1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Contracts
; use Contracts
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Elists
; use Elists
;
33 with Expander
; use Expander
;
34 with Exp_Aggr
; use Exp_Aggr
;
35 with Exp_Atag
; use Exp_Atag
;
36 with Exp_Ch2
; use Exp_Ch2
;
37 with Exp_Ch3
; use Exp_Ch3
;
38 with Exp_Ch7
; use Exp_Ch7
;
39 with Exp_Ch9
; use Exp_Ch9
;
40 with Exp_Dbug
; use Exp_Dbug
;
41 with Exp_Disp
; use Exp_Disp
;
42 with Exp_Dist
; use Exp_Dist
;
43 with Exp_Intr
; use Exp_Intr
;
44 with Exp_Pakd
; use Exp_Pakd
;
45 with Exp_Tss
; use Exp_Tss
;
46 with Exp_Util
; use Exp_Util
;
47 with Freeze
; use Freeze
;
48 with Inline
; use Inline
;
49 with Itypes
; use Itypes
;
51 with Namet
; use Namet
;
52 with Nlists
; use Nlists
;
53 with Nmake
; use Nmake
;
55 with Restrict
; use Restrict
;
56 with Rident
; use Rident
;
57 with Rtsfind
; use Rtsfind
;
59 with Sem_Aux
; use Sem_Aux
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch12
; use Sem_Ch12
;
63 with Sem_Ch13
; use Sem_Ch13
;
64 with Sem_Dim
; use Sem_Dim
;
65 with Sem_Disp
; use Sem_Disp
;
66 with Sem_Dist
; use Sem_Dist
;
67 with Sem_Eval
; use Sem_Eval
;
68 with Sem_Mech
; use Sem_Mech
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_SCIL
; use Sem_SCIL
;
71 with Sem_Util
; use Sem_Util
;
72 with Sinfo
; use Sinfo
;
73 with Snames
; use Snames
;
74 with Stand
; use Stand
;
75 with Tbuild
; use Tbuild
;
76 with Uintp
; use Uintp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch6
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call
: Node_Id
;
87 Function_Id
: Entity_Id
;
88 Return_Object
: Node_Id
;
89 Is_Access
: Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call
: Node_Id
;
100 Function_Id
: Entity_Id
;
101 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
102 Alloc_Form_Exp
: Node_Id
:= Empty
;
103 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call
: Node_Id
;
114 Ptr_Typ
: Entity_Id
:= Empty
;
115 Master_Exp
: Node_Id
:= Empty
);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call
: Node_Id
;
124 Function_Id
: Entity_Id
;
125 Master_Actual
: Node_Id
;
126 Chain
: Node_Id
:= Empty
);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 function Caller_Known_Size
141 (Func_Call
: Node_Id
;
142 Result_Subt
: Entity_Id
) return Boolean;
143 -- True if result subtype is definite, or has a size that does not require
144 -- secondary stack usage (i.e. no variant part or components whose type
145 -- depends on discriminants). In particular, untagged types with only
146 -- access discriminants do not require secondary stack use. Note we must
147 -- always use the secondary stack for dispatching-on-result calls.
149 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
150 -- Subp is a dispatching operation. Check whether it may override an
151 -- inherited private operation, in which case its DT entry is that of
152 -- the hidden operation, not the one it may have received earlier.
153 -- This must be done before emitting the code to set the corresponding
154 -- DT to the address of the subprogram. The actual placement of Subp in
155 -- the proper place in the list of primitive operations is done in
156 -- Declare_Inherited_Private_Subprograms, which also has to deal with
157 -- implicit operations. This duplication is unavoidable for now???
159 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
160 -- This procedure is called only if the subprogram body N, whose spec
161 -- has the given entity Spec, contains a parameterless recursive call.
162 -- It attempts to generate runtime code to detect if this a case of
163 -- infinite recursion.
165 -- The body is scanned to determine dependencies. If the only external
166 -- dependencies are on a small set of scalar variables, then the values
167 -- of these variables are captured on entry to the subprogram, and if
168 -- the values are not changed for the call, we know immediately that
169 -- we have an infinite recursion.
171 procedure Expand_Actuals
174 Post_Call
: out List_Id
);
175 -- Return a list of actions to take place after the call in Post_Call. The
176 -- call will later be rewritten as an Expression_With_Actions, with the
177 -- Post_Call actions inserted, and the call inside.
179 -- For each actual of an in-out or out parameter which is a numeric (view)
180 -- conversion of the form T (A), where A denotes a variable, we insert the
183 -- Temp : T[ := T (A)];
185 -- prior to the call. Then we replace the actual with a reference to Temp,
186 -- and append the assignment:
188 -- A := TypeA (Temp);
190 -- after the call. Here TypeA is the actual type of variable A. For out
191 -- parameters, the initial declaration has no expression. If A is not an
192 -- entity name, we generate instead:
194 -- Var : TypeA renames A;
195 -- Temp : T := Var; -- omitting expression for out parameter.
197 -- Var := TypeA (Temp);
199 -- For other in-out parameters, we emit the required constraint checks
200 -- before and/or after the call.
202 -- For all parameter modes, actuals that denote components and slices of
203 -- packed arrays are expanded into suitable temporaries.
205 -- For non-scalar objects that are possibly unaligned, add call by copy
206 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208 -- For OUT and IN OUT parameters, add predicate checks after the call
209 -- based on the predicates of the actual type.
211 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
);
212 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
215 -- N is a function call which returns a controlled object. Transform the
216 -- call into a temporary which retrieves the returned object from the
217 -- secondary stack using 'reference.
219 procedure Expand_Non_Function_Return
(N
: Node_Id
);
220 -- Expand a simple return statement found in a procedure body, entry body,
221 -- accept statement, or an extended return statement. Note that all non-
222 -- function returns are simple return statements.
224 function Expand_Protected_Object_Reference
226 Scop
: Entity_Id
) return Node_Id
;
228 procedure Expand_Protected_Subprogram_Call
232 -- A call to a protected subprogram within the protected object may appear
233 -- as a regular call. The list of actuals must be expanded to contain a
234 -- reference to the object itself, and the call becomes a call to the
235 -- corresponding protected subprogram.
237 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
238 -- Expand simple return from function. In the case where we are returning
239 -- from a function body this is called by Expand_N_Simple_Return_Statement.
241 function Has_Unconstrained_Access_Discriminants
242 (Subtyp
: Entity_Id
) return Boolean;
243 -- Returns True if the given subtype is unconstrained and has one or more
244 -- access discriminants.
246 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
);
247 -- Insert the Post_Call list previously produced by routine Expand_Actuals
248 -- or Expand_Call_Helper into the tree.
250 procedure Replace_Renaming_Declaration_Id
252 Orig_Decl
: Node_Id
);
253 -- Replace the internal identifier of the new renaming declaration New_Decl
254 -- with the identifier of its original declaration Orig_Decl exchanging the
255 -- entities containing their defining identifiers to ensure the correct
256 -- replacement of the object declaration by the object renaming declaration
257 -- to avoid homograph conflicts (since the object declaration's defining
258 -- identifier was already entered in the current scope). The Next_Entity
259 -- links of the two entities are also swapped since the entities are part
260 -- of the return scope's entity list and the list structure would otherwise
261 -- be corrupted. The homonym chain is preserved as well.
263 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
);
264 -- When generating C code, replace a call to a function that returns an
265 -- array into the generated procedure with an additional out parameter.
267 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
);
268 -- N is a return statement for a function that returns its result on the
269 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
270 -- function and all blocks and loops that the return statement is jumping
271 -- out of. This ensures that the secondary stack is not released; otherwise
272 -- the function result would be reclaimed before returning to the caller.
274 ----------------------------------------------
275 -- Add_Access_Actual_To_Build_In_Place_Call --
276 ----------------------------------------------
278 procedure Add_Access_Actual_To_Build_In_Place_Call
279 (Function_Call
: Node_Id
;
280 Function_Id
: Entity_Id
;
281 Return_Object
: Node_Id
;
282 Is_Access
: Boolean := False)
284 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
285 Obj_Address
: Node_Id
;
286 Obj_Acc_Formal
: Entity_Id
;
289 -- Locate the implicit access parameter in the called function
291 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
293 -- If no return object is provided, then pass null
295 if not Present
(Return_Object
) then
296 Obj_Address
:= Make_Null
(Loc
);
297 Set_Parent
(Obj_Address
, Function_Call
);
299 -- If Return_Object is already an expression of an access type, then use
300 -- it directly, since it must be an access value denoting the return
301 -- object, and couldn't possibly be the return object itself.
304 Obj_Address
:= Return_Object
;
305 Set_Parent
(Obj_Address
, Function_Call
);
307 -- Apply Unrestricted_Access to caller's return object
311 Make_Attribute_Reference
(Loc
,
312 Prefix
=> Return_Object
,
313 Attribute_Name
=> Name_Unrestricted_Access
);
315 Set_Parent
(Return_Object
, Obj_Address
);
316 Set_Parent
(Obj_Address
, Function_Call
);
319 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
321 -- Build the parameter association for the new actual and add it to the
322 -- end of the function's actuals.
324 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
325 end Add_Access_Actual_To_Build_In_Place_Call
;
327 ------------------------------------------------------
328 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
329 ------------------------------------------------------
331 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
332 (Function_Call
: Node_Id
;
333 Function_Id
: Entity_Id
;
334 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
335 Alloc_Form_Exp
: Node_Id
:= Empty
;
336 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
338 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
339 Alloc_Form_Actual
: Node_Id
;
340 Alloc_Form_Formal
: Node_Id
;
341 Pool_Formal
: Node_Id
;
344 -- The allocation form generally doesn't need to be passed in the case
345 -- of a constrained result subtype, since normally the caller performs
346 -- the allocation in that case. However this formal is still needed in
347 -- the case where the function has a tagged result, because generally
348 -- such functions can be called in a dispatching context and such calls
349 -- must be handled like calls to class-wide functions.
351 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
352 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
357 -- Locate the implicit allocation form parameter in the called function.
358 -- Maybe it would be better for each implicit formal of a build-in-place
359 -- function to have a flag or a Uint attribute to identify it. ???
361 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
363 if Present
(Alloc_Form_Exp
) then
364 pragma Assert
(Alloc_Form
= Unspecified
);
366 Alloc_Form_Actual
:= Alloc_Form_Exp
;
369 pragma Assert
(Alloc_Form
/= Unspecified
);
372 Make_Integer_Literal
(Loc
,
373 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
376 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
378 -- Build the parameter association for the new actual and add it to the
379 -- end of the function's actuals.
381 Add_Extra_Actual_To_Call
382 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
384 -- Pass the Storage_Pool parameter. This parameter is omitted on
385 -- ZFP as those targets do not support pools.
387 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
388 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
389 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
390 Add_Extra_Actual_To_Call
391 (Function_Call
, Pool_Formal
, Pool_Actual
);
393 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
395 -----------------------------------------------------------
396 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
397 -----------------------------------------------------------
399 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
400 (Func_Call
: Node_Id
;
402 Ptr_Typ
: Entity_Id
:= Empty
;
403 Master_Exp
: Node_Id
:= Empty
)
406 if not Needs_BIP_Finalization_Master
(Func_Id
) then
411 Formal
: constant Entity_Id
:=
412 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
413 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
416 Desig_Typ
: Entity_Id
;
419 -- If there is a finalization master actual, such as the implicit
420 -- finalization master of an enclosing build-in-place function,
421 -- then this must be added as an extra actual of the call.
423 if Present
(Master_Exp
) then
424 Actual
:= Master_Exp
;
426 -- Case where the context does not require an actual master
428 elsif No
(Ptr_Typ
) then
429 Actual
:= Make_Null
(Loc
);
432 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
434 -- Check for a library-level access type whose designated type has
435 -- suppressed finalization or the access type is subject to pragma
436 -- No_Heap_Finalization. Such an access type lacks a master. Pass
437 -- a null actual to callee in order to signal a missing master.
439 if Is_Library_Level_Entity
(Ptr_Typ
)
440 and then (Finalize_Storage_Only
(Desig_Typ
)
441 or else No_Heap_Finalization
(Ptr_Typ
))
443 Actual
:= Make_Null
(Loc
);
445 -- Types in need of finalization actions
447 elsif Needs_Finalization
(Desig_Typ
) then
449 -- The general mechanism of creating finalization masters for
450 -- anonymous access types is disabled by default, otherwise
451 -- finalization masters will pop all over the place. Such types
452 -- use context-specific masters.
454 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
455 and then No
(Finalization_Master
(Ptr_Typ
))
457 Build_Anonymous_Master
(Ptr_Typ
);
460 -- Access-to-controlled types should always have a master
462 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
465 Make_Attribute_Reference
(Loc
,
467 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
468 Attribute_Name
=> Name_Unrestricted_Access
);
473 Actual
:= Make_Null
(Loc
);
477 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
479 -- Build the parameter association for the new actual and add it to
480 -- the end of the function's actuals.
482 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
484 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
486 ------------------------------
487 -- Add_Extra_Actual_To_Call --
488 ------------------------------
490 procedure Add_Extra_Actual_To_Call
491 (Subprogram_Call
: Node_Id
;
492 Extra_Formal
: Entity_Id
;
493 Extra_Actual
: Node_Id
)
495 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
496 Param_Assoc
: Node_Id
;
500 Make_Parameter_Association
(Loc
,
501 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
502 Explicit_Actual_Parameter
=> Extra_Actual
);
504 Set_Parent
(Param_Assoc
, Subprogram_Call
);
505 Set_Parent
(Extra_Actual
, Param_Assoc
);
507 if Present
(Parameter_Associations
(Subprogram_Call
)) then
508 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
509 N_Parameter_Association
512 -- Find last named actual, and append
517 L
:= First_Actual
(Subprogram_Call
);
518 while Present
(L
) loop
519 if No
(Next_Actual
(L
)) then
520 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
528 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
531 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
534 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
535 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
537 end Add_Extra_Actual_To_Call
;
539 ---------------------------------------------
540 -- Add_Task_Actuals_To_Build_In_Place_Call --
541 ---------------------------------------------
543 procedure Add_Task_Actuals_To_Build_In_Place_Call
544 (Function_Call
: Node_Id
;
545 Function_Id
: Entity_Id
;
546 Master_Actual
: Node_Id
;
547 Chain
: Node_Id
:= Empty
)
549 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
550 Result_Subt
: constant Entity_Id
:=
551 Available_View
(Etype
(Function_Id
));
553 Chain_Actual
: Node_Id
;
554 Chain_Formal
: Node_Id
;
555 Master_Formal
: Node_Id
;
558 -- No such extra parameters are needed if there are no tasks
560 if not Has_Task
(Result_Subt
) then
564 Actual
:= Master_Actual
;
566 -- Use a dummy _master actual in case of No_Task_Hierarchy
568 if Restriction_Active
(No_Task_Hierarchy
) then
569 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
571 -- In the case where we use the master associated with an access type,
572 -- the actual is an entity and requires an explicit reference.
574 elsif Nkind
(Actual
) = N_Defining_Identifier
then
575 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
578 -- Locate the implicit master parameter in the called function
580 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
581 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
583 -- Build the parameter association for the new actual and add it to the
584 -- end of the function's actuals.
586 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
588 -- Locate the implicit activation chain parameter in the called function
591 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
593 -- Create the actual which is a pointer to the current activation chain
597 Make_Attribute_Reference
(Loc
,
598 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
599 Attribute_Name
=> Name_Unrestricted_Access
);
601 -- Allocator case; make a reference to the Chain passed in by the caller
605 Make_Attribute_Reference
(Loc
,
606 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
607 Attribute_Name
=> Name_Unrestricted_Access
);
610 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
612 -- Build the parameter association for the new actual and add it to the
613 -- end of the function's actuals.
615 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
616 end Add_Task_Actuals_To_Build_In_Place_Call
;
618 -----------------------
619 -- BIP_Formal_Suffix --
620 -----------------------
622 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
625 when BIP_Alloc_Form
=>
628 when BIP_Storage_Pool
=>
629 return "BIPstoragepool";
631 when BIP_Finalization_Master
=>
632 return "BIPfinalizationmaster";
634 when BIP_Task_Master
=>
635 return "BIPtaskmaster";
637 when BIP_Activation_Chain
=>
638 return "BIPactivationchain";
640 when BIP_Object_Access
=>
643 end BIP_Formal_Suffix
;
645 ---------------------------
646 -- Build_In_Place_Formal --
647 ---------------------------
649 function Build_In_Place_Formal
651 Kind
: BIP_Formal_Kind
) return Entity_Id
653 Formal_Name
: constant Name_Id
:=
655 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
656 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
659 -- Maybe it would be better for each implicit formal of a build-in-place
660 -- function to have a flag or a Uint attribute to identify it. ???
662 -- The return type in the function declaration may have been a limited
663 -- view, and the extra formals for the function were not generated at
664 -- that point. At the point of call the full view must be available and
665 -- the extra formals can be created.
667 if No
(Extra_Formal
) then
668 Create_Extra_Formals
(Func
);
669 Extra_Formal
:= Extra_Formals
(Func
);
673 pragma Assert
(Present
(Extra_Formal
));
674 exit when Chars
(Extra_Formal
) = Formal_Name
;
676 Next_Formal_With_Extras
(Extra_Formal
);
680 end Build_In_Place_Formal
;
682 -------------------------------
683 -- Build_Procedure_Body_Form --
684 -------------------------------
686 function Build_Procedure_Body_Form
687 (Func_Id
: Entity_Id
;
688 Func_Body
: Node_Id
) return Node_Id
690 Loc
: constant Source_Ptr
:= Sloc
(Func_Body
);
692 Proc_Decl
: constant Node_Id
:=
693 Next
(Unit_Declaration_Node
(Func_Id
));
694 -- It is assumed that the next node following the declaration of the
695 -- corresponding subprogram spec is the declaration of the procedure
698 Proc_Id
: constant Entity_Id
:= Defining_Entity
(Proc_Decl
);
700 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
);
701 -- Replace each return statement found in the list Stmts with an
702 -- assignment of the return expression to parameter Param_Id.
704 ---------------------
705 -- Replace_Returns --
706 ---------------------
708 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
) is
712 Stmt
:= First
(Stmts
);
713 while Present
(Stmt
) loop
714 if Nkind
(Stmt
) = N_Block_Statement
then
715 Replace_Returns
(Param_Id
, Statements
(Stmt
));
717 elsif Nkind
(Stmt
) = N_Case_Statement
then
721 Alt
:= First
(Alternatives
(Stmt
));
722 while Present
(Alt
) loop
723 Replace_Returns
(Param_Id
, Statements
(Alt
));
728 elsif Nkind
(Stmt
) = N_Extended_Return_Statement
then
730 Ret_Obj
: constant Entity_Id
:=
732 (First
(Return_Object_Declarations
(Stmt
)));
733 Assign
: constant Node_Id
:=
734 Make_Assignment_Statement
(Sloc
(Stmt
),
736 New_Occurrence_Of
(Param_Id
, Loc
),
738 New_Occurrence_Of
(Ret_Obj
, Sloc
(Stmt
)));
742 -- The extended return may just contain the declaration
744 if Present
(Handled_Statement_Sequence
(Stmt
)) then
745 Stmts
:= Statements
(Handled_Statement_Sequence
(Stmt
));
750 Set_Assignment_OK
(Name
(Assign
));
753 Make_Block_Statement
(Sloc
(Stmt
),
755 Return_Object_Declarations
(Stmt
),
756 Handled_Statement_Sequence
=>
757 Make_Handled_Sequence_Of_Statements
(Loc
,
758 Statements
=> Stmts
)));
760 Replace_Returns
(Param_Id
, Stmts
);
762 Append_To
(Stmts
, Assign
);
763 Append_To
(Stmts
, Make_Simple_Return_Statement
(Loc
));
766 elsif Nkind
(Stmt
) = N_If_Statement
then
767 Replace_Returns
(Param_Id
, Then_Statements
(Stmt
));
768 Replace_Returns
(Param_Id
, Else_Statements
(Stmt
));
773 Part
:= First
(Elsif_Parts
(Stmt
));
774 while Present
(Part
) loop
775 Replace_Returns
(Param_Id
, Then_Statements
(Part
));
780 elsif Nkind
(Stmt
) = N_Loop_Statement
then
781 Replace_Returns
(Param_Id
, Statements
(Stmt
));
783 elsif Nkind
(Stmt
) = N_Simple_Return_Statement
then
790 Make_Assignment_Statement
(Sloc
(Stmt
),
791 Name
=> New_Occurrence_Of
(Param_Id
, Loc
),
792 Expression
=> Relocate_Node
(Expression
(Stmt
))));
794 Insert_After
(Stmt
, Make_Simple_Return_Statement
(Loc
));
796 -- Skip the added return
810 -- Start of processing for Build_Procedure_Body_Form
813 -- This routine replaces the original function body:
815 -- function F (...) return Array_Typ is
821 -- with the following:
823 -- procedure P (..., Result : out Array_Typ) is
826 -- Result := Something;
830 Statements
(Handled_Statement_Sequence
(Func_Body
));
831 Replace_Returns
(Last_Entity
(Proc_Id
), Stmts
);
834 Make_Subprogram_Body
(Loc
,
836 Copy_Subprogram_Spec
(Specification
(Proc_Decl
)),
837 Declarations
=> Declarations
(Func_Body
),
838 Handled_Statement_Sequence
=>
839 Make_Handled_Sequence_Of_Statements
(Loc
,
840 Statements
=> Stmts
));
842 -- If the function is a generic instance, so is the new procedure.
843 -- Set flag accordingly so that the proper renaming declarations are
846 Set_Is_Generic_Instance
(Proc_Id
, Is_Generic_Instance
(Func_Id
));
848 end Build_Procedure_Body_Form
;
850 -----------------------
851 -- Caller_Known_Size --
852 -----------------------
854 function Caller_Known_Size
855 (Func_Call
: Node_Id
;
856 Result_Subt
: Entity_Id
) return Boolean
860 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
861 and then No
(Controlling_Argument
(Func_Call
)))
862 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
863 end Caller_Known_Size
;
865 --------------------------------
866 -- Check_Overriding_Operation --
867 --------------------------------
869 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
870 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
871 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
877 if Is_Derived_Type
(Typ
)
878 and then not Is_Private_Type
(Typ
)
879 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
880 and then Is_Base_Type
(Typ
)
882 -- Subp overrides an inherited private operation if there is an
883 -- inherited operation with a different name than Subp (see
884 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
885 -- same name as Subp.
887 Op_Elmt
:= First_Elmt
(Op_List
);
888 while Present
(Op_Elmt
) loop
889 Prim_Op
:= Node
(Op_Elmt
);
890 Par_Op
:= Alias
(Prim_Op
);
893 and then not Comes_From_Source
(Prim_Op
)
894 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
895 and then Chars
(Par_Op
) = Chars
(Subp
)
896 and then Is_Hidden
(Par_Op
)
897 and then Type_Conformant
(Prim_Op
, Subp
)
899 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
905 end Check_Overriding_Operation
;
907 -------------------------------
908 -- Detect_Infinite_Recursion --
909 -------------------------------
911 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
912 Loc
: constant Source_Ptr
:= Sloc
(N
);
914 Var_List
: constant Elist_Id
:= New_Elmt_List
;
915 -- List of globals referenced by body of procedure
917 Call_List
: constant Elist_Id
:= New_Elmt_List
;
918 -- List of recursive calls in body of procedure
920 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
921 -- List of entity id's for entities created to capture the value of
922 -- referenced globals on entry to the procedure.
924 Scop
: constant Uint
:= Scope_Depth
(Spec
);
925 -- This is used to record the scope depth of the current procedure, so
926 -- that we can identify global references.
928 Max_Vars
: constant := 4;
929 -- Do not test more than four global variables
931 Count_Vars
: Natural := 0;
932 -- Count variables found so far
944 function Process
(Nod
: Node_Id
) return Traverse_Result
;
945 -- Function to traverse the subprogram body (using Traverse_Func)
951 function Process
(Nod
: Node_Id
) return Traverse_Result
is
955 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
957 -- Case of one of the detected recursive calls
959 if Is_Entity_Name
(Name
(Nod
))
960 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
961 and then Entity
(Name
(Nod
)) = Spec
963 Append_Elmt
(Nod
, Call_List
);
966 -- Any other procedure call may have side effects
972 -- A call to a pure function can always be ignored
974 elsif Nkind
(Nod
) = N_Function_Call
975 and then Is_Entity_Name
(Name
(Nod
))
976 and then Is_Pure
(Entity
(Name
(Nod
)))
980 -- Case of an identifier reference
982 elsif Nkind
(Nod
) = N_Identifier
then
985 -- If no entity, then ignore the reference
987 -- Not clear why this can happen. To investigate, remove this
988 -- test and look at the crash that occurs here in 3401-004 ???
993 -- Ignore entities with no Scope, again not clear how this
994 -- can happen, to investigate, look at 4108-008 ???
996 elsif No
(Scope
(Ent
)) then
999 -- Ignore the reference if not to a more global object
1001 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
1004 -- References to types, exceptions and constants are always OK
1007 or else Ekind
(Ent
) = E_Exception
1008 or else Ekind
(Ent
) = E_Constant
1012 -- If other than a non-volatile scalar variable, we have some
1013 -- kind of global reference (e.g. to a function) that we cannot
1014 -- deal with so we forget the attempt.
1016 elsif Ekind
(Ent
) /= E_Variable
1017 or else not Is_Scalar_Type
(Etype
(Ent
))
1018 or else Treat_As_Volatile
(Ent
)
1022 -- Otherwise we have a reference to a global scalar
1025 -- Loop through global entities already detected
1027 Elm
:= First_Elmt
(Var_List
);
1029 -- If not detected before, record this new global reference
1032 Count_Vars
:= Count_Vars
+ 1;
1034 if Count_Vars
<= Max_Vars
then
1035 Append_Elmt
(Entity
(Nod
), Var_List
);
1042 -- If recorded before, ignore
1044 elsif Node
(Elm
) = Entity
(Nod
) then
1047 -- Otherwise keep looking
1057 -- For all other node kinds, recursively visit syntactic children
1064 function Traverse_Body
is new Traverse_Func
(Process
);
1066 -- Start of processing for Detect_Infinite_Recursion
1069 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1070 -- won't be able to generate the code to handle the recursion in any
1073 if Restriction_Active
(No_Implicit_Conditionals
) then
1077 -- Otherwise do traversal and quit if we get abandon signal
1079 if Traverse_Body
(N
) = Abandon
then
1082 -- We must have a call, since Has_Recursive_Call was set. If not just
1083 -- ignore (this is only an error check, so if we have a funny situation,
1084 -- due to bugs or errors, we do not want to bomb).
1086 elsif Is_Empty_Elmt_List
(Call_List
) then
1090 -- Here is the case where we detect recursion at compile time
1092 -- Push our current scope for analyzing the declarations and code that
1093 -- we will insert for the checking.
1097 -- This loop builds temporary variables for each of the referenced
1098 -- globals, so that at the end of the loop the list Shad_List contains
1099 -- these temporaries in one-to-one correspondence with the elements in
1103 Elm
:= First_Elmt
(Var_List
);
1104 while Present
(Elm
) loop
1106 Ent
:= Make_Temporary
(Loc
, 'S');
1107 Append_Elmt
(Ent
, Shad_List
);
1109 -- Insert a declaration for this temporary at the start of the
1110 -- declarations for the procedure. The temporaries are declared as
1111 -- constant objects initialized to the current values of the
1112 -- corresponding temporaries.
1115 Make_Object_Declaration
(Loc
,
1116 Defining_Identifier
=> Ent
,
1117 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
1118 Constant_Present
=> True,
1119 Expression
=> New_Occurrence_Of
(Var
, Loc
));
1122 Prepend
(Decl
, Declarations
(N
));
1124 Insert_After
(Last
, Decl
);
1132 -- Loop through calls
1134 Call
:= First_Elmt
(Call_List
);
1135 while Present
(Call
) loop
1137 -- Build a predicate expression of the form
1140 -- and then global1 = temp1
1141 -- and then global2 = temp2
1144 -- This predicate determines if any of the global values
1145 -- referenced by the procedure have changed since the
1146 -- current call, if not an infinite recursion is assured.
1148 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
1150 Elm1
:= First_Elmt
(Var_List
);
1151 Elm2
:= First_Elmt
(Shad_List
);
1152 while Present
(Elm1
) loop
1158 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
1159 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
1165 -- Now we replace the call with the sequence
1167 -- if no-changes (see above) then
1168 -- raise Storage_Error;
1173 Rewrite
(Node
(Call
),
1174 Make_If_Statement
(Loc
,
1176 Then_Statements
=> New_List
(
1177 Make_Raise_Storage_Error
(Loc
,
1178 Reason
=> SE_Infinite_Recursion
)),
1180 Else_Statements
=> New_List
(
1181 Relocate_Node
(Node
(Call
)))));
1183 Analyze
(Node
(Call
));
1188 -- Remove temporary scope stack entry used for analysis
1191 end Detect_Infinite_Recursion
;
1193 --------------------
1194 -- Expand_Actuals --
1195 --------------------
1197 procedure Expand_Actuals
1200 Post_Call
: out List_Id
)
1202 Loc
: constant Source_Ptr
:= Sloc
(N
);
1206 E_Actual
: Entity_Id
;
1207 E_Formal
: Entity_Id
;
1209 procedure Add_Call_By_Copy_Code
;
1210 -- For cases where the parameter must be passed by copy, this routine
1211 -- generates a temporary variable into which the actual is copied and
1212 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1213 -- an assignment is also generated to copy the result back. The call
1214 -- also takes care of any constraint checks required for the type
1215 -- conversion case (on both the way in and the way out).
1217 procedure Add_Simple_Call_By_Copy_Code
;
1218 -- This is similar to the above, but is used in cases where we know
1219 -- that all that is needed is to simply create a temporary and copy
1220 -- the value in and out of the temporary.
1222 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
);
1223 -- Perform copy-back for actual parameter Act which denotes a validation
1226 procedure Check_Fortran_Logical
;
1227 -- A value of type Logical that is passed through a formal parameter
1228 -- must be normalized because .TRUE. usually does not have the same
1229 -- representation as True. We assume that .FALSE. = False = 0.
1230 -- What about functions that return a logical type ???
1232 function Is_Legal_Copy
return Boolean;
1233 -- Check that an actual can be copied before generating the temporary
1234 -- to be used in the call. If the actual is of a by_reference type then
1235 -- the program is illegal (this can only happen in the presence of
1236 -- rep. clauses that force an incorrect alignment). If the formal is
1237 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1238 -- the effect that this might lead to unaligned arguments.
1240 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1241 -- Returns an entity that refers to the given actual parameter, Actual
1242 -- (not including any type conversion). If Actual is an entity name,
1243 -- then this entity is returned unchanged, otherwise a renaming is
1244 -- created to provide an entity for the actual.
1246 procedure Reset_Packed_Prefix
;
1247 -- The expansion of a packed array component reference is delayed in
1248 -- the context of a call. Now we need to complete the expansion, so we
1249 -- unmark the analyzed bits in all prefixes.
1251 ---------------------------
1252 -- Add_Call_By_Copy_Code --
1253 ---------------------------
1255 procedure Add_Call_By_Copy_Code
is
1258 F_Typ
: Entity_Id
:= Etype
(Formal
);
1266 if not Is_Legal_Copy
then
1270 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1272 -- Handle formals whose type comes from the limited view
1274 if From_Limited_With
(F_Typ
)
1275 and then Has_Non_Limited_View
(F_Typ
)
1277 F_Typ
:= Non_Limited_View
(F_Typ
);
1280 -- Use formal type for temp, unless formal type is an unconstrained
1281 -- array, in which case we don't have to worry about bounds checks,
1282 -- and we use the actual type, since that has appropriate bounds.
1284 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1285 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1287 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1290 if Nkind
(Actual
) = N_Type_Conversion
then
1291 V_Typ
:= Etype
(Expression
(Actual
));
1293 -- If the formal is an (in-)out parameter, capture the name
1294 -- of the variable in order to build the post-call assignment.
