* varasm.c (bss_initializer_p): Remove static.
[official-gcc.git] / gcc / ada / freeze.adb
blob6c647111627d98cbc80a9658c3bc2bda820c9fdc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch7; use Sem_Ch7;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Ch9; use Sem_Ch9;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Prag; use Sem_Prag;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sinfo; use Sinfo;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Ttypes; use Ttypes;
66 with Uintp; use Uintp;
67 with Urealp; use Urealp;
69 package body Freeze is
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
76 -- Typ is a type that is being frozen. If no size clause is given,
77 -- but a default Esize has been computed, then this default Esize is
78 -- adjusted up if necessary to be consistent with a given alignment,
79 -- but never to a value greater than Long_Long_Integer'Size. This
80 -- is used for all discrete types and for fixed-point types.
82 procedure Build_And_Analyze_Renamed_Body
83 (Decl : Node_Id;
84 New_S : Entity_Id;
85 After : in out Node_Id);
86 -- Build body for a renaming declaration, insert in tree and analyze
88 procedure Check_Address_Clause (E : Entity_Id);
89 -- Apply legality checks to address clauses for object declarations,
90 -- at the point the object is frozen.
92 procedure Check_Component_Storage_Order
93 (Encl_Type : Entity_Id;
94 Comp : Entity_Id);
95 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
96 -- clause, verify that the component type is compatible. For arrays,
97 -- Comp is Empty; for records, it is the entity of the component under
98 -- consideration.
100 procedure Check_Strict_Alignment (E : Entity_Id);
101 -- E is a base type. If E is tagged or has a component that is aliased
102 -- or tagged or contains something this is aliased or tagged, set
103 -- Strict_Alignment.
105 procedure Check_Unsigned_Type (E : Entity_Id);
106 pragma Inline (Check_Unsigned_Type);
107 -- If E is a fixed-point or discrete type, then all the necessary work
108 -- to freeze it is completed except for possible setting of the flag
109 -- Is_Unsigned_Type, which is done by this procedure. The call has no
110 -- effect if the entity E is not a discrete or fixed-point type.
112 procedure Freeze_And_Append
113 (Ent : Entity_Id;
114 N : Node_Id;
115 Result : in out List_Id);
116 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
117 -- nodes to Result, modifying Result from No_List if necessary. N has
118 -- the same usage as in Freeze_Entity.
120 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
121 -- Freeze enumeration type. The Esize field is set as processing
122 -- proceeds (i.e. set by default when the type is declared and then
123 -- adjusted by rep clauses. What this procedure does is to make sure
124 -- that if a foreign convention is specified, and no specific size
125 -- is given, then the size must be at least Integer'Size.
127 procedure Freeze_Static_Object (E : Entity_Id);
128 -- If an object is frozen which has Is_Statically_Allocated set, then
129 -- all referenced types must also be marked with this flag. This routine
130 -- is in charge of meeting this requirement for the object entity E.
132 procedure Freeze_Subprogram (E : Entity_Id);
133 -- Perform freezing actions for a subprogram (create extra formals,
134 -- and set proper default mechanism values). Note that this routine
135 -- is not called for internal subprograms, for which neither of these
136 -- actions is needed (or desirable, we do not want for example to have
137 -- these extra formals present in initialization procedures, where they
138 -- would serve no purpose). In this call E is either a subprogram or
139 -- a subprogram type (i.e. an access to a subprogram).
141 function Is_Fully_Defined (T : Entity_Id) return Boolean;
142 -- True if T is not private and has no private components, or has a full
143 -- view. Used to determine whether the designated type of an access type
144 -- should be frozen when the access type is frozen. This is done when an
145 -- allocator is frozen, or an expression that may involve attributes of
146 -- the designated type. Otherwise freezing the access type does not freeze
147 -- the designated type.
149 procedure Process_Default_Expressions
150 (E : Entity_Id;
151 After : in out Node_Id);
152 -- This procedure is called for each subprogram to complete processing of
153 -- default expressions at the point where all types are known to be frozen.
154 -- The expressions must be analyzed in full, to make sure that all error
155 -- processing is done (they have only been pre-analyzed). If the expression
156 -- is not an entity or literal, its analysis may generate code which must
157 -- not be executed. In that case we build a function body to hold that
158 -- code. This wrapper function serves no other purpose (it used to be
159 -- called to evaluate the default, but now the default is inlined at each
160 -- point of call).
162 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
163 -- Typ is a record or array type that is being frozen. This routine sets
164 -- the default component alignment from the scope stack values if the
165 -- alignment is otherwise not specified.
167 procedure Check_Debug_Info_Needed (T : Entity_Id);
168 -- As each entity is frozen, this routine is called to deal with the
169 -- setting of Debug_Info_Needed for the entity. This flag is set if
170 -- the entity comes from source, or if we are in Debug_Generated_Code
171 -- mode or if the -gnatdV debug flag is set. However, it never sets
172 -- the flag if Debug_Info_Off is set. This procedure also ensures that
173 -- subsidiary entities have the flag set as required.
175 procedure Undelay_Type (T : Entity_Id);
176 -- T is a type of a component that we know to be an Itype. We don't want
177 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
178 -- Full_View or Corresponding_Record_Type.
180 procedure Warn_Overlay
181 (Expr : Node_Id;
182 Typ : Entity_Id;
183 Nam : Node_Id);
184 -- Expr is the expression for an address clause for entity Nam whose type
185 -- is Typ. If Typ has a default initialization, and there is no explicit
186 -- initialization in the source declaration, check whether the address
187 -- clause might cause overlaying of an entity, and emit a warning on the
188 -- side effect that the initialization will cause.
190 -------------------------------
191 -- Adjust_Esize_For_Alignment --
192 -------------------------------
194 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
195 Align : Uint;
197 begin
198 if Known_Esize (Typ) and then Known_Alignment (Typ) then
199 Align := Alignment_In_Bits (Typ);
201 if Align > Esize (Typ)
202 and then Align <= Standard_Long_Long_Integer_Size
203 then
204 Set_Esize (Typ, Align);
205 end if;
206 end if;
207 end Adjust_Esize_For_Alignment;
209 ------------------------------------
210 -- Build_And_Analyze_Renamed_Body --
211 ------------------------------------
213 procedure Build_And_Analyze_Renamed_Body
214 (Decl : Node_Id;
215 New_S : Entity_Id;
216 After : in out Node_Id)
218 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
219 Ent : constant Entity_Id := Defining_Entity (Decl);
220 Body_Node : Node_Id;
221 Renamed_Subp : Entity_Id;
223 begin
224 -- If the renamed subprogram is intrinsic, there is no need for a
225 -- wrapper body: we set the alias that will be called and expanded which
226 -- completes the declaration. This transformation is only legal if the
227 -- renamed entity has already been elaborated.
229 -- Note that it is legal for a renaming_as_body to rename an intrinsic
230 -- subprogram, as long as the renaming occurs before the new entity
231 -- is frozen. See RM 8.5.4 (5).
233 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
234 and then Is_Entity_Name (Name (Body_Decl))
235 then
236 Renamed_Subp := Entity (Name (Body_Decl));
237 else
238 Renamed_Subp := Empty;
239 end if;
241 if Present (Renamed_Subp)
242 and then Is_Intrinsic_Subprogram (Renamed_Subp)
243 and then
244 (not In_Same_Source_Unit (Renamed_Subp, Ent)
245 or else Sloc (Renamed_Subp) < Sloc (Ent))
247 -- We can make the renaming entity intrinsic if the renamed function
248 -- has an interface name, or if it is one of the shift/rotate
249 -- operations known to the compiler.
251 and then (Present (Interface_Name (Renamed_Subp))
252 or else Chars (Renamed_Subp) = Name_Rotate_Left
253 or else Chars (Renamed_Subp) = Name_Rotate_Right
254 or else Chars (Renamed_Subp) = Name_Shift_Left
255 or else Chars (Renamed_Subp) = Name_Shift_Right
256 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
257 then
258 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
260 if Present (Alias (Renamed_Subp)) then
261 Set_Alias (Ent, Alias (Renamed_Subp));
262 else
263 Set_Alias (Ent, Renamed_Subp);
264 end if;
266 Set_Is_Intrinsic_Subprogram (Ent);
267 Set_Has_Completion (Ent);
269 else
270 Body_Node := Build_Renamed_Body (Decl, New_S);
271 Insert_After (After, Body_Node);
272 Mark_Rewrite_Insertion (Body_Node);
273 Analyze (Body_Node);
274 After := Body_Node;
275 end if;
276 end Build_And_Analyze_Renamed_Body;
278 ------------------------
279 -- Build_Renamed_Body --
280 ------------------------
282 function Build_Renamed_Body
283 (Decl : Node_Id;
284 New_S : Entity_Id) return Node_Id
286 Loc : constant Source_Ptr := Sloc (New_S);
287 -- We use for the source location of the renamed body, the location of
288 -- the spec entity. It might seem more natural to use the location of
289 -- the renaming declaration itself, but that would be wrong, since then
290 -- the body we create would look as though it was created far too late,
291 -- and this could cause problems with elaboration order analysis,
292 -- particularly in connection with instantiations.
294 N : constant Node_Id := Unit_Declaration_Node (New_S);
295 Nam : constant Node_Id := Name (N);
296 Old_S : Entity_Id;
297 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
298 Actuals : List_Id := No_List;
299 Call_Node : Node_Id;
300 Call_Name : Node_Id;
301 Body_Node : Node_Id;
302 Formal : Entity_Id;
303 O_Formal : Entity_Id;
304 Param_Spec : Node_Id;
306 Pref : Node_Id := Empty;
307 -- If the renamed entity is a primitive operation given in prefix form,
308 -- the prefix is the target object and it has to be added as the first
309 -- actual in the generated call.
311 begin
312 -- Determine the entity being renamed, which is the target of the call
313 -- statement. If the name is an explicit dereference, this is a renaming
314 -- of a subprogram type rather than a subprogram. The name itself is
315 -- fully analyzed.
317 if Nkind (Nam) = N_Selected_Component then
318 Old_S := Entity (Selector_Name (Nam));
320 elsif Nkind (Nam) = N_Explicit_Dereference then
321 Old_S := Etype (Nam);
323 elsif Nkind (Nam) = N_Indexed_Component then
324 if Is_Entity_Name (Prefix (Nam)) then
325 Old_S := Entity (Prefix (Nam));
326 else
327 Old_S := Entity (Selector_Name (Prefix (Nam)));
328 end if;
330 elsif Nkind (Nam) = N_Character_Literal then
331 Old_S := Etype (New_S);
333 else
334 Old_S := Entity (Nam);
335 end if;
337 if Is_Entity_Name (Nam) then
339 -- If the renamed entity is a predefined operator, retain full name
340 -- to ensure its visibility.
342 if Ekind (Old_S) = E_Operator
343 and then Nkind (Nam) = N_Expanded_Name
344 then
345 Call_Name := New_Copy (Name (N));
346 else
347 Call_Name := New_Reference_To (Old_S, Loc);
348 end if;
350 else
351 if Nkind (Nam) = N_Selected_Component
352 and then Present (First_Formal (Old_S))
353 and then
354 (Is_Controlling_Formal (First_Formal (Old_S))
355 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
356 then
358 -- Retrieve the target object, to be added as a first actual
359 -- in the call.
361 Call_Name := New_Occurrence_Of (Old_S, Loc);
362 Pref := Prefix (Nam);
364 else
365 Call_Name := New_Copy (Name (N));
366 end if;
368 -- Original name may have been overloaded, but is fully resolved now
370 Set_Is_Overloaded (Call_Name, False);
371 end if;
373 -- For simple renamings, subsequent calls can be expanded directly as
374 -- calls to the renamed entity. The body must be generated in any case
375 -- for calls that may appear elsewhere. This is not done in the case
376 -- where the subprogram is an instantiation because the actual proper
377 -- body has not been built yet.
379 if Ekind_In (Old_S, E_Function, E_Procedure)
380 and then Nkind (Decl) = N_Subprogram_Declaration
381 and then not Is_Generic_Instance (Old_S)
382 then
383 Set_Body_To_Inline (Decl, Old_S);
384 end if;
386 -- The body generated for this renaming is an internal artifact, and
387 -- does not constitute a freeze point for the called entity.
389 Set_Must_Not_Freeze (Call_Name);
391 Formal := First_Formal (Defining_Entity (Decl));
393 if Present (Pref) then
394 declare
395 Pref_Type : constant Entity_Id := Etype (Pref);
396 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
398 begin
399 -- The controlling formal may be an access parameter, or the
400 -- actual may be an access value, so adjust accordingly.
402 if Is_Access_Type (Pref_Type)
403 and then not Is_Access_Type (Form_Type)
404 then
405 Actuals := New_List
406 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
408 elsif Is_Access_Type (Form_Type)
409 and then not Is_Access_Type (Pref)
410 then
411 Actuals := New_List
412 (Make_Attribute_Reference (Loc,
413 Attribute_Name => Name_Access,
414 Prefix => Relocate_Node (Pref)));
415 else
416 Actuals := New_List (Pref);
417 end if;
418 end;
420 elsif Present (Formal) then
421 Actuals := New_List;
423 else
424 Actuals := No_List;
425 end if;
427 if Present (Formal) then
428 while Present (Formal) loop
429 Append (New_Reference_To (Formal, Loc), Actuals);
430 Next_Formal (Formal);
431 end loop;
432 end if;
434 -- If the renamed entity is an entry, inherit its profile. For other
435 -- renamings as bodies, both profiles must be subtype conformant, so it
436 -- is not necessary to replace the profile given in the declaration.
