lor, Hir);
3112 -- Nothing special to do for all other expression kinds
3114 when others =>
3115 OK1 := False;
3116 Lor := No_Uint;
3117 Hir := No_Uint;
3118 end case;
3120 -- At this stage, if OK1 is true, then we know that the actual
3121 -- result of the computed expression is in the range Lor .. Hir.
3122 -- We can use this to restrict the possible range of results.
3124 if OK1 then
3126 -- If the refined value of the low bound is greater than the
3127 -- type high bound, then reset it to the more restrictive
3128 -- value. However, we do NOT do this for the case of a modular
3129 -- type where the possible upper bound on the value is above the
3130 -- base type high bound, because that means the result could wrap.
3132 if Lor > Lo
3133 and then not (Is_Modular_Integer_Type (Typ)
3134 and then Hir > Hbound)
3135 then
3136 Lo := Lor;
3137 end if;
3139 -- Similarly, if the refined value of the high bound is less
3140 -- than the value so far, then reset it to the more restrictive
3141 -- value. Again, we do not do this if the refined low bound is
3142 -- negative for a modular type, since this would wrap.
3144 if Hir < Hi
3145 and then not (Is_Modular_Integer_Type (Typ)
3146 and then Lor < Uint_0)
3147 then
3148 Hi := Hir;
3149 end if;
3150 end if;
3152 -- Set cache entry for future call and we are all done
3154 Determine_Range_Cache_N (Cindex) := N;
3155 Determine_Range_Cache_Lo (Cindex) := Lo;
3156 Determine_Range_Cache_Hi (Cindex) := Hi;
3157 return;
3159 -- If any exception occurs, it means that we have some bug in the compiler
3160 -- possibly triggered by a previous error, or by some unforseen peculiar
3161 -- occurrence. However, this is only an optimization attempt, so there is
3162 -- really no point in crashing the compiler. Instead we just decide, too
3163 -- bad, we can't figure out a range in this case after all.
3165 exception
3166 when others =>
3168 -- Debug flag K disables this behavior (useful for debugging)
3170 if Debug_Flag_K then
3171 raise;
3172 else
3173 OK := False;
3174 Lo := No_Uint;
3175 Hi := No_Uint;
3176 return;
3177 end if;
3178 end Determine_Range;
3180 ------------------------------------
3181 -- Discriminant_Checks_Suppressed --
3182 ------------------------------------
3184 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3185 begin
3186 if Present (E) then
3187 if Is_Unchecked_Union (E) then
3188 return True;
3189 elsif Checks_May_Be_Suppressed (E) then
3190 return Is_Check_Suppressed (E, Discriminant_Check);
3191 end if;
3192 end if;
3194 return Scope_Suppress (Discriminant_Check);
3195 end Discriminant_Checks_Suppressed;
3197 --------------------------------
3198 -- Division_Checks_Suppressed --
3199 --------------------------------
3201 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3202 begin
3203 if Present (E) and then Checks_May_Be_Suppressed (E) then
3204 return Is_Check_Suppressed (E, Division_Check);
3205 else
3206 return Scope_Suppress (Division_Check);
3207 end if;
3208 end Division_Checks_Suppressed;
3210 -----------------------------------
3211 -- Elaboration_Checks_Suppressed --
3212 -----------------------------------
3214 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3215 begin
3216 if Present (E) then
3217 if Kill_Elaboration_Checks (E) then
3218 return True;
3219 elsif Checks_May_Be_Suppressed (E) then
3220 return Is_Check_Suppressed (E, Elaboration_Check);
3221 end if;
3222 end if;
3224 return Scope_Suppress (Elaboration_Check);
3225 end Elaboration_Checks_Suppressed;
3227 ---------------------------
3228 -- Enable_Overflow_Check --
3229 ---------------------------
3231 procedure Enable_Overflow_Check (N : Node_Id) is
3232 Typ : constant Entity_Id := Base_Type (Etype (N));
3233 Chk : Nat;
3234 OK : Boolean;
3235 Ent : Entity_Id;
3236 Ofs : Uint;
3237 Lo : Uint;
3238 Hi : Uint;
3240 begin
3241 if Debug_Flag_CC then
3242 w ("Enable_Overflow_Check for node ", Int (N));
3243 Write_Str (" Source location = ");
3244 wl (Sloc (N));
3245 pg (N);
3246 end if;
3248 -- Nothing to do if the range of the result is known OK. We skip
3249 -- this for conversions, since the caller already did the check,
3250 -- and in any case the condition for deleting the check for a
3251 -- type conversion is different in any case.
3253 if Nkind (N) /= N_Type_Conversion then
3254 Determine_Range (N, OK, Lo, Hi);
3256 -- Note in the test below that we assume that if a bound of the
3257 -- range is equal to that of the type. That's not quite accurate
3258 -- but we do this for the following reasons:
3260 -- a) The way that Determine_Range works, it will typically report
3261 -- the bounds of the value as being equal to the bounds of the
3262 -- type, because it either can't tell anything more precise, or
3263 -- does not think it is worth the effort to be more precise.
3265 -- b) It is very unusual to have a situation in which this would
3266 -- generate an unnecessary overflow check (an example would be
3267 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3268 -- literal value one is added.
3270 -- c) The alternative is a lot of special casing in this routine
3271 -- which would partially duplicate Determine_Range processing.
3273 if OK
3274 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3275 and then Hi < Expr_Value (Type_High_Bound (Typ))
3276 then
3277 if Debug_Flag_CC then
3278 w ("No overflow check required");
3279 end if;
3281 return;
3282 end if;
3283 end if;
3285 -- If not in optimizing mode, set flag and we are done. We are also
3286 -- done (and just set the flag) if the type is not a discrete type,
3287 -- since it is not worth the effort to eliminate checks for other
3288 -- than discrete types. In addition, we take this same path if we
3289 -- have stored the maximum number of checks possible already (a
3290 -- very unlikely situation, but we do not want to blow up!)
3292 if Optimization_Level = 0
3293 or else not Is_Discrete_Type (Etype (N))
3294 or else Num_Saved_Checks = Saved_Checks'Last
3295 then
3296 Set_Do_Overflow_Check (N, True);
3298 if Debug_Flag_CC then
3299 w ("Optimization off");
3300 end if;
3302 return;
3303 end if;
3305 -- Otherwise evaluate and check the expression
3307 Find_Check
3308 (Expr => N,
3309 Check_Type => 'O',
3310 Target_Type => Empty,
3311 Entry_OK => OK,
3312 Check_Num => Chk,
3313 Ent => Ent,
3314 Ofs => Ofs);
3316 if Debug_Flag_CC then
3317 w ("Called Find_Check");
3318 w (" OK = ", OK);
3320 if OK then
3321 w (" Check_Num = ", Chk);
3322 w (" Ent = ", Int (Ent));
3323 Write_Str (" Ofs = ");
3324 pid (Ofs);
3325 end if;
3326 end if;
3328 -- If check is not of form to optimize, then set flag and we are done
3330 if not OK then
3331 Set_Do_Overflow_Check (N, True);
3332 return;
3333 end if;
3335 -- If check is already performed, then return without setting flag
3337 if Chk /= 0 then
3338 if Debug_Flag_CC then
3339 w ("Check suppressed!");
3340 end if;
3342 return;
3343 end if;
3345 -- Here we will make a new entry for the new check
3347 Set_Do_Overflow_Check (N, True);
3348 Num_Saved_Checks := Num_Saved_Checks + 1;
3349 Saved_Checks (Num_Saved_Checks) :=
3350 (Killed => False,
3351 Entity => Ent,
3352 Offset => Ofs,
3353 Check_Type => 'O',
3354 Target_Type => Empty);
3356 if Debug_Flag_CC then
3357 w ("Make new entry, check number = ", Num_Saved_Checks);
3358 w (" Entity = ", Int (Ent));
3359 Write_Str (" Offset = ");
3360 pid (Ofs);
3361 w (" Check_Type = O");
3362 w (" Target_Type = Empty");
3363 end if;
3365 -- If we get an exception, then something went wrong, probably because
3366 -- of an error in the structure of the tree due to an incorrect program.
3367 -- Or it may be a bug in the optimization circuit. In either case the
3368 -- safest thing is simply to set the check flag unconditionally.
3370 exception
3371 when others =>
3372 Set_Do_Overflow_Check (N, True);
3374 if Debug_Flag_CC then
3375 w (" exception occurred, overflow flag set");
3376 end if;
3378 return;
3379 end Enable_Overflow_Check;
3381 ------------------------
3382 -- Enable_Range_Check --
3383 ------------------------
3385 procedure Enable_Range_Check (N : Node_Id) is
3386 Chk : Nat;
3387 OK : Boolean;
3388 Ent : Entity_Id;
3389 Ofs : Uint;
3390 Ttyp : Entity_Id;
3391 P : Node_Id;
3393 begin
3394 -- Return if unchecked type conversion with range check killed.
3395 -- In this case we never set the flag (that's what Kill_Range_Check
3396 -- is all about!)
3398 if Nkind (N) = N_Unchecked_Type_Conversion
3399 and then Kill_Range_Check (N)
3400 then
3401 return;
3402 end if;
3404 -- Debug trace output
3406 if Debug_Flag_CC then
3407 w ("Enable_Range_Check for node ", Int (N));
3408 Write_Str (" Source location = ");
3409 wl (Sloc (N));
3410 pg (N);
3411 end if;
3413 -- If not in optimizing mode, set flag and we are done. We are also
3414 -- done (and just set the flag) if the type is not a discrete type,
3415 -- since it is not worth the effort to eliminate checks for other
3416 -- than discrete types. In addition, we take this same path if we
3417 -- have stored the maximum number of checks possible already (a
3418 -- very unlikely situation, but we do not want to blow up!)
3420 if Optimization_Level = 0
3421 or else No (Etype (N))
3422 or else not Is_Discrete_Type (Etype (N))
3423 or else Num_Saved_Checks = Saved_Checks'Last
3424 then
3425 Set_Do_Range_Check (N, True);
3427 if Debug_Flag_CC then
3428 w ("Optimization off");
3429 end if;
3431 return;
3432 end if;
3434 -- Otherwise find out the target type
3436 P := Parent (N);
3438 -- For assignment, use left side subtype
3440 if Nkind (P) = N_Assignment_Statement
3441 and then Expression (P) = N
3442 then
3443 Ttyp := Etype (Name (P));
3445 -- For indexed component, use subscript subtype
3447 elsif Nkind (P) = N_Indexed_Component then
3448 declare
3449 Atyp : Entity_Id;
3450 Indx : Node_Id;
3451 Subs : Node_Id;
3453 begin
3454 Atyp := Etype (Prefix (P));
3456 if Is_Access_Type (Atyp) then
3457 Atyp := Designated_Type (Atyp);
3459 -- If the prefix is an access to an unconstrained array,
3460 -- perform check unconditionally: it depends on the bounds
3461 -- of an object and we cannot currently recognize whether
3462 -- the test may be redundant.