1296 Var
:= Make_Var
(Expression
(Actual
));
1298 Crep
:= not Same_Representation
1299 (F_Typ
, Etype
(Expression
(Actual
)));
1302 V_Typ
:= Etype
(Actual
);
1303 Var
:= Make_Var
(Actual
);
1307 -- Setup initialization for case of in out parameter, or an out
1308 -- parameter where the formal is an unconstrained array (in the
1309 -- latter case, we have to pass in an object with bounds).
1311 -- If this is an out parameter, the initial copy is wasteful, so as
1312 -- an optimization for the one-dimensional case we extract the
1313 -- bounds of the actual and build an uninitialized temporary of the
1316 if Ekind
(Formal
) = E_In_Out_Parameter
1317 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1319 if Nkind
(Actual
) = N_Type_Conversion
then
1320 if Conversion_OK
(Actual
) then
1321 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1323 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1326 elsif Ekind
(Formal
) = E_Out_Parameter
1327 and then Is_Array_Type
(F_Typ
)
1328 and then Number_Dimensions
(F_Typ
) = 1
1329 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1331 -- Actual is a one-dimensional array or slice, and the type
1332 -- requires no initialization. Create a temporary of the
1333 -- right size, but do not copy actual into it (optimization).
1337 Make_Subtype_Indication
(Loc
,
1338 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1340 Make_Index_Or_Discriminant_Constraint
(Loc
,
1341 Constraints
=> New_List
(
1344 Make_Attribute_Reference
(Loc
,
1345 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1346 Attribute_Name
=> Name_First
),
1348 Make_Attribute_Reference
(Loc
,
1349 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1350 Attribute_Name
=> Name_Last
)))));
1353 Init
:= New_Occurrence_Of
(Var
, Loc
);
1356 -- An initialization is created for packed conversions as
1357 -- actuals for out parameters to enable Make_Object_Declaration
1358 -- to determine the proper subtype for N_Node. Note that this
1359 -- is wasteful because the extra copying on the call side is
1360 -- not required for such out parameters. ???
1362 elsif Ekind
(Formal
) = E_Out_Parameter
1363 and then Nkind
(Actual
) = N_Type_Conversion
1364 and then (Is_Bit_Packed_Array
(F_Typ
)
1366 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1368 if Conversion_OK
(Actual
) then
1369 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1371 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1374 elsif Ekind
(Formal
) = E_In_Parameter
then
1376 -- Handle the case in which the actual is a type conversion
1378 if Nkind
(Actual
) = N_Type_Conversion
then
1379 if Conversion_OK
(Actual
) then
1380 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1382 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1385 Init
:= New_Occurrence_Of
(Var
, Loc
);
1393 Make_Object_Declaration
(Loc
,
1394 Defining_Identifier
=> Temp
,
1395 Object_Definition
=> Indic
,
1396 Expression
=> Init
);
1397 Set_Assignment_OK
(N_Node
);
1398 Insert_Action
(N
, N_Node
);
1400 -- Now, normally the deal here is that we use the defining
1401 -- identifier created by that object declaration. There is
1402 -- one exception to this. In the change of representation case
1403 -- the above declaration will end up looking like:
1405 -- temp : type := identifier;
1407 -- And in this case we might as well use the identifier directly
1408 -- and eliminate the temporary. Note that the analysis of the
1409 -- declaration was not a waste of time in that case, since it is
1410 -- what generated the necessary change of representation code. If
1411 -- the change of representation introduced additional code, as in
1412 -- a fixed-integer conversion, the expression is not an identifier
1413 -- and must be kept.
1416 and then Present
(Expression
(N_Node
))
1417 and then Is_Entity_Name
(Expression
(N_Node
))
1419 Temp
:= Entity
(Expression
(N_Node
));
1420 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1423 -- For IN parameter, all we do is to replace the actual
1425 if Ekind
(Formal
) = E_In_Parameter
then
1426 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1429 -- Processing for OUT or IN OUT parameter
1432 -- Kill current value indications for the temporary variable we
1433 -- created, since we just passed it as an OUT parameter.
1435 Kill_Current_Values
(Temp
);
1436 Set_Is_Known_Valid
(Temp
, False);
1438 -- If type conversion, use reverse conversion on exit
1440 if Nkind
(Actual
) = N_Type_Conversion
then
1441 if Conversion_OK
(Actual
) then
1442 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1444 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1447 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1450 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1453 -- If the actual is a conversion of a packed reference, it may
1454 -- already have been expanded by Remove_Side_Effects, and the
1455 -- resulting variable is a temporary which does not designate
1456 -- the proper out-parameter, which may not be addressable. In
1457 -- that case, generate an assignment to the original expression
1458 -- (before expansion of the packed reference) so that the proper
1459 -- expansion of assignment to a packed component can take place.
1466 if Is_Renaming_Of_Object
(Var
)
1467 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1468 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1469 = N_Indexed_Component
1471 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1473 Obj
:= Renamed_Object
(Var
);
1475 Make_Selected_Component
(Loc
,
1477 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1478 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1479 Reset_Analyzed_Flags
(Lhs
);
1482 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1485 Set_Assignment_OK
(Lhs
);
1487 if Is_Access_Type
(E_Formal
)
1488 and then Is_Entity_Name
(Lhs
)
1490 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1492 -- Copyback target is an Ada 2012 stand-alone object of an
1493 -- anonymous access type.
1495 pragma Assert
(Ada_Version
>= Ada_2012
);
1497 if Type_Access_Level
(E_Formal
) >
1498 Object_Access_Level
(Lhs
)
1500 Append_To
(Post_Call
,
1501 Make_Raise_Program_Error
(Loc
,
1502 Reason
=> PE_Accessibility_Check_Failed
));
1505 Append_To
(Post_Call
,
1506 Make_Assignment_Statement
(Loc
,
1508 Expression
=> Expr
));
1510 -- We would like to somehow suppress generation of the
1511 -- extra_accessibility assignment generated by the expansion
1512 -- of the above assignment statement. It's not a correctness
1513 -- issue because the following assignment renders it dead,
1514 -- but generating back-to-back assignments to the same
1515 -- target is undesirable. ???
1517 Append_To
(Post_Call
,
1518 Make_Assignment_Statement
(Loc
,
1519 Name
=> New_Occurrence_Of
(
1520 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1521 Expression
=> Make_Integer_Literal
(Loc
,
1522 Type_Access_Level
(E_Formal
))));
1525 Append_To
(Post_Call
,
1526 Make_Assignment_Statement
(Loc
,
1528 Expression
=> Expr
));
1532 end Add_Call_By_Copy_Code
;
1534 ----------------------------------
1535 -- Add_Simple_Call_By_Copy_Code --
1536 ----------------------------------
1538 procedure Add_Simple_Call_By_Copy_Code
is
1540 F_Typ
: Entity_Id
:= Etype
(Formal
);
1549 if not Is_Legal_Copy
then
1553 -- Handle formals whose type comes from the limited view
1555 if From_Limited_With
(F_Typ
)
1556 and then Has_Non_Limited_View
(F_Typ
)
1558 F_Typ
:= Non_Limited_View
(F_Typ
);
1561 -- Use formal type for temp, unless formal type is an unconstrained
1562 -- array, in which case we don't have to worry about bounds checks,
1563 -- and we use the actual type, since that has appropriate bounds.
1565 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1566 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1568 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1571 -- Prepare to generate code
1573 Reset_Packed_Prefix
;
1575 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1576 Incod
:= Relocate_Node
(Actual
);
1577 Outcod
:= New_Copy_Tree
(Incod
);
1579 -- Generate declaration of temporary variable, initializing it
1580 -- with the input parameter unless we have an OUT formal or
1581 -- this is an initialization call.
1583 -- If the formal is an out parameter with discriminants, the
1584 -- discriminants must be captured even if the rest of the object
1585 -- is in principle uninitialized, because the discriminants may
1586 -- be read by the called subprogram.
1588 if Ekind
(Formal
) = E_Out_Parameter
then
1591 if Has_Discriminants
(F_Typ
) then
1592 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1595 elsif Inside_Init_Proc
then
1597 -- Could use a comment here to match comment below ???
1599 if Nkind
(Actual
) /= N_Selected_Component
1601 not Has_Discriminant_Dependent_Constraint
1602 (Entity
(Selector_Name
(Actual
)))
1606 -- Otherwise, keep the component in order to generate the proper
1607 -- actual subtype, that depends on enclosing discriminants.
1615 Make_Object_Declaration
(Loc
,
1616 Defining_Identifier
=> Temp
,
1617 Object_Definition
=> Indic
,
1618 Expression
=> Incod
);
1623 -- If the call is to initialize a component of a composite type,
1624 -- and the component does not depend on discriminants, use the
1625 -- actual type of the component. This is required in case the
1626 -- component is constrained, because in general the formal of the
1627 -- initialization procedure will be unconstrained. Note that if
1628 -- the component being initialized is constrained by an enclosing
1629 -- discriminant, the presence of the initialization in the
1630 -- declaration will generate an expression for the actual subtype.
1632 Set_No_Initialization
(Decl
);
1633 Set_Object_Definition
(Decl
,
1634 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1637 Insert_Action
(N
, Decl
);
1639 -- The actual is simply a reference to the temporary
1641 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1643 -- Generate copy out if OUT or IN OUT parameter
1645 if Ekind
(Formal
) /= E_In_Parameter
then
1647 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1649 -- Deal with conversion
1651 if Nkind
(Lhs
) = N_Type_Conversion
then
1652 Lhs
:= Expression
(Lhs
);
1653 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1656 Append_To
(Post_Call
,
1657 Make_Assignment_Statement
(Loc
,
1659 Expression
=> Rhs
));
1660 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1662 end Add_Simple_Call_By_Copy_Code
;
1664 --------------------------------------
1665 -- Add_Validation_Call_By_Copy_Code --
1666 --------------------------------------
1668 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
) is
1671 Obj_Typ
: Entity_Id
;
1672 Var
: constant Node_Id
:= Unqual_Conv
(Act
);
1676 -- Copy the value of the validation variable back into the object
1679 if Is_Entity_Name
(Var
) then
1680 Var_Id
:= Entity
(Var
);
1681 Obj
:= Validated_Object
(Var_Id
);
1682 Obj_Typ
:= Etype
(Obj
);
1684 Expr
:= New_Occurrence_Of
(Var_Id
, Loc
);
1686 -- A type conversion is needed when the validation variable and
1687 -- the validated object carry different types. This case occurs
1688 -- when the actual is qualified in some fashion.
1691 -- subtype Int is Integer range ...;
1692 -- procedure Call (Val : in out Integer);
1696 -- Call (Integer (Object));
1700 -- Var : Integer := Object; -- conversion to base type
1701 -- if not Var'Valid then -- validity check
1702 -- Call (Var); -- modify Var
1703 -- Object := Int (Var); -- conversion to subtype
1705 if Etype
(Var_Id
) /= Obj_Typ
then
1707 Make_Type_Conversion
(Loc
,
1708 Subtype_Mark
=> New_Occurrence_Of
(Obj_Typ
, Loc
),
1709 Expression
=> Expr
);
1715 -- Object := Object_Type (Var);
1717 Append_To
(Post_Call
,
1718 Make_Assignment_Statement
(Loc
,
1720 Expression
=> Expr
));
1722 -- If the flow reaches this point, then this routine was invoked with
1723 -- an actual which does not denote a validation variable.
1726 pragma Assert
(False);
1729 end Add_Validation_Call_By_Copy_Code
;
1731 ---------------------------
1732 -- Check_Fortran_Logical --
1733 ---------------------------
1735 procedure Check_Fortran_Logical
is
1736 Logical
: constant Entity_Id
:= Etype
(Formal
);
1739 -- Note: this is very incomplete, e.g. it does not handle arrays
1740 -- of logical values. This is really not the right approach at all???)
1743 if Convention
(Subp
) = Convention_Fortran
1744 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1745 and then Ekind
(Formal
) /= E_In_Parameter
1747 Var
:= Make_Var
(Actual
);
1748 Append_To
(Post_Call
,
1749 Make_Assignment_Statement
(Loc
,
1750 Name
=> New_Occurrence_Of
(Var
, Loc
),
1752 Unchecked_Convert_To
(
1755 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1757 Unchecked_Convert_To
(
1759 New_Occurrence_Of
(Standard_False
, Loc
))))));
1761 end Check_Fortran_Logical
;
1767 function Is_Legal_Copy
return Boolean is
1769 -- An attempt to copy a value of such a type can only occur if
1770 -- representation clauses give the actual a misaligned address.
1772 if Is_By_Reference_Type
(Etype
(Formal
)) then
1774 -- The actual may in fact be properly aligned but there is not
1775 -- enough front-end information to determine this. In that case
1776 -- gigi will emit an error if a copy is not legal, or generate
1781 -- For users of Starlet, we assume that the specification of by-
1782 -- reference mechanism is mandatory. This may lead to unaligned
1783 -- objects but at least for DEC legacy code it is known to work.
1784 -- The warning will alert users of this code that a problem may
1787 elsif Mechanism
(Formal
) = By_Reference
1788 and then Is_Valued_Procedure
(Scope
(Formal
))
1791 ("by_reference actual may be misaligned??", Actual
);
1803 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1807 if Is_Entity_Name
(Actual
) then
1808 return Entity
(Actual
);
1811 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1814 Make_Object_Renaming_Declaration
(Loc
,
1815 Defining_Identifier
=> Var
,
1817 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1818 Name
=> Relocate_Node
(Actual
));
1820 Insert_Action
(N
, N_Node
);
1825 -------------------------
1826 -- Reset_Packed_Prefix --
1827 -------------------------
1829 procedure Reset_Packed_Prefix
is
1830 Pfx
: Node_Id
:= Actual
;
1833 Set_Analyzed
(Pfx
, False);
1835 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1836 Pfx
:= Prefix
(Pfx
);
1838 end Reset_Packed_Prefix
;
1840 -- Start of processing for Expand_Actuals
1843 Post_Call
:= New_List
;
1845 Formal
:= First_Formal
(Subp
);
1846 Actual
:= First_Actual
(N
);
1847 while Present
(Formal
) loop
1848 E_Formal
:= Etype
(Formal
);
1849 E_Actual
:= Etype
(Actual
);
1851 -- Handle formals whose type comes from the limited view
1853 if From_Limited_With
(E_Formal
)
1854 and then Has_Non_Limited_View
(E_Formal
)
1856 E_Formal
:= Non_Limited_View
(E_Formal
);
1859 if Is_Scalar_Type
(E_Formal
)
1860 or else Nkind
(Actual
) = N_Slice
1862 Check_Fortran_Logical
;
1866 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1868 -- The unusual case of the current instance of a protected type
1869 -- requires special handling. This can only occur in the context
1870 -- of a call within the body of a protected operation.
1872 if Is_Entity_Name
(Actual
)
1873 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1874 and then In_Open_Scopes
(Entity
(Actual
))
1876 if Scope
(Subp
) /= Entity
(Actual
) then
1878 ("operation outside protected type may not "
1879 & "call back its protected operations??", Actual
);
1883 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1886 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1887 -- build-in-place function, then a temporary return object needs
1888 -- to be created and access to it must be passed to the function.
1889 -- Currently we limit such functions to those with inherently
1890 -- limited result subtypes, but eventually we plan to expand the
1891 -- functions that are treated as build-in-place to include other
1892 -- composite result types.
1894 if Is_Build_In_Place_Function_Call
(Actual
) then
1895 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1897 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1898 -- actuals containing build-in-place function calls whose returned
1899 -- object covers interface types.
1901 elsif Present
(Unqual_BIP_Iface_Function_Call
(Actual
)) then
1902 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(Actual
);
1905 Apply_Constraint_Check
(Actual
, E_Formal
);
1907 -- Out parameter case. No constraint checks on access type
1910 elsif Is_Access_Type
(E_Formal
) then
1915 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1916 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1918 Apply_Constraint_Check
(Actual
, E_Formal
);
1923 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1926 -- Processing for IN-OUT and OUT parameters
1928 if Ekind
(Formal
) /= E_In_Parameter
then
1930 -- For type conversions of arrays, apply length/range checks
1932 if Is_Array_Type
(E_Formal
)
1933 and then Nkind
(Actual
) = N_Type_Conversion
1935 if Is_Constrained
(E_Formal
) then
1936 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1938 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1942 -- The actual denotes a variable which captures the value of an
1943 -- object for validation purposes. Add a copy-back to reflect any
1944 -- potential changes in value back into the original object.
1946 -- Var : ... := Object;
1947 -- if not Var'Valid then -- validity check
1948 -- Call (Var); -- modify var
1949 -- Object := Var; -- update Object
1951 -- This case is given higher priority because the subsequent check
1952 -- for type conversion may add an extra copy of the variable and
1953 -- prevent proper value propagation back in the original object.
1955 if Is_Validation_Variable_Reference
(Actual
) then
1956 Add_Validation_Call_By_Copy_Code
(Actual
);
1958 -- If argument is a type conversion for a type that is passed by
1959 -- copy, then we must pass the parameter by copy.
1961 elsif Nkind
(Actual
) = N_Type_Conversion
1963 (Is_Numeric_Type
(E_Formal
)
1964 or else Is_Access_Type
(E_Formal
)
1965 or else Is_Enumeration_Type
(E_Formal
)
1966 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1967 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1969 -- Also pass by copy if change of representation
1971 or else not Same_Representation
1973 Etype
(Expression
(Actual
))))
1975 Add_Call_By_Copy_Code
;
1977 -- References to components of bit-packed arrays are expanded
1978 -- at this point, rather than at the point of analysis of the
1979 -- actuals, to handle the expansion of the assignment to
1980 -- [in] out parameters.
1982 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1983 Add_Simple_Call_By_Copy_Code
;
1985 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1986 -- because the back-end cannot cope with such objects. In other
1987 -- cases where alignment forces a copy, the back-end generates
1988 -- it properly. It should not be generated unconditionally in the
1989 -- front-end because it does not know precisely the alignment
1990 -- requirements of the target, and makes too conservative an
1991 -- estimate, leading to superfluous copies or spurious errors
1992 -- on by-reference parameters.
1994 elsif Nkind
(Actual
) = N_Selected_Component
1996 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1997 and then not Represented_As_Scalar
(Etype
(Formal
))
1999 Add_Simple_Call_By_Copy_Code
;
2001 -- References to slices of bit-packed arrays are expanded
2003 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2004 Add_Call_By_Copy_Code
;
2006 -- References to possibly unaligned slices of arrays are expanded
2008 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2009 Add_Call_By_Copy_Code
;
2011 -- Deal with access types where the actual subtype and the
2012 -- formal subtype are not the same, requiring a check.
2014 -- It is necessary to exclude tagged types because of "downward
2015 -- conversion" errors.
2017 elsif Is_Access_Type
(E_Formal
)
2018 and then not Same_Type
(E_Formal
, E_Actual
)
2019 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
2021 Add_Call_By_Copy_Code
;
2023 -- If the actual is not a scalar and is marked for volatile
2024 -- treatment, whereas the formal is not volatile, then pass
2025 -- by copy unless it is a by-reference type.
2027 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2028 -- because this is the enforcement of a language rule that applies
2029 -- only to "real" volatile variables, not e.g. to the address
2030 -- clause overlay case.
2032 elsif Is_Entity_Name
(Actual
)
2033 and then Is_Volatile
(Entity
(Actual
))
2034 and then not Is_By_Reference_Type
(E_Actual
)
2035 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
2036 and then not Is_Volatile
(E_Formal
)
2038 Add_Call_By_Copy_Code
;
2040 elsif Nkind
(Actual
) = N_Indexed_Component
2041 and then Is_Entity_Name
(Prefix
(Actual
))
2042 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
2044 Add_Call_By_Copy_Code
;
2046 -- Add call-by-copy code for the case of scalar out parameters
2047 -- when it is not known at compile time that the subtype of the
2048 -- formal is a subrange of the subtype of the actual (or vice
2049 -- versa for in out parameters), in order to get range checks
2050 -- on such actuals. (Maybe this case should be handled earlier
2051 -- in the if statement???)
2053 elsif Is_Scalar_Type
(E_Formal
)
2055 (not In_Subrange_Of
(E_Formal
, E_Actual
)
2057 (Ekind
(Formal
) = E_In_Out_Parameter
2058 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
2060 -- Perhaps the setting back to False should be done within
2061 -- Add_Call_By_Copy_Code, since it could get set on other
2062 -- cases occurring above???
2064 if Do_Range_Check
(Actual
) then
2065 Set_Do_Range_Check
(Actual
, False);
2068 Add_Call_By_Copy_Code
;
2071 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2072 -- by-reference parameters on exit from the call. If the actual
2073 -- is a derived type and the operation is inherited, the body
2074 -- of the operation will not contain a call to the predicate
2075 -- function, so it must be done explicitly after the call. Ditto
2076 -- if the actual is an entity of a predicated subtype.
2078 -- The rule refers to by-reference types, but a check is needed
2079 -- for by-copy types as well. That check is subsumed by the rule
2080 -- for subtype conversion on assignment, but we can generate the
2081 -- required check now.
2083 -- Note also that Subp may be either a subprogram entity for
2084 -- direct calls, or a type entity for indirect calls, which must
2085 -- be handled separately because the name does not denote an
2086 -- overloadable entity.
2088 By_Ref_Predicate_Check
: declare
2089 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
2092 function Is_Public_Subp
return Boolean;
2093 -- Check whether the subprogram being called is a visible
2094 -- operation of the type of the actual. Used to determine
2095 -- whether an invariant check must be generated on the
2098 ---------------------
2099 -- Is_Public_Subp --
2100 ---------------------
2102 function Is_Public_Subp
return Boolean is
2103 Pack
: constant Entity_Id
:= Scope
(Subp
);
2104 Subp_Decl
: Node_Id
;
2107 if not Is_Subprogram
(Subp
) then
2110 -- The operation may be inherited, or a primitive of the
2114 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
2115 N_Full_Type_Declaration
)
2117 Subp_Decl
:= Parent
(Subp
);
2120 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
2123 return Ekind
(Pack
) = E_Package
2125 List_Containing
(Subp_Decl
) =
2126 Visible_Declarations
2127 (Specification
(Unit_Declaration_Node
(Pack
)));
2130 -- Start of processing for By_Ref_Predicate_Check
2139 if Has_Predicates
(Atyp
)
2140 and then Present
(Predicate_Function
(Atyp
))
2142 -- Skip predicate checks for special cases
2144 and then Predicate_Tests_On_Arguments
(Subp
)
2146 Append_To
(Post_Call
,
2147 Make_Predicate_Check
(Atyp
, Actual
));
2150 -- We generated caller-side invariant checks in two cases:
2152 -- a) when calling an inherited operation, where there is an
2153 -- implicit view conversion of the actual to the parent type.
2155 -- b) When the conversion is explicit
2157 -- We treat these cases separately because the required
2158 -- conversion for a) is added later when expanding the call.
2160 if Has_Invariants
(Etype
(Actual
))
2162 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
2164 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2165 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
2168 elsif Nkind
(Actual
) = N_Type_Conversion
2169 and then Has_Invariants
(Etype
(Expression
(Actual
)))
2171 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2172 Append_To
(Post_Call
,
2173 Make_Invariant_Call
(Expression
(Actual
)));
2176 end By_Ref_Predicate_Check
;
2178 -- Processing for IN parameters
2181 -- For IN parameters in the bit-packed array case, we expand an
2182 -- indexed component (the circuit in Exp_Ch4 deliberately left
2183 -- indexed components appearing as actuals untouched, so that
2184 -- the special processing above for the OUT and IN OUT cases
2185 -- could be performed. We could make the test in Exp_Ch4 more
2186 -- complex and have it detect the parameter mode, but it is
2187 -- easier simply to handle all cases here.)
2189 if Nkind
(Actual
) = N_Indexed_Component
2190 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Actual
)))
2192 Reset_Packed_Prefix
;
2193 Expand_Packed_Element_Reference
(Actual
);
2195 -- If we have a reference to a bit-packed array, we copy it, since
2196 -- the actual must be byte aligned.
2198 -- Is this really necessary in all cases???
2200 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
2201 Add_Simple_Call_By_Copy_Code
;
2203 -- If a non-scalar actual is possibly unaligned, we need a copy
2205 elsif Is_Possibly_Unaligned_Object
(Actual
)
2206 and then not Represented_As_Scalar
(Etype
(Formal
))
2208 Add_Simple_Call_By_Copy_Code
;
2210 -- Similarly, we have to expand slices of packed arrays here
2211 -- because the result must be byte aligned.
2213 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2214 Add_Call_By_Copy_Code
;
2216 -- Only processing remaining is to pass by copy if this is a
2217 -- reference to a possibly unaligned slice, since the caller
2218 -- expects an appropriately aligned argument.
2220 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2221 Add_Call_By_Copy_Code
;
2223 -- An unusual case: a current instance of an enclosing task can be
2224 -- an actual, and must be replaced by a reference to self.
2226 elsif Is_Entity_Name
(Actual
)
2227 and then Is_Task_Type
(Entity
(Actual
))
2229 if In_Open_Scopes
(Entity
(Actual
)) then
2231 (Make_Function_Call
(Loc
,
2232 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
2235 -- A task type cannot otherwise appear as an actual
2238 raise Program_Error
;
2243 Next_Formal
(Formal
);
2244 Next_Actual
(Actual
);
2252 procedure Expand_Call
(N
: Node_Id
) is
2253 Post_Call
: List_Id
;
2256 pragma Assert
(Nkind_In
(N
, N_Entry_Call_Statement
,
2258 N_Procedure_Call_Statement
));
2260 Expand_Call_Helper
(N
, Post_Call
);
2261 Insert_Post_Call_Actions
(N
, Post_Call
);
2264 ------------------------
2265 -- Expand_Call_Helper --
2266 ------------------------
2268 -- This procedure handles expansion of function calls and procedure call
2269 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2270 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2272 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2273 -- Provide values of actuals for all formals in Extra_Formals list
2274 -- Replace "call" to enumeration literal function by literal itself
2275 -- Rewrite call to predefined operator as operator
2276 -- Replace actuals to in-out parameters that are numeric conversions,
2277 -- with explicit assignment to temporaries before and after the call.
2279 -- Note that the list of actuals has been filled with default expressions
2280 -- during semantic analysis of the call. Only the extra actuals required
2281 -- for the 'Constrained attribute and for accessibility checks are added
2284 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
) is
2285 Loc
: constant Source_Ptr
:= Sloc
(N
);
2286 Call_Node
: Node_Id
:= N
;
2287 Extra_Actuals
: List_Id
:= No_List
;
2288 Prev
: Node_Id
:= Empty
;
2290 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2291 -- Adds one entry to the end of the actual parameter list. Used for
2292 -- default parameters and for extra actuals (for Extra_Formals). The
2293 -- argument is an N_Parameter_Association node.
2295 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2296 -- Adds an extra actual to the list of extra actuals. Expr is the
2297 -- expression for the value of the actual, EF is the entity for the
2300 procedure Add_View_Conversion_Invariants
2301 (Formal
: Entity_Id
;
2303 -- Adds invariant checks for every intermediate type between the range
2304 -- of a view converted argument to its ancestor (from parent to child).
2306 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2307 -- Within an instance, a type derived from an untagged formal derived
2308 -- type inherits from the original parent, not from the actual. The
2309 -- current derivation mechanism has the derived type inherit from the
2310 -- actual, which is only correct outside of the instance. If the
2311 -- subprogram is inherited, we test for this particular case through a
2312 -- convoluted tree traversal before setting the proper subprogram to be
2315 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2316 -- Return true if E comes from an instance that is not yet frozen
2318 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2319 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2321 function New_Value
(From
: Node_Id
) return Node_Id
;
2322 -- From is the original Expression. New_Value is equivalent to a call
2323 -- to Duplicate_Subexpr with an explicit dereference when From is an
2324 -- access parameter.
2326 --------------------------
2327 -- Add_Actual_Parameter --
2328 --------------------------
2330 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2331 Actual_Expr
: constant Node_Id
:=
2332 Explicit_Actual_Parameter
(Insert_Param
);
2335 -- Case of insertion is first named actual
2337 if No
(Prev
) or else
2338 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2340 Set_Next_Named_Actual
2341 (Insert_Param
, First_Named_Actual
(Call_Node
));
2342 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2345 if No
(Parameter_Associations
(Call_Node
)) then
2346 Set_Parameter_Associations
(Call_Node
, New_List
);
2349 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2352 Insert_After
(Prev
, Insert_Param
);
2355 -- Case of insertion is not first named actual
2358 Set_Next_Named_Actual
2359 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2360 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2361 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2364 Prev
:= Actual_Expr
;
2365 end Add_Actual_Parameter
;
2367 ----------------------
2368 -- Add_Extra_Actual --
2369 ----------------------
2371 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2372 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2375 if Extra_Actuals
= No_List
then
2376 Extra_Actuals
:= New_List
;
2377 Set_Parent
(Extra_Actuals
, Call_Node
);
2380 Append_To
(Extra_Actuals
,
2381 Make_Parameter_Association
(Loc
,
2382 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2383 Explicit_Actual_Parameter
=> Expr
));
2385 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2387 if Nkind
(Call_Node
) = N_Function_Call
then
2388 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2390 end Add_Extra_Actual
;
2392 ------------------------------------
2393 -- Add_View_Conversion_Invariants --
2394 ------------------------------------
2396 procedure Add_View_Conversion_Invariants
2397 (Formal
: Entity_Id
;
2401 Curr_Typ
: Entity_Id
;
2402 Inv_Checks
: List_Id
;
2403 Par_Typ
: Entity_Id
;
2406 Inv_Checks
:= No_List
;
2408 -- Extract the argument from a potentially nested set of view
2412 while Nkind
(Arg
) = N_Type_Conversion
loop
2413 Arg
:= Expression
(Arg
);
2416 -- Move up the derivation chain starting with the type of the formal
2417 -- parameter down to the type of the actual object.
2420 Par_Typ
:= Etype
(Arg
);
2421 while Par_Typ
/= Etype
(Formal
) and Par_Typ
/= Curr_Typ
loop
2422 Curr_Typ
:= Par_Typ
;
2424 if Has_Invariants
(Curr_Typ
)
2425 and then Present
(Invariant_Procedure
(Curr_Typ
))
2427 -- Verify the invariate of the current type. Generate:
2429 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2431 Prepend_New_To
(Inv_Checks
,
2432 Make_Procedure_Call_Statement
(Loc
,
2435 (Invariant_Procedure
(Curr_Typ
), Loc
),
2436 Parameter_Associations
=> New_List
(
2437 Make_Type_Conversion
(Loc
,
2438 Subtype_Mark
=> New_Occurrence_Of
(Curr_Typ
, Loc
),
2439 Expression
=> New_Copy_Tree
(Arg
)))));
2442 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2445 if not Is_Empty_List
(Inv_Checks
) then
2446 Insert_Actions_After
(N
, Inv_Checks
);
2448 end Add_View_Conversion_Invariants
;
2450 ---------------------------
2451 -- Inherited_From_Formal --
2452 ---------------------------
2454 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2456 Gen_Par
: Entity_Id
;
2457 Gen_Prim
: Elist_Id
;
2462 -- If the operation is inherited, it is attached to the corresponding
2463 -- type derivation. If the parent in the derivation is a generic
2464 -- actual, it is a subtype of the actual, and we have to recover the
2465 -- original derived type declaration to find the proper parent.
2467 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2468 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2469 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2470 N_Derived_Type_Definition
2471 or else not In_Instance
2478 (Type_Definition
(Original_Node
(Parent
(S
))));
2480 if Nkind
(Indic
) = N_Subtype_Indication
then
2481 Par
:= Entity
(Subtype_Mark
(Indic
));
2483 Par
:= Entity
(Indic
);
2487 if not Is_Generic_Actual_Type
(Par
)
2488 or else Is_Tagged_Type
(Par
)
2489 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2490 or else not In_Open_Scopes
(Scope
(Par
))
2494 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2497 -- If the actual has no generic parent type, the formal is not
2498 -- a formal derived type, so nothing to inherit.
2500 if No
(Gen_Par
) then
2504 -- If the generic parent type is still the generic type, this is a
2505 -- private formal, not a derived formal, and there are no operations
2506 -- inherited from the formal.