437 -- However, default values that are aggregates are rewritten when
438 -- partially analyzed, so we recover the original aggregate to insure
439 -- that subsequent conformity checking works. Similarly, if the default
440 -- expression was constant-folded, recover the original expression.
442 Formal := First_Formal (Defining_Entity (Decl));
444 if Present (Formal) then
445 O_Formal := First_Formal (Old_S);
446 Param_Spec := First (Parameter_Specifications (Spec));
447 while Present (Formal) loop
448 if Is_Entry (Old_S) then
449 if Nkind (Parameter_Type (Param_Spec)) /=
450 N_Access_Definition
451 then
452 Set_Etype (Formal, Etype (O_Formal));
453 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
454 end if;
456 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
457 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
458 Nkind (Default_Value (O_Formal))
459 then
460 Set_Expression (Param_Spec,
461 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
462 end if;
464 Next_Formal (Formal);
465 Next_Formal (O_Formal);
466 Next (Param_Spec);
467 end loop;
468 end if;
470 -- If the renamed entity is a function, the generated body contains a
471 -- return statement. Otherwise, build a procedure call. If the entity is
472 -- an entry, subsequent analysis of the call will transform it into the
473 -- proper entry or protected operation call. If the renamed entity is
474 -- a character literal, return it directly.
476 if Ekind (Old_S) = E_Function
477 or else Ekind (Old_S) = E_Operator
478 or else (Ekind (Old_S) = E_Subprogram_Type
479 and then Etype (Old_S) /= Standard_Void_Type)
480 then
481 Call_Node :=
482 Make_Simple_Return_Statement (Loc,
483 Expression =>
484 Make_Function_Call (Loc,
485 Name => Call_Name,
486 Parameter_Associations => Actuals));
488 elsif Ekind (Old_S) = E_Enumeration_Literal then
489 Call_Node :=
490 Make_Simple_Return_Statement (Loc,
491 Expression => New_Occurrence_Of (Old_S, Loc));
493 elsif Nkind (Nam) = N_Character_Literal then
494 Call_Node :=
495 Make_Simple_Return_Statement (Loc,
496 Expression => Call_Name);
498 else
499 Call_Node :=
500 Make_Procedure_Call_Statement (Loc,
501 Name => Call_Name,
502 Parameter_Associations => Actuals);
503 end if;
505 -- Create entities for subprogram body and formals
507 Set_Defining_Unit_Name (Spec,
508 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
510 Param_Spec := First (Parameter_Specifications (Spec));
511 while Present (Param_Spec) loop
512 Set_Defining_Identifier (Param_Spec,
513 Make_Defining_Identifier (Loc,
514 Chars => Chars (Defining_Identifier (Param_Spec))));
515 Next (Param_Spec);
516 end loop;
518 Body_Node :=
519 Make_Subprogram_Body (Loc,
520 Specification => Spec,
521 Declarations => New_List,
522 Handled_Statement_Sequence =>
523 Make_Handled_Sequence_Of_Statements (Loc,
524 Statements => New_List (Call_Node)));
526 if Nkind (Decl) /= N_Subprogram_Declaration then
527 Rewrite (N,
528 Make_Subprogram_Declaration (Loc,
529 Specification => Specification (N)));
530 end if;
532 -- Link the body to the entity whose declaration it completes. If
533 -- the body is analyzed when the renamed entity is frozen, it may
534 -- be necessary to restore the proper scope (see package Exp_Ch13).
536 if Nkind (N) = N_Subprogram_Renaming_Declaration
537 and then Present (Corresponding_Spec (N))
538 then
539 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
540 else
541 Set_Corresponding_Spec (Body_Node, New_S);
542 end if;
544 return Body_Node;
545 end Build_Renamed_Body;
547 --------------------------
548 -- Check_Address_Clause --
549 --------------------------
551 procedure Check_Address_Clause (E : Entity_Id) is
552 Addr : constant Node_Id := Address_Clause (E);
553 Expr : Node_Id;
554 Decl : constant Node_Id := Declaration_Node (E);
555 Typ : constant Entity_Id := Etype (E);
557 begin
558 if Present (Addr) then
559 Expr := Expression (Addr);
561 if Needs_Constant_Address (Decl, Typ) then
562 Check_Constant_Address_Clause (Expr, E);
564 -- Has_Delayed_Freeze was set on E when the address clause was
565 -- analyzed. Reset the flag now unless freeze actions were
566 -- attached to it in the mean time.
568 if No (Freeze_Node (E)) then
569 Set_Has_Delayed_Freeze (E, False);
570 end if;
571 end if;
573 -- If Rep_Clauses are to be ignored, remove address clause from
574 -- list attached to entity, because it may be illegal for gigi,
575 -- for example by breaking order of elaboration..
577 if Ignore_Rep_Clauses then
578 declare
579 Rep : Node_Id;
581 begin
582 Rep := First_Rep_Item (E);
584 if Rep = Addr then
585 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
587 else
588 while Present (Rep)
589 and then Next_Rep_Item (Rep) /= Addr
590 loop
591 Rep := Next_Rep_Item (Rep);
592 end loop;
593 end if;
595 if Present (Rep) then
596 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
597 end if;
598 end;
600 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
602 elsif not Error_Posted (Expr)
603 and then not Needs_Finalization (Typ)
604 then
605 Warn_Overlay (Expr, Typ, Name (Addr));
606 end if;
607 end if;
608 end Check_Address_Clause;
610 -----------------------------
611 -- Check_Compile_Time_Size --
612 -----------------------------
614 procedure Check_Compile_Time_Size (T : Entity_Id) is
616 procedure Set_Small_Size (T : Entity_Id; S : Uint);
617 -- Sets the compile time known size (32 bits or less) in the Esize
618 -- field, of T checking for a size clause that was given which attempts
619 -- to give a smaller size, and also checking for an alignment clause.
621 function Size_Known (T : Entity_Id) return Boolean;
622 -- Recursive function that does all the work
624 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
625 -- If T is a constrained subtype, its size is not known if any of its
626 -- discriminant constraints is not static and it is not a null record.
627 -- The test is conservative and doesn't check that the components are
628 -- in fact constrained by non-static discriminant values. Could be made
629 -- more precise ???
631 --------------------
632 -- Set_Small_Size --
633 --------------------
635 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
636 begin
637 if S > 32 then
638 return;
640 -- Check for bad size clause given
642 elsif Has_Size_Clause (T) then
643 if RM_Size (T) < S then
644 Error_Msg_Uint_1 := S;
645 Error_Msg_NE
646 ("size for& too small, minimum allowed is ^",
647 Size_Clause (T), T);
648 end if;
650 -- Set size if not set already
652 elsif Unknown_RM_Size (T) then
653 Set_RM_Size (T, S);
654 end if;
655 end Set_Small_Size;
657 ----------------
658 -- Size_Known --
659 ----------------
661 function Size_Known (T : Entity_Id) return Boolean is
662 Index : Entity_Id;
663 Comp : Entity_Id;
664 Ctyp : Entity_Id;
665 Low : Node_Id;
666 High : Node_Id;
668 begin
669 if Size_Known_At_Compile_Time (T) then
670 return True;
672 -- Always True for scalar types. This is true even for generic formal
673 -- scalar types. We used to return False in the latter case, but the
674 -- size is known at compile time, even in the template, we just do
675 -- not know the exact size but that's not the point of this routine.
677 elsif Is_Scalar_Type (T)
678 or else Is_Task_Type (T)
679 then
680 return True;
682 -- Array types
684 elsif Is_Array_Type (T) then
686 -- String literals always have known size, and we can set it
688 if Ekind (T) = E_String_Literal_Subtype then
689 Set_Small_Size (T, Component_Size (T)
690 * String_Literal_Length (T));
691 return True;
693 -- Unconstrained types never have known at compile time size
695 elsif not Is_Constrained (T) then
696 return False;
698 -- Don't do any recursion on type with error posted, since we may
699 -- have a malformed type that leads us into a loop.
701 elsif Error_Posted (T) then
702 return False;
704 -- Otherwise if component size unknown, then array size unknown
706 elsif not Size_Known (Component_Type (T)) then
707 return False;
708 end if;
710 -- Check for all indexes static, and also compute possible size
711 -- (in case it is less than 32 and may be packable).
713 declare
714 Esiz : Uint := Component_Size (T);
715 Dim : Uint;
717 begin
718 Index := First_Index (T);
719 while Present (Index) loop
720 if Nkind (Index) = N_Range then
721 Get_Index_Bounds (Index, Low, High);
723 elsif Error_Posted (Scalar_Range (Etype (Index))) then
724 return False;
726 else
727 Low := Type_Low_Bound (Etype (Index));
728 High := Type_High_Bound (Etype (Index));
729 end if;
731 if not Compile_Time_Known_Value (Low)
732 or else not Compile_Time_Known_Value (High)
733 or else Etype (Index) = Any_Type
734 then
735 return False;
737 else
738 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
740 if Dim >= 0 then
741 Esiz := Esiz * Dim;
742 else
743 Esiz := Uint_0;
744 end if;
745 end if;
747 Next_Index (Index);
748 end loop;
750 Set_Small_Size (T, Esiz);
751 return True;
752 end;
754 -- Access types always have known at compile time sizes
756 elsif Is_Access_Type (T) then
757 return True;
759 -- For non-generic private types, go to underlying type if present
761 elsif Is_Private_Type (T)
762 and then not Is_Generic_Type (T)
763 and then Present (Underlying_Type (T))
764 then
765 -- Don't do any recursion on type with error posted, since we may
766 -- have a malformed type that leads us into a loop.
768 if Error_Posted (T) then
769 return False;
770 else
771 return Size_Known (Underlying_Type (T));
772 end if;
774 -- Record types
776 elsif Is_Record_Type (T) then
778 -- A class-wide type is never considered to have a known size
780 if Is_Class_Wide_Type (T) then
781 return False;
783 -- A subtype of a variant record must not have non-static
784 -- discriminated components.
786 elsif T /= Base_Type (T)
787 and then not Static_Discriminated_Components (T)
788 then
789 return False;
791 -- Don't do any recursion on type with error posted, since we may
792 -- have a malformed type that leads us into a loop.
794 elsif Error_Posted (T) then
795 return False;
796 end if;
798 -- Now look at the components of the record
800 declare
801 -- The following two variables are used to keep track of the
802 -- size of packed records if we can tell the size of the packed
803 -- record in the front end. Packed_Size_Known is True if so far
804 -- we can figure out the size. It is initialized to True for a
805 -- packed record, unless the record has discriminants. The
806 -- reason we eliminate the discriminated case is that we don't
807 -- know the way the back end lays out discriminated packed
808 -- records. If Packed_Size_Known is True, then Packed_Size is
809 -- the size in bits so far.
811 Packed_Size_Known : Boolean :=
812 Is_Packed (T)
813 and then not Has_Discriminants (T);
815 Packed_Size : Uint := Uint_0;
817 begin
818 -- Test for variant part present
820 if Has_Discriminants (T)
821 and then Present (Parent (T))
822 and then Nkind (Parent (T)) = N_Full_Type_Declaration
823 and then Nkind (Type_Definition (Parent (T))) =
824 N_Record_Definition
825 and then not Null_Present (Type_Definition (Parent (T)))
826 and then Present (Variant_Part
827 (Component_List (Type_Definition (Parent (T)))))
828 then
829 -- If variant part is present, and type is unconstrained,
830 -- then we must have defaulted discriminants, or a size
831 -- clause must be present for the type, or else the size
832 -- is definitely not known at compile time.
834 if not Is_Constrained (T)
835 and then
836 No (Discriminant_Default_Value (First_Discriminant (T)))
837 and then Unknown_RM_Size (T)
838 then
839 return False;
840 end if;
841 end if;
843 -- Loop through components
845 Comp := First_Component_Or_Discriminant (T);
846 while Present (Comp) loop
847 Ctyp := Etype (Comp);
849 -- We do not know the packed size if there is a component
850 -- clause present (we possibly could, but this would only
851 -- help in the case of a record with partial rep clauses.
852 -- That's because in the case of full rep clauses, the
853 -- size gets figured out anyway by a different circuit).
855 if Present (Component_Clause (Comp)) then
856 Packed_Size_Known := False;
857 end if;
859 -- We need to identify a component that is an array where
860 -- the index type is an enumeration type with non-standard
861 -- representation, and some bound of the type depends on a
862 -- discriminant.
864 -- This is because gigi computes the size by doing a
865 -- substitution of the appropriate discriminant value in
866 -- the size expression for the base type, and gigi is not
867 -- clever enough to evaluate the resulting expression (which
868 -- involves a call to rep_to_pos) at compile time.
870 -- It would be nice if gigi would either recognize that
871 -- this expression can be computed at compile time, or
872 -- alternatively figured out the size from the subtype
873 -- directly, where all the information is at hand ???
875 if Is_Array_Type (Etype (Comp))
876 and then Present (Packed_Array_Type (Etype (Comp)))
877 then
878 declare
879 Ocomp : constant Entity_Id :=
880 Original_Record_Component (Comp);
881 OCtyp : constant Entity_Id := Etype (Ocomp);
882 Ind : Node_Id;
883 Indtyp : Entity_Id;
884 Lo, Hi : Node_Id;
886 begin
887 Ind := First_Index (OCtyp);
888 while Present (Ind) loop
889 Indtyp := Etype (Ind);
891 if Is_Enumeration_Type (Indtyp)
892 and then Has_Non_Standard_Rep (Indtyp)
893 then
894 Lo := Type_Low_Bound (Indtyp);
895 Hi := Type_High_Bound (Indtyp);
897 if Is_Entity_Name (Lo)
898 and then Ekind (Entity (Lo)) = E_Discriminant
899 then
900 return False;
902 elsif Is_Entity_Name (Hi)
903 and then Ekind (Entity (Hi)) = E_Discriminant
904 then
905 return False;
906 end if;
907 end if;
909 Next_Index (Ind);
910 end loop;
911 end;
912 end if;
914 -- Clearly size of record is not known if the size of one of
915 -- the components is not known.