3464 if not Is_Constrained (Atyp) then
3465 Set_Do_Range_Check (N, True);
3466 return;
3467 end if;
3468 end if;
3470 Indx := First_Index (Atyp);
3471 Subs := First (Expressions (P));
3472 loop
3473 if Subs = N then
3474 Ttyp := Etype (Indx);
3475 exit;
3476 end if;
3478 Next_Index (Indx);
3479 Next (Subs);
3480 end loop;
3481 end;
3483 -- For now, ignore all other cases, they are not so interesting
3485 else
3486 if Debug_Flag_CC then
3487 w (" target type not found, flag set");
3488 end if;
3490 Set_Do_Range_Check (N, True);
3491 return;
3492 end if;
3494 -- Evaluate and check the expression
3496 Find_Check
3497 (Expr => N,
3498 Check_Type => 'R',
3499 Target_Type => Ttyp,
3500 Entry_OK => OK,
3501 Check_Num => Chk,
3502 Ent => Ent,
3503 Ofs => Ofs);
3505 if Debug_Flag_CC then
3506 w ("Called Find_Check");
3507 w ("Target_Typ = ", Int (Ttyp));
3508 w (" OK = ", OK);
3510 if OK then
3511 w (" Check_Num = ", Chk);
3512 w (" Ent = ", Int (Ent));
3513 Write_Str (" Ofs = ");
3514 pid (Ofs);
3515 end if;
3516 end if;
3518 -- If check is not of form to optimize, then set flag and we are done
3520 if not OK then
3521 if Debug_Flag_CC then
3522 w (" expression not of optimizable type, flag set");
3523 end if;
3525 Set_Do_Range_Check (N, True);
3526 return;
3527 end if;
3529 -- If check is already performed, then return without setting flag
3531 if Chk /= 0 then
3532 if Debug_Flag_CC then
3533 w ("Check suppressed!");
3534 end if;
3536 return;
3537 end if;
3539 -- Here we will make a new entry for the new check
3541 Set_Do_Range_Check (N, True);
3542 Num_Saved_Checks := Num_Saved_Checks + 1;
3543 Saved_Checks (Num_Saved_Checks) :=
3544 (Killed => False,
3545 Entity => Ent,
3546 Offset => Ofs,
3547 Check_Type => 'R',
3548 Target_Type => Ttyp);
3550 if Debug_Flag_CC then
3551 w ("Make new entry, check number = ", Num_Saved_Checks);
3552 w (" Entity = ", Int (Ent));
3553 Write_Str (" Offset = ");
3554 pid (Ofs);
3555 w (" Check_Type = R");
3556 w (" Target_Type = ", Int (Ttyp));
3557 pg (Ttyp);
3558 end if;
3560 -- If we get an exception, then something went wrong, probably because
3561 -- of an error in the structure of the tree due to an incorrect program.
3562 -- Or it may be a bug in the optimization circuit. In either case the
3563 -- safest thing is simply to set the check flag unconditionally.
3565 exception
3566 when others =>
3567 Set_Do_Range_Check (N, True);
3569 if Debug_Flag_CC then
3570 w (" exception occurred, range flag set");
3571 end if;
3573 return;
3574 end Enable_Range_Check;
3576 ------------------
3577 -- Ensure_Valid --
3578 ------------------
3580 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3581 Typ : constant Entity_Id := Etype (Expr);
3583 begin
3584 -- Ignore call if we are not doing any validity checking
3586 if not Validity_Checks_On then
3587 return;
3589 -- Ignore call if range checks suppressed on entity in question
3591 elsif Is_Entity_Name (Expr)
3592 and then Range_Checks_Suppressed (Entity (Expr))
3593 then
3594 return;
3596 -- No check required if expression is from the expander, we assume
3597 -- the expander will generate whatever checks are needed. Note that
3598 -- this is not just an optimization, it avoids infinite recursions!
3600 -- Unchecked conversions must be checked, unless they are initialized
3601 -- scalar values, as in a component assignment in an init proc.
3603 -- In addition, we force a check if Force_Validity_Checks is set
3605 elsif not Comes_From_Source (Expr)
3606 and then not Force_Validity_Checks
3607 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3608 or else Kill_Range_Check (Expr))
3609 then
3610 return;
3612 -- No check required if expression is known to have valid value
3614 elsif Expr_Known_Valid (Expr) then
3615 return;
3617 -- No check required if checks off
3619 elsif Range_Checks_Suppressed (Typ) then
3620 return;
3622 -- Ignore case of enumeration with holes where the flag is set not
3623 -- to worry about holes, since no special validity check is needed
3625 elsif Is_Enumeration_Type (Typ)
3626 and then Has_Non_Standard_Rep (Typ)
3627 and then Holes_OK
3628 then
3629 return;
3631 -- No check required on the left-hand side of an assignment.
3633 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3634 and then Expr = Name (Parent (Expr))
3635 then
3636 return;
3638 -- An annoying special case. If this is an out parameter of a scalar
3639 -- type, then the value is not going to be accessed, therefore it is
3640 -- inappropriate to do any validity check at the call site.
3642 else
3643 -- Only need to worry about scalar types
3645 if Is_Scalar_Type (Typ) then
3646 declare
3647 P : Node_Id;
3648 N : Node_Id;
3649 E : Entity_Id;
3650 F : Entity_Id;
3651 A : Node_Id;
3652 L : List_Id;
3654 begin
3655 -- Find actual argument (which may be a parameter association)
3656 -- and the parent of the actual argument (the call statement)
3658 N := Expr;
3659 P := Parent (Expr);
3661 if Nkind (P) = N_Parameter_Association then
3662 N := P;
3663 P := Parent (N);
3664 end if;
3666 -- Only need to worry if we are argument of a procedure
3667 -- call since functions don't have out parameters. If this
3668 -- is an indirect or dispatching call, get signature from
3669 -- the subprogram type.
3671 if Nkind (P) = N_Procedure_Call_Statement then
3672 L := Parameter_Associations (P);
3674 if Is_Entity_Name (Name (P)) then
3675 E := Entity (Name (P));
3676 else
3677 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
3678 E := Etype (Name (P));
3679 end if;
3681 -- Only need to worry if there are indeed actuals, and
3682 -- if this could be a procedure call, otherwise we cannot
3683 -- get a match (either we are not an argument, or the
3684 -- mode of the formal is not OUT). This test also filters
3685 -- out the generic case.
3687 if Is_Non_Empty_List (L)
3688 and then Is_Subprogram (E)
3689 then
3690 -- This is the loop through parameters, looking to
3691 -- see if there is an OUT parameter for which we are
3692 -- the argument.
3694 F := First_Formal (E);
3695 A := First (L);
3697 while Present (F) loop
3698 if Ekind (F) = E_Out_Parameter and then A = N then
3699 return;
3700 end if;
3702 Next_Formal (F);
3703 Next (A);
3704 end loop;
3705 end if;
3706 end if;
3707 end;
3708 end if;
3709 end if;
3711 -- If we fall through, a validity check is required. Note that it would
3712 -- not be good to set Do_Range_Check, even in contexts where this is
3713 -- permissible, since this flag causes checking against the target type,
3714 -- not the source type in contexts such as assignments
3716 Insert_Valid_Check (Expr);
3717 end Ensure_Valid;
3719 ----------------------
3720 -- Expr_Known_Valid --
3721 ----------------------
3723 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
3724 Typ : constant Entity_Id := Etype (Expr);
3726 begin
3727 -- Non-scalar types are always considered valid, since they never
3728 -- give rise to the issues of erroneous or bounded error behavior
3729 -- that are the concern. In formal reference manual terms the
3730 -- notion of validity only applies to scalar types. Note that
3731 -- even when packed arrays are represented using modular types,
3732 -- they are still arrays semantically, so they are also always
3733 -- valid (in particular, the unused bits can be random rubbish
3734 -- without affecting the validity of the array value).
3736 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
3737 return True;
3739 -- If no validity checking, then everything is considered valid
3741 elsif not Validity_Checks_On then
3742 return True;
3744 -- Floating-point types are considered valid unless floating-point
3745 -- validity checks have been specifically turned on.
3747 elsif Is_Floating_Point_Type (Typ)
3748 and then not Validity_Check_Floating_Point
3749 then
3750 return True;
3752 -- If the expression is the value of an object that is known to
3753 -- be valid, then clearly the expression value itself is valid.
3755 elsif Is_Entity_Name (Expr)
3756 and then Is_Known_Valid (Entity (Expr))
3757 then
3758 return True;
3760 -- If the type is one for which all values are known valid, then
3761 -- we are sure that the value is valid except in the slightly odd
3762 -- case where the expression is a reference to a variable whose size
3763 -- has been explicitly set to a value greater than the object size.
3765 elsif Is_Known_Valid (Typ) then
3766 if Is_Entity_Name (Expr)
3767 and then Ekind (Entity (Expr)) = E_Variable
3768 and then Esize (Entity (Expr)) > Esize (Typ)
3769 then
3770 return False;
3771 else
3772 return True;
3773 end if;
3775 -- Integer and character literals always have valid values, where
3776 -- appropriate these will be range checked in any case.
3778 elsif Nkind (Expr) = N_Integer_Literal
3779 or else
3780 Nkind (Expr) = N_Character_Literal
3781 then
3782 return True;
3784 -- If we have a type conversion or a qualification of a known valid
3785 -- value, then the result will always be valid.
3787 elsif Nkind (Expr) = N_Type_Conversion
3788 or else
3789 Nkind (Expr) = N_Qualified_Expression
3790 then
3791 return Expr_Known_Valid (Expression (Expr));
3793 -- The result of any function call or operator is always considered
3794 -- valid, since we assume the necessary checks are done by the call.
3796 elsif Nkind (Expr) in N_Binary_Op
3797 or else
3798 Nkind (Expr) in N_Unary_Op
3799 or else
3800 Nkind (Expr) = N_Function_Call
3801 then
3802 return True;
3804 -- For all other cases, we do not know the expression is valid
3806 else
3807 return False;
3808 end if;
3809 end Expr_Known_Valid;
3811 ----------------
3812 -- Find_Check --
3813 ----------------
3815 procedure Find_Check
3816 (Expr : Node_Id;
3817 Check_Type : Character;
3818 Target_Type : Entity_Id;
3819 Entry_OK : out Boolean;
3820 Check_Num : out Nat;
3821 Ent : out Entity_Id;
3822 Ofs : out Uint)
3824 function Within_Range_Of
3825 (Target_Type : Entity_Id;
3826 Check_Type : Entity_Id) return Boolean;
3827 -- Given a requirement for checking a range against Target_Type, and
3828 -- and a range Check_Type against which a check has already been made,
3829 -- determines if the check against check type is sufficient to ensure
3830 -- that no check against Target_Type is required.
3832 ---------------------
3833 -- Within_Range_Of --
3834 ---------------------
3836 function Within_Range_Of
3837 (Target_Type : Entity_Id;
3838 Check_Type : Entity_Id) return Boolean
3840 begin
3841 if Target_Type = Check_Type then
3842 return True;
3844 else
3845 declare
3846 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
3847 Thi : constant Node_Id := Type_High_Bound (Target_Type);
3848 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
3849 Chi : constant Node_Id := Type_High_Bound (Check_Type);
3851 begin
3852 if (Tlo = Clo
3853 or else (Compile_Time_Known_Value (Tlo)
3854 and then
3855 Compile_Time_Known_Value (Clo)
3856 and then
3857 Expr_Value (Clo) >= Expr_Value (Tlo)))
3858 and then
3859 (Thi = Chi
3860 or else (Compile_Time_Known_Value (Thi)
3861 and then
3862 Compile_Time_Known_Value (Chi)
3863 and then
3864 Expr_Value (Chi) <= Expr_Value (Clo)))
3865 then
3866 return True;
3867 else
3868 return False;
3869 end if;
3870 end;
3871 end if;
3872 end Within_Range_Of;
3874 -- Start of processing for Find_Check
3876 begin
3877 -- Establish default, to avoid warnings from GCC.
3879 Check_Num := 0;
3881 -- Case of expression is simple entity reference
3883 if Is_Entity_Name (Expr) then
3884 Ent := Entity (Expr);
3885 Ofs := Uint_0;
3887 -- Case of expression is entity + known constant
3889 elsif Nkind (Expr) = N_Op_Add
3890 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3891 and then Is_Entity_Name (Left_Opnd (Expr))
3892 then
3893 Ent := Entity (Left_Opnd (Expr));
3894 Ofs := Expr_Value (Right_Opnd (Expr));
3896 -- Case of expression is entity - known constant
3898 elsif Nkind (Expr) = N_Op_Subtract
3899 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3900 and then Is_Entity_Name (Left_Opnd (Expr))
3901 then
3902 Ent := Entity (Left_Opnd (Expr));
3903 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
3905 -- Any other expression is not of the right form
3907 else
3908 Ent := Empty;
3909 Ofs := Uint_0;
3910 Entry_OK := False;
3911 return;
3912 end if;
3914 -- Come here with expression of appropriate form, check if
3915 -- entity is an appropriate one for our purposes.
