sinfo.ads, sinfo.adb (Alloc_For_BIP_Return): New flag to indicate that an allocator...
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob593a0d041ccc445f2c515448d261b23e83e6debf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Contracts; use Contracts;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Elists; use Elists;
33 with Expander; use Expander;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Atag; use Exp_Atag;
36 with Exp_Ch2; use Exp_Ch2;
37 with Exp_Ch3; use Exp_Ch3;
38 with Exp_Ch7; use Exp_Ch7;
39 with Exp_Ch9; use Exp_Ch9;
40 with Exp_Dbug; use Exp_Dbug;
41 with Exp_Disp; use Exp_Disp;
42 with Exp_Dist; use Exp_Dist;
43 with Exp_Intr; use Exp_Intr;
44 with Exp_Pakd; use Exp_Pakd;
45 with Exp_Tss; use Exp_Tss;
46 with Exp_Util; use Exp_Util;
47 with Freeze; use Freeze;
48 with Inline; use Inline;
49 with Itypes; use Itypes;
50 with Lib; use Lib;
51 with Namet; use Namet;
52 with Nlists; use Nlists;
53 with Nmake; use Nmake;
54 with Opt; use Opt;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch12; use Sem_Ch12;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Eval; use Sem_Eval;
68 with Sem_Mech; use Sem_Mech;
69 with Sem_Res; use Sem_Res;
70 with Sem_SCIL; use Sem_SCIL;
71 with Sem_Util; use Sem_Util;
72 with Sinfo; use Sinfo;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Validsw; use Validsw;
79 package body Exp_Ch6 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 function Caller_Known_Size
141 (Func_Call : Node_Id;
142 Result_Subt : Entity_Id) return Boolean;
143 -- True if result subtype is definite, or has a size that does not require
144 -- secondary stack usage (i.e. no variant part or components whose type
145 -- depends on discriminants). In particular, untagged types with only
146 -- access discriminants do not require secondary stack use. Note we must
147 -- always use the secondary stack for dispatching-on-result calls.
149 procedure Check_Overriding_Operation (Subp : Entity_Id);
150 -- Subp is a dispatching operation. Check whether it may override an
151 -- inherited private operation, in which case its DT entry is that of
152 -- the hidden operation, not the one it may have received earlier.
153 -- This must be done before emitting the code to set the corresponding
154 -- DT to the address of the subprogram. The actual placement of Subp in
155 -- the proper place in the list of primitive operations is done in
156 -- Declare_Inherited_Private_Subprograms, which also has to deal with
157 -- implicit operations. This duplication is unavoidable for now???
159 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
160 -- This procedure is called only if the subprogram body N, whose spec
161 -- has the given entity Spec, contains a parameterless recursive call.
162 -- It attempts to generate runtime code to detect if this a case of
163 -- infinite recursion.
165 -- The body is scanned to determine dependencies. If the only external
166 -- dependencies are on a small set of scalar variables, then the values
167 -- of these variables are captured on entry to the subprogram, and if
168 -- the values are not changed for the call, we know immediately that
169 -- we have an infinite recursion.
171 procedure Expand_Actuals
172 (N : Node_Id;
173 Subp : Entity_Id;
174 Post_Call : out List_Id);
175 -- Return a list of actions to take place after the call in Post_Call. The
176 -- call will later be rewritten as an Expression_With_Actions, with the
177 -- Post_Call actions inserted, and the call inside.
179 -- For each actual of an in-out or out parameter which is a numeric (view)
180 -- conversion of the form T (A), where A denotes a variable, we insert the
181 -- declaration:
183 -- Temp : T[ := T (A)];
185 -- prior to the call. Then we replace the actual with a reference to Temp,
186 -- and append the assignment:
188 -- A := TypeA (Temp);
190 -- after the call. Here TypeA is the actual type of variable A. For out
191 -- parameters, the initial declaration has no expression. If A is not an
192 -- entity name, we generate instead:
194 -- Var : TypeA renames A;
195 -- Temp : T := Var; -- omitting expression for out parameter.
196 -- ...
197 -- Var := TypeA (Temp);
199 -- For other in-out parameters, we emit the required constraint checks
200 -- before and/or after the call.
202 -- For all parameter modes, actuals that denote components and slices of
203 -- packed arrays are expanded into suitable temporaries.
205 -- For non-scalar objects that are possibly unaligned, add call by copy
206 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208 -- For OUT and IN OUT parameters, add predicate checks after the call
209 -- based on the predicates of the actual type.
211 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
212 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214 procedure Expand_Ctrl_Function_Call (N : Node_Id);
215 -- N is a function call which returns a controlled object. Transform the
216 -- call into a temporary which retrieves the returned object from the
217 -- secondary stack using 'reference.
219 procedure Expand_Non_Function_Return (N : Node_Id);
220 -- Expand a simple return statement found in a procedure body, entry body,
221 -- accept statement, or an extended return statement. Note that all non-
222 -- function returns are simple return statements.
224 function Expand_Protected_Object_Reference
225 (N : Node_Id;
226 Scop : Entity_Id) return Node_Id;
228 procedure Expand_Protected_Subprogram_Call
229 (N : Node_Id;
230 Subp : Entity_Id;
231 Scop : Entity_Id);
232 -- A call to a protected subprogram within the protected object may appear
233 -- as a regular call. The list of actuals must be expanded to contain a
234 -- reference to the object itself, and the call becomes a call to the
235 -- corresponding protected subprogram.
237 procedure Expand_Simple_Function_Return (N : Node_Id);
238 -- Expand simple return from function. In the case where we are returning
239 -- from a function body this is called by Expand_N_Simple_Return_Statement.
241 function Has_Unconstrained_Access_Discriminants
242 (Subtyp : Entity_Id) return Boolean;
243 -- Returns True if the given subtype is unconstrained and has one or more
244 -- access discriminants.
246 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
247 -- Insert the Post_Call list previously produced by routine Expand_Actuals
248 -- or Expand_Call_Helper into the tree.
250 procedure Replace_Renaming_Declaration_Id
251 (New_Decl : Node_Id;
252 Orig_Decl : Node_Id);
253 -- Replace the internal identifier of the new renaming declaration New_Decl
254 -- with the identifier of its original declaration Orig_Decl exchanging the
255 -- entities containing their defining identifiers to ensure the correct
256 -- replacement of the object declaration by the object renaming declaration
257 -- to avoid homograph conflicts (since the object declaration's defining
258 -- identifier was already entered in the current scope). The Next_Entity
259 -- links of the two entities are also swapped since the entities are part
260 -- of the return scope's entity list and the list structure would otherwise
261 -- be corrupted. The homonym chain is preserved as well.
263 procedure Rewrite_Function_Call_For_C (N : Node_Id);
264 -- When generating C code, replace a call to a function that returns an
265 -- array into the generated procedure with an additional out parameter.
267 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
268 -- N is a return statement for a function that returns its result on the
269 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
270 -- function and all blocks and loops that the return statement is jumping
271 -- out of. This ensures that the secondary stack is not released; otherwise
272 -- the function result would be reclaimed before returning to the caller.
274 ----------------------------------------------
275 -- Add_Access_Actual_To_Build_In_Place_Call --
276 ----------------------------------------------
278 procedure Add_Access_Actual_To_Build_In_Place_Call
279 (Function_Call : Node_Id;
280 Function_Id : Entity_Id;
281 Return_Object : Node_Id;
282 Is_Access : Boolean := False)
284 Loc : constant Source_Ptr := Sloc (Function_Call);
285 Obj_Address : Node_Id;
286 Obj_Acc_Formal : Entity_Id;
288 begin
289 -- Locate the implicit access parameter in the called function
291 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
293 -- If no return object is provided, then pass null
295 if not Present (Return_Object) then
296 Obj_Address := Make_Null (Loc);
297 Set_Parent (Obj_Address, Function_Call);
299 -- If Return_Object is already an expression of an access type, then use
300 -- it directly, since it must be an access value denoting the return
301 -- object, and couldn't possibly be the return object itself.
303 elsif Is_Access then
304 Obj_Address := Return_Object;
305 Set_Parent (Obj_Address, Function_Call);
307 -- Apply Unrestricted_Access to caller's return object
309 else
310 Obj_Address :=
311 Make_Attribute_Reference (Loc,
312 Prefix => Return_Object,
313 Attribute_Name => Name_Unrestricted_Access);
315 Set_Parent (Return_Object, Obj_Address);
316 Set_Parent (Obj_Address, Function_Call);
317 end if;
319 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
321 -- Build the parameter association for the new actual and add it to the
322 -- end of the function's actuals.
324 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
325 end Add_Access_Actual_To_Build_In_Place_Call;
327 ------------------------------------------------------
328 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
329 ------------------------------------------------------
331 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
332 (Function_Call : Node_Id;
333 Function_Id : Entity_Id;
334 Alloc_Form : BIP_Allocation_Form := Unspecified;
335 Alloc_Form_Exp : Node_Id := Empty;
336 Pool_Actual : Node_Id := Make_Null (No_Location))
338 Loc : constant Source_Ptr := Sloc (Function_Call);
339 Alloc_Form_Actual : Node_Id;
340 Alloc_Form_Formal : Node_Id;
341 Pool_Formal : Node_Id;
343 begin
344 -- The allocation form generally doesn't need to be passed in the case
345 -- of a constrained result subtype, since normally the caller performs
346 -- the allocation in that case. However this formal is still needed in
347 -- the case where the function has a tagged result, because generally
348 -- such functions can be called in a dispatching context and such calls
349 -- must be handled like calls to class-wide functions.
351 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
352 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
353 then
354 return;
355 end if;
357 -- Locate the implicit allocation form parameter in the called function.
358 -- Maybe it would be better for each implicit formal of a build-in-place
359 -- function to have a flag or a Uint attribute to identify it. ???
361 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
363 if Present (Alloc_Form_Exp) then
364 pragma Assert (Alloc_Form = Unspecified);
366 Alloc_Form_Actual := Alloc_Form_Exp;
368 else
369 pragma Assert (Alloc_Form /= Unspecified);
371 Alloc_Form_Actual :=
372 Make_Integer_Literal (Loc,
373 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
374 end if;
376 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
378 -- Build the parameter association for the new actual and add it to the
379 -- end of the function's actuals.
381 Add_Extra_Actual_To_Call
382 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
384 -- Pass the Storage_Pool parameter. This parameter is omitted on
385 -- ZFP as those targets do not support pools.
387 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
388 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
389 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
390 Add_Extra_Actual_To_Call
391 (Function_Call, Pool_Formal, Pool_Actual);
392 end if;
393 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
395 -----------------------------------------------------------
396 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
397 -----------------------------------------------------------
399 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
400 (Func_Call : Node_Id;
401 Func_Id : Entity_Id;
402 Ptr_Typ : Entity_Id := Empty;
403 Master_Exp : Node_Id := Empty)
405 begin
406 if not Needs_BIP_Finalization_Master (Func_Id) then
407 return;
408 end if;
410 declare
411 Formal : constant Entity_Id :=
412 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
413 Loc : constant Source_Ptr := Sloc (Func_Call);
415 Actual : Node_Id;
416 Desig_Typ : Entity_Id;
418 begin
419 -- If there is a finalization master actual, such as the implicit
420 -- finalization master of an enclosing build-in-place function,
421 -- then this must be added as an extra actual of the call.
423 if Present (Master_Exp) then
424 Actual := Master_Exp;
426 -- Case where the context does not require an actual master
428 elsif No (Ptr_Typ) then
429 Actual := Make_Null (Loc);
431 else
432 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
434 -- Check for a library-level access type whose designated type has
435 -- suppressed finalization or the access type is subject to pragma
436 -- No_Heap_Finalization. Such an access type lacks a master. Pass
437 -- a null actual to callee in order to signal a missing master.
439 if Is_Library_Level_Entity (Ptr_Typ)
440 and then (Finalize_Storage_Only (Desig_Typ)
441 or else No_Heap_Finalization (Ptr_Typ))
442 then
443 Actual := Make_Null (Loc);
445 -- Types in need of finalization actions
447 elsif Needs_Finalization (Desig_Typ) then
449 -- The general mechanism of creating finalization masters for
450 -- anonymous access types is disabled by default, otherwise
451 -- finalization masters will pop all over the place. Such types
452 -- use context-specific masters.
454 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
455 and then No (Finalization_Master (Ptr_Typ))
456 then
457 Build_Anonymous_Master (Ptr_Typ);
458 end if;
460 -- Access-to-controlled types should always have a master
462 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
464 Actual :=
465 Make_Attribute_Reference (Loc,
466 Prefix =>
467 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
468 Attribute_Name => Name_Unrestricted_Access);
470 -- Tagged types
472 else
473 Actual := Make_Null (Loc);
474 end if;
475 end if;
477 Analyze_And_Resolve (Actual, Etype (Formal));
479 -- Build the parameter association for the new actual and add it to
480 -- the end of the function's actuals.
482 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
483 end;
484 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
486 ------------------------------
487 -- Add_Extra_Actual_To_Call --
488 ------------------------------
490 procedure Add_Extra_Actual_To_Call
491 (Subprogram_Call : Node_Id;
492 Extra_Formal : Entity_Id;
493 Extra_Actual : Node_Id)
495 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
496 Param_Assoc : Node_Id;
498 begin
499 Param_Assoc :=
500 Make_Parameter_Association (Loc,
501 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
502 Explicit_Actual_Parameter => Extra_Actual);
504 Set_Parent (Param_Assoc, Subprogram_Call);
505 Set_Parent (Extra_Actual, Param_Assoc);
507 if Present (Parameter_Associations (Subprogram_Call)) then
508 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
509 N_Parameter_Association
510 then
512 -- Find last named actual, and append
514 declare
515 L : Node_Id;
516 begin
517 L := First_Actual (Subprogram_Call);
518 while Present (L) loop
519 if No (Next_Actual (L)) then
520 Set_Next_Named_Actual (Parent (L), Extra_Actual);
521 exit;
522 end if;
523 Next_Actual (L);
524 end loop;
525 end;
527 else
528 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
529 end if;
531 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
533 else
534 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
535 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
536 end if;
537 end Add_Extra_Actual_To_Call;
539 ---------------------------------------------
540 -- Add_Task_Actuals_To_Build_In_Place_Call --
541 ---------------------------------------------
543 procedure Add_Task_Actuals_To_Build_In_Place_Call
544 (Function_Call : Node_Id;
545 Function_Id : Entity_Id;
546 Master_Actual : Node_Id;
547 Chain : Node_Id := Empty)
549 Loc : constant Source_Ptr := Sloc (Function_Call);
550 Result_Subt : constant Entity_Id :=
551 Available_View (Etype (Function_Id));
552 Actual : Node_Id;
553 Chain_Actual : Node_Id;
554 Chain_Formal : Node_Id;
555 Master_Formal : Node_Id;
557 begin
558 -- No such extra parameters are needed if there are no tasks
560 if not Has_Task (Result_Subt) then
561 return;
562 end if;
564 Actual := Master_Actual;
566 -- Use a dummy _master actual in case of No_Task_Hierarchy
568 if Restriction_Active (No_Task_Hierarchy) then
569 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
571 -- In the case where we use the master associated with an access type,
572 -- the actual is an entity and requires an explicit reference.
574 elsif Nkind (Actual) = N_Defining_Identifier then
575 Actual := New_Occurrence_Of (Actual, Loc);
576 end if;
578 -- Locate the implicit master parameter in the called function
580 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
581 Analyze_And_Resolve (Actual, Etype (Master_Formal));
583 -- Build the parameter association for the new actual and add it to the
584 -- end of the function's actuals.
586 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
588 -- Locate the implicit activation chain parameter in the called function
590 Chain_Formal :=
591 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
593 -- Create the actual which is a pointer to the current activation chain
595 if No (Chain) then
596 Chain_Actual :=
597 Make_Attribute_Reference (Loc,
598 Prefix => Make_Identifier (Loc, Name_uChain),
599 Attribute_Name => Name_Unrestricted_Access);
601 -- Allocator case; make a reference to the Chain passed in by the caller
603 else
604 Chain_Actual :=
605 Make_Attribute_Reference (Loc,
606 Prefix => New_Occurrence_Of (Chain, Loc),
607 Attribute_Name => Name_Unrestricted_Access);
608 end if;
610 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
612 -- Build the parameter association for the new actual and add it to the
613 -- end of the function's actuals.
615 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
616 end Add_Task_Actuals_To_Build_In_Place_Call;
618 -----------------------
619 -- BIP_Formal_Suffix --
620 -----------------------
622 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
623 begin
624 case Kind is
625 when BIP_Alloc_Form =>
626 return "BIPalloc";
628 when BIP_Storage_Pool =>
629 return "BIPstoragepool";
631 when BIP_Finalization_Master =>
632 return "BIPfinalizationmaster";
634 when BIP_Task_Master =>
635 return "BIPtaskmaster";
637 when BIP_Activation_Chain =>
638 return "BIPactivationchain";
640 when BIP_Object_Access =>
641 return "BIPaccess";
642 end case;
643 end BIP_Formal_Suffix;
645 ---------------------------
646 -- Build_In_Place_Formal --
647 ---------------------------
649 function Build_In_Place_Formal
650 (Func : Entity_Id;
651 Kind : BIP_Formal_Kind) return Entity_Id
653 Formal_Name : constant Name_Id :=
654 New_External_Name
655 (Chars (Func), BIP_Formal_Suffix (Kind));
656 Extra_Formal : Entity_Id := Extra_Formals (Func);
658 begin
659 -- Maybe it would be better for each implicit formal of a build-in-place
660 -- function to have a flag or a Uint attribute to identify it. ???
662 -- The return type in the function declaration may have been a limited
663 -- view, and the extra formals for the function were not generated at
664 -- that point. At the point of call the full view must be available and
665 -- the extra formals can be created.
667 if No (Extra_Formal) then
668 Create_Extra_Formals (Func);
669 Extra_Formal := Extra_Formals (Func);
670 end if;
672 loop
673 pragma Assert (Present (Extra_Formal));
674 exit when Chars (Extra_Formal) = Formal_Name;
676 Next_Formal_With_Extras (Extra_Formal);
677 end loop;
679 return Extra_Formal;
680 end Build_In_Place_Formal;
682 -------------------------------
683 -- Build_Procedure_Body_Form --
684 -------------------------------
686 function Build_Procedure_Body_Form
687 (Func_Id : Entity_Id;
688 Func_Body : Node_Id) return Node_Id
690 Loc : constant Source_Ptr := Sloc (Func_Body);
692 Proc_Decl : constant Node_Id :=
693 Next (Unit_Declaration_Node (Func_Id));
694 -- It is assumed that the next node following the declaration of the
695 -- corresponding subprogram spec is the declaration of the procedure
696 -- form.
698 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
700 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
701 -- Replace each return statement found in the list Stmts with an
702 -- assignment of the return expression to parameter Param_Id.
704 ---------------------
705 -- Replace_Returns --
706 ---------------------
708 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
709 Stmt : Node_Id;
711 begin
712 Stmt := First (Stmts);
713 while Present (Stmt) loop
714 if Nkind (Stmt) = N_Block_Statement then
715 Replace_Returns (Param_Id, Statements (Stmt));
717 elsif Nkind (Stmt) = N_Case_Statement then
718 declare
719 Alt : Node_Id;
720 begin
721 Alt := First (Alternatives (Stmt));
722 while Present (Alt) loop
723 Replace_Returns (Param_Id, Statements (Alt));
724 Next (Alt);
725 end loop;
726 end;
728 elsif Nkind (Stmt) = N_Extended_Return_Statement then
729 declare
730 Ret_Obj : constant Entity_Id :=
731 Defining_Entity
732 (First (Return_Object_Declarations (Stmt)));
733 Assign : constant Node_Id :=
734 Make_Assignment_Statement (Sloc (Stmt),
735 Name =>
736 New_Occurrence_Of (Param_Id, Loc),
737 Expression =>
738 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
739 Stmts : List_Id;
741 begin
742 -- The extended return may just contain the declaration
744 if Present (Handled_Statement_Sequence (Stmt)) then
745 Stmts := Statements (Handled_Statement_Sequence (Stmt));
746 else
747 Stmts := New_List;
748 end if;
750 Set_Assignment_OK (Name (Assign));
752 Rewrite (Stmt,
753 Make_Block_Statement (Sloc (Stmt),
754 Declarations =>
755 Return_Object_Declarations (Stmt),
756 Handled_Statement_Sequence =>
757 Make_Handled_Sequence_Of_Statements (Loc,
758 Statements => Stmts)));
760 Replace_Returns (Param_Id, Stmts);
762 Append_To (Stmts, Assign);
763 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
764 end;
766 elsif Nkind (Stmt) = N_If_Statement then
767 Replace_Returns (Param_Id, Then_Statements (Stmt));
768 Replace_Returns (Param_Id, Else_Statements (Stmt));
770 declare
771 Part : Node_Id;
772 begin
773 Part := First (Elsif_Parts (Stmt));
774 while Present (Part) loop
775 Replace_Returns (Param_Id, Then_Statements (Part));
776 Next (Part);
777 end loop;
778 end;
780 elsif Nkind (Stmt) = N_Loop_Statement then
781 Replace_Returns (Param_Id, Statements (Stmt));
783 elsif Nkind (Stmt) = N_Simple_Return_Statement then
785 -- Generate:
786 -- Param := Expr;
787 -- return;
789 Rewrite (Stmt,
790 Make_Assignment_Statement (Sloc (Stmt),
791 Name => New_Occurrence_Of (Param_Id, Loc),
792 Expression => Relocate_Node (Expression (Stmt))));
794 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
796 -- Skip the added return
798 Next (Stmt);
799 end if;
801 Next (Stmt);
802 end loop;
803 end Replace_Returns;
805 -- Local variables
807 Stmts : List_Id;
808 New_Body : Node_Id;
810 -- Start of processing for Build_Procedure_Body_Form
812 begin
813 -- This routine replaces the original function body:
815 -- function F (...) return Array_Typ is
816 -- begin
817 -- ...
818 -- return Something;
819 -- end F;
821 -- with the following:
823 -- procedure P (..., Result : out Array_Typ) is
824 -- begin
825 -- ...
826 -- Result := Something;
827 -- end P;
829 Stmts :=
830 Statements (Handled_Statement_Sequence (Func_Body));
831 Replace_Returns (Last_Entity (Proc_Id), Stmts);
833 New_Body :=
834 Make_Subprogram_Body (Loc,
835 Specification =>
836 Copy_Subprogram_Spec (Specification (Proc_Decl)),
837 Declarations => Declarations (Func_Body),
838 Handled_Statement_Sequence =>
839 Make_Handled_Sequence_Of_Statements (Loc,
840 Statements => Stmts));
842 -- If the function is a generic instance, so is the new procedure.
843 -- Set flag accordingly so that the proper renaming declarations are
844 -- generated.
846 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
847 return New_Body;
848 end Build_Procedure_Body_Form;
850 -----------------------
851 -- Caller_Known_Size --
852 -----------------------
854 function Caller_Known_Size
855 (Func_Call : Node_Id;
856 Result_Subt : Entity_Id) return Boolean
858 begin
859 return
860 (Is_Definite_Subtype (Underlying_Type (Result_Subt))
861 and then No (Controlling_Argument (Func_Call)))
862 or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
863 end Caller_Known_Size;
865 --------------------------------
866 -- Check_Overriding_Operation --
867 --------------------------------
869 procedure Check_Overriding_Operation (Subp : Entity_Id) is
870 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
871 Op_List : constant Elist_Id := Primitive_Operations (Typ);
872 Op_Elmt : Elmt_Id;
873 Prim_Op : Entity_Id;
874 Par_Op : Entity_Id;
876 begin
877 if Is_Derived_Type (Typ)
878 and then not Is_Private_Type (Typ)
879 and then In_Open_Scopes (Scope (Etype (Typ)))
880 and then Is_Base_Type (Typ)
881 then
882 -- Subp overrides an inherited private operation if there is an
883 -- inherited operation with a different name than Subp (see
884 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
885 -- same name as Subp.
887 Op_Elmt := First_Elmt (Op_List);
888 while Present (Op_Elmt) loop
889 Prim_Op := Node (Op_Elmt);
890 Par_Op := Alias (Prim_Op);
892 if Present (Par_Op)
893 and then not Comes_From_Source (Prim_Op)
894 and then Chars (Prim_Op) /= Chars (Par_Op)
895 and then Chars (Par_Op) = Chars (Subp)
896 and then Is_Hidden (Par_Op)
897 and then Type_Conformant (Prim_Op, Subp)
898 then
899 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
900 end if;
902 Next_Elmt (Op_Elmt);
903 end loop;
904 end if;
905 end Check_Overriding_Operation;
907 -------------------------------
908 -- Detect_Infinite_Recursion --
909 -------------------------------
911 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
912 Loc : constant Source_Ptr := Sloc (N);
914 Var_List : constant Elist_Id := New_Elmt_List;
915 -- List of globals referenced by body of procedure
917 Call_List : constant Elist_Id := New_Elmt_List;
918 -- List of recursive calls in body of procedure
920 Shad_List : constant Elist_Id := New_Elmt_List;
921 -- List of entity id's for entities created to capture the value of
922 -- referenced globals on entry to the procedure.
924 Scop : constant Uint := Scope_Depth (Spec);
925 -- This is used to record the scope depth of the current procedure, so
926 -- that we can identify global references.
928 Max_Vars : constant := 4;
929 -- Do not test more than four global variables
931 Count_Vars : Natural := 0;
932 -- Count variables found so far
934 Var : Entity_Id;
935 Elm : Elmt_Id;
936 Ent : Entity_Id;
937 Call : Elmt_Id;
938 Decl : Node_Id;
939 Test : Node_Id;
940 Elm1 : Elmt_Id;
941 Elm2 : Elmt_Id;
942 Last : Node_Id;
944 function Process (Nod : Node_Id) return Traverse_Result;
945 -- Function to traverse the subprogram body (using Traverse_Func)
947 -------------
948 -- Process --
949 -------------
951 function Process (Nod : Node_Id) return Traverse_Result is
952 begin
953 -- Procedure call
955 if Nkind (Nod) = N_Procedure_Call_Statement then
957 -- Case of one of the detected recursive calls
959 if Is_Entity_Name (Name (Nod))
960 and then Has_Recursive_Call (Entity (Name (Nod)))
961 and then Entity (Name (Nod)) = Spec
962 then
963 Append_Elmt (Nod, Call_List);
964 return Skip;
966 -- Any other procedure call may have side effects
968 else
969 return Abandon;
970 end if;
972 -- A call to a pure function can always be ignored
974 elsif Nkind (Nod) = N_Function_Call
975 and then Is_Entity_Name (Name (Nod))
976 and then Is_Pure (Entity (Name (Nod)))
977 then
978 return Skip;
980 -- Case of an identifier reference
982 elsif Nkind (Nod) = N_Identifier then
983 Ent := Entity (Nod);
985 -- If no entity, then ignore the reference
987 -- Not clear why this can happen. To investigate, remove this
988 -- test and look at the crash that occurs here in 3401-004 ???
990 if No (Ent) then
991 return Skip;
993 -- Ignore entities with no Scope, again not clear how this
994 -- can happen, to investigate, look at 4108-008 ???
996 elsif No (Scope (Ent)) then
997 return Skip;
999 -- Ignore the reference if not to a more global object
1001 elsif Scope_Depth (Scope (Ent)) >= Scop then
1002 return Skip;
1004 -- References to types, exceptions and constants are always OK
1006 elsif Is_Type (Ent)
1007 or else Ekind (Ent) = E_Exception
1008 or else Ekind (Ent) = E_Constant
1009 then
1010 return Skip;
1012 -- If other than a non-volatile scalar variable, we have some
1013 -- kind of global reference (e.g. to a function) that we cannot
1014 -- deal with so we forget the attempt.
1016 elsif Ekind (Ent) /= E_Variable
1017 or else not Is_Scalar_Type (Etype (Ent))
1018 or else Treat_As_Volatile (Ent)
1019 then
1020 return Abandon;
1022 -- Otherwise we have a reference to a global scalar
1024 else
1025 -- Loop through global entities already detected
1027 Elm := First_Elmt (Var_List);
1028 loop
1029 -- If not detected before, record this new global reference
1031 if No (Elm) then
1032 Count_Vars := Count_Vars + 1;
1034 if Count_Vars <= Max_Vars then
1035 Append_Elmt (Entity (Nod), Var_List);
1036 else
1037 return Abandon;
1038 end if;
1040 exit;
1042 -- If recorded before, ignore
1044 elsif Node (Elm) = Entity (Nod) then
1045 return Skip;
1047 -- Otherwise keep looking
1049 else
1050 Next_Elmt (Elm);
1051 end if;
1052 end loop;
1054 return Skip;
1055 end if;
1057 -- For all other node kinds, recursively visit syntactic children
1059 else
1060 return OK;
1061 end if;
1062 end Process;
1064 function Traverse_Body is new Traverse_Func (Process);
1066 -- Start of processing for Detect_Infinite_Recursion
1068 begin
1069 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1070 -- won't be able to generate the code to handle the recursion in any
1071 -- case.
1073 if Restriction_Active (No_Implicit_Conditionals) then
1074 return;
1075 end if;
1077 -- Otherwise do traversal and quit if we get abandon signal
1079 if Traverse_Body (N) = Abandon then
1080 return;
1082 -- We must have a call, since Has_Recursive_Call was set. If not just
1083 -- ignore (this is only an error check, so if we have a funny situation,
1084 -- due to bugs or errors, we do not want to bomb).
1086 elsif Is_Empty_Elmt_List (Call_List) then
1087 return;
1088 end if;
1090 -- Here is the case where we detect recursion at compile time
1092 -- Push our current scope for analyzing the declarations and code that
1093 -- we will insert for the checking.
1095 Push_Scope (Spec);
1097 -- This loop builds temporary variables for each of the referenced
1098 -- globals, so that at the end of the loop the list Shad_List contains
1099 -- these temporaries in one-to-one correspondence with the elements in
1100 -- Var_List.
1102 Last := Empty;
1103 Elm := First_Elmt (Var_List);
1104 while Present (Elm) loop
1105 Var := Node (Elm);
1106 Ent := Make_Temporary (Loc, 'S');
1107 Append_Elmt (Ent, Shad_List);
1109 -- Insert a declaration for this temporary at the start of the
1110 -- declarations for the procedure. The temporaries are declared as
1111 -- constant objects initialized to the current values of the
1112 -- corresponding temporaries.
1114 Decl :=
1115 Make_Object_Declaration (Loc,
1116 Defining_Identifier => Ent,
1117 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1118 Constant_Present => True,
1119 Expression => New_Occurrence_Of (Var, Loc));
1121 if No (Last) then
1122 Prepend (Decl, Declarations (N));
1123 else
1124 Insert_After (Last, Decl);
1125 end if;
1127 Last := Decl;
1128 Analyze (Decl);
1129 Next_Elmt (Elm);
1130 end loop;
1132 -- Loop through calls
1134 Call := First_Elmt (Call_List);
1135 while Present (Call) loop
1137 -- Build a predicate expression of the form
1139 -- True
1140 -- and then global1 = temp1
1141 -- and then global2 = temp2
1142 -- ...
1144 -- This predicate determines if any of the global values
1145 -- referenced by the procedure have changed since the
1146 -- current call, if not an infinite recursion is assured.
1148 Test := New_Occurrence_Of (Standard_True, Loc);
1150 Elm1 := First_Elmt (Var_List);
1151 Elm2 := First_Elmt (Shad_List);
1152 while Present (Elm1) loop
1153 Test :=
1154 Make_And_Then (Loc,
1155 Left_Opnd => Test,
1156 Right_Opnd =>
1157 Make_Op_Eq (Loc,
1158 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1159 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1161 Next_Elmt (Elm1);
1162 Next_Elmt (Elm2);
1163 end loop;
1165 -- Now we replace the call with the sequence
1167 -- if no-changes (see above) then
1168 -- raise Storage_Error;
1169 -- else
1170 -- original-call
1171 -- end if;
1173 Rewrite (Node (Call),
1174 Make_If_Statement (Loc,
1175 Condition => Test,
1176 Then_Statements => New_List (
1177 Make_Raise_Storage_Error (Loc,
1178 Reason => SE_Infinite_Recursion)),
1180 Else_Statements => New_List (
1181 Relocate_Node (Node (Call)))));
1183 Analyze (Node (Call));
1185 Next_Elmt (Call);
1186 end loop;
1188 -- Remove temporary scope stack entry used for analysis
1190 Pop_Scope;
1191 end Detect_Infinite_Recursion;
1193 --------------------
1194 -- Expand_Actuals --
1195 --------------------
1197 procedure Expand_Actuals
1198 (N : Node_Id;
1199 Subp : Entity_Id;
1200 Post_Call : out List_Id)
1202 Loc : constant Source_Ptr := Sloc (N);
1203 Actual : Node_Id;
1204 Formal : Entity_Id;
1205 N_Node : Node_Id;
1206 E_Actual : Entity_Id;
1207 E_Formal : Entity_Id;
1209 procedure Add_Call_By_Copy_Code;
1210 -- For cases where the parameter must be passed by copy, this routine
1211 -- generates a temporary variable into which the actual is copied and
1212 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1213 -- an assignment is also generated to copy the result back. The call
1214 -- also takes care of any constraint checks required for the type
1215 -- conversion case (on both the way in and the way out).
1217 procedure Add_Simple_Call_By_Copy_Code;
1218 -- This is similar to the above, but is used in cases where we know
1219 -- that all that is needed is to simply create a temporary and copy
1220 -- the value in and out of the temporary.
1222 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1223 -- Perform copy-back for actual parameter Act which denotes a validation
1224 -- variable.
1226 procedure Check_Fortran_Logical;
1227 -- A value of type Logical that is passed through a formal parameter
1228 -- must be normalized because .TRUE. usually does not have the same
1229 -- representation as True. We assume that .FALSE. = False = 0.
1230 -- What about functions that return a logical type ???
1232 function Is_Legal_Copy return Boolean;
1233 -- Check that an actual can be copied before generating the temporary
1234 -- to be used in the call. If the actual is of a by_reference type then
1235 -- the program is illegal (this can only happen in the presence of
1236 -- rep. clauses that force an incorrect alignment). If the formal is
1237 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1238 -- the effect that this might lead to unaligned arguments.
1240 function Make_Var (Actual : Node_Id) return Entity_Id;
1241 -- Returns an entity that refers to the given actual parameter, Actual
1242 -- (not including any type conversion). If Actual is an entity name,
1243 -- then this entity is returned unchanged, otherwise a renaming is
1244 -- created to provide an entity for the actual.
1246 procedure Reset_Packed_Prefix;
1247 -- The expansion of a packed array component reference is delayed in
1248 -- the context of a call. Now we need to complete the expansion, so we
1249 -- unmark the analyzed bits in all prefixes.
1251 ---------------------------
1252 -- Add_Call_By_Copy_Code --
1253 ---------------------------
1255 procedure Add_Call_By_Copy_Code is
1256 Crep : Boolean;
1257 Expr : Node_Id;
1258 F_Typ : Entity_Id := Etype (Formal);
1259 Indic : Node_Id;
1260 Init : Node_Id;
1261 Temp : Entity_Id;
1262 V_Typ : Entity_Id;
1263 Var : Entity_Id;
1265 begin
1266 if not Is_Legal_Copy then
1267 return;
1268 end if;
1270 Temp := Make_Temporary (Loc, 'T', Actual);
1272 -- Handle formals whose type comes from the limited view
1274 if From_Limited_With (F_Typ)
1275 and then Has_Non_Limited_View (F_Typ)
1276 then
1277 F_Typ := Non_Limited_View (F_Typ);
1278 end if;
1280 -- Use formal type for temp, unless formal type is an unconstrained
1281 -- array, in which case we don't have to worry about bounds checks,
1282 -- and we use the actual type, since that has appropriate bounds.
1284 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1285 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1286 else
1287 Indic := New_Occurrence_Of (F_Typ, Loc);
1288 end if;
1290 if Nkind (Actual) = N_Type_Conversion then
1291 V_Typ := Etype (Expression (Actual));
1293 -- If the formal is an (in-)out parameter, capture the name
1294 -- of the variable in order to build the post-call assignment.
1296 Var := Make_Var (Expression (Actual));
1298 Crep := not Same_Representation
1299 (F_Typ, Etype (Expression (Actual)));
1301 else
1302 V_Typ := Etype (Actual);
1303 Var := Make_Var (Actual);
1304 Crep := False;
1305 end if;
1307 -- Setup initialization for case of in out parameter, or an out
1308 -- parameter where the formal is an unconstrained array (in the
1309 -- latter case, we have to pass in an object with bounds).
1311 -- If this is an out parameter, the initial copy is wasteful, so as
1312 -- an optimization for the one-dimensional case we extract the
1313 -- bounds of the actual and build an uninitialized temporary of the
1314 -- right size.