917 if not Size_Known (Ctyp) then
918 return False;
919 end if;
921 -- Accumulate packed size if possible
923 if Packed_Size_Known then
925 -- We can only deal with elementary types, since for
926 -- non-elementary components, alignment enters into the
927 -- picture, and we don't know enough to handle proper
928 -- alignment in this context. Packed arrays count as
929 -- elementary if the representation is a modular type.
931 if Is_Elementary_Type (Ctyp)
932 or else (Is_Array_Type (Ctyp)
933 and then Present (Packed_Array_Type (Ctyp))
934 and then Is_Modular_Integer_Type
935 (Packed_Array_Type (Ctyp)))
936 then
937 -- If RM_Size is known and static, then we can keep
938 -- accumulating the packed size.
940 if Known_Static_RM_Size (Ctyp) then
942 -- A little glitch, to be removed sometime ???
943 -- gigi does not understand zero sizes yet.
945 if RM_Size (Ctyp) = Uint_0 then
946 Packed_Size_Known := False;
948 -- Normal case where we can keep accumulating the
949 -- packed array size.
951 else
952 Packed_Size := Packed_Size + RM_Size (Ctyp);
953 end if;
955 -- If we have a field whose RM_Size is not known then
956 -- we can't figure out the packed size here.
958 else
959 Packed_Size_Known := False;
960 end if;
962 -- If we have a non-elementary type we can't figure out
963 -- the packed array size (alignment issues).
965 else
966 Packed_Size_Known := False;
967 end if;
968 end if;
970 Next_Component_Or_Discriminant (Comp);
971 end loop;
973 if Packed_Size_Known then
974 Set_Small_Size (T, Packed_Size);
975 end if;
977 return True;
978 end;
980 -- All other cases, size not known at compile time
982 else
983 return False;
984 end if;
985 end Size_Known;
987 -------------------------------------
988 -- Static_Discriminated_Components --
989 -------------------------------------
991 function Static_Discriminated_Components
992 (T : Entity_Id) return Boolean
994 Constraint : Elmt_Id;
996 begin
997 if Has_Discriminants (T)
998 and then Present (Discriminant_Constraint (T))
999 and then Present (First_Component (T))
1000 then
1001 Constraint := First_Elmt (Discriminant_Constraint (T));
1002 while Present (Constraint) loop
1003 if not Compile_Time_Known_Value (Node (Constraint)) then
1004 return False;
1005 end if;
1007 Next_Elmt (Constraint);
1008 end loop;
1009 end if;
1011 return True;
1012 end Static_Discriminated_Components;
1014 -- Start of processing for Check_Compile_Time_Size
1016 begin
1017 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1018 end Check_Compile_Time_Size;
1020 -----------------------------------
1021 -- Check_Component_Storage_Order --
1022 -----------------------------------
1024 procedure Check_Component_Storage_Order
1025 (Encl_Type : Entity_Id;
1026 Comp : Entity_Id)
1028 Comp_Type : Entity_Id;
1029 Comp_Def : Node_Id;
1030 Err_Node : Node_Id;
1031 ADC : Node_Id;
1033 Comp_Byte_Aligned : Boolean;
1034 -- Set True for the record case, when Comp starts on a byte boundary
1035 -- (in which case it is allowed to have different storage order).
1037 begin
1038 -- Record case
1040 if Present (Comp) then
1041 Err_Node := Comp;
1042 Comp_Type := Etype (Comp);
1043 Comp_Def := Component_Definition (Parent (Comp));
1045 Comp_Byte_Aligned :=
1046 Present (Component_Clause (Comp))
1047 and then Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1049 -- Array case
1051 else
1052 Err_Node := Encl_Type;
1053 Comp_Type := Component_Type (Encl_Type);
1054 Comp_Def := Component_Definition
1055 (Type_Definition (Declaration_Node (Encl_Type)));
1057 Comp_Byte_Aligned := False;
1058 end if;
1060 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1061 -- the attribute definition clause is attached to the first subtype.
1063 Comp_Type := Base_Type (Comp_Type);
1064 ADC := Get_Attribute_Definition_Clause
1065 (First_Subtype (Comp_Type),
1066 Attribute_Scalar_Storage_Order);
1068 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1069 if No (ADC) then
1070 Error_Msg_N ("nested composite must have explicit scalar "
1071 & "storage order", Err_Node);
1073 elsif (Reverse_Storage_Order (Encl_Type)
1075 Reverse_Storage_Order (Etype (Comp_Type)))
1076 and then not Comp_Byte_Aligned
1077 then
1078 Error_Msg_N
1079 ("type of non-byte-aligned component must have same scalar "
1080 & "storage order as enclosing composite", Err_Node);
1081 end if;
1083 elsif Aliased_Present (Comp_Def) then
1084 Error_Msg_N
1085 ("aliased component not permitted for type with "
1086 & "explicit Scalar_Storage_Order", Err_Node);
1087 end if;
1088 end Check_Component_Storage_Order;
1090 -----------------------------
1091 -- Check_Debug_Info_Needed --
1092 -----------------------------
1094 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1095 begin
1096 if Debug_Info_Off (T) then
1097 return;
1099 elsif Comes_From_Source (T)
1100 or else Debug_Generated_Code
1101 or else Debug_Flag_VV
1102 or else Needs_Debug_Info (T)
1103 then
1104 Set_Debug_Info_Needed (T);
1105 end if;
1106 end Check_Debug_Info_Needed;
1108 ----------------------------
1109 -- Check_Strict_Alignment --
1110 ----------------------------
1112 procedure Check_Strict_Alignment (E : Entity_Id) is
1113 Comp : Entity_Id;
1115 begin
1116 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1117 Set_Strict_Alignment (E);
1119 elsif Is_Array_Type (E) then
1120 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1122 elsif Is_Record_Type (E) then
1123 if Is_Limited_Record (E) then
1124 Set_Strict_Alignment (E);
1125 return;
1126 end if;
1128 Comp := First_Component (E);
1129 while Present (Comp) loop
1130 if not Is_Type (Comp)
1131 and then (Strict_Alignment (Etype (Comp))
1132 or else Is_Aliased (Comp))
1133 then
1134 Set_Strict_Alignment (E);
1135 return;
1136 end if;
1138 Next_Component (Comp);
1139 end loop;
1140 end if;
1141 end Check_Strict_Alignment;
1143 -------------------------
1144 -- Check_Unsigned_Type --
1145 -------------------------
1147 procedure Check_Unsigned_Type (E : Entity_Id) is
1148 Ancestor : Entity_Id;
1149 Lo_Bound : Node_Id;
1150 Btyp : Entity_Id;
1152 begin
1153 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1154 return;
1155 end if;
1157 -- Do not attempt to analyze case where range was in error
1159 if No (Scalar_Range (E))
1160 or else Error_Posted (Scalar_Range (E))
1161 then
1162 return;
1163 end if;
1165 -- The situation that is non trivial is something like
1167 -- subtype x1 is integer range -10 .. +10;
1168 -- subtype x2 is x1 range 0 .. V1;
1169 -- subtype x3 is x2 range V2 .. V3;
1170 -- subtype x4 is x3 range V4 .. V5;
1172 -- where Vn are variables. Here the base type is signed, but we still
1173 -- know that x4 is unsigned because of the lower bound of x2.
1175 -- The only way to deal with this is to look up the ancestor chain
1177 Ancestor := E;
1178 loop
1179 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1180 return;
1181 end if;
1183 Lo_Bound := Type_Low_Bound (Ancestor);
1185 if Compile_Time_Known_Value (Lo_Bound) then
1187 if Expr_Rep_Value (Lo_Bound) >= 0 then
1188 Set_Is_Unsigned_Type (E, True);
1189 end if;
1191 return;
1193 else
1194 Ancestor := Ancestor_Subtype (Ancestor);
1196 -- If no ancestor had a static lower bound, go to base type
1198 if No (Ancestor) then
1200 -- Note: the reason we still check for a compile time known
1201 -- value for the base type is that at least in the case of
1202 -- generic formals, we can have bounds that fail this test,
1203 -- and there may be other cases in error situations.
1205 Btyp := Base_Type (E);
1207 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1208 return;
1209 end if;
1211 Lo_Bound := Type_Low_Bound (Base_Type (E));
1213 if Compile_Time_Known_Value (Lo_Bound)
1214 and then Expr_Rep_Value (Lo_Bound) >= 0
1215 then
1216 Set_Is_Unsigned_Type (E, True);
1217 end if;
1219 return;
1220 end if;
1221 end if;
1222 end loop;
1223 end Check_Unsigned_Type;
1225 -------------------------
1226 -- Is_Atomic_Aggregate --
1227 -------------------------
1229 function Is_Atomic_Aggregate
1230 (E : Entity_Id;
1231 Typ : Entity_Id) return Boolean
1233 Loc : constant Source_Ptr := Sloc (E);
1234 New_N : Node_Id;
1235 Par : Node_Id;
1236 Temp : Entity_Id;
1238 begin
1239 Par := Parent (E);
1241 -- Array may be qualified, so find outer context
1243 if Nkind (Par) = N_Qualified_Expression then
1244 Par := Parent (Par);
1245 end if;
1247 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1248 and then Comes_From_Source (Par)
1249 then
1250 Temp := Make_Temporary (Loc, 'T', E);
1251 New_N :=
1252 Make_Object_Declaration (Loc,
1253 Defining_Identifier => Temp,
1254 Object_Definition => New_Occurrence_Of (Typ, Loc),
1255 Expression => Relocate_Node (E));
1256 Insert_Before (Par, New_N);
1257 Analyze (New_N);
1259 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1260 return True;
1262 else
1263 return False;
1264 end if;
1265 end Is_Atomic_Aggregate;
1267 ----------------
1268 -- Freeze_All --
1269 ----------------
1271 -- Note: the easy coding for this procedure would be to just build a
1272 -- single list of freeze nodes and then insert them and analyze them
1273 -- all at once. This won't work, because the analysis of earlier freeze
1274 -- nodes may recursively freeze types which would otherwise appear later
1275 -- on in the freeze list. So we must analyze and expand the freeze nodes
1276 -- as they are generated.
1278 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1279 E : Entity_Id;
1280 Decl : Node_Id;
1282 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1283 -- This is the internal recursive routine that does freezing of entities
1284 -- (but NOT the analysis of default expressions, which should not be
1285 -- recursive, we don't want to analyze those till we are sure that ALL
1286 -- the types are frozen).
1288 --------------------
1289 -- Freeze_All_Ent --
1290 --------------------
1292 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1293 E : Entity_Id;
1294 Flist : List_Id;
1295 Lastn : Node_Id;
1297 procedure Process_Flist;
1298 -- If freeze nodes are present, insert and analyze, and reset cursor
1299 -- for next insertion.
1301 -------------------
1302 -- Process_Flist --
1303 -------------------
1305 procedure Process_Flist is
1306 begin
1307 if Is_Non_Empty_List (Flist) then
1308 Lastn := Next (After);
1309 Insert_List_After_And_Analyze (After, Flist);
1311 if Present (Lastn) then
1312 After := Prev (Lastn);
1313 else
1314 After := Last (List_Containing (After));
1315 end if;
1316 end if;
1317 end Process_Flist;
1319 -- Start or processing for Freeze_All_Ent
1321 begin
1322 E := From;
1323 while Present (E) loop
1325 -- If the entity is an inner package which is not a package
1326 -- renaming, then its entities must be frozen at this point. Note
1327 -- that such entities do NOT get frozen at the end of the nested
1328 -- package itself (only library packages freeze).
1330 -- Same is true for task declarations, where anonymous records
1331 -- created for entry parameters must be frozen.
1333 if Ekind (E) = E_Package
1334 and then No (Renamed_Object (E))
1335 and then not Is_Child_Unit (E)
1336 and then not Is_Frozen (E)
1337 then
1338 Push_Scope (E);
1339 Install_Visible_Declarations (E);
1340 Install_Private_Declarations (E);
1342 Freeze_All (First_Entity (E), After);
1344 End_Package_Scope (E);
1346 if Is_Generic_Instance (E)
1347 and then Has_Delayed_Freeze (E)
1348 then
1349 Set_Has_Delayed_Freeze (E, False);
1350 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1351 end if;
1353 elsif Ekind (E) in Task_Kind
1354 and then
1355 (Nkind (Parent (E)) = N_Task_Type_Declaration
1356 or else
1357 Nkind (Parent (E)) = N_Single_Task_Declaration)
1358 then
1359 Push_Scope (E);
1360 Freeze_All (First_Entity (E), After);
1361 End_Scope;
1363 -- For a derived tagged type, we must ensure that all the
1364 -- primitive operations of the parent have been frozen, so that
1365 -- their addresses will be in the parent's dispatch table at the
1366 -- point it is inherited.
1368 elsif Ekind (E) = E_Record_Type
1369 and then Is_Tagged_Type (E)
1370 and then Is_Tagged_Type (Etype (E))
1371 and then Is_Derived_Type (E)
1372 then
1373 declare
1374 Prim_List : constant Elist_Id :=
1375 Primitive_Operations (Etype (E));
1377 Prim : Elmt_Id;
1378 Subp : Entity_Id;
1380 begin
1381 Prim := First_Elmt (Prim_List);
1382 while Present (Prim) loop
1383 Subp := Node (Prim);
1385 if Comes_From_Source (Subp)
1386 and then not Is_Frozen (Subp)
1387 then
1388 Flist := Freeze_Entity (Subp, After);
1389 Process_Flist;
1390 end if;
1392 Next_Elmt (Prim);
1393 end loop;
1394 end;
1395 end if;
1397 if not Is_Frozen (E) then
1398 Flist := Freeze_Entity (E, After);
1399 Process_Flist;
1401 -- If already frozen, and there are delayed aspects, this is where
1402 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1403 -- for a description of how we handle aspect visibility).