2508 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2512 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2514 Elmt
:= First_Elmt
(Gen_Prim
);
2515 while Present
(Elmt
) loop
2516 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2522 F1
:= First_Formal
(S
);
2523 F2
:= First_Formal
(Node
(Elmt
));
2525 and then Present
(F2
)
2527 if Etype
(F1
) = Etype
(F2
)
2528 or else Etype
(F2
) = Gen_Par
2534 exit; -- not the right subprogram
2546 raise Program_Error
;
2547 end Inherited_From_Formal
;
2549 --------------------------
2550 -- In_Unfrozen_Instance --
2551 --------------------------
2553 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2558 while Present
(S
) and then S
/= Standard_Standard
loop
2559 if Is_Generic_Instance
(S
)
2560 and then Present
(Freeze_Node
(S
))
2561 and then not Analyzed
(Freeze_Node
(S
))
2570 end In_Unfrozen_Instance
;
2572 -------------------------
2573 -- Is_Direct_Deep_Call --
2574 -------------------------
2576 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2578 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2579 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2580 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2587 Actual
:= First
(Parameter_Associations
(N
));
2588 Formal
:= First_Formal
(Subp
);
2589 while Present
(Actual
)
2590 and then Present
(Formal
)
2592 if Nkind
(Actual
) = N_Identifier
2593 and then Is_Controlling_Actual
(Actual
)
2594 and then Etype
(Actual
) = Etype
(Formal
)
2600 Next_Formal
(Formal
);
2606 end Is_Direct_Deep_Call
;
2612 function New_Value
(From
: Node_Id
) return Node_Id
is
2613 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2615 if Is_Access_Type
(Etype
(From
)) then
2616 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2624 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2627 Orig_Subp
: Entity_Id
:= Empty
;
2628 Param_Count
: Natural := 0;
2629 Parent_Formal
: Entity_Id
;
2630 Parent_Subp
: Entity_Id
;
2631 Pref_Entity
: Entity_Id
;
2635 Prev_Orig
: Node_Id
;
2636 -- Original node for an actual, which may have been rewritten. If the
2637 -- actual is a function call that has been transformed from a selected
2638 -- component, the original node is unanalyzed. Otherwise, it carries
2639 -- semantic information used to generate additional actuals.
2641 CW_Interface_Formals_Present
: Boolean := False;
2643 -- Start of processing for Expand_Call_Helper
2646 Post_Call
:= New_List
;
2648 -- Expand the function or procedure call if the first actual has a
2649 -- declared dimension aspect, and the subprogram is declared in one
2650 -- of the dimension I/O packages.
2652 if Ada_Version
>= Ada_2012
2654 Nkind_In
(Call_Node
, N_Procedure_Call_Statement
, N_Function_Call
)
2655 and then Present
(Parameter_Associations
(Call_Node
))
2657 Expand_Put_Call_With_Symbol
(Call_Node
);
2660 -- Ignore if previous error
2662 if Nkind
(Call_Node
) in N_Has_Etype
2663 and then Etype
(Call_Node
) = Any_Type
2668 -- Call using access to subprogram with explicit dereference
2670 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2671 Subp
:= Etype
(Name
(Call_Node
));
2672 Parent_Subp
:= Empty
;
2674 -- Case of call to simple entry, where the Name is a selected component
2675 -- whose prefix is the task, and whose selector name is the entry name
2677 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2678 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2679 Parent_Subp
:= Empty
;
2681 -- Case of call to member of entry family, where Name is an indexed
2682 -- component, with the prefix being a selected component giving the
2683 -- task and entry family name, and the index being the entry index.
2685 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2686 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2687 Parent_Subp
:= Empty
;
2692 Subp
:= Entity
(Name
(Call_Node
));
2693 Parent_Subp
:= Alias
(Subp
);
2695 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2696 -- if we can tell that the first parameter cannot possibly be null.
2697 -- This improves efficiency by avoiding a run-time test.
2699 -- We do not do this if Raise_Exception_Always does not exist, which
2700 -- can happen in configurable run time profiles which provide only a
2703 if Is_RTE
(Subp
, RE_Raise_Exception
)
2704 and then RTE_Available
(RE_Raise_Exception_Always
)
2707 FA
: constant Node_Id
:=
2708 Original_Node
(First_Actual
(Call_Node
));
2711 -- The case we catch is where the first argument is obtained
2712 -- using the Identity attribute (which must always be
2715 if Nkind
(FA
) = N_Attribute_Reference
2716 and then Attribute_Name
(FA
) = Name_Identity
2718 Subp
:= RTE
(RE_Raise_Exception_Always
);
2719 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2724 if Ekind
(Subp
) = E_Entry
then
2725 Parent_Subp
:= Empty
;
2729 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2730 -- alternative in an asynchronous select or as an entry call in
2731 -- a conditional or timed select. Check whether the procedure call
2732 -- is a renaming of an entry and rewrite it as an entry call.
2734 if Ada_Version
>= Ada_2005
2735 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2737 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2738 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2740 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2741 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2745 Ren_Root
: Entity_Id
:= Subp
;
2748 -- This may be a chain of renamings, find the root
2750 if Present
(Alias
(Ren_Root
)) then
2751 Ren_Root
:= Alias
(Ren_Root
);
2754 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2755 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2757 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2759 Make_Entry_Call_Statement
(Loc
,
2761 New_Copy_Tree
(Name
(Ren_Decl
)),
2762 Parameter_Associations
=>
2764 (Parameter_Associations
(Call_Node
))));
2772 if Modify_Tree_For_C
2773 and then Nkind
(Call_Node
) = N_Function_Call
2774 and then Is_Entity_Name
(Name
(Call_Node
))
2777 Func_Id
: constant Entity_Id
:=
2778 Ultimate_Alias
(Entity
(Name
(Call_Node
)));
2780 -- When generating C code, transform a function call that returns
2781 -- a constrained array type into procedure form.
2783 if Rewritten_For_C
(Func_Id
) then
2785 -- For internally generated calls ensure that they reference
2786 -- the entity of the spec of the called function (needed since
2787 -- the expander may generate calls using the entity of their
2788 -- body). See for example Expand_Boolean_Operator().
2790 if not (Comes_From_Source
(Call_Node
))
2791 and then Nkind
(Unit_Declaration_Node
(Func_Id
)) =
2794 Set_Entity
(Name
(Call_Node
),
2795 Corresponding_Function
2796 (Corresponding_Procedure
(Func_Id
)));
2799 Rewrite_Function_Call_For_C
(Call_Node
);
2802 -- Also introduce a temporary for functions that return a record
2803 -- called within another procedure or function call, since records
2804 -- are passed by pointer in the generated C code, and we cannot
2805 -- take a pointer from a subprogram call.
2807 elsif Nkind
(Parent
(Call_Node
)) in N_Subprogram_Call
2808 and then Is_Record_Type
(Etype
(Func_Id
))
2811 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2816 -- Temp : ... := Func_Call (...);
2819 Make_Object_Declaration
(Loc
,
2820 Defining_Identifier
=> Temp_Id
,
2821 Object_Definition
=>
2822 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
2824 Make_Function_Call
(Loc
,
2826 New_Occurrence_Of
(Func_Id
, Loc
),
2827 Parameter_Associations
=>
2828 Parameter_Associations
(Call_Node
)));
2830 Insert_Action
(Parent
(Call_Node
), Decl
);
2831 Rewrite
(Call_Node
, New_Occurrence_Of
(Temp_Id
, Loc
));
2838 -- First step, compute extra actuals, corresponding to any Extra_Formals
2839 -- present. Note that we do not access Extra_Formals directly, instead
2840 -- we simply note the presence of the extra formals as we process the
2841 -- regular formals collecting corresponding actuals in Extra_Actuals.
2843 -- We also generate any required range checks for actuals for in formals
2844 -- as we go through the loop, since this is a convenient place to do it.
2845 -- (Though it seems that this would be better done in Expand_Actuals???)
2847 -- Special case: Thunks must not compute the extra actuals; they must
2848 -- just propagate to the target primitive their extra actuals.
2850 if Is_Thunk
(Current_Scope
)
2851 and then Thunk_Entity
(Current_Scope
) = Subp
2852 and then Present
(Extra_Formals
(Subp
))
2854 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2857 Target_Formal
: Entity_Id
;
2858 Thunk_Formal
: Entity_Id
;
2861 Target_Formal
:= Extra_Formals
(Subp
);
2862 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2863 while Present
(Target_Formal
) loop
2865 (Expr
=> New_Occurrence_Of
(Thunk_Formal
, Loc
),
2866 EF
=> Thunk_Formal
);
2868 Target_Formal
:= Extra_Formal
(Target_Formal
);
2869 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2872 while Is_Non_Empty_List
(Extra_Actuals
) loop
2873 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2876 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
2877 pragma Assert
(Is_Empty_List
(Post_Call
));
2882 Formal
:= First_Formal
(Subp
);
2883 Actual
:= First_Actual
(Call_Node
);
2885 while Present
(Formal
) loop
2887 -- Generate range check if required
2889 if Do_Range_Check
(Actual
)
2890 and then Ekind
(Formal
) = E_In_Parameter
2892 Generate_Range_Check
2893 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2896 -- Prepare to examine current entry
2899 Prev_Orig
:= Original_Node
(Prev
);
2901 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2902 -- to expand it in a further round.
2904 CW_Interface_Formals_Present
:=
2905 CW_Interface_Formals_Present
2907 (Is_Class_Wide_Type
(Etype
(Formal
))
2908 and then Is_Interface
(Etype
(Etype
(Formal
))))
2910 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2911 and then Is_Class_Wide_Type
(Directly_Designated_Type
2912 (Etype
(Etype
(Formal
))))
2913 and then Is_Interface
(Directly_Designated_Type
2914 (Etype
(Etype
(Formal
)))));
2916 -- Create possible extra actual for constrained case. Usually, the
2917 -- extra actual is of the form actual'constrained, but since this
2918 -- attribute is only available for unconstrained records, TRUE is
2919 -- expanded if the type of the formal happens to be constrained (for
2920 -- instance when this procedure is inherited from an unconstrained
2921 -- record to a constrained one) or if the actual has no discriminant
2922 -- (its type is constrained). An exception to this is the case of a
2923 -- private type without discriminants. In this case we pass FALSE
2924 -- because the object has underlying discriminants with defaults.
2926 if Present
(Extra_Constrained
(Formal
)) then
2927 if Ekind
(Etype
(Prev
)) in Private_Kind
2928 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2931 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2932 EF
=> Extra_Constrained
(Formal
));
2934 elsif Is_Constrained
(Etype
(Formal
))
2935 or else not Has_Discriminants
(Etype
(Prev
))
2938 (Expr
=> New_Occurrence_Of
(Standard_True
, Loc
),
2939 EF
=> Extra_Constrained
(Formal
));
2941 -- Do not produce extra actuals for Unchecked_Union parameters.
2942 -- Jump directly to the end of the loop.
2944 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2945 goto Skip_Extra_Actual_Generation
;
2948 -- If the actual is a type conversion, then the constrained
2949 -- test applies to the actual, not the target type.
2955 -- Test for unchecked conversions as well, which can occur
2956 -- as out parameter actuals on calls to stream procedures.
2959 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2960 N_Unchecked_Type_Conversion
)
2962 Act_Prev
:= Expression
(Act_Prev
);
2965 -- If the expression is a conversion of a dereference, this
2966 -- is internally generated code that manipulates addresses,
2967 -- e.g. when building interface tables. No check should
2968 -- occur in this case, and the discriminated object is not
2971 if not Comes_From_Source
(Actual
)
2972 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2973 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2976 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2977 EF
=> Extra_Constrained
(Formal
));
2982 Make_Attribute_Reference
(Sloc
(Prev
),
2984 Duplicate_Subexpr_No_Checks
2985 (Act_Prev
, Name_Req
=> True),
2986 Attribute_Name
=> Name_Constrained
),
2987 EF
=> Extra_Constrained
(Formal
));
2993 -- Create possible extra actual for accessibility level
2995 if Present
(Extra_Accessibility
(Formal
)) then
2997 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2998 -- attribute, then the original actual may be an aliased object
2999 -- occurring as the prefix in a call using "Object.Operation"
3000 -- notation. In that case we must pass the level of the object,
3001 -- so Prev_Orig is reset to Prev and the attribute will be
3002 -- processed by the code for Access attributes further below.
3004 if Prev_Orig
/= Prev
3005 and then Nkind
(Prev
) = N_Attribute_Reference
3006 and then Get_Attribute_Id
(Attribute_Name
(Prev
)) =
3008 and then Is_Aliased_View
(Prev_Orig
)
3012 -- A class-wide precondition generates a test in which formals of
3013 -- the subprogram are replaced by actuals that came from source.
3014 -- In that case as well, the accessiblity comes from the actual.
3015 -- This is the one case in which there are references to formals
3016 -- outside of their subprogram.
3018 elsif Prev_Orig
/= Prev
3019 and then Is_Entity_Name
(Prev_Orig
)
3020 and then Present
(Entity
(Prev_Orig
))
3021 and then Is_Formal
(Entity
(Prev_Orig
))
3022 and then not In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3026 -- If the actual is a formal of an enclosing subprogram it is
3027 -- the right entity, even if it is a rewriting. This happens
3028 -- when the call is within an inherited condition or predicate.
3030 elsif Is_Entity_Name
(Actual
)
3031 and then Is_Formal
(Entity
(Actual
))
3032 and then In_Open_Scopes
(Scope
(Entity
(Actual
)))
3036 elsif Nkind
(Prev_Orig
) = N_Type_Conversion
then
3037 Prev_Orig
:= Expression
(Prev_Orig
);
3040 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3041 -- accessibility levels.
3043 if Is_Thunk
(Current_Scope
) then
3045 Parm_Ent
: Entity_Id
;
3048 if Is_Controlling_Actual
(Actual
) then
3050 -- Find the corresponding actual of the thunk
3052 Parm_Ent
:= First_Entity
(Current_Scope
);
3053 for J
in 2 .. Param_Count
loop
3054 Next_Entity
(Parm_Ent
);
3057 -- Handle unchecked conversion of access types generated
3058 -- in thunks (cf. Expand_Interface_Thunk).
3060 elsif Is_Access_Type
(Etype
(Actual
))
3061 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
3063 Parm_Ent
:= Entity
(Expression
(Actual
));
3065 else pragma Assert
(Is_Entity_Name
(Actual
));
3066 Parm_Ent
:= Entity
(Actual
);
3071 New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
3072 EF
=> Extra_Accessibility
(Formal
));
3075 elsif Is_Entity_Name
(Prev_Orig
) then
3077 -- When passing an access parameter, or a renaming of an access
3078 -- parameter, as the actual to another access parameter we need
3079 -- to pass along the actual's own access level parameter. This
3080 -- is done if we are within the scope of the formal access
3081 -- parameter (if this is an inlined body the extra formal is
3084 if (Is_Formal
(Entity
(Prev_Orig
))
3086 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
3088 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
3091 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
3092 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
3093 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3096 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
3099 pragma Assert
(Present
(Parm_Ent
));
3101 if Present
(Extra_Accessibility
(Parm_Ent
)) then
3105 (Extra_Accessibility
(Parm_Ent
), Loc
),
3106 EF
=> Extra_Accessibility
(Formal
));
3108 -- If the actual access parameter does not have an
3109 -- associated extra formal providing its scope level,
3110 -- then treat the actual as having library-level
3116 Make_Integer_Literal
(Loc
,
3117 Intval
=> Scope_Depth
(Standard_Standard
)),
3118 EF
=> Extra_Accessibility
(Formal
));
3122 -- The actual is a normal access value, so just pass the level
3123 -- of the actual's access type.
3127 (Expr
=> Dynamic_Accessibility_Level
(Prev_Orig
),
3128 EF
=> Extra_Accessibility
(Formal
));
3131 -- If the actual is an access discriminant, then pass the level
3132 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3134 elsif Nkind
(Prev_Orig
) = N_Selected_Component
3135 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
3137 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
3138 E_Anonymous_Access_Type
3142 Make_Integer_Literal
(Loc
,
3143 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
3144 EF
=> Extra_Accessibility
(Formal
));
3149 case Nkind
(Prev_Orig
) is
3150 when N_Attribute_Reference
=>
3151 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
3153 -- For X'Access, pass on the level of the prefix X
3155 when Attribute_Access
=>
3157 -- Accessibility level of S'Access is that of A
3159 Prev_Orig
:= Prefix
(Prev_Orig
);
3161 -- If the expression is a view conversion, the
3162 -- accessibility level is that of the expression.
3164 if Nkind
(Original_Node
(Prev_Orig
)) =
3167 Nkind
(Expression
(Original_Node
(Prev_Orig
))) =
3168 N_Explicit_Dereference
3171 Expression
(Original_Node
(Prev_Orig
));
3174 -- If this is an Access attribute applied to the
3175 -- the current instance object passed to a type
3176 -- initialization procedure, then use the level
3177 -- of the type itself. This is not really correct,
3178 -- as there should be an extra level parameter
3179 -- passed in with _init formals (only in the case
3180 -- where the type is immutably limited), but we
3181 -- don't have an easy way currently to create such
3182 -- an extra formal (init procs aren't ever frozen).
3183 -- For now we just use the level of the type,
3184 -- which may be too shallow, but that works better
3185 -- than passing Object_Access_Level of the type,
3186 -- which can be one level too deep in some cases.
3189 -- A further case that requires special handling
3190 -- is the common idiom E.all'access. If E is a
3191 -- formal of the enclosing subprogram, the
3192 -- accessibility of the expression is that of E.
3194 if Is_Entity_Name
(Prev_Orig
) then
3195 Pref_Entity
:= Entity
(Prev_Orig
);
3197 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3198 and then Is_Entity_Name
(Prefix
(Prev_Orig
))
3200 Pref_Entity
:= Entity
(Prefix
((Prev_Orig
)));
3203 Pref_Entity
:= Empty
;
3206 if Is_Entity_Name
(Prev_Orig
)
3207 and then Is_Type
(Entity
(Prev_Orig
))
3211 Make_Integer_Literal
(Loc
,
3213 Type_Access_Level
(Pref_Entity
)),
3214 EF
=> Extra_Accessibility
(Formal
));
3216 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3217 and then Present
(Pref_Entity
)
3218 and then Is_Formal
(Pref_Entity
)
3220 (Extra_Accessibility
(Pref_Entity
))
3225 (Extra_Accessibility
(Pref_Entity
), Loc
),
3226 EF
=> Extra_Accessibility
(Formal
));
3231 Make_Integer_Literal
(Loc
,
3233 Object_Access_Level
(Prev_Orig
)),
3234 EF
=> Extra_Accessibility
(Formal
));
3237 -- Treat the unchecked attributes as library-level
3239 when Attribute_Unchecked_Access
3240 | Attribute_Unrestricted_Access
3244 Make_Integer_Literal
(Loc
,
3245 Intval
=> Scope_Depth
(Standard_Standard
)),
3246 EF
=> Extra_Accessibility
(Formal
));
3248 -- No other cases of attributes returning access
3249 -- values that can be passed to access parameters.
3252 raise Program_Error
;
3256 -- For allocators we pass the level of the execution of the
3257 -- called subprogram, which is one greater than the current
3263 Make_Integer_Literal
(Loc
,
3264 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3265 EF
=> Extra_Accessibility
(Formal
));
3267 -- For most other cases we simply pass the level of the
3268 -- actual's access type. The type is retrieved from
3269 -- Prev rather than Prev_Orig, because in some cases
3270 -- Prev_Orig denotes an original expression that has
3271 -- not been analyzed.
3275 (Expr
=> Dynamic_Accessibility_Level
(Prev
),
3276 EF
=> Extra_Accessibility
(Formal
));
3281 -- Perform the check of 4.6(49) that prevents a null value from being
3282 -- passed as an actual to an access parameter. Note that the check
3283 -- is elided in the common cases of passing an access attribute or
3284 -- access parameter as an actual. Also, we currently don't enforce
3285 -- this check for expander-generated actuals and when -gnatdj is set.
3287 if Ada_Version
>= Ada_2005
then
3289 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3290 -- the intent of 6.4.1(13) is that null-exclusion checks should
3291 -- not be done for 'out' parameters, even though it refers only
3292 -- to constraint checks, and a null_exclusion is not a constraint.
3293 -- Note that AI05-0196-1 corrects this mistake in the RM.
3295 if Is_Access_Type
(Etype
(Formal
))
3296 and then Can_Never_Be_Null
(Etype
(Formal
))
3297 and then Ekind
(Formal
) /= E_Out_Parameter
3298 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3299 and then (Known_Null
(Prev
)
3300 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3302 Install_Null_Excluding_Check
(Prev
);
3305 -- Ada_Version < Ada_2005
3308 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3309 or else Access_Checks_Suppressed
(Subp
)
3313 elsif Debug_Flag_J
then
3316 elsif not Comes_From_Source
(Prev
) then
3319 elsif Is_Entity_Name
(Prev
)
3320 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3324 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3328 Install_Null_Excluding_Check
(Prev
);
3332 -- Perform appropriate validity checks on parameters that
3335 if Validity_Checks_On
then
3336 if (Ekind
(Formal
) = E_In_Parameter
3337 and then Validity_Check_In_Params
)
3339 (Ekind
(Formal
) = E_In_Out_Parameter
3340 and then Validity_Check_In_Out_Params
)
3342 -- If the actual is an indexed component of a packed type (or
3343 -- is an indexed or selected component whose prefix recursively
3344 -- meets this condition), it has not been expanded yet. It will
3345 -- be copied in the validity code that follows, and has to be
3346 -- expanded appropriately, so reanalyze it.
3348 -- What we do is just to unset analyzed bits on prefixes till
3349 -- we reach something that does not have a prefix.
3356 while Nkind_In
(Nod
, N_Indexed_Component
,
3357 N_Selected_Component
)
3359 Set_Analyzed
(Nod
, False);
3360 Nod
:= Prefix
(Nod
);
3364 Ensure_Valid
(Actual
);
3368 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3369 -- since this is a left side reference. We only do this for calls
3370 -- from the source program since we assume that compiler generated
3371 -- calls explicitly generate any required checks. We also need it
3372 -- only if we are doing standard validity checks, since clearly it is
3373 -- not needed if validity checks are off, and in subscript validity
3374 -- checking mode, all indexed components are checked with a call
3375 -- directly from Expand_N_Indexed_Component.
3377 if Comes_From_Source
(Call_Node
)
3378 and then Ekind
(Formal
) /= E_In_Parameter
3379 and then Validity_Checks_On
3380 and then Validity_Check_Default
3381 and then not Validity_Check_Subscripts
3383 Check_Valid_Lvalue_Subscripts
(Actual
);
3386 -- Mark any scalar OUT parameter that is a simple variable as no
3387 -- longer known to be valid (unless the type is always valid). This
3388 -- reflects the fact that if an OUT parameter is never set in a
3389 -- procedure, then it can become invalid on the procedure return.
3391 if Ekind
(Formal
) = E_Out_Parameter
3392 and then Is_Entity_Name
(Actual
)
3393 and then Ekind
(Entity
(Actual
)) = E_Variable
3394 and then not Is_Known_Valid
(Etype
(Actual
))
3396 Set_Is_Known_Valid
(Entity
(Actual
), False);
3399 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3400 -- clear current values, since they can be clobbered. We are probably
3401 -- doing this in more places than we need to, but better safe than
3402 -- sorry when it comes to retaining bad current values.
3404 if Ekind
(Formal
) /= E_In_Parameter
3405 and then Is_Entity_Name
(Actual
)
3406 and then Present
(Entity
(Actual
))
3409 Ent
: constant Entity_Id
:= Entity
(Actual
);
3413 -- For an OUT or IN OUT parameter that is an assignable entity,
3414 -- we do not want to clobber the Last_Assignment field, since
3415 -- if it is set, it was precisely because it is indeed an OUT
3416 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3417 -- since the subprogram could have returned in invalid value.
3419 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3420 and then Is_Assignable
(Ent
)
3422 Sav
:= Last_Assignment
(Ent
);
3423 Kill_Current_Values
(Ent
);
3424 Set_Last_Assignment
(Ent
, Sav
);
3425 Set_Is_Known_Valid
(Ent
, False);
3427 -- For all other cases, just kill the current values
3430 Kill_Current_Values
(Ent
);
3435 -- If the formal is class wide and the actual is an aggregate, force
3436 -- evaluation so that the back end who does not know about class-wide
3437 -- type, does not generate a temporary of the wrong size.
3439 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3442 elsif Nkind
(Actual
) = N_Aggregate
3443 or else (Nkind
(Actual
) = N_Qualified_Expression
3444 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3446 Force_Evaluation
(Actual
);
3449 -- In a remote call, if the formal is of a class-wide type, check
3450 -- that the actual meets the requirements described in E.4(18).
3452 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3453 Insert_Action
(Actual
,
3454 Make_Transportable_Check
(Loc
,
3455 Duplicate_Subexpr_Move_Checks
(Actual
)));
3458 -- Perform invariant checks for all intermediate types in a view
3459 -- conversion after successful return from a call that passes the
3460 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3461 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3462 -- generating spurious checks on complex expansion such as object
3463 -- initialization through an extension aggregate.
3465 if Comes_From_Source
(N
)
3466 and then Ekind
(Formal
) /= E_In_Parameter
3467 and then Nkind
(Actual
) = N_Type_Conversion
3469 Add_View_Conversion_Invariants
(Formal
, Actual
);
3472 -- Generating C the initialization of an allocator is performed by
3473 -- means of individual statements, and hence it must be done before
3476 if Modify_Tree_For_C
3477 and then Nkind
(Actual
) = N_Allocator
3478 and then Nkind
(Expression
(Actual
)) = N_Qualified_Expression
3480 Remove_Side_Effects
(Actual
);
3483 -- This label is required when skipping extra actual generation for
3484 -- Unchecked_Union parameters.
3486 <<Skip_Extra_Actual_Generation
>>
3488 Param_Count
:= Param_Count
+ 1;
3489 Next_Actual
(Actual
);
3490 Next_Formal
(Formal
);
3493 -- If we are calling an Ada 2012 function which needs to have the
3494 -- "accessibility level determined by the point of call" (AI05-0234)
3495 -- passed in to it, then pass it in.
3497 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3499 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3502 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3503 Level
: Node_Id
:= Empty
;
3504 Defer
: Boolean := False;
3507 -- Unimplemented: if Subp returns an anonymous access type, then
3509 -- a) if the call is the operand of an explict conversion, then
3510 -- the target type of the conversion (a named access type)
3511 -- determines the accessibility level pass in;
3513 -- b) if the call defines an access discriminant of an object
3514 -- (e.g., the discriminant of an object being created by an
3515 -- allocator, or the discriminant of a function result),
3516 -- then the accessibility level to pass in is that of the
3517 -- discriminated object being initialized).
3521 while Nkind
(Ancestor
) = N_Qualified_Expression
3523 Ancestor
:= Parent
(Ancestor
);
3526 case Nkind
(Ancestor
) is
3529 -- At this point, we'd like to assign
3531 -- Level := Dynamic_Accessibility_Level (Ancestor);
3533 -- but Etype of Ancestor may not have been set yet,
3534 -- so that doesn't work.
3536 -- Handle this later in Expand_Allocator_Expression.
3540 when N_Object_Declaration
3541 | N_Object_Renaming_Declaration
3544 Def_Id
: constant Entity_Id
:=
3545 Defining_Identifier
(Ancestor
);
3548 if Is_Return_Object
(Def_Id
) then
3549 if Present
(Extra_Accessibility_Of_Result
3550 (Return_Applies_To
(Scope
(Def_Id
))))
3552 -- Pass along value that was passed in if the
3553 -- routine we are returning from also has an
3554 -- Accessibility_Of_Result formal.
3558 (Extra_Accessibility_Of_Result
3559 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3563 Make_Integer_Literal
(Loc
,
3564 Intval
=> Object_Access_Level
(Def_Id
));
3568 when N_Simple_Return_Statement
=>
3569 if Present
(Extra_Accessibility_Of_Result
3571 (Return_Statement_Entity
(Ancestor
))))
3573 -- Pass along value that was passed in if the returned
3574 -- routine also has an Accessibility_Of_Result formal.
3578 (Extra_Accessibility_Of_Result
3580 (Return_Statement_Entity
(Ancestor
))), Loc
);
3588 if not Present
(Level
) then
3590 -- The "innermost master that evaluates the function call".
3592 -- ??? - Should we use Integer'Last here instead in order
3593 -- to deal with (some of) the problems associated with
3594 -- calls to subps whose enclosing scope is unknown (e.g.,
3595 -- Anon_Access_To_Subp_Param.all)?
3598 Make_Integer_Literal
(Loc
,
3599 Intval
=> Scope_Depth
(Current_Scope
) + 1);
3605 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3610 -- If we are expanding the RHS of an assignment we need to check if tag
3611 -- propagation is needed. You might expect this processing to be in
3612 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3613 -- assignment might be transformed to a declaration for an unconstrained
3614 -- value if the expression is classwide.
3616 if Nkind
(Call_Node
) = N_Function_Call
3617 and then Is_Tag_Indeterminate
(Call_Node
)
3618 and then Is_Entity_Name
(Name
(Call_Node
))
3621 Ass
: Node_Id
:= Empty
;
3624 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3625 Ass
:= Parent
(Call_Node
);
3627 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3628 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3629 N_Assignment_Statement
3631 Ass
:= Parent
(Parent
(Call_Node
));
3633 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3634 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3635 N_Assignment_Statement
3637 Ass
:= Parent
(Parent
(Call_Node
));
3641 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3643 if Is_Access_Type
(Etype
(Call_Node
)) then
3644 if Designated_Type
(Etype
(Call_Node
)) /=
3645 Root_Type
(Etype
(Name
(Ass
)))
3648 ("tag-indeterminate expression must have designated "
3649 & "type& (RM 5.2 (6))",
3650 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3652 Propagate_Tag
(Name
(Ass
), Call_Node
);
3655 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3657 ("tag-indeterminate expression must have type & "
3659 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3662 Propagate_Tag
(Name
(Ass
), Call_Node
);
3665 -- The call will be rewritten as a dispatching call, and
3666 -- expanded as such.
3673 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3674 -- it to point to the correct secondary virtual table
3676 if Nkind
(Call_Node
) in N_Subprogram_Call
3677 and then CW_Interface_Formals_Present
3679 Expand_Interface_Actuals
(Call_Node
);
3682 -- Deals with Dispatch_Call if we still have a call, before expanding
3683 -- extra actuals since this will be done on the re-analysis of the
3684 -- dispatching call. Note that we do not try to shorten the actual list
3685 -- for a dispatching call, it would not make sense to do so. Expansion
3686 -- of dispatching calls is suppressed for VM targets, because the VM
3687 -- back-ends directly handle the generation of dispatching calls and
3688 -- would have to undo any expansion to an indirect call.
3690 if Nkind
(Call_Node
) in N_Subprogram_Call
3691 and then Present
(Controlling_Argument
(Call_Node
))
3694 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3695 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3696 Eq_Prim_Op
: Entity_Id
:= Empty
;
3699 Prev_Call
: Node_Id
;
3702 if not Is_Limited_Type
(Typ
) then
3703 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3706 if Tagged_Type_Expansion
then
3707 Expand_Dispatching_Call
(Call_Node
);
3709 -- The following return is worrisome. Is it really OK to skip
3710 -- all remaining processing in this procedure ???
3717 Apply_Tag_Checks
(Call_Node
);
3719 -- If this is a dispatching "=", we must first compare the
3720 -- tags so we generate: x.tag = y.tag and then x = y
3722 if Subp
= Eq_Prim_Op
then
3724 -- Mark the node as analyzed to avoid reanalyzing this
3725 -- dispatching call (which would cause a never-ending loop)
3727 Prev_Call
:= Relocate_Node
(Call_Node
);
3728 Set_Analyzed
(Prev_Call
);
3730 Param
:= First_Actual
(Call_Node
);
3736 Make_Selected_Component
(Loc
,
3737 Prefix
=> New_Value
(Param
),
3740 (First_Tag_Component
(Typ
), Loc
)),
3743 Make_Selected_Component
(Loc
,
3745 Unchecked_Convert_To
(Typ
,
3746 New_Value
(Next_Actual
(Param
))),
3749 (First_Tag_Component
(Typ
), Loc
))),
3750 Right_Opnd
=> Prev_Call
);
3752 Rewrite
(Call_Node
, New_Call
);
3755 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3758 -- Expansion of a dispatching call results in an indirect call,
3759 -- which in turn causes current values to be killed (see
3760 -- Resolve_Call), so on VM targets we do the call here to
3761 -- ensure consistent warnings between VM and non-VM targets.