3917 if (Ekind (Ent) = E_Variable
3918 or else
3919 Ekind (Ent) = E_Constant
3920 or else
3921 Ekind (Ent) = E_Loop_Parameter
3922 or else
3923 Ekind (Ent) = E_In_Parameter)
3924 and then not Is_Library_Level_Entity (Ent)
3925 then
3926 Entry_OK := True;
3927 else
3928 Entry_OK := False;
3929 return;
3930 end if;
3932 -- See if there is matching check already
3934 for J in reverse 1 .. Num_Saved_Checks loop
3935 declare
3936 SC : Saved_Check renames Saved_Checks (J);
3938 begin
3939 if SC.Killed = False
3940 and then SC.Entity = Ent
3941 and then SC.Offset = Ofs
3942 and then SC.Check_Type = Check_Type
3943 and then Within_Range_Of (Target_Type, SC.Target_Type)
3944 then
3945 Check_Num := J;
3946 return;
3947 end if;
3948 end;
3949 end loop;
3951 -- If we fall through entry was not found
3953 Check_Num := 0;
3954 return;
3955 end Find_Check;
3957 ---------------------------------
3958 -- Generate_Discriminant_Check --
3959 ---------------------------------
3961 -- Note: the code for this procedure is derived from the
3962 -- emit_discriminant_check routine a-trans.c v1.659.
3964 procedure Generate_Discriminant_Check (N : Node_Id) is
3965 Loc : constant Source_Ptr := Sloc (N);
3966 Pref : constant Node_Id := Prefix (N);
3967 Sel : constant Node_Id := Selector_Name (N);
3969 Orig_Comp : constant Entity_Id :=
3970 Original_Record_Component (Entity (Sel));
3971 -- The original component to be checked
3973 Discr_Fct : constant Entity_Id :=
3974 Discriminant_Checking_Func (Orig_Comp);
3975 -- The discriminant checking function
3977 Discr : Entity_Id;
3978 -- One discriminant to be checked in the type
3980 Real_Discr : Entity_Id;
3981 -- Actual discriminant in the call
3983 Pref_Type : Entity_Id;
3984 -- Type of relevant prefix (ignoring private/access stuff)
3986 Args : List_Id;
3987 -- List of arguments for function call
3989 Formal : Entity_Id;
3990 -- Keep track of the formal corresponding to the actual we build
3991 -- for each discriminant, in order to be able to perform the
3992 -- necessary type conversions.
3994 Scomp : Node_Id;
3995 -- Selected component reference for checking function argument
3997 begin
3998 Pref_Type := Etype (Pref);
4000 -- Force evaluation of the prefix, so that it does not get evaluated
4001 -- twice (once for the check, once for the actual reference). Such a
4002 -- double evaluation is always a potential source of inefficiency,
4003 -- and is functionally incorrect in the volatile case, or when the
4004 -- prefix may have side-effects. An entity or a component of an
4005 -- entity requires no evaluation.
4007 if Is_Entity_Name (Pref) then
4008 if Treat_As_Volatile (Entity (Pref)) then
4009 Force_Evaluation (Pref, Name_Req => True);
4010 end if;
4012 elsif Treat_As_Volatile (Etype (Pref)) then
4013 Force_Evaluation (Pref, Name_Req => True);
4015 elsif Nkind (Pref) = N_Selected_Component
4016 and then Is_Entity_Name (Prefix (Pref))
4017 then
4018 null;
4020 else
4021 Force_Evaluation (Pref, Name_Req => True);
4022 end if;
4024 -- For a tagged type, use the scope of the original component to
4025 -- obtain the type, because ???
4027 if Is_Tagged_Type (Scope (Orig_Comp)) then
4028 Pref_Type := Scope (Orig_Comp);
4030 -- For an untagged derived type, use the discriminants of the
4031 -- parent which have been renamed in the derivation, possibly
4032 -- by a one-to-many discriminant constraint.
4033 -- For non-tagged type, initially get the Etype of the prefix
4035 else
4036 if Is_Derived_Type (Pref_Type)
4037 and then Number_Discriminants (Pref_Type) /=
4038 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4039 then
4040 Pref_Type := Etype (Base_Type (Pref_Type));
4041 end if;
4042 end if;
4044 -- We definitely should have a checking function, This routine should
4045 -- not be called if no discriminant checking function is present.
4047 pragma Assert (Present (Discr_Fct));
4049 -- Create the list of the actual parameters for the call. This list
4050 -- is the list of the discriminant fields of the record expression to
4051 -- be discriminant checked.
4053 Args := New_List;
4054 Formal := First_Formal (Discr_Fct);
4055 Discr := First_Discriminant (Pref_Type);
4056 while Present (Discr) loop
4058 -- If we have a corresponding discriminant field, and a parent
4059 -- subtype is present, then we want to use the corresponding
4060 -- discriminant since this is the one with the useful value.
4062 if Present (Corresponding_Discriminant (Discr))
4063 and then Ekind (Pref_Type) = E_Record_Type
4064 and then Present (Parent_Subtype (Pref_Type))
4065 then
4066 Real_Discr := Corresponding_Discriminant (Discr);
4067 else
4068 Real_Discr := Discr;
4069 end if;
4071 -- Construct the reference to the discriminant
4073 Scomp :=
4074 Make_Selected_Component (Loc,
4075 Prefix =>
4076 Unchecked_Convert_To (Pref_Type,
4077 Duplicate_Subexpr (Pref)),
4078 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4080 -- Manually analyze and resolve this selected component. We really
4081 -- want it just as it appears above, and do not want the expander
4082 -- playing discriminal games etc with this reference. Then we
4083 -- append the argument to the list we are gathering.
4085 Set_Etype (Scomp, Etype (Real_Discr));
4086 Set_Analyzed (Scomp, True);
4087 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4089 Next_Formal_With_Extras (Formal);
4090 Next_Discriminant (Discr);
4091 end loop;
4093 -- Now build and insert the call
4095 Insert_Action (N,
4096 Make_Raise_Constraint_Error (Loc,
4097 Condition =>
4098 Make_Function_Call (Loc,
4099 Name => New_Occurrence_Of (Discr_Fct, Loc),
4100 Parameter_Associations => Args),
4101 Reason => CE_Discriminant_Check_Failed));
4102 end Generate_Discriminant_Check;
4104 ---------------------------
4105 -- Generate_Index_Checks --
4106 ---------------------------
4108 procedure Generate_Index_Checks (N : Node_Id) is
4109 Loc : constant Source_Ptr := Sloc (N);
4110 A : constant Node_Id := Prefix (N);
4111 Sub : Node_Id;
4112 Ind : Nat;
4113 Num : List_Id;
4115 begin
4116 Sub := First (Expressions (N));
4117 Ind := 1;
4118 while Present (Sub) loop
4119 if Do_Range_Check (Sub) then
4120 Set_Do_Range_Check (Sub, False);
4122 -- Force evaluation except for the case of a simple name of
4123 -- a non-volatile entity.
4125 if not Is_Entity_Name (Sub)
4126 or else Treat_As_Volatile (Entity (Sub))
4127 then
4128 Force_Evaluation (Sub);
4129 end if;
4131 -- Generate a raise of constraint error with the appropriate
4132 -- reason and a condition of the form:
4134 -- Base_Type(Sub) not in array'range (subscript)
4136 -- Note that the reason we generate the conversion to the
4137 -- base type here is that we definitely want the range check
4138 -- to take place, even if it looks like the subtype is OK.
4139 -- Optimization considerations that allow us to omit the
4140 -- check have already been taken into account in the setting
4141 -- of the Do_Range_Check flag earlier on.
4143 if Ind = 1 then
4144 Num := No_List;
4145 else
4146 Num := New_List (Make_Integer_Literal (Loc, Ind));
4147 end if;
4149 Insert_Action (N,
4150 Make_Raise_Constraint_Error (Loc,
4151 Condition =>
4152 Make_Not_In (Loc,
4153 Left_Opnd =>
4154 Convert_To (Base_Type (Etype (Sub)),
4155 Duplicate_Subexpr_Move_Checks (Sub)),
4156 Right_Opnd =>
4157 Make_Attribute_Reference (Loc,
4158 Prefix => Duplicate_Subexpr_Move_Checks (A),
4159 Attribute_Name => Name_Range,
4160 Expressions => Num)),
4161 Reason => CE_Index_Check_Failed));
4162 end if;
4164 Ind := Ind + 1;
4165 Next (Sub);
4166 end loop;
4167 end Generate_Index_Checks;
4169 --------------------------
4170 -- Generate_Range_Check --
4171 --------------------------
4173 procedure Generate_Range_Check
4174 (N : Node_Id;
4175 Target_Type : Entity_Id;
4176 Reason : RT_Exception_Code)
4178 Loc : constant Source_Ptr := Sloc (N);
4179 Source_Type : constant Entity_Id := Etype (N);
4180 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4181 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4183 begin
4184 -- First special case, if the source type is already within the
4185 -- range of the target type, then no check is needed (probably we
4186 -- should have stopped Do_Range_Check from being set in the first
4187 -- place, but better late than later in preventing junk code!
4189 -- We do NOT apply this if the source node is a literal, since in
4190 -- this case the literal has already been labeled as having the
4191 -- subtype of the target.
4193 if In_Subrange_Of (Source_Type, Target_Type)
4194 and then not
4195 (Nkind (N) = N_Integer_Literal
4196 or else
4197 Nkind (N) = N_Real_Literal
4198 or else
4199 Nkind (N) = N_Character_Literal
4200 or else
4201 (Is_Entity_Name (N)
4202 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4203 then
4204 return;
4205 end if;
4207 -- We need a check, so force evaluation of the node, so that it does
4208 -- not get evaluated twice (once for the check, once for the actual
4209 -- reference). Such a double evaluation is always a potential source
4210 -- of inefficiency, and is functionally incorrect in the volatile case.
4212 if not Is_Entity_Name (N)
4213 or else Treat_As_Volatile (Entity (N))
4214 then
4215 Force_Evaluation (N);
4216 end if;
4218 -- The easiest case is when Source_Base_Type and Target_Base_Type
4219 -- are the same since in this case we can simply do a direct
4220 -- check of the value of N against the bounds of Target_Type.
4222 -- [constraint_error when N not in Target_Type]
4224 -- Note: this is by far the most common case, for example all cases of
4225 -- checks on the RHS of assignments are in this category, but not all
4226 -- cases are like this. Notably conversions can involve two types.
4228 if Source_Base_Type = Target_Base_Type then
4229 Insert_Action (N,
4230 Make_Raise_Constraint_Error (Loc,
4231 Condition =>
4232 Make_Not_In (Loc,
4233 Left_Opnd => Duplicate_Subexpr (N),
4234 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4235 Reason => Reason));
4237 -- Next test for the case where the target type is within the bounds
4238 -- of the base type of the source type, since in this case we can
4239 -- simply convert these bounds to the base type of T to do the test.
4241 -- [constraint_error when N not in
4242 -- Source_Base_Type (Target_Type'First)
4243 -- ..
4244 -- Source_Base_Type(Target_Type'Last))]
4246 -- The conversions will always work and need no check.
4248 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4249 Insert_Action (N,
4250 Make_Raise_Constraint_Error (Loc,
4251 Condition =>
4252 Make_Not_In (Loc,
4253 Left_Opnd => Duplicate_Subexpr (N),
4255 Right_Opnd =>
4256 Make_Range (Loc,
4257 Low_Bound =>
4258 Convert_To (Source_Base_Type,
4259 Make_Attribute_Reference (Loc,
4260 Prefix =>
4261 New_Occurrence_Of (Target_Type, Loc),
4262 Attribute_Name => Name_First)),
4264 High_Bound =>
4265 Convert_To (Source_Base_Type,
4266 Make_Attribute_Reference (Loc,
4267 Prefix =>
4268 New_Occurrence_Of (Target_Type, Loc),
4269 Attribute_Name => Name_Last)))),
4270 Reason => Reason));
4272 -- Note that at this stage we now that the Target_Base_Type is
4273 -- not in the range of the Source_Base_Type (since even the
4274 -- Target_Type itself is not in this range). It could still be
4275 -- the case that the Source_Type is in range of the target base
4276 -- type, since we have not checked that case.
4278 -- If that is the case, we can freely convert the source to the
4279 -- target, and then test the target result against the bounds.
4281 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4283 -- We make a temporary to hold the value of the converted
4284 -- value (converted to the base type), and then we will
4285 -- do the test against this temporary.