1405 elsif Has_Delayed_Aspects (E) then
1407 -- Retrieve the visibility to the discriminants in order to
1408 -- analyze properly the aspects.
1410 Push_Scope_And_Install_Discriminants (E);
1412 declare
1413 Ritem : Node_Id;
1415 begin
1416 Ritem := First_Rep_Item (E);
1417 while Present (Ritem) loop
1418 if Nkind (Ritem) = N_Aspect_Specification
1419 and then Entity (Ritem) = E
1420 and then Is_Delayed_Aspect (Ritem)
1421 then
1422 Check_Aspect_At_End_Of_Declarations (Ritem);
1423 end if;
1425 Ritem := Next_Rep_Item (Ritem);
1426 end loop;
1427 end;
1429 Uninstall_Discriminants_And_Pop_Scope (E);
1430 end if;
1432 -- If an incomplete type is still not frozen, this may be a
1433 -- premature freezing because of a body declaration that follows.
1434 -- Indicate where the freezing took place. Freezing will happen
1435 -- if the body comes from source, but not if it is internally
1436 -- generated, for example as the body of a type invariant.
1438 -- If the freezing is caused by the end of the current declarative
1439 -- part, it is a Taft Amendment type, and there is no error.
1441 if not Is_Frozen (E)
1442 and then Ekind (E) = E_Incomplete_Type
1443 then
1444 declare
1445 Bod : constant Node_Id := Next (After);
1447 begin
1448 -- The presence of a body freezes all entities previously
1449 -- declared in the current list of declarations, but this
1450 -- does not apply if the body does not come from source.
1451 -- A type invariant is transformed into a subprogram body
1452 -- which is placed at the end of the private part of the
1453 -- current package, but this body does not freeze incomplete
1454 -- types that may be declared in this private part.
1456 if (Nkind_In (Bod, N_Subprogram_Body,
1457 N_Entry_Body,
1458 N_Package_Body,
1459 N_Protected_Body,
1460 N_Task_Body)
1461 or else Nkind (Bod) in N_Body_Stub)
1462 and then
1463 List_Containing (After) = List_Containing (Parent (E))
1464 and then Comes_From_Source (Bod)
1465 then
1466 Error_Msg_Sloc := Sloc (Next (After));
1467 Error_Msg_NE
1468 ("type& is frozen# before its full declaration",
1469 Parent (E), E);
1470 end if;
1471 end;
1472 end if;
1474 Next_Entity (E);
1475 end loop;
1476 end Freeze_All_Ent;
1478 -- Start of processing for Freeze_All
1480 begin
1481 Freeze_All_Ent (From, After);
1483 -- Now that all types are frozen, we can deal with default expressions
1484 -- that require us to build a default expression functions. This is the
1485 -- point at which such functions are constructed (after all types that
1486 -- might be used in such expressions have been frozen).
1488 -- For subprograms that are renaming_as_body, we create the wrapper
1489 -- bodies as needed.
1491 -- We also add finalization chains to access types whose designated
1492 -- types are controlled. This is normally done when freezing the type,
1493 -- but this misses recursive type definitions where the later members
1494 -- of the recursion introduce controlled components.
1496 -- Loop through entities
1498 E := From;
1499 while Present (E) loop
1500 if Is_Subprogram (E) then
1502 if not Default_Expressions_Processed (E) then
1503 Process_Default_Expressions (E, After);
1504 end if;
1506 if not Has_Completion (E) then
1507 Decl := Unit_Declaration_Node (E);
1509 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1510 if Error_Posted (Decl) then
1511 Set_Has_Completion (E);
1512 else
1513 Build_And_Analyze_Renamed_Body (Decl, E, After);
1514 end if;
1516 elsif Nkind (Decl) = N_Subprogram_Declaration
1517 and then Present (Corresponding_Body (Decl))
1518 and then
1519 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1520 = N_Subprogram_Renaming_Declaration
1521 then
1522 Build_And_Analyze_Renamed_Body
1523 (Decl, Corresponding_Body (Decl), After);
1524 end if;
1525 end if;
1527 elsif Ekind (E) in Task_Kind
1528 and then
1529 (Nkind (Parent (E)) = N_Task_Type_Declaration
1530 or else
1531 Nkind (Parent (E)) = N_Single_Task_Declaration)
1532 then
1533 declare
1534 Ent : Entity_Id;
1536 begin
1537 Ent := First_Entity (E);
1538 while Present (Ent) loop
1539 if Is_Entry (Ent)
1540 and then not Default_Expressions_Processed (Ent)
1541 then
1542 Process_Default_Expressions (Ent, After);
1543 end if;
1545 Next_Entity (Ent);
1546 end loop;
1547 end;
1549 -- We add finalization masters to access types whose designated types
1550 -- require finalization. This is normally done when freezing the
1551 -- type, but this misses recursive type definitions where the later
1552 -- members of the recursion introduce controlled components (such as
1553 -- can happen when incomplete types are involved), as well cases
1554 -- where a component type is private and the controlled full type
1555 -- occurs after the access type is frozen. Cases that don't need a
1556 -- finalization master are generic formal types (the actual type will
1557 -- have it) and types with Java and CIL conventions, since those are
1558 -- used for API bindings. (Are there any other cases that should be
1559 -- excluded here???)
1561 elsif Is_Access_Type (E)
1562 and then Comes_From_Source (E)
1563 and then not Is_Generic_Type (E)
1564 and then Needs_Finalization (Designated_Type (E))
1565 then
1566 Build_Finalization_Master (E);
1567 end if;
1569 Next_Entity (E);
1570 end loop;
1571 end Freeze_All;
1573 -----------------------
1574 -- Freeze_And_Append --
1575 -----------------------
1577 procedure Freeze_And_Append
1578 (Ent : Entity_Id;
1579 N : Node_Id;
1580 Result : in out List_Id)
1582 L : constant List_Id := Freeze_Entity (Ent, N);
1583 begin
1584 if Is_Non_Empty_List (L) then
1585 if Result = No_List then
1586 Result := L;
1587 else
1588 Append_List (L, Result);
1589 end if;
1590 end if;
1591 end Freeze_And_Append;
1593 -------------------
1594 -- Freeze_Before --
1595 -------------------
1597 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1598 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1599 begin
1600 if Is_Non_Empty_List (Freeze_Nodes) then
1601 Insert_Actions (N, Freeze_Nodes);
1602 end if;
1603 end Freeze_Before;
1605 -------------------
1606 -- Freeze_Entity --
1607 -------------------
1609 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1610 Loc : constant Source_Ptr := Sloc (N);
1611 Test_E : Entity_Id := E;
1612 Comp : Entity_Id;
1613 F_Node : Node_Id;
1614 Indx : Node_Id;
1615 Formal : Entity_Id;
1616 Atype : Entity_Id;
1618 Result : List_Id := No_List;
1619 -- List of freezing actions, left at No_List if none
1621 Has_Default_Initialization : Boolean := False;
1622 -- This flag gets set to true for a variable with default initialization
1624 procedure Add_To_Result (N : Node_Id);
1625 -- N is a freezing action to be appended to the Result
1627 function After_Last_Declaration return Boolean;
1628 -- If Loc is a freeze_entity that appears after the last declaration
1629 -- in the scope, inhibit error messages on late completion.
1631 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1632 -- Check that an Access or Unchecked_Access attribute with a prefix
1633 -- which is the current instance type can only be applied when the type
1634 -- is limited.
1636 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1637 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1638 -- integer literal without an explicit corresponding size clause. The
1639 -- caller has checked that Utype is a modular integer type.
1641 procedure Freeze_Record_Type (Rec : Entity_Id);
1642 -- Freeze each component, handle some representation clauses, and freeze
1643 -- primitive operations if this is a tagged type.
1645 -------------------
1646 -- Add_To_Result --
1647 -------------------
1649 procedure Add_To_Result (N : Node_Id) is
1650 begin
1651 if No (Result) then
1652 Result := New_List (N);
1653 else
1654 Append (N, Result);
1655 end if;
1656 end Add_To_Result;
1658 ----------------------------
1659 -- After_Last_Declaration --
1660 ----------------------------
1662 function After_Last_Declaration return Boolean is
1663 Spec : constant Node_Id := Parent (Current_Scope);
1664 begin
1665 if Nkind (Spec) = N_Package_Specification then
1666 if Present (Private_Declarations (Spec)) then
1667 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1668 elsif Present (Visible_Declarations (Spec)) then
1669 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1670 else
1671 return False;
1672 end if;
1673 else
1674 return False;
1675 end if;
1676 end After_Last_Declaration;
1678 ----------------------------
1679 -- Check_Current_Instance --
1680 ----------------------------
1682 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1684 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1685 -- Determine whether Typ is compatible with the rules for aliased
1686 -- views of types as defined in RM 3.10 in the various dialects.
1688 function Process (N : Node_Id) return Traverse_Result;
1689 -- Process routine to apply check to given node
1691 -----------------------------
1692 -- Is_Aliased_View_Of_Type --
1693 -----------------------------
1695 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1696 Typ_Decl : constant Node_Id := Parent (Typ);
1698 begin
1699 -- Common case
1701 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1702 and then Limited_Present (Type_Definition (Typ_Decl))
1703 then
1704 return True;
1706 -- The following paragraphs describe what a legal aliased view of
1707 -- a type is in the various dialects of Ada.
1709 -- Ada 95
1711 -- The current instance of a limited type, and a formal parameter
1712 -- or generic formal object of a tagged type.
1714 -- Ada 95 limited type
1715 -- * Type with reserved word "limited"
1716 -- * A protected or task type
1717 -- * A composite type with limited component
1719 elsif Ada_Version <= Ada_95 then
1720 return Is_Limited_Type (Typ);
1722 -- Ada 2005
1724 -- The current instance of a limited tagged type, a protected
1725 -- type, a task type, or a type that has the reserved word
1726 -- "limited" in its full definition ... a formal parameter or
1727 -- generic formal object of a tagged type.
1729 -- Ada 2005 limited type
1730 -- * Type with reserved word "limited", "synchronized", "task"
1731 -- or "protected"
1732 -- * A composite type with limited component
1733 -- * A derived type whose parent is a non-interface limited type
1735 elsif Ada_Version = Ada_2005 then
1736 return
1737 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1738 or else
1739 (Is_Derived_Type (Typ)
1740 and then not Is_Interface (Etype (Typ))
1741 and then Is_Limited_Type (Etype (Typ)));
1743 -- Ada 2012 and beyond
1745 -- The current instance of an immutably limited type ... a formal
1746 -- parameter or generic formal object of a tagged type.
1748 -- Ada 2012 limited type
1749 -- * Type with reserved word "limited", "synchronized", "task"
1750 -- or "protected"
1751 -- * A composite type with limited component
1752 -- * A derived type whose parent is a non-interface limited type
1753 -- * An incomplete view
1755 -- Ada 2012 immutably limited type
1756 -- * Explicitly limited record type
1757 -- * Record extension with "limited" present
1758 -- * Non-formal limited private type that is either tagged
1759 -- or has at least one access discriminant with a default
1760 -- expression
1761 -- * Task type, protected type or synchronized interface
1762 -- * Type derived from immutably limited type
1764 else
1765 return
1766 Is_Immutably_Limited_Type (Typ)
1767 or else Is_Incomplete_Type (Typ);
1768 end if;
1769 end Is_Aliased_View_Of_Type;
1771 -------------
1772 -- Process --
1773 -------------
1775 function Process (N : Node_Id) return Traverse_Result is
1776 begin
1777 case Nkind (N) is
1778 when N_Attribute_Reference =>
1779 if (Attribute_Name (N) = Name_Access
1780 or else
1781 Attribute_Name (N) = Name_Unchecked_Access)
1782 and then Is_Entity_Name (Prefix (N))
1783 and then Is_Type (Entity (Prefix (N)))
1784 and then Entity (Prefix (N)) = E
1785 then
1786 Error_Msg_N
1787 ("current instance must be a limited type", Prefix (N));
1788 return Abandon;
1789 else
1790 return OK;
1791 end if;
1793 when others => return OK;
1794 end case;
1795 end Process;
1797 procedure Traverse is new Traverse_Proc (Process);
1799 -- Local variables
1801 Rec_Type : constant Entity_Id :=
1802 Scope (Defining_Identifier (Comp_Decl));
1804 -- Start of processing for Check_Current_Instance
1806 begin
1807 if not Is_Aliased_View_Of_Type (Rec_Type) then
1808 Traverse (Comp_Decl);
1809 end if;
1810 end Check_Current_Instance;
1812 ------------------------------
1813 -- Check_Suspicious_Modulus --
1814 ------------------------------
1816 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1817 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1819 begin
1820 if Nkind (Decl) = N_Full_Type_Declaration then
1821 declare
1822 Tdef : constant Node_Id := Type_Definition (Decl);
1824 begin
1825 if Nkind (Tdef) = N_Modular_Type_Definition then
1826 declare
1827 Modulus : constant Node_Id :=
1828 Original_Node (Expression (Tdef));
1829 begin
1830 if Nkind (Modulus) = N_Integer_Literal then
1831 declare
1832 Modv : constant Uint := Intval (Modulus);
1833 Sizv : constant Uint := RM_Size (Utype);
1835 begin
1836 -- First case, modulus and size are the same. This
1837 -- happens if you have something like mod 32, with
1838 -- an explicit size of 32, this is for sure a case
1839 -- where the warning is given, since it is seems
1840 -- very unlikely that someone would want e.g. a
1841 -- five bit type stored in 32 bits. It is much
1842 -- more likely they wanted a 32-bit type.