1316 if Ekind (Formal) = E_In_Out_Parameter
1317 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1318 then
1319 if Nkind (Actual) = N_Type_Conversion then
1320 if Conversion_OK (Actual) then
1321 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1322 else
1323 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1324 end if;
1326 elsif Ekind (Formal) = E_Out_Parameter
1327 and then Is_Array_Type (F_Typ)
1328 and then Number_Dimensions (F_Typ) = 1
1329 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1330 then
1331 -- Actual is a one-dimensional array or slice, and the type
1332 -- requires no initialization. Create a temporary of the
1333 -- right size, but do not copy actual into it (optimization).
1335 Init := Empty;
1336 Indic :=
1337 Make_Subtype_Indication (Loc,
1338 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1339 Constraint =>
1340 Make_Index_Or_Discriminant_Constraint (Loc,
1341 Constraints => New_List (
1342 Make_Range (Loc,
1343 Low_Bound =>
1344 Make_Attribute_Reference (Loc,
1345 Prefix => New_Occurrence_Of (Var, Loc),
1346 Attribute_Name => Name_First),
1347 High_Bound =>
1348 Make_Attribute_Reference (Loc,
1349 Prefix => New_Occurrence_Of (Var, Loc),
1350 Attribute_Name => Name_Last)))));
1352 else
1353 Init := New_Occurrence_Of (Var, Loc);
1354 end if;
1356 -- An initialization is created for packed conversions as
1357 -- actuals for out parameters to enable Make_Object_Declaration
1358 -- to determine the proper subtype for N_Node. Note that this
1359 -- is wasteful because the extra copying on the call side is
1360 -- not required for such out parameters. ???
1362 elsif Ekind (Formal) = E_Out_Parameter
1363 and then Nkind (Actual) = N_Type_Conversion
1364 and then (Is_Bit_Packed_Array (F_Typ)
1365 or else
1366 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1367 then
1368 if Conversion_OK (Actual) then
1369 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1370 else
1371 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1372 end if;
1374 elsif Ekind (Formal) = E_In_Parameter then
1376 -- Handle the case in which the actual is a type conversion
1378 if Nkind (Actual) = N_Type_Conversion then
1379 if Conversion_OK (Actual) then
1380 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1381 else
1382 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1383 end if;
1384 else
1385 Init := New_Occurrence_Of (Var, Loc);
1386 end if;
1388 else
1389 Init := Empty;
1390 end if;
1392 N_Node :=
1393 Make_Object_Declaration (Loc,
1394 Defining_Identifier => Temp,
1395 Object_Definition => Indic,
1396 Expression => Init);
1397 Set_Assignment_OK (N_Node);
1398 Insert_Action (N, N_Node);
1400 -- Now, normally the deal here is that we use the defining
1401 -- identifier created by that object declaration. There is
1402 -- one exception to this. In the change of representation case
1403 -- the above declaration will end up looking like:
1405 -- temp : type := identifier;
1407 -- And in this case we might as well use the identifier directly
1408 -- and eliminate the temporary. Note that the analysis of the
1409 -- declaration was not a waste of time in that case, since it is
1410 -- what generated the necessary change of representation code. If
1411 -- the change of representation introduced additional code, as in
1412 -- a fixed-integer conversion, the expression is not an identifier
1413 -- and must be kept.
1415 if Crep
1416 and then Present (Expression (N_Node))
1417 and then Is_Entity_Name (Expression (N_Node))
1418 then
1419 Temp := Entity (Expression (N_Node));
1420 Rewrite (N_Node, Make_Null_Statement (Loc));
1421 end if;
1423 -- For IN parameter, all we do is to replace the actual
1425 if Ekind (Formal) = E_In_Parameter then
1426 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1427 Analyze (Actual);
1429 -- Processing for OUT or IN OUT parameter
1431 else
1432 -- Kill current value indications for the temporary variable we
1433 -- created, since we just passed it as an OUT parameter.
1435 Kill_Current_Values (Temp);
1436 Set_Is_Known_Valid (Temp, False);
1438 -- If type conversion, use reverse conversion on exit
1440 if Nkind (Actual) = N_Type_Conversion then
1441 if Conversion_OK (Actual) then
1442 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1443 else
1444 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1445 end if;
1446 else
1447 Expr := New_Occurrence_Of (Temp, Loc);
1448 end if;
1450 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1451 Analyze (Actual);
1453 -- If the actual is a conversion of a packed reference, it may
1454 -- already have been expanded by Remove_Side_Effects, and the
1455 -- resulting variable is a temporary which does not designate
1456 -- the proper out-parameter, which may not be addressable. In
1457 -- that case, generate an assignment to the original expression
1458 -- (before expansion of the packed reference) so that the proper
1459 -- expansion of assignment to a packed component can take place.
1461 declare
1462 Obj : Node_Id;
1463 Lhs : Node_Id;
1465 begin
1466 if Is_Renaming_Of_Object (Var)
1467 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1468 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1469 = N_Indexed_Component
1470 and then
1471 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1472 then
1473 Obj := Renamed_Object (Var);
1474 Lhs :=
1475 Make_Selected_Component (Loc,
1476 Prefix =>
1477 New_Copy_Tree (Original_Node (Prefix (Obj))),
1478 Selector_Name => New_Copy (Selector_Name (Obj)));
1479 Reset_Analyzed_Flags (Lhs);
1481 else
1482 Lhs := New_Occurrence_Of (Var, Loc);
1483 end if;
1485 Set_Assignment_OK (Lhs);
1487 if Is_Access_Type (E_Formal)
1488 and then Is_Entity_Name (Lhs)
1489 and then
1490 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1491 then
1492 -- Copyback target is an Ada 2012 stand-alone object of an
1493 -- anonymous access type.
1495 pragma Assert (Ada_Version >= Ada_2012);
1497 if Type_Access_Level (E_Formal) >
1498 Object_Access_Level (Lhs)
1499 then
1500 Append_To (Post_Call,
1501 Make_Raise_Program_Error (Loc,
1502 Reason => PE_Accessibility_Check_Failed));
1503 end if;
1505 Append_To (Post_Call,
1506 Make_Assignment_Statement (Loc,
1507 Name => Lhs,
1508 Expression => Expr));
1510 -- We would like to somehow suppress generation of the
1511 -- extra_accessibility assignment generated by the expansion
1512 -- of the above assignment statement. It's not a correctness
1513 -- issue because the following assignment renders it dead,
1514 -- but generating back-to-back assignments to the same
1515 -- target is undesirable. ???
1517 Append_To (Post_Call,
1518 Make_Assignment_Statement (Loc,
1519 Name => New_Occurrence_Of (
1520 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1521 Expression => Make_Integer_Literal (Loc,
1522 Type_Access_Level (E_Formal))));
1524 else
1525 Append_To (Post_Call,
1526 Make_Assignment_Statement (Loc,
1527 Name => Lhs,
1528 Expression => Expr));
1529 end if;
1530 end;
1531 end if;
1532 end Add_Call_By_Copy_Code;
1534 ----------------------------------
1535 -- Add_Simple_Call_By_Copy_Code --
1536 ----------------------------------
1538 procedure Add_Simple_Call_By_Copy_Code is
1539 Decl : Node_Id;
1540 F_Typ : Entity_Id := Etype (Formal);
1541 Incod : Node_Id;
1542 Indic : Node_Id;
1543 Lhs : Node_Id;
1544 Outcod : Node_Id;
1545 Rhs : Node_Id;
1546 Temp : Entity_Id;
1548 begin
1549 if not Is_Legal_Copy then
1550 return;
1551 end if;
1553 -- Handle formals whose type comes from the limited view
1555 if From_Limited_With (F_Typ)
1556 and then Has_Non_Limited_View (F_Typ)
1557 then
1558 F_Typ := Non_Limited_View (F_Typ);
1559 end if;
1561 -- Use formal type for temp, unless formal type is an unconstrained
1562 -- array, in which case we don't have to worry about bounds checks,
1563 -- and we use the actual type, since that has appropriate bounds.
1565 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1566 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1567 else
1568 Indic := New_Occurrence_Of (F_Typ, Loc);
1569 end if;
1571 -- Prepare to generate code
1573 Reset_Packed_Prefix;
1575 Temp := Make_Temporary (Loc, 'T', Actual);
1576 Incod := Relocate_Node (Actual);
1577 Outcod := New_Copy_Tree (Incod);
1579 -- Generate declaration of temporary variable, initializing it
1580 -- with the input parameter unless we have an OUT formal or
1581 -- this is an initialization call.
1583 -- If the formal is an out parameter with discriminants, the
1584 -- discriminants must be captured even if the rest of the object
1585 -- is in principle uninitialized, because the discriminants may
1586 -- be read by the called subprogram.
1588 if Ekind (Formal) = E_Out_Parameter then
1589 Incod := Empty;
1591 if Has_Discriminants (F_Typ) then
1592 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1593 end if;
1595 elsif Inside_Init_Proc then
1597 -- Could use a comment here to match comment below ???
1599 if Nkind (Actual) /= N_Selected_Component
1600 or else
1601 not Has_Discriminant_Dependent_Constraint
1602 (Entity (Selector_Name (Actual)))
1603 then
1604 Incod := Empty;
1606 -- Otherwise, keep the component in order to generate the proper
1607 -- actual subtype, that depends on enclosing discriminants.
1609 else
1610 null;
1611 end if;
1612 end if;
1614 Decl :=
1615 Make_Object_Declaration (Loc,
1616 Defining_Identifier => Temp,
1617 Object_Definition => Indic,
1618 Expression => Incod);
1620 if Inside_Init_Proc
1621 and then No (Incod)
1622 then
1623 -- If the call is to initialize a component of a composite type,
1624 -- and the component does not depend on discriminants, use the
1625 -- actual type of the component. This is required in case the
1626 -- component is constrained, because in general the formal of the
1627 -- initialization procedure will be unconstrained. Note that if
1628 -- the component being initialized is constrained by an enclosing
1629 -- discriminant, the presence of the initialization in the
1630 -- declaration will generate an expression for the actual subtype.
1632 Set_No_Initialization (Decl);
1633 Set_Object_Definition (Decl,
1634 New_Occurrence_Of (Etype (Actual), Loc));
1635 end if;
1637 Insert_Action (N, Decl);
1639 -- The actual is simply a reference to the temporary
1641 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1643 -- Generate copy out if OUT or IN OUT parameter
1645 if Ekind (Formal) /= E_In_Parameter then
1646 Lhs := Outcod;
1647 Rhs := New_Occurrence_Of (Temp, Loc);
1649 -- Deal with conversion
1651 if Nkind (Lhs) = N_Type_Conversion then
1652 Lhs := Expression (Lhs);
1653 Rhs := Convert_To (Etype (Actual), Rhs);
1654 end if;
1656 Append_To (Post_Call,
1657 Make_Assignment_Statement (Loc,
1658 Name => Lhs,
1659 Expression => Rhs));
1660 Set_Assignment_OK (Name (Last (Post_Call)));
1661 end if;
1662 end Add_Simple_Call_By_Copy_Code;
1664 --------------------------------------
1665 -- Add_Validation_Call_By_Copy_Code --
1666 --------------------------------------
1668 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1669 Expr : Node_Id;
1670 Obj : Node_Id;
1671 Obj_Typ : Entity_Id;
1672 Var : constant Node_Id := Unqual_Conv (Act);
1673 Var_Id : Entity_Id;
1675 begin
1676 -- Copy the value of the validation variable back into the object
1677 -- being validated.
1679 if Is_Entity_Name (Var) then
1680 Var_Id := Entity (Var);
1681 Obj := Validated_Object (Var_Id);
1682 Obj_Typ := Etype (Obj);
1684 Expr := New_Occurrence_Of (Var_Id, Loc);
1686 -- A type conversion is needed when the validation variable and
1687 -- the validated object carry different types. This case occurs
1688 -- when the actual is qualified in some fashion.
1690 -- Common:
1691 -- subtype Int is Integer range ...;
1692 -- procedure Call (Val : in out Integer);
1694 -- Original:
1695 -- Object : Int;
1696 -- Call (Integer (Object));
1698 -- Expanded:
1699 -- Object : Int;
1700 -- Var : Integer := Object; -- conversion to base type
1701 -- if not Var'Valid then -- validity check
1702 -- Call (Var); -- modify Var
1703 -- Object := Int (Var); -- conversion to subtype
1705 if Etype (Var_Id) /= Obj_Typ then
1706 Expr :=
1707 Make_Type_Conversion (Loc,
1708 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1709 Expression => Expr);
1710 end if;
1712 -- Generate:
1713 -- Object := Var;
1714 -- <or>
1715 -- Object := Object_Type (Var);
1717 Append_To (Post_Call,
1718 Make_Assignment_Statement (Loc,
1719 Name => Obj,
1720 Expression => Expr));
1722 -- If the flow reaches this point, then this routine was invoked with
1723 -- an actual which does not denote a validation variable.
1725 else
1726 pragma Assert (False);
1727 null;
1728 end if;
1729 end Add_Validation_Call_By_Copy_Code;
1731 ---------------------------
1732 -- Check_Fortran_Logical --
1733 ---------------------------
1735 procedure Check_Fortran_Logical is
1736 Logical : constant Entity_Id := Etype (Formal);
1737 Var : Entity_Id;
1739 -- Note: this is very incomplete, e.g. it does not handle arrays
1740 -- of logical values. This is really not the right approach at all???)
1742 begin
1743 if Convention (Subp) = Convention_Fortran
1744 and then Root_Type (Etype (Formal)) = Standard_Boolean
1745 and then Ekind (Formal) /= E_In_Parameter
1746 then
1747 Var := Make_Var (Actual);
1748 Append_To (Post_Call,
1749 Make_Assignment_Statement (Loc,
1750 Name => New_Occurrence_Of (Var, Loc),
1751 Expression =>
1752 Unchecked_Convert_To (
1753 Logical,
1754 Make_Op_Ne (Loc,
1755 Left_Opnd => New_Occurrence_Of (Var, Loc),
1756 Right_Opnd =>
1757 Unchecked_Convert_To (
1758 Logical,
1759 New_Occurrence_Of (Standard_False, Loc))))));
1760 end if;
1761 end Check_Fortran_Logical;
1763 -------------------
1764 -- Is_Legal_Copy --
1765 -------------------
1767 function Is_Legal_Copy return Boolean is
1768 begin
1769 -- An attempt to copy a value of such a type can only occur if
1770 -- representation clauses give the actual a misaligned address.
1772 if Is_By_Reference_Type (Etype (Formal)) then
1774 -- The actual may in fact be properly aligned but there is not
1775 -- enough front-end information to determine this. In that case
1776 -- gigi will emit an error if a copy is not legal, or generate
1777 -- the proper code.
1779 return False;
1781 -- For users of Starlet, we assume that the specification of by-
1782 -- reference mechanism is mandatory. This may lead to unaligned
1783 -- objects but at least for DEC legacy code it is known to work.
1784 -- The warning will alert users of this code that a problem may
1785 -- be lurking.
1787 elsif Mechanism (Formal) = By_Reference
1788 and then Is_Valued_Procedure (Scope (Formal))
1789 then
1790 Error_Msg_N
1791 ("by_reference actual may be misaligned??", Actual);
1792 return False;
1794 else
1795 return True;
1796 end if;
1797 end Is_Legal_Copy;
1799 --------------
1800 -- Make_Var --
1801 --------------
1803 function Make_Var (Actual : Node_Id) return Entity_Id is
1804 Var : Entity_Id;
1806 begin
1807 if Is_Entity_Name (Actual) then
1808 return Entity (Actual);
1810 else
1811 Var := Make_Temporary (Loc, 'T', Actual);
1813 N_Node :=
1814 Make_Object_Renaming_Declaration (Loc,
1815 Defining_Identifier => Var,
1816 Subtype_Mark =>
1817 New_Occurrence_Of (Etype (Actual), Loc),
1818 Name => Relocate_Node (Actual));
1820 Insert_Action (N, N_Node);
1821 return Var;
1822 end if;
1823 end Make_Var;
1825 -------------------------
1826 -- Reset_Packed_Prefix --
1827 -------------------------
1829 procedure Reset_Packed_Prefix is
1830 Pfx : Node_Id := Actual;
1831 begin
1832 loop
1833 Set_Analyzed (Pfx, False);
1834 exit when
1835 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1836 Pfx := Prefix (Pfx);
1837 end loop;
1838 end Reset_Packed_Prefix;
1840 -- Start of processing for Expand_Actuals
1842 begin
1843 Post_Call := New_List;
1845 Formal := First_Formal (Subp);
1846 Actual := First_Actual (N);
1847 while Present (Formal) loop
1848 E_Formal := Etype (Formal);
1849 E_Actual := Etype (Actual);
1851 -- Handle formals whose type comes from the limited view
1853 if From_Limited_With (E_Formal)
1854 and then Has_Non_Limited_View (E_Formal)
1855 then
1856 E_Formal := Non_Limited_View (E_Formal);
1857 end if;
1859 if Is_Scalar_Type (E_Formal)
1860 or else Nkind (Actual) = N_Slice
1861 then
1862 Check_Fortran_Logical;
1864 -- RM 6.4.1 (11)
1866 elsif Ekind (Formal) /= E_Out_Parameter then
1868 -- The unusual case of the current instance of a protected type
1869 -- requires special handling. This can only occur in the context
1870 -- of a call within the body of a protected operation.
1872 if Is_Entity_Name (Actual)
1873 and then Ekind (Entity (Actual)) = E_Protected_Type
1874 and then In_Open_Scopes (Entity (Actual))
1875 then
1876 if Scope (Subp) /= Entity (Actual) then
1877 Error_Msg_N
1878 ("operation outside protected type may not "
1879 & "call back its protected operations??", Actual);
1880 end if;
1882 Rewrite (Actual,
1883 Expand_Protected_Object_Reference (N, Entity (Actual)));
1884 end if;
1886 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1887 -- build-in-place function, then a temporary return object needs
1888 -- to be created and access to it must be passed to the function.
1889 -- Currently we limit such functions to those with inherently
1890 -- limited result subtypes, but eventually we plan to expand the
1891 -- functions that are treated as build-in-place to include other
1892 -- composite result types.
1894 if Is_Build_In_Place_Function_Call (Actual) then
1895 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1897 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1898 -- actuals containing build-in-place function calls whose returned
1899 -- object covers interface types.
1901 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
1902 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
1903 end if;
1905 Apply_Constraint_Check (Actual, E_Formal);
1907 -- Out parameter case. No constraint checks on access type
1908 -- RM 6.4.1 (13)
1910 elsif Is_Access_Type (E_Formal) then
1911 null;
1913 -- RM 6.4.1 (14)
1915 elsif Has_Discriminants (Base_Type (E_Formal))
1916 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1917 then
1918 Apply_Constraint_Check (Actual, E_Formal);
1920 -- RM 6.4.1 (15)
1922 else
1923 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1924 end if;
1926 -- Processing for IN-OUT and OUT parameters
1928 if Ekind (Formal) /= E_In_Parameter then
1930 -- For type conversions of arrays, apply length/range checks
1932 if Is_Array_Type (E_Formal)
1933 and then Nkind (Actual) = N_Type_Conversion
1934 then
1935 if Is_Constrained (E_Formal) then
1936 Apply_Length_Check (Expression (Actual), E_Formal);
1937 else
1938 Apply_Range_Check (Expression (Actual), E_Formal);
1939 end if;
1940 end if;
1942 -- The actual denotes a variable which captures the value of an
1943 -- object for validation purposes. Add a copy-back to reflect any
1944 -- potential changes in value back into the original object.
1946 -- Var : ... := Object;
1947 -- if not Var'Valid then -- validity check
1948 -- Call (Var); -- modify var
1949 -- Object := Var; -- update Object
1951 -- This case is given higher priority because the subsequent check
1952 -- for type conversion may add an extra copy of the variable and
1953 -- prevent proper value propagation back in the original object.
1955 if Is_Validation_Variable_Reference (Actual) then
1956 Add_Validation_Call_By_Copy_Code (Actual);
1958 -- If argument is a type conversion for a type that is passed by
1959 -- copy, then we must pass the parameter by copy.
1961 elsif Nkind (Actual) = N_Type_Conversion
1962 and then
1963 (Is_Numeric_Type (E_Formal)
1964 or else Is_Access_Type (E_Formal)
1965 or else Is_Enumeration_Type (E_Formal)
1966 or else Is_Bit_Packed_Array (Etype (Formal))
1967 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1969 -- Also pass by copy if change of representation
1971 or else not Same_Representation
1972 (Etype (Formal),
1973 Etype (Expression (Actual))))
1974 then
1975 Add_Call_By_Copy_Code;
1977 -- References to components of bit-packed arrays are expanded
1978 -- at this point, rather than at the point of analysis of the
1979 -- actuals, to handle the expansion of the assignment to
1980 -- [in] out parameters.
1982 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1983 Add_Simple_Call_By_Copy_Code;
1985 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1986 -- because the back-end cannot cope with such objects. In other
1987 -- cases where alignment forces a copy, the back-end generates
1988 -- it properly. It should not be generated unconditionally in the
1989 -- front-end because it does not know precisely the alignment
1990 -- requirements of the target, and makes too conservative an
1991 -- estimate, leading to superfluous copies or spurious errors
1992 -- on by-reference parameters.
1994 elsif Nkind (Actual) = N_Selected_Component
1995 and then
1996 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1997 and then not Represented_As_Scalar (Etype (Formal))
1998 then
1999 Add_Simple_Call_By_Copy_Code;
2001 -- References to slices of bit-packed arrays are expanded
2003 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2004 Add_Call_By_Copy_Code;
2006 -- References to possibly unaligned slices of arrays are expanded
2008 elsif Is_Possibly_Unaligned_Slice (Actual) then
2009 Add_Call_By_Copy_Code;
2011 -- Deal with access types where the actual subtype and the
2012 -- formal subtype are not the same, requiring a check.
2014 -- It is necessary to exclude tagged types because of "downward
2015 -- conversion" errors.
2017 elsif Is_Access_Type (E_Formal)
2018 and then not Same_Type (E_Formal, E_Actual)
2019 and then not Is_Tagged_Type (Designated_Type (E_Formal))
2020 then
2021 Add_Call_By_Copy_Code;
2023 -- If the actual is not a scalar and is marked for volatile
2024 -- treatment, whereas the formal is not volatile, then pass
2025 -- by copy unless it is a by-reference type.
2027 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2028 -- because this is the enforcement of a language rule that applies
2029 -- only to "real" volatile variables, not e.g. to the address
2030 -- clause overlay case.
2032 elsif Is_Entity_Name (Actual)
2033 and then Is_Volatile (Entity (Actual))
2034 and then not Is_By_Reference_Type (E_Actual)
2035 and then not Is_Scalar_Type (Etype (Entity (Actual)))
2036 and then not Is_Volatile (E_Formal)
2037 then
2038 Add_Call_By_Copy_Code;
2040 elsif Nkind (Actual) = N_Indexed_Component
2041 and then Is_Entity_Name (Prefix (Actual))
2042 and then Has_Volatile_Components (Entity (Prefix (Actual)))
2043 then
2044 Add_Call_By_Copy_Code;
2046 -- Add call-by-copy code for the case of scalar out parameters
2047 -- when it is not known at compile time that the subtype of the
2048 -- formal is a subrange of the subtype of the actual (or vice
2049 -- versa for in out parameters), in order to get range checks
2050 -- on such actuals. (Maybe this case should be handled earlier
2051 -- in the if statement???)
2053 elsif Is_Scalar_Type (E_Formal)
2054 and then
2055 (not In_Subrange_Of (E_Formal, E_Actual)
2056 or else
2057 (Ekind (Formal) = E_In_Out_Parameter
2058 and then not In_Subrange_Of (E_Actual, E_Formal)))
2059 then
2060 -- Perhaps the setting back to False should be done within
2061 -- Add_Call_By_Copy_Code, since it could get set on other
2062 -- cases occurring above???
2064 if Do_Range_Check (Actual) then
2065 Set_Do_Range_Check (Actual, False);
2066 end if;
2068 Add_Call_By_Copy_Code;
2069 end if;
2071 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2072 -- by-reference parameters on exit from the call. If the actual
2073 -- is a derived type and the operation is inherited, the body
2074 -- of the operation will not contain a call to the predicate
2075 -- function, so it must be done explicitly after the call. Ditto
2076 -- if the actual is an entity of a predicated subtype.
2078 -- The rule refers to by-reference types, but a check is needed
2079 -- for by-copy types as well. That check is subsumed by the rule
2080 -- for subtype conversion on assignment, but we can generate the
2081 -- required check now.
2083 -- Note also that Subp may be either a subprogram entity for
2084 -- direct calls, or a type entity for indirect calls, which must
2085 -- be handled separately because the name does not denote an
2086 -- overloadable entity.
2088 By_Ref_Predicate_Check : declare
2089 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2090 Atyp : Entity_Id;
2092 function Is_Public_Subp return Boolean;
2093 -- Check whether the subprogram being called is a visible
2094 -- operation of the type of the actual. Used to determine
2095 -- whether an invariant check must be generated on the
2096 -- caller side.
2098 ---------------------
2099 -- Is_Public_Subp --
2100 ---------------------
2102 function Is_Public_Subp return Boolean is
2103 Pack : constant Entity_Id := Scope (Subp);
2104 Subp_Decl : Node_Id;
2106 begin
2107 if not Is_Subprogram (Subp) then
2108 return False;
2110 -- The operation may be inherited, or a primitive of the
2111 -- root type.
2113 elsif
2114 Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2115 N_Full_Type_Declaration)
2116 then
2117 Subp_Decl := Parent (Subp);
2119 else
2120 Subp_Decl := Unit_Declaration_Node (Subp);
2121 end if;
2123 return Ekind (Pack) = E_Package
2124 and then
2125 List_Containing (Subp_Decl) =
2126 Visible_Declarations
2127 (Specification (Unit_Declaration_Node (Pack)));
2128 end Is_Public_Subp;
2130 -- Start of processing for By_Ref_Predicate_Check
2132 begin
2133 if No (Aund) then
2134 Atyp := E_Actual;
2135 else
2136 Atyp := Aund;
2137 end if;
2139 if Has_Predicates (Atyp)
2140 and then Present (Predicate_Function (Atyp))
2142 -- Skip predicate checks for special cases
2144 and then Predicate_Tests_On_Arguments (Subp)
2145 then
2146 Append_To (Post_Call,
2147 Make_Predicate_Check (Atyp, Actual));
2148 end if;
2150 -- We generated caller-side invariant checks in two cases:
2152 -- a) when calling an inherited operation, where there is an
2153 -- implicit view conversion of the actual to the parent type.
2155 -- b) When the conversion is explicit
2157 -- We treat these cases separately because the required
2158 -- conversion for a) is added later when expanding the call.
2160 if Has_Invariants (Etype (Actual))
2161 and then
2162 Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2163 then
2164 if Comes_From_Source (N) and then Is_Public_Subp then
2165 Append_To (Post_Call, Make_Invariant_Call (Actual));
2166 end if;
2168 elsif Nkind (Actual) = N_Type_Conversion
2169 and then Has_Invariants (Etype (Expression (Actual)))
2170 then
2171 if Comes_From_Source (N) and then Is_Public_Subp then
2172 Append_To (Post_Call,
2173 Make_Invariant_Call (Expression (Actual)));
2174 end if;
2175 end if;
2176 end By_Ref_Predicate_Check;
2178 -- Processing for IN parameters
2180 else
2181 -- For IN parameters in the bit-packed array case, we expand an
2182 -- indexed component (the circuit in Exp_Ch4 deliberately left
2183 -- indexed components appearing as actuals untouched, so that
2184 -- the special processing above for the OUT and IN OUT cases
2185 -- could be performed. We could make the test in Exp_Ch4 more
2186 -- complex and have it detect the parameter mode, but it is
2187 -- easier simply to handle all cases here.)
2189 if Nkind (Actual) = N_Indexed_Component
2190 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2191 then
2192 Reset_Packed_Prefix;
2193 Expand_Packed_Element_Reference (Actual);
2195 -- If we have a reference to a bit-packed array, we copy it, since
2196 -- the actual must be byte aligned.
2198 -- Is this really necessary in all cases???
2200 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2201 Add_Simple_Call_By_Copy_Code;
2203 -- If a non-scalar actual is possibly unaligned, we need a copy
2205 elsif Is_Possibly_Unaligned_Object (Actual)
2206 and then not Represented_As_Scalar (Etype (Formal))
2207 then
2208 Add_Simple_Call_By_Copy_Code;
2210 -- Similarly, we have to expand slices of packed arrays here
2211 -- because the result must be byte aligned.
2213 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2214 Add_Call_By_Copy_Code;
2216 -- Only processing remaining is to pass by copy if this is a
2217 -- reference to a possibly unaligned slice, since the caller
2218 -- expects an appropriately aligned argument.
2220 elsif Is_Possibly_Unaligned_Slice (Actual) then
2221 Add_Call_By_Copy_Code;
2223 -- An unusual case: a current instance of an enclosing task can be
2224 -- an actual, and must be replaced by a reference to self.
2226 elsif Is_Entity_Name (Actual)
2227 and then Is_Task_Type (Entity (Actual))
2228 then
2229 if In_Open_Scopes (Entity (Actual)) then
2230 Rewrite (Actual,
2231 (Make_Function_Call (Loc,
2232 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2233 Analyze (Actual);
2235 -- A task type cannot otherwise appear as an actual
2237 else
2238 raise Program_Error;
2239 end if;
2240 end if;
2241 end if;
2243 Next_Formal (Formal);
2244 Next_Actual (Actual);
2245 end loop;
2246 end Expand_Actuals;
2248 -----------------
2249 -- Expand_Call --
2250 -----------------
2252 procedure Expand_Call (N : Node_Id) is
2253 Post_Call : List_Id;
2255 begin
2256 pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2257 N_Function_Call,
2258 N_Procedure_Call_Statement));
2260 Expand_Call_Helper (N, Post_Call);
2261 Insert_Post_Call_Actions (N, Post_Call);
2262 end Expand_Call;
2264 ------------------------
2265 -- Expand_Call_Helper --
2266 ------------------------
2268 -- This procedure handles expansion of function calls and procedure call
2269 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2270 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2272 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2273 -- Provide values of actuals for all formals in Extra_Formals list
2274 -- Replace "call" to enumeration literal function by literal itself
2275 -- Rewrite call to predefined operator as operator
2276 -- Replace actuals to in-out parameters that are numeric conversions,
2277 -- with explicit assignment to temporaries before and after the call.
2279 -- Note that the list of actuals has been filled with default expressions
2280 -- during semantic analysis of the call. Only the extra actuals required
2281 -- for the 'Constrained attribute and for accessibility checks are added
2282 -- at this point.
2284 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2285 Loc : constant Source_Ptr := Sloc (N);
2286 Call_Node : Node_Id := N;
2287 Extra_Actuals : List_Id := No_List;
2288 Prev : Node_Id := Empty;
2290 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2291 -- Adds one entry to the end of the actual parameter list. Used for
2292 -- default parameters and for extra actuals (for Extra_Formals). The
2293 -- argument is an N_Parameter_Association node.
2295 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2296 -- Adds an extra actual to the list of extra actuals. Expr is the
2297 -- expression for the value of the actual, EF is the entity for the
2298 -- extra formal.
2300 procedure Add_View_Conversion_Invariants
2301 (Formal : Entity_Id;
2302 Actual : Node_Id);
2303 -- Adds invariant checks for every intermediate type between the range
2304 -- of a view converted argument to its ancestor (from parent to child).
2306 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2307 -- Within an instance, a type derived from an untagged formal derived
2308 -- type inherits from the original parent, not from the actual. The
2309 -- current derivation mechanism has the derived type inherit from the
2310 -- actual, which is only correct outside of the instance. If the
2311 -- subprogram is inherited, we test for this particular case through a
2312 -- convoluted tree traversal before setting the proper subprogram to be
2313 -- called.
2315 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2316 -- Return true if E comes from an instance that is not yet frozen
2318 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2319 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2321 function New_Value (From : Node_Id) return Node_Id;
2322 -- From is the original Expression. New_Value is equivalent to a call
2323 -- to Duplicate_Subexpr with an explicit dereference when From is an
2324 -- access parameter.
2326 --------------------------
2327 -- Add_Actual_Parameter --
2328 --------------------------
2330 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2331 Actual_Expr : constant Node_Id :=
2332 Explicit_Actual_Parameter (Insert_Param);
2334 begin
2335 -- Case of insertion is first named actual
2337 if No (Prev) or else
2338 Nkind (Parent (Prev)) /= N_Parameter_Association
2339 then
2340 Set_Next_Named_Actual
2341 (Insert_Param, First_Named_Actual (Call_Node));
2342 Set_First_Named_Actual (Call_Node, Actual_Expr);
2344 if No (Prev) then
2345 if No (Parameter_Associations (Call_Node)) then
2346 Set_Parameter_Associations (Call_Node, New_List);
2347 end if;
2349 Append (Insert_Param, Parameter_Associations (Call_Node));
2351 else
2352 Insert_After (Prev, Insert_Param);
2353 end if;
2355 -- Case of insertion is not first named actual
2357 else
2358 Set_Next_Named_Actual
2359 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2360 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2361 Append (Insert_Param, Parameter_Associations (Call_Node));
2362 end if;
2364 Prev := Actual_Expr;
2365 end Add_Actual_Parameter;
2367 ----------------------
2368 -- Add_Extra_Actual --
2369 ----------------------
2371 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2372 Loc : constant Source_Ptr := Sloc (Expr);
2374 begin
2375 if Extra_Actuals = No_List then
2376 Extra_Actuals := New_List;
2377 Set_Parent (Extra_Actuals, Call_Node);
2378 end if;
2380 Append_To (Extra_Actuals,
2381 Make_Parameter_Association (Loc,
2382 Selector_Name => New_Occurrence_Of (EF, Loc),
2383 Explicit_Actual_Parameter => Expr));
2385 Analyze_And_Resolve (Expr, Etype (EF));
2387 if Nkind (Call_Node) = N_Function_Call then
2388 Set_Is_Accessibility_Actual (Parent (Expr));
2389 end if;
2390 end Add_Extra_Actual;
2392 ------------------------------------
2393 -- Add_View_Conversion_Invariants --
2394 ------------------------------------
2396 procedure Add_View_Conversion_Invariants
2397 (Formal : Entity_Id;
2398 Actual : Node_Id)
2400 Arg : Entity_Id;
2401 Curr_Typ : Entity_Id;
2402 Inv_Checks : List_Id;
2403 Par_Typ : Entity_Id;
2405 begin
2406 Inv_Checks := No_List;
2408 -- Extract the argument from a potentially nested set of view
2409 -- conversions.
2411 Arg := Actual;
2412 while Nkind (Arg) = N_Type_Conversion loop
2413 Arg := Expression (Arg);
2414 end loop;
2416 -- Move up the derivation chain starting with the type of the formal
2417 -- parameter down to the type of the actual object.
2419 Curr_Typ := Empty;
2420 Par_Typ := Etype (Arg);
2421 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2422 Curr_Typ := Par_Typ;
2424 if Has_Invariants (Curr_Typ)
2425 and then Present (Invariant_Procedure (Curr_Typ))
2426 then
2427 -- Verify the invariate of the current type. Generate:
2429 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2431 Prepend_New_To (Inv_Checks,
2432 Make_Procedure_Call_Statement (Loc,
2433 Name =>
2434 New_Occurrence_Of
2435 (Invariant_Procedure (Curr_Typ), Loc),
2436 Parameter_Associations => New_List (
2437 Make_Type_Conversion (Loc,
2438 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2439 Expression => New_Copy_Tree (Arg)))));
2440 end if;
2442 Par_Typ := Base_Type (Etype (Curr_Typ));
2443 end loop;
2445 if not Is_Empty_List (Inv_Checks) then
2446 Insert_Actions_After (N, Inv_Checks);
2447 end if;
2448 end Add_View_Conversion_Invariants;
2450 ---------------------------
2451 -- Inherited_From_Formal --
2452 ---------------------------
2454 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2455 Par : Entity_Id;
2456 Gen_Par : Entity_Id;
2457 Gen_Prim : Elist_Id;
2458 Elmt : Elmt_Id;
2459 Indic : Node_Id;
2461 begin
2462 -- If the operation is inherited, it is attached to the corresponding
2463 -- type derivation. If the parent in the derivation is a generic
2464 -- actual, it is a subtype of the actual, and we have to recover the
2465 -- original derived type declaration to find the proper parent.