3763 Kill_Current_Values
;
3766 -- If this is a dispatching "=" then we must update the reference
3767 -- to the call node because we generated:
3768 -- x.tag = y.tag and then x = y
3770 if Subp
= Eq_Prim_Op
then
3771 Call_Node
:= Right_Opnd
(Call_Node
);
3776 -- Similarly, expand calls to RCI subprograms on which pragma
3777 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3778 -- later. Do this only when the call comes from source since we
3779 -- do not want such a rewriting to occur in expanded code.
3781 if Is_All_Remote_Call
(Call_Node
) then
3782 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3784 -- Similarly, do not add extra actuals for an entry call whose entity
3785 -- is a protected procedure, or for an internal protected subprogram
3786 -- call, because it will be rewritten as a protected subprogram call
3787 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3789 elsif Is_Protected_Type
(Scope
(Subp
))
3790 and then (Ekind
(Subp
) = E_Procedure
3791 or else Ekind
(Subp
) = E_Function
)
3795 -- During that loop we gathered the extra actuals (the ones that
3796 -- correspond to Extra_Formals), so now they can be appended.
3799 while Is_Non_Empty_List
(Extra_Actuals
) loop
3800 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3804 -- At this point we have all the actuals, so this is the point at which
3805 -- the various expansion activities for actuals is carried out.
3807 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
3809 -- Verify that the actuals do not share storage. This check must be done
3810 -- on the caller side rather that inside the subprogram to avoid issues
3811 -- of parameter passing.
3813 if Check_Aliasing_Of_Parameters
then
3814 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3817 -- If the subprogram is a renaming, or if it is inherited, replace it in
3818 -- the call with the name of the actual subprogram being called. If this
3819 -- is a dispatching call, the run-time decides what to call. The Alias
3820 -- attribute does not apply to entries.
3822 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3823 and then No
(Controlling_Argument
(Call_Node
))
3824 and then Present
(Parent_Subp
)
3825 and then not Is_Direct_Deep_Call
(Subp
)
3827 if Present
(Inherited_From_Formal
(Subp
)) then
3828 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3830 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3833 -- The below setting of Entity is suspect, see F109-018 discussion???
3835 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3837 if Is_Abstract_Subprogram
(Parent_Subp
)
3838 and then not In_Instance
3841 ("cannot call abstract subprogram &!",
3842 Name
(Call_Node
), Parent_Subp
);
3845 -- Inspect all formals of derived subprogram Subp. Compare parameter
3846 -- types with the parent subprogram and check whether an actual may
3847 -- need a type conversion to the corresponding formal of the parent
3850 -- Not clear whether intrinsic subprograms need such conversions. ???
3852 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3853 or else Is_Generic_Instance
(Parent_Subp
)
3856 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3857 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3858 -- and resolve the newly generated construct.
3864 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3866 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3873 Actual_Typ
: Entity_Id
;
3874 Formal_Typ
: Entity_Id
;
3875 Parent_Typ
: Entity_Id
;
3878 Actual
:= First_Actual
(Call_Node
);
3879 Formal
:= First_Formal
(Subp
);
3880 Parent_Formal
:= First_Formal
(Parent_Subp
);
3881 while Present
(Formal
) loop
3882 Actual_Typ
:= Etype
(Actual
);
3883 Formal_Typ
:= Etype
(Formal
);
3884 Parent_Typ
:= Etype
(Parent_Formal
);
3886 -- For an IN parameter of a scalar type, the parent formal
3887 -- type and derived formal type differ or the parent formal
3888 -- type and actual type do not match statically.
3890 if Is_Scalar_Type
(Formal_Typ
)
3891 and then Ekind
(Formal
) = E_In_Parameter
3892 and then Formal_Typ
/= Parent_Typ
3894 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3895 and then not Raises_Constraint_Error
(Actual
)
3897 Convert
(Actual
, Parent_Typ
);
3898 Enable_Range_Check
(Actual
);
3900 -- If the actual has been marked as requiring a range
3901 -- check, then generate it here.
3903 if Do_Range_Check
(Actual
) then
3904 Generate_Range_Check
3905 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3908 -- For access types, the parent formal type and actual type
3911 elsif Is_Access_Type
(Formal_Typ
)
3912 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3914 if Ekind
(Formal
) /= E_In_Parameter
then
3915 Convert
(Actual
, Parent_Typ
);
3917 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3918 and then Designated_Type
(Parent_Typ
) /=
3919 Designated_Type
(Actual_Typ
)
3920 and then not Is_Controlling_Formal
(Formal
)
3922 -- This unchecked conversion is not necessary unless
3923 -- inlining is enabled, because in that case the type
3924 -- mismatch may become visible in the body about to be
3928 Unchecked_Convert_To
(Parent_Typ
,
3929 Relocate_Node
(Actual
)));
3931 Resolve
(Actual
, Parent_Typ
);
3934 -- If there is a change of representation, then generate a
3935 -- warning, and do the change of representation.
3937 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3939 ("??change of representation required", Actual
);
3940 Convert
(Actual
, Parent_Typ
);
3942 -- For array and record types, the parent formal type and
3943 -- derived formal type have different sizes or pragma Pack
3946 elsif ((Is_Array_Type
(Formal_Typ
)
3947 and then Is_Array_Type
(Parent_Typ
))
3949 (Is_Record_Type
(Formal_Typ
)
3950 and then Is_Record_Type
(Parent_Typ
)))
3952 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3953 or else Has_Pragma_Pack
(Formal_Typ
) /=
3954 Has_Pragma_Pack
(Parent_Typ
))
3956 Convert
(Actual
, Parent_Typ
);
3959 Next_Actual
(Actual
);
3960 Next_Formal
(Formal
);
3961 Next_Formal
(Parent_Formal
);
3967 Subp
:= Parent_Subp
;
3970 -- Deal with case where call is an explicit dereference
3972 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3974 -- Handle case of access to protected subprogram type
3976 if Is_Access_Protected_Subprogram_Type
3977 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3979 -- If this is a call through an access to protected operation, the
3980 -- prefix has the form (object'address, operation'access). Rewrite
3981 -- as a for other protected calls: the object is the 1st parameter
3982 -- of the list of actuals.
3989 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3991 T
: constant Entity_Id
:=
3992 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3994 D_T
: constant Entity_Id
:=
3995 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3999 Make_Selected_Component
(Loc
,
4000 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4002 New_Occurrence_Of
(First_Entity
(T
), Loc
));
4005 Make_Selected_Component
(Loc
,
4006 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4008 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
4011 Make_Explicit_Dereference
(Loc
,
4014 if Present
(Parameter_Associations
(Call_Node
)) then
4015 Parm
:= Parameter_Associations
(Call_Node
);
4020 Prepend
(Obj
, Parm
);
4022 if Etype
(D_T
) = Standard_Void_Type
then
4024 Make_Procedure_Call_Statement
(Loc
,
4026 Parameter_Associations
=> Parm
);
4029 Make_Function_Call
(Loc
,
4031 Parameter_Associations
=> Parm
);
4034 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
4035 Set_Etype
(Call
, Etype
(D_T
));
4037 -- We do not re-analyze the call to avoid infinite recursion.
4038 -- We analyze separately the prefix and the object, and set
4039 -- the checks on the prefix that would otherwise be emitted
4040 -- when resolving a call.
4042 Rewrite
(Call_Node
, Call
);
4044 Apply_Access_Check
(Nam
);
4051 -- If this is a call to an intrinsic subprogram, then perform the
4052 -- appropriate expansion to the corresponding tree node and we
4053 -- are all done (since after that the call is gone).
4055 -- In the case where the intrinsic is to be processed by the back end,
4056 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4057 -- since the idea in this case is to pass the call unchanged. If the
4058 -- intrinsic is an inherited unchecked conversion, and the derived type
4059 -- is the target type of the conversion, we must retain it as the return
4060 -- type of the expression. Otherwise the expansion below, which uses the
4061 -- parent operation, will yield the wrong type.
4063 if Is_Intrinsic_Subprogram
(Subp
) then
4064 Expand_Intrinsic_Call
(Call_Node
, Subp
);
4066 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
4067 and then Parent_Subp
/= Orig_Subp
4068 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
4070 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
4076 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
4078 -- We perform a simple optimization on calls for To_Address by
4079 -- replacing them with an unchecked conversion. Not only is this
4080 -- efficient, but it also avoids order of elaboration problems when
4081 -- address clauses are inlined (address expression elaborated at the
4084 -- We perform this optimization regardless of whether we are in the
4085 -- main unit or in a unit in the context of the main unit, to ensure
4086 -- that the generated tree is the same in both cases, for CodePeer
4089 if Is_RTE
(Subp
, RE_To_Address
) then
4091 Unchecked_Convert_To
4092 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
4095 -- A call to a null procedure is replaced by a null statement, but we
4096 -- are not allowed to ignore possible side effects of the call, so we
4097 -- make sure that actuals are evaluated.
4098 -- We also suppress this optimization for GNATCoverage.
4100 elsif Is_Null_Procedure
(Subp
)
4101 and then not Opt
.Suppress_Control_Flow_Optimizations
4103 Actual
:= First_Actual
(Call_Node
);
4104 while Present
(Actual
) loop
4105 Remove_Side_Effects
(Actual
);
4106 Next_Actual
(Actual
);
4109 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
4113 -- Handle inlining. No action needed if the subprogram is not inlined
4115 if not Is_Inlined
(Subp
) then
4118 -- Frontend inlining of expression functions (performed also when
4119 -- backend inlining is enabled).
4121 elsif Is_Inlinable_Expression_Function
(Subp
) then
4122 Rewrite
(N
, New_Copy
(Expression_Of_Expression_Function
(Subp
)));
4126 -- Handle frontend inlining
4128 elsif not Back_End_Inlining
then
4129 Inlined_Subprogram
: declare
4131 Must_Inline
: Boolean := False;
4132 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
4135 -- Verify that the body to inline has already been seen, and
4136 -- that if the body is in the current unit the inlining does
4137 -- not occur earlier. This avoids order-of-elaboration problems
4140 -- This should be documented in sinfo/einfo ???
4143 or else Nkind
(Spec
) /= N_Subprogram_Declaration
4144 or else No
(Body_To_Inline
(Spec
))
4146 Must_Inline
:= False;
4148 -- If this an inherited function that returns a private type,
4149 -- do not inline if the full view is an unconstrained array,
4150 -- because such calls cannot be inlined.
4152 elsif Present
(Orig_Subp
)
4153 and then Is_Array_Type
(Etype
(Orig_Subp
))
4154 and then not Is_Constrained
(Etype
(Orig_Subp
))
4156 Must_Inline
:= False;
4158 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
4159 Must_Inline
:= False;
4162 Bod
:= Body_To_Inline
(Spec
);
4164 if (In_Extended_Main_Code_Unit
(Call_Node
)
4165 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
4166 or else Has_Pragma_Inline_Always
(Subp
))
4167 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4169 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
4171 Must_Inline
:= True;
4173 -- If we are compiling a package body that is not the main
4174 -- unit, it must be for inlining/instantiation purposes,
4175 -- in which case we inline the call to insure that the same
4176 -- temporaries are generated when compiling the body by
4177 -- itself. Otherwise link errors can occur.
4179 -- If the function being called is itself in the main unit,
4180 -- we cannot inline, because there is a risk of double
4181 -- elaboration and/or circularity: the inlining can make
4182 -- visible a private entity in the body of the main unit,
4183 -- that gigi will see before its sees its proper definition.
4185 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
4186 and then In_Package_Body
4188 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
4190 -- Inline calls to _postconditions when generating C code
4192 elsif Modify_Tree_For_C
4193 and then In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4194 and then Chars
(Name
(N
)) = Name_uPostconditions
4196 Must_Inline
:= True;
4201 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4204 -- Let the back end handle it
4206 Add_Inlined_Body
(Subp
, Call_Node
);
4208 if Front_End_Inlining
4209 and then Nkind
(Spec
) = N_Subprogram_Declaration
4210 and then (In_Extended_Main_Code_Unit
(Call_Node
))
4211 and then No
(Body_To_Inline
(Spec
))
4212 and then not Has_Completion
(Subp
)
4213 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
4216 ("cannot inline& (body not seen yet)?",
4220 end Inlined_Subprogram
;
4222 -- Back end inlining: let the back end handle it
4224 elsif No
(Unit_Declaration_Node
(Subp
))
4225 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
4226 N_Subprogram_Declaration
4227 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
4228 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
4231 Add_Inlined_Body
(Subp
, Call_Node
);
4233 -- If the inlined call appears within an instantiation and some
4234 -- level of optimization is required, ensure that the enclosing
4235 -- instance body is available so that the back-end can actually
4236 -- perform the inlining.
4239 and then Comes_From_Source
(Subp
)
4240 and then Optimization_Level
> 0
4245 Inst_Node
: Node_Id
;
4248 Inst
:= Scope
(Subp
);
4250 -- Find enclosing instance
4252 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
4253 exit when Is_Generic_Instance
(Inst
);
4254 Inst
:= Scope
(Inst
);
4258 and then Is_Generic_Instance
(Inst
)
4259 and then not Is_Inlined
(Inst
)
4261 Set_Is_Inlined
(Inst
);
4262 Decl
:= Unit_Declaration_Node
(Inst
);
4264 -- Do not add a pending instantiation if the body exits
4265 -- already, or if the instance is a compilation unit, or
4266 -- the instance node is missing.
4268 if Present
(Corresponding_Body
(Decl
))
4269 or else Nkind
(Parent
(Decl
)) = N_Compilation_Unit
4270 or else No
(Next
(Decl
))
4275 -- The instantiation node usually follows the package
4276 -- declaration for the instance. If the generic unit
4277 -- has aspect specifications, they are transformed
4278 -- into pragmas in the instance, and the instance node
4279 -- appears after them.
4281 Inst_Node
:= Next
(Decl
);
4283 while Nkind
(Inst_Node
) /= N_Package_Instantiation
loop
4284 Inst_Node
:= Next
(Inst_Node
);
4287 Add_Pending_Instantiation
(Inst_Node
, Decl
);
4293 -- Front end expansion of simple functions returning unconstrained
4294 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4295 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4296 -- also Build_Renamed_Body) cannot be expanded here because this may
4297 -- give rise to order-of-elaboration issues for the types of the
4298 -- parameters of the subprogram, if any.
4301 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4305 -- Check for protected subprogram. This is either an intra-object call,
4306 -- or a protected function call. Protected procedure calls are rewritten
4307 -- as entry calls and handled accordingly.
4309 -- In Ada 2005, this may be an indirect call to an access parameter that
4310 -- is an access_to_subprogram. In that case the anonymous type has a
4311 -- scope that is a protected operation, but the call is a regular one.
4312 -- In either case do not expand call if subprogram is eliminated.
4314 Scop
:= Scope
(Subp
);
4316 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
4317 and then Is_Protected_Type
(Scop
)
4318 and then Ekind
(Subp
) /= E_Subprogram_Type
4319 and then not Is_Eliminated
(Subp
)
4321 -- If the call is an internal one, it is rewritten as a call to the
4322 -- corresponding unprotected subprogram.
4324 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
4327 -- Functions returning controlled objects need special attention. If
4328 -- the return type is limited, then the context is initialization and
4329 -- different processing applies. If the call is to a protected function,
4330 -- the expansion above will call Expand_Call recursively. Otherwise the
4331 -- function call is transformed into a temporary which obtains the
4332 -- result from the secondary stack.
4334 if Needs_Finalization
(Etype
(Subp
)) then
4335 if not Is_Build_In_Place_Function_Call
(Call_Node
)
4337 (No
(First_Formal
(Subp
))
4339 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4341 Expand_Ctrl_Function_Call
(Call_Node
);
4343 -- Build-in-place function calls which appear in anonymous contexts
4344 -- need a transient scope to ensure the proper finalization of the
4345 -- intermediate result after its use.
4347 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4348 and then Nkind_In
(Parent
(Unqual_Conv
(Call_Node
)),
4349 N_Attribute_Reference
,
4351 N_Indexed_Component
,
4352 N_Object_Renaming_Declaration
,
4353 N_Procedure_Call_Statement
,
4354 N_Selected_Component
,
4357 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
4360 end Expand_Call_Helper
;
4362 -------------------------------
4363 -- Expand_Ctrl_Function_Call --
4364 -------------------------------
4366 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4367 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4368 -- Determine whether node N denotes a reference to an Ada 2012 container
4371 --------------------------
4372 -- Is_Element_Reference --
4373 --------------------------
4375 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4376 Ref
: constant Node_Id
:= Original_Node
(N
);
4379 -- Analysis marks an element reference by setting the generalized
4380 -- indexing attribute of an indexed component before the component
4381 -- is rewritten into a function call.
4384 Nkind
(Ref
) = N_Indexed_Component
4385 and then Present
(Generalized_Indexing
(Ref
));
4386 end Is_Element_Reference
;
4388 -- Start of processing for Expand_Ctrl_Function_Call
4391 -- Optimization, if the returned value (which is on the sec-stack) is
4392 -- returned again, no need to copy/readjust/finalize, we can just pass
4393 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4394 -- attachment is needed
4396 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4400 -- Resolution is now finished, make sure we don't start analysis again
4401 -- because of the duplication.
4405 -- A function which returns a controlled object uses the secondary
4406 -- stack. Rewrite the call into a temporary which obtains the result of
4407 -- the function using 'reference.
4409 Remove_Side_Effects
(N
);
4411 -- The side effect removal of the function call produced a temporary.
4412 -- When the context is a case expression, if expression, or expression
4413 -- with actions, the lifetime of the temporary must be extended to match
4414 -- that of the context. Otherwise the function result will be finalized
4415 -- too early and affect the result of the expression. To prevent this
4416 -- unwanted effect, the temporary should not be considered for clean up
4417 -- actions by the general finalization machinery.
4419 -- Exception to this rule are references to Ada 2012 container elements.
4420 -- Such references must be finalized at the end of each iteration of the
4421 -- related quantified expression, otherwise the container will remain
4424 if Nkind
(N
) = N_Explicit_Dereference
4425 and then Within_Case_Or_If_Expression
(N
)
4426 and then not Is_Element_Reference
(N
)
4428 Set_Is_Ignored_Transient
(Entity
(Prefix
(N
)));
4430 end Expand_Ctrl_Function_Call
;
4432 ----------------------------------------
4433 -- Expand_N_Extended_Return_Statement --
4434 ----------------------------------------
4436 -- If there is a Handled_Statement_Sequence, we rewrite this:
4438 -- return Result : T := <expression> do
4439 -- <handled_seq_of_stms>
4445 -- Result : T := <expression>;
4447 -- <handled_seq_of_stms>
4451 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4453 -- return Result : T := <expression>;
4457 -- return <expression>;
4459 -- unless it's build-in-place or there's no <expression>, in which case
4463 -- Result : T := <expression>;
4468 -- Note that this case could have been written by the user as an extended
4469 -- return statement, or could have been transformed to this from a simple
4470 -- return statement.
4472 -- That is, we need to have a reified return object if there are statements
4473 -- (which might refer to it) or if we're doing build-in-place (so we can
4474 -- set its address to the final resting place or if there is no expression
4475 -- (in which case default initial values might need to be set).
4477 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4478 Loc
: constant Source_Ptr
:= Sloc
(N
);
4480 function Build_Heap_Allocator
4481 (Temp_Id
: Entity_Id
;
4482 Temp_Typ
: Entity_Id
;
4483 Func_Id
: Entity_Id
;
4484 Ret_Typ
: Entity_Id
;
4485 Alloc_Expr
: Node_Id
) return Node_Id
;
4486 -- Create the statements necessary to allocate a return object on the
4487 -- caller's master. The master is available through implicit parameter
4488 -- BIPfinalizationmaster.
4490 -- if BIPfinalizationmaster /= null then
4492 -- type Ptr_Typ is access Ret_Typ;
4493 -- for Ptr_Typ'Storage_Pool use
4494 -- Base_Pool (BIPfinalizationmaster.all).all;
4498 -- procedure Allocate (...) is
4500 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4503 -- Local := <Alloc_Expr>;
4504 -- Temp_Id := Temp_Typ (Local);
4508 -- Temp_Id is the temporary which is used to reference the internally
4509 -- created object in all allocation forms. Temp_Typ is the type of the
4510 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4511 -- type of Func_Id. Alloc_Expr is the actual allocator.
4513 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
;
4514 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4516 -- From current activation chain
4517 -- To activation chain passed in by the caller
4518 -- New_Master master passed in by the caller
4520 -- Func_Id is the entity of the function where the extended return
4521 -- statement appears.
4523 --------------------------
4524 -- Build_Heap_Allocator --
4525 --------------------------
4527 function Build_Heap_Allocator
4528 (Temp_Id
: Entity_Id
;
4529 Temp_Typ
: Entity_Id
;
4530 Func_Id
: Entity_Id
;
4531 Ret_Typ
: Entity_Id
;
4532 Alloc_Expr
: Node_Id
) return Node_Id
4535 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4537 -- Processing for build-in-place object allocation.
4539 if Needs_Finalization
(Ret_Typ
) then
4541 Decls
: constant List_Id
:= New_List
;
4542 Fin_Mas_Id
: constant Entity_Id
:=
4543 Build_In_Place_Formal
4544 (Func_Id
, BIP_Finalization_Master
);
4545 Stmts
: constant List_Id
:= New_List
;
4546 Desig_Typ
: Entity_Id
;
4547 Local_Id
: Entity_Id
;
4548 Pool_Id
: Entity_Id
;
4549 Ptr_Typ
: Entity_Id
;
4553 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4555 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4558 Make_Object_Renaming_Declaration
(Loc
,
4559 Defining_Identifier
=> Pool_Id
,
4561 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4563 Make_Explicit_Dereference
(Loc
,
4565 Make_Function_Call
(Loc
,
4567 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4568 Parameter_Associations
=> New_List
(
4569 Make_Explicit_Dereference
(Loc
,
4571 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4573 -- Create an access type which uses the storage pool of the
4574 -- caller's master. This additional type is necessary because
4575 -- the finalization master cannot be associated with the type
4576 -- of the temporary. Otherwise the secondary stack allocation
4579 Desig_Typ
:= Ret_Typ
;
4581 -- Ensure that the build-in-place machinery uses a fat pointer
4582 -- when allocating an unconstrained array on the heap. In this
4583 -- case the result object type is a constrained array type even
4584 -- though the function type is unconstrained.
4586 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4587 Desig_Typ
:= Base_Type
(Desig_Typ
);
4591 -- type Ptr_Typ is access Desig_Typ;
4593 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4596 Make_Full_Type_Declaration
(Loc
,
4597 Defining_Identifier
=> Ptr_Typ
,
4599 Make_Access_To_Object_Definition
(Loc
,
4600 Subtype_Indication
=>
4601 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4603 -- Perform minor decoration in order to set the master and the
4604 -- storage pool attributes.
4606 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4607 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4608 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4610 -- Create the temporary, generate:
4611 -- Local_Id : Ptr_Typ;
4613 Local_Id
:= Make_Temporary
(Loc
, 'T');
4616 Make_Object_Declaration
(Loc
,
4617 Defining_Identifier
=> Local_Id
,
4618 Object_Definition
=>
4619 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4621 -- Allocate the object, generate:
4622 -- Local_Id := <Alloc_Expr>;
4625 Make_Assignment_Statement
(Loc
,
4626 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4627 Expression
=> Alloc_Expr
));
4630 -- Temp_Id := Temp_Typ (Local_Id);
4633 Make_Assignment_Statement
(Loc
,
4634 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4636 Unchecked_Convert_To
(Temp_Typ
,
4637 New_Occurrence_Of
(Local_Id
, Loc
))));
4639 -- Wrap the allocation in a block. This is further conditioned
4640 -- by checking the caller finalization master at runtime. A
4641 -- null value indicates a non-existent master, most likely due
4642 -- to a Finalize_Storage_Only allocation.
4645 -- if BIPfinalizationmaster /= null then
4654 Make_If_Statement
(Loc
,
4657 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4658 Right_Opnd
=> Make_Null
(Loc
)),
4660 Then_Statements
=> New_List
(
4661 Make_Block_Statement
(Loc
,
4662 Declarations
=> Decls
,
4663 Handled_Statement_Sequence
=>
4664 Make_Handled_Sequence_Of_Statements
(Loc
,
4665 Statements
=> Stmts
))));
4668 -- For all other cases, generate:
4669 -- Temp_Id := <Alloc_Expr>;
4673 Make_Assignment_Statement
(Loc
,
4674 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4675 Expression
=> Alloc_Expr
);
4677 end Build_Heap_Allocator
;
4679 ---------------------------
4680 -- Move_Activation_Chain --
4681 ---------------------------
4683 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
is
4686 Make_Procedure_Call_Statement
(Loc
,
4688 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4690 Parameter_Associations
=> New_List
(
4694 Make_Attribute_Reference
(Loc
,
4695 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4696 Attribute_Name
=> Name_Unrestricted_Access
),
4698 -- Destination chain
4701 (Build_In_Place_Formal
(Func_Id
, BIP_Activation_Chain
), Loc
),
4706 (Build_In_Place_Formal
(Func_Id
, BIP_Task_Master
), Loc
)));
4707 end Move_Activation_Chain
;
4711 Func_Id
: constant Entity_Id
:=
4712 Return_Applies_To
(Return_Statement_Entity
(N
));
4713 Is_BIP_Func
: constant Boolean :=
4714 Is_Build_In_Place_Function
(Func_Id
);
4715 Ret_Obj_Id
: constant Entity_Id
:=
4716 First_Entity
(Return_Statement_Entity
(N
));
4717 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4718 Ret_Typ
: constant Entity_Id
:= Etype
(Func_Id
);
4723 Return_Stmt
: Node_Id
;
4726 -- Start of processing for Expand_N_Extended_Return_Statement
4729 -- Given that functionality of interface thunks is simple (just displace
4730 -- the pointer to the object) they are always handled by means of
4731 -- simple return statements.
4733 pragma Assert
(not Is_Thunk
(Current_Scope
));
4735 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4736 Exp
:= Expression
(Ret_Obj_Decl
);
4741 HSS
:= Handled_Statement_Sequence
(N
);
4743 -- If the returned object needs finalization actions, the function must
4744 -- perform the appropriate cleanup should it fail to return. The state
4745 -- of the function itself is tracked through a flag which is coupled
4746 -- with the scope finalizer. There is one flag per each return object
4747 -- in case of multiple returns.
4749 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4751 Flag_Decl
: Node_Id
;
4752 Flag_Id
: Entity_Id
;
4756 -- Recover the function body
4758 Func_Bod
:= Unit_Declaration_Node
(Func_Id
);
4760 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4761 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4764 if Nkind
(Func_Bod
) = N_Function_Specification
then
4765 Func_Bod
:= Parent
(Func_Bod
); -- one more level for child units
4768 pragma Assert
(Nkind
(Func_Bod
) = N_Subprogram_Body
);
4770 -- Create a flag to track the function state
4772 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4773 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4775 -- Insert the flag at the beginning of the function declarations,
4777 -- Fnn : Boolean := False;
4780 Make_Object_Declaration
(Loc
,
4781 Defining_Identifier
=> Flag_Id
,
4782 Object_Definition
=>
4783 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4785 New_Occurrence_Of
(Standard_False
, Loc
));
4787 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4788 Analyze
(Flag_Decl
);
4792 -- Build a simple_return_statement that returns the return object when
4793 -- there is a statement sequence, or no expression, or the result will
4794 -- be built in place. Note however that we currently do this for all
4795 -- composite cases, even though not all are built in place.
4798 or else Is_Composite_Type
(Ret_Typ
)
4804 -- If the extended return has a handled statement sequence, then wrap
4805 -- it in a block and use the block as the first statement.
4809 Make_Block_Statement
(Loc
,
4810 Declarations
=> New_List
,
4811 Handled_Statement_Sequence
=> HSS
));
4814 -- If the result type contains tasks, we call Move_Activation_Chain.
4815 -- Later, the cleanup code will call Complete_Master, which will
4816 -- terminate any unactivated tasks belonging to the return statement
4817 -- master. But Move_Activation_Chain updates their master to be that
4818 -- of the caller, so they will not be terminated unless the return
4819 -- statement completes unsuccessfully due to exception, abort, goto,
4820 -- or exit. As a formality, we test whether the function requires the
4821 -- result to be built in place, though that's necessarily true for
4822 -- the case of result types with task parts.
4824 if Is_BIP_Func
and then Has_Task
(Ret_Typ
) then
4826 -- The return expression is an aggregate for a complex type which
4827 -- contains tasks. This particular case is left unexpanded since
4828 -- the regular expansion would insert all temporaries and
4829 -- initialization code in the wrong block.
4831 if Nkind
(Exp
) = N_Aggregate
then
4832 Expand_N_Aggregate
(Exp
);
4835 -- Do not move the activation chain if the return object does not
4838 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4839 Append_To
(Stmts
, Move_Activation_Chain
(Func_Id
));
4843 -- Update the state of the function right before the object is
4846 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4848 Flag_Id
: constant Entity_Id
:=
4849 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4856 Make_Assignment_Statement
(Loc
,
4857 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4858 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4862 -- Build a simple_return_statement that returns the return object
4865 Make_Simple_Return_Statement
(Loc
,
4866 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4867 Append_To
(Stmts
, Return_Stmt
);
4869 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4872 -- Case where we build a return statement block
4874 if Present
(HSS
) then
4876 Make_Block_Statement
(Loc
,
4877 Declarations
=> Return_Object_Declarations
(N
),
4878 Handled_Statement_Sequence
=> HSS
);
4880 -- We set the entity of the new block statement to be that of the
4881 -- return statement. This is necessary so that various fields, such
4882 -- as Finalization_Chain_Entity carry over from the return statement
4883 -- to the block. Note that this block is unusual, in that its entity
4884 -- is an E_Return_Statement rather than an E_Block.
4887 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4889 -- If the object decl was already rewritten as a renaming, then we
4890 -- don't want to do the object allocation and transformation of
4891 -- the return object declaration to a renaming. This case occurs
4892 -- when the return object is initialized by a call to another
4893 -- build-in-place function, and that function is responsible for
4894 -- the allocation of the return object.
4897 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4900 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4903 -- It is a regular BIP object declaration
4905 (Is_Build_In_Place_Function_Call
4906 (Expression
(Original_Node
(Ret_Obj_Decl
)))
4908 -- It is a BIP object declaration that displaces the pointer
4909 -- to the object to reference a convered interface type.
4912 Present
(Unqual_BIP_Iface_Function_Call
4913 (Expression
(Original_Node
(Ret_Obj_Decl
))))));
4915 -- Return the build-in-place result by reference
4917 Set_By_Ref
(Return_Stmt
);
4919 elsif Is_BIP_Func
then
4921 -- Locate the implicit access parameter associated with the
4922 -- caller-supplied return object and convert the return
4923 -- statement's return object declaration to a renaming of a
4924 -- dereference of the access parameter. If the return object's
4925 -- declaration includes an expression that has not already been
4926 -- expanded as separate assignments, then add an assignment
4927 -- statement to ensure the return object gets initialized.