1844 if Modv = Sizv then
1845 null;
1847 -- Second case, the modulus is 32 or 64 and no
1848 -- size clause is present. This is a less clear
1849 -- case for giving the warning, but in the case
1850 -- of 32/64 (5-bit or 6-bit types) these seem rare
1851 -- enough that it is a likely error (and in any
1852 -- case using 2**5 or 2**6 in these cases seems
1853 -- clearer. We don't include 8 or 16 here, simply
1854 -- because in practice 3-bit and 4-bit types are
1855 -- more common and too many false positives if
1856 -- we warn in these cases.
1858 elsif not Has_Size_Clause (Utype)
1859 and then (Modv = Uint_32 or else Modv = Uint_64)
1860 then
1861 null;
1863 -- No warning needed
1865 else
1866 return;
1867 end if;
1869 -- If we fall through, give warning
1871 Error_Msg_Uint_1 := Modv;
1872 Error_Msg_N
1873 ("?2 '*'*^' may have been intended here",
1874 Modulus);
1875 end;
1876 end if;
1877 end;
1878 end if;
1879 end;
1880 end if;
1881 end Check_Suspicious_Modulus;
1883 ------------------------
1884 -- Freeze_Record_Type --
1885 ------------------------
1887 procedure Freeze_Record_Type (Rec : Entity_Id) is
1888 Comp : Entity_Id;
1889 IR : Node_Id;
1890 ADC : Node_Id;
1891 Prev : Entity_Id;
1893 Junk : Boolean;
1894 pragma Warnings (Off, Junk);
1896 Rec_Pushed : Boolean := False;
1897 -- Set True if the record type scope Rec has been pushed on the scope
1898 -- stack. Needed for the analysis of delayed aspects specified to the
1899 -- components of Rec.
1901 Unplaced_Component : Boolean := False;
1902 -- Set True if we find at least one component with no component
1903 -- clause (used to warn about useless Pack pragmas).
1905 Placed_Component : Boolean := False;
1906 -- Set True if we find at least one component with a component
1907 -- clause (used to warn about useless Bit_Order pragmas, and also
1908 -- to detect cases where Implicit_Packing may have an effect).
1910 All_Scalar_Components : Boolean := True;
1911 -- Set False if we encounter a component of a non-scalar type
1913 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1914 Scalar_Component_Total_Esize : Uint := Uint_0;
1915 -- Accumulates total RM_Size values and total Esize values of all
1916 -- scalar components. Used for processing of Implicit_Packing.
1918 function Check_Allocator (N : Node_Id) return Node_Id;
1919 -- If N is an allocator, possibly wrapped in one or more level of
1920 -- qualified expression(s), return the inner allocator node, else
1921 -- return Empty.
1923 procedure Check_Itype (Typ : Entity_Id);
1924 -- If the component subtype is an access to a constrained subtype of
1925 -- an already frozen type, make the subtype frozen as well. It might
1926 -- otherwise be frozen in the wrong scope, and a freeze node on
1927 -- subtype has no effect. Similarly, if the component subtype is a
1928 -- regular (not protected) access to subprogram, set the anonymous
1929 -- subprogram type to frozen as well, to prevent an out-of-scope
1930 -- freeze node at some eventual point of call. Protected operations
1931 -- are handled elsewhere.
1933 ---------------------
1934 -- Check_Allocator --
1935 ---------------------
1937 function Check_Allocator (N : Node_Id) return Node_Id is
1938 Inner : Node_Id;
1939 begin
1940 Inner := N;
1941 loop
1942 if Nkind (Inner) = N_Allocator then
1943 return Inner;
1944 elsif Nkind (Inner) = N_Qualified_Expression then
1945 Inner := Expression (Inner);
1946 else
1947 return Empty;
1948 end if;
1949 end loop;
1950 end Check_Allocator;
1952 -----------------
1953 -- Check_Itype --
1954 -----------------
1956 procedure Check_Itype (Typ : Entity_Id) is
1957 Desig : constant Entity_Id := Designated_Type (Typ);
1959 begin
1960 if not Is_Frozen (Desig)
1961 and then Is_Frozen (Base_Type (Desig))
1962 then
1963 Set_Is_Frozen (Desig);
1965 -- In addition, add an Itype_Reference to ensure that the
1966 -- access subtype is elaborated early enough. This cannot be
1967 -- done if the subtype may depend on discriminants.
1969 if Ekind (Comp) = E_Component
1970 and then Is_Itype (Etype (Comp))
1971 and then not Has_Discriminants (Rec)
1972 then
1973 IR := Make_Itype_Reference (Sloc (Comp));
1974 Set_Itype (IR, Desig);
1975 Add_To_Result (IR);
1976 end if;
1978 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1979 and then Convention (Desig) /= Convention_Protected
1980 then
1981 Set_Is_Frozen (Desig);
1982 end if;
1983 end Check_Itype;
1985 -- Start of processing for Freeze_Record_Type
1987 begin
1988 -- Deal with delayed aspect specifications for components. The
1989 -- analysis of the aspect is required to be delayed to the freeze
1990 -- point, thus we analyze the pragma or attribute definition
1991 -- clause in the tree at this point. We also analyze the aspect
1992 -- specification node at the freeze point when the aspect doesn't
1993 -- correspond to pragma/attribute definition clause.
1995 Comp := First_Entity (Rec);
1996 while Present (Comp) loop
1997 if Ekind (Comp) = E_Component
1998 and then Has_Delayed_Aspects (Comp)
1999 then
2000 if not Rec_Pushed then
2001 Push_Scope (Rec);
2002 Rec_Pushed := True;
2004 -- The visibility to the discriminants must be restored in
2005 -- order to properly analyze the aspects.
2007 if Has_Discriminants (Rec) then
2008 Install_Discriminants (Rec);
2009 end if;
2010 end if;
2012 Analyze_Aspects_At_Freeze_Point (Comp);
2013 end if;
2015 Next_Entity (Comp);
2016 end loop;
2018 -- Pop the scope if Rec scope has been pushed on the scope stack
2019 -- during the delayed aspect analysis process.
2021 if Rec_Pushed then
2022 if Has_Discriminants (Rec) then
2023 Uninstall_Discriminants (Rec);
2024 end if;
2026 Pop_Scope;
2027 end if;
2029 -- Freeze components and embedded subtypes
2031 Comp := First_Entity (Rec);
2032 Prev := Empty;
2033 while Present (Comp) loop
2035 -- Handle the component and discriminant case
2037 if Ekind_In (Comp, E_Component, E_Discriminant) then
2038 declare
2039 CC : constant Node_Id := Component_Clause (Comp);
2041 begin
2042 -- Freezing a record type freezes the type of each of its
2043 -- components. However, if the type of the component is
2044 -- part of this record, we do not want or need a separate
2045 -- Freeze_Node. Note that Is_Itype is wrong because that's
2046 -- also set in private type cases. We also can't check for
2047 -- the Scope being exactly Rec because of private types and
2048 -- record extensions.
2050 if Is_Itype (Etype (Comp))
2051 and then Is_Record_Type (Underlying_Type
2052 (Scope (Etype (Comp))))
2053 then
2054 Undelay_Type (Etype (Comp));
2055 end if;
2057 Freeze_And_Append (Etype (Comp), N, Result);
2059 -- Check for error of component clause given for variable
2060 -- sized type. We have to delay this test till this point,
2061 -- since the component type has to be frozen for us to know
2062 -- if it is variable length. We omit this test in a generic
2063 -- context, it will be applied at instantiation time.
2065 -- We also omit this test in CodePeer mode, since we do not
2066 -- have sufficient info on size and representation clauses.
2068 if Present (CC) then
2069 Placed_Component := True;
2071 if Inside_A_Generic then
2072 null;
2074 elsif CodePeer_Mode then
2075 null;
2077 elsif not
2078 Size_Known_At_Compile_Time
2079 (Underlying_Type (Etype (Comp)))
2080 then
2081 Error_Msg_N
2082 ("component clause not allowed for variable " &
2083 "length component", CC);
2084 end if;
2086 else
2087 Unplaced_Component := True;
2088 end if;
2090 -- Case of component requires byte alignment
2092 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
2094 -- Set the enclosing record to also require byte align
2096 Set_Must_Be_On_Byte_Boundary (Rec);
2098 -- Check for component clause that is inconsistent with
2099 -- the required byte boundary alignment.
2101 if Present (CC)
2102 and then Normalized_First_Bit (Comp) mod
2103 System_Storage_Unit /= 0
2104 then
2105 Error_Msg_N
2106 ("component & must be byte aligned",
2107 Component_Name (Component_Clause (Comp)));
2108 end if;
2109 end if;
2110 end;
2111 end if;
2113 -- Gather data for possible Implicit_Packing later. Note that at
2114 -- this stage we might be dealing with a real component, or with
2115 -- an implicit subtype declaration.
2117 if not Is_Scalar_Type (Etype (Comp)) then
2118 All_Scalar_Components := False;
2119 else
2120 Scalar_Component_Total_RM_Size :=
2121 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
2122 Scalar_Component_Total_Esize :=
2123 Scalar_Component_Total_Esize + Esize (Etype (Comp));
2124 end if;
2126 -- If the component is an Itype with Delayed_Freeze and is either
2127 -- a record or array subtype and its base type has not yet been
2128 -- frozen, we must remove this from the entity list of this record
2129 -- and put it on the entity list of the scope of its base type.
2130 -- Note that we know that this is not the type of a component
2131 -- since we cleared Has_Delayed_Freeze for it in the previous
2132 -- loop. Thus this must be the Designated_Type of an access type,
2133 -- which is the type of a component.
2135 if Is_Itype (Comp)
2136 and then Is_Type (Scope (Comp))
2137 and then Is_Composite_Type (Comp)
2138 and then Base_Type (Comp) /= Comp
2139 and then Has_Delayed_Freeze (Comp)
2140 and then not Is_Frozen (Base_Type (Comp))
2141 then
2142 declare
2143 Will_Be_Frozen : Boolean := False;
2144 S : Entity_Id;
2146 begin
2147 -- We have a pretty bad kludge here. Suppose Rec is subtype
2148 -- being defined in a subprogram that's created as part of
2149 -- the freezing of Rec'Base. In that case, we know that
2150 -- Comp'Base must have already been frozen by the time we
2151 -- get to elaborate this because Gigi doesn't elaborate any
2152 -- bodies until it has elaborated all of the declarative
2153 -- part. But Is_Frozen will not be set at this point because
2154 -- we are processing code in lexical order.
2156 -- We detect this case by going up the Scope chain of Rec
2157 -- and seeing if we have a subprogram scope before reaching
2158 -- the top of the scope chain or that of Comp'Base. If we
2159 -- do, then mark that Comp'Base will actually be frozen. If
2160 -- so, we merely undelay it.
2162 S := Scope (Rec);
2163 while Present (S) loop
2164 if Is_Subprogram (S) then
2165 Will_Be_Frozen := True;
2166 exit;
2167 elsif S = Scope (Base_Type (Comp)) then
2168 exit;
2169 end if;
2171 S := Scope (S);
2172 end loop;
2174 if Will_Be_Frozen then
2175 Undelay_Type (Comp);
2176 else
2177 if Present (Prev) then
2178 Set_Next_Entity (Prev, Next_Entity (Comp));
2179 else
2180 Set_First_Entity (Rec, Next_Entity (Comp));
2181 end if;
2183 -- Insert in entity list of scope of base type (which
2184 -- must be an enclosing scope, because still unfrozen).
2186 Append_Entity (Comp, Scope (Base_Type (Comp)));
2187 end if;
2188 end;
2190 -- If the component is an access type with an allocator as default
2191 -- value, the designated type will be frozen by the corresponding
2192 -- expression in init_proc. In order to place the freeze node for
2193 -- the designated type before that for the current record type,
2194 -- freeze it now.
2196 -- Same process if the component is an array of access types,
2197 -- initialized with an aggregate. If the designated type is
2198 -- private, it cannot contain allocators, and it is premature
2199 -- to freeze the type, so we check for this as well.
2201 elsif Is_Access_Type (Etype (Comp))
2202 and then Present (Parent (Comp))
2203 and then Present (Expression (Parent (Comp)))
2204 then
2205 declare
2206 Alloc : constant Node_Id :=
2207 Check_Allocator (Expression (Parent (Comp)));
2209 begin
2210 if Present (Alloc) then
2212 -- If component is pointer to a classwide type, freeze
2213 -- the specific type in the expression being allocated.
2214 -- The expression may be a subtype indication, in which
2215 -- case freeze the subtype mark.