2467 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2468 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2469 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2470 N_Derived_Type_Definition
2471 or else not In_Instance
2472 then
2473 return Empty;
2475 else
2476 Indic :=
2477 Subtype_Indication
2478 (Type_Definition (Original_Node (Parent (S))));
2480 if Nkind (Indic) = N_Subtype_Indication then
2481 Par := Entity (Subtype_Mark (Indic));
2482 else
2483 Par := Entity (Indic);
2484 end if;
2485 end if;
2487 if not Is_Generic_Actual_Type (Par)
2488 or else Is_Tagged_Type (Par)
2489 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2490 or else not In_Open_Scopes (Scope (Par))
2491 then
2492 return Empty;
2493 else
2494 Gen_Par := Generic_Parent_Type (Parent (Par));
2495 end if;
2497 -- If the actual has no generic parent type, the formal is not
2498 -- a formal derived type, so nothing to inherit.
2500 if No (Gen_Par) then
2501 return Empty;
2502 end if;
2504 -- If the generic parent type is still the generic type, this is a
2505 -- private formal, not a derived formal, and there are no operations
2506 -- inherited from the formal.
2508 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2509 return Empty;
2510 end if;
2512 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2514 Elmt := First_Elmt (Gen_Prim);
2515 while Present (Elmt) loop
2516 if Chars (Node (Elmt)) = Chars (S) then
2517 declare
2518 F1 : Entity_Id;
2519 F2 : Entity_Id;
2521 begin
2522 F1 := First_Formal (S);
2523 F2 := First_Formal (Node (Elmt));
2524 while Present (F1)
2525 and then Present (F2)
2526 loop
2527 if Etype (F1) = Etype (F2)
2528 or else Etype (F2) = Gen_Par
2529 then
2530 Next_Formal (F1);
2531 Next_Formal (F2);
2532 else
2533 Next_Elmt (Elmt);
2534 exit; -- not the right subprogram
2535 end if;
2537 return Node (Elmt);
2538 end loop;
2539 end;
2541 else
2542 Next_Elmt (Elmt);
2543 end if;
2544 end loop;
2546 raise Program_Error;
2547 end Inherited_From_Formal;
2549 --------------------------
2550 -- In_Unfrozen_Instance --
2551 --------------------------
2553 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2554 S : Entity_Id;
2556 begin
2557 S := E;
2558 while Present (S) and then S /= Standard_Standard loop
2559 if Is_Generic_Instance (S)
2560 and then Present (Freeze_Node (S))
2561 and then not Analyzed (Freeze_Node (S))
2562 then
2563 return True;
2564 end if;
2566 S := Scope (S);
2567 end loop;
2569 return False;
2570 end In_Unfrozen_Instance;
2572 -------------------------
2573 -- Is_Direct_Deep_Call --
2574 -------------------------
2576 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2577 begin
2578 if Is_TSS (Subp, TSS_Deep_Adjust)
2579 or else Is_TSS (Subp, TSS_Deep_Finalize)
2580 or else Is_TSS (Subp, TSS_Deep_Initialize)
2581 then
2582 declare
2583 Actual : Node_Id;
2584 Formal : Node_Id;
2586 begin
2587 Actual := First (Parameter_Associations (N));
2588 Formal := First_Formal (Subp);
2589 while Present (Actual)
2590 and then Present (Formal)
2591 loop
2592 if Nkind (Actual) = N_Identifier
2593 and then Is_Controlling_Actual (Actual)
2594 and then Etype (Actual) = Etype (Formal)
2595 then
2596 return True;
2597 end if;
2599 Next (Actual);
2600 Next_Formal (Formal);
2601 end loop;
2602 end;
2603 end if;
2605 return False;
2606 end Is_Direct_Deep_Call;
2608 ---------------
2609 -- New_Value --
2610 ---------------
2612 function New_Value (From : Node_Id) return Node_Id is
2613 Res : constant Node_Id := Duplicate_Subexpr (From);
2614 begin
2615 if Is_Access_Type (Etype (From)) then
2616 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2617 else
2618 return Res;
2619 end if;
2620 end New_Value;
2622 -- Local variables
2624 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2625 Actual : Node_Id;
2626 Formal : Entity_Id;
2627 Orig_Subp : Entity_Id := Empty;
2628 Param_Count : Natural := 0;
2629 Parent_Formal : Entity_Id;
2630 Parent_Subp : Entity_Id;
2631 Pref_Entity : Entity_Id;
2632 Scop : Entity_Id;
2633 Subp : Entity_Id;
2635 Prev_Orig : Node_Id;
2636 -- Original node for an actual, which may have been rewritten. If the
2637 -- actual is a function call that has been transformed from a selected
2638 -- component, the original node is unanalyzed. Otherwise, it carries
2639 -- semantic information used to generate additional actuals.
2641 CW_Interface_Formals_Present : Boolean := False;
2643 -- Start of processing for Expand_Call_Helper
2645 begin
2646 Post_Call := New_List;
2648 -- Expand the function or procedure call if the first actual has a
2649 -- declared dimension aspect, and the subprogram is declared in one
2650 -- of the dimension I/O packages.
2652 if Ada_Version >= Ada_2012
2653 and then
2654 Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2655 and then Present (Parameter_Associations (Call_Node))
2656 then
2657 Expand_Put_Call_With_Symbol (Call_Node);
2658 end if;
2660 -- Ignore if previous error
2662 if Nkind (Call_Node) in N_Has_Etype
2663 and then Etype (Call_Node) = Any_Type
2664 then
2665 return;
2666 end if;
2668 -- Call using access to subprogram with explicit dereference
2670 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2671 Subp := Etype (Name (Call_Node));
2672 Parent_Subp := Empty;
2674 -- Case of call to simple entry, where the Name is a selected component
2675 -- whose prefix is the task, and whose selector name is the entry name
2677 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2678 Subp := Entity (Selector_Name (Name (Call_Node)));
2679 Parent_Subp := Empty;
2681 -- Case of call to member of entry family, where Name is an indexed
2682 -- component, with the prefix being a selected component giving the
2683 -- task and entry family name, and the index being the entry index.
2685 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2686 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2687 Parent_Subp := Empty;
2689 -- Normal case
2691 else
2692 Subp := Entity (Name (Call_Node));
2693 Parent_Subp := Alias (Subp);
2695 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2696 -- if we can tell that the first parameter cannot possibly be null.
2697 -- This improves efficiency by avoiding a run-time test.
2699 -- We do not do this if Raise_Exception_Always does not exist, which
2700 -- can happen in configurable run time profiles which provide only a
2701 -- Raise_Exception.
2703 if Is_RTE (Subp, RE_Raise_Exception)
2704 and then RTE_Available (RE_Raise_Exception_Always)
2705 then
2706 declare
2707 FA : constant Node_Id :=
2708 Original_Node (First_Actual (Call_Node));
2710 begin
2711 -- The case we catch is where the first argument is obtained
2712 -- using the Identity attribute (which must always be
2713 -- non-null).
2715 if Nkind (FA) = N_Attribute_Reference
2716 and then Attribute_Name (FA) = Name_Identity
2717 then
2718 Subp := RTE (RE_Raise_Exception_Always);
2719 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2720 end if;
2721 end;
2722 end if;
2724 if Ekind (Subp) = E_Entry then
2725 Parent_Subp := Empty;
2726 end if;
2727 end if;
2729 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2730 -- alternative in an asynchronous select or as an entry call in
2731 -- a conditional or timed select. Check whether the procedure call
2732 -- is a renaming of an entry and rewrite it as an entry call.
2734 if Ada_Version >= Ada_2005
2735 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2736 and then
2737 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2738 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2739 or else
2740 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2741 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2742 then
2743 declare
2744 Ren_Decl : Node_Id;
2745 Ren_Root : Entity_Id := Subp;
2747 begin
2748 -- This may be a chain of renamings, find the root
2750 if Present (Alias (Ren_Root)) then
2751 Ren_Root := Alias (Ren_Root);
2752 end if;
2754 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2755 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2757 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2758 Rewrite (Call_Node,
2759 Make_Entry_Call_Statement (Loc,
2760 Name =>
2761 New_Copy_Tree (Name (Ren_Decl)),
2762 Parameter_Associations =>
2763 New_Copy_List_Tree
2764 (Parameter_Associations (Call_Node))));
2766 return;
2767 end if;
2768 end if;
2769 end;
2770 end if;
2772 if Modify_Tree_For_C
2773 and then Nkind (Call_Node) = N_Function_Call
2774 and then Is_Entity_Name (Name (Call_Node))
2775 then
2776 declare
2777 Func_Id : constant Entity_Id :=
2778 Ultimate_Alias (Entity (Name (Call_Node)));
2779 begin
2780 -- When generating C code, transform a function call that returns
2781 -- a constrained array type into procedure form.
2783 if Rewritten_For_C (Func_Id) then
2785 -- For internally generated calls ensure that they reference
2786 -- the entity of the spec of the called function (needed since
2787 -- the expander may generate calls using the entity of their
2788 -- body). See for example Expand_Boolean_Operator().
2790 if not (Comes_From_Source (Call_Node))
2791 and then Nkind (Unit_Declaration_Node (Func_Id)) =
2792 N_Subprogram_Body
2793 then
2794 Set_Entity (Name (Call_Node),
2795 Corresponding_Function
2796 (Corresponding_Procedure (Func_Id)));
2797 end if;
2799 Rewrite_Function_Call_For_C (Call_Node);
2800 return;
2802 -- Also introduce a temporary for functions that return a record
2803 -- called within another procedure or function call, since records
2804 -- are passed by pointer in the generated C code, and we cannot
2805 -- take a pointer from a subprogram call.
2807 elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
2808 and then Is_Record_Type (Etype (Func_Id))
2809 then
2810 declare
2811 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
2812 Decl : Node_Id;
2814 begin
2815 -- Generate:
2816 -- Temp : ... := Func_Call (...);
2818 Decl :=
2819 Make_Object_Declaration (Loc,
2820 Defining_Identifier => Temp_Id,
2821 Object_Definition =>
2822 New_Occurrence_Of (Etype (Func_Id), Loc),
2823 Expression =>
2824 Make_Function_Call (Loc,
2825 Name =>
2826 New_Occurrence_Of (Func_Id, Loc),
2827 Parameter_Associations =>
2828 Parameter_Associations (Call_Node)));
2830 Insert_Action (Parent (Call_Node), Decl);
2831 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
2832 return;
2833 end;
2834 end if;
2835 end;
2836 end if;
2838 -- First step, compute extra actuals, corresponding to any Extra_Formals
2839 -- present. Note that we do not access Extra_Formals directly, instead
2840 -- we simply note the presence of the extra formals as we process the
2841 -- regular formals collecting corresponding actuals in Extra_Actuals.
2843 -- We also generate any required range checks for actuals for in formals
2844 -- as we go through the loop, since this is a convenient place to do it.
2845 -- (Though it seems that this would be better done in Expand_Actuals???)
2847 -- Special case: Thunks must not compute the extra actuals; they must
2848 -- just propagate to the target primitive their extra actuals.
2850 if Is_Thunk (Current_Scope)
2851 and then Thunk_Entity (Current_Scope) = Subp
2852 and then Present (Extra_Formals (Subp))
2853 then
2854 pragma Assert (Present (Extra_Formals (Current_Scope)));
2856 declare
2857 Target_Formal : Entity_Id;
2858 Thunk_Formal : Entity_Id;
2860 begin
2861 Target_Formal := Extra_Formals (Subp);
2862 Thunk_Formal := Extra_Formals (Current_Scope);
2863 while Present (Target_Formal) loop
2864 Add_Extra_Actual
2865 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
2866 EF => Thunk_Formal);
2868 Target_Formal := Extra_Formal (Target_Formal);
2869 Thunk_Formal := Extra_Formal (Thunk_Formal);
2870 end loop;
2872 while Is_Non_Empty_List (Extra_Actuals) loop
2873 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2874 end loop;
2876 Expand_Actuals (Call_Node, Subp, Post_Call);
2877 pragma Assert (Is_Empty_List (Post_Call));
2878 return;
2879 end;
2880 end if;
2882 Formal := First_Formal (Subp);
2883 Actual := First_Actual (Call_Node);
2884 Param_Count := 1;
2885 while Present (Formal) loop
2887 -- Generate range check if required
2889 if Do_Range_Check (Actual)
2890 and then Ekind (Formal) = E_In_Parameter
2891 then
2892 Generate_Range_Check
2893 (Actual, Etype (Formal), CE_Range_Check_Failed);
2894 end if;
2896 -- Prepare to examine current entry
2898 Prev := Actual;
2899 Prev_Orig := Original_Node (Prev);
2901 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2902 -- to expand it in a further round.
2904 CW_Interface_Formals_Present :=
2905 CW_Interface_Formals_Present
2906 or else
2907 (Is_Class_Wide_Type (Etype (Formal))
2908 and then Is_Interface (Etype (Etype (Formal))))
2909 or else
2910 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2911 and then Is_Class_Wide_Type (Directly_Designated_Type
2912 (Etype (Etype (Formal))))
2913 and then Is_Interface (Directly_Designated_Type
2914 (Etype (Etype (Formal)))));
2916 -- Create possible extra actual for constrained case. Usually, the
2917 -- extra actual is of the form actual'constrained, but since this
2918 -- attribute is only available for unconstrained records, TRUE is
2919 -- expanded if the type of the formal happens to be constrained (for
2920 -- instance when this procedure is inherited from an unconstrained
2921 -- record to a constrained one) or if the actual has no discriminant
2922 -- (its type is constrained). An exception to this is the case of a
2923 -- private type without discriminants. In this case we pass FALSE
2924 -- because the object has underlying discriminants with defaults.
2926 if Present (Extra_Constrained (Formal)) then
2927 if Ekind (Etype (Prev)) in Private_Kind
2928 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2929 then
2930 Add_Extra_Actual
2931 (Expr => New_Occurrence_Of (Standard_False, Loc),
2932 EF => Extra_Constrained (Formal));
2934 elsif Is_Constrained (Etype (Formal))
2935 or else not Has_Discriminants (Etype (Prev))
2936 then
2937 Add_Extra_Actual
2938 (Expr => New_Occurrence_Of (Standard_True, Loc),
2939 EF => Extra_Constrained (Formal));
2941 -- Do not produce extra actuals for Unchecked_Union parameters.
2942 -- Jump directly to the end of the loop.
2944 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2945 goto Skip_Extra_Actual_Generation;
2947 else
2948 -- If the actual is a type conversion, then the constrained
2949 -- test applies to the actual, not the target type.
2951 declare
2952 Act_Prev : Node_Id;
2954 begin
2955 -- Test for unchecked conversions as well, which can occur
2956 -- as out parameter actuals on calls to stream procedures.
2958 Act_Prev := Prev;
2959 while Nkind_In (Act_Prev, N_Type_Conversion,
2960 N_Unchecked_Type_Conversion)
2961 loop
2962 Act_Prev := Expression (Act_Prev);
2963 end loop;
2965 -- If the expression is a conversion of a dereference, this
2966 -- is internally generated code that manipulates addresses,
2967 -- e.g. when building interface tables. No check should
2968 -- occur in this case, and the discriminated object is not
2969 -- directly a hand.
2971 if not Comes_From_Source (Actual)
2972 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2973 and then Nkind (Act_Prev) = N_Explicit_Dereference
2974 then
2975 Add_Extra_Actual
2976 (Expr => New_Occurrence_Of (Standard_False, Loc),
2977 EF => Extra_Constrained (Formal));
2979 else
2980 Add_Extra_Actual
2981 (Expr =>
2982 Make_Attribute_Reference (Sloc (Prev),
2983 Prefix =>
2984 Duplicate_Subexpr_No_Checks
2985 (Act_Prev, Name_Req => True),
2986 Attribute_Name => Name_Constrained),
2987 EF => Extra_Constrained (Formal));
2988 end if;
2989 end;
2990 end if;
2991 end if;
2993 -- Create possible extra actual for accessibility level
2995 if Present (Extra_Accessibility (Formal)) then
2997 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2998 -- attribute, then the original actual may be an aliased object
2999 -- occurring as the prefix in a call using "Object.Operation"
3000 -- notation. In that case we must pass the level of the object,
3001 -- so Prev_Orig is reset to Prev and the attribute will be
3002 -- processed by the code for Access attributes further below.
3004 if Prev_Orig /= Prev
3005 and then Nkind (Prev) = N_Attribute_Reference
3006 and then Get_Attribute_Id (Attribute_Name (Prev)) =
3007 Attribute_Access
3008 and then Is_Aliased_View (Prev_Orig)
3009 then
3010 Prev_Orig := Prev;
3012 -- A class-wide precondition generates a test in which formals of
3013 -- the subprogram are replaced by actuals that came from source.
3014 -- In that case as well, the accessiblity comes from the actual.
3015 -- This is the one case in which there are references to formals
3016 -- outside of their subprogram.
3018 elsif Prev_Orig /= Prev
3019 and then Is_Entity_Name (Prev_Orig)
3020 and then Present (Entity (Prev_Orig))
3021 and then Is_Formal (Entity (Prev_Orig))
3022 and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3023 then
3024 Prev_Orig := Prev;
3026 -- If the actual is a formal of an enclosing subprogram it is
3027 -- the right entity, even if it is a rewriting. This happens
3028 -- when the call is within an inherited condition or predicate.
3030 elsif Is_Entity_Name (Actual)
3031 and then Is_Formal (Entity (Actual))
3032 and then In_Open_Scopes (Scope (Entity (Actual)))
3033 then
3034 Prev_Orig := Prev;
3036 elsif Nkind (Prev_Orig) = N_Type_Conversion then
3037 Prev_Orig := Expression (Prev_Orig);
3038 end if;
3040 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3041 -- accessibility levels.
3043 if Is_Thunk (Current_Scope) then
3044 declare
3045 Parm_Ent : Entity_Id;
3047 begin
3048 if Is_Controlling_Actual (Actual) then
3050 -- Find the corresponding actual of the thunk
3052 Parm_Ent := First_Entity (Current_Scope);
3053 for J in 2 .. Param_Count loop
3054 Next_Entity (Parm_Ent);
3055 end loop;
3057 -- Handle unchecked conversion of access types generated
3058 -- in thunks (cf. Expand_Interface_Thunk).
3060 elsif Is_Access_Type (Etype (Actual))
3061 and then Nkind (Actual) = N_Unchecked_Type_Conversion
3062 then
3063 Parm_Ent := Entity (Expression (Actual));
3065 else pragma Assert (Is_Entity_Name (Actual));
3066 Parm_Ent := Entity (Actual);
3067 end if;
3069 Add_Extra_Actual
3070 (Expr =>
3071 New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
3072 EF => Extra_Accessibility (Formal));
3073 end;
3075 elsif Is_Entity_Name (Prev_Orig) then
3077 -- When passing an access parameter, or a renaming of an access
3078 -- parameter, as the actual to another access parameter we need
3079 -- to pass along the actual's own access level parameter. This
3080 -- is done if we are within the scope of the formal access
3081 -- parameter (if this is an inlined body the extra formal is
3082 -- irrelevant).
3084 if (Is_Formal (Entity (Prev_Orig))
3085 or else
3086 (Present (Renamed_Object (Entity (Prev_Orig)))
3087 and then
3088 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3089 and then
3090 Is_Formal
3091 (Entity (Renamed_Object (Entity (Prev_Orig))))))
3092 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3093 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3094 then
3095 declare
3096 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3098 begin
3099 pragma Assert (Present (Parm_Ent));
3101 if Present (Extra_Accessibility (Parm_Ent)) then
3102 Add_Extra_Actual
3103 (Expr =>
3104 New_Occurrence_Of
3105 (Extra_Accessibility (Parm_Ent), Loc),
3106 EF => Extra_Accessibility (Formal));
3108 -- If the actual access parameter does not have an
3109 -- associated extra formal providing its scope level,
3110 -- then treat the actual as having library-level
3111 -- accessibility.
3113 else
3114 Add_Extra_Actual
3115 (Expr =>
3116 Make_Integer_Literal (Loc,
3117 Intval => Scope_Depth (Standard_Standard)),
3118 EF => Extra_Accessibility (Formal));
3119 end if;
3120 end;
3122 -- The actual is a normal access value, so just pass the level
3123 -- of the actual's access type.
3125 else
3126 Add_Extra_Actual
3127 (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3128 EF => Extra_Accessibility (Formal));
3129 end if;
3131 -- If the actual is an access discriminant, then pass the level
3132 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3134 elsif Nkind (Prev_Orig) = N_Selected_Component
3135 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3136 E_Discriminant
3137 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3138 E_Anonymous_Access_Type
3139 then
3140 Add_Extra_Actual
3141 (Expr =>
3142 Make_Integer_Literal (Loc,
3143 Intval => Object_Access_Level (Prefix (Prev_Orig))),
3144 EF => Extra_Accessibility (Formal));
3146 -- All other cases
3148 else
3149 case Nkind (Prev_Orig) is
3150 when N_Attribute_Reference =>
3151 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3153 -- For X'Access, pass on the level of the prefix X
3155 when Attribute_Access =>
3157 -- Accessibility level of S'Access is that of A
3159 Prev_Orig := Prefix (Prev_Orig);
3161 -- If the expression is a view conversion, the
3162 -- accessibility level is that of the expression.
3164 if Nkind (Original_Node (Prev_Orig)) =
3165 N_Type_Conversion
3166 and then
3167 Nkind (Expression (Original_Node (Prev_Orig))) =
3168 N_Explicit_Dereference
3169 then
3170 Prev_Orig :=
3171 Expression (Original_Node (Prev_Orig));
3172 end if;
3174 -- If this is an Access attribute applied to the
3175 -- the current instance object passed to a type
3176 -- initialization procedure, then use the level
3177 -- of the type itself. This is not really correct,
3178 -- as there should be an extra level parameter
3179 -- passed in with _init formals (only in the case
3180 -- where the type is immutably limited), but we
3181 -- don't have an easy way currently to create such
3182 -- an extra formal (init procs aren't ever frozen).
3183 -- For now we just use the level of the type,
3184 -- which may be too shallow, but that works better
3185 -- than passing Object_Access_Level of the type,
3186 -- which can be one level too deep in some cases.
3187 -- ???
3189 -- A further case that requires special handling
3190 -- is the common idiom E.all'access. If E is a
3191 -- formal of the enclosing subprogram, the
3192 -- accessibility of the expression is that of E.
3194 if Is_Entity_Name (Prev_Orig) then
3195 Pref_Entity := Entity (Prev_Orig);
3197 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3198 and then Is_Entity_Name (Prefix (Prev_Orig))
3199 then
3200 Pref_Entity := Entity (Prefix ((Prev_Orig)));
3202 else
3203 Pref_Entity := Empty;
3204 end if;
3206 if Is_Entity_Name (Prev_Orig)
3207 and then Is_Type (Entity (Prev_Orig))
3208 then
3209 Add_Extra_Actual
3210 (Expr =>
3211 Make_Integer_Literal (Loc,
3212 Intval =>
3213 Type_Access_Level (Pref_Entity)),
3214 EF => Extra_Accessibility (Formal));
3216 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3217 and then Present (Pref_Entity)
3218 and then Is_Formal (Pref_Entity)
3219 and then Present
3220 (Extra_Accessibility (Pref_Entity))
3221 then
3222 Add_Extra_Actual
3223 (Expr =>
3224 New_Occurrence_Of
3225 (Extra_Accessibility (Pref_Entity), Loc),
3226 EF => Extra_Accessibility (Formal));
3228 else
3229 Add_Extra_Actual
3230 (Expr =>
3231 Make_Integer_Literal (Loc,
3232 Intval =>
3233 Object_Access_Level (Prev_Orig)),
3234 EF => Extra_Accessibility (Formal));
3235 end if;
3237 -- Treat the unchecked attributes as library-level
3239 when Attribute_Unchecked_Access
3240 | Attribute_Unrestricted_Access
3242 Add_Extra_Actual
3243 (Expr =>
3244 Make_Integer_Literal (Loc,
3245 Intval => Scope_Depth (Standard_Standard)),
3246 EF => Extra_Accessibility (Formal));
3248 -- No other cases of attributes returning access
3249 -- values that can be passed to access parameters.
3251 when others =>
3252 raise Program_Error;
3254 end case;
3256 -- For allocators we pass the level of the execution of the
3257 -- called subprogram, which is one greater than the current
3258 -- scope level.
3260 when N_Allocator =>
3261 Add_Extra_Actual
3262 (Expr =>
3263 Make_Integer_Literal (Loc,
3264 Intval => Scope_Depth (Current_Scope) + 1),
3265 EF => Extra_Accessibility (Formal));
3267 -- For most other cases we simply pass the level of the
3268 -- actual's access type. The type is retrieved from
3269 -- Prev rather than Prev_Orig, because in some cases
3270 -- Prev_Orig denotes an original expression that has
3271 -- not been analyzed.
3273 when others =>
3274 Add_Extra_Actual
3275 (Expr => Dynamic_Accessibility_Level (Prev),
3276 EF => Extra_Accessibility (Formal));
3277 end case;
3278 end if;
3279 end if;
3281 -- Perform the check of 4.6(49) that prevents a null value from being
3282 -- passed as an actual to an access parameter. Note that the check
3283 -- is elided in the common cases of passing an access attribute or
3284 -- access parameter as an actual. Also, we currently don't enforce
3285 -- this check for expander-generated actuals and when -gnatdj is set.
3287 if Ada_Version >= Ada_2005 then
3289 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3290 -- the intent of 6.4.1(13) is that null-exclusion checks should
3291 -- not be done for 'out' parameters, even though it refers only
3292 -- to constraint checks, and a null_exclusion is not a constraint.
3293 -- Note that AI05-0196-1 corrects this mistake in the RM.
3295 if Is_Access_Type (Etype (Formal))
3296 and then Can_Never_Be_Null (Etype (Formal))
3297 and then Ekind (Formal) /= E_Out_Parameter
3298 and then Nkind (Prev) /= N_Raise_Constraint_Error
3299 and then (Known_Null (Prev)
3300 or else not Can_Never_Be_Null (Etype (Prev)))
3301 then
3302 Install_Null_Excluding_Check (Prev);
3303 end if;
3305 -- Ada_Version < Ada_2005
3307 else
3308 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3309 or else Access_Checks_Suppressed (Subp)
3310 then
3311 null;
3313 elsif Debug_Flag_J then
3314 null;
3316 elsif not Comes_From_Source (Prev) then
3317 null;
3319 elsif Is_Entity_Name (Prev)
3320 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3321 then
3322 null;
3324 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3325 null;
3327 else
3328 Install_Null_Excluding_Check (Prev);
3329 end if;
3330 end if;
3332 -- Perform appropriate validity checks on parameters that
3333 -- are entities.
3335 if Validity_Checks_On then
3336 if (Ekind (Formal) = E_In_Parameter
3337 and then Validity_Check_In_Params)
3338 or else
3339 (Ekind (Formal) = E_In_Out_Parameter
3340 and then Validity_Check_In_Out_Params)
3341 then
3342 -- If the actual is an indexed component of a packed type (or
3343 -- is an indexed or selected component whose prefix recursively
3344 -- meets this condition), it has not been expanded yet. It will
3345 -- be copied in the validity code that follows, and has to be
3346 -- expanded appropriately, so reanalyze it.
3348 -- What we do is just to unset analyzed bits on prefixes till
3349 -- we reach something that does not have a prefix.
3351 declare
3352 Nod : Node_Id;
3354 begin
3355 Nod := Actual;
3356 while Nkind_In (Nod, N_Indexed_Component,
3357 N_Selected_Component)
3358 loop
3359 Set_Analyzed (Nod, False);
3360 Nod := Prefix (Nod);
3361 end loop;
3362 end;
3364 Ensure_Valid (Actual);
3365 end if;
3366 end if;
3368 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3369 -- since this is a left side reference. We only do this for calls
3370 -- from the source program since we assume that compiler generated
3371 -- calls explicitly generate any required checks. We also need it
3372 -- only if we are doing standard validity checks, since clearly it is
3373 -- not needed if validity checks are off, and in subscript validity
3374 -- checking mode, all indexed components are checked with a call
3375 -- directly from Expand_N_Indexed_Component.
3377 if Comes_From_Source (Call_Node)
3378 and then Ekind (Formal) /= E_In_Parameter
3379 and then Validity_Checks_On
3380 and then Validity_Check_Default
3381 and then not Validity_Check_Subscripts
3382 then
3383 Check_Valid_Lvalue_Subscripts (Actual);
3384 end if;
3386 -- Mark any scalar OUT parameter that is a simple variable as no
3387 -- longer known to be valid (unless the type is always valid). This
3388 -- reflects the fact that if an OUT parameter is never set in a
3389 -- procedure, then it can become invalid on the procedure return.
3391 if Ekind (Formal) = E_Out_Parameter
3392 and then Is_Entity_Name (Actual)
3393 and then Ekind (Entity (Actual)) = E_Variable
3394 and then not Is_Known_Valid (Etype (Actual))
3395 then
3396 Set_Is_Known_Valid (Entity (Actual), False);
3397 end if;
3399 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3400 -- clear current values, since they can be clobbered. We are probably
3401 -- doing this in more places than we need to, but better safe than
3402 -- sorry when it comes to retaining bad current values.
3404 if Ekind (Formal) /= E_In_Parameter
3405 and then Is_Entity_Name (Actual)
3406 and then Present (Entity (Actual))
3407 then
3408 declare
3409 Ent : constant Entity_Id := Entity (Actual);
3410 Sav : Node_Id;
3412 begin
3413 -- For an OUT or IN OUT parameter that is an assignable entity,
3414 -- we do not want to clobber the Last_Assignment field, since
3415 -- if it is set, it was precisely because it is indeed an OUT
3416 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3417 -- since the subprogram could have returned in invalid value.
3419 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3420 and then Is_Assignable (Ent)
3421 then
3422 Sav := Last_Assignment (Ent);
3423 Kill_Current_Values (Ent);
3424 Set_Last_Assignment (Ent, Sav);
3425 Set_Is_Known_Valid (Ent, False);
3427 -- For all other cases, just kill the current values
3429 else
3430 Kill_Current_Values (Ent);
3431 end if;
3432 end;
3433 end if;
3435 -- If the formal is class wide and the actual is an aggregate, force
3436 -- evaluation so that the back end who does not know about class-wide
3437 -- type, does not generate a temporary of the wrong size.
3439 if not Is_Class_Wide_Type (Etype (Formal)) then
3440 null;
3442 elsif Nkind (Actual) = N_Aggregate
3443 or else (Nkind (Actual) = N_Qualified_Expression
3444 and then Nkind (Expression (Actual)) = N_Aggregate)
3445 then
3446 Force_Evaluation (Actual);
3447 end if;
3449 -- In a remote call, if the formal is of a class-wide type, check
3450 -- that the actual meets the requirements described in E.4(18).
3452 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3453 Insert_Action (Actual,
3454 Make_Transportable_Check (Loc,
3455 Duplicate_Subexpr_Move_Checks (Actual)));
3456 end if;
3458 -- Perform invariant checks for all intermediate types in a view
3459 -- conversion after successful return from a call that passes the
3460 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3461 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3462 -- generating spurious checks on complex expansion such as object
3463 -- initialization through an extension aggregate.
3465 if Comes_From_Source (N)
3466 and then Ekind (Formal) /= E_In_Parameter
3467 and then Nkind (Actual) = N_Type_Conversion
3468 then
3469 Add_View_Conversion_Invariants (Formal, Actual);
3470 end if;
3472 -- Generating C the initialization of an allocator is performed by
3473 -- means of individual statements, and hence it must be done before
3474 -- the call.
3476 if Modify_Tree_For_C
3477 and then Nkind (Actual) = N_Allocator
3478 and then Nkind (Expression (Actual)) = N_Qualified_Expression
3479 then
3480 Remove_Side_Effects (Actual);
3481 end if;
3483 -- This label is required when skipping extra actual generation for
3484 -- Unchecked_Union parameters.
3486 <<Skip_Extra_Actual_Generation>>
3488 Param_Count := Param_Count + 1;
3489 Next_Actual (Actual);
3490 Next_Formal (Formal);
3491 end loop;
3493 -- If we are calling an Ada 2012 function which needs to have the
3494 -- "accessibility level determined by the point of call" (AI05-0234)
3495 -- passed in to it, then pass it in.
3497 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3498 and then
3499 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3500 then
3501 declare
3502 Ancestor : Node_Id := Parent (Call_Node);
3503 Level : Node_Id := Empty;
3504 Defer : Boolean := False;
3506 begin
3507 -- Unimplemented: if Subp returns an anonymous access type, then
3509 -- a) if the call is the operand of an explict conversion, then
3510 -- the target type of the conversion (a named access type)
3511 -- determines the accessibility level pass in;
3513 -- b) if the call defines an access discriminant of an object
3514 -- (e.g., the discriminant of an object being created by an
3515 -- allocator, or the discriminant of a function result),
3516 -- then the accessibility level to pass in is that of the
3517 -- discriminated object being initialized).
3519 -- ???
3521 while Nkind (Ancestor) = N_Qualified_Expression
3522 loop
3523 Ancestor := Parent (Ancestor);
3524 end loop;
3526 case Nkind (Ancestor) is
3527 when N_Allocator =>
3529 -- At this point, we'd like to assign
3531 -- Level := Dynamic_Accessibility_Level (Ancestor);
3533 -- but Etype of Ancestor may not have been set yet,
3534 -- so that doesn't work.
3536 -- Handle this later in Expand_Allocator_Expression.
3538 Defer := True;
3540 when N_Object_Declaration
3541 | N_Object_Renaming_Declaration
3543 declare
3544 Def_Id : constant Entity_Id :=
3545 Defining_Identifier (Ancestor);
3547 begin
3548 if Is_Return_Object (Def_Id) then
3549 if Present (Extra_Accessibility_Of_Result
3550 (Return_Applies_To (Scope (Def_Id))))
3551 then
3552 -- Pass along value that was passed in if the
3553 -- routine we are returning from also has an
3554 -- Accessibility_Of_Result formal.
3556 Level :=
3557 New_Occurrence_Of
3558 (Extra_Accessibility_Of_Result
3559 (Return_Applies_To (Scope (Def_Id))), Loc);
3560 end if;
3561 else
3562 Level :=
3563 Make_Integer_Literal (Loc,
3564 Intval => Object_Access_Level (Def_Id));
3565 end if;
3566 end;
3568 when N_Simple_Return_Statement =>
3569 if Present (Extra_Accessibility_Of_Result
3570 (Return_Applies_To
3571 (Return_Statement_Entity (Ancestor))))
3572 then
3573 -- Pass along value that was passed in if the returned
3574 -- routine also has an Accessibility_Of_Result formal.
3576 Level :=
3577 New_Occurrence_Of
3578 (Extra_Accessibility_Of_Result
3579 (Return_Applies_To
3580 (Return_Statement_Entity (Ancestor))), Loc);
3581 end if;
3583 when others =>
3584 null;
3585 end case;
3587 if not Defer then
3588 if not Present (Level) then
3590 -- The "innermost master that evaluates the function call".
3592 -- ??? - Should we use Integer'Last here instead in order
3593 -- to deal with (some of) the problems associated with
3594 -- calls to subps whose enclosing scope is unknown (e.g.,
3595 -- Anon_Access_To_Subp_Param.all)?
3597 Level :=
3598 Make_Integer_Literal (Loc,
3599 Intval => Scope_Depth (Current_Scope) + 1);
3600 end if;
3602 Add_Extra_Actual
3603 (Expr => Level,
3604 EF =>
3605 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3606 end if;
3607 end;
3608 end if;
3610 -- If we are expanding the RHS of an assignment we need to check if tag
3611 -- propagation is needed. You might expect this processing to be in
3612 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3613 -- assignment might be transformed to a declaration for an unconstrained
3614 -- value if the expression is classwide.
3616 if Nkind (Call_Node) = N_Function_Call
3617 and then Is_Tag_Indeterminate (Call_Node)
3618 and then Is_Entity_Name (Name (Call_Node))
3619 then
3620 declare
3621 Ass : Node_Id := Empty;
3623 begin
3624 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3625 Ass := Parent (Call_Node);
3627 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3628 and then Nkind (Parent (Parent (Call_Node))) =
3629 N_Assignment_Statement
3630 then
3631 Ass := Parent (Parent (Call_Node));
3633 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3634 and then Nkind (Parent (Parent (Call_Node))) =
3635 N_Assignment_Statement
3636 then
3637 Ass := Parent (Parent (Call_Node));
3638 end if;
3640 if Present (Ass)
3641 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3642 then
3643 if Is_Access_Type (Etype (Call_Node)) then
3644 if Designated_Type (Etype (Call_Node)) /=
3645 Root_Type (Etype (Name (Ass)))
3646 then
3647 Error_Msg_NE
3648 ("tag-indeterminate expression must have designated "
3649 & "type& (RM 5.2 (6))",
3650 Call_Node, Root_Type (Etype (Name (Ass))));
3651 else
3652 Propagate_Tag (Name (Ass), Call_Node);
3653 end if;
3655 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3656 Error_Msg_NE
3657 ("tag-indeterminate expression must have type & "
3658 & "(RM 5.2 (6))",
3659 Call_Node, Root_Type (Etype (Name (Ass))));
3661 else
3662 Propagate_Tag (Name (Ass), Call_Node);
3663 end if;
3665 -- The call will be rewritten as a dispatching call, and
3666 -- expanded as such.