4287 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4288 -- [constraint_error when Tnn not in Target_Type]
4290 -- Then the conversion itself is replaced by an occurrence of Tnn
4292 declare
4293 Tnn : constant Entity_Id :=
4294 Make_Defining_Identifier (Loc,
4295 Chars => New_Internal_Name ('T'));
4297 begin
4298 Insert_Actions (N, New_List (
4299 Make_Object_Declaration (Loc,
4300 Defining_Identifier => Tnn,
4301 Object_Definition =>
4302 New_Occurrence_Of (Target_Base_Type, Loc),
4303 Constant_Present => True,
4304 Expression =>
4305 Make_Type_Conversion (Loc,
4306 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4307 Expression => Duplicate_Subexpr (N))),
4309 Make_Raise_Constraint_Error (Loc,
4310 Condition =>
4311 Make_Not_In (Loc,
4312 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4313 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4315 Reason => Reason)));
4317 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4318 end;
4320 -- At this stage, we know that we have two scalar types, which are
4321 -- directly convertible, and where neither scalar type has a base
4322 -- range that is in the range of the other scalar type.
4324 -- The only way this can happen is with a signed and unsigned type.
4325 -- So test for these two cases:
4327 else
4328 -- Case of the source is unsigned and the target is signed
4330 if Is_Unsigned_Type (Source_Base_Type)
4331 and then not Is_Unsigned_Type (Target_Base_Type)
4332 then
4333 -- If the source is unsigned and the target is signed, then we
4334 -- know that the source is not shorter than the target (otherwise
4335 -- the source base type would be in the target base type range).
4337 -- In other words, the unsigned type is either the same size
4338 -- as the target, or it is larger. It cannot be smaller.
4340 pragma Assert
4341 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4343 -- We only need to check the low bound if the low bound of the
4344 -- target type is non-negative. If the low bound of the target
4345 -- type is negative, then we know that we will fit fine.
4347 -- If the high bound of the target type is negative, then we
4348 -- know we have a constraint error, since we can't possibly
4349 -- have a negative source.
4351 -- With these two checks out of the way, we can do the check
4352 -- using the source type safely
4354 -- This is definitely the most annoying case!
4356 -- [constraint_error
4357 -- when (Target_Type'First >= 0
4358 -- and then
4359 -- N < Source_Base_Type (Target_Type'First))
4360 -- or else Target_Type'Last < 0
4361 -- or else N > Source_Base_Type (Target_Type'Last)];
4363 -- We turn off all checks since we know that the conversions
4364 -- will work fine, given the guards for negative values.
4366 Insert_Action (N,
4367 Make_Raise_Constraint_Error (Loc,
4368 Condition =>
4369 Make_Or_Else (Loc,
4370 Make_Or_Else (Loc,
4371 Left_Opnd =>
4372 Make_And_Then (Loc,
4373 Left_Opnd => Make_Op_Ge (Loc,
4374 Left_Opnd =>
4375 Make_Attribute_Reference (Loc,
4376 Prefix =>
4377 New_Occurrence_Of (Target_Type, Loc),
4378 Attribute_Name => Name_First),
4379 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4381 Right_Opnd =>
4382 Make_Op_Lt (Loc,
4383 Left_Opnd => Duplicate_Subexpr (N),
4384 Right_Opnd =>
4385 Convert_To (Source_Base_Type,
4386 Make_Attribute_Reference (Loc,
4387 Prefix =>
4388 New_Occurrence_Of (Target_Type, Loc),
4389 Attribute_Name => Name_First)))),
4391 Right_Opnd =>
4392 Make_Op_Lt (Loc,
4393 Left_Opnd =>
4394 Make_Attribute_Reference (Loc,
4395 Prefix => New_Occurrence_Of (Target_Type, Loc),
4396 Attribute_Name => Name_Last),
4397 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4399 Right_Opnd =>
4400 Make_Op_Gt (Loc,
4401 Left_Opnd => Duplicate_Subexpr (N),
4402 Right_Opnd =>
4403 Convert_To (Source_Base_Type,
4404 Make_Attribute_Reference (Loc,
4405 Prefix => New_Occurrence_Of (Target_Type, Loc),
4406 Attribute_Name => Name_Last)))),
4408 Reason => Reason),
4409 Suppress => All_Checks);
4411 -- Only remaining possibility is that the source is signed and
4412 -- the target is unsigned
4414 else
4415 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4416 and then Is_Unsigned_Type (Target_Base_Type));
4418 -- If the source is signed and the target is unsigned, then
4419 -- we know that the target is not shorter than the source
4420 -- (otherwise the target base type would be in the source
4421 -- base type range).
4423 -- In other words, the unsigned type is either the same size
4424 -- as the target, or it is larger. It cannot be smaller.
4426 -- Clearly we have an error if the source value is negative
4427 -- since no unsigned type can have negative values. If the
4428 -- source type is non-negative, then the check can be done
4429 -- using the target type.
4431 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4433 -- [constraint_error
4434 -- when N < 0 or else Tnn not in Target_Type];
4436 -- We turn off all checks for the conversion of N to the
4437 -- target base type, since we generate the explicit check
4438 -- to ensure that the value is non-negative
4440 declare
4441 Tnn : constant Entity_Id :=
4442 Make_Defining_Identifier (Loc,
4443 Chars => New_Internal_Name ('T'));
4445 begin
4446 Insert_Actions (N, New_List (
4447 Make_Object_Declaration (Loc,
4448 Defining_Identifier => Tnn,
4449 Object_Definition =>
4450 New_Occurrence_Of (Target_Base_Type, Loc),
4451 Constant_Present => True,
4452 Expression =>
4453 Make_Type_Conversion (Loc,
4454 Subtype_Mark =>
4455 New_Occurrence_Of (Target_Base_Type, Loc),
4456 Expression => Duplicate_Subexpr (N))),
4458 Make_Raise_Constraint_Error (Loc,
4459 Condition =>
4460 Make_Or_Else (Loc,
4461 Left_Opnd =>
4462 Make_Op_Lt (Loc,
4463 Left_Opnd => Duplicate_Subexpr (N),
4464 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4466 Right_Opnd =>
4467 Make_Not_In (Loc,
4468 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4469 Right_Opnd =>
4470 New_Occurrence_Of (Target_Type, Loc))),
4472 Reason => Reason)),
4473 Suppress => All_Checks);
4475 -- Set the Etype explicitly, because Insert_Actions may
4476 -- have placed the declaration in the freeze list for an
4477 -- enclosing construct, and thus it is not analyzed yet.
4479 Set_Etype (Tnn, Target_Base_Type);
4480 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4481 end;
4482 end if;
4483 end if;
4484 end Generate_Range_Check;
4486 ---------------------
4487 -- Get_Discriminal --
4488 ---------------------
4490 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4491 Loc : constant Source_Ptr := Sloc (E);
4492 D : Entity_Id;
4493 Sc : Entity_Id;
4495 begin
4496 -- The entity E is the type of a private component of the protected
4497 -- type, or the type of a renaming of that component within a protected
4498 -- operation of that type.
4500 Sc := Scope (E);
4502 if Ekind (Sc) /= E_Protected_Type then
4503 Sc := Scope (Sc);
4505 if Ekind (Sc) /= E_Protected_Type then
4506 return Bound;
4507 end if;
4508 end if;
4510 D := First_Discriminant (Sc);
4512 while Present (D)
4513 and then Chars (D) /= Chars (Bound)
4514 loop
4515 Next_Discriminant (D);
4516 end loop;
4518 return New_Occurrence_Of (Discriminal (D), Loc);
4519 end Get_Discriminal;
4521 ------------------
4522 -- Guard_Access --
4523 ------------------
4525 function Guard_Access
4526 (Cond : Node_Id;
4527 Loc : Source_Ptr;
4528 Ck_Node : Node_Id) return Node_Id
4530 begin
4531 if Nkind (Cond) = N_Or_Else then
4532 Set_Paren_Count (Cond, 1);
4533 end if;
4535 if Nkind (Ck_Node) = N_Allocator then
4536 return Cond;
4537 else
4538 return
4539 Make_And_Then (Loc,
4540 Left_Opnd =>
4541 Make_Op_Ne (Loc,
4542 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
4543 Right_Opnd => Make_Null (Loc)),
4544 Right_Opnd => Cond);
4545 end if;
4546 end Guard_Access;
4548 -----------------------------
4549 -- Index_Checks_Suppressed --
4550 -----------------------------
4552 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
4553 begin
4554 if Present (E) and then Checks_May_Be_Suppressed (E) then
4555 return Is_Check_Suppressed (E, Index_Check);
4556 else
4557 return Scope_Suppress (Index_Check);
4558 end if;
4559 end Index_Checks_Suppressed;
4561 ----------------
4562 -- Initialize --
4563 ----------------
4565 procedure Initialize is
4566 begin
4567 for J in Determine_Range_Cache_N'Range loop
4568 Determine_Range_Cache_N (J) := Empty;
4569 end loop;
4570 end Initialize;
4572 -------------------------
4573 -- Insert_Range_Checks --
4574 -------------------------
4576 procedure Insert_Range_Checks
4577 (Checks : Check_Result;
4578 Node : Node_Id;
4579 Suppress_Typ : Entity_Id;
4580 Static_Sloc : Source_Ptr := No_Location;
4581 Flag_Node : Node_Id := Empty;
4582 Do_Before : Boolean := False)
4584 Internal_Flag_Node : Node_Id := Flag_Node;
4585 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
4587 Check_Node : Node_Id;
4588 Checks_On : constant Boolean :=
4589 (not Index_Checks_Suppressed (Suppress_Typ))
4590 or else
4591 (not Range_Checks_Suppressed (Suppress_Typ));
4593 begin
4594 -- For now we just return if Checks_On is false, however this should
4595 -- be enhanced to check for an always True value in the condition
4596 -- and to generate a compilation warning???
4598 if not Expander_Active or else not Checks_On then
4599 return;
4600 end if;
4602 if Static_Sloc = No_Location then
4603 Internal_Static_Sloc := Sloc (Node);
4604 end if;
4606 if No (Flag_Node) then
4607 Internal_Flag_Node := Node;
4608 end if;
4610 for J in 1 .. 2 loop
4611 exit when No (Checks (J));
4613 if Nkind (Checks (J)) = N_Raise_Constraint_Error
4614 and then Present (Condition (Checks (J)))
4615 then
4616 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
4617 Check_Node := Checks (J);
4618 Mark_Rewrite_Insertion (Check_Node);
4620 if Do_Before then
4621 Insert_Before_And_Analyze (Node, Check_Node);
4622 else
4623 Insert_After_And_Analyze (Node, Check_Node);
4624 end if;
4626 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
4627 end if;
4629 else
4630 Check_Node :=
4631 Make_Raise_Constraint_Error (Internal_Static_Sloc,
4632 Reason => CE_Range_Check_Failed);
4633 Mark_Rewrite_Insertion (Check_Node);
4635 if Do_Before then
4636 Insert_Before_And_Analyze (Node, Check_Node);
4637 else
4638 Insert_After_And_Analyze (Node, Check_Node);
4639 end if;
4640 end if;
4641 end loop;
4642 end Insert_Range_Checks;
4644 ------------------------
4645 -- Insert_Valid_Check --
4646 ------------------------
4648 procedure Insert_Valid_Check (Expr : Node_Id) is
4649 Loc : constant Source_Ptr := Sloc (Expr);
4650 Exp : Node_Id;
4652 begin
4653 -- Do not insert if checks off, or if not checking validity
4655 if Range_Checks_Suppressed (Etype (Expr))
4656 or else (not Validity_Checks_On)
4657 then
4658 return;
4659 end if;
4661 -- If we have a checked conversion, then validity check applies to
4662 -- the expression inside the conversion, not the result, since if
4663 -- the expression inside is valid, then so is the conversion result.
4665 Exp := Expr;
4666 while Nkind (Exp) = N_Type_Conversion loop
4667 Exp := Expression (Exp);
4668 end loop;
4670 -- Insert the validity check. Note that we do this with validity
4671 -- checks turned off, to avoid recursion, we do not want validity
4672 -- checks on the validity checking code itself!