2217 if Is_Class_Wide_Type
2218 (Designated_Type (Etype (Comp)))
2219 then
2220 if Is_Entity_Name (Expression (Alloc)) then
2221 Freeze_And_Append
2222 (Entity (Expression (Alloc)), N, Result);
2223 elsif
2224 Nkind (Expression (Alloc)) = N_Subtype_Indication
2225 then
2226 Freeze_And_Append
2227 (Entity (Subtype_Mark (Expression (Alloc))),
2228 N, Result);
2229 end if;
2231 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2232 Check_Itype (Etype (Comp));
2234 else
2235 Freeze_And_Append
2236 (Designated_Type (Etype (Comp)), N, Result);
2237 end if;
2238 end if;
2239 end;
2241 elsif Is_Access_Type (Etype (Comp))
2242 and then Is_Itype (Designated_Type (Etype (Comp)))
2243 then
2244 Check_Itype (Etype (Comp));
2246 elsif Is_Array_Type (Etype (Comp))
2247 and then Is_Access_Type (Component_Type (Etype (Comp)))
2248 and then Present (Parent (Comp))
2249 and then Nkind (Parent (Comp)) = N_Component_Declaration
2250 and then Present (Expression (Parent (Comp)))
2251 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2252 and then Is_Fully_Defined
2253 (Designated_Type (Component_Type (Etype (Comp))))
2254 then
2255 Freeze_And_Append
2256 (Designated_Type
2257 (Component_Type (Etype (Comp))), N, Result);
2258 end if;
2260 Prev := Comp;
2261 Next_Entity (Comp);
2262 end loop;
2264 ADC := Get_Attribute_Definition_Clause
2265 (Rec, Attribute_Scalar_Storage_Order);
2267 if Present (ADC) then
2269 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
2270 -- the former is specified.
2272 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
2274 -- Note: report error on Rec, not on ADC, as ADC may apply to
2275 -- an ancestor type.
2277 Error_Msg_Sloc := Sloc (ADC);
2278 Error_Msg_N
2279 ("scalar storage order for& specified# inconsistent with "
2280 & "bit order", Rec);
2281 end if;
2283 -- Warn if there is a Scalar_Storage_Order but no component clause
2284 -- (or pragma Pack).
2286 if not (Placed_Component or else Is_Packed (Rec)) then
2287 Error_Msg_N
2288 ("?scalar storage order specified but no component clause",
2289 ADC);
2290 end if;
2292 -- Check attribute on component types
2294 Comp := First_Component (Rec);
2295 while Present (Comp) loop
2296 Check_Component_Storage_Order (Rec, Comp);
2297 Next_Component (Comp);
2298 end loop;
2299 end if;
2301 -- Deal with Bit_Order aspect specifying a non-default bit order
2303 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2305 if Present (ADC) and then Base_Type (Rec) = Rec then
2306 if not (Placed_Component or else Is_Packed (Rec)) then
2307 Error_Msg_N ("?bit order specification has no effect", ADC);
2308 Error_Msg_N
2309 ("\?since no component clauses were specified", ADC);
2311 -- Here is where we do the processing for reversed bit order
2313 elsif Reverse_Bit_Order (Rec)
2314 and then not Reverse_Storage_Order (Rec)
2315 then
2316 Adjust_Record_For_Reverse_Bit_Order (Rec);
2318 -- Case where we have both an explicit Bit_Order and the same
2319 -- Scalar_Storage_Order: leave record untouched, the back-end
2320 -- will take care of required layout conversions.
2322 else
2323 null;
2325 end if;
2326 end if;
2328 -- Complete error checking on record representation clause (e.g.
2329 -- overlap of components). This is called after adjusting the
2330 -- record for reverse bit order.
2332 declare
2333 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2334 begin
2335 if Present (RRC) then
2336 Check_Record_Representation_Clause (RRC);
2337 end if;
2338 end;
2340 -- Set OK_To_Reorder_Components depending on debug flags
2342 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
2343 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2344 or else
2345 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2346 then
2347 Set_OK_To_Reorder_Components (Rec);
2348 end if;
2349 end if;
2351 -- Check for useless pragma Pack when all components placed. We only
2352 -- do this check for record types, not subtypes, since a subtype may
2353 -- have all its components placed, and it still makes perfectly good
2354 -- sense to pack other subtypes or the parent type. We do not give
2355 -- this warning if Optimize_Alignment is set to Space, since the
2356 -- pragma Pack does have an effect in this case (it always resets
2357 -- the alignment to one).
2359 if Ekind (Rec) = E_Record_Type
2360 and then Is_Packed (Rec)
2361 and then not Unplaced_Component
2362 and then Optimize_Alignment /= 'S'
2363 then
2364 -- Reset packed status. Probably not necessary, but we do it so
2365 -- that there is no chance of the back end doing something strange
2366 -- with this redundant indication of packing.
2368 Set_Is_Packed (Rec, False);
2370 -- Give warning if redundant constructs warnings on
2372 if Warn_On_Redundant_Constructs then
2373 Error_Msg_N -- CODEFIX
2374 ("?pragma Pack has no effect, no unplaced components",
2375 Get_Rep_Pragma (Rec, Name_Pack));
2376 end if;
2377 end if;
2379 -- If this is the record corresponding to a remote type, freeze the
2380 -- remote type here since that is what we are semantically freezing.
2381 -- This prevents the freeze node for that type in an inner scope.
2383 -- Also, Check for controlled components and unchecked unions.
2384 -- Finally, enforce the restriction that access attributes with a
2385 -- current instance prefix can only apply to limited types.
2387 if Ekind (Rec) = E_Record_Type then
2388 if Present (Corresponding_Remote_Type (Rec)) then
2389 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
2390 end if;
2392 Comp := First_Component (Rec);
2393 while Present (Comp) loop
2395 -- Do not set Has_Controlled_Component on a class-wide
2396 -- equivalent type. See Make_CW_Equivalent_Type.
2398 if not Is_Class_Wide_Equivalent_Type (Rec)
2399 and then (Has_Controlled_Component (Etype (Comp))
2400 or else (Chars (Comp) /= Name_uParent
2401 and then Is_Controlled (Etype (Comp)))
2402 or else (Is_Protected_Type (Etype (Comp))
2403 and then Present
2404 (Corresponding_Record_Type
2405 (Etype (Comp)))
2406 and then Has_Controlled_Component
2407 (Corresponding_Record_Type
2408 (Etype (Comp)))))
2409 then
2410 Set_Has_Controlled_Component (Rec);
2411 end if;
2413 if Has_Unchecked_Union (Etype (Comp)) then
2414 Set_Has_Unchecked_Union (Rec);
2415 end if;
2417 -- Scan component declaration for likely misuses of current
2418 -- instance, either in a constraint or a default expression.
2420 if Has_Per_Object_Constraint (Comp) then
2421 Check_Current_Instance (Parent (Comp));
2422 end if;
2424 Next_Component (Comp);
2425 end loop;
2426 end if;
2428 Set_Component_Alignment_If_Not_Set (Rec);
2430 -- For first subtypes, check if there are any fixed-point fields with
2431 -- component clauses, where we must check the size. This is not done
2432 -- till the freeze point, since for fixed-point types, we do not know
2433 -- the size until the type is frozen. Similar processing applies to
2434 -- bit packed arrays.
2436 if Is_First_Subtype (Rec) then
2437 Comp := First_Component (Rec);
2438 while Present (Comp) loop
2439 if Present (Component_Clause (Comp))
2440 and then (Is_Fixed_Point_Type (Etype (Comp))
2441 or else
2442 Is_Bit_Packed_Array (Etype (Comp)))
2443 then
2444 Check_Size
2445 (Component_Name (Component_Clause (Comp)),
2446 Etype (Comp),
2447 Esize (Comp),
2448 Junk);
2449 end if;
2451 Next_Component (Comp);
2452 end loop;
2453 end if;
2455 -- Generate warning for applying C or C++ convention to a record
2456 -- with discriminants. This is suppressed for the unchecked union
2457 -- case, since the whole point in this case is interface C. We also
2458 -- do not generate this within instantiations, since we will have
2459 -- generated a message on the template.
2461 if Has_Discriminants (E)
2462 and then not Is_Unchecked_Union (E)
2463 and then (Convention (E) = Convention_C
2464 or else
2465 Convention (E) = Convention_CPP)
2466 and then Comes_From_Source (E)
2467 and then not In_Instance
2468 and then not Has_Warnings_Off (E)
2469 and then not Has_Warnings_Off (Base_Type (E))
2470 then
2471 declare
2472 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2473 A2 : Node_Id;
2475 begin
2476 if Present (Cprag) then
2477 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2479 if Convention (E) = Convention_C then
2480 Error_Msg_N
2481 ("?variant record has no direct equivalent in C", A2);
2482 else
2483 Error_Msg_N
2484 ("?variant record has no direct equivalent in C++", A2);
2485 end if;
2487 Error_Msg_NE
2488 ("\?use of convention for type& is dubious", A2, E);
2489 end if;
2490 end;
2491 end if;
2493 -- See if Size is too small as is (and implicit packing might help)
2495 if not Is_Packed (Rec)
2497 -- No implicit packing if even one component is explicitly placed
2499 and then not Placed_Component
2501 -- Must have size clause and all scalar components
2503 and then Has_Size_Clause (Rec)
2504 and then All_Scalar_Components
2506 -- Do not try implicit packing on records with discriminants, too
2507 -- complicated, especially in the variant record case.
2509 and then not Has_Discriminants (Rec)
2511 -- We can implicitly pack if the specified size of the record is
2512 -- less than the sum of the object sizes (no point in packing if
2513 -- this is not the case).
2515 and then RM_Size (Rec) < Scalar_Component_Total_Esize
2517 -- And the total RM size cannot be greater than the specified size
2518 -- since otherwise packing will not get us where we have to be!
2520 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
2522 -- Never do implicit packing in CodePeer or Alfa modes since
2523 -- we don't do any packing in these modes, since this generates
2524 -- over-complex code that confuses static analysis, and in
2525 -- general, neither CodePeer not GNATprove care about the
2526 -- internal representation of objects.
2528 and then not (CodePeer_Mode or Alfa_Mode)
2529 then
2530 -- If implicit packing enabled, do it
2532 if Implicit_Packing then
2533 Set_Is_Packed (Rec);
2535 -- Otherwise flag the size clause
2537 else
2538 declare
2539 Sz : constant Node_Id := Size_Clause (Rec);
2540 begin
2541 Error_Msg_NE -- CODEFIX
2542 ("size given for& too small", Sz, Rec);
2543 Error_Msg_N -- CODEFIX
2544 ("\use explicit pragma Pack "
2545 & "or use pragma Implicit_Packing", Sz);
2546 end;
2547 end if;
2548 end if;
2549 end Freeze_Record_Type;
2551 -- Start of processing for Freeze_Entity
2553 begin
2554 -- We are going to test for various reasons why this entity need not be
2555 -- frozen here, but in the case of an Itype that's defined within a
2556 -- record, that test actually applies to the record.
2558 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2559 Test_E := Scope (E);
2560 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2561 and then Is_Record_Type (Underlying_Type (Scope (E)))
2562 then
2563 Test_E := Underlying_Type (Scope (E));
2564 end if;
2566 -- Do not freeze if already frozen since we only need one freeze node
2568 if Is_Frozen (E) then
2569 return No_List;
2571 -- It is improper to freeze an external entity within a generic because
2572 -- its freeze node will appear in a non-valid context. The entity will
2573 -- be frozen in the proper scope after the current generic is analyzed.
2574 -- However, aspects must be analyzed because they may be queried later
2575 -- within the generic itself, and the corresponding pragma or attribute
2576 -- definition has not been analyzed yet.
2578 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2579 if Has_Delayed_Aspects (E) then
2580 Analyze_Aspects_At_Freeze_Point (E);
2581 end if;
2583 return No_List;
2585 -- AI05-0213: A formal incomplete type does not freeze the actual. In
2586 -- the instance, the same applies to the subtype renaming the actual.
2588 elsif Is_Private_Type (E)
2589 and then Is_Generic_Actual_Type (E)
2590 and then No (Full_View (Base_Type (E)))
2591 and then Ada_Version >= Ada_2012
2592 then
2593 return No_List;
2595 -- Do not freeze a global entity within an inner scope created during
2596 -- expansion. A call to subprogram E within some internal procedure
2597 -- (a stream attribute for example) might require freezing E, but the
2598 -- freeze node must appear in the same declarative part as E itself.
2599 -- The two-pass elaboration mechanism in gigi guarantees that E will
2600 -- be frozen before the inner call is elaborated. We exclude constants
2601 -- from this test, because deferred constants may be frozen early, and
2602 -- must be diagnosed (e.g. in the case of a deferred constant being used
2603 -- in a default expression). If the enclosing subprogram comes from
2604 -- source, or is a generic instance, then the freeze point is the one
2605 -- mandated by the language, and we freeze the entity. A subprogram that
2606 -- is a child unit body that acts as a spec does not have a spec that
2607 -- comes from source, but can only come from source.
2609 elsif In_Open_Scopes (Scope (Test_E))
2610 and then Scope (Test_E) /= Current_Scope
2611 and then Ekind (Test_E) /= E_Constant
2612 then
2613 declare
2614 S : Entity_Id;
2616 begin
2617 S := Current_Scope;
2618 while Present (S) loop
2619 if Is_Overloadable (S) then
2620 if Comes_From_Source (S)
2621 or else Is_Generic_Instance (S)
2622 or else Is_Child_Unit (S)
2623 then
2624 exit;
2625 else
2626 return No_List;
2627 end if;
2628 end if;
2630 S := Scope (S);
2631 end loop;
2632 end;
2634 -- Similarly, an inlined instance body may make reference to global
2635 -- entities, but these references cannot be the proper freezing point
2636 -- for them, and in the absence of inlining freezing will take place in
2637 -- their own scope. Normally instance bodies are analyzed after the
2638 -- enclosing compilation, and everything has been frozen at the proper
2639 -- place, but with front-end inlining an instance body is compiled
2640 -- before the end of the enclosing scope, and as a result out-of-order
2641 -- freezing must be prevented.
2643 elsif Front_End_Inlining
2644 and then In_Instance_Body
2645 and then Present (Scope (Test_E))
2646 then
2647 declare
2648 S : Entity_Id;
2650 begin
2651 S := Scope (Test_E);
2652 while Present (S) loop
2653 if Is_Generic_Instance (S) then
2654 exit;
2655 else
2656 S := Scope (S);
2657 end if;
2658 end loop;
2660 if No (S) then
2661 return No_List;
2662 end if;
2663 end;
2664 end if;
2666 -- Add checks to detect proper initialization of scalars that may appear
2667 -- as subprogram parameters.