4930 -- Result : T [:= <expression>];
4937 -- Result : T renames FuncRA.all;
4938 -- [Result := <expression;]
4943 Ret_Obj_Expr
: constant Node_Id
:= Expression
(Ret_Obj_Decl
);
4944 Ret_Obj_Typ
: constant Entity_Id
:= Etype
(Ret_Obj_Id
);
4946 Init_Assignment
: Node_Id
:= Empty
;
4947 Obj_Acc_Formal
: Entity_Id
;
4948 Obj_Acc_Deref
: Node_Id
;
4949 Obj_Alloc_Formal
: Entity_Id
;
4952 -- Build-in-place results must be returned by reference
4954 Set_By_Ref
(Return_Stmt
);
4956 -- Retrieve the implicit access parameter passed by the caller
4959 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
4961 -- If the return object's declaration includes an expression
4962 -- and the declaration isn't marked as No_Initialization, then
4963 -- we need to generate an assignment to the object and insert
4964 -- it after the declaration before rewriting it as a renaming
4965 -- (otherwise we'll lose the initialization). The case where
4966 -- the result type is an interface (or class-wide interface)
4967 -- is also excluded because the context of the function call
4968 -- must be unconstrained, so the initialization will always
4969 -- be done as part of an allocator evaluation (storage pool
4970 -- or secondary stack), never to a constrained target object
4971 -- passed in by the caller. Besides the assignment being
4972 -- unneeded in this case, it avoids problems with trying to
4973 -- generate a dispatching assignment when the return expression
4974 -- is a nonlimited descendant of a limited interface (the
4975 -- interface has no assignment operation).
4977 if Present
(Ret_Obj_Expr
)
4978 and then not No_Initialization
(Ret_Obj_Decl
)
4979 and then not Is_Interface
(Ret_Obj_Typ
)
4982 Make_Assignment_Statement
(Loc
,
4983 Name
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
),
4984 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
));
4986 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
4987 Set_Assignment_OK
(Name
(Init_Assignment
));
4988 Set_No_Ctrl_Actions
(Init_Assignment
);
4990 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4991 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4993 Set_Expression
(Ret_Obj_Decl
, Empty
);
4995 if Is_Class_Wide_Type
(Etype
(Ret_Obj_Id
))
4996 and then not Is_Class_Wide_Type
4997 (Etype
(Expression
(Init_Assignment
)))
4999 Rewrite
(Expression
(Init_Assignment
),
5000 Make_Type_Conversion
(Loc
,
5002 New_Occurrence_Of
(Etype
(Ret_Obj_Id
), Loc
),
5004 Relocate_Node
(Expression
(Init_Assignment
))));
5007 -- In the case of functions where the calling context can
5008 -- determine the form of allocation needed, initialization
5009 -- is done with each part of the if statement that handles
5010 -- the different forms of allocation (this is true for
5011 -- unconstrained and tagged result subtypes).
5013 if Is_Constrained
(Ret_Typ
)
5014 and then not Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5016 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
5020 -- When the function's subtype is unconstrained, a run-time
5021 -- test is needed to determine the form of allocation to use
5022 -- for the return object. The function has an implicit formal
5023 -- parameter indicating this. If the BIP_Alloc_Form formal has
5024 -- the value one, then the caller has passed access to an
5025 -- existing object for use as the return object. If the value
5026 -- is two, then the return object must be allocated on the
5027 -- secondary stack. Otherwise, the object must be allocated in
5028 -- a storage pool. We generate an if statement to test the
5029 -- implicit allocation formal and initialize a local access
5030 -- value appropriately, creating allocators in the secondary
5031 -- stack and global heap cases. The special formal also exists
5032 -- and must be tested when the function has a tagged result,
5033 -- even when the result subtype is constrained, because in
5034 -- general such functions can be called in dispatching contexts
5035 -- and must be handled similarly to functions with a class-wide
5038 if not Is_Constrained
(Ret_Typ
)
5039 or else Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5042 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
5045 Pool_Id
: constant Entity_Id
:=
5046 Make_Temporary
(Loc
, 'P');
5047 Alloc_Obj_Id
: Entity_Id
;
5048 Alloc_Obj_Decl
: Node_Id
;
5049 Alloc_If_Stmt
: Node_Id
;
5050 Heap_Allocator
: Node_Id
;
5051 Pool_Decl
: Node_Id
;
5052 Pool_Allocator
: Node_Id
;
5053 Ptr_Type_Decl
: Node_Id
;
5054 Ref_Type
: Entity_Id
;
5055 SS_Allocator
: Node_Id
;
5058 -- Reuse the itype created for the function's implicit
5059 -- access formal. This avoids the need to create a new
5060 -- access type here, plus it allows assigning the access
5061 -- formal directly without applying a conversion.
5063 -- Ref_Type := Etype (Object_Access);
5065 -- Create an access type designating the function's
5068 Ref_Type
:= Make_Temporary
(Loc
, 'A');
5071 Make_Full_Type_Declaration
(Loc
,
5072 Defining_Identifier
=> Ref_Type
,
5074 Make_Access_To_Object_Definition
(Loc
,
5075 All_Present
=> True,
5076 Subtype_Indication
=>
5077 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
)));
5079 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
5081 -- Create an access object that will be initialized to an
5082 -- access value denoting the return object, either coming
5083 -- from an implicit access value passed in by the caller
5084 -- or from the result of an allocator.
5086 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
5087 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
5090 Make_Object_Declaration
(Loc
,
5091 Defining_Identifier
=> Alloc_Obj_Id
,
5092 Object_Definition
=>
5093 New_Occurrence_Of
(Ref_Type
, Loc
));
5095 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
5097 -- Create allocators for both the secondary stack and
5098 -- global heap. If there's an initialization expression,
5099 -- then create these as initialized allocators.
5101 if Present
(Ret_Obj_Expr
)
5102 and then not No_Initialization
(Ret_Obj_Decl
)
5104 -- Always use the type of the expression for the
5105 -- qualified expression, rather than the result type.
5106 -- In general we cannot always use the result type
5107 -- for the allocator, because the expression might be
5108 -- of a specific type, such as in the case of an
5109 -- aggregate or even a nonlimited object when the
5110 -- result type is a limited class-wide interface type.
5113 Make_Allocator
(Loc
,
5115 Make_Qualified_Expression
(Loc
,
5118 (Etype
(Ret_Obj_Expr
), Loc
),
5119 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
)));
5122 -- If the function returns a class-wide type we cannot
5123 -- use the return type for the allocator. Instead we
5124 -- use the type of the expression, which must be an
5125 -- aggregate of a definite type.
5127 if Is_Class_Wide_Type
(Ret_Obj_Typ
) then
5129 Make_Allocator
(Loc
,
5132 (Etype
(Ret_Obj_Expr
), Loc
));
5135 Make_Allocator
(Loc
,
5137 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
));
5140 -- If the object requires default initialization then
5141 -- that will happen later following the elaboration of
5142 -- the object renaming. If we don't turn it off here
5143 -- then the object will be default initialized twice.
5145 Set_No_Initialization
(Heap_Allocator
);
5148 -- Set the flag indicating that the allocator came from
5149 -- a build-in-place return statement, so we can avoid
5150 -- adjusting the allocated object. Note that this flag
5151 -- will be inherited by the copies made below.
5153 Set_Alloc_For_BIP_Return
(Heap_Allocator
);
5155 -- The Pool_Allocator is just like the Heap_Allocator,
5156 -- except we set Storage_Pool and Procedure_To_Call so
5157 -- it will use the user-defined storage pool.
5159 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5160 pragma Assert
(Alloc_For_BIP_Return
(Pool_Allocator
));
5162 -- Do not generate the renaming of the build-in-place
5163 -- pool parameter on ZFP because the parameter is not
5164 -- created in the first place.
5166 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
5168 Make_Object_Renaming_Declaration
(Loc
,
5169 Defining_Identifier
=> Pool_Id
,
5172 (RTE
(RE_Root_Storage_Pool
), Loc
),
5174 Make_Explicit_Dereference
(Loc
,
5176 (Build_In_Place_Formal
5177 (Func_Id
, BIP_Storage_Pool
), Loc
)));
5178 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
5179 Set_Procedure_To_Call
5180 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
5182 Pool_Decl
:= Make_Null_Statement
(Loc
);
5185 -- If the No_Allocators restriction is active, then only
5186 -- an allocator for secondary stack allocation is needed.
5187 -- It's OK for such allocators to have Comes_From_Source
5188 -- set to False, because gigi knows not to flag them as
5189 -- being a violation of No_Implicit_Heap_Allocations.
5191 if Restriction_Active
(No_Allocators
) then
5192 SS_Allocator
:= Heap_Allocator
;
5193 Heap_Allocator
:= Make_Null
(Loc
);
5194 Pool_Allocator
:= Make_Null
(Loc
);
5196 -- Otherwise the heap and pool allocators may be needed,
5197 -- so we make another allocator for secondary stack
5201 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5202 pragma Assert
(Alloc_For_BIP_Return
(SS_Allocator
));
5204 -- The heap and pool allocators are marked as
5205 -- Comes_From_Source since they correspond to an
5206 -- explicit user-written allocator (that is, it will
5207 -- only be executed on behalf of callers that call the
5208 -- function as initialization for such an allocator).
5209 -- Prevents errors when No_Implicit_Heap_Allocations
5212 Set_Comes_From_Source
(Heap_Allocator
, True);
5213 Set_Comes_From_Source
(Pool_Allocator
, True);
5216 -- The allocator is returned on the secondary stack.
5218 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
5219 Set_Procedure_To_Call
5220 (SS_Allocator
, RTE
(RE_SS_Allocate
));
5222 -- The allocator is returned on the secondary stack,
5223 -- so indicate that the function return, as well as
5224 -- all blocks that encloses the allocator, must not
5225 -- release it. The flags must be set now because
5226 -- the decision to use the secondary stack is done
5227 -- very late in the course of expanding the return
5228 -- statement, past the point where these flags are
5231 Set_Uses_Sec_Stack
(Func_Id
);
5232 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
5233 Set_Sec_Stack_Needed_For_Return
5234 (Return_Statement_Entity
(N
));
5235 Set_Enclosing_Sec_Stack_Return
(N
);
5237 -- Create an if statement to test the BIP_Alloc_Form
5238 -- formal and initialize the access object to either the
5239 -- BIP_Object_Access formal (BIP_Alloc_Form =
5240 -- Caller_Allocation), the result of allocating the
5241 -- object in the secondary stack (BIP_Alloc_Form =
5242 -- Secondary_Stack), or else an allocator to create the
5243 -- return object in the heap or user-defined pool
5244 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5246 -- ??? An unchecked type conversion must be made in the
5247 -- case of assigning the access object formal to the
5248 -- local access object, because a normal conversion would
5249 -- be illegal in some cases (such as converting access-
5250 -- to-unconstrained to access-to-constrained), but the
5251 -- the unchecked conversion will presumably fail to work
5252 -- right in just such cases. It's not clear at all how to
5256 Make_If_Statement
(Loc
,
5260 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5262 Make_Integer_Literal
(Loc
,
5263 UI_From_Int
(BIP_Allocation_Form
'Pos
5264 (Caller_Allocation
)))),
5266 Then_Statements
=> New_List
(
5267 Make_Assignment_Statement
(Loc
,
5269 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5271 Make_Unchecked_Type_Conversion
(Loc
,
5273 New_Occurrence_Of
(Ref_Type
, Loc
),
5275 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
5277 Elsif_Parts
=> New_List
(
5278 Make_Elsif_Part
(Loc
,
5282 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5284 Make_Integer_Literal
(Loc
,
5285 UI_From_Int
(BIP_Allocation_Form
'Pos
5286 (Secondary_Stack
)))),
5288 Then_Statements
=> New_List
(
5289 Make_Assignment_Statement
(Loc
,
5291 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5292 Expression
=> SS_Allocator
))),
5294 Make_Elsif_Part
(Loc
,
5298 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5300 Make_Integer_Literal
(Loc
,
5301 UI_From_Int
(BIP_Allocation_Form
'Pos
5304 Then_Statements
=> New_List
(
5305 Build_Heap_Allocator
5306 (Temp_Id
=> Alloc_Obj_Id
,
5307 Temp_Typ
=> Ref_Type
,
5309 Ret_Typ
=> Ret_Obj_Typ
,
5310 Alloc_Expr
=> Heap_Allocator
))),
5312 -- ???If all is well, we can put the following
5313 -- 'elsif' in the 'else', but this is a useful
5314 -- self-check in case caller and callee don't agree
5315 -- on whether BIPAlloc and so on should be passed.
5317 Make_Elsif_Part
(Loc
,
5321 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5323 Make_Integer_Literal
(Loc
,
5324 UI_From_Int
(BIP_Allocation_Form
'Pos
5325 (User_Storage_Pool
)))),
5327 Then_Statements
=> New_List
(
5329 Build_Heap_Allocator
5330 (Temp_Id
=> Alloc_Obj_Id
,
5331 Temp_Typ
=> Ref_Type
,
5333 Ret_Typ
=> Ret_Obj_Typ
,
5334 Alloc_Expr
=> Pool_Allocator
)))),
5336 -- Raise Program_Error if it's none of the above;
5337 -- this is a compiler bug. ???PE_All_Guards_Closed
5338 -- is bogus; we should have a new code.
5340 Else_Statements
=> New_List
(
5341 Make_Raise_Program_Error
(Loc
,
5342 Reason
=> PE_All_Guards_Closed
)));
5344 -- If a separate initialization assignment was created
5345 -- earlier, append that following the assignment of the
5346 -- implicit access formal to the access object, to ensure
5347 -- that the return object is initialized in that case. In
5348 -- this situation, the target of the assignment must be
5349 -- rewritten to denote a dereference of the access to the
5350 -- return object passed in by the caller.
5352 if Present
(Init_Assignment
) then
5353 Rewrite
(Name
(Init_Assignment
),
5354 Make_Explicit_Dereference
(Loc
,
5355 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
5357 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5360 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
5363 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
5365 -- Remember the local access object for use in the
5366 -- dereference of the renaming created below.
5368 Obj_Acc_Formal
:= Alloc_Obj_Id
;
5372 -- Replace the return object declaration with a renaming of a
5373 -- dereference of the access value designating the return
5377 Make_Explicit_Dereference
(Loc
,
5378 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
5380 Rewrite
(Ret_Obj_Decl
,
5381 Make_Object_Renaming_Declaration
(Loc
,
5382 Defining_Identifier
=> Ret_Obj_Id
,
5383 Access_Definition
=> Empty
,
5384 Subtype_Mark
=> New_Occurrence_Of
(Ret_Obj_Typ
, Loc
),
5385 Name
=> Obj_Acc_Deref
));
5387 Set_Renamed_Object
(Ret_Obj_Id
, Obj_Acc_Deref
);
5391 -- Case where we do not build a block
5394 -- We're about to drop Return_Object_Declarations on the floor, so
5395 -- we need to insert it, in case it got expanded into useful code.
5396 -- Remove side effects from expression, which may be duplicated in
5397 -- subsequent checks (see Expand_Simple_Function_Return).
5399 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5400 Remove_Side_Effects
(Exp
);
5402 -- Build simple_return_statement that returns the expression directly
5404 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5405 Result
:= Return_Stmt
;
5408 -- Set the flag to prevent infinite recursion
5410 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5412 Rewrite
(N
, Result
);
5414 end Expand_N_Extended_Return_Statement
;
5416 ----------------------------
5417 -- Expand_N_Function_Call --
5418 ----------------------------
5420 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5423 end Expand_N_Function_Call
;
5425 ---------------------------------------
5426 -- Expand_N_Procedure_Call_Statement --
5427 ---------------------------------------
5429 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5432 end Expand_N_Procedure_Call_Statement
;
5434 --------------------------------------
5435 -- Expand_N_Simple_Return_Statement --
5436 --------------------------------------
5438 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5440 -- Defend against previous errors (i.e. the return statement calls a
5441 -- function that is not available in configurable runtime).
5443 if Present
(Expression
(N
))
5444 and then Nkind
(Expression
(N
)) = N_Empty
5446 Check_Error_Detected
;
5450 -- Distinguish the function and non-function cases:
5452 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5454 | E_Generic_Function
5456 Expand_Simple_Function_Return
(N
);
5460 | E_Generic_Procedure
5462 | E_Return_Statement
5464 Expand_Non_Function_Return
(N
);
5467 raise Program_Error
;
5471 when RE_Not_Available
=>
5473 end Expand_N_Simple_Return_Statement
;
5475 ------------------------------
5476 -- Expand_N_Subprogram_Body --
5477 ------------------------------
5479 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5482 -- Add dummy push/pop label nodes at start and end to clear any local
5483 -- exception indications if local-exception-to-goto optimization is active.
5485 -- Add return statement if last statement in body is not a return statement
5486 -- (this makes things easier on Gigi which does not want to have to handle
5487 -- a missing return).
5489 -- Add call to Activate_Tasks if body is a task activator
5491 -- Deal with possible detection of infinite recursion
5493 -- Eliminate body completely if convention stubbed
5495 -- Encode entity names within body, since we will not need to reference
5496 -- these entities any longer in the front end.
5498 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5500 -- Reset Pure indication if any parameter has root type System.Address
5501 -- or has any parameters of limited types, where limited means that the
5502 -- run-time view is limited (i.e. the full type is limited).
5506 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5507 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
5508 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5509 Loc
: constant Source_Ptr
:= Sloc
(N
);
5511 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
);
5512 -- Append a return statement to the statement sequence Stmts if the last
5513 -- statement is not already a return or a goto statement. Note that the
5514 -- latter test is not critical, it does not matter if we add a few extra
5515 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5516 -- the corresponding spec of the subprogram body.
5522 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
) is
5523 Last_Stmt
: Node_Id
;
5528 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5529 -- not relevant in this context since they are not executable.
5531 Last_Stmt
:= Last
(Stmts
);
5532 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5536 -- Now insert return unless last statement is a transfer
5538 if not Is_Transfer
(Last_Stmt
) then
5540 -- The source location for the return is the end label of the
5541 -- procedure if present. Otherwise use the sloc of the last
5542 -- statement in the list. If the list comes from a generated
5543 -- exception handler and we are not debugging generated code,
5544 -- all the statements within the handler are made invisible
5547 if Nkind
(Parent
(Stmts
)) = N_Exception_Handler
5548 and then not Comes_From_Source
(Parent
(Stmts
))
5550 Loc
:= Sloc
(Last_Stmt
);
5551 elsif Present
(End_Label
(HSS
)) then
5552 Loc
:= Sloc
(End_Label
(HSS
));
5554 Loc
:= Sloc
(Last_Stmt
);
5557 -- Append return statement, and set analyzed manually. We can't
5558 -- call Analyze on this return since the scope is wrong.
5560 -- Note: it almost works to push the scope and then do the Analyze
5561 -- call, but something goes wrong in some weird cases and it is
5562 -- not worth worrying about ???
5564 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5566 -- The return statement is handled properly, and the call to the
5567 -- postcondition, inserted below, does not require information
5568 -- from the body either. However, that call is analyzed in the
5569 -- enclosing scope, and an elaboration check might improperly be
5570 -- added to it. A guard in Sem_Elab is needed to prevent that
5571 -- spurious check, see Check_Elab_Call.
5573 Append_To
(Stmts
, Stmt
);
5574 Set_Analyzed
(Stmt
);
5576 -- Call the _Postconditions procedure if the related subprogram
5577 -- has contract assertions that need to be verified on exit.
5579 if Ekind
(Spec_Id
) = E_Procedure
5580 and then Present
(Postconditions_Proc
(Spec_Id
))
5582 Insert_Action
(Stmt
,
5583 Make_Procedure_Call_Statement
(Loc
,
5585 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5594 Spec_Id
: Entity_Id
;
5596 -- Start of processing for Expand_N_Subprogram_Body
5599 if Present
(Corresponding_Spec
(N
)) then
5600 Spec_Id
:= Corresponding_Spec
(N
);
5605 -- If this is a Pure function which has any parameters whose root type
5606 -- is System.Address, reset the Pure indication.
5607 -- This check is also performed when the subprogram is frozen, but we
5608 -- repeat it on the body so that the indication is consistent, and so
5609 -- it applies as well to bodies without separate specifications.
5611 if Is_Pure
(Spec_Id
)
5612 and then Is_Subprogram
(Spec_Id
)
5613 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5615 Check_Function_With_Address_Parameter
(Spec_Id
);
5617 if Spec_Id
/= Body_Id
then
5618 Set_Is_Pure
(Body_Id
, Is_Pure
(Spec_Id
));
5622 -- Set L to either the list of declarations if present, or to the list
5623 -- of statements if no declarations are present. This is used to insert
5624 -- new stuff at the start.
5626 if Is_Non_Empty_List
(Declarations
(N
)) then
5627 L
:= Declarations
(N
);
5629 L
:= Statements
(HSS
);
5632 -- If local-exception-to-goto optimization active, insert dummy push
5633 -- statements at start, and dummy pop statements at end, but inhibit
5634 -- this if we have No_Exception_Handlers, since they are useless and
5635 -- intefere with analysis, e.g. by codepeer.
5637 if (Debug_Flag_Dot_G
5638 or else Restriction_Active
(No_Exception_Propagation
))
5639 and then not Restriction_Active
(No_Exception_Handlers
)
5640 and then not CodePeer_Mode
5641 and then Is_Non_Empty_List
(L
)
5644 FS
: constant Node_Id
:= First
(L
);
5645 FL
: constant Source_Ptr
:= Sloc
(FS
);
5650 -- LS points to either last statement, if statements are present
5651 -- or to the last declaration if there are no statements present.
5652 -- It is the node after which the pop's are generated.
5654 if Is_Non_Empty_List
(Statements
(HSS
)) then
5655 LS
:= Last
(Statements
(HSS
));
5662 Insert_List_Before_And_Analyze
(FS
, New_List
(
5663 Make_Push_Constraint_Error_Label
(FL
),
5664 Make_Push_Program_Error_Label
(FL
),
5665 Make_Push_Storage_Error_Label
(FL
)));
5667 Insert_List_After_And_Analyze
(LS
, New_List
(
5668 Make_Pop_Constraint_Error_Label
(LL
),
5669 Make_Pop_Program_Error_Label
(LL
),
5670 Make_Pop_Storage_Error_Label
(LL
)));
5674 -- Need poll on entry to subprogram if polling enabled. We only do this
5675 -- for non-empty subprograms, since it does not seem necessary to poll
5676 -- for a dummy null subprogram.
5678 if Is_Non_Empty_List
(L
) then
5680 -- Do not add a polling call if the subprogram is to be inlined by
5681 -- the back-end, to avoid repeated calls with multiple inlinings.
5683 if Is_Inlined
(Spec_Id
)
5684 and then Front_End_Inlining
5685 and then Optimization_Level
> 1
5689 Generate_Poll_Call
(First
(L
));
5693 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5695 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5701 -- Loop through formals
5703 F
:= First_Formal
(Spec_Id
);
5704 while Present
(F
) loop
5705 if Is_Scalar_Type
(Etype
(F
))
5706 and then Ekind
(F
) = E_Out_Parameter
5708 Check_Restriction
(No_Default_Initialization
, F
);
5710 -- Insert the initialization. We turn off validity checks
5711 -- for this assignment, since we do not want any check on
5712 -- the initial value itself (which may well be invalid).
5713 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5716 Make_Assignment_Statement
(Loc
,
5717 Name
=> New_Occurrence_Of
(F
, Loc
),
5718 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5719 Set_Suppress_Assignment_Checks
(A
);
5721 Insert_Before_And_Analyze
(First
(L
),
5722 A
, Suppress
=> Validity_Check
);
5730 -- Clear out statement list for stubbed procedure
5732 if Present
(Corresponding_Spec
(N
)) then
5733 Set_Elaboration_Flag
(N
, Spec_Id
);
5735 if Convention
(Spec_Id
) = Convention_Stubbed
5736 or else Is_Eliminated
(Spec_Id
)
5738 Set_Declarations
(N
, Empty_List
);
5739 Set_Handled_Statement_Sequence
(N
,
5740 Make_Handled_Sequence_Of_Statements
(Loc
,
5741 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5747 -- Create a set of discriminals for the next protected subprogram body
5749 if Is_List_Member
(N
)
5750 and then Present
(Parent
(List_Containing
(N
)))
5751 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5752 and then Present
(Next_Protected_Operation
(N
))
5754 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5757 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5758 -- subprograms with no specs are not frozen.
5761 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5762 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5765 if Is_Limited_View
(Typ
) then
5766 Set_Returns_By_Ref
(Spec_Id
);
5768 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5769 Set_Returns_By_Ref
(Spec_Id
);
5773 -- For a procedure, we add a return for all possible syntactic ends of
5776 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5777 Add_Return
(Spec_Id
, Statements
(HSS
));
5779 if Present
(Exception_Handlers
(HSS
)) then
5780 Except_H
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5781 while Present
(Except_H
) loop
5782 Add_Return
(Spec_Id
, Statements
(Except_H
));
5783 Next_Non_Pragma
(Except_H
);
5787 -- For a function, we must deal with the case where there is at least
5788 -- one missing return. What we do is to wrap the entire body of the
5789 -- function in a block:
5802 -- raise Program_Error;
5805 -- This approach is necessary because the raise must be signalled to the
5806 -- caller, not handled by any local handler (RM 6.4(11)).
5808 -- Note: we do not need to analyze the constructed sequence here, since
5809 -- it has no handler, and an attempt to analyze the handled statement
5810 -- sequence twice is risky in various ways (e.g. the issue of expanding
5811 -- cleanup actions twice).
5813 elsif Has_Missing_Return
(Spec_Id
) then
5815 Hloc
: constant Source_Ptr
:= Sloc
(HSS
);
5816 Blok
: constant Node_Id
:=
5817 Make_Block_Statement
(Hloc
,
5818 Handled_Statement_Sequence
=> HSS
);
5819 Rais
: constant Node_Id
:=
5820 Make_Raise_Program_Error
(Hloc
,
5821 Reason
=> PE_Missing_Return
);
5824 Set_Handled_Statement_Sequence
(N
,
5825 Make_Handled_Sequence_Of_Statements
(Hloc
,
5826 Statements
=> New_List
(Blok
, Rais
)));
5828 Push_Scope
(Spec_Id
);
5835 -- If subprogram contains a parameterless recursive call, then we may
5836 -- have an infinite recursion, so see if we can generate code to check
5837 -- for this possibility if storage checks are not suppressed.
5839 if Ekind
(Spec_Id
) = E_Procedure
5840 and then Has_Recursive_Call
(Spec_Id
)
5841 and then not Storage_Checks_Suppressed
(Spec_Id
)
5843 Detect_Infinite_Recursion
(N
, Spec_Id
);
5846 -- Set to encode entity names in package body before gigi is called
5848 Qualify_Entity_Names
(N
);
5850 -- If the body belongs to a nonabstract library-level source primitive
5851 -- of a tagged type, install an elaboration check which ensures that a
5852 -- dispatching call targeting the primitive will not execute the body
5853 -- without it being previously elaborated.
5855 Install_Primitive_Elaboration_Check
(N
);
5856 end Expand_N_Subprogram_Body
;
5858 -----------------------------------
5859 -- Expand_N_Subprogram_Body_Stub --
5860 -----------------------------------
5862 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5866 if Present
(Corresponding_Body
(N
)) then
5867 Bod
:= Unit_Declaration_Node
(Corresponding_Body
(N
));
5869 -- The body may have been expanded already when it is analyzed
5870 -- through the subunit node. Do no expand again: it interferes
5871 -- with the construction of unnesting tables when generating C.
5873 if not Analyzed
(Bod
) then
5874 Expand_N_Subprogram_Body
(Bod
);
5877 -- Add full qualification to entities that may be created late
5878 -- during unnesting.
5880 Qualify_Entity_Names
(N
);
5882 end Expand_N_Subprogram_Body_Stub
;
5884 -------------------------------------
5885 -- Expand_N_Subprogram_Declaration --
5886 -------------------------------------
5888 -- If the declaration appears within a protected body, it is a private
5889 -- operation of the protected type. We must create the corresponding
5890 -- protected subprogram an associated formals. For a normal protected
5891 -- operation, this is done when expanding the protected type declaration.
5893 -- If the declaration is for a null procedure, emit null body
5895 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5896 Loc
: constant Source_Ptr
:= Sloc
(N
);
5897 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5901 Scop
: constant Entity_Id
:= Scope
(Subp
);
5903 Prot_Decl
: Node_Id
;
5904 Prot_Id
: Entity_Id
;
5906 -- Start of processing for Expand_N_Subprogram_Declaration
5909 -- In SPARK, subprogram declarations are only allowed in package
5912 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5913 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5914 Check_SPARK_05_Restriction
5915 ("subprogram declaration is not a library item", N
);
5917 elsif Present
(Next
(N
))
5918 and then Nkind
(Next
(N
)) = N_Pragma
5919 and then Get_Pragma_Id
(Next
(N
)) = Pragma_Import
5921 -- In SPARK, subprogram declarations are also permitted in
5922 -- declarative parts when immediately followed by a corresponding
5923 -- pragma Import. We only check here that there is some pragma
5928 Check_SPARK_05_Restriction
5929 ("subprogram declaration is not allowed here", N
);
5933 -- Deal with case of protected subprogram. Do not generate protected
5934 -- operation if operation is flagged as eliminated.
5936 if Is_List_Member
(N
)
5937 and then Present
(Parent
(List_Containing
(N
)))
5938 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5939 and then Is_Protected_Type
(Scop
)
5941 if No
(Protected_Body_Subprogram
(Subp
))
5942 and then not Is_Eliminated
(Subp
)
5945 Make_Subprogram_Declaration
(Loc
,
5947 Build_Protected_Sub_Specification
5948 (N
, Scop
, Unprotected_Mode
));
5950 -- The protected subprogram is declared outside of the protected
5951 -- body. Given that the body has frozen all entities so far, we
5952 -- analyze the subprogram and perform freezing actions explicitly.
5953 -- including the generation of an explicit freeze node, to ensure
5954 -- that gigi has the proper order of elaboration.
5955 -- If the body is a subunit, the insertion point is before the
5956 -- stub in the parent.
5958 Prot_Bod
:= Parent
(List_Containing
(N
));
5960 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5961 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5964 Insert_Before
(Prot_Bod
, Prot_Decl
);
5965 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5966 Set_Has_Delayed_Freeze
(Prot_Id
);
5968 Push_Scope
(Scope
(Scop
));
5969 Analyze
(Prot_Decl
);
5970 Freeze_Before
(N
, Prot_Id
);
5971 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5973 -- Create protected operation as well. Even though the operation
5974 -- is only accessible within the body, it is possible to make it
5975 -- available outside of the protected object by using 'Access to
5976 -- provide a callback, so build protected version in all cases.
5979 Make_Subprogram_Declaration
(Loc
,
5981 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5982 Insert_Before
(Prot_Bod
, Prot_Decl
);
5983 Analyze
(Prot_Decl
);
5988 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5989 -- cases this is superfluous because calls to it will be automatically
5990 -- inlined, but we definitely need the body if preconditions for the
5991 -- procedure are present, or if performing coverage analysis.
5993 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5994 and then Null_Present
(Specification
(N
))
5997 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
6000 Set_Has_Completion
(Subp
, False);
6001 Append_Freeze_Action
(Subp
, Bod
);
6003 -- The body now contains raise statements, so calls to it will
6006 Set_Is_Inlined
(Subp
, False);
6010 -- When generating C code, transform a function that returns a
6011 -- constrained array type into a procedure with an out parameter
6012 -- that carries the return value.
6014 -- We skip this transformation for unchecked conversions, since they
6015 -- are not needed by the C generator (and this also produces cleaner
6018 if Modify_Tree_For_C
6019 and then Nkind
(Specification
(N
)) = N_Function_Specification
6020 and then Is_Array_Type
(Etype
(Subp
))
6021 and then Is_Constrained
(Etype
(Subp
))
6022 and then not Is_Unchecked_Conversion_Instance
(Subp
)
6024 Build_Procedure_Form
(N
);
6026 end Expand_N_Subprogram_Declaration
;
6028 --------------------------------
6029 -- Expand_Non_Function_Return --
6030 --------------------------------
6032 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
6033 pragma Assert
(No
(Expression
(N
)));
6035 Loc
: constant Source_Ptr
:= Sloc
(N
);
6036 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
6037 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
6040 Goto_Stat
: Node_Id
;
6044 -- Call the _Postconditions procedure if the related subprogram has
6045 -- contract assertions that need to be verified on exit.
6047 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
6048 and then Present
(Postconditions_Proc
(Scope_Id
))
6051 Make_Procedure_Call_Statement
(Loc
,
6052 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
6055 -- If it is a return from a procedure do no extra steps
6057 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
6060 -- If it is a nested return within an extended one, replace it with a
6061 -- return of the previously declared return object.