4674 Validity_Checks_On := False;
4675 Insert_Action
4676 (Expr,
4677 Make_Raise_Constraint_Error (Loc,
4678 Condition =>
4679 Make_Op_Not (Loc,
4680 Right_Opnd =>
4681 Make_Attribute_Reference (Loc,
4682 Prefix =>
4683 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
4684 Attribute_Name => Name_Valid)),
4685 Reason => CE_Invalid_Data),
4686 Suppress => All_Checks);
4687 Validity_Checks_On := True;
4688 end Insert_Valid_Check;
4690 ----------------------------------
4691 -- Install_Null_Excluding_Check --
4692 ----------------------------------
4694 procedure Install_Null_Excluding_Check (N : Node_Id) is
4695 Loc : constant Source_Ptr := Sloc (N);
4696 Etyp : constant Entity_Id := Etype (N);
4698 begin
4699 pragma Assert (Is_Access_Type (Etyp));
4701 -- Don't need access check if: 1) we are analyzing a generic, 2) it is
4702 -- known to be non-null, or 3) the check was suppressed on the type
4704 if Inside_A_Generic
4705 or else Access_Checks_Suppressed (Etyp)
4706 then
4707 return;
4709 -- Otherwise install access check
4711 else
4712 Insert_Action (N,
4713 Make_Raise_Constraint_Error (Loc,
4714 Condition =>
4715 Make_Op_Eq (Loc,
4716 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
4717 Right_Opnd => Make_Null (Loc)),
4718 Reason => CE_Access_Check_Failed));
4719 end if;
4720 end Install_Null_Excluding_Check;
4722 --------------------------
4723 -- Install_Static_Check --
4724 --------------------------
4726 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
4727 Stat : constant Boolean := Is_Static_Expression (R_Cno);
4728 Typ : constant Entity_Id := Etype (R_Cno);
4730 begin
4731 Rewrite (R_Cno,
4732 Make_Raise_Constraint_Error (Loc,
4733 Reason => CE_Range_Check_Failed));
4734 Set_Analyzed (R_Cno);
4735 Set_Etype (R_Cno, Typ);
4736 Set_Raises_Constraint_Error (R_Cno);
4737 Set_Is_Static_Expression (R_Cno, Stat);
4738 end Install_Static_Check;
4740 ---------------------
4741 -- Kill_All_Checks --
4742 ---------------------
4744 procedure Kill_All_Checks is
4745 begin
4746 if Debug_Flag_CC then
4747 w ("Kill_All_Checks");
4748 end if;
4750 -- We reset the number of saved checks to zero, and also modify
4751 -- all stack entries for statement ranges to indicate that the
4752 -- number of checks at each level is now zero.
4754 Num_Saved_Checks := 0;
4756 for J in 1 .. Saved_Checks_TOS loop
4757 Saved_Checks_Stack (J) := 0;
4758 end loop;
4759 end Kill_All_Checks;
4761 -----------------
4762 -- Kill_Checks --
4763 -----------------
4765 procedure Kill_Checks (V : Entity_Id) is
4766 begin
4767 if Debug_Flag_CC then
4768 w ("Kill_Checks for entity", Int (V));
4769 end if;
4771 for J in 1 .. Num_Saved_Checks loop
4772 if Saved_Checks (J).Entity = V then
4773 if Debug_Flag_CC then
4774 w (" Checks killed for saved check ", J);
4775 end if;
4777 Saved_Checks (J).Killed := True;
4778 end if;
4779 end loop;
4780 end Kill_Checks;
4782 ------------------------------
4783 -- Length_Checks_Suppressed --
4784 ------------------------------
4786 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
4787 begin
4788 if Present (E) and then Checks_May_Be_Suppressed (E) then
4789 return Is_Check_Suppressed (E, Length_Check);
4790 else
4791 return Scope_Suppress (Length_Check);
4792 end if;
4793 end Length_Checks_Suppressed;
4795 --------------------------------
4796 -- Overflow_Checks_Suppressed --
4797 --------------------------------
4799 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
4800 begin
4801 if Present (E) and then Checks_May_Be_Suppressed (E) then
4802 return Is_Check_Suppressed (E, Overflow_Check);
4803 else
4804 return Scope_Suppress (Overflow_Check);
4805 end if;
4806 end Overflow_Checks_Suppressed;
4808 -----------------
4809 -- Range_Check --
4810 -----------------
4812 function Range_Check
4813 (Ck_Node : Node_Id;
4814 Target_Typ : Entity_Id;
4815 Source_Typ : Entity_Id := Empty;
4816 Warn_Node : Node_Id := Empty) return Check_Result
4818 begin
4819 return Selected_Range_Checks
4820 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4821 end Range_Check;
4823 -----------------------------
4824 -- Range_Checks_Suppressed --
4825 -----------------------------
4827 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
4828 begin
4829 if Present (E) then
4831 -- Note: for now we always suppress range checks on Vax float types,
4832 -- since Gigi does not know how to generate these checks.
4834 if Vax_Float (E) then
4835 return True;
4836 elsif Kill_Range_Checks (E) then
4837 return True;
4838 elsif Checks_May_Be_Suppressed (E) then
4839 return Is_Check_Suppressed (E, Range_Check);
4840 end if;
4841 end if;
4843 return Scope_Suppress (Range_Check);
4844 end Range_Checks_Suppressed;
4846 -------------------
4847 -- Remove_Checks --
4848 -------------------
4850 procedure Remove_Checks (Expr : Node_Id) is
4851 Discard : Traverse_Result;
4852 pragma Warnings (Off, Discard);
4854 function Process (N : Node_Id) return Traverse_Result;
4855 -- Process a single node during the traversal
4857 function Traverse is new Traverse_Func (Process);
4858 -- The traversal function itself
4860 -------------
4861 -- Process --
4862 -------------
4864 function Process (N : Node_Id) return Traverse_Result is
4865 begin
4866 if Nkind (N) not in N_Subexpr then
4867 return Skip;
4868 end if;
4870 Set_Do_Range_Check (N, False);
4872 case Nkind (N) is
4873 when N_And_Then =>
4874 Discard := Traverse (Left_Opnd (N));
4875 return Skip;
4877 when N_Attribute_Reference =>
4878 Set_Do_Overflow_Check (N, False);
4880 when N_Function_Call =>
4881 Set_Do_Tag_Check (N, False);
4883 when N_Op =>
4884 Set_Do_Overflow_Check (N, False);
4886 case Nkind (N) is
4887 when N_Op_Divide =>
4888 Set_Do_Division_Check (N, False);
4890 when N_Op_And =>
4891 Set_Do_Length_Check (N, False);
4893 when N_Op_Mod =>
4894 Set_Do_Division_Check (N, False);
4896 when N_Op_Or =>
4897 Set_Do_Length_Check (N, False);
4899 when N_Op_Rem =>
4900 Set_Do_Division_Check (N, False);
4902 when N_Op_Xor =>
4903 Set_Do_Length_Check (N, False);
4905 when others =>
4906 null;
4907 end case;
4909 when N_Or_Else =>
4910 Discard := Traverse (Left_Opnd (N));
4911 return Skip;
4913 when N_Selected_Component =>
4914 Set_Do_Discriminant_Check (N, False);
4916 when N_Type_Conversion =>
4917 Set_Do_Length_Check (N, False);
4918 Set_Do_Tag_Check (N, False);
4919 Set_Do_Overflow_Check (N, False);
4921 when others =>
4922 null;
4923 end case;
4925 return OK;
4926 end Process;
4928 -- Start of processing for Remove_Checks
4930 begin
4931 Discard := Traverse (Expr);
4932 end Remove_Checks;
4934 ----------------------------
4935 -- Selected_Length_Checks --
4936 ----------------------------
4938 function Selected_Length_Checks
4939 (Ck_Node : Node_Id;
4940 Target_Typ : Entity_Id;
4941 Source_Typ : Entity_Id;
4942 Warn_Node : Node_Id) return Check_Result
4944 Loc : constant Source_Ptr := Sloc (Ck_Node);
4945 S_Typ : Entity_Id;
4946 T_Typ : Entity_Id;
4947 Expr_Actual : Node_Id;
4948 Exptyp : Entity_Id;
4949 Cond : Node_Id := Empty;
4950 Do_Access : Boolean := False;
4951 Wnode : Node_Id := Warn_Node;
4952 Ret_Result : Check_Result := (Empty, Empty);
4953 Num_Checks : Natural := 0;
4955 procedure Add_Check (N : Node_Id);
4956 -- Adds the action given to Ret_Result if N is non-Empty
4958 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
4959 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
4960 -- Comments required ???
4962 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
4963 -- True for equal literals and for nodes that denote the same constant
4964 -- entity, even if its value is not a static constant. This includes the
4965 -- case of a discriminal reference within an init proc. Removes some
4966 -- obviously superfluous checks.
4968 function Length_E_Cond
4969 (Exptyp : Entity_Id;
4970 Typ : Entity_Id;
4971 Indx : Nat) return Node_Id;
4972 -- Returns expression to compute:
4973 -- Typ'Length /= Exptyp'Length
4975 function Length_N_Cond
4976 (Expr : Node_Id;
4977 Typ : Entity_Id;
4978 Indx : Nat) return Node_Id;
4979 -- Returns expression to compute:
4980 -- Typ'Length /= Expr'Length
4982 ---------------
4983 -- Add_Check --
4984 ---------------
4986 procedure Add_Check (N : Node_Id) is
4987 begin
4988 if Present (N) then
4990 -- For now, ignore attempt to place more than 2 checks ???
4992 if Num_Checks = 2 then
4993 return;
4994 end if;
4996 pragma Assert (Num_Checks <= 1);
4997 Num_Checks := Num_Checks + 1;
4998 Ret_Result (Num_Checks) := N;
4999 end if;
5000 end Add_Check;
5002 ------------------
5003 -- Get_E_Length --
5004 ------------------
5006 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5007 Pt : constant Entity_Id := Scope (Scope (E));
5008 N : Node_Id;
5009 E1 : Entity_Id := E;
5011 begin
5012 if Ekind (Scope (E)) = E_Record_Type
5013 and then Has_Discriminants (Scope (E))
5014 then
5015 N := Build_Discriminal_Subtype_Of_Component (E);
5017 if Present (N) then
5018 Insert_Action (Ck_Node, N);
5019 E1 := Defining_Identifier (N);
5020 end if;
5021 end if;
5023 if Ekind (E1) = E_String_Literal_Subtype then
5024 return
5025 Make_Integer_Literal (Loc,
5026 Intval => String_Literal_Length (E1));
5028 elsif Ekind (Pt) = E_Protected_Type
5029 and then Has_Discriminants (Pt)
5030 and then Has_Completion (Pt)
5031 and then not Inside_Init_Proc
5032 then
5034 -- If the type whose length is needed is a private component
5035 -- constrained by a discriminant, we must expand the 'Length
5036 -- attribute into an explicit computation, using the discriminal
5037 -- of the current protected operation. This is because the actual
5038 -- type of the prival is constructed after the protected opera-
5039 -- tion has been fully expanded.