3668 return;
3669 end if;
3670 end;
3671 end if;
3673 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3674 -- it to point to the correct secondary virtual table
3676 if Nkind (Call_Node) in N_Subprogram_Call
3677 and then CW_Interface_Formals_Present
3678 then
3679 Expand_Interface_Actuals (Call_Node);
3680 end if;
3682 -- Deals with Dispatch_Call if we still have a call, before expanding
3683 -- extra actuals since this will be done on the re-analysis of the
3684 -- dispatching call. Note that we do not try to shorten the actual list
3685 -- for a dispatching call, it would not make sense to do so. Expansion
3686 -- of dispatching calls is suppressed for VM targets, because the VM
3687 -- back-ends directly handle the generation of dispatching calls and
3688 -- would have to undo any expansion to an indirect call.
3690 if Nkind (Call_Node) in N_Subprogram_Call
3691 and then Present (Controlling_Argument (Call_Node))
3692 then
3693 declare
3694 Call_Typ : constant Entity_Id := Etype (Call_Node);
3695 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3696 Eq_Prim_Op : Entity_Id := Empty;
3697 New_Call : Node_Id;
3698 Param : Node_Id;
3699 Prev_Call : Node_Id;
3701 begin
3702 if not Is_Limited_Type (Typ) then
3703 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3704 end if;
3706 if Tagged_Type_Expansion then
3707 Expand_Dispatching_Call (Call_Node);
3709 -- The following return is worrisome. Is it really OK to skip
3710 -- all remaining processing in this procedure ???
3712 return;
3714 -- VM targets
3716 else
3717 Apply_Tag_Checks (Call_Node);
3719 -- If this is a dispatching "=", we must first compare the
3720 -- tags so we generate: x.tag = y.tag and then x = y
3722 if Subp = Eq_Prim_Op then
3724 -- Mark the node as analyzed to avoid reanalyzing this
3725 -- dispatching call (which would cause a never-ending loop)
3727 Prev_Call := Relocate_Node (Call_Node);
3728 Set_Analyzed (Prev_Call);
3730 Param := First_Actual (Call_Node);
3731 New_Call :=
3732 Make_And_Then (Loc,
3733 Left_Opnd =>
3734 Make_Op_Eq (Loc,
3735 Left_Opnd =>
3736 Make_Selected_Component (Loc,
3737 Prefix => New_Value (Param),
3738 Selector_Name =>
3739 New_Occurrence_Of
3740 (First_Tag_Component (Typ), Loc)),
3742 Right_Opnd =>
3743 Make_Selected_Component (Loc,
3744 Prefix =>
3745 Unchecked_Convert_To (Typ,
3746 New_Value (Next_Actual (Param))),
3747 Selector_Name =>
3748 New_Occurrence_Of
3749 (First_Tag_Component (Typ), Loc))),
3750 Right_Opnd => Prev_Call);
3752 Rewrite (Call_Node, New_Call);
3754 Analyze_And_Resolve
3755 (Call_Node, Call_Typ, Suppress => All_Checks);
3756 end if;
3758 -- Expansion of a dispatching call results in an indirect call,
3759 -- which in turn causes current values to be killed (see
3760 -- Resolve_Call), so on VM targets we do the call here to
3761 -- ensure consistent warnings between VM and non-VM targets.
3763 Kill_Current_Values;
3764 end if;
3766 -- If this is a dispatching "=" then we must update the reference
3767 -- to the call node because we generated:
3768 -- x.tag = y.tag and then x = y
3770 if Subp = Eq_Prim_Op then
3771 Call_Node := Right_Opnd (Call_Node);
3772 end if;
3773 end;
3774 end if;
3776 -- Similarly, expand calls to RCI subprograms on which pragma
3777 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3778 -- later. Do this only when the call comes from source since we
3779 -- do not want such a rewriting to occur in expanded code.
3781 if Is_All_Remote_Call (Call_Node) then
3782 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3784 -- Similarly, do not add extra actuals for an entry call whose entity
3785 -- is a protected procedure, or for an internal protected subprogram
3786 -- call, because it will be rewritten as a protected subprogram call
3787 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3789 elsif Is_Protected_Type (Scope (Subp))
3790 and then (Ekind (Subp) = E_Procedure
3791 or else Ekind (Subp) = E_Function)
3792 then
3793 null;
3795 -- During that loop we gathered the extra actuals (the ones that
3796 -- correspond to Extra_Formals), so now they can be appended.
3798 else
3799 while Is_Non_Empty_List (Extra_Actuals) loop
3800 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3801 end loop;
3802 end if;
3804 -- At this point we have all the actuals, so this is the point at which
3805 -- the various expansion activities for actuals is carried out.
3807 Expand_Actuals (Call_Node, Subp, Post_Call);
3809 -- Verify that the actuals do not share storage. This check must be done
3810 -- on the caller side rather that inside the subprogram to avoid issues
3811 -- of parameter passing.
3813 if Check_Aliasing_Of_Parameters then
3814 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3815 end if;
3817 -- If the subprogram is a renaming, or if it is inherited, replace it in
3818 -- the call with the name of the actual subprogram being called. If this
3819 -- is a dispatching call, the run-time decides what to call. The Alias
3820 -- attribute does not apply to entries.
3822 if Nkind (Call_Node) /= N_Entry_Call_Statement
3823 and then No (Controlling_Argument (Call_Node))
3824 and then Present (Parent_Subp)
3825 and then not Is_Direct_Deep_Call (Subp)
3826 then
3827 if Present (Inherited_From_Formal (Subp)) then
3828 Parent_Subp := Inherited_From_Formal (Subp);
3829 else
3830 Parent_Subp := Ultimate_Alias (Parent_Subp);
3831 end if;
3833 -- The below setting of Entity is suspect, see F109-018 discussion???
3835 Set_Entity (Name (Call_Node), Parent_Subp);
3837 if Is_Abstract_Subprogram (Parent_Subp)
3838 and then not In_Instance
3839 then
3840 Error_Msg_NE
3841 ("cannot call abstract subprogram &!",
3842 Name (Call_Node), Parent_Subp);
3843 end if;
3845 -- Inspect all formals of derived subprogram Subp. Compare parameter
3846 -- types with the parent subprogram and check whether an actual may
3847 -- need a type conversion to the corresponding formal of the parent
3848 -- subprogram.
3850 -- Not clear whether intrinsic subprograms need such conversions. ???
3852 if not Is_Intrinsic_Subprogram (Parent_Subp)
3853 or else Is_Generic_Instance (Parent_Subp)
3854 then
3855 declare
3856 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3857 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3858 -- and resolve the newly generated construct.
3860 -------------
3861 -- Convert --
3862 -------------
3864 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3865 begin
3866 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3867 Analyze (Act);
3868 Resolve (Act, Typ);
3869 end Convert;
3871 -- Local variables
3873 Actual_Typ : Entity_Id;
3874 Formal_Typ : Entity_Id;
3875 Parent_Typ : Entity_Id;
3877 begin
3878 Actual := First_Actual (Call_Node);
3879 Formal := First_Formal (Subp);
3880 Parent_Formal := First_Formal (Parent_Subp);
3881 while Present (Formal) loop
3882 Actual_Typ := Etype (Actual);
3883 Formal_Typ := Etype (Formal);
3884 Parent_Typ := Etype (Parent_Formal);
3886 -- For an IN parameter of a scalar type, the parent formal
3887 -- type and derived formal type differ or the parent formal
3888 -- type and actual type do not match statically.
3890 if Is_Scalar_Type (Formal_Typ)
3891 and then Ekind (Formal) = E_In_Parameter
3892 and then Formal_Typ /= Parent_Typ
3893 and then
3894 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3895 and then not Raises_Constraint_Error (Actual)
3896 then
3897 Convert (Actual, Parent_Typ);
3898 Enable_Range_Check (Actual);
3900 -- If the actual has been marked as requiring a range
3901 -- check, then generate it here.
3903 if Do_Range_Check (Actual) then
3904 Generate_Range_Check
3905 (Actual, Etype (Formal), CE_Range_Check_Failed);
3906 end if;
3908 -- For access types, the parent formal type and actual type
3909 -- differ.
3911 elsif Is_Access_Type (Formal_Typ)
3912 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3913 then
3914 if Ekind (Formal) /= E_In_Parameter then
3915 Convert (Actual, Parent_Typ);
3917 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3918 and then Designated_Type (Parent_Typ) /=
3919 Designated_Type (Actual_Typ)
3920 and then not Is_Controlling_Formal (Formal)
3921 then
3922 -- This unchecked conversion is not necessary unless
3923 -- inlining is enabled, because in that case the type
3924 -- mismatch may become visible in the body about to be
3925 -- inlined.
3927 Rewrite (Actual,
3928 Unchecked_Convert_To (Parent_Typ,
3929 Relocate_Node (Actual)));
3930 Analyze (Actual);
3931 Resolve (Actual, Parent_Typ);
3932 end if;
3934 -- If there is a change of representation, then generate a
3935 -- warning, and do the change of representation.
3937 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3938 Error_Msg_N
3939 ("??change of representation required", Actual);
3940 Convert (Actual, Parent_Typ);
3942 -- For array and record types, the parent formal type and
3943 -- derived formal type have different sizes or pragma Pack
3944 -- status.
3946 elsif ((Is_Array_Type (Formal_Typ)
3947 and then Is_Array_Type (Parent_Typ))
3948 or else
3949 (Is_Record_Type (Formal_Typ)
3950 and then Is_Record_Type (Parent_Typ)))
3951 and then
3952 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3953 or else Has_Pragma_Pack (Formal_Typ) /=
3954 Has_Pragma_Pack (Parent_Typ))
3955 then
3956 Convert (Actual, Parent_Typ);
3957 end if;
3959 Next_Actual (Actual);
3960 Next_Formal (Formal);
3961 Next_Formal (Parent_Formal);
3962 end loop;
3963 end;
3964 end if;
3966 Orig_Subp := Subp;
3967 Subp := Parent_Subp;
3968 end if;
3970 -- Deal with case where call is an explicit dereference
3972 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3974 -- Handle case of access to protected subprogram type
3976 if Is_Access_Protected_Subprogram_Type
3977 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3978 then
3979 -- If this is a call through an access to protected operation, the
3980 -- prefix has the form (object'address, operation'access). Rewrite
3981 -- as a for other protected calls: the object is the 1st parameter
3982 -- of the list of actuals.
3984 declare
3985 Call : Node_Id;
3986 Parm : List_Id;
3987 Nam : Node_Id;
3988 Obj : Node_Id;
3989 Ptr : constant Node_Id := Prefix (Name (Call_Node));
3991 T : constant Entity_Id :=
3992 Equivalent_Type (Base_Type (Etype (Ptr)));
3994 D_T : constant Entity_Id :=
3995 Designated_Type (Base_Type (Etype (Ptr)));
3997 begin
3998 Obj :=
3999 Make_Selected_Component (Loc,
4000 Prefix => Unchecked_Convert_To (T, Ptr),
4001 Selector_Name =>
4002 New_Occurrence_Of (First_Entity (T), Loc));
4004 Nam :=
4005 Make_Selected_Component (Loc,
4006 Prefix => Unchecked_Convert_To (T, Ptr),
4007 Selector_Name =>
4008 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4010 Nam :=
4011 Make_Explicit_Dereference (Loc,
4012 Prefix => Nam);
4014 if Present (Parameter_Associations (Call_Node)) then
4015 Parm := Parameter_Associations (Call_Node);
4016 else
4017 Parm := New_List;
4018 end if;
4020 Prepend (Obj, Parm);
4022 if Etype (D_T) = Standard_Void_Type then
4023 Call :=
4024 Make_Procedure_Call_Statement (Loc,
4025 Name => Nam,
4026 Parameter_Associations => Parm);
4027 else
4028 Call :=
4029 Make_Function_Call (Loc,
4030 Name => Nam,
4031 Parameter_Associations => Parm);
4032 end if;
4034 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4035 Set_Etype (Call, Etype (D_T));
4037 -- We do not re-analyze the call to avoid infinite recursion.
4038 -- We analyze separately the prefix and the object, and set
4039 -- the checks on the prefix that would otherwise be emitted
4040 -- when resolving a call.
4042 Rewrite (Call_Node, Call);
4043 Analyze (Nam);
4044 Apply_Access_Check (Nam);
4045 Analyze (Obj);
4046 return;
4047 end;
4048 end if;
4049 end if;
4051 -- If this is a call to an intrinsic subprogram, then perform the
4052 -- appropriate expansion to the corresponding tree node and we
4053 -- are all done (since after that the call is gone).
4055 -- In the case where the intrinsic is to be processed by the back end,
4056 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4057 -- since the idea in this case is to pass the call unchanged. If the
4058 -- intrinsic is an inherited unchecked conversion, and the derived type
4059 -- is the target type of the conversion, we must retain it as the return
4060 -- type of the expression. Otherwise the expansion below, which uses the
4061 -- parent operation, will yield the wrong type.
4063 if Is_Intrinsic_Subprogram (Subp) then
4064 Expand_Intrinsic_Call (Call_Node, Subp);
4066 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4067 and then Parent_Subp /= Orig_Subp
4068 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4069 then
4070 Set_Etype (Call_Node, Etype (Orig_Subp));
4071 end if;
4073 return;
4074 end if;
4076 if Ekind_In (Subp, E_Function, E_Procedure) then
4078 -- We perform a simple optimization on calls for To_Address by
4079 -- replacing them with an unchecked conversion. Not only is this
4080 -- efficient, but it also avoids order of elaboration problems when
4081 -- address clauses are inlined (address expression elaborated at the
4082 -- wrong point).
4084 -- We perform this optimization regardless of whether we are in the
4085 -- main unit or in a unit in the context of the main unit, to ensure
4086 -- that the generated tree is the same in both cases, for CodePeer
4087 -- use.
4089 if Is_RTE (Subp, RE_To_Address) then
4090 Rewrite (Call_Node,
4091 Unchecked_Convert_To
4092 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4093 return;
4095 -- A call to a null procedure is replaced by a null statement, but we
4096 -- are not allowed to ignore possible side effects of the call, so we
4097 -- make sure that actuals are evaluated.
4098 -- We also suppress this optimization for GNATCoverage.
4100 elsif Is_Null_Procedure (Subp)
4101 and then not Opt.Suppress_Control_Flow_Optimizations
4102 then
4103 Actual := First_Actual (Call_Node);
4104 while Present (Actual) loop
4105 Remove_Side_Effects (Actual);
4106 Next_Actual (Actual);
4107 end loop;
4109 Rewrite (Call_Node, Make_Null_Statement (Loc));
4110 return;
4111 end if;
4113 -- Handle inlining. No action needed if the subprogram is not inlined
4115 if not Is_Inlined (Subp) then
4116 null;
4118 -- Frontend inlining of expression functions (performed also when
4119 -- backend inlining is enabled).
4121 elsif Is_Inlinable_Expression_Function (Subp) then
4122 Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4123 Analyze (N);
4124 return;
4126 -- Handle frontend inlining
4128 elsif not Back_End_Inlining then
4129 Inlined_Subprogram : declare
4130 Bod : Node_Id;
4131 Must_Inline : Boolean := False;
4132 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
4134 begin
4135 -- Verify that the body to inline has already been seen, and
4136 -- that if the body is in the current unit the inlining does
4137 -- not occur earlier. This avoids order-of-elaboration problems
4138 -- in the back end.
4140 -- This should be documented in sinfo/einfo ???
4142 if No (Spec)
4143 or else Nkind (Spec) /= N_Subprogram_Declaration
4144 or else No (Body_To_Inline (Spec))
4145 then
4146 Must_Inline := False;
4148 -- If this an inherited function that returns a private type,
4149 -- do not inline if the full view is an unconstrained array,
4150 -- because such calls cannot be inlined.
4152 elsif Present (Orig_Subp)
4153 and then Is_Array_Type (Etype (Orig_Subp))
4154 and then not Is_Constrained (Etype (Orig_Subp))
4155 then
4156 Must_Inline := False;
4158 elsif In_Unfrozen_Instance (Scope (Subp)) then
4159 Must_Inline := False;
4161 else
4162 Bod := Body_To_Inline (Spec);
4164 if (In_Extended_Main_Code_Unit (Call_Node)
4165 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4166 or else Has_Pragma_Inline_Always (Subp))
4167 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4168 or else
4169 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4170 then
4171 Must_Inline := True;
4173 -- If we are compiling a package body that is not the main
4174 -- unit, it must be for inlining/instantiation purposes,
4175 -- in which case we inline the call to insure that the same
4176 -- temporaries are generated when compiling the body by
4177 -- itself. Otherwise link errors can occur.
4179 -- If the function being called is itself in the main unit,
4180 -- we cannot inline, because there is a risk of double
4181 -- elaboration and/or circularity: the inlining can make
4182 -- visible a private entity in the body of the main unit,
4183 -- that gigi will see before its sees its proper definition.
4185 elsif not (In_Extended_Main_Code_Unit (Call_Node))
4186 and then In_Package_Body
4187 then
4188 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4190 -- Inline calls to _postconditions when generating C code
4192 elsif Modify_Tree_For_C
4193 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4194 and then Chars (Name (N)) = Name_uPostconditions
4195 then
4196 Must_Inline := True;
4197 end if;
4198 end if;
4200 if Must_Inline then
4201 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4203 else
4204 -- Let the back end handle it
4206 Add_Inlined_Body (Subp, Call_Node);
4208 if Front_End_Inlining
4209 and then Nkind (Spec) = N_Subprogram_Declaration
4210 and then (In_Extended_Main_Code_Unit (Call_Node))
4211 and then No (Body_To_Inline (Spec))
4212 and then not Has_Completion (Subp)
4213 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4214 then
4215 Cannot_Inline
4216 ("cannot inline& (body not seen yet)?",
4217 Call_Node, Subp);
4218 end if;
4219 end if;
4220 end Inlined_Subprogram;
4222 -- Back end inlining: let the back end handle it
4224 elsif No (Unit_Declaration_Node (Subp))
4225 or else Nkind (Unit_Declaration_Node (Subp)) /=
4226 N_Subprogram_Declaration
4227 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
4228 or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
4229 N_Entity
4230 then
4231 Add_Inlined_Body (Subp, Call_Node);
4233 -- If the inlined call appears within an instantiation and some
4234 -- level of optimization is required, ensure that the enclosing
4235 -- instance body is available so that the back-end can actually
4236 -- perform the inlining.
4238 if In_Instance
4239 and then Comes_From_Source (Subp)
4240 and then Optimization_Level > 0
4241 then
4242 declare
4243 Decl : Node_Id;
4244 Inst : Entity_Id;
4245 Inst_Node : Node_Id;
4247 begin
4248 Inst := Scope (Subp);
4250 -- Find enclosing instance
4252 while Present (Inst) and then Inst /= Standard_Standard loop
4253 exit when Is_Generic_Instance (Inst);
4254 Inst := Scope (Inst);
4255 end loop;
4257 if Present (Inst)
4258 and then Is_Generic_Instance (Inst)
4259 and then not Is_Inlined (Inst)
4260 then
4261 Set_Is_Inlined (Inst);
4262 Decl := Unit_Declaration_Node (Inst);
4264 -- Do not add a pending instantiation if the body exits
4265 -- already, or if the instance is a compilation unit, or
4266 -- the instance node is missing.
4268 if Present (Corresponding_Body (Decl))
4269 or else Nkind (Parent (Decl)) = N_Compilation_Unit
4270 or else No (Next (Decl))
4271 then
4272 null;
4274 else
4275 -- The instantiation node usually follows the package
4276 -- declaration for the instance. If the generic unit
4277 -- has aspect specifications, they are transformed
4278 -- into pragmas in the instance, and the instance node
4279 -- appears after them.
4281 Inst_Node := Next (Decl);
4283 while Nkind (Inst_Node) /= N_Package_Instantiation loop
4284 Inst_Node := Next (Inst_Node);
4285 end loop;
4287 Add_Pending_Instantiation (Inst_Node, Decl);
4288 end if;
4289 end if;
4290 end;
4291 end if;
4293 -- Front end expansion of simple functions returning unconstrained
4294 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4295 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4296 -- also Build_Renamed_Body) cannot be expanded here because this may
4297 -- give rise to order-of-elaboration issues for the types of the
4298 -- parameters of the subprogram, if any.
4300 else
4301 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4302 end if;
4303 end if;
4305 -- Check for protected subprogram. This is either an intra-object call,
4306 -- or a protected function call. Protected procedure calls are rewritten
4307 -- as entry calls and handled accordingly.
4309 -- In Ada 2005, this may be an indirect call to an access parameter that
4310 -- is an access_to_subprogram. In that case the anonymous type has a
4311 -- scope that is a protected operation, but the call is a regular one.
4312 -- In either case do not expand call if subprogram is eliminated.
4314 Scop := Scope (Subp);
4316 if Nkind (Call_Node) /= N_Entry_Call_Statement
4317 and then Is_Protected_Type (Scop)
4318 and then Ekind (Subp) /= E_Subprogram_Type
4319 and then not Is_Eliminated (Subp)
4320 then
4321 -- If the call is an internal one, it is rewritten as a call to the
4322 -- corresponding unprotected subprogram.
4324 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4325 end if;
4327 -- Functions returning controlled objects need special attention. If
4328 -- the return type is limited, then the context is initialization and
4329 -- different processing applies. If the call is to a protected function,
4330 -- the expansion above will call Expand_Call recursively. Otherwise the
4331 -- function call is transformed into a temporary which obtains the
4332 -- result from the secondary stack.
4334 if Needs_Finalization (Etype (Subp)) then
4335 if not Is_Build_In_Place_Function_Call (Call_Node)
4336 and then
4337 (No (First_Formal (Subp))
4338 or else
4339 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4340 then
4341 Expand_Ctrl_Function_Call (Call_Node);
4343 -- Build-in-place function calls which appear in anonymous contexts
4344 -- need a transient scope to ensure the proper finalization of the
4345 -- intermediate result after its use.
4347 elsif Is_Build_In_Place_Function_Call (Call_Node)
4348 and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4349 N_Attribute_Reference,
4350 N_Function_Call,
4351 N_Indexed_Component,
4352 N_Object_Renaming_Declaration,
4353 N_Procedure_Call_Statement,
4354 N_Selected_Component,
4355 N_Slice)
4356 then
4357 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
4358 end if;
4359 end if;
4360 end Expand_Call_Helper;
4362 -------------------------------
4363 -- Expand_Ctrl_Function_Call --
4364 -------------------------------
4366 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4367 function Is_Element_Reference (N : Node_Id) return Boolean;
4368 -- Determine whether node N denotes a reference to an Ada 2012 container
4369 -- element.
4371 --------------------------
4372 -- Is_Element_Reference --
4373 --------------------------
4375 function Is_Element_Reference (N : Node_Id) return Boolean is
4376 Ref : constant Node_Id := Original_Node (N);
4378 begin
4379 -- Analysis marks an element reference by setting the generalized
4380 -- indexing attribute of an indexed component before the component
4381 -- is rewritten into a function call.
4383 return
4384 Nkind (Ref) = N_Indexed_Component
4385 and then Present (Generalized_Indexing (Ref));
4386 end Is_Element_Reference;
4388 -- Start of processing for Expand_Ctrl_Function_Call
4390 begin
4391 -- Optimization, if the returned value (which is on the sec-stack) is
4392 -- returned again, no need to copy/readjust/finalize, we can just pass
4393 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4394 -- attachment is needed
4396 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4397 return;
4398 end if;
4400 -- Resolution is now finished, make sure we don't start analysis again
4401 -- because of the duplication.
4403 Set_Analyzed (N);
4405 -- A function which returns a controlled object uses the secondary
4406 -- stack. Rewrite the call into a temporary which obtains the result of
4407 -- the function using 'reference.
4409 Remove_Side_Effects (N);
4411 -- The side effect removal of the function call produced a temporary.
4412 -- When the context is a case expression, if expression, or expression
4413 -- with actions, the lifetime of the temporary must be extended to match
4414 -- that of the context. Otherwise the function result will be finalized
4415 -- too early and affect the result of the expression. To prevent this
4416 -- unwanted effect, the temporary should not be considered for clean up
4417 -- actions by the general finalization machinery.
4419 -- Exception to this rule are references to Ada 2012 container elements.
4420 -- Such references must be finalized at the end of each iteration of the
4421 -- related quantified expression, otherwise the container will remain
4422 -- busy.
4424 if Nkind (N) = N_Explicit_Dereference
4425 and then Within_Case_Or_If_Expression (N)
4426 and then not Is_Element_Reference (N)
4427 then
4428 Set_Is_Ignored_Transient (Entity (Prefix (N)));
4429 end if;
4430 end Expand_Ctrl_Function_Call;
4432 ----------------------------------------
4433 -- Expand_N_Extended_Return_Statement --
4434 ----------------------------------------
4436 -- If there is a Handled_Statement_Sequence, we rewrite this:
4438 -- return Result : T := <expression> do
4439 -- <handled_seq_of_stms>
4440 -- end return;
4442 -- to be:
4444 -- declare
4445 -- Result : T := <expression>;
4446 -- begin
4447 -- <handled_seq_of_stms>
4448 -- return Result;
4449 -- end;
4451 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4453 -- return Result : T := <expression>;
4455 -- to be:
4457 -- return <expression>;
4459 -- unless it's build-in-place or there's no <expression>, in which case
4460 -- we generate:
4462 -- declare
4463 -- Result : T := <expression>;
4464 -- begin
4465 -- return Result;
4466 -- end;
4468 -- Note that this case could have been written by the user as an extended
4469 -- return statement, or could have been transformed to this from a simple
4470 -- return statement.
4472 -- That is, we need to have a reified return object if there are statements
4473 -- (which might refer to it) or if we're doing build-in-place (so we can
4474 -- set its address to the final resting place or if there is no expression
4475 -- (in which case default initial values might need to be set).
4477 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4478 Loc : constant Source_Ptr := Sloc (N);
4480 function Build_Heap_Allocator
4481 (Temp_Id : Entity_Id;
4482 Temp_Typ : Entity_Id;
4483 Func_Id : Entity_Id;
4484 Ret_Typ : Entity_Id;
4485 Alloc_Expr : Node_Id) return Node_Id;
4486 -- Create the statements necessary to allocate a return object on the
4487 -- caller's master. The master is available through implicit parameter
4488 -- BIPfinalizationmaster.
4490 -- if BIPfinalizationmaster /= null then
4491 -- declare
4492 -- type Ptr_Typ is access Ret_Typ;
4493 -- for Ptr_Typ'Storage_Pool use
4494 -- Base_Pool (BIPfinalizationmaster.all).all;
4495 -- Local : Ptr_Typ;
4497 -- begin
4498 -- procedure Allocate (...) is
4499 -- begin
4500 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4501 -- end Allocate;
4503 -- Local := <Alloc_Expr>;
4504 -- Temp_Id := Temp_Typ (Local);
4505 -- end;
4506 -- end if;
4508 -- Temp_Id is the temporary which is used to reference the internally
4509 -- created object in all allocation forms. Temp_Typ is the type of the
4510 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4511 -- type of Func_Id. Alloc_Expr is the actual allocator.
4513 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4514 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4515 -- with parameters:
4516 -- From current activation chain
4517 -- To activation chain passed in by the caller
4518 -- New_Master master passed in by the caller
4520 -- Func_Id is the entity of the function where the extended return
4521 -- statement appears.
4523 --------------------------
4524 -- Build_Heap_Allocator --
4525 --------------------------
4527 function Build_Heap_Allocator
4528 (Temp_Id : Entity_Id;
4529 Temp_Typ : Entity_Id;
4530 Func_Id : Entity_Id;
4531 Ret_Typ : Entity_Id;
4532 Alloc_Expr : Node_Id) return Node_Id
4534 begin
4535 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4537 -- Processing for build-in-place object allocation.
4539 if Needs_Finalization (Ret_Typ) then
4540 declare
4541 Decls : constant List_Id := New_List;
4542 Fin_Mas_Id : constant Entity_Id :=
4543 Build_In_Place_Formal
4544 (Func_Id, BIP_Finalization_Master);
4545 Stmts : constant List_Id := New_List;
4546 Desig_Typ : Entity_Id;
4547 Local_Id : Entity_Id;
4548 Pool_Id : Entity_Id;
4549 Ptr_Typ : Entity_Id;
4551 begin
4552 -- Generate:
4553 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4555 Pool_Id := Make_Temporary (Loc, 'P');
4557 Append_To (Decls,
4558 Make_Object_Renaming_Declaration (Loc,
4559 Defining_Identifier => Pool_Id,
4560 Subtype_Mark =>
4561 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4562 Name =>
4563 Make_Explicit_Dereference (Loc,
4564 Prefix =>
4565 Make_Function_Call (Loc,
4566 Name =>
4567 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4568 Parameter_Associations => New_List (
4569 Make_Explicit_Dereference (Loc,
4570 Prefix =>
4571 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4573 -- Create an access type which uses the storage pool of the
4574 -- caller's master. This additional type is necessary because
4575 -- the finalization master cannot be associated with the type
4576 -- of the temporary. Otherwise the secondary stack allocation
4577 -- will fail.
4579 Desig_Typ := Ret_Typ;
4581 -- Ensure that the build-in-place machinery uses a fat pointer
4582 -- when allocating an unconstrained array on the heap. In this
4583 -- case the result object type is a constrained array type even
4584 -- though the function type is unconstrained.
4586 if Ekind (Desig_Typ) = E_Array_Subtype then
4587 Desig_Typ := Base_Type (Desig_Typ);
4588 end if;
4590 -- Generate:
4591 -- type Ptr_Typ is access Desig_Typ;
4593 Ptr_Typ := Make_Temporary (Loc, 'P');
4595 Append_To (Decls,
4596 Make_Full_Type_Declaration (Loc,
4597 Defining_Identifier => Ptr_Typ,
4598 Type_Definition =>
4599 Make_Access_To_Object_Definition (Loc,
4600 Subtype_Indication =>
4601 New_Occurrence_Of (Desig_Typ, Loc))));
4603 -- Perform minor decoration in order to set the master and the
4604 -- storage pool attributes.
4606 Set_Ekind (Ptr_Typ, E_Access_Type);
4607 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4608 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4610 -- Create the temporary, generate:
4611 -- Local_Id : Ptr_Typ;
4613 Local_Id := Make_Temporary (Loc, 'T');
4615 Append_To (Decls,
4616 Make_Object_Declaration (Loc,
4617 Defining_Identifier => Local_Id,
4618 Object_Definition =>
4619 New_Occurrence_Of (Ptr_Typ, Loc)));
4621 -- Allocate the object, generate:
4622 -- Local_Id := <Alloc_Expr>;
4624 Append_To (Stmts,
4625 Make_Assignment_Statement (Loc,
4626 Name => New_Occurrence_Of (Local_Id, Loc),
4627 Expression => Alloc_Expr));
4629 -- Generate:
4630 -- Temp_Id := Temp_Typ (Local_Id);
4632 Append_To (Stmts,
4633 Make_Assignment_Statement (Loc,
4634 Name => New_Occurrence_Of (Temp_Id, Loc),
4635 Expression =>
4636 Unchecked_Convert_To (Temp_Typ,
4637 New_Occurrence_Of (Local_Id, Loc))));
4639 -- Wrap the allocation in a block. This is further conditioned
4640 -- by checking the caller finalization master at runtime. A
4641 -- null value indicates a non-existent master, most likely due
4642 -- to a Finalize_Storage_Only allocation.
4644 -- Generate:
4645 -- if BIPfinalizationmaster /= null then
4646 -- declare
4647 -- <Decls>
4648 -- begin
4649 -- <Stmts>
4650 -- end;
4651 -- end if;
4653 return
4654 Make_If_Statement (Loc,
4655 Condition =>
4656 Make_Op_Ne (Loc,
4657 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4658 Right_Opnd => Make_Null (Loc)),
4660 Then_Statements => New_List (
4661 Make_Block_Statement (Loc,
4662 Declarations => Decls,
4663 Handled_Statement_Sequence =>
4664 Make_Handled_Sequence_Of_Statements (Loc,
4665 Statements => Stmts))));
4666 end;
4668 -- For all other cases, generate:
4669 -- Temp_Id := <Alloc_Expr>;
4671 else
4672 return
4673 Make_Assignment_Statement (Loc,
4674 Name => New_Occurrence_Of (Temp_Id, Loc),
4675 Expression => Alloc_Expr);
4676 end if;
4677 end Build_Heap_Allocator;
4679 ---------------------------
4680 -- Move_Activation_Chain --
4681 ---------------------------
4683 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4684 begin
4685 return
4686 Make_Procedure_Call_Statement (Loc,
4687 Name =>
4688 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4690 Parameter_Associations => New_List (
4692 -- Source chain
4694 Make_Attribute_Reference (Loc,
4695 Prefix => Make_Identifier (Loc, Name_uChain),
4696 Attribute_Name => Name_Unrestricted_Access),
4698 -- Destination chain
4700 New_Occurrence_Of
4701 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4703 -- New master
4705 New_Occurrence_Of
4706 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4707 end Move_Activation_Chain;
4709 -- Local variables
4711 Func_Id : constant Entity_Id :=
4712 Return_Applies_To (Return_Statement_Entity (N));
4713 Is_BIP_Func : constant Boolean :=
4714 Is_Build_In_Place_Function (Func_Id);
4715 Ret_Obj_Id : constant Entity_Id :=
4716 First_Entity (Return_Statement_Entity (N));
4717 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4718 Ret_Typ : constant Entity_Id := Etype (Func_Id);
4720 Exp : Node_Id;
4721 HSS : Node_Id;
4722 Result : Node_Id;
4723 Return_Stmt : Node_Id;
4724 Stmts : List_Id;
4726 -- Start of processing for Expand_N_Extended_Return_Statement
4728 begin
4729 -- Given that functionality of interface thunks is simple (just displace
4730 -- the pointer to the object) they are always handled by means of
4731 -- simple return statements.
4733 pragma Assert (not Is_Thunk (Current_Scope));
4735 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4736 Exp := Expression (Ret_Obj_Decl);
4737 else
4738 Exp := Empty;
4739 end if;
4741 HSS := Handled_Statement_Sequence (N);
4743 -- If the returned object needs finalization actions, the function must
4744 -- perform the appropriate cleanup should it fail to return. The state
4745 -- of the function itself is tracked through a flag which is coupled
4746 -- with the scope finalizer. There is one flag per each return object
4747 -- in case of multiple returns.
4749 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4750 declare
4751 Flag_Decl : Node_Id;
4752 Flag_Id : Entity_Id;
4753 Func_Bod : Node_Id;
4755 begin
4756 -- Recover the function body
4758 Func_Bod := Unit_Declaration_Node (Func_Id);
4760 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4761 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4762 end if;
4764 if Nkind (Func_Bod) = N_Function_Specification then
4765 Func_Bod := Parent (Func_Bod); -- one more level for child units
4766 end if;
4768 pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
4770 -- Create a flag to track the function state
4772 Flag_Id := Make_Temporary (Loc, 'F');
4773 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4775 -- Insert the flag at the beginning of the function declarations,
4776 -- generate:
4777 -- Fnn : Boolean := False;
4779 Flag_Decl :=
4780 Make_Object_Declaration (Loc,
4781 Defining_Identifier => Flag_Id,
4782 Object_Definition =>
4783 New_Occurrence_Of (Standard_Boolean, Loc),
4784 Expression =>
4785 New_Occurrence_Of (Standard_False, Loc));
4787 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4788 Analyze (Flag_Decl);
4789 end;
4790 end if;
4792 -- Build a simple_return_statement that returns the return object when
4793 -- there is a statement sequence, or no expression, or the result will
4794 -- be built in place. Note however that we currently do this for all
4795 -- composite cases, even though not all are built in place.
4797 if Present (HSS)
4798 or else Is_Composite_Type (Ret_Typ)
4799 or else No (Exp)
4800 then
4801 if No (HSS) then
4802 Stmts := New_List;
4804 -- If the extended return has a handled statement sequence, then wrap
4805 -- it in a block and use the block as the first statement.
4807 else
4808 Stmts := New_List (
4809 Make_Block_Statement (Loc,
4810 Declarations => New_List,
4811 Handled_Statement_Sequence => HSS));
4812 end if;
4814 -- If the result type contains tasks, we call Move_Activation_Chain.