2669 if Is_Subprogram (E)
2670 and then Check_Validity_Of_Parameters
2671 then
2672 Apply_Parameter_Validity_Checks (E);
2673 end if;
2675 -- Deal with delayed aspect specifications. The analysis of the aspect
2676 -- is required to be delayed to the freeze point, thus we analyze the
2677 -- pragma or attribute definition clause in the tree at this point. We
2678 -- also analyze the aspect specification node at the freeze point when
2679 -- the aspect doesn't correspond to pragma/attribute definition clause.
2681 if Has_Delayed_Aspects (E) then
2682 Analyze_Aspects_At_Freeze_Point (E);
2683 end if;
2685 -- Here to freeze the entity
2687 Set_Is_Frozen (E);
2689 -- Case of entity being frozen is other than a type
2691 if not Is_Type (E) then
2692 -- If entity is exported or imported and does not have an external
2693 -- name, now is the time to provide the appropriate default name.
2694 -- Skip this if the entity is stubbed, since we don't need a name
2695 -- for any stubbed routine. For the case on intrinsics, if no
2696 -- external name is specified, then calls will be handled in
2697 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2698 -- external name is provided, then Expand_Intrinsic_Call leaves
2699 -- calls in place for expansion by GIGI.
2701 if (Is_Imported (E) or else Is_Exported (E))
2702 and then No (Interface_Name (E))
2703 and then Convention (E) /= Convention_Stubbed
2704 and then Convention (E) /= Convention_Intrinsic
2705 then
2706 Set_Encoded_Interface_Name
2707 (E, Get_Default_External_Name (E));
2709 -- If entity is an atomic object appearing in a declaration and
2710 -- the expression is an aggregate, assign it to a temporary to
2711 -- ensure that the actual assignment is done atomically rather
2712 -- than component-wise (the assignment to the temp may be done
2713 -- component-wise, but that is harmless).
2715 elsif Is_Atomic (E)
2716 and then Nkind (Parent (E)) = N_Object_Declaration
2717 and then Present (Expression (Parent (E)))
2718 and then Nkind (Expression (Parent (E))) = N_Aggregate
2719 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
2720 then
2721 null;
2722 end if;
2724 -- For a subprogram, freeze all parameter types and also the return
2725 -- type (RM 13.14(14)). However skip this for internal subprograms.
2726 -- This is also the point where any extra formal parameters are
2727 -- created since we now know whether the subprogram will use a
2728 -- foreign convention.
2730 if Is_Subprogram (E) then
2731 if not Is_Internal (E) then
2732 declare
2733 F_Type : Entity_Id;
2734 R_Type : Entity_Id;
2735 Warn_Node : Node_Id;
2737 begin
2738 -- Loop through formals
2740 Formal := First_Formal (E);
2741 while Present (Formal) loop
2742 F_Type := Etype (Formal);
2744 -- AI05-0151 : incomplete types can appear in a profile.
2745 -- By the time the entity is frozen, the full view must
2746 -- be available, unless it is a limited view.
2748 if Is_Incomplete_Type (F_Type)
2749 and then Present (Full_View (F_Type))
2750 then
2751 F_Type := Full_View (F_Type);
2752 Set_Etype (Formal, F_Type);
2753 end if;
2755 Freeze_And_Append (F_Type, N, Result);
2757 if Is_Private_Type (F_Type)
2758 and then Is_Private_Type (Base_Type (F_Type))
2759 and then No (Full_View (Base_Type (F_Type)))
2760 and then not Is_Generic_Type (F_Type)
2761 and then not Is_Derived_Type (F_Type)
2762 then
2763 -- If the type of a formal is incomplete, subprogram
2764 -- is being frozen prematurely. Within an instance
2765 -- (but not within a wrapper package) this is an
2766 -- artifact of our need to regard the end of an
2767 -- instantiation as a freeze point. Otherwise it is
2768 -- a definite error.
2770 if In_Instance then
2771 Set_Is_Frozen (E, False);
2772 return No_List;
2774 elsif not After_Last_Declaration
2775 and then not Freezing_Library_Level_Tagged_Type
2776 then
2777 Error_Msg_Node_1 := F_Type;
2778 Error_Msg
2779 ("type& must be fully defined before this point",
2780 Loc);
2781 end if;
2782 end if;
2784 -- Check suspicious parameter for C function. These tests
2785 -- apply only to exported/imported subprograms.
2787 if Warn_On_Export_Import
2788 and then Comes_From_Source (E)
2789 and then (Convention (E) = Convention_C
2790 or else
2791 Convention (E) = Convention_CPP)
2792 and then (Is_Imported (E) or else Is_Exported (E))
2793 and then Convention (E) /= Convention (Formal)
2794 and then not Has_Warnings_Off (E)
2795 and then not Has_Warnings_Off (F_Type)
2796 and then not Has_Warnings_Off (Formal)
2797 then
2798 -- Qualify mention of formals with subprogram name
2800 Error_Msg_Qual_Level := 1;
2802 -- Check suspicious use of fat C pointer
2804 if Is_Access_Type (F_Type)
2805 and then Esize (F_Type) > Ttypes.System_Address_Size
2806 then
2807 Error_Msg_N
2808 ("?type of & does not correspond to C pointer!",
2809 Formal);
2811 -- Check suspicious return of boolean
2813 elsif Root_Type (F_Type) = Standard_Boolean
2814 and then Convention (F_Type) = Convention_Ada
2815 and then not Has_Warnings_Off (F_Type)
2816 and then not Has_Size_Clause (F_Type)
2817 and then VM_Target = No_VM
2818 then
2819 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
2820 Error_Msg_N
2821 ("\use appropriate corresponding type in C "
2822 & "(e.g. char)?", Formal);
2824 -- Check suspicious tagged type
2826 elsif (Is_Tagged_Type (F_Type)
2827 or else (Is_Access_Type (F_Type)
2828 and then
2829 Is_Tagged_Type
2830 (Designated_Type (F_Type))))
2831 and then Convention (E) = Convention_C
2832 then
2833 Error_Msg_N
2834 ("?& involves a tagged type which does not "
2835 & "correspond to any C type!", Formal);
2837 -- Check wrong convention subprogram pointer
2839 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2840 and then not Has_Foreign_Convention (F_Type)
2841 then
2842 Error_Msg_N
2843 ("?subprogram pointer & should "
2844 & "have foreign convention!", Formal);
2845 Error_Msg_Sloc := Sloc (F_Type);
2846 Error_Msg_NE
2847 ("\?add Convention pragma to declaration of &#",
2848 Formal, F_Type);
2849 end if;
2851 -- Turn off name qualification after message output
2853 Error_Msg_Qual_Level := 0;
2854 end if;
2856 -- Check for unconstrained array in exported foreign
2857 -- convention case.
2859 if Has_Foreign_Convention (E)
2860 and then not Is_Imported (E)
2861 and then Is_Array_Type (F_Type)
2862 and then not Is_Constrained (F_Type)
2863 and then Warn_On_Export_Import
2865 -- Exclude VM case, since both .NET and JVM can handle
2866 -- unconstrained arrays without a problem.
2868 and then VM_Target = No_VM
2869 then
2870 Error_Msg_Qual_Level := 1;
2872 -- If this is an inherited operation, place the
2873 -- warning on the derived type declaration, rather
2874 -- than on the original subprogram.
2876 if Nkind (Original_Node (Parent (E))) =
2877 N_Full_Type_Declaration
2878 then
2879 Warn_Node := Parent (E);
2881 if Formal = First_Formal (E) then
2882 Error_Msg_NE
2883 ("?in inherited operation&", Warn_Node, E);
2884 end if;
2885 else
2886 Warn_Node := Formal;
2887 end if;
2889 Error_Msg_NE
2890 ("?type of argument& is unconstrained array",
2891 Warn_Node, Formal);
2892 Error_Msg_NE
2893 ("?foreign caller must pass bounds explicitly",
2894 Warn_Node, Formal);
2895 Error_Msg_Qual_Level := 0;
2896 end if;
2898 if not From_With_Type (F_Type) then
2899 if Is_Access_Type (F_Type) then
2900 F_Type := Designated_Type (F_Type);
2901 end if;
2903 -- If the formal is an anonymous_access_to_subprogram
2904 -- freeze the subprogram type as well, to prevent
2905 -- scope anomalies in gigi, because there is no other
2906 -- clear point at which it could be frozen.
2908 if Is_Itype (Etype (Formal))
2909 and then Ekind (F_Type) = E_Subprogram_Type
2910 then
2911 Freeze_And_Append (F_Type, N, Result);
2912 end if;
2913 end if;
2915 Next_Formal (Formal);
2916 end loop;
2918 -- Case of function: similar checks on return type
2920 if Ekind (E) = E_Function then
2922 -- Freeze return type
2924 R_Type := Etype (E);
2926 -- AI05-0151: the return type may have been incomplete
2927 -- at the point of declaration.
2929 if Ekind (R_Type) = E_Incomplete_Type
2930 and then Present (Full_View (R_Type))
2931 then
2932 R_Type := Full_View (R_Type);
2933 Set_Etype (E, R_Type);
2934 end if;
2936 Freeze_And_Append (R_Type, N, Result);
2938 -- Check suspicious return type for C function
2940 if Warn_On_Export_Import
2941 and then (Convention (E) = Convention_C
2942 or else
2943 Convention (E) = Convention_CPP)
2944 and then (Is_Imported (E) or else Is_Exported (E))
2945 then
2946 -- Check suspicious return of fat C pointer
2948 if Is_Access_Type (R_Type)
2949 and then Esize (R_Type) > Ttypes.System_Address_Size
2950 and then not Has_Warnings_Off (E)
2951 and then not Has_Warnings_Off (R_Type)
2952 then
2953 Error_Msg_N
2954 ("?return type of& does not "
2955 & "correspond to C pointer!", E);
2957 -- Check suspicious return of boolean
2959 elsif Root_Type (R_Type) = Standard_Boolean
2960 and then Convention (R_Type) = Convention_Ada
2961 and then VM_Target = No_VM
2962 and then not Has_Warnings_Off (E)
2963 and then not Has_Warnings_Off (R_Type)
2964 and then not Has_Size_Clause (R_Type)
2965 then
2966 declare
2967 N : constant Node_Id :=
2968 Result_Definition (Declaration_Node (E));
2969 begin
2970 Error_Msg_NE
2971 ("return type of & is an 8-bit Ada Boolean?",
2972 N, E);
2973 Error_Msg_NE
2974 ("\use appropriate corresponding type in C "
2975 & "(e.g. char)?", N, E);
2976 end;
2978 -- Check suspicious return tagged type
2980 elsif (Is_Tagged_Type (R_Type)
2981 or else (Is_Access_Type (R_Type)
2982 and then
2983 Is_Tagged_Type
2984 (Designated_Type (R_Type))))
2985 and then Convention (E) = Convention_C
2986 and then not Has_Warnings_Off (E)
2987 and then not Has_Warnings_Off (R_Type)
2988 then
2989 Error_Msg_N
2990 ("?return type of & does not "
2991 & "correspond to C type!", E);
2993 -- Check return of wrong convention subprogram pointer
2995 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2996 and then not Has_Foreign_Convention (R_Type)
2997 and then not Has_Warnings_Off (E)
2998 and then not Has_Warnings_Off (R_Type)
2999 then
3000 Error_Msg_N
3001 ("?& should return a foreign "
3002 & "convention subprogram pointer", E);
3003 Error_Msg_Sloc := Sloc (R_Type);
3004 Error_Msg_NE
3005 ("\?add Convention pragma to declaration of& #",
3006 E, R_Type);
3007 end if;
3008 end if;
3010 -- Give warning for suspicious return of a result of an
3011 -- unconstrained array type in a foreign convention
3012 -- function.
3014 if Has_Foreign_Convention (E)
3016 -- We are looking for a return of unconstrained array
3018 and then Is_Array_Type (R_Type)
3019 and then not Is_Constrained (R_Type)
3021 -- Exclude imported routines, the warning does not
3022 -- belong on the import, but rather on the routine
3023 -- definition.
3025 and then not Is_Imported (E)
3027 -- Exclude VM case, since both .NET and JVM can handle
3028 -- return of unconstrained arrays without a problem.
3030 and then VM_Target = No_VM
3032 -- Check that general warning is enabled, and that it
3033 -- is not suppressed for this particular case.
3035 and then Warn_On_Export_Import
3036 and then not Has_Warnings_Off (E)
3037 and then not Has_Warnings_Off (R_Type)
3038 then
3039 Error_Msg_N
3040 ("?foreign convention function& should not " &
3041 "return unconstrained array!", E);
3042 end if;
3043 end if;
3044 end;
3046 -- Pre/post conditions are implemented through a subprogram in
3047 -- the corresponding body, and therefore are not checked on an
3048 -- imported subprogram for which the body is not available.
3050 -- Could consider generating a wrapper to take care of this???
3052 if Is_Subprogram (E)
3053 and then Is_Imported (E)
3054 and then Present (Contract (E))
3055 and then Present (Spec_PPC_List (Contract (E)))
3056 then
3057 Error_Msg_NE ("pre/post conditions on imported subprogram "
3058 & "are not enforced?",
3059 E, Spec_PPC_List (Contract (E)));
3060 end if;
3062 end if;
3064 -- Must freeze its parent first if it is a derived subprogram
3066 if Present (Alias (E)) then
3067 Freeze_And_Append (Alias (E), N, Result);
3068 end if;
3070 -- We don't freeze internal subprograms, because we don't normally
3071 -- want addition of extra formals or mechanism setting to happen
3072 -- for those. However we do pass through predefined dispatching
3073 -- cases, since extra formals may be needed in some cases, such as
3074 -- for the stream 'Input function (build-in-place formals).