5041 declare
5042 Indx_Type : Node_Id;
5043 Lo : Node_Id;
5044 Hi : Node_Id;
5045 Do_Expand : Boolean := False;
5047 begin
5048 Indx_Type := First_Index (E);
5050 for J in 1 .. Indx - 1 loop
5051 Next_Index (Indx_Type);
5052 end loop;
5054 Get_Index_Bounds (Indx_Type, Lo, Hi);
5056 if Nkind (Lo) = N_Identifier
5057 and then Ekind (Entity (Lo)) = E_In_Parameter
5058 then
5059 Lo := Get_Discriminal (E, Lo);
5060 Do_Expand := True;
5061 end if;
5063 if Nkind (Hi) = N_Identifier
5064 and then Ekind (Entity (Hi)) = E_In_Parameter
5065 then
5066 Hi := Get_Discriminal (E, Hi);
5067 Do_Expand := True;
5068 end if;
5070 if Do_Expand then
5071 if not Is_Entity_Name (Lo) then
5072 Lo := Duplicate_Subexpr_No_Checks (Lo);
5073 end if;
5075 if not Is_Entity_Name (Hi) then
5076 Lo := Duplicate_Subexpr_No_Checks (Hi);
5077 end if;
5079 N :=
5080 Make_Op_Add (Loc,
5081 Left_Opnd =>
5082 Make_Op_Subtract (Loc,
5083 Left_Opnd => Hi,
5084 Right_Opnd => Lo),
5086 Right_Opnd => Make_Integer_Literal (Loc, 1));
5087 return N;
5089 else
5090 N :=
5091 Make_Attribute_Reference (Loc,
5092 Attribute_Name => Name_Length,
5093 Prefix =>
5094 New_Occurrence_Of (E1, Loc));
5096 if Indx > 1 then
5097 Set_Expressions (N, New_List (
5098 Make_Integer_Literal (Loc, Indx)));
5099 end if;
5101 return N;
5102 end if;
5103 end;
5105 else
5106 N :=
5107 Make_Attribute_Reference (Loc,
5108 Attribute_Name => Name_Length,
5109 Prefix =>
5110 New_Occurrence_Of (E1, Loc));
5112 if Indx > 1 then
5113 Set_Expressions (N, New_List (
5114 Make_Integer_Literal (Loc, Indx)));
5115 end if;
5117 return N;
5119 end if;
5120 end Get_E_Length;
5122 ------------------
5123 -- Get_N_Length --
5124 ------------------
5126 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5127 begin
5128 return
5129 Make_Attribute_Reference (Loc,
5130 Attribute_Name => Name_Length,
5131 Prefix =>
5132 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5133 Expressions => New_List (
5134 Make_Integer_Literal (Loc, Indx)));
5136 end Get_N_Length;
5138 -------------------
5139 -- Length_E_Cond --
5140 -------------------
5142 function Length_E_Cond
5143 (Exptyp : Entity_Id;
5144 Typ : Entity_Id;
5145 Indx : Nat) return Node_Id
5147 begin
5148 return
5149 Make_Op_Ne (Loc,
5150 Left_Opnd => Get_E_Length (Typ, Indx),
5151 Right_Opnd => Get_E_Length (Exptyp, Indx));
5153 end Length_E_Cond;
5155 -------------------
5156 -- Length_N_Cond --
5157 -------------------
5159 function Length_N_Cond
5160 (Expr : Node_Id;
5161 Typ : Entity_Id;
5162 Indx : Nat) return Node_Id
5164 begin
5165 return
5166 Make_Op_Ne (Loc,
5167 Left_Opnd => Get_E_Length (Typ, Indx),
5168 Right_Opnd => Get_N_Length (Expr, Indx));
5170 end Length_N_Cond;
5172 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5173 begin
5174 return
5175 (Nkind (L) = N_Integer_Literal
5176 and then Nkind (R) = N_Integer_Literal
5177 and then Intval (L) = Intval (R))
5179 or else
5180 (Is_Entity_Name (L)
5181 and then Ekind (Entity (L)) = E_Constant
5182 and then ((Is_Entity_Name (R)
5183 and then Entity (L) = Entity (R))
5184 or else
5185 (Nkind (R) = N_Type_Conversion
5186 and then Is_Entity_Name (Expression (R))
5187 and then Entity (L) = Entity (Expression (R)))))
5189 or else
5190 (Is_Entity_Name (R)
5191 and then Ekind (Entity (R)) = E_Constant
5192 and then Nkind (L) = N_Type_Conversion
5193 and then Is_Entity_Name (Expression (L))
5194 and then Entity (R) = Entity (Expression (L)))
5196 or else
5197 (Is_Entity_Name (L)
5198 and then Is_Entity_Name (R)
5199 and then Entity (L) = Entity (R)
5200 and then Ekind (Entity (L)) = E_In_Parameter
5201 and then Inside_Init_Proc);
5202 end Same_Bounds;
5204 -- Start of processing for Selected_Length_Checks
5206 begin
5207 if not Expander_Active then
5208 return Ret_Result;
5209 end if;
5211 if Target_Typ = Any_Type
5212 or else Target_Typ = Any_Composite
5213 or else Raises_Constraint_Error (Ck_Node)
5214 then
5215 return Ret_Result;
5216 end if;
5218 if No (Wnode) then
5219 Wnode := Ck_Node;
5220 end if;
5222 T_Typ := Target_Typ;
5224 if No (Source_Typ) then
5225 S_Typ := Etype (Ck_Node);
5226 else
5227 S_Typ := Source_Typ;
5228 end if;
5230 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5231 return Ret_Result;
5232 end if;
5234 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5235 S_Typ := Designated_Type (S_Typ);
5236 T_Typ := Designated_Type (T_Typ);
5237 Do_Access := True;
5239 -- A simple optimization
5241 if Nkind (Ck_Node) = N_Null then
5242 return Ret_Result;
5243 end if;
5244 end if;
5246 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5247 if Is_Constrained (T_Typ) then
5249 -- The checking code to be generated will freeze the
5250 -- corresponding array type. However, we must freeze the
5251 -- type now, so that the freeze node does not appear within
5252 -- the generated condional expression, but ahead of it.
5254 Freeze_Before (Ck_Node, T_Typ);
5256 Expr_Actual := Get_Referenced_Object (Ck_Node);
5257 Exptyp := Get_Actual_Subtype (Expr_Actual);
5259 if Is_Access_Type (Exptyp) then
5260 Exptyp := Designated_Type (Exptyp);
5261 end if;
5263 -- String_Literal case. This needs to be handled specially be-
5264 -- cause no index types are available for string literals. The
5265 -- condition is simply:
5267 -- T_Typ'Length = string-literal-length
5269 if Nkind (Expr_Actual) = N_String_Literal
5270 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
5271 then
5272 Cond :=
5273 Make_Op_Ne (Loc,
5274 Left_Opnd => Get_E_Length (T_Typ, 1),
5275 Right_Opnd =>
5276 Make_Integer_Literal (Loc,
5277 Intval =>
5278 String_Literal_Length (Etype (Expr_Actual))));
5280 -- General array case. Here we have a usable actual subtype for
5281 -- the expression, and the condition is built from the two types
5282 -- (Do_Length):
5284 -- T_Typ'Length /= Exptyp'Length or else
5285 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
5286 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
5287 -- ...
5289 elsif Is_Constrained (Exptyp) then
5290 declare
5291 Ndims : constant Nat := Number_Dimensions (T_Typ);
5293 L_Index : Node_Id;
5294 R_Index : Node_Id;
5295 L_Low : Node_Id;
5296 L_High : Node_Id;
5297 R_Low : Node_Id;
5298 R_High : Node_Id;
5299 L_Length : Uint;
5300 R_Length : Uint;
5301 Ref_Node : Node_Id;
5303 begin
5305 -- At the library level, we need to ensure that the
5306 -- type of the object is elaborated before the check
5307 -- itself is emitted. This is only done if the object
5308 -- is in the current compilation unit, otherwise the
5309 -- type is frozen and elaborated in its unit.
5311 if Is_Itype (Exptyp)
5312 and then
5313 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
5314 and then
5315 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
5316 and then In_Open_Scopes (Scope (Exptyp))
5317 then
5318 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
5319 Set_Itype (Ref_Node, Exptyp);
5320 Insert_Action (Ck_Node, Ref_Node);
5321 end if;
5323 L_Index := First_Index (T_Typ);
5324 R_Index := First_Index (Exptyp);
5326 for Indx in 1 .. Ndims loop
5327 if not (Nkind (L_Index) = N_Raise_Constraint_Error
5328 or else
5329 Nkind (R_Index) = N_Raise_Constraint_Error)
5330 then
5331 Get_Index_Bounds (L_Index, L_Low, L_High);
5332 Get_Index_Bounds (R_Index, R_Low, R_High);
5334 -- Deal with compile time length check. Note that we
5335 -- skip this in the access case, because the access
5336 -- value may be null, so we cannot know statically.
5338 if not Do_Access
5339 and then Compile_Time_Known_Value (L_Low)
5340 and then Compile_Time_Known_Value (L_High)
5341 and then Compile_Time_Known_Value (R_Low)
5342 and then Compile_Time_Known_Value (R_High)
5343 then
5344 if Expr_Value (L_High) >= Expr_Value (L_Low) then
5345 L_Length := Expr_Value (L_High) -
5346 Expr_Value (L_Low) + 1;
5347 else
5348 L_Length := UI_From_Int (0);
5349 end if;
5351 if Expr_Value (R_High) >= Expr_Value (R_Low) then
5352 R_Length := Expr_Value (R_High) -
5353 Expr_Value (R_Low) + 1;
5354 else
5355 R_Length := UI_From_Int (0);
5356 end if;
5358 if L_Length > R_Length then
5359 Add_Check
5360 (Compile_Time_Constraint_Error
5361 (Wnode, "too few elements for}?", T_Typ));
5363 elsif L_Length < R_Length then
5364 Add_Check
5365 (Compile_Time_Constraint_Error
5366 (Wnode, "too many elements for}?", T_Typ));
5367 end if;
5369 -- The comparison for an individual index subtype
5370 -- is omitted if the corresponding index subtypes
5371 -- statically match, since the result is known to
5372 -- be true. Note that this test is worth while even
5373 -- though we do static evaluation, because non-static
5374 -- subtypes can statically match.
5376 elsif not
5377 Subtypes_Statically_Match
5378 (Etype (L_Index), Etype (R_Index))
5380 and then not
5381 (Same_Bounds (L_Low, R_Low)
5382 and then Same_Bounds (L_High, R_High))
5383 then
5384 Evolve_Or_Else
5385 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
5386 end if;
5388 Next (L_Index);
5389 Next (R_Index);
5390 end if;
5391 end loop;
5392 end;
5394 -- Handle cases where we do not get a usable actual subtype that
5395 -- is constrained. This happens for example in the function call
5396 -- and explicit dereference cases. In these cases, we have to get
5397 -- the length or range from the expression itself, making sure we
5398 -- do not evaluate it more than once.
5400 -- Here Ck_Node is the original expression, or more properly the
5401 -- result of applying Duplicate_Expr to the original tree,
5402 -- forcing the result to be a name.
5404 else
5405 declare
5406 Ndims : constant Nat := Number_Dimensions (T_Typ);
5408 begin
5409 -- Build the condition for the explicit dereference case
5411 for Indx in 1 .. Ndims loop
5412 Evolve_Or_Else
5413 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
5414 end loop;
5415 end;
5416 end if;
5417 end if;
5418 end if;
5420 -- Construct the test and insert into the tree
5422 if Present (Cond) then
5423 if Do_Access then
5424 Cond := Guard_Access (Cond, Loc, Ck_Node);
5425 end if;
5427 Add_Check
5428 (Make_Raise_Constraint_Error (Loc,
5429 Condition => Cond,
5430 Reason => CE_Length_Check_Failed));
5431 end if;
5433 return Ret_Result;
5434 end Selected_Length_Checks;
5436 ---------------------------
5437 -- Selected_Range_Checks --
5438 ---------------------------
5440 function Selected_Range_Checks
5441 (Ck_Node : Node_Id;
5442 Target_Typ : Entity_Id;
5443 Source_Typ : Entity_Id;
5444 Warn_Node : Node_Id) return Check_Result
5446 Loc : constant Source_Ptr := Sloc (Ck_Node);
5447 S_Typ : Entity_Id;
5448 T_Typ : Entity_Id;
5449 Expr_Actual : Node_Id;
5450 Exptyp : Entity_Id;
5451 Cond : Node_Id := Empty;
5452 Do_Access : Boolean := False;
5453 Wnode : Node_Id := Warn_Node;
5454 Ret_Result : Check_Result := (Empty, Empty);
5455 Num_Checks : Integer := 0;
5457 procedure Add_Check (N : Node_Id);
5458 -- Adds the action given to Ret_Result if N is non-Empty
5460 function Discrete_Range_Cond
5461 (Expr : Node_Id;
5462 Typ : Entity_Id) return Node_Id;
5463 -- Returns expression to compute:
5464 -- Low_Bound (Expr) < Typ'First
5465 -- or else
5466 -- High_Bound (Expr) > Typ'Last
5468 function Discrete_Expr_Cond
5469 (Expr : Node_Id;
5470 Typ : Entity_Id) return Node_Id;
5471 -- Returns expression to compute:
5472 -- Expr < Typ'First
5473 -- or else
5474 -- Expr > Typ'Last
5476 function Get_E_First_Or_Last
5477 (E : Entity_Id;
5478 Indx : Nat;
5479 Nam : Name_Id) return Node_Id;
5480 -- Returns expression to compute:
5481 -- E'First or E'Last
5483 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
5484 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
5485 -- Returns expression to compute:
5486 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
5488 function Range_E_Cond
5489 (Exptyp : Entity_Id;
5490 Typ : Entity_Id;
5491 Indx : Nat)
5492 return Node_Id;
5493 -- Returns expression to compute:
5494 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
5496 function Range_Equal_E_Cond
5497 (Exptyp : Entity_Id;
5498 Typ : Entity_Id;
5499 Indx : Nat) return Node_Id;
5500 -- Returns expression to compute:
5501 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
5503 function Range_N_Cond
5504 (Expr : Node_Id;
5505 Typ : Entity_Id;
5506 Indx : Nat) return Node_Id;
5507 -- Return expression to compute:
5508 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
5510 ---------------
5511 -- Add_Check --
5512 ---------------
5514 procedure Add_Check (N : Node_Id) is
5515 begin
5516 if Present (N) then
5518 -- For now, ignore attempt to place more than 2 checks ???