4815 -- Later, the cleanup code will call Complete_Master, which will
4816 -- terminate any unactivated tasks belonging to the return statement
4817 -- master. But Move_Activation_Chain updates their master to be that
4818 -- of the caller, so they will not be terminated unless the return
4819 -- statement completes unsuccessfully due to exception, abort, goto,
4820 -- or exit. As a formality, we test whether the function requires the
4821 -- result to be built in place, though that's necessarily true for
4822 -- the case of result types with task parts.
4824 if Is_BIP_Func and then Has_Task (Ret_Typ) then
4826 -- The return expression is an aggregate for a complex type which
4827 -- contains tasks. This particular case is left unexpanded since
4828 -- the regular expansion would insert all temporaries and
4829 -- initialization code in the wrong block.
4831 if Nkind (Exp) = N_Aggregate then
4832 Expand_N_Aggregate (Exp);
4833 end if;
4835 -- Do not move the activation chain if the return object does not
4836 -- contain tasks.
4838 if Has_Task (Etype (Ret_Obj_Id)) then
4839 Append_To (Stmts, Move_Activation_Chain (Func_Id));
4840 end if;
4841 end if;
4843 -- Update the state of the function right before the object is
4844 -- returned.
4846 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4847 declare
4848 Flag_Id : constant Entity_Id :=
4849 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4851 begin
4852 -- Generate:
4853 -- Fnn := True;
4855 Append_To (Stmts,
4856 Make_Assignment_Statement (Loc,
4857 Name => New_Occurrence_Of (Flag_Id, Loc),
4858 Expression => New_Occurrence_Of (Standard_True, Loc)));
4859 end;
4860 end if;
4862 -- Build a simple_return_statement that returns the return object
4864 Return_Stmt :=
4865 Make_Simple_Return_Statement (Loc,
4866 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4867 Append_To (Stmts, Return_Stmt);
4869 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4870 end if;
4872 -- Case where we build a return statement block
4874 if Present (HSS) then
4875 Result :=
4876 Make_Block_Statement (Loc,
4877 Declarations => Return_Object_Declarations (N),
4878 Handled_Statement_Sequence => HSS);
4880 -- We set the entity of the new block statement to be that of the
4881 -- return statement. This is necessary so that various fields, such
4882 -- as Finalization_Chain_Entity carry over from the return statement
4883 -- to the block. Note that this block is unusual, in that its entity
4884 -- is an E_Return_Statement rather than an E_Block.
4886 Set_Identifier
4887 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4889 -- If the object decl was already rewritten as a renaming, then we
4890 -- don't want to do the object allocation and transformation of
4891 -- the return object declaration to a renaming. This case occurs
4892 -- when the return object is initialized by a call to another
4893 -- build-in-place function, and that function is responsible for
4894 -- the allocation of the return object.
4896 if Is_BIP_Func
4897 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4898 then
4899 pragma Assert
4900 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4901 and then
4903 -- It is a regular BIP object declaration
4905 (Is_Build_In_Place_Function_Call
4906 (Expression (Original_Node (Ret_Obj_Decl)))
4908 -- It is a BIP object declaration that displaces the pointer
4909 -- to the object to reference a convered interface type.
4911 or else
4912 Present (Unqual_BIP_Iface_Function_Call
4913 (Expression (Original_Node (Ret_Obj_Decl))))));
4915 -- Return the build-in-place result by reference
4917 Set_By_Ref (Return_Stmt);
4919 elsif Is_BIP_Func then
4921 -- Locate the implicit access parameter associated with the
4922 -- caller-supplied return object and convert the return
4923 -- statement's return object declaration to a renaming of a
4924 -- dereference of the access parameter. If the return object's
4925 -- declaration includes an expression that has not already been
4926 -- expanded as separate assignments, then add an assignment
4927 -- statement to ensure the return object gets initialized.
4929 -- declare
4930 -- Result : T [:= <expression>];
4931 -- begin
4932 -- ...
4934 -- is converted to
4936 -- declare
4937 -- Result : T renames FuncRA.all;
4938 -- [Result := <expression;]
4939 -- begin
4940 -- ...
4942 declare
4943 Ret_Obj_Expr : constant Node_Id := Expression (Ret_Obj_Decl);
4944 Ret_Obj_Typ : constant Entity_Id := Etype (Ret_Obj_Id);
4946 Init_Assignment : Node_Id := Empty;
4947 Obj_Acc_Formal : Entity_Id;
4948 Obj_Acc_Deref : Node_Id;
4949 Obj_Alloc_Formal : Entity_Id;
4951 begin
4952 -- Build-in-place results must be returned by reference
4954 Set_By_Ref (Return_Stmt);
4956 -- Retrieve the implicit access parameter passed by the caller
4958 Obj_Acc_Formal :=
4959 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
4961 -- If the return object's declaration includes an expression
4962 -- and the declaration isn't marked as No_Initialization, then
4963 -- we need to generate an assignment to the object and insert
4964 -- it after the declaration before rewriting it as a renaming
4965 -- (otherwise we'll lose the initialization). The case where
4966 -- the result type is an interface (or class-wide interface)
4967 -- is also excluded because the context of the function call
4968 -- must be unconstrained, so the initialization will always
4969 -- be done as part of an allocator evaluation (storage pool
4970 -- or secondary stack), never to a constrained target object
4971 -- passed in by the caller. Besides the assignment being
4972 -- unneeded in this case, it avoids problems with trying to
4973 -- generate a dispatching assignment when the return expression
4974 -- is a nonlimited descendant of a limited interface (the
4975 -- interface has no assignment operation).
4977 if Present (Ret_Obj_Expr)
4978 and then not No_Initialization (Ret_Obj_Decl)
4979 and then not Is_Interface (Ret_Obj_Typ)
4980 then
4981 Init_Assignment :=
4982 Make_Assignment_Statement (Loc,
4983 Name => New_Occurrence_Of (Ret_Obj_Id, Loc),
4984 Expression => New_Copy_Tree (Ret_Obj_Expr));
4986 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
4987 Set_Assignment_OK (Name (Init_Assignment));
4988 Set_No_Ctrl_Actions (Init_Assignment);
4990 Set_Parent (Name (Init_Assignment), Init_Assignment);
4991 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4993 Set_Expression (Ret_Obj_Decl, Empty);
4995 if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
4996 and then not Is_Class_Wide_Type
4997 (Etype (Expression (Init_Assignment)))
4998 then
4999 Rewrite (Expression (Init_Assignment),
5000 Make_Type_Conversion (Loc,
5001 Subtype_Mark =>
5002 New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5003 Expression =>
5004 Relocate_Node (Expression (Init_Assignment))));
5005 end if;
5007 -- In the case of functions where the calling context can
5008 -- determine the form of allocation needed, initialization
5009 -- is done with each part of the if statement that handles
5010 -- the different forms of allocation (this is true for
5011 -- unconstrained and tagged result subtypes).
5013 if Is_Constrained (Ret_Typ)
5014 and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
5015 then
5016 Insert_After (Ret_Obj_Decl, Init_Assignment);
5017 end if;
5018 end if;
5020 -- When the function's subtype is unconstrained, a run-time
5021 -- test is needed to determine the form of allocation to use
5022 -- for the return object. The function has an implicit formal
5023 -- parameter indicating this. If the BIP_Alloc_Form formal has
5024 -- the value one, then the caller has passed access to an
5025 -- existing object for use as the return object. If the value
5026 -- is two, then the return object must be allocated on the
5027 -- secondary stack. Otherwise, the object must be allocated in
5028 -- a storage pool. We generate an if statement to test the
5029 -- implicit allocation formal and initialize a local access
5030 -- value appropriately, creating allocators in the secondary
5031 -- stack and global heap cases. The special formal also exists
5032 -- and must be tested when the function has a tagged result,
5033 -- even when the result subtype is constrained, because in
5034 -- general such functions can be called in dispatching contexts
5035 -- and must be handled similarly to functions with a class-wide
5036 -- result.
5038 if not Is_Constrained (Ret_Typ)
5039 or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
5040 then
5041 Obj_Alloc_Formal :=
5042 Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5044 declare
5045 Pool_Id : constant Entity_Id :=
5046 Make_Temporary (Loc, 'P');
5047 Alloc_Obj_Id : Entity_Id;
5048 Alloc_Obj_Decl : Node_Id;
5049 Alloc_If_Stmt : Node_Id;
5050 Heap_Allocator : Node_Id;
5051 Pool_Decl : Node_Id;
5052 Pool_Allocator : Node_Id;
5053 Ptr_Type_Decl : Node_Id;
5054 Ref_Type : Entity_Id;
5055 SS_Allocator : Node_Id;
5057 begin
5058 -- Reuse the itype created for the function's implicit
5059 -- access formal. This avoids the need to create a new
5060 -- access type here, plus it allows assigning the access
5061 -- formal directly without applying a conversion.
5063 -- Ref_Type := Etype (Object_Access);
5065 -- Create an access type designating the function's
5066 -- result subtype.
5068 Ref_Type := Make_Temporary (Loc, 'A');
5070 Ptr_Type_Decl :=
5071 Make_Full_Type_Declaration (Loc,
5072 Defining_Identifier => Ref_Type,
5073 Type_Definition =>
5074 Make_Access_To_Object_Definition (Loc,
5075 All_Present => True,
5076 Subtype_Indication =>
5077 New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5079 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5081 -- Create an access object that will be initialized to an
5082 -- access value denoting the return object, either coming
5083 -- from an implicit access value passed in by the caller
5084 -- or from the result of an allocator.
5086 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5087 Set_Etype (Alloc_Obj_Id, Ref_Type);
5089 Alloc_Obj_Decl :=
5090 Make_Object_Declaration (Loc,
5091 Defining_Identifier => Alloc_Obj_Id,
5092 Object_Definition =>
5093 New_Occurrence_Of (Ref_Type, Loc));
5095 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5097 -- Create allocators for both the secondary stack and
5098 -- global heap. If there's an initialization expression,
5099 -- then create these as initialized allocators.
5101 if Present (Ret_Obj_Expr)
5102 and then not No_Initialization (Ret_Obj_Decl)
5103 then
5104 -- Always use the type of the expression for the
5105 -- qualified expression, rather than the result type.
5106 -- In general we cannot always use the result type
5107 -- for the allocator, because the expression might be
5108 -- of a specific type, such as in the case of an
5109 -- aggregate or even a nonlimited object when the
5110 -- result type is a limited class-wide interface type.
5112 Heap_Allocator :=
5113 Make_Allocator (Loc,
5114 Expression =>
5115 Make_Qualified_Expression (Loc,
5116 Subtype_Mark =>
5117 New_Occurrence_Of
5118 (Etype (Ret_Obj_Expr), Loc),
5119 Expression => New_Copy_Tree (Ret_Obj_Expr)));
5121 else
5122 -- If the function returns a class-wide type we cannot
5123 -- use the return type for the allocator. Instead we
5124 -- use the type of the expression, which must be an
5125 -- aggregate of a definite type.
5127 if Is_Class_Wide_Type (Ret_Obj_Typ) then
5128 Heap_Allocator :=
5129 Make_Allocator (Loc,
5130 Expression =>
5131 New_Occurrence_Of
5132 (Etype (Ret_Obj_Expr), Loc));
5133 else
5134 Heap_Allocator :=
5135 Make_Allocator (Loc,
5136 Expression =>
5137 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5138 end if;
5140 -- If the object requires default initialization then
5141 -- that will happen later following the elaboration of
5142 -- the object renaming. If we don't turn it off here
5143 -- then the object will be default initialized twice.
5145 Set_No_Initialization (Heap_Allocator);
5146 end if;
5148 -- Set the flag indicating that the allocator came from
5149 -- a build-in-place return statement, so we can avoid
5150 -- adjusting the allocated object. Note that this flag
5151 -- will be inherited by the copies made below.
5153 Set_Alloc_For_BIP_Return (Heap_Allocator);
5155 -- The Pool_Allocator is just like the Heap_Allocator,
5156 -- except we set Storage_Pool and Procedure_To_Call so
5157 -- it will use the user-defined storage pool.
5159 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
5160 pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5162 -- Do not generate the renaming of the build-in-place
5163 -- pool parameter on ZFP because the parameter is not
5164 -- created in the first place.
5166 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5167 Pool_Decl :=
5168 Make_Object_Renaming_Declaration (Loc,
5169 Defining_Identifier => Pool_Id,
5170 Subtype_Mark =>
5171 New_Occurrence_Of
5172 (RTE (RE_Root_Storage_Pool), Loc),
5173 Name =>
5174 Make_Explicit_Dereference (Loc,
5175 New_Occurrence_Of
5176 (Build_In_Place_Formal
5177 (Func_Id, BIP_Storage_Pool), Loc)));
5178 Set_Storage_Pool (Pool_Allocator, Pool_Id);
5179 Set_Procedure_To_Call
5180 (Pool_Allocator, RTE (RE_Allocate_Any));
5181 else
5182 Pool_Decl := Make_Null_Statement (Loc);
5183 end if;
5185 -- If the No_Allocators restriction is active, then only
5186 -- an allocator for secondary stack allocation is needed.
5187 -- It's OK for such allocators to have Comes_From_Source
5188 -- set to False, because gigi knows not to flag them as
5189 -- being a violation of No_Implicit_Heap_Allocations.
5191 if Restriction_Active (No_Allocators) then
5192 SS_Allocator := Heap_Allocator;
5193 Heap_Allocator := Make_Null (Loc);
5194 Pool_Allocator := Make_Null (Loc);
5196 -- Otherwise the heap and pool allocators may be needed,
5197 -- so we make another allocator for secondary stack
5198 -- allocation.
5200 else
5201 SS_Allocator := New_Copy_Tree (Heap_Allocator);
5202 pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5204 -- The heap and pool allocators are marked as
5205 -- Comes_From_Source since they correspond to an
5206 -- explicit user-written allocator (that is, it will
5207 -- only be executed on behalf of callers that call the
5208 -- function as initialization for such an allocator).
5209 -- Prevents errors when No_Implicit_Heap_Allocations
5210 -- is in force.
5212 Set_Comes_From_Source (Heap_Allocator, True);
5213 Set_Comes_From_Source (Pool_Allocator, True);
5214 end if;
5216 -- The allocator is returned on the secondary stack.
5218 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5219 Set_Procedure_To_Call
5220 (SS_Allocator, RTE (RE_SS_Allocate));
5222 -- The allocator is returned on the secondary stack,
5223 -- so indicate that the function return, as well as
5224 -- all blocks that encloses the allocator, must not
5225 -- release it. The flags must be set now because
5226 -- the decision to use the secondary stack is done
5227 -- very late in the course of expanding the return
5228 -- statement, past the point where these flags are
5229 -- normally set.
5231 Set_Uses_Sec_Stack (Func_Id);
5232 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5233 Set_Sec_Stack_Needed_For_Return
5234 (Return_Statement_Entity (N));
5235 Set_Enclosing_Sec_Stack_Return (N);
5237 -- Create an if statement to test the BIP_Alloc_Form
5238 -- formal and initialize the access object to either the
5239 -- BIP_Object_Access formal (BIP_Alloc_Form =
5240 -- Caller_Allocation), the result of allocating the
5241 -- object in the secondary stack (BIP_Alloc_Form =
5242 -- Secondary_Stack), or else an allocator to create the
5243 -- return object in the heap or user-defined pool
5244 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5246 -- ??? An unchecked type conversion must be made in the
5247 -- case of assigning the access object formal to the
5248 -- local access object, because a normal conversion would
5249 -- be illegal in some cases (such as converting access-
5250 -- to-unconstrained to access-to-constrained), but the
5251 -- the unchecked conversion will presumably fail to work
5252 -- right in just such cases. It's not clear at all how to
5253 -- handle this. ???
5255 Alloc_If_Stmt :=
5256 Make_If_Statement (Loc,
5257 Condition =>
5258 Make_Op_Eq (Loc,
5259 Left_Opnd =>
5260 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5261 Right_Opnd =>
5262 Make_Integer_Literal (Loc,
5263 UI_From_Int (BIP_Allocation_Form'Pos
5264 (Caller_Allocation)))),
5266 Then_Statements => New_List (
5267 Make_Assignment_Statement (Loc,
5268 Name =>
5269 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5270 Expression =>
5271 Make_Unchecked_Type_Conversion (Loc,
5272 Subtype_Mark =>
5273 New_Occurrence_Of (Ref_Type, Loc),
5274 Expression =>
5275 New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5277 Elsif_Parts => New_List (
5278 Make_Elsif_Part (Loc,
5279 Condition =>
5280 Make_Op_Eq (Loc,
5281 Left_Opnd =>
5282 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5283 Right_Opnd =>
5284 Make_Integer_Literal (Loc,
5285 UI_From_Int (BIP_Allocation_Form'Pos
5286 (Secondary_Stack)))),
5288 Then_Statements => New_List (
5289 Make_Assignment_Statement (Loc,
5290 Name =>
5291 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5292 Expression => SS_Allocator))),
5294 Make_Elsif_Part (Loc,
5295 Condition =>
5296 Make_Op_Eq (Loc,
5297 Left_Opnd =>
5298 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5299 Right_Opnd =>
5300 Make_Integer_Literal (Loc,
5301 UI_From_Int (BIP_Allocation_Form'Pos
5302 (Global_Heap)))),
5304 Then_Statements => New_List (
5305 Build_Heap_Allocator
5306 (Temp_Id => Alloc_Obj_Id,
5307 Temp_Typ => Ref_Type,
5308 Func_Id => Func_Id,
5309 Ret_Typ => Ret_Obj_Typ,
5310 Alloc_Expr => Heap_Allocator))),
5312 -- ???If all is well, we can put the following
5313 -- 'elsif' in the 'else', but this is a useful
5314 -- self-check in case caller and callee don't agree
5315 -- on whether BIPAlloc and so on should be passed.
5317 Make_Elsif_Part (Loc,
5318 Condition =>
5319 Make_Op_Eq (Loc,
5320 Left_Opnd =>
5321 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5322 Right_Opnd =>
5323 Make_Integer_Literal (Loc,
5324 UI_From_Int (BIP_Allocation_Form'Pos
5325 (User_Storage_Pool)))),
5327 Then_Statements => New_List (
5328 Pool_Decl,
5329 Build_Heap_Allocator
5330 (Temp_Id => Alloc_Obj_Id,
5331 Temp_Typ => Ref_Type,
5332 Func_Id => Func_Id,
5333 Ret_Typ => Ret_Obj_Typ,
5334 Alloc_Expr => Pool_Allocator)))),
5336 -- Raise Program_Error if it's none of the above;
5337 -- this is a compiler bug. ???PE_All_Guards_Closed
5338 -- is bogus; we should have a new code.
5340 Else_Statements => New_List (
5341 Make_Raise_Program_Error (Loc,
5342 Reason => PE_All_Guards_Closed)));
5344 -- If a separate initialization assignment was created
5345 -- earlier, append that following the assignment of the
5346 -- implicit access formal to the access object, to ensure
5347 -- that the return object is initialized in that case. In
5348 -- this situation, the target of the assignment must be
5349 -- rewritten to denote a dereference of the access to the
5350 -- return object passed in by the caller.
5352 if Present (Init_Assignment) then
5353 Rewrite (Name (Init_Assignment),
5354 Make_Explicit_Dereference (Loc,
5355 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5357 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5359 Append_To
5360 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5361 end if;
5363 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5365 -- Remember the local access object for use in the
5366 -- dereference of the renaming created below.
5368 Obj_Acc_Formal := Alloc_Obj_Id;
5369 end;
5370 end if;
5372 -- Replace the return object declaration with a renaming of a
5373 -- dereference of the access value designating the return
5374 -- object.
5376 Obj_Acc_Deref :=
5377 Make_Explicit_Dereference (Loc,
5378 Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5380 Rewrite (Ret_Obj_Decl,
5381 Make_Object_Renaming_Declaration (Loc,
5382 Defining_Identifier => Ret_Obj_Id,
5383 Access_Definition => Empty,
5384 Subtype_Mark => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5385 Name => Obj_Acc_Deref));
5387 Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5388 end;
5389 end if;
5391 -- Case where we do not build a block
5393 else
5394 -- We're about to drop Return_Object_Declarations on the floor, so
5395 -- we need to insert it, in case it got expanded into useful code.
5396 -- Remove side effects from expression, which may be duplicated in
5397 -- subsequent checks (see Expand_Simple_Function_Return).
5399 Insert_List_Before (N, Return_Object_Declarations (N));
5400 Remove_Side_Effects (Exp);
5402 -- Build simple_return_statement that returns the expression directly
5404 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5405 Result := Return_Stmt;
5406 end if;
5408 -- Set the flag to prevent infinite recursion
5410 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5412 Rewrite (N, Result);
5413 Analyze (N);
5414 end Expand_N_Extended_Return_Statement;
5416 ----------------------------
5417 -- Expand_N_Function_Call --
5418 ----------------------------
5420 procedure Expand_N_Function_Call (N : Node_Id) is
5421 begin
5422 Expand_Call (N);
5423 end Expand_N_Function_Call;
5425 ---------------------------------------
5426 -- Expand_N_Procedure_Call_Statement --
5427 ---------------------------------------
5429 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5430 begin
5431 Expand_Call (N);
5432 end Expand_N_Procedure_Call_Statement;
5434 --------------------------------------
5435 -- Expand_N_Simple_Return_Statement --
5436 --------------------------------------
5438 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5439 begin
5440 -- Defend against previous errors (i.e. the return statement calls a
5441 -- function that is not available in configurable runtime).
5443 if Present (Expression (N))
5444 and then Nkind (Expression (N)) = N_Empty
5445 then
5446 Check_Error_Detected;
5447 return;
5448 end if;
5450 -- Distinguish the function and non-function cases:
5452 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5453 when E_Function
5454 | E_Generic_Function
5456 Expand_Simple_Function_Return (N);
5458 when E_Entry
5459 | E_Entry_Family
5460 | E_Generic_Procedure
5461 | E_Procedure
5462 | E_Return_Statement
5464 Expand_Non_Function_Return (N);
5466 when others =>
5467 raise Program_Error;
5468 end case;
5470 exception
5471 when RE_Not_Available =>
5472 return;
5473 end Expand_N_Simple_Return_Statement;
5475 ------------------------------
5476 -- Expand_N_Subprogram_Body --
5477 ------------------------------
5479 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5480 -- by the back-end.
5482 -- Add dummy push/pop label nodes at start and end to clear any local
5483 -- exception indications if local-exception-to-goto optimization is active.
5485 -- Add return statement if last statement in body is not a return statement
5486 -- (this makes things easier on Gigi which does not want to have to handle
5487 -- a missing return).
5489 -- Add call to Activate_Tasks if body is a task activator
5491 -- Deal with possible detection of infinite recursion
5493 -- Eliminate body completely if convention stubbed
5495 -- Encode entity names within body, since we will not need to reference
5496 -- these entities any longer in the front end.
5498 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5500 -- Reset Pure indication if any parameter has root type System.Address
5501 -- or has any parameters of limited types, where limited means that the
5502 -- run-time view is limited (i.e. the full type is limited).
5504 -- Wrap thread body
5506 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5507 Body_Id : constant Entity_Id := Defining_Entity (N);
5508 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5509 Loc : constant Source_Ptr := Sloc (N);
5511 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5512 -- Append a return statement to the statement sequence Stmts if the last
5513 -- statement is not already a return or a goto statement. Note that the
5514 -- latter test is not critical, it does not matter if we add a few extra
5515 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5516 -- the corresponding spec of the subprogram body.
5518 ----------------
5519 -- Add_Return --
5520 ----------------
5522 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5523 Last_Stmt : Node_Id;
5524 Loc : Source_Ptr;
5525 Stmt : Node_Id;
5527 begin
5528 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5529 -- not relevant in this context since they are not executable.
5531 Last_Stmt := Last (Stmts);
5532 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5533 Prev (Last_Stmt);
5534 end loop;
5536 -- Now insert return unless last statement is a transfer
5538 if not Is_Transfer (Last_Stmt) then
5540 -- The source location for the return is the end label of the
5541 -- procedure if present. Otherwise use the sloc of the last
5542 -- statement in the list. If the list comes from a generated
5543 -- exception handler and we are not debugging generated code,
5544 -- all the statements within the handler are made invisible
5545 -- to the debugger.
5547 if Nkind (Parent (Stmts)) = N_Exception_Handler
5548 and then not Comes_From_Source (Parent (Stmts))
5549 then
5550 Loc := Sloc (Last_Stmt);
5551 elsif Present (End_Label (HSS)) then
5552 Loc := Sloc (End_Label (HSS));
5553 else
5554 Loc := Sloc (Last_Stmt);
5555 end if;
5557 -- Append return statement, and set analyzed manually. We can't
5558 -- call Analyze on this return since the scope is wrong.
5560 -- Note: it almost works to push the scope and then do the Analyze
5561 -- call, but something goes wrong in some weird cases and it is
5562 -- not worth worrying about ???
5564 Stmt := Make_Simple_Return_Statement (Loc);
5566 -- The return statement is handled properly, and the call to the
5567 -- postcondition, inserted below, does not require information
5568 -- from the body either. However, that call is analyzed in the
5569 -- enclosing scope, and an elaboration check might improperly be
5570 -- added to it. A guard in Sem_Elab is needed to prevent that
5571 -- spurious check, see Check_Elab_Call.
5573 Append_To (Stmts, Stmt);
5574 Set_Analyzed (Stmt);
5576 -- Call the _Postconditions procedure if the related subprogram
5577 -- has contract assertions that need to be verified on exit.
5579 if Ekind (Spec_Id) = E_Procedure
5580 and then Present (Postconditions_Proc (Spec_Id))
5581 then
5582 Insert_Action (Stmt,
5583 Make_Procedure_Call_Statement (Loc,
5584 Name =>
5585 New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5586 end if;
5587 end if;
5588 end Add_Return;
5590 -- Local variables
5592 Except_H : Node_Id;
5593 L : List_Id;
5594 Spec_Id : Entity_Id;
5596 -- Start of processing for Expand_N_Subprogram_Body
5598 begin
5599 if Present (Corresponding_Spec (N)) then
5600 Spec_Id := Corresponding_Spec (N);
5601 else
5602 Spec_Id := Body_Id;
5603 end if;
5605 -- If this is a Pure function which has any parameters whose root type
5606 -- is System.Address, reset the Pure indication.
5607 -- This check is also performed when the subprogram is frozen, but we
5608 -- repeat it on the body so that the indication is consistent, and so
5609 -- it applies as well to bodies without separate specifications.
5611 if Is_Pure (Spec_Id)
5612 and then Is_Subprogram (Spec_Id)
5613 and then not Has_Pragma_Pure_Function (Spec_Id)
5614 then
5615 Check_Function_With_Address_Parameter (Spec_Id);
5617 if Spec_Id /= Body_Id then
5618 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5619 end if;
5620 end if;
5622 -- Set L to either the list of declarations if present, or to the list
5623 -- of statements if no declarations are present. This is used to insert
5624 -- new stuff at the start.
5626 if Is_Non_Empty_List (Declarations (N)) then
5627 L := Declarations (N);
5628 else
5629 L := Statements (HSS);
5630 end if;
5632 -- If local-exception-to-goto optimization active, insert dummy push
5633 -- statements at start, and dummy pop statements at end, but inhibit
5634 -- this if we have No_Exception_Handlers, since they are useless and
5635 -- intefere with analysis, e.g. by codepeer.
5637 if (Debug_Flag_Dot_G
5638 or else Restriction_Active (No_Exception_Propagation))
5639 and then not Restriction_Active (No_Exception_Handlers)
5640 and then not CodePeer_Mode
5641 and then Is_Non_Empty_List (L)
5642 then
5643 declare
5644 FS : constant Node_Id := First (L);
5645 FL : constant Source_Ptr := Sloc (FS);
5646 LS : Node_Id;
5647 LL : Source_Ptr;
5649 begin
5650 -- LS points to either last statement, if statements are present
5651 -- or to the last declaration if there are no statements present.
5652 -- It is the node after which the pop's are generated.
5654 if Is_Non_Empty_List (Statements (HSS)) then
5655 LS := Last (Statements (HSS));
5656 else
5657 LS := Last (L);
5658 end if;
5660 LL := Sloc (LS);
5662 Insert_List_Before_And_Analyze (FS, New_List (
5663 Make_Push_Constraint_Error_Label (FL),
5664 Make_Push_Program_Error_Label (FL),
5665 Make_Push_Storage_Error_Label (FL)));
5667 Insert_List_After_And_Analyze (LS, New_List (
5668 Make_Pop_Constraint_Error_Label (LL),
5669 Make_Pop_Program_Error_Label (LL),
5670 Make_Pop_Storage_Error_Label (LL)));
5671 end;
5672 end if;
5674 -- Need poll on entry to subprogram if polling enabled. We only do this
5675 -- for non-empty subprograms, since it does not seem necessary to poll
5676 -- for a dummy null subprogram.
5678 if Is_Non_Empty_List (L) then
5680 -- Do not add a polling call if the subprogram is to be inlined by
5681 -- the back-end, to avoid repeated calls with multiple inlinings.
5683 if Is_Inlined (Spec_Id)
5684 and then Front_End_Inlining
5685 and then Optimization_Level > 1
5686 then
5687 null;
5688 else
5689 Generate_Poll_Call (First (L));
5690 end if;
5691 end if;
5693 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5695 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5696 declare
5697 F : Entity_Id;
5698 A : Node_Id;
5700 begin
5701 -- Loop through formals
5703 F := First_Formal (Spec_Id);
5704 while Present (F) loop
5705 if Is_Scalar_Type (Etype (F))
5706 and then Ekind (F) = E_Out_Parameter
5707 then
5708 Check_Restriction (No_Default_Initialization, F);
5710 -- Insert the initialization. We turn off validity checks
5711 -- for this assignment, since we do not want any check on
5712 -- the initial value itself (which may well be invalid).
5713 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5715 A :=
5716 Make_Assignment_Statement (Loc,
5717 Name => New_Occurrence_Of (F, Loc),
5718 Expression => Get_Simple_Init_Val (Etype (F), N));
5719 Set_Suppress_Assignment_Checks (A);
5721 Insert_Before_And_Analyze (First (L),
5722 A, Suppress => Validity_Check);
5723 end if;
5725 Next_Formal (F);
5726 end loop;
5727 end;
5728 end if;
5730 -- Clear out statement list for stubbed procedure
5732 if Present (Corresponding_Spec (N)) then
5733 Set_Elaboration_Flag (N, Spec_Id);
5735 if Convention (Spec_Id) = Convention_Stubbed
5736 or else Is_Eliminated (Spec_Id)
5737 then
5738 Set_Declarations (N, Empty_List);
5739 Set_Handled_Statement_Sequence (N,
5740 Make_Handled_Sequence_Of_Statements (Loc,
5741 Statements => New_List (Make_Null_Statement (Loc))));
5743 return;
5744 end if;
5745 end if;
5747 -- Create a set of discriminals for the next protected subprogram body
5749 if Is_List_Member (N)
5750 and then Present (Parent (List_Containing (N)))
5751 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5752 and then Present (Next_Protected_Operation (N))
5753 then
5754 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5755 end if;
5757 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5758 -- subprograms with no specs are not frozen.
5760 declare
5761 Typ : constant Entity_Id := Etype (Spec_Id);
5762 Utyp : constant Entity_Id := Underlying_Type (Typ);
5764 begin
5765 if Is_Limited_View (Typ) then
5766 Set_Returns_By_Ref (Spec_Id);
5768 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5769 Set_Returns_By_Ref (Spec_Id);
5770 end if;
5771 end;
5773 -- For a procedure, we add a return for all possible syntactic ends of
5774 -- the subprogram.
5776 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5777 Add_Return (Spec_Id, Statements (HSS));
5779 if Present (Exception_Handlers (HSS)) then
5780 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5781 while Present (Except_H) loop
5782 Add_Return (Spec_Id, Statements (Except_H));
5783 Next_Non_Pragma (Except_H);
5784 end loop;
5785 end if;
5787 -- For a function, we must deal with the case where there is at least
5788 -- one missing return. What we do is to wrap the entire body of the
5789 -- function in a block:
5791 -- begin
5792 -- ...
5793 -- end;
5795 -- becomes
5797 -- begin
5798 -- begin
5799 -- ...
5800 -- end;
5802 -- raise Program_Error;
5803 -- end;
5805 -- This approach is necessary because the raise must be signalled to the
5806 -- caller, not handled by any local handler (RM 6.4(11)).
5808 -- Note: we do not need to analyze the constructed sequence here, since
5809 -- it has no handler, and an attempt to analyze the handled statement
5810 -- sequence twice is risky in various ways (e.g. the issue of expanding
5811 -- cleanup actions twice).
5813 elsif Has_Missing_Return (Spec_Id) then
5814 declare
5815 Hloc : constant Source_Ptr := Sloc (HSS);
5816 Blok : constant Node_Id :=
5817 Make_Block_Statement (Hloc,
5818 Handled_Statement_Sequence => HSS);
5819 Rais : constant Node_Id :=
5820 Make_Raise_Program_Error (Hloc,
5821 Reason => PE_Missing_Return);
5823 begin
5824 Set_Handled_Statement_Sequence (N,
5825 Make_Handled_Sequence_Of_Statements (Hloc,
5826 Statements => New_List (Blok, Rais)));
5828 Push_Scope (Spec_Id);
5829 Analyze (Blok);
5830 Analyze (Rais);
5831 Pop_Scope;
5832 end;
5833 end if;
5835 -- If subprogram contains a parameterless recursive call, then we may
5836 -- have an infinite recursion, so see if we can generate code to check
5837 -- for this possibility if storage checks are not suppressed.
5839 if Ekind (Spec_Id) = E_Procedure
5840 and then Has_Recursive_Call (Spec_Id)
5841 and then not Storage_Checks_Suppressed (Spec_Id)
5842 then
5843 Detect_Infinite_Recursion (N, Spec_Id);
5844 end if;
5846 -- Set to encode entity names in package body before gigi is called
5848 Qualify_Entity_Names (N);
5850 -- If the body belongs to a nonabstract library-level source primitive
5851 -- of a tagged type, install an elaboration check which ensures that a
5852 -- dispatching call targeting the primitive will not execute the body
5853 -- without it being previously elaborated.
5855 Install_Primitive_Elaboration_Check (N);
5856 end Expand_N_Subprogram_Body;
5858 -----------------------------------
5859 -- Expand_N_Subprogram_Body_Stub --
5860 -----------------------------------
5862 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5863 Bod : Node_Id;
5865 begin
5866 if Present (Corresponding_Body (N)) then
5867 Bod := Unit_Declaration_Node (Corresponding_Body (N));
5869 -- The body may have been expanded already when it is analyzed
5870 -- through the subunit node. Do no expand again: it interferes
5871 -- with the construction of unnesting tables when generating C.
5873 if not Analyzed (Bod) then
5874 Expand_N_Subprogram_Body (Bod);
5875 end if;
5877 -- Add full qualification to entities that may be created late
5878 -- during unnesting.
5880 Qualify_Entity_Names (N);
5881 end if;
5882 end Expand_N_Subprogram_Body_Stub;
5884 -------------------------------------
5885 -- Expand_N_Subprogram_Declaration --
5886 -------------------------------------
5888 -- If the declaration appears within a protected body, it is a private
5889 -- operation of the protected type. We must create the corresponding
5890 -- protected subprogram an associated formals. For a normal protected
5891 -- operation, this is done when expanding the protected type declaration.
5893 -- If the declaration is for a null procedure, emit null body
5895 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5896 Loc : constant Source_Ptr := Sloc (N);
5897 Subp : constant Entity_Id := Defining_Entity (N);
5899 -- Local variables
5901 Scop : constant Entity_Id := Scope (Subp);
5902 Prot_Bod : Node_Id;
5903 Prot_Decl : Node_Id;
5904 Prot_Id : Entity_Id;
5906 -- Start of processing for Expand_N_Subprogram_Declaration
5908 begin
5909 -- In SPARK, subprogram declarations are only allowed in package
5910 -- specifications.
5912 if Nkind (Parent (N)) /= N_Package_Specification then
5913 if Nkind (Parent (N)) = N_Compilation_Unit then
5914 Check_SPARK_05_Restriction
5915 ("subprogram declaration is not a library item", N);
5917 elsif Present (Next (N))
5918 and then Nkind (Next (N)) = N_Pragma
5919 and then Get_Pragma_Id (Next (N)) = Pragma_Import
5920 then
5921 -- In SPARK, subprogram declarations are also permitted in
5922 -- declarative parts when immediately followed by a corresponding
5923 -- pragma Import. We only check here that there is some pragma
5924 -- Import.
5926 null;
5927 else
5928 Check_SPARK_05_Restriction
5929 ("subprogram declaration is not allowed here", N);
5930 end if;
5931 end if;
5933 -- Deal with case of protected subprogram. Do not generate protected
5934 -- operation if operation is flagged as eliminated.