6063 elsif Kind
= E_Return_Statement
then
6065 Make_Simple_Return_Statement
(Loc
,
6067 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
6068 Set_Comes_From_Extended_Return_Statement
(N
);
6069 Set_Return_Statement_Entity
(N
, Scope_Id
);
6070 Expand_Simple_Function_Return
(N
);
6074 pragma Assert
(Is_Entry
(Scope_Id
));
6076 -- Look at the enclosing block to see whether the return is from an
6077 -- accept statement or an entry body.
6079 for J
in reverse 0 .. Scope_Stack
.Last
loop
6080 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
6081 exit when Is_Concurrent_Type
(Scope_Id
);
6084 -- If it is a return from accept statement it is expanded as call to
6085 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6087 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6088 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6090 if Is_Task_Type
(Scope_Id
) then
6093 Make_Procedure_Call_Statement
(Loc
,
6094 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
6095 Insert_Before
(N
, Call
);
6096 -- why not insert actions here???
6099 Acc_Stat
:= Parent
(N
);
6100 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
6101 Acc_Stat
:= Parent
(Acc_Stat
);
6104 Lab_Node
:= Last
(Statements
6105 (Handled_Statement_Sequence
(Acc_Stat
)));
6107 Goto_Stat
:= Make_Goto_Statement
(Loc
,
6108 Name
=> New_Occurrence_Of
6109 (Entity
(Identifier
(Lab_Node
)), Loc
));
6111 Set_Analyzed
(Goto_Stat
);
6113 Rewrite
(N
, Goto_Stat
);
6116 -- If it is a return from an entry body, put a Complete_Entry_Body call
6117 -- in front of the return.
6119 elsif Is_Protected_Type
(Scope_Id
) then
6121 Make_Procedure_Call_Statement
(Loc
,
6123 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
6124 Parameter_Associations
=> New_List
(
6125 Make_Attribute_Reference
(Loc
,
6128 (Find_Protection_Object
(Current_Scope
), Loc
),
6129 Attribute_Name
=> Name_Unchecked_Access
)));
6131 Insert_Before
(N
, Call
);
6134 end Expand_Non_Function_Return
;
6136 ---------------------------------------
6137 -- Expand_Protected_Object_Reference --
6138 ---------------------------------------
6140 function Expand_Protected_Object_Reference
6142 Scop
: Entity_Id
) return Node_Id
6144 Loc
: constant Source_Ptr
:= Sloc
(N
);
6151 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
6152 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
6154 -- Find enclosing protected operation, and retrieve its first parameter,
6155 -- which denotes the enclosing protected object. If the enclosing
6156 -- operation is an entry, we are immediately within the protected body,
6157 -- and we can retrieve the object from the service entries procedure. A
6158 -- barrier function has the same signature as an entry. A barrier
6159 -- function is compiled within the protected object, but unlike
6160 -- protected operations its never needs locks, so that its protected
6161 -- body subprogram points to itself.
6163 Proc
:= Current_Scope
;
6164 while Present
(Proc
)
6165 and then Scope
(Proc
) /= Scop
6167 Proc
:= Scope
(Proc
);
6170 Corr
:= Protected_Body_Subprogram
(Proc
);
6174 -- Previous error left expansion incomplete.
6175 -- Nothing to do on this call.
6182 (First
(Parameter_Specifications
(Parent
(Corr
))));
6184 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
6186 -- Protected function or procedure
6188 Set_Entity
(Rec
, Param
);
6190 -- Rec is a reference to an entity which will not be in scope when
6191 -- the call is reanalyzed, and needs no further analysis.
6196 -- Entry or barrier function for entry body. The first parameter of
6197 -- the entry body procedure is pointer to the object. We create a
6198 -- local variable of the proper type, duplicating what is done to
6199 -- define _object later on.
6203 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6207 Make_Full_Type_Declaration
(Loc
,
6208 Defining_Identifier
=> Obj_Ptr
,
6210 Make_Access_To_Object_Definition
(Loc
,
6211 Subtype_Indication
=>
6213 (Corresponding_Record_Type
(Scop
), Loc
))));
6215 Insert_Actions
(N
, Decls
);
6216 Freeze_Before
(N
, Obj_Ptr
);
6219 Make_Explicit_Dereference
(Loc
,
6221 Unchecked_Convert_To
(Obj_Ptr
,
6222 New_Occurrence_Of
(Param
, Loc
)));
6224 -- Analyze new actual. Other actuals in calls are already analyzed
6225 -- and the list of actuals is not reanalyzed after rewriting.
6227 Set_Parent
(Rec
, N
);
6233 end Expand_Protected_Object_Reference
;
6235 --------------------------------------
6236 -- Expand_Protected_Subprogram_Call --
6237 --------------------------------------
6239 procedure Expand_Protected_Subprogram_Call
6246 procedure Expand_Internal_Init_Call
;
6247 -- A call to an operation of the type may occur in the initialization
6248 -- of a private component. In that case the prefix of the call is an
6249 -- entity name and the call is treated as internal even though it
6250 -- appears in code outside of the protected type.
6252 procedure Freeze_Called_Function
;
6253 -- If it is a function call it can appear in elaboration code and
6254 -- the called entity must be frozen before the call. This must be
6255 -- done before the call is expanded, as the expansion may rewrite it
6256 -- to something other than a call (e.g. a temporary initialized in a
6257 -- transient block).
6259 -------------------------------
6260 -- Expand_Internal_Init_Call --
6261 -------------------------------
6263 procedure Expand_Internal_Init_Call
is
6265 -- If the context is a protected object (rather than a protected
6266 -- type) the call itself is bound to raise program_error because
6267 -- the protected body will not have been elaborated yet. This is
6268 -- diagnosed subsequently in Sem_Elab.
6270 Freeze_Called_Function
;
6272 -- The target of the internal call is the first formal of the
6273 -- enclosing initialization procedure.
6275 Rec
:= New_Occurrence_Of
(First_Formal
(Current_Scope
), Sloc
(N
));
6276 Build_Protected_Subprogram_Call
(N
,
6281 Resolve
(N
, Etype
(Subp
));
6282 end Expand_Internal_Init_Call
;
6284 ----------------------------
6285 -- Freeze_Called_Function --
6286 ----------------------------
6288 procedure Freeze_Called_Function
is
6290 if Ekind
(Subp
) = E_Function
then
6291 Freeze_Expression
(Name
(N
));
6293 end Freeze_Called_Function
;
6295 -- Start of processing for Expand_Protected_Subprogram_Call
6298 -- If the protected object is not an enclosing scope, this is an inter-
6299 -- object function call. Inter-object procedure calls are expanded by
6300 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6301 -- subprogram being called is in the protected body being compiled, and
6302 -- if the protected object in the call is statically the enclosing type.
6303 -- The object may be a component of some other data structure, in which
6304 -- case this must be handled as an inter-object call.
6306 if not In_Open_Scopes
(Scop
)
6307 or else Is_Entry_Wrapper
(Current_Scope
)
6308 or else not Is_Entity_Name
(Name
(N
))
6310 if Nkind
(Name
(N
)) = N_Selected_Component
then
6311 Rec
:= Prefix
(Name
(N
));
6313 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
6314 Rec
:= Prefix
(Prefix
(Name
(N
)));
6316 -- If this is a call within an entry wrapper, it appears within a
6317 -- precondition that calls another primitive of the synchronized
6318 -- type. The target object of the call is the first actual on the
6319 -- wrapper. Note that this is an external call, because the wrapper
6320 -- is called outside of the synchronized object. This means that
6321 -- an entry call to an entry with preconditions involves two
6322 -- synchronized operations.
6324 elsif Ekind
(Current_Scope
) = E_Procedure
6325 and then Is_Entry_Wrapper
(Current_Scope
)
6327 Rec
:= New_Occurrence_Of
(First_Entity
(Current_Scope
), Sloc
(N
));
6330 -- If the context is the initialization procedure for a protected
6331 -- type, the call is legal because the called entity must be a
6332 -- function of that enclosing type, and this is treated as an
6336 (Is_Entity_Name
(Name
(N
)) and then Inside_Init_Proc
);
6338 Expand_Internal_Init_Call
;
6342 Freeze_Called_Function
;
6343 Build_Protected_Subprogram_Call
(N
,
6344 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
6345 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
6349 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
6355 Freeze_Called_Function
;
6356 Build_Protected_Subprogram_Call
(N
,
6362 -- Analyze and resolve the new call. The actuals have already been
6363 -- resolved, but expansion of a function call will add extra actuals
6364 -- if needed. Analysis of a procedure call already includes resolution.
6368 if Ekind
(Subp
) = E_Function
then
6369 Resolve
(N
, Etype
(Subp
));
6371 end Expand_Protected_Subprogram_Call
;
6373 -----------------------------------
6374 -- Expand_Simple_Function_Return --
6375 -----------------------------------
6377 -- The "simple" comes from the syntax rule simple_return_statement. The
6378 -- semantics are not at all simple.
6380 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
6381 Loc
: constant Source_Ptr
:= Sloc
(N
);
6383 Scope_Id
: constant Entity_Id
:=
6384 Return_Applies_To
(Return_Statement_Entity
(N
));
6385 -- The function we are returning from
6387 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
6388 -- The result type of the function
6390 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
6392 Exp
: Node_Id
:= Expression
(N
);
6393 pragma Assert
(Present
(Exp
));
6395 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
6396 -- The type of the expression (not necessarily the same as R_Type)
6398 Subtype_Ind
: Node_Id
;
6399 -- If the result type of the function is class-wide and the expression
6400 -- has a specific type, then we use the expression's type as the type of
6401 -- the return object. In cases where the expression is an aggregate that
6402 -- is built in place, this avoids the need for an expensive conversion
6403 -- of the return object to the specific type on assignments to the
6404 -- individual components.
6407 if Is_Class_Wide_Type
(R_Type
)
6408 and then not Is_Class_Wide_Type
(Exptyp
)
6409 and then Nkind
(Exp
) /= N_Type_Conversion
6411 Subtype_Ind
:= New_Occurrence_Of
(Exptyp
, Loc
);
6413 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6415 -- If the result type is class-wide and the expression is a view
6416 -- conversion, the conversion plays no role in the expansion because
6417 -- it does not modify the tag of the object. Remove the conversion
6418 -- altogether to prevent tag overwriting.
6420 if Is_Class_Wide_Type
(R_Type
)
6421 and then not Is_Class_Wide_Type
(Exptyp
)
6422 and then Nkind
(Exp
) = N_Type_Conversion
6424 Exp
:= Expression
(Exp
);
6428 -- For the case of a simple return that does not come from an
6429 -- extended return, in the case of build-in-place, we rewrite
6430 -- "return <expression>;" to be:
6432 -- return _anon_ : <return_subtype> := <expression>
6434 -- The expansion produced by Expand_N_Extended_Return_Statement will
6435 -- contain simple return statements (for example, a block containing
6436 -- simple return of the return object), which brings us back here with
6437 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6438 -- checking for a simple return that does not come from an extended
6439 -- return is to avoid this infinite recursion.
6441 -- The reason for this design is that for Ada 2005 limited returns, we
6442 -- need to reify the return object, so we can build it "in place", and
6443 -- we need a block statement to hang finalization and tasking stuff.
6445 -- ??? In order to avoid disruption, we avoid translating to extended
6446 -- return except in the cases where we really need to (Ada 2005 for
6447 -- inherently limited). We might prefer to do this translation in all
6448 -- cases (except perhaps for the case of Ada 95 inherently limited),
6449 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6450 -- code. This would also allow us to do the build-in-place optimization
6451 -- for efficiency even in cases where it is semantically not required.
6453 -- As before, we check the type of the return expression rather than the
6454 -- return type of the function, because the latter may be a limited
6455 -- class-wide interface type, which is not a limited type, even though
6456 -- the type of the expression may be.
6459 (Comes_From_Extended_Return_Statement
(N
)
6460 or else not Is_Build_In_Place_Function_Call
(Exp
)
6461 or else Is_Build_In_Place_Function
(Scope_Id
));
6463 if not Comes_From_Extended_Return_Statement
(N
)
6464 and then Is_Build_In_Place_Function
(Scope_Id
)
6465 and then not Debug_Flag_Dot_L
6467 -- The functionality of interface thunks is simple and it is always
6468 -- handled by means of simple return statements. This leaves their
6469 -- expansion simple and clean.
6471 and then not Is_Thunk
(Current_Scope
)
6474 Return_Object_Entity
: constant Entity_Id
:=
6475 Make_Temporary
(Loc
, 'R', Exp
);
6477 Obj_Decl
: constant Node_Id
:=
6478 Make_Object_Declaration
(Loc
,
6479 Defining_Identifier
=> Return_Object_Entity
,
6480 Object_Definition
=> Subtype_Ind
,
6483 Ext
: constant Node_Id
:=
6484 Make_Extended_Return_Statement
(Loc
,
6485 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6486 -- Do not perform this high-level optimization if the result type
6487 -- is an interface because the "this" pointer must be displaced.
6496 -- Here we have a simple return statement that is part of the expansion
6497 -- of an extended return statement (either written by the user, or
6498 -- generated by the above code).
6500 -- Always normalize C/Fortran boolean result. This is not always needed,
6501 -- but it seems a good idea to minimize the passing around of non-
6502 -- normalized values, and in any case this handles the processing of
6503 -- barrier functions for protected types, which turn the condition into
6504 -- a return statement.
6506 if Is_Boolean_Type
(Exptyp
)
6507 and then Nonzero_Is_True
(Exptyp
)
6509 Adjust_Condition
(Exp
);
6510 Adjust_Result_Type
(Exp
, Exptyp
);
6513 -- Do validity check if enabled for returns
6515 if Validity_Checks_On
6516 and then Validity_Check_Returns
6521 -- Check the result expression of a scalar function against the subtype
6522 -- of the function by inserting a conversion. This conversion must
6523 -- eventually be performed for other classes of types, but for now it's
6524 -- only done for scalars.
6527 if Is_Scalar_Type
(Exptyp
) then
6528 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6530 -- The expression is resolved to ensure that the conversion gets
6531 -- expanded to generate a possible constraint check.
6533 Analyze_And_Resolve
(Exp
, R_Type
);
6536 -- Deal with returning variable length objects and controlled types
6538 -- Nothing to do if we are returning by reference, or this is not a
6539 -- type that requires special processing (indicated by the fact that
6540 -- it requires a cleanup scope for the secondary stack case).
6542 if Is_Build_In_Place_Function
(Scope_Id
)
6543 or else Is_Limited_Interface
(Exptyp
)
6547 -- No copy needed for thunks returning interface type objects since
6548 -- the object is returned by reference and the maximum functionality
6549 -- required is just to displace the pointer.
6551 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6554 -- If the call is within a thunk and the type is a limited view, the
6555 -- backend will eventually see the non-limited view of the type.
6557 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
6560 elsif not Requires_Transient_Scope
(R_Type
) then
6562 -- Mutable records with variable-length components are not returned
6563 -- on the sec-stack, so we need to make sure that the back end will
6564 -- only copy back the size of the actual value, and not the maximum
6565 -- size. We create an actual subtype for this purpose. However we
6566 -- need not do it if the expression is a function call since this
6567 -- will be done in the called function and doing it here too would
6568 -- cause a temporary with maximum size to be created.
6571 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6575 if Nkind
(Exp
) /= N_Function_Call
6576 and then Has_Discriminants
(Ubt
)
6577 and then not Is_Constrained
(Ubt
)
6578 and then not Has_Unchecked_Union
(Ubt
)
6580 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6581 Ent
:= Defining_Identifier
(Decl
);
6582 Insert_Action
(Exp
, Decl
);
6583 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6584 Analyze_And_Resolve
(Exp
);
6588 -- Here if secondary stack is used
6591 -- Prevent the reclamation of the secondary stack by all enclosing
6592 -- blocks and loops as well as the related function; otherwise the
6593 -- result would be reclaimed too early.
6595 Set_Enclosing_Sec_Stack_Return
(N
);
6597 -- Optimize the case where the result is a function call. In this
6598 -- case either the result is already on the secondary stack, or is
6599 -- already being returned with the stack pointer depressed and no
6600 -- further processing is required except to set the By_Ref flag
6601 -- to ensure that gigi does not attempt an extra unnecessary copy.
6602 -- (actually not just unnecessary but harmfully wrong in the case
6603 -- of a controlled type, where gigi does not know how to do a copy).
6604 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6605 -- for array types if the constrained status of the target type is
6606 -- different from that of the expression.
6608 if Requires_Transient_Scope
(Exptyp
)
6610 (not Is_Array_Type
(Exptyp
)
6611 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6612 or else CW_Or_Has_Controlled_Part
(Utyp
))
6613 and then Nkind
(Exp
) = N_Function_Call
6617 -- Remove side effects from the expression now so that other parts
6618 -- of the expander do not have to reanalyze this node without this
6621 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6623 -- Ada 2005 (AI-251): If the type of the returned object is
6624 -- an interface then add an implicit type conversion to force
6625 -- displacement of the "this" pointer.
6627 if Is_Interface
(R_Type
) then
6628 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6631 Analyze_And_Resolve
(Exp
, R_Type
);
6633 -- For controlled types, do the allocation on the secondary stack
6634 -- manually in order to call adjust at the right time:
6636 -- type Anon1 is access R_Type;
6637 -- for Anon1'Storage_pool use ss_pool;
6638 -- Anon2 : anon1 := new R_Type'(expr);
6639 -- return Anon2.all;
6641 -- We do the same for classwide types that are not potentially
6642 -- controlled (by the virtue of restriction No_Finalization) because
6643 -- gigi is not able to properly allocate class-wide types.
6645 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6647 Loc
: constant Source_Ptr
:= Sloc
(N
);
6648 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6649 Alloc_Node
: Node_Id
;
6653 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6655 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6657 -- This is an allocator for the secondary stack, and it's fine
6658 -- to have Comes_From_Source set False on it, as gigi knows not
6659 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6662 Make_Allocator
(Loc
,
6664 Make_Qualified_Expression
(Loc
,
6665 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6666 Expression
=> Relocate_Node
(Exp
)));
6668 -- We do not want discriminant checks on the declaration,
6669 -- given that it gets its value from the allocator.
6671 Set_No_Initialization
(Alloc_Node
);
6673 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6675 Insert_List_Before_And_Analyze
(N
, New_List
(
6676 Make_Full_Type_Declaration
(Loc
,
6677 Defining_Identifier
=> Acc_Typ
,
6679 Make_Access_To_Object_Definition
(Loc
,
6680 Subtype_Indication
=> Subtype_Ind
)),
6682 Make_Object_Declaration
(Loc
,
6683 Defining_Identifier
=> Temp
,
6684 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6685 Expression
=> Alloc_Node
)));
6688 Make_Explicit_Dereference
(Loc
,
6689 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6691 -- Ada 2005 (AI-251): If the type of the returned object is
6692 -- an interface then add an implicit type conversion to force
6693 -- displacement of the "this" pointer.
6695 if Is_Interface
(R_Type
) then
6696 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6699 Analyze_And_Resolve
(Exp
, R_Type
);
6702 -- Otherwise use the gigi mechanism to allocate result on the
6706 Check_Restriction
(No_Secondary_Stack
, N
);
6707 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6708 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6712 -- Implement the rules of 6.5(8-10), which require a tag check in
6713 -- the case of a limited tagged return type, and tag reassignment for
6714 -- nonlimited tagged results. These actions are needed when the return
6715 -- type is a specific tagged type and the result expression is a
6716 -- conversion or a formal parameter, because in that case the tag of
6717 -- the expression might differ from the tag of the specific result type.
6719 if Is_Tagged_Type
(Utyp
)
6720 and then not Is_Class_Wide_Type
(Utyp
)
6721 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6722 N_Unchecked_Type_Conversion
)
6723 or else (Is_Entity_Name
(Exp
)
6724 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6726 -- When the return type is limited, perform a check that the tag of
6727 -- the result is the same as the tag of the return type.
6729 if Is_Limited_Type
(R_Type
) then
6731 Make_Raise_Constraint_Error
(Loc
,
6735 Make_Selected_Component
(Loc
,
6736 Prefix
=> Duplicate_Subexpr
(Exp
),
6737 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6739 Make_Attribute_Reference
(Loc
,
6741 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6742 Attribute_Name
=> Name_Tag
)),
6743 Reason
=> CE_Tag_Check_Failed
));
6745 -- If the result type is a specific nonlimited tagged type, then we
6746 -- have to ensure that the tag of the result is that of the result
6747 -- type. This is handled by making a copy of the expression in
6748 -- the case where it might have a different tag, namely when the
6749 -- expression is a conversion or a formal parameter. We create a new
6750 -- object of the result type and initialize it from the expression,
6751 -- which will implicitly force the tag to be set appropriately.
6755 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6756 Result_Id
: constant Entity_Id
:=
6757 Make_Temporary
(Loc
, 'R', ExpR
);
6758 Result_Exp
: constant Node_Id
:=
6759 New_Occurrence_Of
(Result_Id
, Loc
);
6760 Result_Obj
: constant Node_Id
:=
6761 Make_Object_Declaration
(Loc
,
6762 Defining_Identifier
=> Result_Id
,
6763 Object_Definition
=>
6764 New_Occurrence_Of
(R_Type
, Loc
),
6765 Constant_Present
=> True,
6766 Expression
=> ExpR
);
6769 Set_Assignment_OK
(Result_Obj
);
6770 Insert_Action
(Exp
, Result_Obj
);
6772 Rewrite
(Exp
, Result_Exp
);
6773 Analyze_And_Resolve
(Exp
, R_Type
);
6777 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6778 -- a check that the level of the return expression's underlying type
6779 -- is not deeper than the level of the master enclosing the function.
6780 -- Always generate the check when the type of the return expression
6781 -- is class-wide, when it's a type conversion, or when it's a formal
6782 -- parameter. Otherwise, suppress the check in the case where the
6783 -- return expression has a specific type whose level is known not to
6784 -- be statically deeper than the function's result type.
6786 -- No runtime check needed in interface thunks since it is performed
6787 -- by the target primitive associated with the thunk.
6789 -- Note: accessibility check is skipped in the VM case, since there
6790 -- does not seem to be any practical way to implement this check.
6792 elsif Ada_Version
>= Ada_2005
6793 and then Tagged_Type_Expansion
6794 and then Is_Class_Wide_Type
(R_Type
)
6795 and then not Is_Thunk
(Current_Scope
)
6796 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6798 (Is_Class_Wide_Type
(Etype
(Exp
))
6799 or else Nkind_In
(Exp
, N_Type_Conversion
,
6800 N_Unchecked_Type_Conversion
)
6801 or else (Is_Entity_Name
(Exp
)
6802 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6803 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6804 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6810 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6811 -- "this" to reference the base of the object. This is required to
6812 -- get access to the TSD of the object.
6814 if Is_Class_Wide_Type
(Etype
(Exp
))
6815 and then Is_Interface
(Etype
(Exp
))
6817 -- If the expression is an explicit dereference then we can
6818 -- directly displace the pointer to reference the base of
6821 if Nkind
(Exp
) = N_Explicit_Dereference
then
6823 Make_Explicit_Dereference
(Loc
,
6825 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6826 Make_Function_Call
(Loc
,
6828 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6829 Parameter_Associations
=> New_List
(
6830 Unchecked_Convert_To
(RTE
(RE_Address
),
6831 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6833 -- Similar case to the previous one but the expression is a
6834 -- renaming of an explicit dereference.
6836 elsif Nkind
(Exp
) = N_Identifier
6837 and then Present
(Renamed_Object
(Entity
(Exp
)))
6838 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6839 = N_Explicit_Dereference
6842 Make_Explicit_Dereference
(Loc
,
6844 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6845 Make_Function_Call
(Loc
,
6847 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6848 Parameter_Associations
=> New_List
(
6849 Unchecked_Convert_To
(RTE
(RE_Address
),
6852 (Renamed_Object
(Entity
(Exp
)))))))));
6854 -- Common case: obtain the address of the actual object and
6855 -- displace the pointer to reference the base of the object.
6859 Make_Explicit_Dereference
(Loc
,
6861 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6862 Make_Function_Call
(Loc
,
6864 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6865 Parameter_Associations
=> New_List
(
6866 Make_Attribute_Reference
(Loc
,
6867 Prefix
=> Duplicate_Subexpr
(Exp
),
6868 Attribute_Name
=> Name_Address
)))));
6872 Make_Attribute_Reference
(Loc
,
6873 Prefix
=> Duplicate_Subexpr
(Exp
),
6874 Attribute_Name
=> Name_Tag
);
6877 -- CodePeer does not do anything useful with
6878 -- Ada.Tags.Type_Specific_Data components.
6880 if not CodePeer_Mode
then
6882 Make_Raise_Program_Error
(Loc
,
6885 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6887 Make_Integer_Literal
(Loc
,
6888 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6889 Reason
=> PE_Accessibility_Check_Failed
));
6893 -- AI05-0073: If function has a controlling access result, check that
6894 -- the tag of the return value, if it is not null, matches designated
6895 -- type of return type.
6897 -- The return expression is referenced twice in the code below, so it
6898 -- must be made free of side effects. Given that different compilers
6899 -- may evaluate these parameters in different order, both occurrences
6902 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6903 and then Has_Controlling_Result
(Scope_Id
)
6906 Make_Raise_Constraint_Error
(Loc
,
6911 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6912 Right_Opnd
=> Make_Null
(Loc
)),
6914 Right_Opnd
=> Make_Op_Ne
(Loc
,
6916 Make_Selected_Component
(Loc
,
6917 Prefix
=> Duplicate_Subexpr
(Exp
),
6918 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6921 Make_Attribute_Reference
(Loc
,
6923 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6924 Attribute_Name
=> Name_Tag
))),
6926 Reason
=> CE_Tag_Check_Failed
),
6927 Suppress
=> All_Checks
);
6930 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6931 -- ensure that the function result does not outlive an
6932 -- object designated by one of it discriminants.
6934 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6935 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6938 Discrim_Source
: Node_Id
;
6940 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6941 -- Check the given accessibility level against the level
6942 -- determined by the point of call. (AI05-0234).
6944 --------------------------------
6945 -- Check_Against_Result_Level --
6946 --------------------------------
6948 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6951 Make_Raise_Program_Error
(Loc
,
6957 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6958 Reason
=> PE_Accessibility_Check_Failed
));
6959 end Check_Against_Result_Level
;
6962 Discrim_Source
:= Exp
;
6963 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6964 Discrim_Source
:= Expression
(Discrim_Source
);
6967 if Nkind
(Discrim_Source
) = N_Identifier
6968 and then Is_Return_Object
(Entity
(Discrim_Source
))
6970 Discrim_Source
:= Entity
(Discrim_Source
);
6972 if Is_Constrained
(Etype
(Discrim_Source
)) then
6973 Discrim_Source
:= Etype
(Discrim_Source
);
6975 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6978 elsif Nkind
(Discrim_Source
) = N_Identifier
6979 and then Nkind_In
(Original_Node
(Discrim_Source
),
6980 N_Aggregate
, N_Extension_Aggregate
)
6982 Discrim_Source
:= Original_Node
(Discrim_Source
);
6984 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6985 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6987 Discrim_Source
:= Original_Node
(Discrim_Source
);
6990 Discrim_Source
:= Unqual_Conv
(Discrim_Source
);
6992 case Nkind
(Discrim_Source
) is
6993 when N_Defining_Identifier
=>
6994 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6995 and then Has_Discriminants
(Discrim_Source
)
6996 and then Is_Constrained
(Discrim_Source
));
6999 Discrim
: Entity_Id
:=
7000 First_Discriminant
(Base_Type
(R_Type
));
7001 Disc_Elmt
: Elmt_Id
:=
7002 First_Elmt
(Discriminant_Constraint
7006 if Ekind
(Etype
(Discrim
)) =
7007 E_Anonymous_Access_Type
7009 Check_Against_Result_Level
7010 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
7013 Next_Elmt
(Disc_Elmt
);
7014 Next_Discriminant
(Discrim
);
7015 exit when not Present
(Discrim
);
7020 | N_Extension_Aggregate
7022 -- Unimplemented: extension aggregate case where discrims
7023 -- come from ancestor part, not extension part.
7026 Discrim
: Entity_Id
:=
7027 First_Discriminant
(Base_Type
(R_Type
));
7029 Disc_Exp
: Node_Id
:= Empty
;
7031 Positionals_Exhausted
7032 : Boolean := not Present
(Expressions
7035 function Associated_Expr
7036 (Comp_Id
: Entity_Id
;
7037 Associations
: List_Id
) return Node_Id
;
7039 -- Given a component and a component associations list,
7040 -- locate the expression for that component; returns
7041 -- Empty if no such expression is found.
7043 ---------------------
7044 -- Associated_Expr --
7045 ---------------------
7047 function Associated_Expr
7048 (Comp_Id
: Entity_Id
;
7049 Associations
: List_Id
) return Node_Id
7055 -- Simple linear search seems ok here
7057 Assoc
:= First
(Associations
);
7058 while Present
(Assoc
) loop
7059 Choice
:= First
(Choices
(Assoc
));
7060 while Present
(Choice
) loop
7061 if (Nkind
(Choice
) = N_Identifier
7062 and then Chars
(Choice
) = Chars
(Comp_Id
))
7063 or else (Nkind
(Choice
) = N_Others_Choice
)
7065 return Expression
(Assoc
);
7075 end Associated_Expr
;
7077 -- Start of processing for Expand_Simple_Function_Return
7080 if not Positionals_Exhausted
then
7081 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
7085 if Positionals_Exhausted
then
7089 Component_Associations
(Discrim_Source
));
7092 if Ekind
(Etype
(Discrim
)) =
7093 E_Anonymous_Access_Type
7095 Check_Against_Result_Level
7096 (Dynamic_Accessibility_Level
(Disc_Exp
));
7099 Next_Discriminant
(Discrim
);
7100 exit when not Present
(Discrim
);
7102 if not Positionals_Exhausted
then
7104 Positionals_Exhausted
:= not Present
(Disc_Exp
);
7109 when N_Function_Call
=>
7111 -- No check needed (check performed by callee)
7117 Level
: constant Node_Id
:=
7118 Make_Integer_Literal
(Loc
,
7119 Object_Access_Level
(Discrim_Source
));
7122 -- Unimplemented: check for name prefix that includes
7123 -- a dereference of an access value with a dynamic
7124 -- accessibility level (e.g., an access param or a
7125 -- saooaaat) and use dynamic level in that case. For
7127 -- return Access_Param.all(Some_Index).Some_Component;
7130 Set_Etype
(Level
, Standard_Natural
);
7131 Check_Against_Result_Level
(Level
);
7137 -- If we are returning an object that may not be bit-aligned, then copy
7138 -- the value into a temporary first. This copy may need to expand to a
7139 -- loop of component operations.
7141 if Is_Possibly_Unaligned_Slice
(Exp
)
7142 or else Is_Possibly_Unaligned_Object
(Exp
)
7145 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
7146 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
7149 Make_Object_Declaration
(Loc
,
7150 Defining_Identifier
=> Tnn
,
7151 Constant_Present
=> True,
7152 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
7153 Expression
=> ExpR
),
7154 Suppress
=> All_Checks
);
7155 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
7159 -- Call the _Postconditions procedure if the related function has
7160 -- contract assertions that need to be verified on exit.
7162 if Ekind
(Scope_Id
) = E_Function
7163 and then Present
(Postconditions_Proc
(Scope_Id
))
7165 -- In the case of discriminated objects, we have created a
7166 -- constrained subtype above, and used the underlying type. This
7167 -- transformation is post-analysis and harmless, except that now the
7168 -- call to the post-condition will be analyzed and the type kinds
7171 if Nkind
(Exp
) = N_Unchecked_Type_Conversion
7172 and then Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(Exp
))
7174 Rewrite
(Exp
, Expression
(Relocate_Node
(Exp
)));
7177 -- We are going to reference the returned value twice in this case,
7178 -- once in the call to _Postconditions, and once in the actual return
7179 -- statement, but we can't have side effects happening twice.