5520 if Num_Checks = 2 then
5521 return;
5522 end if;
5524 pragma Assert (Num_Checks <= 1);
5525 Num_Checks := Num_Checks + 1;
5526 Ret_Result (Num_Checks) := N;
5527 end if;
5528 end Add_Check;
5530 -------------------------
5531 -- Discrete_Expr_Cond --
5532 -------------------------
5534 function Discrete_Expr_Cond
5535 (Expr : Node_Id;
5536 Typ : Entity_Id) return Node_Id
5538 begin
5539 return
5540 Make_Or_Else (Loc,
5541 Left_Opnd =>
5542 Make_Op_Lt (Loc,
5543 Left_Opnd =>
5544 Convert_To (Base_Type (Typ),
5545 Duplicate_Subexpr_No_Checks (Expr)),
5546 Right_Opnd =>
5547 Convert_To (Base_Type (Typ),
5548 Get_E_First_Or_Last (Typ, 0, Name_First))),
5550 Right_Opnd =>
5551 Make_Op_Gt (Loc,
5552 Left_Opnd =>
5553 Convert_To (Base_Type (Typ),
5554 Duplicate_Subexpr_No_Checks (Expr)),
5555 Right_Opnd =>
5556 Convert_To
5557 (Base_Type (Typ),
5558 Get_E_First_Or_Last (Typ, 0, Name_Last))));
5559 end Discrete_Expr_Cond;
5561 -------------------------
5562 -- Discrete_Range_Cond --
5563 -------------------------
5565 function Discrete_Range_Cond
5566 (Expr : Node_Id;
5567 Typ : Entity_Id) return Node_Id
5569 LB : Node_Id := Low_Bound (Expr);
5570 HB : Node_Id := High_Bound (Expr);
5572 Left_Opnd : Node_Id;
5573 Right_Opnd : Node_Id;
5575 begin
5576 if Nkind (LB) = N_Identifier
5577 and then Ekind (Entity (LB)) = E_Discriminant then
5578 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
5579 end if;
5581 if Nkind (HB) = N_Identifier
5582 and then Ekind (Entity (HB)) = E_Discriminant then
5583 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
5584 end if;
5586 Left_Opnd :=
5587 Make_Op_Lt (Loc,
5588 Left_Opnd =>
5589 Convert_To
5590 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
5592 Right_Opnd =>
5593 Convert_To
5594 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
5596 if Base_Type (Typ) = Typ then
5597 return Left_Opnd;
5599 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
5600 and then
5601 Compile_Time_Known_Value (High_Bound (Scalar_Range
5602 (Base_Type (Typ))))
5603 then
5604 if Is_Floating_Point_Type (Typ) then
5605 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
5606 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
5607 then
5608 return Left_Opnd;
5609 end if;
5611 else
5612 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
5613 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
5614 then
5615 return Left_Opnd;
5616 end if;
5617 end if;
5618 end if;
5620 Right_Opnd :=
5621 Make_Op_Gt (Loc,
5622 Left_Opnd =>
5623 Convert_To
5624 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
5626 Right_Opnd =>
5627 Convert_To
5628 (Base_Type (Typ),
5629 Get_E_First_Or_Last (Typ, 0, Name_Last)));
5631 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
5632 end Discrete_Range_Cond;
5634 -------------------------
5635 -- Get_E_First_Or_Last --
5636 -------------------------
5638 function Get_E_First_Or_Last
5639 (E : Entity_Id;
5640 Indx : Nat;
5641 Nam : Name_Id) return Node_Id
5643 N : Node_Id;
5644 LB : Node_Id;
5645 HB : Node_Id;
5646 Bound : Node_Id;
5648 begin
5649 if Is_Array_Type (E) then
5650 N := First_Index (E);
5652 for J in 2 .. Indx loop
5653 Next_Index (N);
5654 end loop;
5656 else
5657 N := Scalar_Range (E);
5658 end if;
5660 if Nkind (N) = N_Subtype_Indication then
5661 LB := Low_Bound (Range_Expression (Constraint (N)));
5662 HB := High_Bound (Range_Expression (Constraint (N)));
5664 elsif Is_Entity_Name (N) then
5665 LB := Type_Low_Bound (Etype (N));
5666 HB := Type_High_Bound (Etype (N));
5668 else
5669 LB := Low_Bound (N);
5670 HB := High_Bound (N);
5671 end if;
5673 if Nam = Name_First then
5674 Bound := LB;
5675 else
5676 Bound := HB;
5677 end if;
5679 if Nkind (Bound) = N_Identifier
5680 and then Ekind (Entity (Bound)) = E_Discriminant
5681 then
5682 -- If this is a task discriminant, and we are the body, we must
5683 -- retrieve the corresponding body discriminal. This is another
5684 -- consequence of the early creation of discriminals, and the
5685 -- need to generate constraint checks before their declarations
5686 -- are made visible.
5688 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
5689 declare
5690 Tsk : constant Entity_Id :=
5691 Corresponding_Concurrent_Type
5692 (Scope (Entity (Bound)));
5693 Disc : Entity_Id;
5695 begin
5696 if In_Open_Scopes (Tsk)
5697 and then Has_Completion (Tsk)
5698 then
5699 -- Find discriminant of original task, and use its
5700 -- current discriminal, which is the renaming within
5701 -- the task body.
5703 Disc := First_Discriminant (Tsk);
5704 while Present (Disc) loop
5705 if Chars (Disc) = Chars (Entity (Bound)) then
5706 Set_Scope (Discriminal (Disc), Tsk);
5707 return New_Occurrence_Of (Discriminal (Disc), Loc);
5708 end if;
5710 Next_Discriminant (Disc);
5711 end loop;
5713 -- That loop should always succeed in finding a matching
5714 -- entry and returning. Fatal error if not.
5716 raise Program_Error;
5718 else
5719 return
5720 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5721 end if;
5722 end;
5723 else
5724 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5725 end if;
5727 elsif Nkind (Bound) = N_Identifier
5728 and then Ekind (Entity (Bound)) = E_In_Parameter
5729 and then not Inside_Init_Proc
5730 then
5731 return Get_Discriminal (E, Bound);
5733 elsif Nkind (Bound) = N_Integer_Literal then
5734 return Make_Integer_Literal (Loc, Intval (Bound));
5736 else
5737 return Duplicate_Subexpr_No_Checks (Bound);
5738 end if;
5739 end Get_E_First_Or_Last;
5741 -----------------
5742 -- Get_N_First --
5743 -----------------
5745 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
5746 begin
5747 return
5748 Make_Attribute_Reference (Loc,
5749 Attribute_Name => Name_First,
5750 Prefix =>
5751 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5752 Expressions => New_List (
5753 Make_Integer_Literal (Loc, Indx)));
5754 end Get_N_First;
5756 ----------------
5757 -- Get_N_Last --
5758 ----------------
5760 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
5761 begin
5762 return
5763 Make_Attribute_Reference (Loc,
5764 Attribute_Name => Name_Last,
5765 Prefix =>
5766 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5767 Expressions => New_List (
5768 Make_Integer_Literal (Loc, Indx)));
5769 end Get_N_Last;
5771 ------------------
5772 -- Range_E_Cond --
5773 ------------------
5775 function Range_E_Cond
5776 (Exptyp : Entity_Id;
5777 Typ : Entity_Id;
5778 Indx : Nat) return Node_Id
5780 begin
5781 return
5782 Make_Or_Else (Loc,
5783 Left_Opnd =>
5784 Make_Op_Lt (Loc,
5785 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5786 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5788 Right_Opnd =>
5789 Make_Op_Gt (Loc,
5790 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5791 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5793 end Range_E_Cond;
5795 ------------------------
5796 -- Range_Equal_E_Cond --
5797 ------------------------
5799 function Range_Equal_E_Cond
5800 (Exptyp : Entity_Id;
5801 Typ : Entity_Id;
5802 Indx : Nat) return Node_Id
5804 begin
5805 return
5806 Make_Or_Else (Loc,
5807 Left_Opnd =>
5808 Make_Op_Ne (Loc,
5809 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5810 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5811 Right_Opnd =>
5812 Make_Op_Ne (Loc,
5813 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5814 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5815 end Range_Equal_E_Cond;
5817 ------------------
5818 -- Range_N_Cond --
5819 ------------------
5821 function Range_N_Cond
5822 (Expr : Node_Id;
5823 Typ : Entity_Id;
5824 Indx : Nat) return Node_Id
5826 begin
5827 return
5828 Make_Or_Else (Loc,
5829 Left_Opnd =>
5830 Make_Op_Lt (Loc,
5831 Left_Opnd => Get_N_First (Expr, Indx),
5832 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5834 Right_Opnd =>
5835 Make_Op_Gt (Loc,
5836 Left_Opnd => Get_N_Last (Expr, Indx),
5837 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5838 end Range_N_Cond;
5840 -- Start of processing for Selected_Range_Checks
5842 begin
5843 if not Expander_Active then
5844 return Ret_Result;
5845 end if;
5847 if Target_Typ = Any_Type
5848 or else Target_Typ = Any_Composite
5849 or else Raises_Constraint_Error (Ck_Node)
5850 then
5851 return Ret_Result;
5852 end if;
5854 if No (Wnode) then
5855 Wnode := Ck_Node;
5856 end if;
5858 T_Typ := Target_Typ;
5860 if No (Source_Typ) then
5861 S_Typ := Etype (Ck_Node);
5862 else
5863 S_Typ := Source_Typ;
5864 end if;
5866 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5867 return Ret_Result;
5868 end if;
5870 -- The order of evaluating T_Typ before S_Typ seems to be critical
5871 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
5872 -- in, and since Node can be an N_Range node, it might be invalid.
5873 -- Should there be an assert check somewhere for taking the Etype of
5874 -- an N_Range node ???
5876 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5877 S_Typ := Designated_Type (S_Typ);
5878 T_Typ := Designated_Type (T_Typ);
5879 Do_Access := True;
5881 -- A simple optimization
5883 if Nkind (Ck_Node) = N_Null then
5884 return Ret_Result;
5885 end if;
5886 end if;
5888 -- For an N_Range Node, check for a null range and then if not
5889 -- null generate a range check action.
5891 if Nkind (Ck_Node) = N_Range then
5893 -- There's no point in checking a range against itself
5895 if Ck_Node = Scalar_Range (T_Typ) then
5896 return Ret_Result;
5897 end if;
5899 declare
5900 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
5901 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
5902 LB : constant Node_Id := Low_Bound (Ck_Node);
5903 HB : constant Node_Id := High_Bound (Ck_Node);
5904 Null_Range : Boolean;
5906 Out_Of_Range_L : Boolean;
5907 Out_Of_Range_H : Boolean;
5909 begin
5910 -- Check for case where everything is static and we can
5911 -- do the check at compile time. This is skipped if we
5912 -- have an access type, since the access value may be null.