5936 if Is_List_Member (N)
5937 and then Present (Parent (List_Containing (N)))
5938 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5939 and then Is_Protected_Type (Scop)
5940 then
5941 if No (Protected_Body_Subprogram (Subp))
5942 and then not Is_Eliminated (Subp)
5943 then
5944 Prot_Decl :=
5945 Make_Subprogram_Declaration (Loc,
5946 Specification =>
5947 Build_Protected_Sub_Specification
5948 (N, Scop, Unprotected_Mode));
5950 -- The protected subprogram is declared outside of the protected
5951 -- body. Given that the body has frozen all entities so far, we
5952 -- analyze the subprogram and perform freezing actions explicitly.
5953 -- including the generation of an explicit freeze node, to ensure
5954 -- that gigi has the proper order of elaboration.
5955 -- If the body is a subunit, the insertion point is before the
5956 -- stub in the parent.
5958 Prot_Bod := Parent (List_Containing (N));
5960 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5961 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5962 end if;
5964 Insert_Before (Prot_Bod, Prot_Decl);
5965 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5966 Set_Has_Delayed_Freeze (Prot_Id);
5968 Push_Scope (Scope (Scop));
5969 Analyze (Prot_Decl);
5970 Freeze_Before (N, Prot_Id);
5971 Set_Protected_Body_Subprogram (Subp, Prot_Id);
5973 -- Create protected operation as well. Even though the operation
5974 -- is only accessible within the body, it is possible to make it
5975 -- available outside of the protected object by using 'Access to
5976 -- provide a callback, so build protected version in all cases.
5978 Prot_Decl :=
5979 Make_Subprogram_Declaration (Loc,
5980 Specification =>
5981 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5982 Insert_Before (Prot_Bod, Prot_Decl);
5983 Analyze (Prot_Decl);
5985 Pop_Scope;
5986 end if;
5988 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5989 -- cases this is superfluous because calls to it will be automatically
5990 -- inlined, but we definitely need the body if preconditions for the
5991 -- procedure are present, or if performing coverage analysis.
5993 elsif Nkind (Specification (N)) = N_Procedure_Specification
5994 and then Null_Present (Specification (N))
5995 then
5996 declare
5997 Bod : constant Node_Id := Body_To_Inline (N);
5999 begin
6000 Set_Has_Completion (Subp, False);
6001 Append_Freeze_Action (Subp, Bod);
6003 -- The body now contains raise statements, so calls to it will
6004 -- not be inlined.
6006 Set_Is_Inlined (Subp, False);
6007 end;
6008 end if;
6010 -- When generating C code, transform a function that returns a
6011 -- constrained array type into a procedure with an out parameter
6012 -- that carries the return value.
6014 -- We skip this transformation for unchecked conversions, since they
6015 -- are not needed by the C generator (and this also produces cleaner
6016 -- output).
6018 if Modify_Tree_For_C
6019 and then Nkind (Specification (N)) = N_Function_Specification
6020 and then Is_Array_Type (Etype (Subp))
6021 and then Is_Constrained (Etype (Subp))
6022 and then not Is_Unchecked_Conversion_Instance (Subp)
6023 then
6024 Build_Procedure_Form (N);
6025 end if;
6026 end Expand_N_Subprogram_Declaration;
6028 --------------------------------
6029 -- Expand_Non_Function_Return --
6030 --------------------------------
6032 procedure Expand_Non_Function_Return (N : Node_Id) is
6033 pragma Assert (No (Expression (N)));
6035 Loc : constant Source_Ptr := Sloc (N);
6036 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6037 Kind : constant Entity_Kind := Ekind (Scope_Id);
6038 Call : Node_Id;
6039 Acc_Stat : Node_Id;
6040 Goto_Stat : Node_Id;
6041 Lab_Node : Node_Id;
6043 begin
6044 -- Call the _Postconditions procedure if the related subprogram has
6045 -- contract assertions that need to be verified on exit.
6047 if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6048 and then Present (Postconditions_Proc (Scope_Id))
6049 then
6050 Insert_Action (N,
6051 Make_Procedure_Call_Statement (Loc,
6052 Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6053 end if;
6055 -- If it is a return from a procedure do no extra steps
6057 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6058 return;
6060 -- If it is a nested return within an extended one, replace it with a
6061 -- return of the previously declared return object.
6063 elsif Kind = E_Return_Statement then
6064 Rewrite (N,
6065 Make_Simple_Return_Statement (Loc,
6066 Expression =>
6067 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6068 Set_Comes_From_Extended_Return_Statement (N);
6069 Set_Return_Statement_Entity (N, Scope_Id);
6070 Expand_Simple_Function_Return (N);
6071 return;
6072 end if;
6074 pragma Assert (Is_Entry (Scope_Id));
6076 -- Look at the enclosing block to see whether the return is from an
6077 -- accept statement or an entry body.
6079 for J in reverse 0 .. Scope_Stack.Last loop
6080 Scope_Id := Scope_Stack.Table (J).Entity;
6081 exit when Is_Concurrent_Type (Scope_Id);
6082 end loop;
6084 -- If it is a return from accept statement it is expanded as call to
6085 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6087 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6088 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6090 if Is_Task_Type (Scope_Id) then
6092 Call :=
6093 Make_Procedure_Call_Statement (Loc,
6094 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6095 Insert_Before (N, Call);
6096 -- why not insert actions here???
6097 Analyze (Call);
6099 Acc_Stat := Parent (N);
6100 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6101 Acc_Stat := Parent (Acc_Stat);
6102 end loop;
6104 Lab_Node := Last (Statements
6105 (Handled_Statement_Sequence (Acc_Stat)));
6107 Goto_Stat := Make_Goto_Statement (Loc,
6108 Name => New_Occurrence_Of
6109 (Entity (Identifier (Lab_Node)), Loc));
6111 Set_Analyzed (Goto_Stat);
6113 Rewrite (N, Goto_Stat);
6114 Analyze (N);
6116 -- If it is a return from an entry body, put a Complete_Entry_Body call
6117 -- in front of the return.
6119 elsif Is_Protected_Type (Scope_Id) then
6120 Call :=
6121 Make_Procedure_Call_Statement (Loc,
6122 Name =>
6123 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6124 Parameter_Associations => New_List (
6125 Make_Attribute_Reference (Loc,
6126 Prefix =>
6127 New_Occurrence_Of
6128 (Find_Protection_Object (Current_Scope), Loc),
6129 Attribute_Name => Name_Unchecked_Access)));
6131 Insert_Before (N, Call);
6132 Analyze (Call);
6133 end if;
6134 end Expand_Non_Function_Return;
6136 ---------------------------------------
6137 -- Expand_Protected_Object_Reference --
6138 ---------------------------------------
6140 function Expand_Protected_Object_Reference
6141 (N : Node_Id;
6142 Scop : Entity_Id) return Node_Id
6144 Loc : constant Source_Ptr := Sloc (N);
6145 Corr : Entity_Id;
6146 Rec : Node_Id;
6147 Param : Entity_Id;
6148 Proc : Entity_Id;
6150 begin
6151 Rec := Make_Identifier (Loc, Name_uObject);
6152 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6154 -- Find enclosing protected operation, and retrieve its first parameter,
6155 -- which denotes the enclosing protected object. If the enclosing
6156 -- operation is an entry, we are immediately within the protected body,
6157 -- and we can retrieve the object from the service entries procedure. A
6158 -- barrier function has the same signature as an entry. A barrier
6159 -- function is compiled within the protected object, but unlike
6160 -- protected operations its never needs locks, so that its protected
6161 -- body subprogram points to itself.
6163 Proc := Current_Scope;
6164 while Present (Proc)
6165 and then Scope (Proc) /= Scop
6166 loop
6167 Proc := Scope (Proc);
6168 end loop;
6170 Corr := Protected_Body_Subprogram (Proc);
6172 if No (Corr) then
6174 -- Previous error left expansion incomplete.
6175 -- Nothing to do on this call.
6177 return Empty;
6178 end if;
6180 Param :=
6181 Defining_Identifier
6182 (First (Parameter_Specifications (Parent (Corr))));
6184 if Is_Subprogram (Proc) and then Proc /= Corr then
6186 -- Protected function or procedure
6188 Set_Entity (Rec, Param);
6190 -- Rec is a reference to an entity which will not be in scope when
6191 -- the call is reanalyzed, and needs no further analysis.
6193 Set_Analyzed (Rec);
6195 else
6196 -- Entry or barrier function for entry body. The first parameter of
6197 -- the entry body procedure is pointer to the object. We create a
6198 -- local variable of the proper type, duplicating what is done to
6199 -- define _object later on.
6201 declare
6202 Decls : List_Id;
6203 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6205 begin
6206 Decls := New_List (
6207 Make_Full_Type_Declaration (Loc,
6208 Defining_Identifier => Obj_Ptr,
6209 Type_Definition =>
6210 Make_Access_To_Object_Definition (Loc,
6211 Subtype_Indication =>
6212 New_Occurrence_Of
6213 (Corresponding_Record_Type (Scop), Loc))));
6215 Insert_Actions (N, Decls);
6216 Freeze_Before (N, Obj_Ptr);
6218 Rec :=
6219 Make_Explicit_Dereference (Loc,
6220 Prefix =>
6221 Unchecked_Convert_To (Obj_Ptr,
6222 New_Occurrence_Of (Param, Loc)));
6224 -- Analyze new actual. Other actuals in calls are already analyzed
6225 -- and the list of actuals is not reanalyzed after rewriting.
6227 Set_Parent (Rec, N);
6228 Analyze (Rec);
6229 end;
6230 end if;
6232 return Rec;
6233 end Expand_Protected_Object_Reference;
6235 --------------------------------------
6236 -- Expand_Protected_Subprogram_Call --
6237 --------------------------------------
6239 procedure Expand_Protected_Subprogram_Call
6240 (N : Node_Id;
6241 Subp : Entity_Id;
6242 Scop : Entity_Id)
6244 Rec : Node_Id;
6246 procedure Expand_Internal_Init_Call;
6247 -- A call to an operation of the type may occur in the initialization
6248 -- of a private component. In that case the prefix of the call is an
6249 -- entity name and the call is treated as internal even though it
6250 -- appears in code outside of the protected type.
6252 procedure Freeze_Called_Function;
6253 -- If it is a function call it can appear in elaboration code and
6254 -- the called entity must be frozen before the call. This must be
6255 -- done before the call is expanded, as the expansion may rewrite it
6256 -- to something other than a call (e.g. a temporary initialized in a
6257 -- transient block).
6259 -------------------------------
6260 -- Expand_Internal_Init_Call --
6261 -------------------------------
6263 procedure Expand_Internal_Init_Call is
6264 begin
6265 -- If the context is a protected object (rather than a protected
6266 -- type) the call itself is bound to raise program_error because
6267 -- the protected body will not have been elaborated yet. This is
6268 -- diagnosed subsequently in Sem_Elab.
6270 Freeze_Called_Function;
6272 -- The target of the internal call is the first formal of the
6273 -- enclosing initialization procedure.
6275 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6276 Build_Protected_Subprogram_Call (N,
6277 Name => Name (N),
6278 Rec => Rec,
6279 External => False);
6280 Analyze (N);
6281 Resolve (N, Etype (Subp));
6282 end Expand_Internal_Init_Call;
6284 ----------------------------
6285 -- Freeze_Called_Function --
6286 ----------------------------
6288 procedure Freeze_Called_Function is
6289 begin
6290 if Ekind (Subp) = E_Function then
6291 Freeze_Expression (Name (N));
6292 end if;
6293 end Freeze_Called_Function;
6295 -- Start of processing for Expand_Protected_Subprogram_Call
6297 begin
6298 -- If the protected object is not an enclosing scope, this is an inter-
6299 -- object function call. Inter-object procedure calls are expanded by
6300 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6301 -- subprogram being called is in the protected body being compiled, and
6302 -- if the protected object in the call is statically the enclosing type.
6303 -- The object may be a component of some other data structure, in which
6304 -- case this must be handled as an inter-object call.
6306 if not In_Open_Scopes (Scop)
6307 or else Is_Entry_Wrapper (Current_Scope)
6308 or else not Is_Entity_Name (Name (N))
6309 then
6310 if Nkind (Name (N)) = N_Selected_Component then
6311 Rec := Prefix (Name (N));
6313 elsif Nkind (Name (N)) = N_Indexed_Component then
6314 Rec := Prefix (Prefix (Name (N)));
6316 -- If this is a call within an entry wrapper, it appears within a
6317 -- precondition that calls another primitive of the synchronized
6318 -- type. The target object of the call is the first actual on the
6319 -- wrapper. Note that this is an external call, because the wrapper
6320 -- is called outside of the synchronized object. This means that
6321 -- an entry call to an entry with preconditions involves two
6322 -- synchronized operations.
6324 elsif Ekind (Current_Scope) = E_Procedure
6325 and then Is_Entry_Wrapper (Current_Scope)
6326 then
6327 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6329 else
6330 -- If the context is the initialization procedure for a protected
6331 -- type, the call is legal because the called entity must be a
6332 -- function of that enclosing type, and this is treated as an
6333 -- internal call.
6335 pragma Assert
6336 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6338 Expand_Internal_Init_Call;
6339 return;
6340 end if;
6342 Freeze_Called_Function;
6343 Build_Protected_Subprogram_Call (N,
6344 Name => New_Occurrence_Of (Subp, Sloc (N)),
6345 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6346 External => True);
6348 else
6349 Rec := Expand_Protected_Object_Reference (N, Scop);
6351 if No (Rec) then
6352 return;
6353 end if;
6355 Freeze_Called_Function;
6356 Build_Protected_Subprogram_Call (N,
6357 Name => Name (N),
6358 Rec => Rec,
6359 External => False);
6360 end if;
6362 -- Analyze and resolve the new call. The actuals have already been
6363 -- resolved, but expansion of a function call will add extra actuals
6364 -- if needed. Analysis of a procedure call already includes resolution.
6366 Analyze (N);
6368 if Ekind (Subp) = E_Function then
6369 Resolve (N, Etype (Subp));
6370 end if;
6371 end Expand_Protected_Subprogram_Call;
6373 -----------------------------------
6374 -- Expand_Simple_Function_Return --
6375 -----------------------------------
6377 -- The "simple" comes from the syntax rule simple_return_statement. The
6378 -- semantics are not at all simple.
6380 procedure Expand_Simple_Function_Return (N : Node_Id) is
6381 Loc : constant Source_Ptr := Sloc (N);
6383 Scope_Id : constant Entity_Id :=
6384 Return_Applies_To (Return_Statement_Entity (N));
6385 -- The function we are returning from
6387 R_Type : constant Entity_Id := Etype (Scope_Id);
6388 -- The result type of the function
6390 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6392 Exp : Node_Id := Expression (N);
6393 pragma Assert (Present (Exp));
6395 Exptyp : constant Entity_Id := Etype (Exp);
6396 -- The type of the expression (not necessarily the same as R_Type)
6398 Subtype_Ind : Node_Id;
6399 -- If the result type of the function is class-wide and the expression
6400 -- has a specific type, then we use the expression's type as the type of
6401 -- the return object. In cases where the expression is an aggregate that
6402 -- is built in place, this avoids the need for an expensive conversion
6403 -- of the return object to the specific type on assignments to the
6404 -- individual components.
6406 begin
6407 if Is_Class_Wide_Type (R_Type)
6408 and then not Is_Class_Wide_Type (Exptyp)
6409 and then Nkind (Exp) /= N_Type_Conversion
6410 then
6411 Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6412 else
6413 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6415 -- If the result type is class-wide and the expression is a view
6416 -- conversion, the conversion plays no role in the expansion because
6417 -- it does not modify the tag of the object. Remove the conversion
6418 -- altogether to prevent tag overwriting.
6420 if Is_Class_Wide_Type (R_Type)
6421 and then not Is_Class_Wide_Type (Exptyp)
6422 and then Nkind (Exp) = N_Type_Conversion
6423 then
6424 Exp := Expression (Exp);
6425 end if;
6426 end if;
6428 -- For the case of a simple return that does not come from an
6429 -- extended return, in the case of build-in-place, we rewrite
6430 -- "return <expression>;" to be:
6432 -- return _anon_ : <return_subtype> := <expression>
6434 -- The expansion produced by Expand_N_Extended_Return_Statement will
6435 -- contain simple return statements (for example, a block containing
6436 -- simple return of the return object), which brings us back here with
6437 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6438 -- checking for a simple return that does not come from an extended
6439 -- return is to avoid this infinite recursion.
6441 -- The reason for this design is that for Ada 2005 limited returns, we
6442 -- need to reify the return object, so we can build it "in place", and
6443 -- we need a block statement to hang finalization and tasking stuff.
6445 -- ??? In order to avoid disruption, we avoid translating to extended
6446 -- return except in the cases where we really need to (Ada 2005 for
6447 -- inherently limited). We might prefer to do this translation in all
6448 -- cases (except perhaps for the case of Ada 95 inherently limited),
6449 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6450 -- code. This would also allow us to do the build-in-place optimization
6451 -- for efficiency even in cases where it is semantically not required.
6453 -- As before, we check the type of the return expression rather than the
6454 -- return type of the function, because the latter may be a limited
6455 -- class-wide interface type, which is not a limited type, even though
6456 -- the type of the expression may be.
6458 pragma Assert
6459 (Comes_From_Extended_Return_Statement (N)
6460 or else not Is_Build_In_Place_Function_Call (Exp)
6461 or else Is_Build_In_Place_Function (Scope_Id));
6463 if not Comes_From_Extended_Return_Statement (N)
6464 and then Is_Build_In_Place_Function (Scope_Id)
6465 and then not Debug_Flag_Dot_L
6467 -- The functionality of interface thunks is simple and it is always
6468 -- handled by means of simple return statements. This leaves their
6469 -- expansion simple and clean.
6471 and then not Is_Thunk (Current_Scope)
6472 then
6473 declare
6474 Return_Object_Entity : constant Entity_Id :=
6475 Make_Temporary (Loc, 'R', Exp);
6477 Obj_Decl : constant Node_Id :=
6478 Make_Object_Declaration (Loc,
6479 Defining_Identifier => Return_Object_Entity,
6480 Object_Definition => Subtype_Ind,
6481 Expression => Exp);
6483 Ext : constant Node_Id :=
6484 Make_Extended_Return_Statement (Loc,
6485 Return_Object_Declarations => New_List (Obj_Decl));
6486 -- Do not perform this high-level optimization if the result type
6487 -- is an interface because the "this" pointer must be displaced.
6489 begin
6490 Rewrite (N, Ext);
6491 Analyze (N);
6492 return;
6493 end;
6494 end if;
6496 -- Here we have a simple return statement that is part of the expansion
6497 -- of an extended return statement (either written by the user, or
6498 -- generated by the above code).
6500 -- Always normalize C/Fortran boolean result. This is not always needed,
6501 -- but it seems a good idea to minimize the passing around of non-
6502 -- normalized values, and in any case this handles the processing of
6503 -- barrier functions for protected types, which turn the condition into
6504 -- a return statement.
6506 if Is_Boolean_Type (Exptyp)
6507 and then Nonzero_Is_True (Exptyp)
6508 then
6509 Adjust_Condition (Exp);
6510 Adjust_Result_Type (Exp, Exptyp);
6511 end if;
6513 -- Do validity check if enabled for returns
6515 if Validity_Checks_On
6516 and then Validity_Check_Returns
6517 then
6518 Ensure_Valid (Exp);
6519 end if;
6521 -- Check the result expression of a scalar function against the subtype
6522 -- of the function by inserting a conversion. This conversion must
6523 -- eventually be performed for other classes of types, but for now it's
6524 -- only done for scalars.
6525 -- ???
6527 if Is_Scalar_Type (Exptyp) then
6528 Rewrite (Exp, Convert_To (R_Type, Exp));
6530 -- The expression is resolved to ensure that the conversion gets
6531 -- expanded to generate a possible constraint check.
6533 Analyze_And_Resolve (Exp, R_Type);
6534 end if;
6536 -- Deal with returning variable length objects and controlled types
6538 -- Nothing to do if we are returning by reference, or this is not a
6539 -- type that requires special processing (indicated by the fact that
6540 -- it requires a cleanup scope for the secondary stack case).
6542 if Is_Build_In_Place_Function (Scope_Id)
6543 or else Is_Limited_Interface (Exptyp)
6544 then
6545 null;
6547 -- No copy needed for thunks returning interface type objects since
6548 -- the object is returned by reference and the maximum functionality
6549 -- required is just to displace the pointer.
6551 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6552 null;
6554 -- If the call is within a thunk and the type is a limited view, the
6555 -- backend will eventually see the non-limited view of the type.
6557 elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6558 return;
6560 elsif not Requires_Transient_Scope (R_Type) then
6562 -- Mutable records with variable-length components are not returned
6563 -- on the sec-stack, so we need to make sure that the back end will
6564 -- only copy back the size of the actual value, and not the maximum
6565 -- size. We create an actual subtype for this purpose. However we
6566 -- need not do it if the expression is a function call since this
6567 -- will be done in the called function and doing it here too would
6568 -- cause a temporary with maximum size to be created.
6570 declare
6571 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6572 Decl : Node_Id;
6573 Ent : Entity_Id;
6574 begin
6575 if Nkind (Exp) /= N_Function_Call
6576 and then Has_Discriminants (Ubt)
6577 and then not Is_Constrained (Ubt)
6578 and then not Has_Unchecked_Union (Ubt)
6579 then
6580 Decl := Build_Actual_Subtype (Ubt, Exp);
6581 Ent := Defining_Identifier (Decl);
6582 Insert_Action (Exp, Decl);
6583 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6584 Analyze_And_Resolve (Exp);
6585 end if;
6586 end;
6588 -- Here if secondary stack is used
6590 else
6591 -- Prevent the reclamation of the secondary stack by all enclosing
6592 -- blocks and loops as well as the related function; otherwise the
6593 -- result would be reclaimed too early.
6595 Set_Enclosing_Sec_Stack_Return (N);
6597 -- Optimize the case where the result is a function call. In this
6598 -- case either the result is already on the secondary stack, or is
6599 -- already being returned with the stack pointer depressed and no
6600 -- further processing is required except to set the By_Ref flag
6601 -- to ensure that gigi does not attempt an extra unnecessary copy.
6602 -- (actually not just unnecessary but harmfully wrong in the case
6603 -- of a controlled type, where gigi does not know how to do a copy).
6604 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6605 -- for array types if the constrained status of the target type is
6606 -- different from that of the expression.
6608 if Requires_Transient_Scope (Exptyp)
6609 and then
6610 (not Is_Array_Type (Exptyp)
6611 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6612 or else CW_Or_Has_Controlled_Part (Utyp))
6613 and then Nkind (Exp) = N_Function_Call
6614 then
6615 Set_By_Ref (N);
6617 -- Remove side effects from the expression now so that other parts
6618 -- of the expander do not have to reanalyze this node without this
6619 -- optimization
6621 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6623 -- Ada 2005 (AI-251): If the type of the returned object is
6624 -- an interface then add an implicit type conversion to force
6625 -- displacement of the "this" pointer.
6627 if Is_Interface (R_Type) then
6628 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6629 end if;
6631 Analyze_And_Resolve (Exp, R_Type);
6633 -- For controlled types, do the allocation on the secondary stack
6634 -- manually in order to call adjust at the right time:
6636 -- type Anon1 is access R_Type;
6637 -- for Anon1'Storage_pool use ss_pool;
6638 -- Anon2 : anon1 := new R_Type'(expr);
6639 -- return Anon2.all;
6641 -- We do the same for classwide types that are not potentially
6642 -- controlled (by the virtue of restriction No_Finalization) because
6643 -- gigi is not able to properly allocate class-wide types.
6645 elsif CW_Or_Has_Controlled_Part (Utyp) then
6646 declare
6647 Loc : constant Source_Ptr := Sloc (N);
6648 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6649 Alloc_Node : Node_Id;
6650 Temp : Entity_Id;
6652 begin
6653 Set_Ekind (Acc_Typ, E_Access_Type);
6655 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6657 -- This is an allocator for the secondary stack, and it's fine
6658 -- to have Comes_From_Source set False on it, as gigi knows not
6659 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6661 Alloc_Node :=
6662 Make_Allocator (Loc,
6663 Expression =>
6664 Make_Qualified_Expression (Loc,
6665 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6666 Expression => Relocate_Node (Exp)));
6668 -- We do not want discriminant checks on the declaration,
6669 -- given that it gets its value from the allocator.
6671 Set_No_Initialization (Alloc_Node);
6673 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6675 Insert_List_Before_And_Analyze (N, New_List (
6676 Make_Full_Type_Declaration (Loc,
6677 Defining_Identifier => Acc_Typ,
6678 Type_Definition =>
6679 Make_Access_To_Object_Definition (Loc,
6680 Subtype_Indication => Subtype_Ind)),
6682 Make_Object_Declaration (Loc,
6683 Defining_Identifier => Temp,
6684 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6685 Expression => Alloc_Node)));
6687 Rewrite (Exp,
6688 Make_Explicit_Dereference (Loc,
6689 Prefix => New_Occurrence_Of (Temp, Loc)));
6691 -- Ada 2005 (AI-251): If the type of the returned object is
6692 -- an interface then add an implicit type conversion to force
6693 -- displacement of the "this" pointer.
6695 if Is_Interface (R_Type) then
6696 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6697 end if;
6699 Analyze_And_Resolve (Exp, R_Type);
6700 end;
6702 -- Otherwise use the gigi mechanism to allocate result on the
6703 -- secondary stack.
6705 else
6706 Check_Restriction (No_Secondary_Stack, N);
6707 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6708 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6709 end if;
6710 end if;
6712 -- Implement the rules of 6.5(8-10), which require a tag check in
6713 -- the case of a limited tagged return type, and tag reassignment for
6714 -- nonlimited tagged results. These actions are needed when the return
6715 -- type is a specific tagged type and the result expression is a
6716 -- conversion or a formal parameter, because in that case the tag of
6717 -- the expression might differ from the tag of the specific result type.
6719 if Is_Tagged_Type (Utyp)
6720 and then not Is_Class_Wide_Type (Utyp)
6721 and then (Nkind_In (Exp, N_Type_Conversion,
6722 N_Unchecked_Type_Conversion)
6723 or else (Is_Entity_Name (Exp)
6724 and then Ekind (Entity (Exp)) in Formal_Kind))
6725 then
6726 -- When the return type is limited, perform a check that the tag of
6727 -- the result is the same as the tag of the return type.
6729 if Is_Limited_Type (R_Type) then
6730 Insert_Action (Exp,
6731 Make_Raise_Constraint_Error (Loc,
6732 Condition =>
6733 Make_Op_Ne (Loc,
6734 Left_Opnd =>
6735 Make_Selected_Component (Loc,
6736 Prefix => Duplicate_Subexpr (Exp),
6737 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6738 Right_Opnd =>
6739 Make_Attribute_Reference (Loc,
6740 Prefix =>
6741 New_Occurrence_Of (Base_Type (Utyp), Loc),
6742 Attribute_Name => Name_Tag)),
6743 Reason => CE_Tag_Check_Failed));
6745 -- If the result type is a specific nonlimited tagged type, then we
6746 -- have to ensure that the tag of the result is that of the result
6747 -- type. This is handled by making a copy of the expression in
6748 -- the case where it might have a different tag, namely when the
6749 -- expression is a conversion or a formal parameter. We create a new
6750 -- object of the result type and initialize it from the expression,
6751 -- which will implicitly force the tag to be set appropriately.
6753 else
6754 declare
6755 ExpR : constant Node_Id := Relocate_Node (Exp);
6756 Result_Id : constant Entity_Id :=
6757 Make_Temporary (Loc, 'R', ExpR);
6758 Result_Exp : constant Node_Id :=
6759 New_Occurrence_Of (Result_Id, Loc);
6760 Result_Obj : constant Node_Id :=
6761 Make_Object_Declaration (Loc,
6762 Defining_Identifier => Result_Id,
6763 Object_Definition =>
6764 New_Occurrence_Of (R_Type, Loc),
6765 Constant_Present => True,
6766 Expression => ExpR);
6768 begin
6769 Set_Assignment_OK (Result_Obj);
6770 Insert_Action (Exp, Result_Obj);
6772 Rewrite (Exp, Result_Exp);
6773 Analyze_And_Resolve (Exp, R_Type);
6774 end;
6775 end if;
6777 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6778 -- a check that the level of the return expression's underlying type
6779 -- is not deeper than the level of the master enclosing the function.
6780 -- Always generate the check when the type of the return expression
6781 -- is class-wide, when it's a type conversion, or when it's a formal
6782 -- parameter. Otherwise, suppress the check in the case where the
6783 -- return expression has a specific type whose level is known not to
6784 -- be statically deeper than the function's result type.
6786 -- No runtime check needed in interface thunks since it is performed
6787 -- by the target primitive associated with the thunk.
6789 -- Note: accessibility check is skipped in the VM case, since there
6790 -- does not seem to be any practical way to implement this check.
6792 elsif Ada_Version >= Ada_2005
6793 and then Tagged_Type_Expansion
6794 and then Is_Class_Wide_Type (R_Type)
6795 and then not Is_Thunk (Current_Scope)
6796 and then not Scope_Suppress.Suppress (Accessibility_Check)
6797 and then
6798 (Is_Class_Wide_Type (Etype (Exp))
6799 or else Nkind_In (Exp, N_Type_Conversion,
6800 N_Unchecked_Type_Conversion)
6801 or else (Is_Entity_Name (Exp)
6802 and then Ekind (Entity (Exp)) in Formal_Kind)
6803 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6804 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6805 then
6806 declare
6807 Tag_Node : Node_Id;
6809 begin
6810 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6811 -- "this" to reference the base of the object. This is required to
6812 -- get access to the TSD of the object.
6814 if Is_Class_Wide_Type (Etype (Exp))
6815 and then Is_Interface (Etype (Exp))
6816 then
6817 -- If the expression is an explicit dereference then we can
6818 -- directly displace the pointer to reference the base of
6819 -- the object.
6821 if Nkind (Exp) = N_Explicit_Dereference then
6822 Tag_Node :=
6823 Make_Explicit_Dereference (Loc,
6824 Prefix =>
6825 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6826 Make_Function_Call (Loc,
6827 Name =>
6828 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6829 Parameter_Associations => New_List (
6830 Unchecked_Convert_To (RTE (RE_Address),
6831 Duplicate_Subexpr (Prefix (Exp)))))));
6833 -- Similar case to the previous one but the expression is a
6834 -- renaming of an explicit dereference.
6836 elsif Nkind (Exp) = N_Identifier
6837 and then Present (Renamed_Object (Entity (Exp)))
6838 and then Nkind (Renamed_Object (Entity (Exp)))
6839 = N_Explicit_Dereference
6840 then
6841 Tag_Node :=
6842 Make_Explicit_Dereference (Loc,
6843 Prefix =>
6844 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6845 Make_Function_Call (Loc,
6846 Name =>
6847 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6848 Parameter_Associations => New_List (
6849 Unchecked_Convert_To (RTE (RE_Address),
6850 Duplicate_Subexpr
6851 (Prefix
6852 (Renamed_Object (Entity (Exp)))))))));
6854 -- Common case: obtain the address of the actual object and
6855 -- displace the pointer to reference the base of the object.
6857 else
6858 Tag_Node :=
6859 Make_Explicit_Dereference (Loc,
6860 Prefix =>
6861 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6862 Make_Function_Call (Loc,
6863 Name =>
6864 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6865 Parameter_Associations => New_List (
6866 Make_Attribute_Reference (Loc,
6867 Prefix => Duplicate_Subexpr (Exp),
6868 Attribute_Name => Name_Address)))));
6869 end if;
6870 else
6871 Tag_Node :=
6872 Make_Attribute_Reference (Loc,
6873 Prefix => Duplicate_Subexpr (Exp),
6874 Attribute_Name => Name_Tag);
6875 end if;
6877 -- CodePeer does not do anything useful with
6878 -- Ada.Tags.Type_Specific_Data components.
6880 if not CodePeer_Mode then
6881 Insert_Action (Exp,
6882 Make_Raise_Program_Error (Loc,
6883 Condition =>
6884 Make_Op_Gt (Loc,
6885 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6886 Right_Opnd =>
6887 Make_Integer_Literal (Loc,
6888 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6889 Reason => PE_Accessibility_Check_Failed));
6890 end if;
6891 end;
6893 -- AI05-0073: If function has a controlling access result, check that
6894 -- the tag of the return value, if it is not null, matches designated
6895 -- type of return type.
6897 -- The return expression is referenced twice in the code below, so it
6898 -- must be made free of side effects. Given that different compilers
6899 -- may evaluate these parameters in different order, both occurrences
6900 -- perform a copy.
6902 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6903 and then Has_Controlling_Result (Scope_Id)
6904 then
6905 Insert_Action (N,
6906 Make_Raise_Constraint_Error (Loc,
6907 Condition =>
6908 Make_And_Then (Loc,
6909 Left_Opnd =>
6910 Make_Op_Ne (Loc,
6911 Left_Opnd => Duplicate_Subexpr (Exp),
6912 Right_Opnd => Make_Null (Loc)),
6914 Right_Opnd => Make_Op_Ne (Loc,
6915 Left_Opnd =>
6916 Make_Selected_Component (Loc,
6917 Prefix => Duplicate_Subexpr (Exp),
6918 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6920 Right_Opnd =>
6921 Make_Attribute_Reference (Loc,
6922 Prefix =>
6923 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6924 Attribute_Name => Name_Tag))),
6926 Reason => CE_Tag_Check_Failed),
6927 Suppress => All_Checks);
6928 end if;
6930 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6931 -- ensure that the function result does not outlive an
6932 -- object designated by one of it discriminants.
6934 if Present (Extra_Accessibility_Of_Result (Scope_Id))
6935 and then Has_Unconstrained_Access_Discriminants (R_Type)
6936 then
6937 declare
6938 Discrim_Source : Node_Id;
6940 procedure Check_Against_Result_Level (Level : Node_Id);
6941 -- Check the given accessibility level against the level
6942 -- determined by the point of call. (AI05-0234).
6944 --------------------------------
6945 -- Check_Against_Result_Level --
6946 --------------------------------
6948 procedure Check_Against_Result_Level (Level : Node_Id) is
6949 begin
6950 Insert_Action (N,
6951 Make_Raise_Program_Error (Loc,
6952 Condition =>
6953 Make_Op_Gt (Loc,
6954 Left_Opnd => Level,
6955 Right_Opnd =>
6956 New_Occurrence_Of
6957 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6958 Reason => PE_Accessibility_Check_Failed));
6959 end Check_Against_Result_Level;
6961 begin
6962 Discrim_Source := Exp;
6963 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6964 Discrim_Source := Expression (Discrim_Source);
6965 end loop;
6967 if Nkind (Discrim_Source) = N_Identifier
6968 and then Is_Return_Object (Entity (Discrim_Source))
6969 then
6970 Discrim_Source := Entity (Discrim_Source);
6972 if Is_Constrained (Etype (Discrim_Source)) then
6973 Discrim_Source := Etype (Discrim_Source);
6974 else
6975 Discrim_Source := Expression (Parent (Discrim_Source));
6976 end if;
6978 elsif Nkind (Discrim_Source) = N_Identifier
6979 and then Nkind_In (Original_Node (Discrim_Source),
6980 N_Aggregate, N_Extension_Aggregate)
6981 then
6982 Discrim_Source := Original_Node (Discrim_Source);
6984 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6985 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6986 then
6987 Discrim_Source := Original_Node (Discrim_Source);
6988 end if;
6990 Discrim_Source := Unqual_Conv (Discrim_Source);
6992 case Nkind (Discrim_Source) is
6993 when N_Defining_Identifier =>
6994 pragma Assert (Is_Composite_Type (Discrim_Source)
6995 and then Has_Discriminants (Discrim_Source)
6996 and then Is_Constrained (Discrim_Source));
6998 declare
6999 Discrim : Entity_Id :=
7000 First_Discriminant (Base_Type (R_Type));
7001 Disc_Elmt : Elmt_Id :=
7002 First_Elmt (Discriminant_Constraint
7003 (Discrim_Source));
7004 begin
7005 loop
7006 if Ekind (Etype (Discrim)) =
7007 E_Anonymous_Access_Type
7008 then
7009 Check_Against_Result_Level
7010 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7011 end if;
7013 Next_Elmt (Disc_Elmt);
7014 Next_Discriminant (Discrim);
7015 exit when not Present (Discrim);
7016 end loop;
7017 end;
7019 when N_Aggregate
7020 | N_Extension_Aggregate
7022 -- Unimplemented: extension aggregate case where discrims
7023 -- come from ancestor part, not extension part.