7181 Force_Evaluation
(Exp
, Mode
=> Strict
);
7183 -- Generate call to _Postconditions
7186 Make_Procedure_Call_Statement
(Loc
,
7188 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
7189 Parameter_Associations
=> New_List
(New_Copy_Tree
(Exp
))));
7192 -- Ada 2005 (AI-251): If this return statement corresponds with an
7193 -- simple return statement associated with an extended return statement
7194 -- and the type of the returned object is an interface then generate an
7195 -- implicit conversion to force displacement of the "this" pointer.
7197 if Ada_Version
>= Ada_2005
7198 and then Comes_From_Extended_Return_Statement
(N
)
7199 and then Nkind
(Expression
(N
)) = N_Identifier
7200 and then Is_Interface
(Utyp
)
7201 and then Utyp
/= Underlying_Type
(Exptyp
)
7203 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
7204 Analyze_And_Resolve
(Exp
);
7206 end Expand_Simple_Function_Return
;
7208 --------------------------------------------
7209 -- Has_Unconstrained_Access_Discriminants --
7210 --------------------------------------------
7212 function Has_Unconstrained_Access_Discriminants
7213 (Subtyp
: Entity_Id
) return Boolean
7218 if Has_Discriminants
(Subtyp
)
7219 and then not Is_Constrained
(Subtyp
)
7221 Discr
:= First_Discriminant
(Subtyp
);
7222 while Present
(Discr
) loop
7223 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
7227 Next_Discriminant
(Discr
);
7232 end Has_Unconstrained_Access_Discriminants
;
7234 -----------------------------------
7235 -- Is_Build_In_Place_Result_Type --
7236 -----------------------------------
7238 function Is_Build_In_Place_Result_Type
(Typ
: Entity_Id
) return Boolean is
7240 if not Expander_Active
then
7244 -- In Ada 2005 all functions with an inherently limited return type
7245 -- must be handled using a build-in-place profile, including the case
7246 -- of a function with a limited interface result, where the function
7247 -- may return objects of nonlimited descendants.
7249 if Is_Limited_View
(Typ
) then
7250 return Ada_Version
>= Ada_2005
and then not Debug_Flag_Dot_L
;
7252 if Has_Interfaces
(Typ
) then
7257 T
: Entity_Id
:= Typ
;
7259 -- For T'Class, return True if it's True for T. This is necessary
7260 -- because a class-wide function might say "return F (...)", where
7261 -- F returns the corresponding specific type. We need a loop in
7262 -- case T is a subtype of a class-wide type.
7264 while Is_Class_Wide_Type
(T
) loop
7268 -- If this is a generic formal type in an instance, return True if
7269 -- it's True for the generic actual type.
7271 if Nkind
(Parent
(T
)) = N_Subtype_Declaration
7272 and then Present
(Generic_Parent_Type
(Parent
(T
)))
7274 T
:= Entity
(Subtype_Indication
(Parent
(T
)));
7276 if Present
(Full_View
(T
)) then
7281 if Present
(Underlying_Type
(T
)) then
7282 T
:= Underlying_Type
(T
);
7288 -- ???For now, enable build-in-place for a very narrow set of
7289 -- controlled types. Change "if True" to "if False" to
7290 -- experiment more controlled types. Eventually, we would
7291 -- like to enable build-in-place for all tagged types, all
7292 -- types that need finalization, and all caller-unknown-size
7293 -- types. We will eventually use Debug_Flag_Dot_9 to disable
7294 -- build-in-place for nonlimited types.
7296 -- if Debug_Flag_Dot_9 then
7298 Result
:= Is_Controlled
(T
)
7299 and then Present
(Enclosing_Subprogram
(T
))
7300 and then not Is_Compilation_Unit
(Enclosing_Subprogram
(T
))
7301 and then Ekind
(Enclosing_Subprogram
(T
)) = E_Procedure
;
7303 Result
:= Is_Controlled
(T
);
7310 end Is_Build_In_Place_Result_Type
;
7312 --------------------------------
7313 -- Is_Build_In_Place_Function --
7314 --------------------------------
7316 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
7318 -- This function is called from Expand_Subtype_From_Expr during
7319 -- semantic analysis, even when expansion is off. In those cases
7320 -- the build_in_place expansion will not take place.
7322 if not Expander_Active
then
7326 -- For now we test whether E denotes a function or access-to-function
7327 -- type whose result subtype is inherently limited. Later this test
7328 -- may be revised to allow composite nonlimited types. Functions with
7329 -- a foreign convention or whose result type has a foreign convention
7332 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
7333 or else (Ekind
(E
) = E_Subprogram_Type
7334 and then Etype
(E
) /= Standard_Void_Type
)
7336 -- Note: If the function has a foreign convention, it cannot build
7337 -- its result in place, so you're on your own. On the other hand,
7338 -- if only the return type has a foreign convention, its layout is
7339 -- intended to be compatible with the other language, but the build-
7340 -- in place machinery can ensure that the object is not copied.
7342 return Is_Build_In_Place_Result_Type
(Etype
(E
))
7343 and then not Has_Foreign_Convention
(E
)
7344 and then not Debug_Flag_Dot_L
;
7349 end Is_Build_In_Place_Function
;
7351 -------------------------------------
7352 -- Is_Build_In_Place_Function_Call --
7353 -------------------------------------
7355 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
7356 Exp_Node
: constant Node_Id
:= Unqual_Conv
(N
);
7357 Function_Id
: Entity_Id
;
7360 -- Return False if the expander is currently inactive, since awareness
7361 -- of build-in-place treatment is only relevant during expansion. Note
7362 -- that Is_Build_In_Place_Function, which is called as part of this
7363 -- function, is also conditioned this way, but we need to check here as
7364 -- well to avoid blowing up on processing protected calls when expansion
7365 -- is disabled (such as with -gnatc) since those would trip over the
7366 -- raise of Program_Error below.
7368 -- In SPARK mode, build-in-place calls are not expanded, so that we
7369 -- may end up with a call that is neither resolved to an entity, nor
7370 -- an indirect call.
7372 if not Expander_Active
or else Nkind
(Exp_Node
) /= N_Function_Call
then
7376 if Is_Entity_Name
(Name
(Exp_Node
)) then
7377 Function_Id
:= Entity
(Name
(Exp_Node
));
7379 -- In the case of an explicitly dereferenced call, use the subprogram
7380 -- type generated for the dereference.
7382 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
7383 Function_Id
:= Etype
(Name
(Exp_Node
));
7385 -- This may be a call to a protected function.
7387 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
7388 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
7391 raise Program_Error
;
7395 Result
: constant Boolean := Is_Build_In_Place_Function
(Function_Id
);
7396 -- So we can stop here in the debugger
7400 end Is_Build_In_Place_Function_Call
;
7402 -----------------------
7403 -- Freeze_Subprogram --
7404 -----------------------
7406 procedure Freeze_Subprogram
(N
: Node_Id
) is
7407 Loc
: constant Source_Ptr
:= Sloc
(N
);
7409 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
7410 -- (Ada 2005): Register a predefined primitive in all the secondary
7411 -- dispatch tables of its primitive type.
7413 ----------------------------------
7414 -- Register_Predefined_DT_Entry --
7415 ----------------------------------
7417 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
7418 Iface_DT_Ptr
: Elmt_Id
;
7419 Tagged_Typ
: Entity_Id
;
7420 Thunk_Id
: Entity_Id
;
7421 Thunk_Code
: Node_Id
;
7424 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
7426 if No
(Access_Disp_Table
(Tagged_Typ
))
7427 or else not Has_Interfaces
(Tagged_Typ
)
7428 or else not RTE_Available
(RE_Interface_Tag
)
7429 or else Restriction_Active
(No_Dispatching_Calls
)
7434 -- Skip the first two access-to-dispatch-table pointers since they
7435 -- leads to the primary dispatch table (predefined DT and user
7436 -- defined DT). We are only concerned with the secondary dispatch
7437 -- table pointers. Note that the access-to- dispatch-table pointer
7438 -- corresponds to the first implemented interface retrieved below.
7441 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
7443 while Present
(Iface_DT_Ptr
)
7444 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
7446 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7447 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
7449 if Present
(Thunk_Code
) then
7450 Insert_Actions_After
(N
, New_List
(
7453 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7455 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
7456 Position
=> DT_Position
(Prim
),
7458 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7459 Make_Attribute_Reference
(Loc
,
7460 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
7461 Attribute_Name
=> Name_Unrestricted_Access
))),
7463 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7466 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
7468 Position
=> DT_Position
(Prim
),
7470 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7471 Make_Attribute_Reference
(Loc
,
7472 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
7473 Attribute_Name
=> Name_Unrestricted_Access
)))));
7476 -- Skip the tag of the predefined primitives dispatch table
7478 Next_Elmt
(Iface_DT_Ptr
);
7479 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7481 -- Skip tag of the no-thunks dispatch table
7483 Next_Elmt
(Iface_DT_Ptr
);
7484 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7486 -- Skip tag of predefined primitives no-thunks dispatch table
7488 Next_Elmt
(Iface_DT_Ptr
);
7489 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7491 Next_Elmt
(Iface_DT_Ptr
);
7493 end Register_Predefined_DT_Entry
;
7497 Subp
: constant Entity_Id
:= Entity
(N
);
7499 -- Start of processing for Freeze_Subprogram
7502 -- We suppress the initialization of the dispatch table entry when
7503 -- not Tagged_Type_Expansion because the dispatching mechanism is
7504 -- handled internally by the target.
7506 if Is_Dispatching_Operation
(Subp
)
7507 and then not Is_Abstract_Subprogram
(Subp
)
7508 and then Present
(DTC_Entity
(Subp
))
7509 and then Present
(Scope
(DTC_Entity
(Subp
)))
7510 and then Tagged_Type_Expansion
7511 and then not Restriction_Active
(No_Dispatching_Calls
)
7512 and then RTE_Available
(RE_Tag
)
7515 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
7518 -- Handle private overridden primitives
7520 if not Is_CPP_Class
(Typ
) then
7521 Check_Overriding_Operation
(Subp
);
7524 -- We assume that imported CPP primitives correspond with objects
7525 -- whose constructor is in the CPP side; therefore we don't need
7526 -- to generate code to register them in the dispatch table.
7528 if Is_CPP_Class
(Typ
) then
7531 -- Handle CPP primitives found in derivations of CPP_Class types.
7532 -- These primitives must have been inherited from some parent, and
7533 -- there is no need to register them in the dispatch table because
7534 -- Build_Inherit_Prims takes care of initializing these slots.
7536 elsif Is_Imported
(Subp
)
7537 and then (Convention
(Subp
) = Convention_CPP
7538 or else Convention
(Subp
) = Convention_C
)
7542 -- Generate code to register the primitive in non statically
7543 -- allocated dispatch tables
7545 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
7547 -- When a primitive is frozen, enter its name in its dispatch
7550 if not Is_Interface
(Typ
)
7551 or else Present
(Interface_Alias
(Subp
))
7553 if Is_Predefined_Dispatching_Operation
(Subp
) then
7554 Register_Predefined_DT_Entry
(Subp
);
7557 Insert_Actions_After
(N
,
7558 Register_Primitive
(Loc
, Prim
=> Subp
));
7564 -- Mark functions that return by reference. Note that it cannot be part
7565 -- of the normal semantic analysis of the spec since the underlying
7566 -- returned type may not be known yet (for private types).
7569 Typ
: constant Entity_Id
:= Etype
(Subp
);
7570 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
7573 if Is_Limited_View
(Typ
) then
7574 Set_Returns_By_Ref
(Subp
);
7576 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
7577 Set_Returns_By_Ref
(Subp
);
7581 -- Wnen freezing a null procedure, analyze its delayed aspects now
7582 -- because we may not have reached the end of the declarative list when
7583 -- delayed aspects are normally analyzed. This ensures that dispatching
7584 -- calls are properly rewritten when the generated _Postcondition
7585 -- procedure is analyzed in the null procedure body.
7587 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
7588 and then Null_Present
(Parent
(Subp
))
7590 Analyze_Entry_Or_Subprogram_Contract
(Subp
);
7592 end Freeze_Subprogram
;
7594 ------------------------------
7595 -- Insert_Post_Call_Actions --
7596 ------------------------------
7598 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
) is
7599 Context
: constant Node_Id
:= Parent
(N
);
7602 if Is_Empty_List
(Post_Call
) then
7606 -- Cases where the call is not a member of a statement list. This
7607 -- includes the case where the call is an actual in another function
7608 -- call or indexing, i.e. an expression context as well.
7610 if not Is_List_Member
(N
)
7611 or else Nkind_In
(Context
, N_Function_Call
, N_Indexed_Component
)
7613 -- In Ada 2012 the call may be a function call in an expression
7614 -- (since OUT and IN OUT parameters are now allowed for such calls).
7615 -- The write-back of (in)-out parameters is handled by the back-end,
7616 -- but the constraint checks generated when subtypes of formal and
7617 -- actual don't match must be inserted in the form of assignments.
7619 if Nkind
(Original_Node
(N
)) = N_Function_Call
then
7620 pragma Assert
(Ada_Version
>= Ada_2012
);
7621 -- Functions with '[in] out' parameters are only allowed in Ada
7624 -- We used to handle this by climbing up parents to a
7625 -- non-statement/declaration and then simply making a call to
7626 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7627 -- for Ada 2012. If we are in the middle of an expression, e.g.
7628 -- the condition of an IF, this call would insert after the IF
7629 -- statement, which is much too late to be doing the write back.
7632 -- if Clobber (X) then
7633 -- Put_Line (X'Img);
7638 -- Now assume Clobber changes X, if we put the write back after
7639 -- the IF, the Put_Line gets the wrong value and the goto causes
7640 -- the write back to be skipped completely.
7642 -- To deal with this, we replace the call by
7645 -- Tnnn : constant function-result-type := function-call;
7646 -- Post_Call actions
7652 Loc
: constant Source_Ptr
:= Sloc
(N
);
7653 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7654 FRTyp
: constant Entity_Id
:= Etype
(N
);
7655 Name
: constant Node_Id
:= Relocate_Node
(N
);
7658 Prepend_To
(Post_Call
,
7659 Make_Object_Declaration
(Loc
,
7660 Defining_Identifier
=> Tnnn
,
7661 Object_Definition
=> New_Occurrence_Of
(FRTyp
, Loc
),
7662 Constant_Present
=> True,
7663 Expression
=> Name
));
7666 Make_Expression_With_Actions
(Loc
,
7667 Actions
=> Post_Call
,
7668 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
7670 -- We don't want to just blindly call Analyze_And_Resolve
7671 -- because that would cause unwanted recursion on the call.
7672 -- So for a moment set the call as analyzed to prevent that
7673 -- recursion, and get the rest analyzed properly, then reset
7674 -- the analyzed flag, so our caller can continue.
7676 Set_Analyzed
(Name
, True);
7677 Analyze_And_Resolve
(N
, FRTyp
);
7678 Set_Analyzed
(Name
, False);
7681 -- If not the special Ada 2012 case of a function call, then we must
7682 -- have the triggering statement of a triggering alternative or an
7683 -- entry call alternative, and we can add the post call stuff to the
7684 -- corresponding statement list.
7687 pragma Assert
(Nkind_In
(Context
, N_Entry_Call_Alternative
,
7688 N_Triggering_Alternative
));
7690 if Is_Non_Empty_List
(Statements
(Context
)) then
7691 Insert_List_Before_And_Analyze
7692 (First
(Statements
(Context
)), Post_Call
);
7694 Set_Statements
(Context
, Post_Call
);
7698 -- A procedure call is always part of a declarative or statement list,
7699 -- however a function call may appear nested within a construct. Most
7700 -- cases of function call nesting are handled in the special case above.
7701 -- The only exception is when the function call acts as an actual in a
7702 -- procedure call. In this case the function call is in a list, but the
7703 -- post-call actions must be inserted after the procedure call.
7705 elsif Nkind
(Context
) = N_Procedure_Call_Statement
then
7706 Insert_Actions_After
(Context
, Post_Call
);
7708 -- Otherwise, normal case where N is in a statement sequence, just put
7709 -- the post-call stuff after the call statement.
7712 Insert_Actions_After
(N
, Post_Call
);
7714 end Insert_Post_Call_Actions
;
7716 -----------------------
7717 -- Is_Null_Procedure --
7718 -----------------------
7720 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
7721 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
7724 if Ekind
(Subp
) /= E_Procedure
then
7727 -- Check if this is a declared null procedure
7729 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
7730 if not Null_Present
(Specification
(Decl
)) then
7733 elsif No
(Body_To_Inline
(Decl
)) then
7736 -- Check if the body contains only a null statement, followed by
7737 -- the return statement added during expansion.
7741 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
7747 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
7750 -- We must skip SCIL nodes because they are currently
7751 -- implemented as special N_Null_Statement nodes.
7755 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
7756 Stat2
:= Next_Non_SCIL_Node
(Stat
);
7759 Is_Empty_List
(Declarations
(Orig_Bod
))
7760 and then Nkind
(Stat
) = N_Null_Statement
7764 (Nkind
(Stat2
) = N_Simple_Return_Statement
7765 and then No
(Next
(Stat2
))));
7773 end Is_Null_Procedure
;
7775 -------------------------------------------
7776 -- Make_Build_In_Place_Call_In_Allocator --
7777 -------------------------------------------
7779 procedure Make_Build_In_Place_Call_In_Allocator
7780 (Allocator
: Node_Id
;
7781 Function_Call
: Node_Id
)
7783 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
7784 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
7785 Func_Call
: Node_Id
:= Function_Call
;
7786 Ref_Func_Call
: Node_Id
;
7787 Function_Id
: Entity_Id
;
7788 Result_Subt
: Entity_Id
;
7789 New_Allocator
: Node_Id
;
7790 Return_Obj_Access
: Entity_Id
; -- temp for function result
7791 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
7792 Alloc_Form
: BIP_Allocation_Form
;
7793 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
7794 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
7795 Chain
: Entity_Id
; -- activation chain, in case of tasks
7798 -- Step past qualification or unchecked conversion (the latter can occur
7799 -- in cases of calls to 'Input).
7801 if Nkind_In
(Func_Call
,
7802 N_Qualified_Expression
,
7804 N_Unchecked_Type_Conversion
)
7806 Func_Call
:= Expression
(Func_Call
);
7809 -- Mark the call as processed as a build-in-place call
7811 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
7812 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7814 if Is_Entity_Name
(Name
(Func_Call
)) then
7815 Function_Id
:= Entity
(Name
(Func_Call
));
7817 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7818 Function_Id
:= Etype
(Name
(Func_Call
));
7821 raise Program_Error
;
7824 Result_Subt
:= Available_View
(Etype
(Function_Id
));
7826 -- Create a temp for the function result. In the caller-allocates case,
7827 -- this will be initialized to the result of a new uninitialized
7828 -- allocator. Note: we do not use Allocator as the Related_Node of
7829 -- Return_Obj_Access in call to Make_Temporary below as this would
7830 -- create a sort of infinite "recursion".
7832 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
7833 Set_Etype
(Return_Obj_Access
, Acc_Type
);
7834 Set_Can_Never_Be_Null
(Acc_Type
, False);
7835 -- It gets initialized to null, so we can't have that
7837 -- When the result subtype is constrained, the return object is
7838 -- allocated on the caller side, and access to it is passed to the
7841 -- Here and in related routines, we must examine the full view of the
7842 -- type, because the view at the point of call may differ from that
7843 -- that in the function body, and the expansion mechanism depends on
7844 -- the characteristics of the full view.
7846 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7847 -- Replace the initialized allocator of form "new T'(Func (...))"
7848 -- with an uninitialized allocator of form "new T", where T is the
7849 -- result subtype of the called function. The call to the function
7850 -- is handled separately further below.
7853 Make_Allocator
(Loc
,
7854 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7855 Set_No_Initialization
(New_Allocator
);
7857 -- Copy attributes to new allocator. Note that the new allocator
7858 -- logically comes from source if the original one did, so copy the
7859 -- relevant flag. This ensures proper treatment of the restriction
7860 -- No_Implicit_Heap_Allocations in this case.
7862 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
7863 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
7864 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
7866 Rewrite
(Allocator
, New_Allocator
);
7868 -- Initial value of the temp is the result of the uninitialized
7869 -- allocator. Unchecked_Convert is needed for T'Input where T is
7870 -- derived from a controlled type.
7872 Temp_Init
:= Relocate_Node
(Allocator
);
7875 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7877 Temp_Init
:= Unchecked_Convert_To
(Acc_Type
, Temp_Init
);
7880 -- Indicate that caller allocates, and pass in the return object
7882 Alloc_Form
:= Caller_Allocation
;
7883 Pool
:= Make_Null
(No_Location
);
7884 Return_Obj_Actual
:=
7885 Make_Unchecked_Type_Conversion
(Loc
,
7886 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7888 Make_Explicit_Dereference
(Loc
,
7889 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
7891 -- When the result subtype is unconstrained, the function itself must
7892 -- perform the allocation of the return object, so we pass parameters
7898 -- Case of a user-defined storage pool. Pass an allocation parameter
7899 -- indicating that the function should allocate its result in the
7900 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7901 -- pool may not be aliased.
7903 if Present
(Associated_Storage_Pool
(Acc_Type
)) then
7904 Alloc_Form
:= User_Storage_Pool
;
7906 Make_Attribute_Reference
(Loc
,
7909 (Associated_Storage_Pool
(Acc_Type
), Loc
),
7910 Attribute_Name
=> Name_Unrestricted_Access
);
7912 -- No user-defined pool; pass an allocation parameter indicating that
7913 -- the function should allocate its result on the heap.
7916 Alloc_Form
:= Global_Heap
;
7917 Pool
:= Make_Null
(No_Location
);
7920 -- The caller does not provide the return object in this case, so we
7921 -- have to pass null for the object access actual.
7923 Return_Obj_Actual
:= Empty
;
7926 -- Declare the temp object
7928 Insert_Action
(Allocator
,
7929 Make_Object_Declaration
(Loc
,
7930 Defining_Identifier
=> Return_Obj_Access
,
7931 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
7932 Expression
=> Temp_Init
));
7934 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
7936 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7937 -- then generate an implicit conversion to force displacement of the
7940 if Is_Interface
(Designated_Type
(Acc_Type
)) then
7943 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
7945 -- If the types are incompatible, we need an unchecked conversion. Note
7946 -- that the full types will be compatible, but the types not visibly
7950 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7952 Ref_Func_Call
:= Unchecked_Convert_To
(Acc_Type
, Ref_Func_Call
);
7956 Assign
: constant Node_Id
:=
7957 Make_Assignment_Statement
(Loc
,
7958 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
7959 Expression
=> Ref_Func_Call
);
7960 -- Assign the result of the function call into the temp. In the
7961 -- caller-allocates case, this is overwriting the temp with its
7962 -- initial value, which has no effect. In the callee-allocates case,
7963 -- this is setting the temp to point to the object allocated by the
7964 -- callee. Unchecked_Convert is needed for T'Input where T is derived
7965 -- from a controlled type.
7968 -- Actions to be inserted. If there are no tasks, this is just the
7969 -- assignment statement. If the allocated object has tasks, we need
7970 -- to wrap the assignment in a block that activates them. The
7971 -- activation chain of that block must be passed to the function,
7972 -- rather than some outer chain.
7974 if Has_Task
(Result_Subt
) then
7975 Actions
:= New_List
;
7976 Build_Task_Allocate_Block_With_Init_Stmts
7977 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
7978 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
7980 Actions
:= New_List
(Assign
);
7984 Insert_Actions
(Allocator
, Actions
);
7987 -- When the function has a controlling result, an allocation-form
7988 -- parameter must be passed indicating that the caller is allocating
7989 -- the result object. This is needed because such a function can be
7990 -- called as a dispatching operation and must be treated similarly
7991 -- to functions with unconstrained result subtypes.
7993 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7994 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
7996 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7997 (Func_Call
, Function_Id
, Acc_Type
);
7999 Add_Task_Actuals_To_Build_In_Place_Call
8000 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8003 -- Add an implicit actual to the function call that provides access
8004 -- to the allocated object. An unchecked conversion to the (specific)
8005 -- result subtype of the function is inserted to handle cases where
8006 -- the access type of the allocator has a class-wide designated type.
8008 Add_Access_Actual_To_Build_In_Place_Call
8009 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8011 -- Finally, replace the allocator node with a reference to the temp
8013 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8015 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8016 end Make_Build_In_Place_Call_In_Allocator
;
8018 ---------------------------------------------------
8019 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8020 ---------------------------------------------------
8022 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8023 (Function_Call
: Node_Id
)
8025 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8026 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8027 Function_Id
: Entity_Id
;
8028 Result_Subt
: Entity_Id
;
8029 Return_Obj_Id
: Entity_Id
;
8030 Return_Obj_Decl
: Entity_Id
;
8033 -- If the call has already been processed to add build-in-place actuals
8034 -- then return. One place this can occur is for calls to build-in-place
8035 -- functions that occur within a call to a protected operation, where
8036 -- due to rewriting and expansion of the protected call there can be
8037 -- more than one call to Expand_Actuals for the same set of actuals.
8039 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8043 -- Mark the call as processed as a build-in-place call
8045 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8047 if Is_Entity_Name
(Name
(Func_Call
)) then
8048 Function_Id
:= Entity
(Name
(Func_Call
));
8050 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8051 Function_Id
:= Etype
(Name
(Func_Call
));
8054 raise Program_Error
;
8057 Result_Subt
:= Etype
(Function_Id
);
8059 -- If the build-in-place function returns a controlled object, then the
8060 -- object needs to be finalized immediately after the context. Since
8061 -- this case produces a transient scope, the servicing finalizer needs
8062 -- to name the returned object. Create a temporary which is initialized
8063 -- with the function call:
8065 -- Temp_Id : Func_Type := BIP_Func_Call;
8067 -- The initialization expression of the temporary will be rewritten by
8068 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8069 -- Call_In_Object_Declaration.
8071 if Needs_Finalization
(Result_Subt
) then
8073 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8074 Temp_Decl
: Node_Id
;
8077 -- Reset the guard on the function call since the following does
8078 -- not perform actual call expansion.
8080 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8083 Make_Object_Declaration
(Loc
,
8084 Defining_Identifier
=> Temp_Id
,
8085 Object_Definition
=>
8086 New_Occurrence_Of
(Result_Subt
, Loc
),
8088 New_Copy_Tree
(Function_Call
));
8090 Insert_Action
(Function_Call
, Temp_Decl
);
8092 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8093 Analyze
(Function_Call
);
8096 -- When the result subtype is definite, an object of the subtype is
8097 -- declared and an access value designating it is passed as an actual.
8099 elsif Caller_Known_Size
(Func_Call
, Result_Subt
) then
8101 -- Create a temporary object to hold the function result
8103 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8104 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8107 Make_Object_Declaration
(Loc
,
8108 Defining_Identifier
=> Return_Obj_Id
,
8109 Aliased_Present
=> True,
8110 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8112 Set_No_Initialization
(Return_Obj_Decl
);
8114 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8116 -- When the function has a controlling result, an allocation-form
8117 -- parameter must be passed indicating that the caller is allocating
8118 -- the result object. This is needed because such a function can be
8119 -- called as a dispatching operation and must be treated similarly
8120 -- to functions with unconstrained result subtypes.
8122 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8123 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8125 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8126 (Func_Call
, Function_Id
);
8128 Add_Task_Actuals_To_Build_In_Place_Call
8129 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8131 -- Add an implicit actual to the function call that provides access
8132 -- to the caller's return object.
8134 Add_Access_Actual_To_Build_In_Place_Call
8135 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8137 -- When the result subtype is unconstrained, the function must allocate
8138 -- the return object in the secondary stack, so appropriate implicit
8139 -- parameters are added to the call to indicate that. A transient
8140 -- scope is established to ensure eventual cleanup of the result.
8143 -- Pass an allocation parameter indicating that the function should
8144 -- allocate its result on the secondary stack.
8146 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8147 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8149 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8150 (Func_Call
, Function_Id
);
8152 Add_Task_Actuals_To_Build_In_Place_Call
8153 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8155 -- Pass a null value to the function since no return object is
8156 -- available on the caller side.
8158 Add_Access_Actual_To_Build_In_Place_Call
8159 (Func_Call
, Function_Id
, Empty
);
8161 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8163 --------------------------------------------
8164 -- Make_Build_In_Place_Call_In_Assignment --
8165 --------------------------------------------
8167 procedure Make_Build_In_Place_Call_In_Assignment
8169 Function_Call
: Node_Id
)
8171 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8172 Lhs
: constant Node_Id
:= Name
(Assign
);
8173 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8174 Func_Id
: Entity_Id
;
8177 Ptr_Typ
: Entity_Id
;
8178 Ptr_Typ_Decl
: Node_Id
;
8180 Result_Subt
: Entity_Id
;
8183 -- Mark the call as processed as a build-in-place call
8185 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
8186 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8188 if Is_Entity_Name
(Name
(Func_Call
)) then
8189 Func_Id
:= Entity
(Name
(Func_Call
));
8191 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8192 Func_Id
:= Etype
(Name
(Func_Call
));
8195 raise Program_Error
;
8198 Result_Subt
:= Etype
(Func_Id
);
8200 -- When the result subtype is unconstrained, an additional actual must
8201 -- be passed to indicate that the caller is providing the return object.
8202 -- This parameter must also be passed when the called function has a
8203 -- controlling result, because dispatching calls to the function needs
8204 -- to be treated effectively the same as calls to class-wide functions.
8206 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8207 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8209 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8210 (Func_Call
, Func_Id
);
8212 Add_Task_Actuals_To_Build_In_Place_Call
8213 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8215 -- Add an implicit actual to the function call that provides access to
8216 -- the caller's return object.
8218 Add_Access_Actual_To_Build_In_Place_Call
8221 Make_Unchecked_Type_Conversion
(Loc
,
8222 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8223 Expression
=> Relocate_Node
(Lhs
)));
8225 -- Create an access type designating the function's result subtype
8227 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8230 Make_Full_Type_Declaration
(Loc
,
8231 Defining_Identifier
=> Ptr_Typ
,
8233 Make_Access_To_Object_Definition
(Loc
,
8234 All_Present
=> True,
8235 Subtype_Indication
=>
8236 New_Occurrence_Of
(Result_Subt
, Loc
)));
8237 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8239 -- Finally, create an access object initialized to a reference to the
8240 -- function call. We know this access value is non-null, so mark the
8241 -- entity accordingly to suppress junk access checks.
8243 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8245 -- Add a conversion if it's the wrong type
8247 if Etype
(New_Expr
) /= Ptr_Typ
then
8249 Make_Unchecked_Type_Conversion
(Loc
,
8250 New_Occurrence_Of
(Ptr_Typ
, Loc
), New_Expr
);
8253 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8254 Set_Etype
(Obj_Id
, Ptr_Typ
);
8255 Set_Is_Known_Non_Null
(Obj_Id
);
8258 Make_Object_Declaration
(Loc
,
8259 Defining_Identifier
=> Obj_Id
,
8260 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8261 Expression
=> New_Expr
);
8262 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8264 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8265 end Make_Build_In_Place_Call_In_Assignment
;
8267 ----------------------------------------------------
8268 -- Make_Build_In_Place_Call_In_Object_Declaration --
8269 ----------------------------------------------------
8271 procedure Make_Build_In_Place_Call_In_Object_Declaration
8272 (Obj_Decl
: Node_Id
;
8273 Function_Call
: Node_Id
)
8275 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
;
8276 -- Get the value of Function_Id, below
8278 ---------------------
8279 -- Get_Function_Id --
8280 ---------------------
8282 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
is
8284 if Is_Entity_Name
(Name
(Func_Call
)) then
8285 return Entity
(Name
(Func_Call
));
8287 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8288 return Etype
(Name
(Func_Call
));
8291 raise Program_Error
;
8293 end Get_Function_Id
;
8297 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8298 Function_Id
: constant Entity_Id
:= Get_Function_Id
(Func_Call
);
8299 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8300 Obj_Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
8301 Obj_Def_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
8302 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Def_Id
);
8303 Encl_Func
: constant Entity_Id
:= Enclosing_Subprogram
(Obj_Def_Id
);
8304 Result_Subt
: constant Entity_Id
:= Etype
(Function_Id
);
8306 Call_Deref
: Node_Id
;
8307 Caller_Object
: Node_Id
;
8309 Designated_Type
: Entity_Id
;
8310 Fmaster_Actual
: Node_Id
:= Empty
;
8311 Pool_Actual
: Node_Id
;
8312 Ptr_Typ
: Entity_Id
;
8313 Ptr_Typ_Decl
: Node_Id
;
8314 Pass_Caller_Acc
: Boolean := False;
8317 Definite
: constant Boolean :=
8318 Caller_Known_Size
(Func_Call
, Result_Subt
)
8319 and then not Is_Class_Wide_Type
(Obj_Typ
);
8320 -- In the case of "X : T'Class := F(...);", where F returns a
8321 -- Caller_Known_Size (specific) tagged type, we treat it as
8322 -- indefinite, because the code for the Definite case below sets the
8323 -- initialization expression of the object to Empty, which would be
8324 -- illegal Ada, and would cause gigi to misallocate X.