5914 -- ??? This code can be improved since you only need to know
5915 -- that the two respective bounds (LB & T_LB or HB & T_HB)
5916 -- are known at compile time to emit pertinent messages.
5918 if Compile_Time_Known_Value (LB)
5919 and then Compile_Time_Known_Value (HB)
5920 and then Compile_Time_Known_Value (T_LB)
5921 and then Compile_Time_Known_Value (T_HB)
5922 and then not Do_Access
5923 then
5924 -- Floating-point case
5926 if Is_Floating_Point_Type (S_Typ) then
5927 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
5928 Out_Of_Range_L :=
5929 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
5930 or else
5931 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
5933 Out_Of_Range_H :=
5934 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
5935 or else
5936 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
5938 -- Fixed or discrete type case
5940 else
5941 Null_Range := Expr_Value (HB) < Expr_Value (LB);
5942 Out_Of_Range_L :=
5943 (Expr_Value (LB) < Expr_Value (T_LB))
5944 or else
5945 (Expr_Value (LB) > Expr_Value (T_HB));
5947 Out_Of_Range_H :=
5948 (Expr_Value (HB) > Expr_Value (T_HB))
5949 or else
5950 (Expr_Value (HB) < Expr_Value (T_LB));
5951 end if;
5953 if not Null_Range then
5954 if Out_Of_Range_L then
5955 if No (Warn_Node) then
5956 Add_Check
5957 (Compile_Time_Constraint_Error
5958 (Low_Bound (Ck_Node),
5959 "static value out of range of}?", T_Typ));
5961 else
5962 Add_Check
5963 (Compile_Time_Constraint_Error
5964 (Wnode,
5965 "static range out of bounds of}?", T_Typ));
5966 end if;
5967 end if;
5969 if Out_Of_Range_H then
5970 if No (Warn_Node) then
5971 Add_Check
5972 (Compile_Time_Constraint_Error
5973 (High_Bound (Ck_Node),
5974 "static value out of range of}?", T_Typ));
5976 else
5977 Add_Check
5978 (Compile_Time_Constraint_Error
5979 (Wnode,
5980 "static range out of bounds of}?", T_Typ));
5981 end if;
5982 end if;
5984 end if;
5986 else
5987 declare
5988 LB : Node_Id := Low_Bound (Ck_Node);
5989 HB : Node_Id := High_Bound (Ck_Node);
5991 begin
5993 -- If either bound is a discriminant and we are within
5994 -- the record declaration, it is a use of the discriminant
5995 -- in a constraint of a component, and nothing can be
5996 -- checked here. The check will be emitted within the
5997 -- init proc. Before then, the discriminal has no real
5998 -- meaning.
6000 if Nkind (LB) = N_Identifier
6001 and then Ekind (Entity (LB)) = E_Discriminant
6002 then
6003 if Current_Scope = Scope (Entity (LB)) then
6004 return Ret_Result;
6005 else
6006 LB :=
6007 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6008 end if;
6009 end if;
6011 if Nkind (HB) = N_Identifier
6012 and then Ekind (Entity (HB)) = E_Discriminant
6013 then
6014 if Current_Scope = Scope (Entity (HB)) then
6015 return Ret_Result;
6016 else
6017 HB :=
6018 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6019 end if;
6020 end if;
6022 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6023 Set_Paren_Count (Cond, 1);
6025 Cond :=
6026 Make_And_Then (Loc,
6027 Left_Opnd =>
6028 Make_Op_Ge (Loc,
6029 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6030 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6031 Right_Opnd => Cond);
6032 end;
6034 end if;
6035 end;
6037 elsif Is_Scalar_Type (S_Typ) then
6039 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6040 -- except the above simply sets a flag in the node and lets
6041 -- gigi generate the check base on the Etype of the expression.
6042 -- Sometimes, however we want to do a dynamic check against an
6043 -- arbitrary target type, so we do that here.
6045 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6046 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6048 -- For literals, we can tell if the constraint error will be
6049 -- raised at compile time, so we never need a dynamic check, but
6050 -- if the exception will be raised, then post the usual warning,
6051 -- and replace the literal with a raise constraint error
6052 -- expression. As usual, skip this for access types
6054 elsif Compile_Time_Known_Value (Ck_Node)
6055 and then not Do_Access
6056 then
6057 declare
6058 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6059 UB : constant Node_Id := Type_High_Bound (T_Typ);
6061 Out_Of_Range : Boolean;
6062 Static_Bounds : constant Boolean :=
6063 Compile_Time_Known_Value (LB)
6064 and Compile_Time_Known_Value (UB);
6066 begin
6067 -- Following range tests should use Sem_Eval routine ???
6069 if Static_Bounds then
6070 if Is_Floating_Point_Type (S_Typ) then
6071 Out_Of_Range :=
6072 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6073 or else
6074 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6076 else -- fixed or discrete type
6077 Out_Of_Range :=
6078 Expr_Value (Ck_Node) < Expr_Value (LB)
6079 or else
6080 Expr_Value (Ck_Node) > Expr_Value (UB);
6081 end if;
6083 -- Bounds of the type are static and the literal is
6084 -- out of range so make a warning message.
6086 if Out_Of_Range then
6087 if No (Warn_Node) then
6088 Add_Check
6089 (Compile_Time_Constraint_Error
6090 (Ck_Node,
6091 "static value out of range of}?", T_Typ));
6093 else
6094 Add_Check
6095 (Compile_Time_Constraint_Error
6096 (Wnode,
6097 "static value out of range of}?", T_Typ));
6098 end if;
6099 end if;
6101 else
6102 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6103 end if;
6104 end;
6106 -- Here for the case of a non-static expression, we need a runtime
6107 -- check unless the source type range is guaranteed to be in the
6108 -- range of the target type.
6110 else
6111 if not In_Subrange_Of (S_Typ, T_Typ) then
6112 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6113 end if;
6114 end if;
6115 end if;
6117 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6118 if Is_Constrained (T_Typ) then
6120 Expr_Actual := Get_Referenced_Object (Ck_Node);
6121 Exptyp := Get_Actual_Subtype (Expr_Actual);
6123 if Is_Access_Type (Exptyp) then
6124 Exptyp := Designated_Type (Exptyp);
6125 end if;
6127 -- String_Literal case. This needs to be handled specially be-
6128 -- cause no index types are available for string literals. The
6129 -- condition is simply:
6131 -- T_Typ'Length = string-literal-length
6133 if Nkind (Expr_Actual) = N_String_Literal then
6134 null;
6136 -- General array case. Here we have a usable actual subtype for
6137 -- the expression, and the condition is built from the two types
6139 -- T_Typ'First < Exptyp'First or else
6140 -- T_Typ'Last > Exptyp'Last or else
6141 -- T_Typ'First(1) < Exptyp'First(1) or else
6142 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6143 -- ...
6145 elsif Is_Constrained (Exptyp) then
6146 declare
6147 Ndims : constant Nat := Number_Dimensions (T_Typ);
6149 L_Index : Node_Id;
6150 R_Index : Node_Id;
6151 L_Low : Node_Id;
6152 L_High : Node_Id;
6153 R_Low : Node_Id;
6154 R_High : Node_Id;
6156 begin
6157 L_Index := First_Index (T_Typ);
6158 R_Index := First_Index (Exptyp);
6160 for Indx in 1 .. Ndims loop
6161 if not (Nkind (L_Index) = N_Raise_Constraint_Error
6162 or else
6163 Nkind (R_Index) = N_Raise_Constraint_Error)
6164 then
6165 Get_Index_Bounds (L_Index, L_Low, L_High);
6166 Get_Index_Bounds (R_Index, R_Low, R_High);
6168 -- Deal with compile time length check. Note that we
6169 -- skip this in the access case, because the access
6170 -- value may be null, so we cannot know statically.
6172 if not
6173 Subtypes_Statically_Match
6174 (Etype (L_Index), Etype (R_Index))
6175 then
6176 -- If the target type is constrained then we
6177 -- have to check for exact equality of bounds
6178 -- (required for qualified expressions).
6180 if Is_Constrained (T_Typ) then
6181 Evolve_Or_Else
6182 (Cond,
6183 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6185 else
6186 Evolve_Or_Else
6187 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6188 end if;
6189 end if;
6191 Next (L_Index);
6192 Next (R_Index);
6194 end if;
6195 end loop;
6196 end;
6198 -- Handle cases where we do not get a usable actual subtype that
6199 -- is constrained. This happens for example in the function call
6200 -- and explicit dereference cases. In these cases, we have to get
6201 -- the length or range from the expression itself, making sure we
6202 -- do not evaluate it more than once.
6204 -- Here Ck_Node is the original expression, or more properly the
6205 -- result of applying Duplicate_Expr to the original tree,
6206 -- forcing the result to be a name.
6208 else
6209 declare
6210 Ndims : constant Nat := Number_Dimensions (T_Typ);
6212 begin
6213 -- Build the condition for the explicit dereference case
6215 for Indx in 1 .. Ndims loop
6216 Evolve_Or_Else
6217 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6218 end loop;
6219 end;
6221 end if;
6223 else
6224 -- Generate an Action to check that the bounds of the
6225 -- source value are within the constraints imposed by the
6226 -- target type for a conversion to an unconstrained type.
6227 -- Rule is 4.6(38).
6229 if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
6230 declare
6231 Opnd_Index : Node_Id;
6232 Targ_Index : Node_Id;
6234 begin
6235 Opnd_Index
6236 := First_Index (Get_Actual_Subtype (Ck_Node));
6237 Targ_Index := First_Index (T_Typ);
6239 while Opnd_Index /= Empty loop
6240 if Nkind (Opnd_Index) = N_Range then
6241 if Is_In_Range
6242 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6243 and then
6244 Is_In_Range
6245 (High_Bound (Opnd_Index), Etype (Targ_Index))
6246 then
6247 null;
6249 -- If null range, no check needed.
6250 elsif
6251 Compile_Time_Known_Value (High_Bound (Opnd_Index))
6252 and then
6253 Compile_Time_Known_Value (Low_Bound (Opnd_Index))
6254 and then
6255 Expr_Value (High_Bound (Opnd_Index)) <
6256 Expr_Value (Low_Bound (Opnd_Index))
6257 then
6258 null;
6260 elsif Is_Out_Of_Range
6261 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6262 or else
6263 Is_Out_Of_Range
6264 (High_Bound (Opnd_Index), Etype (Targ_Index))
6265 then
6266 Add_Check
6267 (Compile_Time_Constraint_Error
6268 (Wnode, "value out of range of}?", T_Typ));
6270 else
6271 Evolve_Or_Else
6272 (Cond,
6273 Discrete_Range_Cond
6274 (Opnd_Index, Etype (Targ_Index)));
6275 end if;
6276 end if;
6278 Next_Index (Opnd_Index);
6279 Next_Index (Targ_Index);
6280 end loop;
6281 end;
6282 end if;
6283 end if;
6284 end if;
6286 -- Construct the test and insert into the tree
6288 if Present (Cond) then
6289 if Do_Access then
6290 Cond := Guard_Access (Cond, Loc, Ck_Node);
6291 end if;
6293 Add_Check
6294 (Make_Raise_Constraint_Error (Loc,
6295 Condition => Cond,
6296 Reason => CE_Range_Check_Failed));
6297 end if;
6299 return Ret_Result;
6300 end Selected_Range_Checks;
6302 -------------------------------
6303 -- Storage_Checks_Suppressed --
6304 -------------------------------
6306 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
6307 begin
6308 if Present (E) and then Checks_May_Be_Suppressed (E) then
6309 return Is_Check_Suppressed (E, Storage_Check);
6310 else
6311 return Scope_Suppress (Storage_Check);
6312 end if;
6313 end Storage_Checks_Suppressed;
6315 ---------------------------
6316 -- Tag_Checks_Suppressed --
6317 ---------------------------
6319 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6320 begin
6321 if Present (E) then
6322 if Kill_Tag_Checks (E) then
6323 return True;
6324 elsif Checks_May_Be_Suppressed (E) then
6325 return Is_Check_Suppressed (E, Tag_Check);
6326 end if;
6327 end if;
6329 return Scope_Suppress (Tag_Check);
6330 end Tag_Checks_Suppressed;
6332 end Checks;