7025 declare
7026 Discrim : Entity_Id :=
7027 First_Discriminant (Base_Type (R_Type));
7029 Disc_Exp : Node_Id := Empty;
7031 Positionals_Exhausted
7032 : Boolean := not Present (Expressions
7033 (Discrim_Source));
7035 function Associated_Expr
7036 (Comp_Id : Entity_Id;
7037 Associations : List_Id) return Node_Id;
7039 -- Given a component and a component associations list,
7040 -- locate the expression for that component; returns
7041 -- Empty if no such expression is found.
7043 ---------------------
7044 -- Associated_Expr --
7045 ---------------------
7047 function Associated_Expr
7048 (Comp_Id : Entity_Id;
7049 Associations : List_Id) return Node_Id
7051 Assoc : Node_Id;
7052 Choice : Node_Id;
7054 begin
7055 -- Simple linear search seems ok here
7057 Assoc := First (Associations);
7058 while Present (Assoc) loop
7059 Choice := First (Choices (Assoc));
7060 while Present (Choice) loop
7061 if (Nkind (Choice) = N_Identifier
7062 and then Chars (Choice) = Chars (Comp_Id))
7063 or else (Nkind (Choice) = N_Others_Choice)
7064 then
7065 return Expression (Assoc);
7066 end if;
7068 Next (Choice);
7069 end loop;
7071 Next (Assoc);
7072 end loop;
7074 return Empty;
7075 end Associated_Expr;
7077 -- Start of processing for Expand_Simple_Function_Return
7079 begin
7080 if not Positionals_Exhausted then
7081 Disc_Exp := First (Expressions (Discrim_Source));
7082 end if;
7084 loop
7085 if Positionals_Exhausted then
7086 Disc_Exp :=
7087 Associated_Expr
7088 (Discrim,
7089 Component_Associations (Discrim_Source));
7090 end if;
7092 if Ekind (Etype (Discrim)) =
7093 E_Anonymous_Access_Type
7094 then
7095 Check_Against_Result_Level
7096 (Dynamic_Accessibility_Level (Disc_Exp));
7097 end if;
7099 Next_Discriminant (Discrim);
7100 exit when not Present (Discrim);
7102 if not Positionals_Exhausted then
7103 Next (Disc_Exp);
7104 Positionals_Exhausted := not Present (Disc_Exp);
7105 end if;
7106 end loop;
7107 end;
7109 when N_Function_Call =>
7111 -- No check needed (check performed by callee)
7113 null;
7115 when others =>
7116 declare
7117 Level : constant Node_Id :=
7118 Make_Integer_Literal (Loc,
7119 Object_Access_Level (Discrim_Source));
7121 begin
7122 -- Unimplemented: check for name prefix that includes
7123 -- a dereference of an access value with a dynamic
7124 -- accessibility level (e.g., an access param or a
7125 -- saooaaat) and use dynamic level in that case. For
7126 -- example:
7127 -- return Access_Param.all(Some_Index).Some_Component;
7128 -- ???
7130 Set_Etype (Level, Standard_Natural);
7131 Check_Against_Result_Level (Level);
7132 end;
7133 end case;
7134 end;
7135 end if;
7137 -- If we are returning an object that may not be bit-aligned, then copy
7138 -- the value into a temporary first. This copy may need to expand to a
7139 -- loop of component operations.
7141 if Is_Possibly_Unaligned_Slice (Exp)
7142 or else Is_Possibly_Unaligned_Object (Exp)
7143 then
7144 declare
7145 ExpR : constant Node_Id := Relocate_Node (Exp);
7146 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7147 begin
7148 Insert_Action (Exp,
7149 Make_Object_Declaration (Loc,
7150 Defining_Identifier => Tnn,
7151 Constant_Present => True,
7152 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7153 Expression => ExpR),
7154 Suppress => All_Checks);
7155 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7156 end;
7157 end if;
7159 -- Call the _Postconditions procedure if the related function has
7160 -- contract assertions that need to be verified on exit.
7162 if Ekind (Scope_Id) = E_Function
7163 and then Present (Postconditions_Proc (Scope_Id))
7164 then
7165 -- In the case of discriminated objects, we have created a
7166 -- constrained subtype above, and used the underlying type. This
7167 -- transformation is post-analysis and harmless, except that now the
7168 -- call to the post-condition will be analyzed and the type kinds
7169 -- have to match.
7171 if Nkind (Exp) = N_Unchecked_Type_Conversion
7172 and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7173 then
7174 Rewrite (Exp, Expression (Relocate_Node (Exp)));
7175 end if;
7177 -- We are going to reference the returned value twice in this case,
7178 -- once in the call to _Postconditions, and once in the actual return
7179 -- statement, but we can't have side effects happening twice.
7181 Force_Evaluation (Exp, Mode => Strict);
7183 -- Generate call to _Postconditions
7185 Insert_Action (Exp,
7186 Make_Procedure_Call_Statement (Loc,
7187 Name =>
7188 New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7189 Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7190 end if;
7192 -- Ada 2005 (AI-251): If this return statement corresponds with an
7193 -- simple return statement associated with an extended return statement
7194 -- and the type of the returned object is an interface then generate an
7195 -- implicit conversion to force displacement of the "this" pointer.
7197 if Ada_Version >= Ada_2005
7198 and then Comes_From_Extended_Return_Statement (N)
7199 and then Nkind (Expression (N)) = N_Identifier
7200 and then Is_Interface (Utyp)
7201 and then Utyp /= Underlying_Type (Exptyp)
7202 then
7203 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7204 Analyze_And_Resolve (Exp);
7205 end if;
7206 end Expand_Simple_Function_Return;
7208 --------------------------------------------
7209 -- Has_Unconstrained_Access_Discriminants --
7210 --------------------------------------------
7212 function Has_Unconstrained_Access_Discriminants
7213 (Subtyp : Entity_Id) return Boolean
7215 Discr : Entity_Id;
7217 begin
7218 if Has_Discriminants (Subtyp)
7219 and then not Is_Constrained (Subtyp)
7220 then
7221 Discr := First_Discriminant (Subtyp);
7222 while Present (Discr) loop
7223 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7224 return True;
7225 end if;
7227 Next_Discriminant (Discr);
7228 end loop;
7229 end if;
7231 return False;
7232 end Has_Unconstrained_Access_Discriminants;
7234 -----------------------------------
7235 -- Is_Build_In_Place_Result_Type --
7236 -----------------------------------
7238 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7239 begin
7240 if not Expander_Active then
7241 return False;
7242 end if;
7244 -- In Ada 2005 all functions with an inherently limited return type
7245 -- must be handled using a build-in-place profile, including the case
7246 -- of a function with a limited interface result, where the function
7247 -- may return objects of nonlimited descendants.
7249 if Is_Limited_View (Typ) then
7250 return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7251 else
7252 if Has_Interfaces (Typ) then
7253 return False;
7254 end if;
7256 declare
7257 T : Entity_Id := Typ;
7258 begin
7259 -- For T'Class, return True if it's True for T. This is necessary
7260 -- because a class-wide function might say "return F (...)", where
7261 -- F returns the corresponding specific type. We need a loop in
7262 -- case T is a subtype of a class-wide type.
7264 while Is_Class_Wide_Type (T) loop
7265 T := Etype (T);
7266 end loop;
7268 -- If this is a generic formal type in an instance, return True if
7269 -- it's True for the generic actual type.
7271 if Nkind (Parent (T)) = N_Subtype_Declaration
7272 and then Present (Generic_Parent_Type (Parent (T)))
7273 then
7274 T := Entity (Subtype_Indication (Parent (T)));
7276 if Present (Full_View (T)) then
7277 T := Full_View (T);
7278 end if;
7279 end if;
7281 if Present (Underlying_Type (T)) then
7282 T := Underlying_Type (T);
7283 end if;
7285 declare
7286 Result : Boolean;
7287 begin
7288 -- ???For now, enable build-in-place for a very narrow set of
7289 -- controlled types. Change "if True" to "if False" to
7290 -- experiment more controlled types. Eventually, we would
7291 -- like to enable build-in-place for all tagged types, all
7292 -- types that need finalization, and all caller-unknown-size
7293 -- types. We will eventually use Debug_Flag_Dot_9 to disable
7294 -- build-in-place for nonlimited types.
7296 -- if Debug_Flag_Dot_9 then
7297 if True then
7298 Result := Is_Controlled (T)
7299 and then Present (Enclosing_Subprogram (T))
7300 and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7301 and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7302 else
7303 Result := Is_Controlled (T);
7304 end if;
7306 return Result;
7307 end;
7308 end;
7309 end if;
7310 end Is_Build_In_Place_Result_Type;
7312 --------------------------------
7313 -- Is_Build_In_Place_Function --
7314 --------------------------------
7316 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7317 begin
7318 -- This function is called from Expand_Subtype_From_Expr during
7319 -- semantic analysis, even when expansion is off. In those cases
7320 -- the build_in_place expansion will not take place.
7322 if not Expander_Active then
7323 return False;
7324 end if;
7326 -- For now we test whether E denotes a function or access-to-function
7327 -- type whose result subtype is inherently limited. Later this test
7328 -- may be revised to allow composite nonlimited types. Functions with
7329 -- a foreign convention or whose result type has a foreign convention
7330 -- never qualify.
7332 if Ekind_In (E, E_Function, E_Generic_Function)
7333 or else (Ekind (E) = E_Subprogram_Type
7334 and then Etype (E) /= Standard_Void_Type)
7335 then
7336 -- Note: If the function has a foreign convention, it cannot build
7337 -- its result in place, so you're on your own. On the other hand,
7338 -- if only the return type has a foreign convention, its layout is
7339 -- intended to be compatible with the other language, but the build-
7340 -- in place machinery can ensure that the object is not copied.
7342 return Is_Build_In_Place_Result_Type (Etype (E))
7343 and then not Has_Foreign_Convention (E)
7344 and then not Debug_Flag_Dot_L;
7346 else
7347 return False;
7348 end if;
7349 end Is_Build_In_Place_Function;
7351 -------------------------------------
7352 -- Is_Build_In_Place_Function_Call --
7353 -------------------------------------
7355 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7356 Exp_Node : constant Node_Id := Unqual_Conv (N);
7357 Function_Id : Entity_Id;
7359 begin
7360 -- Return False if the expander is currently inactive, since awareness
7361 -- of build-in-place treatment is only relevant during expansion. Note
7362 -- that Is_Build_In_Place_Function, which is called as part of this
7363 -- function, is also conditioned this way, but we need to check here as
7364 -- well to avoid blowing up on processing protected calls when expansion
7365 -- is disabled (such as with -gnatc) since those would trip over the
7366 -- raise of Program_Error below.
7368 -- In SPARK mode, build-in-place calls are not expanded, so that we
7369 -- may end up with a call that is neither resolved to an entity, nor
7370 -- an indirect call.
7372 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
7373 return False;
7374 end if;
7376 if Is_Entity_Name (Name (Exp_Node)) then
7377 Function_Id := Entity (Name (Exp_Node));
7379 -- In the case of an explicitly dereferenced call, use the subprogram
7380 -- type generated for the dereference.
7382 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7383 Function_Id := Etype (Name (Exp_Node));
7385 -- This may be a call to a protected function.
7387 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7388 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7390 else
7391 raise Program_Error;
7392 end if;
7394 declare
7395 Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
7396 -- So we can stop here in the debugger
7397 begin
7398 return Result;
7399 end;
7400 end Is_Build_In_Place_Function_Call;
7402 -----------------------
7403 -- Freeze_Subprogram --
7404 -----------------------
7406 procedure Freeze_Subprogram (N : Node_Id) is
7407 Loc : constant Source_Ptr := Sloc (N);
7409 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7410 -- (Ada 2005): Register a predefined primitive in all the secondary
7411 -- dispatch tables of its primitive type.
7413 ----------------------------------
7414 -- Register_Predefined_DT_Entry --
7415 ----------------------------------
7417 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7418 Iface_DT_Ptr : Elmt_Id;
7419 Tagged_Typ : Entity_Id;
7420 Thunk_Id : Entity_Id;
7421 Thunk_Code : Node_Id;
7423 begin
7424 Tagged_Typ := Find_Dispatching_Type (Prim);
7426 if No (Access_Disp_Table (Tagged_Typ))
7427 or else not Has_Interfaces (Tagged_Typ)
7428 or else not RTE_Available (RE_Interface_Tag)
7429 or else Restriction_Active (No_Dispatching_Calls)
7430 then
7431 return;
7432 end if;
7434 -- Skip the first two access-to-dispatch-table pointers since they
7435 -- leads to the primary dispatch table (predefined DT and user
7436 -- defined DT). We are only concerned with the secondary dispatch
7437 -- table pointers. Note that the access-to- dispatch-table pointer
7438 -- corresponds to the first implemented interface retrieved below.
7440 Iface_DT_Ptr :=
7441 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7443 while Present (Iface_DT_Ptr)
7444 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7445 loop
7446 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7447 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7449 if Present (Thunk_Code) then
7450 Insert_Actions_After (N, New_List (
7451 Thunk_Code,
7453 Build_Set_Predefined_Prim_Op_Address (Loc,
7454 Tag_Node =>
7455 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7456 Position => DT_Position (Prim),
7457 Address_Node =>
7458 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7459 Make_Attribute_Reference (Loc,
7460 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
7461 Attribute_Name => Name_Unrestricted_Access))),
7463 Build_Set_Predefined_Prim_Op_Address (Loc,
7464 Tag_Node =>
7465 New_Occurrence_Of
7466 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7467 Loc),
7468 Position => DT_Position (Prim),
7469 Address_Node =>
7470 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7471 Make_Attribute_Reference (Loc,
7472 Prefix => New_Occurrence_Of (Prim, Loc),
7473 Attribute_Name => Name_Unrestricted_Access)))));
7474 end if;
7476 -- Skip the tag of the predefined primitives dispatch table
7478 Next_Elmt (Iface_DT_Ptr);
7479 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7481 -- Skip tag of the no-thunks dispatch table
7483 Next_Elmt (Iface_DT_Ptr);
7484 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7486 -- Skip tag of predefined primitives no-thunks dispatch table
7488 Next_Elmt (Iface_DT_Ptr);
7489 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7491 Next_Elmt (Iface_DT_Ptr);
7492 end loop;
7493 end Register_Predefined_DT_Entry;
7495 -- Local variables
7497 Subp : constant Entity_Id := Entity (N);
7499 -- Start of processing for Freeze_Subprogram
7501 begin
7502 -- We suppress the initialization of the dispatch table entry when
7503 -- not Tagged_Type_Expansion because the dispatching mechanism is
7504 -- handled internally by the target.
7506 if Is_Dispatching_Operation (Subp)
7507 and then not Is_Abstract_Subprogram (Subp)
7508 and then Present (DTC_Entity (Subp))
7509 and then Present (Scope (DTC_Entity (Subp)))
7510 and then Tagged_Type_Expansion
7511 and then not Restriction_Active (No_Dispatching_Calls)
7512 and then RTE_Available (RE_Tag)
7513 then
7514 declare
7515 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7517 begin
7518 -- Handle private overridden primitives
7520 if not Is_CPP_Class (Typ) then
7521 Check_Overriding_Operation (Subp);
7522 end if;
7524 -- We assume that imported CPP primitives correspond with objects
7525 -- whose constructor is in the CPP side; therefore we don't need
7526 -- to generate code to register them in the dispatch table.
7528 if Is_CPP_Class (Typ) then
7529 null;
7531 -- Handle CPP primitives found in derivations of CPP_Class types.
7532 -- These primitives must have been inherited from some parent, and
7533 -- there is no need to register them in the dispatch table because
7534 -- Build_Inherit_Prims takes care of initializing these slots.
7536 elsif Is_Imported (Subp)
7537 and then (Convention (Subp) = Convention_CPP
7538 or else Convention (Subp) = Convention_C)
7539 then
7540 null;
7542 -- Generate code to register the primitive in non statically
7543 -- allocated dispatch tables
7545 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7547 -- When a primitive is frozen, enter its name in its dispatch
7548 -- table slot.
7550 if not Is_Interface (Typ)
7551 or else Present (Interface_Alias (Subp))
7552 then
7553 if Is_Predefined_Dispatching_Operation (Subp) then
7554 Register_Predefined_DT_Entry (Subp);
7555 end if;
7557 Insert_Actions_After (N,
7558 Register_Primitive (Loc, Prim => Subp));
7559 end if;
7560 end if;
7561 end;
7562 end if;
7564 -- Mark functions that return by reference. Note that it cannot be part
7565 -- of the normal semantic analysis of the spec since the underlying
7566 -- returned type may not be known yet (for private types).
7568 declare
7569 Typ : constant Entity_Id := Etype (Subp);
7570 Utyp : constant Entity_Id := Underlying_Type (Typ);
7572 begin
7573 if Is_Limited_View (Typ) then
7574 Set_Returns_By_Ref (Subp);
7576 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7577 Set_Returns_By_Ref (Subp);
7578 end if;
7579 end;
7581 -- Wnen freezing a null procedure, analyze its delayed aspects now
7582 -- because we may not have reached the end of the declarative list when
7583 -- delayed aspects are normally analyzed. This ensures that dispatching
7584 -- calls are properly rewritten when the generated _Postcondition
7585 -- procedure is analyzed in the null procedure body.
7587 if Nkind (Parent (Subp)) = N_Procedure_Specification
7588 and then Null_Present (Parent (Subp))
7589 then
7590 Analyze_Entry_Or_Subprogram_Contract (Subp);
7591 end if;
7592 end Freeze_Subprogram;
7594 ------------------------------
7595 -- Insert_Post_Call_Actions --
7596 ------------------------------
7598 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7599 Context : constant Node_Id := Parent (N);
7601 begin
7602 if Is_Empty_List (Post_Call) then
7603 return;
7604 end if;
7606 -- Cases where the call is not a member of a statement list. This
7607 -- includes the case where the call is an actual in another function
7608 -- call or indexing, i.e. an expression context as well.
7610 if not Is_List_Member (N)
7611 or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7612 then
7613 -- In Ada 2012 the call may be a function call in an expression
7614 -- (since OUT and IN OUT parameters are now allowed for such calls).
7615 -- The write-back of (in)-out parameters is handled by the back-end,
7616 -- but the constraint checks generated when subtypes of formal and
7617 -- actual don't match must be inserted in the form of assignments.
7619 if Nkind (Original_Node (N)) = N_Function_Call then
7620 pragma Assert (Ada_Version >= Ada_2012);
7621 -- Functions with '[in] out' parameters are only allowed in Ada
7622 -- 2012.
7624 -- We used to handle this by climbing up parents to a
7625 -- non-statement/declaration and then simply making a call to
7626 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7627 -- for Ada 2012. If we are in the middle of an expression, e.g.
7628 -- the condition of an IF, this call would insert after the IF
7629 -- statement, which is much too late to be doing the write back.
7630 -- For example:
7632 -- if Clobber (X) then
7633 -- Put_Line (X'Img);
7634 -- else
7635 -- goto Junk
7636 -- end if;
7638 -- Now assume Clobber changes X, if we put the write back after
7639 -- the IF, the Put_Line gets the wrong value and the goto causes
7640 -- the write back to be skipped completely.
7642 -- To deal with this, we replace the call by
7644 -- do
7645 -- Tnnn : constant function-result-type := function-call;
7646 -- Post_Call actions
7647 -- in
7648 -- Tnnn;
7649 -- end;
7651 declare
7652 Loc : constant Source_Ptr := Sloc (N);
7653 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7654 FRTyp : constant Entity_Id := Etype (N);
7655 Name : constant Node_Id := Relocate_Node (N);
7657 begin
7658 Prepend_To (Post_Call,
7659 Make_Object_Declaration (Loc,
7660 Defining_Identifier => Tnnn,
7661 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7662 Constant_Present => True,
7663 Expression => Name));
7665 Rewrite (N,
7666 Make_Expression_With_Actions (Loc,
7667 Actions => Post_Call,
7668 Expression => New_Occurrence_Of (Tnnn, Loc)));
7670 -- We don't want to just blindly call Analyze_And_Resolve
7671 -- because that would cause unwanted recursion on the call.
7672 -- So for a moment set the call as analyzed to prevent that
7673 -- recursion, and get the rest analyzed properly, then reset
7674 -- the analyzed flag, so our caller can continue.
7676 Set_Analyzed (Name, True);
7677 Analyze_And_Resolve (N, FRTyp);
7678 Set_Analyzed (Name, False);
7679 end;
7681 -- If not the special Ada 2012 case of a function call, then we must
7682 -- have the triggering statement of a triggering alternative or an
7683 -- entry call alternative, and we can add the post call stuff to the
7684 -- corresponding statement list.
7686 else
7687 pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7688 N_Triggering_Alternative));
7690 if Is_Non_Empty_List (Statements (Context)) then
7691 Insert_List_Before_And_Analyze
7692 (First (Statements (Context)), Post_Call);
7693 else
7694 Set_Statements (Context, Post_Call);
7695 end if;
7696 end if;
7698 -- A procedure call is always part of a declarative or statement list,
7699 -- however a function call may appear nested within a construct. Most
7700 -- cases of function call nesting are handled in the special case above.
7701 -- The only exception is when the function call acts as an actual in a
7702 -- procedure call. In this case the function call is in a list, but the
7703 -- post-call actions must be inserted after the procedure call.
7705 elsif Nkind (Context) = N_Procedure_Call_Statement then
7706 Insert_Actions_After (Context, Post_Call);
7708 -- Otherwise, normal case where N is in a statement sequence, just put
7709 -- the post-call stuff after the call statement.
7711 else
7712 Insert_Actions_After (N, Post_Call);
7713 end if;
7714 end Insert_Post_Call_Actions;
7716 -----------------------
7717 -- Is_Null_Procedure --
7718 -----------------------
7720 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7721 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7723 begin
7724 if Ekind (Subp) /= E_Procedure then
7725 return False;
7727 -- Check if this is a declared null procedure
7729 elsif Nkind (Decl) = N_Subprogram_Declaration then
7730 if not Null_Present (Specification (Decl)) then
7731 return False;
7733 elsif No (Body_To_Inline (Decl)) then
7734 return False;
7736 -- Check if the body contains only a null statement, followed by
7737 -- the return statement added during expansion.
7739 else
7740 declare
7741 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7743 Stat : Node_Id;
7744 Stat2 : Node_Id;
7746 begin
7747 if Nkind (Orig_Bod) /= N_Subprogram_Body then
7748 return False;
7749 else
7750 -- We must skip SCIL nodes because they are currently
7751 -- implemented as special N_Null_Statement nodes.
7753 Stat :=
7754 First_Non_SCIL_Node
7755 (Statements (Handled_Statement_Sequence (Orig_Bod)));
7756 Stat2 := Next_Non_SCIL_Node (Stat);
7758 return
7759 Is_Empty_List (Declarations (Orig_Bod))
7760 and then Nkind (Stat) = N_Null_Statement
7761 and then
7762 (No (Stat2)
7763 or else
7764 (Nkind (Stat2) = N_Simple_Return_Statement
7765 and then No (Next (Stat2))));
7766 end if;
7767 end;
7768 end if;
7770 else
7771 return False;
7772 end if;
7773 end Is_Null_Procedure;
7775 -------------------------------------------
7776 -- Make_Build_In_Place_Call_In_Allocator --
7777 -------------------------------------------
7779 procedure Make_Build_In_Place_Call_In_Allocator
7780 (Allocator : Node_Id;
7781 Function_Call : Node_Id)
7783 Acc_Type : constant Entity_Id := Etype (Allocator);
7784 Loc : constant Source_Ptr := Sloc (Function_Call);
7785 Func_Call : Node_Id := Function_Call;
7786 Ref_Func_Call : Node_Id;
7787 Function_Id : Entity_Id;
7788 Result_Subt : Entity_Id;
7789 New_Allocator : Node_Id;
7790 Return_Obj_Access : Entity_Id; -- temp for function result
7791 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
7792 Alloc_Form : BIP_Allocation_Form;
7793 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7794 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7795 Chain : Entity_Id; -- activation chain, in case of tasks
7797 begin
7798 -- Step past qualification or unchecked conversion (the latter can occur
7799 -- in cases of calls to 'Input).
7801 if Nkind_In (Func_Call,
7802 N_Qualified_Expression,
7803 N_Type_Conversion,
7804 N_Unchecked_Type_Conversion)
7805 then
7806 Func_Call := Expression (Func_Call);
7807 end if;
7809 -- Mark the call as processed as a build-in-place call
7811 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
7812 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7814 if Is_Entity_Name (Name (Func_Call)) then
7815 Function_Id := Entity (Name (Func_Call));
7817 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7818 Function_Id := Etype (Name (Func_Call));
7820 else
7821 raise Program_Error;
7822 end if;
7824 Result_Subt := Available_View (Etype (Function_Id));
7826 -- Create a temp for the function result. In the caller-allocates case,
7827 -- this will be initialized to the result of a new uninitialized
7828 -- allocator. Note: we do not use Allocator as the Related_Node of
7829 -- Return_Obj_Access in call to Make_Temporary below as this would
7830 -- create a sort of infinite "recursion".
7832 Return_Obj_Access := Make_Temporary (Loc, 'R');
7833 Set_Etype (Return_Obj_Access, Acc_Type);
7834 Set_Can_Never_Be_Null (Acc_Type, False);
7835 -- It gets initialized to null, so we can't have that
7837 -- When the result subtype is constrained, the return object is
7838 -- allocated on the caller side, and access to it is passed to the
7839 -- function.
7841 -- Here and in related routines, we must examine the full view of the
7842 -- type, because the view at the point of call may differ from that
7843 -- that in the function body, and the expansion mechanism depends on
7844 -- the characteristics of the full view.
7846 if Is_Constrained (Underlying_Type (Result_Subt)) then
7847 -- Replace the initialized allocator of form "new T'(Func (...))"
7848 -- with an uninitialized allocator of form "new T", where T is the
7849 -- result subtype of the called function. The call to the function
7850 -- is handled separately further below.
7852 New_Allocator :=
7853 Make_Allocator (Loc,
7854 Expression => New_Occurrence_Of (Result_Subt, Loc));
7855 Set_No_Initialization (New_Allocator);
7857 -- Copy attributes to new allocator. Note that the new allocator
7858 -- logically comes from source if the original one did, so copy the
7859 -- relevant flag. This ensures proper treatment of the restriction
7860 -- No_Implicit_Heap_Allocations in this case.
7862 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
7863 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7864 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
7866 Rewrite (Allocator, New_Allocator);
7868 -- Initial value of the temp is the result of the uninitialized
7869 -- allocator. Unchecked_Convert is needed for T'Input where T is
7870 -- derived from a controlled type.
7872 Temp_Init := Relocate_Node (Allocator);
7874 if Nkind_In
7875 (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7876 then
7877 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
7878 end if;
7880 -- Indicate that caller allocates, and pass in the return object
7882 Alloc_Form := Caller_Allocation;
7883 Pool := Make_Null (No_Location);
7884 Return_Obj_Actual :=
7885 Make_Unchecked_Type_Conversion (Loc,
7886 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7887 Expression =>
7888 Make_Explicit_Dereference (Loc,
7889 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
7891 -- When the result subtype is unconstrained, the function itself must
7892 -- perform the allocation of the return object, so we pass parameters
7893 -- indicating that.
7895 else
7896 Temp_Init := Empty;
7898 -- Case of a user-defined storage pool. Pass an allocation parameter
7899 -- indicating that the function should allocate its result in the
7900 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7901 -- pool may not be aliased.
7903 if Present (Associated_Storage_Pool (Acc_Type)) then
7904 Alloc_Form := User_Storage_Pool;
7905 Pool :=
7906 Make_Attribute_Reference (Loc,
7907 Prefix =>
7908 New_Occurrence_Of
7909 (Associated_Storage_Pool (Acc_Type), Loc),
7910 Attribute_Name => Name_Unrestricted_Access);
7912 -- No user-defined pool; pass an allocation parameter indicating that
7913 -- the function should allocate its result on the heap.
7915 else
7916 Alloc_Form := Global_Heap;
7917 Pool := Make_Null (No_Location);
7918 end if;
7920 -- The caller does not provide the return object in this case, so we
7921 -- have to pass null for the object access actual.
7923 Return_Obj_Actual := Empty;
7924 end if;
7926 -- Declare the temp object
7928 Insert_Action (Allocator,
7929 Make_Object_Declaration (Loc,
7930 Defining_Identifier => Return_Obj_Access,
7931 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
7932 Expression => Temp_Init));
7934 Ref_Func_Call := Make_Reference (Loc, Func_Call);
7936 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7937 -- then generate an implicit conversion to force displacement of the
7938 -- "this" pointer.
7940 if Is_Interface (Designated_Type (Acc_Type)) then
7941 Rewrite
7942 (Ref_Func_Call,
7943 OK_Convert_To (Acc_Type, Ref_Func_Call));
7945 -- If the types are incompatible, we need an unchecked conversion. Note
7946 -- that the full types will be compatible, but the types not visibly
7947 -- compatible.
7949 elsif Nkind_In
7950 (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7951 then
7952 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
7953 end if;
7955 declare
7956 Assign : constant Node_Id :=
7957 Make_Assignment_Statement (Loc,
7958 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
7959 Expression => Ref_Func_Call);
7960 -- Assign the result of the function call into the temp. In the
7961 -- caller-allocates case, this is overwriting the temp with its
7962 -- initial value, which has no effect. In the callee-allocates case,
7963 -- this is setting the temp to point to the object allocated by the
7964 -- callee. Unchecked_Convert is needed for T'Input where T is derived
7965 -- from a controlled type.
7967 Actions : List_Id;
7968 -- Actions to be inserted. If there are no tasks, this is just the
7969 -- assignment statement. If the allocated object has tasks, we need
7970 -- to wrap the assignment in a block that activates them. The
7971 -- activation chain of that block must be passed to the function,
7972 -- rather than some outer chain.
7973 begin
7974 if Has_Task (Result_Subt) then
7975 Actions := New_List;
7976 Build_Task_Allocate_Block_With_Init_Stmts
7977 (Actions, Allocator, Init_Stmts => New_List (Assign));
7978 Chain := Activation_Chain_Entity (Last (Actions));
7979 else
7980 Actions := New_List (Assign);
7981 Chain := Empty;
7982 end if;
7984 Insert_Actions (Allocator, Actions);
7985 end;
7987 -- When the function has a controlling result, an allocation-form
7988 -- parameter must be passed indicating that the caller is allocating
7989 -- the result object. This is needed because such a function can be
7990 -- called as a dispatching operation and must be treated similarly
7991 -- to functions with unconstrained result subtypes.
7993 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7994 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
7996 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7997 (Func_Call, Function_Id, Acc_Type);
7999 Add_Task_Actuals_To_Build_In_Place_Call
8000 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8001 Chain => Chain);
8003 -- Add an implicit actual to the function call that provides access
8004 -- to the allocated object. An unchecked conversion to the (specific)
8005 -- result subtype of the function is inserted to handle cases where
8006 -- the access type of the allocator has a class-wide designated type.
8008 Add_Access_Actual_To_Build_In_Place_Call
8009 (Func_Call, Function_Id, Return_Obj_Actual);
8011 -- Finally, replace the allocator node with a reference to the temp
8013 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8015 Analyze_And_Resolve (Allocator, Acc_Type);
8016 end Make_Build_In_Place_Call_In_Allocator;
8018 ---------------------------------------------------
8019 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8020 ---------------------------------------------------
8022 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8023 (Function_Call : Node_Id)
8025 Loc : constant Source_Ptr := Sloc (Function_Call);
8026 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8027 Function_Id : Entity_Id;
8028 Result_Subt : Entity_Id;
8029 Return_Obj_Id : Entity_Id;
8030 Return_Obj_Decl : Entity_Id;
8032 begin
8033 -- If the call has already been processed to add build-in-place actuals
8034 -- then return. One place this can occur is for calls to build-in-place
8035 -- functions that occur within a call to a protected operation, where
8036 -- due to rewriting and expansion of the protected call there can be
8037 -- more than one call to Expand_Actuals for the same set of actuals.
8039 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8040 return;
8041 end if;
8043 -- Mark the call as processed as a build-in-place call
8045 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8047 if Is_Entity_Name (Name (Func_Call)) then
8048 Function_Id := Entity (Name (Func_Call));
8050 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8051 Function_Id := Etype (Name (Func_Call));
8053 else
8054 raise Program_Error;
8055 end if;
8057 Result_Subt := Etype (Function_Id);
8059 -- If the build-in-place function returns a controlled object, then the
8060 -- object needs to be finalized immediately after the context. Since
8061 -- this case produces a transient scope, the servicing finalizer needs
8062 -- to name the returned object. Create a temporary which is initialized
8063 -- with the function call:
8065 -- Temp_Id : Func_Type := BIP_Func_Call;
8067 -- The initialization expression of the temporary will be rewritten by
8068 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8069 -- Call_In_Object_Declaration.
8071 if Needs_Finalization (Result_Subt) then
8072 declare
8073 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8074 Temp_Decl : Node_Id;
8076 begin
8077 -- Reset the guard on the function call since the following does
8078 -- not perform actual call expansion.
8080 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8082 Temp_Decl :=
8083 Make_Object_Declaration (Loc,
8084 Defining_Identifier => Temp_Id,
8085 Object_Definition =>
8086 New_Occurrence_Of (Result_Subt, Loc),
8087 Expression =>
8088 New_Copy_Tree (Function_Call));
8090 Insert_Action (Function_Call, Temp_Decl);
8092 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8093 Analyze (Function_Call);
8094 end;
8096 -- When the result subtype is definite, an object of the subtype is
8097 -- declared and an access value designating it is passed as an actual.
8099 elsif Caller_Known_Size (Func_Call, Result_Subt) then
8101 -- Create a temporary object to hold the function result
8103 Return_Obj_Id := Make_Temporary (Loc, 'R');
8104 Set_Etype (Return_Obj_Id, Result_Subt);
8106 Return_Obj_Decl :=
8107 Make_Object_Declaration (Loc,
8108 Defining_Identifier => Return_Obj_Id,
8109 Aliased_Present => True,
8110 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8112 Set_No_Initialization (Return_Obj_Decl);
8114 Insert_Action (Func_Call, Return_Obj_Decl);
8116 -- When the function has a controlling result, an allocation-form
8117 -- parameter must be passed indicating that the caller is allocating
8118 -- the result object. This is needed because such a function can be
8119 -- called as a dispatching operation and must be treated similarly
8120 -- to functions with unconstrained result subtypes.
8122 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8123 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8125 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8126 (Func_Call, Function_Id);
8128 Add_Task_Actuals_To_Build_In_Place_Call
8129 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8131 -- Add an implicit actual to the function call that provides access
8132 -- to the caller's return object.
8134 Add_Access_Actual_To_Build_In_Place_Call
8135 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8137 -- When the result subtype is unconstrained, the function must allocate
8138 -- the return object in the secondary stack, so appropriate implicit
8139 -- parameters are added to the call to indicate that. A transient
8140 -- scope is established to ensure eventual cleanup of the result.
8142 else
8143 -- Pass an allocation parameter indicating that the function should
8144 -- allocate its result on the secondary stack.
8146 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8147 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8149 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8150 (Func_Call, Function_Id);
8152 Add_Task_Actuals_To_Build_In_Place_Call
8153 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8155 -- Pass a null value to the function since no return object is
8156 -- available on the caller side.
8158 Add_Access_Actual_To_Build_In_Place_Call
8159 (Func_Call, Function_Id, Empty);
8160 end if;
8161 end Make_Build_In_Place_Call_In_Anonymous_Context;
8163 --------------------------------------------
8164 -- Make_Build_In_Place_Call_In_Assignment --
8165 --------------------------------------------
8167 procedure Make_Build_In_Place_Call_In_Assignment
8168 (Assign : Node_Id;
8169 Function_Call : Node_Id)
8171 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8172 Lhs : constant Node_Id := Name (Assign);
8173 Loc : constant Source_Ptr := Sloc (Function_Call);
8174 Func_Id : Entity_Id;
8175 Obj_Decl : Node_Id;
8176 Obj_Id : Entity_Id;
8177 Ptr_Typ : Entity_Id;
8178 Ptr_Typ_Decl : Node_Id;
8179 New_Expr : Node_Id;
8180 Result_Subt : Entity_Id;
8182 begin
8183 -- Mark the call as processed as a build-in-place call
8185 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8186 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8188 if Is_Entity_Name (Name (Func_Call)) then
8189 Func_Id := Entity (Name (Func_Call));
8191 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8192 Func_Id := Etype (Name (Func_Call));
8194 else
8195 raise Program_Error;
8196 end if;
8198 Result_Subt := Etype (Func_Id);
8200 -- When the result subtype is unconstrained, an additional actual must
8201 -- be passed to indicate that the caller is providing the return object.
8202 -- This parameter must also be passed when the called function has a
8203 -- controlling result, because dispatching calls to the function needs
8204 -- to be treated effectively the same as calls to class-wide functions.