8326 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8329 -- If the call has already been processed to add build-in-place actuals
8332 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8336 -- Mark the call as processed as a build-in-place call
8338 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8340 -- Create an access type designating the function's result subtype.
8341 -- We use the type of the original call because it may be a call to an
8342 -- inherited operation, which the expansion has replaced with the parent
8343 -- operation that yields the parent type. Note that this access type
8344 -- must be declared before we establish a transient scope, so that it
8345 -- receives the proper accessibility level.
8347 if Is_Class_Wide_Type
(Obj_Typ
)
8348 and then not Is_Interface
(Obj_Typ
)
8349 and then not Is_Class_Wide_Type
(Etype
(Function_Call
))
8351 Designated_Type
:= Obj_Typ
;
8353 Designated_Type
:= Etype
(Function_Call
);
8356 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8358 Make_Full_Type_Declaration
(Loc
,
8359 Defining_Identifier
=> Ptr_Typ
,
8361 Make_Access_To_Object_Definition
(Loc
,
8362 All_Present
=> True,
8363 Subtype_Indication
=>
8364 New_Occurrence_Of
(Designated_Type
, Loc
)));
8366 -- The access type and its accompanying object must be inserted after
8367 -- the object declaration in the constrained case, so that the function
8368 -- call can be passed access to the object. In the indefinite case, or
8369 -- if the object declaration is for a return object, the access type and
8370 -- object must be inserted before the object, since the object
8371 -- declaration is rewritten to be a renaming of a dereference of the
8372 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8373 -- the result object is in a different (transient) scope, so won't cause
8376 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8377 Insert_After_And_Analyze
(Obj_Decl
, Ptr_Typ_Decl
);
8379 Insert_Action
(Obj_Decl
, Ptr_Typ_Decl
);
8382 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8383 -- elaborated in an inner (transient) scope and thus won't cause
8384 -- freezing by itself. It's not an itype, but it needs to be frozen
8385 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8387 Freeze_Itype
(Ptr_Typ
, Ptr_Typ_Decl
);
8389 -- If the object is a return object of an enclosing build-in-place
8390 -- function, then the implicit build-in-place parameters of the
8391 -- enclosing function are simply passed along to the called function.
8392 -- (Unfortunately, this won't cover the case of extension aggregates
8393 -- where the ancestor part is a build-in-place indefinite function
8394 -- call that should be passed along the caller's parameters.
8395 -- Currently those get mishandled by reassigning the result of the
8396 -- call to the aggregate return object, when the call result should
8397 -- really be directly built in place in the aggregate and not in a
8400 if Is_Return_Object
(Obj_Def_Id
) then
8401 Pass_Caller_Acc
:= True;
8403 -- When the enclosing function has a BIP_Alloc_Form formal then we
8404 -- pass it along to the callee (such as when the enclosing function
8405 -- has an unconstrained or tagged result type).
8407 if Needs_BIP_Alloc_Form
(Encl_Func
) then
8408 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
8411 (Build_In_Place_Formal
8412 (Encl_Func
, BIP_Storage_Pool
), Loc
);
8414 -- The build-in-place pool formal is not built on e.g. ZFP
8417 Pool_Actual
:= Empty
;
8420 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8421 (Function_Call
=> Func_Call
,
8422 Function_Id
=> Function_Id
,
8425 (Build_In_Place_Formal
(Encl_Func
, BIP_Alloc_Form
), Loc
),
8426 Pool_Actual
=> Pool_Actual
);
8428 -- Otherwise, if enclosing function has a definite result subtype,
8429 -- then caller allocation will be used.
8432 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8433 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8436 if Needs_BIP_Finalization_Master
(Encl_Func
) then
8439 (Build_In_Place_Formal
8440 (Encl_Func
, BIP_Finalization_Master
), Loc
);
8443 -- Retrieve the BIPacc formal from the enclosing function and convert
8444 -- it to the access type of the callee's BIP_Object_Access formal.
8447 Make_Unchecked_Type_Conversion
(Loc
,
8450 (Etype
(Build_In_Place_Formal
8451 (Function_Id
, BIP_Object_Access
)),
8455 (Build_In_Place_Formal
(Encl_Func
, BIP_Object_Access
),
8458 -- In the definite case, add an implicit actual to the function call
8459 -- that provides access to the declared object. An unchecked conversion
8460 -- to the (specific) result type of the function is inserted to handle
8461 -- the case where the object is declared with a class-wide type.
8465 Make_Unchecked_Type_Conversion
(Loc
,
8466 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8467 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
8469 -- When the function has a controlling result, an allocation-form
8470 -- parameter must be passed indicating that the caller is allocating
8471 -- the result object. This is needed because such a function can be
8472 -- called as a dispatching operation and must be treated similarly to
8473 -- functions with indefinite result subtypes.
8475 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8476 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8478 -- The allocation for indefinite library-level objects occurs on the
8479 -- heap as opposed to the secondary stack. This accommodates DLLs where
8480 -- the secondary stack is destroyed after each library unload. This is a
8481 -- hybrid mechanism where a stack-allocated object lives on the heap.
8483 elsif Is_Library_Level_Entity
(Obj_Def_Id
)
8484 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
8486 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8487 (Func_Call
, Function_Id
, Alloc_Form
=> Global_Heap
);
8488 Caller_Object
:= Empty
;
8490 -- Create a finalization master for the access result type to ensure
8491 -- that the heap allocation can properly chain the object and later
8492 -- finalize it when the library unit goes out of scope.
8494 if Needs_Finalization
(Etype
(Func_Call
)) then
8495 Build_Finalization_Master
8497 For_Lib_Level
=> True,
8498 Insertion_Node
=> Ptr_Typ_Decl
);
8501 Make_Attribute_Reference
(Loc
,
8503 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
8504 Attribute_Name
=> Name_Unrestricted_Access
);
8507 -- In other indefinite cases, pass an indication to do the allocation on
8508 -- the secondary stack and set Caller_Object to Empty so that a null
8509 -- value will be passed for the caller's object address. A transient
8510 -- scope is established to ensure eventual cleanup of the result.
8513 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8514 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8515 Caller_Object
:= Empty
;
8517 Establish_Transient_Scope
(Obj_Decl
, Sec_Stack
=> True);
8520 -- Pass along any finalization master actual, which is needed in the
8521 -- case where the called function initializes a return object of an
8522 -- enclosing build-in-place function.
8524 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8525 (Func_Call
=> Func_Call
,
8526 Func_Id
=> Function_Id
,
8527 Master_Exp
=> Fmaster_Actual
);
8529 if Nkind
(Parent
(Obj_Decl
)) = N_Extended_Return_Statement
8530 and then Has_Task
(Result_Subt
)
8532 -- Here we're passing along the master that was passed in to this
8535 Add_Task_Actuals_To_Build_In_Place_Call
8536 (Func_Call
, Function_Id
,
8539 (Build_In_Place_Formal
(Encl_Func
, BIP_Task_Master
), Loc
));
8542 Add_Task_Actuals_To_Build_In_Place_Call
8543 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8546 Add_Access_Actual_To_Build_In_Place_Call
8550 Is_Access
=> Pass_Caller_Acc
);
8552 -- Finally, create an access object initialized to a reference to the
8553 -- function call. We know this access value cannot be null, so mark the
8554 -- entity accordingly to suppress the access check.
8556 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
8557 Set_Etype
(Def_Id
, Ptr_Typ
);
8558 Set_Is_Known_Non_Null
(Def_Id
);
8560 if Nkind_In
(Function_Call
, N_Type_Conversion
,
8561 N_Unchecked_Type_Conversion
)
8564 Make_Object_Declaration
(Loc
,
8565 Defining_Identifier
=> Def_Id
,
8566 Constant_Present
=> True,
8567 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8569 Make_Unchecked_Type_Conversion
(Loc
,
8570 New_Occurrence_Of
(Ptr_Typ
, Loc
),
8571 Make_Reference
(Loc
, Relocate_Node
(Func_Call
))));
8574 Make_Object_Declaration
(Loc
,
8575 Defining_Identifier
=> Def_Id
,
8576 Constant_Present
=> True,
8577 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8579 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
8582 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
8584 -- If the result subtype of the called function is definite and is not
8585 -- itself the return expression of an enclosing BIP function, then mark
8586 -- the object as having no initialization.
8588 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8590 -- The related object declaration is encased in a transient block
8591 -- because the build-in-place function call contains at least one
8592 -- nested function call that produces a controlled transient
8595 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8597 -- Since the build-in-place expansion decouples the call from the
8598 -- object declaration, the finalization machinery lacks the context
8599 -- which prompted the generation of the transient block. To resolve
8600 -- this scenario, store the build-in-place call.
8602 if Scope_Is_Transient
and then Node_To_Be_Wrapped
= Obj_Decl
then
8603 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
8606 Set_Expression
(Obj_Decl
, Empty
);
8607 Set_No_Initialization
(Obj_Decl
);
8609 -- In case of an indefinite result subtype, or if the call is the
8610 -- return expression of an enclosing BIP function, rewrite the object
8611 -- declaration as an object renaming where the renamed object is a
8612 -- dereference of <function_Call>'reference:
8614 -- Obj : Subt renames <function_call>'Ref.all;
8618 Make_Explicit_Dereference
(Obj_Loc
,
8619 Prefix
=> New_Occurrence_Of
(Def_Id
, Obj_Loc
));
8622 Make_Object_Renaming_Declaration
(Obj_Loc
,
8623 Defining_Identifier
=> Make_Temporary
(Obj_Loc
, 'D'),
8625 New_Occurrence_Of
(Designated_Type
, Obj_Loc
),
8626 Name
=> Call_Deref
));
8628 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8631 Set_Renamed_Object
(Defining_Identifier
(Obj_Decl
), Call_Deref
);
8633 -- If the original entity comes from source, then mark the new
8634 -- entity as needing debug information, even though it's defined
8635 -- by a generated renaming that does not come from source, so that
8636 -- the Materialize_Entity flag will be set on the entity when
8637 -- Debug_Renaming_Declaration is called during analysis.
8639 if Comes_From_Source
(Obj_Def_Id
) then
8640 Set_Debug_Info_Needed
(Defining_Identifier
(Obj_Decl
));
8644 Replace_Renaming_Declaration_Id
8645 (Obj_Decl
, Original_Node
(Obj_Decl
));
8647 end Make_Build_In_Place_Call_In_Object_Declaration
;
8649 -------------------------------------------------
8650 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8651 -------------------------------------------------
8653 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8654 (Allocator
: Node_Id
;
8655 Function_Call
: Node_Id
)
8657 BIP_Func_Call
: constant Node_Id
:=
8658 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8659 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8661 Anon_Type
: Entity_Id
;
8666 -- No action of the call has already been processed
8668 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8672 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8674 -- Insert a temporary before N initialized with the BIP function call
8675 -- without its enclosing type conversions and analyze it without its
8676 -- expansion. This temporary facilitates us reusing the BIP machinery,
8677 -- which takes care of adding the extra build-in-place actuals and
8678 -- transforms this object declaration into an object renaming
8681 Anon_Type
:= Create_Itype
(E_Anonymous_Access_Type
, Function_Call
);
8682 Set_Directly_Designated_Type
(Anon_Type
, Etype
(BIP_Func_Call
));
8683 Set_Etype
(Anon_Type
, Anon_Type
);
8686 Make_Object_Declaration
(Loc
,
8687 Defining_Identifier
=> Tmp_Id
,
8688 Object_Definition
=> New_Occurrence_Of
(Anon_Type
, Loc
),
8690 Make_Allocator
(Loc
,
8692 Make_Qualified_Expression
(Loc
,
8694 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8695 Expression
=> New_Copy_Tree
(BIP_Func_Call
))));
8697 Expander_Mode_Save_And_Set
(False);
8698 Insert_Action
(Allocator
, Tmp_Decl
);
8699 Expander_Mode_Restore
;
8701 Make_Build_In_Place_Call_In_Allocator
8702 (Allocator
=> Expression
(Tmp_Decl
),
8703 Function_Call
=> Expression
(Expression
(Tmp_Decl
)));
8705 Rewrite
(Allocator
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8706 end Make_Build_In_Place_Iface_Call_In_Allocator
;
8708 ---------------------------------------------------------
8709 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8710 ---------------------------------------------------------
8712 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8713 (Function_Call
: Node_Id
)
8715 BIP_Func_Call
: constant Node_Id
:=
8716 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8717 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8723 -- No action of the call has already been processed
8725 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8729 pragma Assert
(Needs_Finalization
(Etype
(BIP_Func_Call
)));
8731 -- Insert a temporary before the call initialized with function call to
8732 -- reuse the BIP machinery which takes care of adding the extra build-in
8733 -- place actuals and transforms this object declaration into an object
8734 -- renaming declaration.
8736 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8739 Make_Object_Declaration
(Loc
,
8740 Defining_Identifier
=> Tmp_Id
,
8741 Object_Definition
=>
8742 New_Occurrence_Of
(Etype
(Function_Call
), Loc
),
8743 Expression
=> Relocate_Node
(Function_Call
));
8745 Expander_Mode_Save_And_Set
(False);
8746 Insert_Action
(Function_Call
, Tmp_Decl
);
8747 Expander_Mode_Restore
;
8749 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8750 (Obj_Decl
=> Tmp_Decl
,
8751 Function_Call
=> Expression
(Tmp_Decl
));
8752 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context
;
8754 ----------------------------------------------------------
8755 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8756 ----------------------------------------------------------
8758 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8759 (Obj_Decl
: Node_Id
;
8760 Function_Call
: Node_Id
)
8762 BIP_Func_Call
: constant Node_Id
:=
8763 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8764 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8765 Obj_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
8771 -- No action of the call has already been processed
8773 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8777 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8779 -- Insert a temporary before N initialized with the BIP function call
8780 -- without its enclosing type conversions and analyze it without its
8781 -- expansion. This temporary facilitates us reusing the BIP machinery,
8782 -- which takes care of adding the extra build-in-place actuals and
8783 -- transforms this object declaration into an object renaming
8787 Make_Object_Declaration
(Loc
,
8788 Defining_Identifier
=> Tmp_Id
,
8789 Object_Definition
=>
8790 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8791 Expression
=> New_Copy_Tree
(BIP_Func_Call
));
8793 Expander_Mode_Save_And_Set
(False);
8794 Insert_Action
(Obj_Decl
, Tmp_Decl
);
8795 Expander_Mode_Restore
;
8797 Make_Build_In_Place_Call_In_Object_Declaration
8798 (Obj_Decl
=> Tmp_Decl
,
8799 Function_Call
=> Expression
(Tmp_Decl
));
8801 pragma Assert
(Nkind
(Tmp_Decl
) = N_Object_Renaming_Declaration
);
8803 -- Replace the original build-in-place function call by a reference to
8804 -- the resulting temporary object renaming declaration. In this way,
8805 -- all the interface conversions performed in the original Function_Call
8806 -- on the build-in-place object are preserved.
8808 Rewrite
(BIP_Func_Call
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8810 -- Replace the original object declaration by an internal object
8811 -- renaming declaration. This leaves the generated code more clean (the
8812 -- build-in-place function call in an object renaming declaration and
8813 -- displacements of the pointer to the build-in-place object in another
8814 -- renaming declaration) and allows us to invoke the routine that takes
8815 -- care of replacing the identifier of the renaming declaration (routine
8816 -- originally developed for the regular build-in-place management).
8819 Make_Object_Renaming_Declaration
(Loc
,
8820 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
8821 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Obj_Id
), Loc
),
8822 Name
=> Function_Call
));
8825 Replace_Renaming_Declaration_Id
(Obj_Decl
, Original_Node
(Obj_Decl
));
8826 end Make_Build_In_Place_Iface_Call_In_Object_Declaration
;
8828 --------------------------------------------
8829 -- Make_CPP_Constructor_Call_In_Allocator --
8830 --------------------------------------------
8832 procedure Make_CPP_Constructor_Call_In_Allocator
8833 (Allocator
: Node_Id
;
8834 Function_Call
: Node_Id
)
8836 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8837 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8838 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
8839 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
8841 New_Allocator
: Node_Id
;
8842 Return_Obj_Access
: Entity_Id
;
8846 pragma Assert
(Nkind
(Allocator
) = N_Allocator
8847 and then Nkind
(Function_Call
) = N_Function_Call
);
8848 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
8849 and then Is_Constructor
(Function_Id
));
8850 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
8852 -- Replace the initialized allocator of form "new T'(Func (...))" with
8853 -- an uninitialized allocator of form "new T", where T is the result
8854 -- subtype of the called function. The call to the function is handled
8855 -- separately further below.
8858 Make_Allocator
(Loc
,
8859 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8860 Set_No_Initialization
(New_Allocator
);
8862 -- Copy attributes to new allocator. Note that the new allocator
8863 -- logically comes from source if the original one did, so copy the
8864 -- relevant flag. This ensures proper treatment of the restriction
8865 -- No_Implicit_Heap_Allocations in this case.
8867 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8868 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8869 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8871 Rewrite
(Allocator
, New_Allocator
);
8873 -- Create a new access object and initialize it to the result of the
8874 -- new uninitialized allocator. Note: we do not use Allocator as the
8875 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8876 -- as this would create a sort of infinite "recursion".
8878 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8879 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8882 -- Rnnn : constant ptr_T := new (T);
8883 -- Init (Rnn.all,...);
8886 Make_Object_Declaration
(Loc
,
8887 Defining_Identifier
=> Return_Obj_Access
,
8888 Constant_Present
=> True,
8889 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8890 Expression
=> Relocate_Node
(Allocator
));
8891 Insert_Action
(Allocator
, Tmp_Obj
);
8893 Insert_List_After_And_Analyze
(Tmp_Obj
,
8894 Build_Initialization_Call
(Loc
,
8896 Make_Explicit_Dereference
(Loc
,
8897 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
8898 Typ
=> Etype
(Function_Id
),
8899 Constructor_Ref
=> Function_Call
));
8901 -- Finally, replace the allocator node with a reference to the result of
8902 -- the function call itself (which will effectively be an access to the
8903 -- object created by the allocator).
8905 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8907 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8908 -- generate an implicit conversion to force displacement of the "this"
8911 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8912 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
8915 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8916 end Make_CPP_Constructor_Call_In_Allocator
;
8918 -----------------------------------
8919 -- Needs_BIP_Finalization_Master --
8920 -----------------------------------
8922 function Needs_BIP_Finalization_Master
8923 (Func_Id
: Entity_Id
) return Boolean
8925 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8926 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8928 -- A formal giving the finalization master is needed for build-in-place
8929 -- functions whose result type needs finalization or is a tagged type.
8930 -- Tagged primitive build-in-place functions need such a formal because
8931 -- they can be called by a dispatching call, and extensions may require
8932 -- finalization even if the root type doesn't. This means they're also
8933 -- needed for tagged nonprimitive build-in-place functions with tagged
8934 -- results, since such functions can be called via access-to-function
8935 -- types, and those can be used to call primitives, so masters have to
8936 -- be passed to all such build-in-place functions, primitive or not.
8939 not Restriction_Active
(No_Finalization
)
8940 and then (Needs_Finalization
(Func_Typ
)
8941 or else Is_Tagged_Type
(Func_Typ
));
8942 end Needs_BIP_Finalization_Master
;
8944 --------------------------
8945 -- Needs_BIP_Alloc_Form --
8946 --------------------------
8948 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
8949 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8950 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8952 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
8953 end Needs_BIP_Alloc_Form
;
8955 --------------------------------------
8956 -- Needs_Result_Accessibility_Level --
8957 --------------------------------------
8959 function Needs_Result_Accessibility_Level
8960 (Func_Id
: Entity_Id
) return Boolean
8962 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8964 function Has_Unconstrained_Access_Discriminant_Component
8965 (Comp_Typ
: Entity_Id
) return Boolean;
8966 -- Returns True if any component of the type has an unconstrained access
8969 -----------------------------------------------------
8970 -- Has_Unconstrained_Access_Discriminant_Component --
8971 -----------------------------------------------------
8973 function Has_Unconstrained_Access_Discriminant_Component
8974 (Comp_Typ
: Entity_Id
) return Boolean
8977 if not Is_Limited_Type
(Comp_Typ
) then
8980 -- Only limited types can have access discriminants with
8983 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
8986 elsif Is_Array_Type
(Comp_Typ
) then
8987 return Has_Unconstrained_Access_Discriminant_Component
8988 (Underlying_Type
(Component_Type
(Comp_Typ
)));
8990 elsif Is_Record_Type
(Comp_Typ
) then
8995 Comp
:= First_Component
(Comp_Typ
);
8996 while Present
(Comp
) loop
8997 if Has_Unconstrained_Access_Discriminant_Component
8998 (Underlying_Type
(Etype
(Comp
)))
9003 Next_Component
(Comp
);
9009 end Has_Unconstrained_Access_Discriminant_Component
;
9011 Feature_Disabled
: constant Boolean := True;
9014 -- Start of processing for Needs_Result_Accessibility_Level
9017 -- False if completion unavailable (how does this happen???)
9019 if not Present
(Func_Typ
) then
9022 elsif Feature_Disabled
then
9025 -- False if not a function, also handle enum-lit renames case
9027 elsif Func_Typ
= Standard_Void_Type
9028 or else Is_Scalar_Type
(Func_Typ
)
9032 -- Handle a corner case, a cross-dialect subp renaming. For example,
9033 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9034 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9036 elsif Present
(Alias
(Func_Id
)) then
9038 -- Unimplemented: a cross-dialect subp renaming which does not set
9039 -- the Alias attribute (e.g., a rename of a dereference of an access
9040 -- to subprogram value). ???
9042 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9044 -- Remaining cases require Ada 2012 mode
9046 elsif Ada_Version
< Ada_2012
then
9049 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9050 or else Is_Tagged_Type
(Func_Typ
)
9052 -- In the case of, say, a null tagged record result type, the need
9053 -- for this extra parameter might not be obvious. This function
9054 -- returns True for all tagged types for compatibility reasons.
9055 -- A function with, say, a tagged null controlling result type might
9056 -- be overridden by a primitive of an extension having an access
9057 -- discriminant and the overrider and overridden must have compatible
9058 -- calling conventions (including implicitly declared parameters).
9059 -- Similarly, values of one access-to-subprogram type might designate
9060 -- both a primitive subprogram of a given type and a function
9061 -- which is, for example, not a primitive subprogram of any type.
9062 -- Again, this requires calling convention compatibility.
9063 -- It might be possible to solve these issues by introducing
9064 -- wrappers, but that is not the approach that was chosen.
9068 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9071 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9074 -- False for all other cases
9079 end Needs_Result_Accessibility_Level
;
9081 -------------------------------------
9082 -- Replace_Renaming_Declaration_Id --
9083 -------------------------------------
9085 procedure Replace_Renaming_Declaration_Id
9086 (New_Decl
: Node_Id
;
9087 Orig_Decl
: Node_Id
)
9089 New_Id
: constant Entity_Id
:= Defining_Entity
(New_Decl
);
9090 Orig_Id
: constant Entity_Id
:= Defining_Entity
(Orig_Decl
);
9093 Set_Chars
(New_Id
, Chars
(Orig_Id
));
9095 -- Swap next entity links in preparation for exchanging entities
9098 Next_Id
: constant Entity_Id
:= Next_Entity
(New_Id
);
9100 Set_Next_Entity
(New_Id
, Next_Entity
(Orig_Id
));
9101 Set_Next_Entity
(Orig_Id
, Next_Id
);
9104 Set_Homonym
(New_Id
, Homonym
(Orig_Id
));
9105 Exchange_Entities
(New_Id
, Orig_Id
);
9107 -- Preserve source indication of original declaration, so that xref
9108 -- information is properly generated for the right entity.
9110 Preserve_Comes_From_Source
(New_Decl
, Orig_Decl
);
9111 Preserve_Comes_From_Source
(Orig_Id
, Orig_Decl
);
9113 Set_Comes_From_Source
(New_Id
, False);
9114 end Replace_Renaming_Declaration_Id
;
9116 ---------------------------------
9117 -- Rewrite_Function_Call_For_C --
9118 ---------------------------------
9120 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
) is
9121 Orig_Func
: constant Entity_Id
:= Entity
(Name
(N
));
9122 Func_Id
: constant Entity_Id
:= Ultimate_Alias
(Orig_Func
);
9123 Par
: constant Node_Id
:= Parent
(N
);
9124 Proc_Id
: constant Entity_Id
:= Corresponding_Procedure
(Func_Id
);
9125 Loc
: constant Source_Ptr
:= Sloc
(Par
);
9127 Last_Actual
: Node_Id
;
9128 Last_Formal
: Entity_Id
;
9130 -- Start of processing for Rewrite_Function_Call_For_C
9133 -- The actuals may be given by named associations, so the added actual
9134 -- that is the target of the return value of the call must be a named
9135 -- association as well, so we retrieve the name of the generated
9138 Last_Formal
:= First_Formal
(Proc_Id
);
9139 while Present
(Next_Formal
(Last_Formal
)) loop
9140 Last_Formal
:= Next_Formal
(Last_Formal
);
9143 Actuals
:= Parameter_Associations
(N
);
9145 -- The original function may lack parameters
9147 if No
(Actuals
) then
9148 Actuals
:= New_List
;
9151 -- If the function call is the expression of an assignment statement,
9152 -- transform the assignment into a procedure call. Generate:
9154 -- LHS := Func_Call (...);
9156 -- Proc_Call (..., LHS);
9158 -- If function is inherited, a conversion may be necessary.
9160 if Nkind
(Par
) = N_Assignment_Statement
then
9161 Last_Actual
:= Name
(Par
);
9163 if not Comes_From_Source
(Orig_Func
)
9164 and then Etype
(Orig_Func
) /= Etype
(Func_Id
)
9167 Make_Type_Conversion
(Loc
,
9168 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
9173 Make_Parameter_Association
(Loc
,
9175 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9176 Explicit_Actual_Parameter
=> Last_Actual
));
9179 Make_Procedure_Call_Statement
(Loc
,
9180 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9181 Parameter_Associations
=> Actuals
));
9184 -- Otherwise the context is an expression. Generate a temporary and a
9185 -- procedure call to obtain the function result. Generate:
9187 -- ... Func_Call (...) ...
9190 -- Proc_Call (..., Temp);
9195 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
9204 Make_Object_Declaration
(Loc
,
9205 Defining_Identifier
=> Temp_Id
,
9206 Object_Definition
=>
9207 New_Occurrence_Of
(Etype
(Func_Id
), Loc
));
9210 -- Proc_Call (..., Temp);
9213 Make_Parameter_Association
(Loc
,
9215 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9216 Explicit_Actual_Parameter
=>
9217 New_Occurrence_Of
(Temp_Id
, Loc
)));
9220 Make_Procedure_Call_Statement
(Loc
,
9221 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9222 Parameter_Associations
=> Actuals
);
9224 Insert_Actions
(Par
, New_List
(Decl
, Call
));
9225 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
9228 end Rewrite_Function_Call_For_C
;
9230 ------------------------------------
9231 -- Set_Enclosing_Sec_Stack_Return --
9232 ------------------------------------
9234 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
) is
9238 -- Due to a possible mix of internally generated blocks, source blocks
9239 -- and loops, the scope stack may not be contiguous as all labels are
9240 -- inserted at the top level within the related function. Instead,
9241 -- perform a parent-based traversal and mark all appropriate constructs.
9243 while Present
(P
) loop
9245 -- Mark the label of a source or internally generated block or
9248 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
9249 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
9251 -- Mark the enclosing function
9253 elsif Nkind
(P
) = N_Subprogram_Body
then
9254 if Present
(Corresponding_Spec
(P
)) then
9255 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
9257 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
9260 -- Do not go beyond the enclosing function
9267 end Set_Enclosing_Sec_Stack_Return
;
9269 ------------------------------------
9270 -- Unqual_BIP_Iface_Function_Call --
9271 ------------------------------------
9273 function Unqual_BIP_Iface_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9274 Has_Pointer_Displacement
: Boolean := False;
9275 On_Object_Declaration
: Boolean := False;
9276 -- Remember if processing the renaming expressions on recursion we have
9277 -- traversed an object declaration, since we can traverse many object
9278 -- declaration renamings but just one regular object declaration.
9280 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
;
9281 -- Search for a build-in-place function call skipping any qualification
9282 -- including qualified expressions, type conversions, references, calls
9283 -- to displace the pointer to the object, and renamings. Return Empty if
9284 -- no build-in-place function call is found.
9286 ------------------------------
9287 -- Unqual_BIP_Function_Call --
9288 ------------------------------
9290 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9292 -- Recurse to handle case of multiple levels of qualification and/or
9295 if Nkind_In
(Expr
, N_Qualified_Expression
,
9297 N_Unchecked_Type_Conversion
)
9299 return Unqual_BIP_Function_Call
(Expression
(Expr
));
9301 -- Recurse to handle case of multiple levels of references and
9302 -- explicit dereferences.
9304 elsif Nkind_In
(Expr
, N_Attribute_Reference
,
9305 N_Explicit_Dereference
,
9308 return Unqual_BIP_Function_Call
(Prefix
(Expr
));
9310 -- Recurse on object renamings
9312 elsif Nkind
(Expr
) = N_Identifier
9313 and then Present
(Entity
(Expr
))
9314 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9315 and then Nkind
(Parent
(Entity
(Expr
))) =
9316 N_Object_Renaming_Declaration
9317 and then Present
(Renamed_Object
(Entity
(Expr
)))
9319 return Unqual_BIP_Function_Call
(Renamed_Object
(Entity
(Expr
)));
9321 -- Recurse on the initializing expression of the first reference of
9322 -- an object declaration.
9324 elsif not On_Object_Declaration
9325 and then Nkind
(Expr
) = N_Identifier
9326 and then Present
(Entity
(Expr
))
9327 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9328 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
9329 and then Present
(Expression
(Parent
(Entity
(Expr
))))
9331 On_Object_Declaration
:= True;
9333 Unqual_BIP_Function_Call
(Expression
(Parent
(Entity
(Expr
))));
9335 -- Recurse to handle calls to displace the pointer to the object to
9336 -- reference a secondary dispatch table.
9338 elsif Nkind
(Expr
) = N_Function_Call
9339 and then Nkind
(Name
(Expr
)) in N_Has_Entity
9340 and then Present
(Entity
(Name
(Expr
)))
9341 and then RTU_Loaded
(Ada_Tags
)
9342 and then RTE_Available
(RE_Displace
)
9343 and then Is_RTE
(Entity
(Name
(Expr
)), RE_Displace
)
9345 Has_Pointer_Displacement
:= True;
9347 Unqual_BIP_Function_Call
(First
(Parameter_Associations
(Expr
)));
9349 -- Normal case: check if the inner expression is a BIP function call
9350 -- and the pointer to the object is displaced.
9352 elsif Has_Pointer_Displacement
9353 and then Is_Build_In_Place_Function_Call
(Expr
)
9360 end Unqual_BIP_Function_Call
;
9362 -- Start of processing for Unqual_BIP_Iface_Function_Call
9365 if Nkind
(Expr
) = N_Identifier
and then No
(Entity
(Expr
)) then
9367 -- Can happen for X'Elab_Spec in the binder-generated file
9372 return Unqual_BIP_Function_Call
(Expr
);
9373 end Unqual_BIP_Iface_Function_Call
;