8206 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8207 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8209 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8210 (Func_Call, Func_Id);
8212 Add_Task_Actuals_To_Build_In_Place_Call
8213 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8215 -- Add an implicit actual to the function call that provides access to
8216 -- the caller's return object.
8218 Add_Access_Actual_To_Build_In_Place_Call
8219 (Func_Call,
8220 Func_Id,
8221 Make_Unchecked_Type_Conversion (Loc,
8222 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8223 Expression => Relocate_Node (Lhs)));
8225 -- Create an access type designating the function's result subtype
8227 Ptr_Typ := Make_Temporary (Loc, 'A');
8229 Ptr_Typ_Decl :=
8230 Make_Full_Type_Declaration (Loc,
8231 Defining_Identifier => Ptr_Typ,
8232 Type_Definition =>
8233 Make_Access_To_Object_Definition (Loc,
8234 All_Present => True,
8235 Subtype_Indication =>
8236 New_Occurrence_Of (Result_Subt, Loc)));
8237 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8239 -- Finally, create an access object initialized to a reference to the
8240 -- function call. We know this access value is non-null, so mark the
8241 -- entity accordingly to suppress junk access checks.
8243 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8245 -- Add a conversion if it's the wrong type
8247 if Etype (New_Expr) /= Ptr_Typ then
8248 New_Expr :=
8249 Make_Unchecked_Type_Conversion (Loc,
8250 New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8251 end if;
8253 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8254 Set_Etype (Obj_Id, Ptr_Typ);
8255 Set_Is_Known_Non_Null (Obj_Id);
8257 Obj_Decl :=
8258 Make_Object_Declaration (Loc,
8259 Defining_Identifier => Obj_Id,
8260 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8261 Expression => New_Expr);
8262 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8264 Rewrite (Assign, Make_Null_Statement (Loc));
8265 end Make_Build_In_Place_Call_In_Assignment;
8267 ----------------------------------------------------
8268 -- Make_Build_In_Place_Call_In_Object_Declaration --
8269 ----------------------------------------------------
8271 procedure Make_Build_In_Place_Call_In_Object_Declaration
8272 (Obj_Decl : Node_Id;
8273 Function_Call : Node_Id)
8275 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8276 -- Get the value of Function_Id, below
8278 ---------------------
8279 -- Get_Function_Id --
8280 ---------------------
8282 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8283 begin
8284 if Is_Entity_Name (Name (Func_Call)) then
8285 return Entity (Name (Func_Call));
8287 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8288 return Etype (Name (Func_Call));
8290 else
8291 raise Program_Error;
8292 end if;
8293 end Get_Function_Id;
8295 -- Local variables
8297 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8298 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8299 Loc : constant Source_Ptr := Sloc (Function_Call);
8300 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8301 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8302 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8303 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8304 Result_Subt : constant Entity_Id := Etype (Function_Id);
8306 Call_Deref : Node_Id;
8307 Caller_Object : Node_Id;
8308 Def_Id : Entity_Id;
8309 Designated_Type : Entity_Id;
8310 Fmaster_Actual : Node_Id := Empty;
8311 Pool_Actual : Node_Id;
8312 Ptr_Typ : Entity_Id;
8313 Ptr_Typ_Decl : Node_Id;
8314 Pass_Caller_Acc : Boolean := False;
8315 Res_Decl : Node_Id;
8317 Definite : constant Boolean :=
8318 Caller_Known_Size (Func_Call, Result_Subt)
8319 and then not Is_Class_Wide_Type (Obj_Typ);
8320 -- In the case of "X : T'Class := F(...);", where F returns a
8321 -- Caller_Known_Size (specific) tagged type, we treat it as
8322 -- indefinite, because the code for the Definite case below sets the
8323 -- initialization expression of the object to Empty, which would be
8324 -- illegal Ada, and would cause gigi to misallocate X.
8326 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8328 begin
8329 -- If the call has already been processed to add build-in-place actuals
8330 -- then return.
8332 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8333 return;
8334 end if;
8336 -- Mark the call as processed as a build-in-place call
8338 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8340 -- Create an access type designating the function's result subtype.
8341 -- We use the type of the original call because it may be a call to an
8342 -- inherited operation, which the expansion has replaced with the parent
8343 -- operation that yields the parent type. Note that this access type
8344 -- must be declared before we establish a transient scope, so that it
8345 -- receives the proper accessibility level.
8347 if Is_Class_Wide_Type (Obj_Typ)
8348 and then not Is_Interface (Obj_Typ)
8349 and then not Is_Class_Wide_Type (Etype (Function_Call))
8350 then
8351 Designated_Type := Obj_Typ;
8352 else
8353 Designated_Type := Etype (Function_Call);
8354 end if;
8356 Ptr_Typ := Make_Temporary (Loc, 'A');
8357 Ptr_Typ_Decl :=
8358 Make_Full_Type_Declaration (Loc,
8359 Defining_Identifier => Ptr_Typ,
8360 Type_Definition =>
8361 Make_Access_To_Object_Definition (Loc,
8362 All_Present => True,
8363 Subtype_Indication =>
8364 New_Occurrence_Of (Designated_Type, Loc)));
8366 -- The access type and its accompanying object must be inserted after
8367 -- the object declaration in the constrained case, so that the function
8368 -- call can be passed access to the object. In the indefinite case, or
8369 -- if the object declaration is for a return object, the access type and
8370 -- object must be inserted before the object, since the object
8371 -- declaration is rewritten to be a renaming of a dereference of the
8372 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8373 -- the result object is in a different (transient) scope, so won't cause
8374 -- freezing.
8376 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8377 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8378 else
8379 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8380 end if;
8382 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8383 -- elaborated in an inner (transient) scope and thus won't cause
8384 -- freezing by itself. It's not an itype, but it needs to be frozen
8385 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8387 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8389 -- If the object is a return object of an enclosing build-in-place
8390 -- function, then the implicit build-in-place parameters of the
8391 -- enclosing function are simply passed along to the called function.
8392 -- (Unfortunately, this won't cover the case of extension aggregates
8393 -- where the ancestor part is a build-in-place indefinite function
8394 -- call that should be passed along the caller's parameters.
8395 -- Currently those get mishandled by reassigning the result of the
8396 -- call to the aggregate return object, when the call result should
8397 -- really be directly built in place in the aggregate and not in a
8398 -- temporary. ???)
8400 if Is_Return_Object (Obj_Def_Id) then
8401 Pass_Caller_Acc := True;
8403 -- When the enclosing function has a BIP_Alloc_Form formal then we
8404 -- pass it along to the callee (such as when the enclosing function
8405 -- has an unconstrained or tagged result type).
8407 if Needs_BIP_Alloc_Form (Encl_Func) then
8408 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8409 Pool_Actual :=
8410 New_Occurrence_Of
8411 (Build_In_Place_Formal
8412 (Encl_Func, BIP_Storage_Pool), Loc);
8414 -- The build-in-place pool formal is not built on e.g. ZFP
8416 else
8417 Pool_Actual := Empty;
8418 end if;
8420 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8421 (Function_Call => Func_Call,
8422 Function_Id => Function_Id,
8423 Alloc_Form_Exp =>
8424 New_Occurrence_Of
8425 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8426 Pool_Actual => Pool_Actual);
8428 -- Otherwise, if enclosing function has a definite result subtype,
8429 -- then caller allocation will be used.
8431 else
8432 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8433 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8434 end if;
8436 if Needs_BIP_Finalization_Master (Encl_Func) then
8437 Fmaster_Actual :=
8438 New_Occurrence_Of
8439 (Build_In_Place_Formal
8440 (Encl_Func, BIP_Finalization_Master), Loc);
8441 end if;
8443 -- Retrieve the BIPacc formal from the enclosing function and convert
8444 -- it to the access type of the callee's BIP_Object_Access formal.
8446 Caller_Object :=
8447 Make_Unchecked_Type_Conversion (Loc,
8448 Subtype_Mark =>
8449 New_Occurrence_Of
8450 (Etype (Build_In_Place_Formal
8451 (Function_Id, BIP_Object_Access)),
8452 Loc),
8453 Expression =>
8454 New_Occurrence_Of
8455 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8456 Loc));
8458 -- In the definite case, add an implicit actual to the function call
8459 -- that provides access to the declared object. An unchecked conversion
8460 -- to the (specific) result type of the function is inserted to handle
8461 -- the case where the object is declared with a class-wide type.
8463 elsif Definite then
8464 Caller_Object :=
8465 Make_Unchecked_Type_Conversion (Loc,
8466 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8467 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
8469 -- When the function has a controlling result, an allocation-form
8470 -- parameter must be passed indicating that the caller is allocating
8471 -- the result object. This is needed because such a function can be
8472 -- called as a dispatching operation and must be treated similarly to
8473 -- functions with indefinite result subtypes.
8475 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8476 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8478 -- The allocation for indefinite library-level objects occurs on the
8479 -- heap as opposed to the secondary stack. This accommodates DLLs where
8480 -- the secondary stack is destroyed after each library unload. This is a
8481 -- hybrid mechanism where a stack-allocated object lives on the heap.
8483 elsif Is_Library_Level_Entity (Obj_Def_Id)
8484 and then not Restriction_Active (No_Implicit_Heap_Allocations)
8485 then
8486 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8487 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8488 Caller_Object := Empty;
8490 -- Create a finalization master for the access result type to ensure
8491 -- that the heap allocation can properly chain the object and later
8492 -- finalize it when the library unit goes out of scope.
8494 if Needs_Finalization (Etype (Func_Call)) then
8495 Build_Finalization_Master
8496 (Typ => Ptr_Typ,
8497 For_Lib_Level => True,
8498 Insertion_Node => Ptr_Typ_Decl);
8500 Fmaster_Actual :=
8501 Make_Attribute_Reference (Loc,
8502 Prefix =>
8503 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8504 Attribute_Name => Name_Unrestricted_Access);
8505 end if;
8507 -- In other indefinite cases, pass an indication to do the allocation on
8508 -- the secondary stack and set Caller_Object to Empty so that a null
8509 -- value will be passed for the caller's object address. A transient
8510 -- scope is established to ensure eventual cleanup of the result.
8512 else
8513 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8514 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8515 Caller_Object := Empty;
8517 Establish_Transient_Scope (Obj_Decl, Sec_Stack => True);
8518 end if;
8520 -- Pass along any finalization master actual, which is needed in the
8521 -- case where the called function initializes a return object of an
8522 -- enclosing build-in-place function.
8524 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8525 (Func_Call => Func_Call,
8526 Func_Id => Function_Id,
8527 Master_Exp => Fmaster_Actual);
8529 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8530 and then Has_Task (Result_Subt)
8531 then
8532 -- Here we're passing along the master that was passed in to this
8533 -- function.
8535 Add_Task_Actuals_To_Build_In_Place_Call
8536 (Func_Call, Function_Id,
8537 Master_Actual =>
8538 New_Occurrence_Of
8539 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8541 else
8542 Add_Task_Actuals_To_Build_In_Place_Call
8543 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8544 end if;
8546 Add_Access_Actual_To_Build_In_Place_Call
8547 (Func_Call,
8548 Function_Id,
8549 Caller_Object,
8550 Is_Access => Pass_Caller_Acc);
8552 -- Finally, create an access object initialized to a reference to the
8553 -- function call. We know this access value cannot be null, so mark the
8554 -- entity accordingly to suppress the access check.
8556 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8557 Set_Etype (Def_Id, Ptr_Typ);
8558 Set_Is_Known_Non_Null (Def_Id);
8560 if Nkind_In (Function_Call, N_Type_Conversion,
8561 N_Unchecked_Type_Conversion)
8562 then
8563 Res_Decl :=
8564 Make_Object_Declaration (Loc,
8565 Defining_Identifier => Def_Id,
8566 Constant_Present => True,
8567 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8568 Expression =>
8569 Make_Unchecked_Type_Conversion (Loc,
8570 New_Occurrence_Of (Ptr_Typ, Loc),
8571 Make_Reference (Loc, Relocate_Node (Func_Call))));
8572 else
8573 Res_Decl :=
8574 Make_Object_Declaration (Loc,
8575 Defining_Identifier => Def_Id,
8576 Constant_Present => True,
8577 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8578 Expression =>
8579 Make_Reference (Loc, Relocate_Node (Func_Call)));
8580 end if;
8582 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8584 -- If the result subtype of the called function is definite and is not
8585 -- itself the return expression of an enclosing BIP function, then mark
8586 -- the object as having no initialization.
8588 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8590 -- The related object declaration is encased in a transient block
8591 -- because the build-in-place function call contains at least one
8592 -- nested function call that produces a controlled transient
8593 -- temporary:
8595 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8597 -- Since the build-in-place expansion decouples the call from the
8598 -- object declaration, the finalization machinery lacks the context
8599 -- which prompted the generation of the transient block. To resolve
8600 -- this scenario, store the build-in-place call.
8602 if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8603 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8604 end if;
8606 Set_Expression (Obj_Decl, Empty);
8607 Set_No_Initialization (Obj_Decl);
8609 -- In case of an indefinite result subtype, or if the call is the
8610 -- return expression of an enclosing BIP function, rewrite the object
8611 -- declaration as an object renaming where the renamed object is a
8612 -- dereference of <function_Call>'reference:
8614 -- Obj : Subt renames <function_call>'Ref.all;
8616 else
8617 Call_Deref :=
8618 Make_Explicit_Dereference (Obj_Loc,
8619 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8621 Rewrite (Obj_Decl,
8622 Make_Object_Renaming_Declaration (Obj_Loc,
8623 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8624 Subtype_Mark =>
8625 New_Occurrence_Of (Designated_Type, Obj_Loc),
8626 Name => Call_Deref));
8628 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8629 -- to Obj_Def_Id.
8631 Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8633 -- If the original entity comes from source, then mark the new
8634 -- entity as needing debug information, even though it's defined
8635 -- by a generated renaming that does not come from source, so that
8636 -- the Materialize_Entity flag will be set on the entity when
8637 -- Debug_Renaming_Declaration is called during analysis.
8639 if Comes_From_Source (Obj_Def_Id) then
8640 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8641 end if;
8643 Analyze (Obj_Decl);
8644 Replace_Renaming_Declaration_Id
8645 (Obj_Decl, Original_Node (Obj_Decl));
8646 end if;
8647 end Make_Build_In_Place_Call_In_Object_Declaration;
8649 -------------------------------------------------
8650 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8651 -------------------------------------------------
8653 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8654 (Allocator : Node_Id;
8655 Function_Call : Node_Id)
8657 BIP_Func_Call : constant Node_Id :=
8658 Unqual_BIP_Iface_Function_Call (Function_Call);
8659 Loc : constant Source_Ptr := Sloc (Function_Call);
8661 Anon_Type : Entity_Id;
8662 Tmp_Decl : Node_Id;
8663 Tmp_Id : Entity_Id;
8665 begin
8666 -- No action of the call has already been processed
8668 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8669 return;
8670 end if;
8672 Tmp_Id := Make_Temporary (Loc, 'D');
8674 -- Insert a temporary before N initialized with the BIP function call
8675 -- without its enclosing type conversions and analyze it without its
8676 -- expansion. This temporary facilitates us reusing the BIP machinery,
8677 -- which takes care of adding the extra build-in-place actuals and
8678 -- transforms this object declaration into an object renaming
8679 -- declaration.
8681 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
8682 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
8683 Set_Etype (Anon_Type, Anon_Type);
8685 Tmp_Decl :=
8686 Make_Object_Declaration (Loc,
8687 Defining_Identifier => Tmp_Id,
8688 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
8689 Expression =>
8690 Make_Allocator (Loc,
8691 Expression =>
8692 Make_Qualified_Expression (Loc,
8693 Subtype_Mark =>
8694 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8695 Expression => New_Copy_Tree (BIP_Func_Call))));
8697 Expander_Mode_Save_And_Set (False);
8698 Insert_Action (Allocator, Tmp_Decl);
8699 Expander_Mode_Restore;
8701 Make_Build_In_Place_Call_In_Allocator
8702 (Allocator => Expression (Tmp_Decl),
8703 Function_Call => Expression (Expression (Tmp_Decl)));
8705 Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
8706 end Make_Build_In_Place_Iface_Call_In_Allocator;
8708 ---------------------------------------------------------
8709 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8710 ---------------------------------------------------------
8712 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8713 (Function_Call : Node_Id)
8715 BIP_Func_Call : constant Node_Id :=
8716 Unqual_BIP_Iface_Function_Call (Function_Call);
8717 Loc : constant Source_Ptr := Sloc (Function_Call);
8719 Tmp_Decl : Node_Id;
8720 Tmp_Id : Entity_Id;
8722 begin
8723 -- No action of the call has already been processed
8725 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8726 return;
8727 end if;
8729 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
8731 -- Insert a temporary before the call initialized with function call to
8732 -- reuse the BIP machinery which takes care of adding the extra build-in
8733 -- place actuals and transforms this object declaration into an object
8734 -- renaming declaration.
8736 Tmp_Id := Make_Temporary (Loc, 'D');
8738 Tmp_Decl :=
8739 Make_Object_Declaration (Loc,
8740 Defining_Identifier => Tmp_Id,
8741 Object_Definition =>
8742 New_Occurrence_Of (Etype (Function_Call), Loc),
8743 Expression => Relocate_Node (Function_Call));
8745 Expander_Mode_Save_And_Set (False);
8746 Insert_Action (Function_Call, Tmp_Decl);
8747 Expander_Mode_Restore;
8749 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8750 (Obj_Decl => Tmp_Decl,
8751 Function_Call => Expression (Tmp_Decl));
8752 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
8754 ----------------------------------------------------------
8755 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8756 ----------------------------------------------------------
8758 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8759 (Obj_Decl : Node_Id;
8760 Function_Call : Node_Id)
8762 BIP_Func_Call : constant Node_Id :=
8763 Unqual_BIP_Iface_Function_Call (Function_Call);
8764 Loc : constant Source_Ptr := Sloc (Function_Call);
8765 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
8767 Tmp_Decl : Node_Id;
8768 Tmp_Id : Entity_Id;
8770 begin
8771 -- No action of the call has already been processed
8773 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8774 return;
8775 end if;
8777 Tmp_Id := Make_Temporary (Loc, 'D');
8779 -- Insert a temporary before N initialized with the BIP function call
8780 -- without its enclosing type conversions and analyze it without its
8781 -- expansion. This temporary facilitates us reusing the BIP machinery,
8782 -- which takes care of adding the extra build-in-place actuals and
8783 -- transforms this object declaration into an object renaming
8784 -- declaration.
8786 Tmp_Decl :=
8787 Make_Object_Declaration (Loc,
8788 Defining_Identifier => Tmp_Id,
8789 Object_Definition =>
8790 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8791 Expression => New_Copy_Tree (BIP_Func_Call));
8793 Expander_Mode_Save_And_Set (False);
8794 Insert_Action (Obj_Decl, Tmp_Decl);
8795 Expander_Mode_Restore;
8797 Make_Build_In_Place_Call_In_Object_Declaration
8798 (Obj_Decl => Tmp_Decl,
8799 Function_Call => Expression (Tmp_Decl));
8801 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
8803 -- Replace the original build-in-place function call by a reference to
8804 -- the resulting temporary object renaming declaration. In this way,
8805 -- all the interface conversions performed in the original Function_Call
8806 -- on the build-in-place object are preserved.
8808 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
8810 -- Replace the original object declaration by an internal object
8811 -- renaming declaration. This leaves the generated code more clean (the
8812 -- build-in-place function call in an object renaming declaration and
8813 -- displacements of the pointer to the build-in-place object in another
8814 -- renaming declaration) and allows us to invoke the routine that takes
8815 -- care of replacing the identifier of the renaming declaration (routine
8816 -- originally developed for the regular build-in-place management).
8818 Rewrite (Obj_Decl,
8819 Make_Object_Renaming_Declaration (Loc,
8820 Defining_Identifier => Make_Temporary (Loc, 'D'),
8821 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
8822 Name => Function_Call));
8823 Analyze (Obj_Decl);
8825 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
8826 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
8828 --------------------------------------------
8829 -- Make_CPP_Constructor_Call_In_Allocator --
8830 --------------------------------------------
8832 procedure Make_CPP_Constructor_Call_In_Allocator
8833 (Allocator : Node_Id;
8834 Function_Call : Node_Id)
8836 Loc : constant Source_Ptr := Sloc (Function_Call);
8837 Acc_Type : constant Entity_Id := Etype (Allocator);
8838 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
8839 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
8841 New_Allocator : Node_Id;
8842 Return_Obj_Access : Entity_Id;
8843 Tmp_Obj : Node_Id;
8845 begin
8846 pragma Assert (Nkind (Allocator) = N_Allocator
8847 and then Nkind (Function_Call) = N_Function_Call);
8848 pragma Assert (Convention (Function_Id) = Convention_CPP
8849 and then Is_Constructor (Function_Id));
8850 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
8852 -- Replace the initialized allocator of form "new T'(Func (...))" with
8853 -- an uninitialized allocator of form "new T", where T is the result
8854 -- subtype of the called function. The call to the function is handled
8855 -- separately further below.
8857 New_Allocator :=
8858 Make_Allocator (Loc,
8859 Expression => New_Occurrence_Of (Result_Subt, Loc));
8860 Set_No_Initialization (New_Allocator);
8862 -- Copy attributes to new allocator. Note that the new allocator
8863 -- logically comes from source if the original one did, so copy the
8864 -- relevant flag. This ensures proper treatment of the restriction
8865 -- No_Implicit_Heap_Allocations in this case.
8867 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8868 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8869 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8871 Rewrite (Allocator, New_Allocator);
8873 -- Create a new access object and initialize it to the result of the
8874 -- new uninitialized allocator. Note: we do not use Allocator as the
8875 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8876 -- as this would create a sort of infinite "recursion".
8878 Return_Obj_Access := Make_Temporary (Loc, 'R');
8879 Set_Etype (Return_Obj_Access, Acc_Type);
8881 -- Generate:
8882 -- Rnnn : constant ptr_T := new (T);
8883 -- Init (Rnn.all,...);
8885 Tmp_Obj :=
8886 Make_Object_Declaration (Loc,
8887 Defining_Identifier => Return_Obj_Access,
8888 Constant_Present => True,
8889 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8890 Expression => Relocate_Node (Allocator));
8891 Insert_Action (Allocator, Tmp_Obj);
8893 Insert_List_After_And_Analyze (Tmp_Obj,
8894 Build_Initialization_Call (Loc,
8895 Id_Ref =>
8896 Make_Explicit_Dereference (Loc,
8897 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
8898 Typ => Etype (Function_Id),
8899 Constructor_Ref => Function_Call));
8901 -- Finally, replace the allocator node with a reference to the result of
8902 -- the function call itself (which will effectively be an access to the
8903 -- object created by the allocator).
8905 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8907 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8908 -- generate an implicit conversion to force displacement of the "this"
8909 -- pointer.
8911 if Is_Interface (Designated_Type (Acc_Type)) then
8912 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
8913 end if;
8915 Analyze_And_Resolve (Allocator, Acc_Type);
8916 end Make_CPP_Constructor_Call_In_Allocator;
8918 -----------------------------------
8919 -- Needs_BIP_Finalization_Master --
8920 -----------------------------------
8922 function Needs_BIP_Finalization_Master
8923 (Func_Id : Entity_Id) return Boolean
8925 pragma Assert (Is_Build_In_Place_Function (Func_Id));
8926 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8927 begin
8928 -- A formal giving the finalization master is needed for build-in-place
8929 -- functions whose result type needs finalization or is a tagged type.
8930 -- Tagged primitive build-in-place functions need such a formal because
8931 -- they can be called by a dispatching call, and extensions may require
8932 -- finalization even if the root type doesn't. This means they're also
8933 -- needed for tagged nonprimitive build-in-place functions with tagged
8934 -- results, since such functions can be called via access-to-function
8935 -- types, and those can be used to call primitives, so masters have to
8936 -- be passed to all such build-in-place functions, primitive or not.
8938 return
8939 not Restriction_Active (No_Finalization)
8940 and then (Needs_Finalization (Func_Typ)
8941 or else Is_Tagged_Type (Func_Typ));
8942 end Needs_BIP_Finalization_Master;
8944 --------------------------
8945 -- Needs_BIP_Alloc_Form --
8946 --------------------------
8948 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
8949 pragma Assert (Is_Build_In_Place_Function (Func_Id));
8950 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8951 begin
8952 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
8953 end Needs_BIP_Alloc_Form;
8955 --------------------------------------
8956 -- Needs_Result_Accessibility_Level --
8957 --------------------------------------
8959 function Needs_Result_Accessibility_Level
8960 (Func_Id : Entity_Id) return Boolean
8962 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8964 function Has_Unconstrained_Access_Discriminant_Component
8965 (Comp_Typ : Entity_Id) return Boolean;
8966 -- Returns True if any component of the type has an unconstrained access
8967 -- discriminant.
8969 -----------------------------------------------------
8970 -- Has_Unconstrained_Access_Discriminant_Component --
8971 -----------------------------------------------------
8973 function Has_Unconstrained_Access_Discriminant_Component
8974 (Comp_Typ : Entity_Id) return Boolean
8976 begin
8977 if not Is_Limited_Type (Comp_Typ) then
8978 return False;
8980 -- Only limited types can have access discriminants with
8981 -- defaults.
8983 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
8984 return True;
8986 elsif Is_Array_Type (Comp_Typ) then
8987 return Has_Unconstrained_Access_Discriminant_Component
8988 (Underlying_Type (Component_Type (Comp_Typ)));
8990 elsif Is_Record_Type (Comp_Typ) then
8991 declare
8992 Comp : Entity_Id;
8994 begin
8995 Comp := First_Component (Comp_Typ);
8996 while Present (Comp) loop
8997 if Has_Unconstrained_Access_Discriminant_Component
8998 (Underlying_Type (Etype (Comp)))
8999 then
9000 return True;
9001 end if;
9003 Next_Component (Comp);
9004 end loop;
9005 end;
9006 end if;
9008 return False;
9009 end Has_Unconstrained_Access_Discriminant_Component;
9011 Feature_Disabled : constant Boolean := True;
9012 -- Temporary
9014 -- Start of processing for Needs_Result_Accessibility_Level
9016 begin
9017 -- False if completion unavailable (how does this happen???)
9019 if not Present (Func_Typ) then
9020 return False;
9022 elsif Feature_Disabled then
9023 return False;
9025 -- False if not a function, also handle enum-lit renames case
9027 elsif Func_Typ = Standard_Void_Type
9028 or else Is_Scalar_Type (Func_Typ)
9029 then
9030 return False;
9032 -- Handle a corner case, a cross-dialect subp renaming. For example,
9033 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9034 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9036 elsif Present (Alias (Func_Id)) then
9038 -- Unimplemented: a cross-dialect subp renaming which does not set
9039 -- the Alias attribute (e.g., a rename of a dereference of an access
9040 -- to subprogram value). ???
9042 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9044 -- Remaining cases require Ada 2012 mode
9046 elsif Ada_Version < Ada_2012 then
9047 return False;
9049 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9050 or else Is_Tagged_Type (Func_Typ)
9051 then
9052 -- In the case of, say, a null tagged record result type, the need
9053 -- for this extra parameter might not be obvious. This function
9054 -- returns True for all tagged types for compatibility reasons.
9055 -- A function with, say, a tagged null controlling result type might
9056 -- be overridden by a primitive of an extension having an access
9057 -- discriminant and the overrider and overridden must have compatible
9058 -- calling conventions (including implicitly declared parameters).
9059 -- Similarly, values of one access-to-subprogram type might designate
9060 -- both a primitive subprogram of a given type and a function
9061 -- which is, for example, not a primitive subprogram of any type.
9062 -- Again, this requires calling convention compatibility.
9063 -- It might be possible to solve these issues by introducing
9064 -- wrappers, but that is not the approach that was chosen.
9066 return True;
9068 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9069 return True;
9071 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9072 return True;
9074 -- False for all other cases
9076 else
9077 return False;
9078 end if;
9079 end Needs_Result_Accessibility_Level;
9081 -------------------------------------
9082 -- Replace_Renaming_Declaration_Id --
9083 -------------------------------------
9085 procedure Replace_Renaming_Declaration_Id
9086 (New_Decl : Node_Id;
9087 Orig_Decl : Node_Id)
9089 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9090 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9092 begin
9093 Set_Chars (New_Id, Chars (Orig_Id));
9095 -- Swap next entity links in preparation for exchanging entities
9097 declare
9098 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9099 begin
9100 Set_Next_Entity (New_Id, Next_Entity (Orig_Id));
9101 Set_Next_Entity (Orig_Id, Next_Id);
9102 end;
9104 Set_Homonym (New_Id, Homonym (Orig_Id));
9105 Exchange_Entities (New_Id, Orig_Id);
9107 -- Preserve source indication of original declaration, so that xref
9108 -- information is properly generated for the right entity.
9110 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9111 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9113 Set_Comes_From_Source (New_Id, False);
9114 end Replace_Renaming_Declaration_Id;
9116 ---------------------------------
9117 -- Rewrite_Function_Call_For_C --
9118 ---------------------------------
9120 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9121 Orig_Func : constant Entity_Id := Entity (Name (N));
9122 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
9123 Par : constant Node_Id := Parent (N);
9124 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
9125 Loc : constant Source_Ptr := Sloc (Par);
9126 Actuals : List_Id;
9127 Last_Actual : Node_Id;
9128 Last_Formal : Entity_Id;
9130 -- Start of processing for Rewrite_Function_Call_For_C
9132 begin
9133 -- The actuals may be given by named associations, so the added actual
9134 -- that is the target of the return value of the call must be a named
9135 -- association as well, so we retrieve the name of the generated
9136 -- out_formal.
9138 Last_Formal := First_Formal (Proc_Id);
9139 while Present (Next_Formal (Last_Formal)) loop
9140 Last_Formal := Next_Formal (Last_Formal);
9141 end loop;
9143 Actuals := Parameter_Associations (N);
9145 -- The original function may lack parameters
9147 if No (Actuals) then
9148 Actuals := New_List;
9149 end if;
9151 -- If the function call is the expression of an assignment statement,
9152 -- transform the assignment into a procedure call. Generate:
9154 -- LHS := Func_Call (...);
9156 -- Proc_Call (..., LHS);
9158 -- If function is inherited, a conversion may be necessary.
9160 if Nkind (Par) = N_Assignment_Statement then
9161 Last_Actual := Name (Par);
9163 if not Comes_From_Source (Orig_Func)
9164 and then Etype (Orig_Func) /= Etype (Func_Id)
9165 then
9166 Last_Actual :=
9167 Make_Type_Conversion (Loc,
9168 New_Occurrence_Of (Etype (Func_Id), Loc),
9169 Last_Actual);
9170 end if;
9172 Append_To (Actuals,
9173 Make_Parameter_Association (Loc,
9174 Selector_Name =>
9175 Make_Identifier (Loc, Chars (Last_Formal)),
9176 Explicit_Actual_Parameter => Last_Actual));
9178 Rewrite (Par,
9179 Make_Procedure_Call_Statement (Loc,
9180 Name => New_Occurrence_Of (Proc_Id, Loc),
9181 Parameter_Associations => Actuals));
9182 Analyze (Par);
9184 -- Otherwise the context is an expression. Generate a temporary and a
9185 -- procedure call to obtain the function result. Generate:
9187 -- ... Func_Call (...) ...
9189 -- Temp : ...;
9190 -- Proc_Call (..., Temp);
9191 -- ... Temp ...
9193 else
9194 declare
9195 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9196 Call : Node_Id;
9197 Decl : Node_Id;
9199 begin
9200 -- Generate:
9201 -- Temp : ...;
9203 Decl :=
9204 Make_Object_Declaration (Loc,
9205 Defining_Identifier => Temp_Id,
9206 Object_Definition =>
9207 New_Occurrence_Of (Etype (Func_Id), Loc));
9209 -- Generate:
9210 -- Proc_Call (..., Temp);
9212 Append_To (Actuals,
9213 Make_Parameter_Association (Loc,
9214 Selector_Name =>
9215 Make_Identifier (Loc, Chars (Last_Formal)),
9216 Explicit_Actual_Parameter =>
9217 New_Occurrence_Of (Temp_Id, Loc)));
9219 Call :=
9220 Make_Procedure_Call_Statement (Loc,
9221 Name => New_Occurrence_Of (Proc_Id, Loc),
9222 Parameter_Associations => Actuals);
9224 Insert_Actions (Par, New_List (Decl, Call));
9225 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9226 end;
9227 end if;
9228 end Rewrite_Function_Call_For_C;
9230 ------------------------------------
9231 -- Set_Enclosing_Sec_Stack_Return --
9232 ------------------------------------
9234 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9235 P : Node_Id := N;
9237 begin
9238 -- Due to a possible mix of internally generated blocks, source blocks
9239 -- and loops, the scope stack may not be contiguous as all labels are
9240 -- inserted at the top level within the related function. Instead,
9241 -- perform a parent-based traversal and mark all appropriate constructs.
9243 while Present (P) loop
9245 -- Mark the label of a source or internally generated block or
9246 -- loop.
9248 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9249 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9251 -- Mark the enclosing function
9253 elsif Nkind (P) = N_Subprogram_Body then
9254 if Present (Corresponding_Spec (P)) then
9255 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9256 else
9257 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9258 end if;
9260 -- Do not go beyond the enclosing function
9262 exit;
9263 end if;
9265 P := Parent (P);
9266 end loop;
9267 end Set_Enclosing_Sec_Stack_Return;
9269 ------------------------------------
9270 -- Unqual_BIP_Iface_Function_Call --
9271 ------------------------------------
9273 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9274 Has_Pointer_Displacement : Boolean := False;
9275 On_Object_Declaration : Boolean := False;
9276 -- Remember if processing the renaming expressions on recursion we have
9277 -- traversed an object declaration, since we can traverse many object
9278 -- declaration renamings but just one regular object declaration.
9280 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9281 -- Search for a build-in-place function call skipping any qualification
9282 -- including qualified expressions, type conversions, references, calls
9283 -- to displace the pointer to the object, and renamings. Return Empty if
9284 -- no build-in-place function call is found.
9286 ------------------------------
9287 -- Unqual_BIP_Function_Call --
9288 ------------------------------
9290 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9291 begin
9292 -- Recurse to handle case of multiple levels of qualification and/or
9293 -- conversion.
9295 if Nkind_In (Expr, N_Qualified_Expression,
9296 N_Type_Conversion,
9297 N_Unchecked_Type_Conversion)
9298 then
9299 return Unqual_BIP_Function_Call (Expression (Expr));
9301 -- Recurse to handle case of multiple levels of references and
9302 -- explicit dereferences.
9304 elsif Nkind_In (Expr, N_Attribute_Reference,
9305 N_Explicit_Dereference,
9306 N_Reference)
9307 then
9308 return Unqual_BIP_Function_Call (Prefix (Expr));
9310 -- Recurse on object renamings
9312 elsif Nkind (Expr) = N_Identifier
9313 and then Present (Entity (Expr))
9314 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9315 and then Nkind (Parent (Entity (Expr))) =
9316 N_Object_Renaming_Declaration
9317 and then Present (Renamed_Object (Entity (Expr)))
9318 then
9319 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9321 -- Recurse on the initializing expression of the first reference of
9322 -- an object declaration.
9324 elsif not On_Object_Declaration
9325 and then Nkind (Expr) = N_Identifier
9326 and then Present (Entity (Expr))
9327 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9328 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9329 and then Present (Expression (Parent (Entity (Expr))))
9330 then
9331 On_Object_Declaration := True;
9332 return
9333 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9335 -- Recurse to handle calls to displace the pointer to the object to
9336 -- reference a secondary dispatch table.
9338 elsif Nkind (Expr) = N_Function_Call
9339 and then Nkind (Name (Expr)) in N_Has_Entity
9340 and then Present (Entity (Name (Expr)))
9341 and then RTU_Loaded (Ada_Tags)
9342 and then RTE_Available (RE_Displace)
9343 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9344 then
9345 Has_Pointer_Displacement := True;
9346 return
9347 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9349 -- Normal case: check if the inner expression is a BIP function call
9350 -- and the pointer to the object is displaced.
9352 elsif Has_Pointer_Displacement
9353 and then Is_Build_In_Place_Function_Call (Expr)
9354 then
9355 return Expr;
9357 else
9358 return Empty;
9359 end if;
9360 end Unqual_BIP_Function_Call;
9362 -- Start of processing for Unqual_BIP_Iface_Function_Call
9364 begin
9365 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9367 -- Can happen for X'Elab_Spec in the binder-generated file
9369 return Empty;
9370 end if;
9372 return Unqual_BIP_Function_Call (Expr);
9373 end Unqual_BIP_Iface_Function_Call;
9375 end Exp_Ch6;