3076 if not Is_Internal (E)
3077 or else Is_Predefined_Dispatching_Operation (E)
3078 then
3079 Freeze_Subprogram (E);
3080 end if;
3082 -- Here for other than a subprogram or type
3084 else
3085 -- If entity has a type, and it is not a generic unit, then
3086 -- freeze it first (RM 13.14(10)).
3088 if Present (Etype (E))
3089 and then Ekind (E) /= E_Generic_Function
3090 then
3091 Freeze_And_Append (Etype (E), N, Result);
3092 end if;
3094 -- Special processing for objects created by object declaration
3096 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
3098 -- Abstract type allowed only for C++ imported variables or
3099 -- constants.
3101 -- Note: we inhibit this check for objects that do not come
3102 -- from source because there is at least one case (the
3103 -- expansion of x'Class'Input where x is abstract) where we
3104 -- legitimately generate an abstract object.
3106 if Is_Abstract_Type (Etype (E))
3107 and then Comes_From_Source (Parent (E))
3108 and then not (Is_Imported (E)
3109 and then Is_CPP_Class (Etype (E)))
3110 then
3111 Error_Msg_N ("type of object cannot be abstract",
3112 Object_Definition (Parent (E)));
3114 if Is_CPP_Class (Etype (E)) then
3115 Error_Msg_NE
3116 ("\} may need a cpp_constructor",
3117 Object_Definition (Parent (E)), Etype (E));
3118 end if;
3119 end if;
3121 -- For object created by object declaration, perform required
3122 -- categorization (preelaborate and pure) checks. Defer these
3123 -- checks to freeze time since pragma Import inhibits default
3124 -- initialization and thus pragma Import affects these checks.
3126 Validate_Object_Declaration (Declaration_Node (E));
3128 -- If there is an address clause, check that it is valid
3130 Check_Address_Clause (E);
3132 -- If the object needs any kind of default initialization, an
3133 -- error must be issued if No_Default_Initialization applies.
3134 -- The check doesn't apply to imported objects, which are not
3135 -- ever default initialized, and is why the check is deferred
3136 -- until freezing, at which point we know if Import applies.
3137 -- Deferred constants are also exempted from this test because
3138 -- their completion is explicit, or through an import pragma.
3140 if Ekind (E) = E_Constant
3141 and then Present (Full_View (E))
3142 then
3143 null;
3145 elsif Comes_From_Source (E)
3146 and then not Is_Imported (E)
3147 and then not Has_Init_Expression (Declaration_Node (E))
3148 and then
3149 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3150 and then not No_Initialization (Declaration_Node (E))
3151 and then not Is_Value_Type (Etype (E))
3152 and then not Initialization_Suppressed (Etype (E)))
3153 or else
3154 (Needs_Simple_Initialization (Etype (E))
3155 and then not Is_Internal (E)))
3156 then
3157 Has_Default_Initialization := True;
3158 Check_Restriction
3159 (No_Default_Initialization, Declaration_Node (E));
3160 end if;
3162 -- Check that a Thread_Local_Storage variable does not have
3163 -- default initialization, and any explicit initialization must
3164 -- either be the null constant or a static constant.
3166 if Has_Pragma_Thread_Local_Storage (E) then
3167 declare
3168 Decl : constant Node_Id := Declaration_Node (E);
3169 begin
3170 if Has_Default_Initialization
3171 or else
3172 (Has_Init_Expression (Decl)
3173 and then
3174 (No (Expression (Decl))
3175 or else not
3176 (Is_Static_Expression (Expression (Decl))
3177 or else
3178 Nkind (Expression (Decl)) = N_Null)))
3179 then
3180 Error_Msg_NE
3181 ("Thread_Local_Storage variable& is "
3182 & "improperly initialized", Decl, E);
3183 Error_Msg_NE
3184 ("\only allowed initialization is explicit "
3185 & "NULL or static expression", Decl, E);
3186 end if;
3187 end;
3188 end if;
3190 -- For imported objects, set Is_Public unless there is also an
3191 -- address clause, which means that there is no external symbol
3192 -- needed for the Import (Is_Public may still be set for other
3193 -- unrelated reasons). Note that we delayed this processing
3194 -- till freeze time so that we can be sure not to set the flag
3195 -- if there is an address clause. If there is such a clause,
3196 -- then the only purpose of the Import pragma is to suppress
3197 -- implicit initialization.
3199 if Is_Imported (E)
3200 and then No (Address_Clause (E))
3201 then
3202 Set_Is_Public (E);
3203 end if;
3205 -- For convention C objects of an enumeration type, warn if
3206 -- the size is not integer size and no explicit size given.
3207 -- Skip warning for Boolean, and Character, assume programmer
3208 -- expects 8-bit sizes for these cases.
3210 if (Convention (E) = Convention_C
3211 or else
3212 Convention (E) = Convention_CPP)
3213 and then Is_Enumeration_Type (Etype (E))
3214 and then not Is_Character_Type (Etype (E))
3215 and then not Is_Boolean_Type (Etype (E))
3216 and then Esize (Etype (E)) < Standard_Integer_Size
3217 and then not Has_Size_Clause (E)
3218 then
3219 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3220 Error_Msg_N
3221 ("?convention C enumeration object has size less than ^",
3223 Error_Msg_N ("\?use explicit size clause to set size", E);
3224 end if;
3225 end if;
3227 -- Check that a constant which has a pragma Volatile[_Components]
3228 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
3230 -- Note: Atomic[_Components] also sets Volatile[_Components]
3232 if Ekind (E) = E_Constant
3233 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
3234 and then not Is_Imported (E)
3235 then
3236 -- Make sure we actually have a pragma, and have not merely
3237 -- inherited the indication from elsewhere (e.g. an address
3238 -- clause, which is not good enough in RM terms!)
3240 if Has_Rep_Pragma (E, Name_Atomic)
3241 or else
3242 Has_Rep_Pragma (E, Name_Atomic_Components)
3243 then
3244 Error_Msg_N
3245 ("stand alone atomic constant must be " &
3246 "imported (RM C.6(13))", E);
3248 elsif Has_Rep_Pragma (E, Name_Volatile)
3249 or else
3250 Has_Rep_Pragma (E, Name_Volatile_Components)
3251 then
3252 Error_Msg_N
3253 ("stand alone volatile constant must be " &
3254 "imported (RM C.6(13))", E);
3255 end if;
3256 end if;
3258 -- Static objects require special handling
3260 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
3261 and then Is_Statically_Allocated (E)
3262 then
3263 Freeze_Static_Object (E);
3264 end if;
3266 -- Remaining step is to layout objects
3268 if Ekind (E) = E_Variable
3269 or else
3270 Ekind (E) = E_Constant
3271 or else
3272 Ekind (E) = E_Loop_Parameter
3273 or else
3274 Is_Formal (E)
3275 then
3276 Layout_Object (E);
3277 end if;
3278 end if;
3280 -- Case of a type or subtype being frozen
3282 else
3283 -- We used to check here that a full type must have preelaborable
3284 -- initialization if it completes a private type specified with
3285 -- pragma Preelaborable_Initialization, but that missed cases where
3286 -- the types occur within a generic package, since the freezing
3287 -- that occurs within a containing scope generally skips traversal
3288 -- of a generic unit's declarations (those will be frozen within
3289 -- instances). This check was moved to Analyze_Package_Specification.
3291 -- The type may be defined in a generic unit. This can occur when
3292 -- freezing a generic function that returns the type (which is
3293 -- defined in a parent unit). It is clearly meaningless to freeze
3294 -- this type. However, if it is a subtype, its size may be determi-
3295 -- nable and used in subsequent checks, so might as well try to
3296 -- compute it.
3298 -- In Ada 2012, Freeze_Entities is also used in the front end to
3299 -- trigger the analysis of aspect expressions, so in this case we
3300 -- want to continue the freezing process.
3302 if Present (Scope (E))
3303 and then Is_Generic_Unit (Scope (E))
3304 and then not Has_Predicates (E)
3305 then
3306 Check_Compile_Time_Size (E);
3307 return No_List;
3308 end if;
3310 -- Deal with special cases of freezing for subtype
3312 if E /= Base_Type (E) then
3314 -- Before we do anything else, a specialized test for the case of
3315 -- a size given for an array where the array needs to be packed,
3316 -- but was not so the size cannot be honored. This would of course
3317 -- be caught by the backend, and indeed we don't catch all cases.
3318 -- The point is that we can give a better error message in those
3319 -- cases that we do catch with the circuitry here. Also if pragma
3320 -- Implicit_Packing is set, this is where the packing occurs.
3322 -- The reason we do this so early is that the processing in the
3323 -- automatic packing case affects the layout of the base type, so
3324 -- it must be done before we freeze the base type.
3326 if Is_Array_Type (E) then
3327 declare
3328 Lo, Hi : Node_Id;
3329 Ctyp : constant Entity_Id := Component_Type (E);
3331 begin
3332 -- Check enabling conditions. These are straightforward
3333 -- except for the test for a limited composite type. This
3334 -- eliminates the rare case of a array of limited components
3335 -- where there are issues of whether or not we can go ahead
3336 -- and pack the array (since we can't freely pack and unpack
3337 -- arrays if they are limited).
3339 -- Note that we check the root type explicitly because the
3340 -- whole point is we are doing this test before we have had
3341 -- a chance to freeze the base type (and it is that freeze
3342 -- action that causes stuff to be inherited).
3344 if Present (Size_Clause (E))
3345 and then Known_Static_RM_Size (E)
3346 and then not Is_Packed (E)
3347 and then not Has_Pragma_Pack (E)
3348 and then Number_Dimensions (E) = 1
3349 and then not Has_Component_Size_Clause (E)
3350 and then Known_Static_RM_Size (Ctyp)
3351 and then not Is_Limited_Composite (E)
3352 and then not Is_Packed (Root_Type (E))
3353 and then not Has_Component_Size_Clause (Root_Type (E))
3354 and then not (CodePeer_Mode or Alfa_Mode)
3355 then
3356 Get_Index_Bounds (First_Index (E), Lo, Hi);
3358 if Compile_Time_Known_Value (Lo)
3359 and then Compile_Time_Known_Value (Hi)
3360 and then Known_Static_RM_Size (Ctyp)
3361 and then RM_Size (Ctyp) < 64
3362 then
3363 declare
3364 Lov : constant Uint := Expr_Value (Lo);
3365 Hiv : constant Uint := Expr_Value (Hi);
3366 Len : constant Uint := UI_Max
3367 (Uint_0,
3368 Hiv - Lov + 1);
3369 Rsiz : constant Uint := RM_Size (Ctyp);
3370 SZ : constant Node_Id := Size_Clause (E);
3371 Btyp : constant Entity_Id := Base_Type (E);
3373 -- What we are looking for here is the situation where
3374 -- the RM_Size given would be exactly right if there
3375 -- was a pragma Pack (resulting in the component size
3376 -- being the same as the RM_Size). Furthermore, the
3377 -- component type size must be an odd size (not a
3378 -- multiple of storage unit). If the component RM size
3379 -- is an exact number of storage units that is a power
3380 -- of two, the array is not packed and has a standard
3381 -- representation.
3383 begin
3384 if RM_Size (E) = Len * Rsiz
3385 and then Rsiz mod System_Storage_Unit /= 0
3386 then
3387 -- For implicit packing mode, just set the
3388 -- component size silently.
3390 if Implicit_Packing then
3391 Set_Component_Size (Btyp, Rsiz);
3392 Set_Is_Bit_Packed_Array (Btyp);
3393 Set_Is_Packed (Btyp);
3394 Set_Has_Non_Standard_Rep (Btyp);
3396 -- Otherwise give an error message
3398 else
3399 Error_Msg_NE
3400 ("size given for& too small", SZ, E);
3401 Error_Msg_N -- CODEFIX
3402 ("\use explicit pragma Pack "
3403 & "or use pragma Implicit_Packing", SZ);
3404 end if;
3406 elsif RM_Size (E) = Len * Rsiz
3407 and then Implicit_Packing
3408 and then
3409 (Rsiz / System_Storage_Unit = 1
3410 or else Rsiz / System_Storage_Unit = 2
3411 or else Rsiz / System_Storage_Unit = 4)
3412 then
3414 -- Not a packed array, but indicate the desired
3415 -- component size, for the back-end.
3417 Set_Component_Size (Btyp, Rsiz);
3418 end if;
3419 end;
3420 end if;
3421 end if;
3422 end;
3423 end if;
3425 -- If ancestor subtype present, freeze that first. Note that this
3426 -- will also get the base type frozen. Need RM reference ???
3428 Atype := Ancestor_Subtype (E);
3430 if Present (Atype) then
3431 Freeze_And_Append (Atype, N, Result);
3433 -- No ancestor subtype present
3435 else
3436 -- See if we have a nearest ancestor that has a predicate.
3437 -- That catches the case of derived type with a predicate.
3438 -- Need RM reference here ???
3440 Atype := Nearest_Ancestor (E);
3442 if Present (Atype) and then Has_Predicates (Atype) then
3443 Freeze_And_Append (Atype, N, Result);
3444 end if;
3446 -- Freeze base type before freezing the entity (RM 13.14(15))
3448 if E /= Base_Type (E) then
3449 Freeze_And_Append (Base_Type (E), N, Result);
3450 end if;
3451 end if;
3453 -- A subtype inherits all the type-related representation aspects
3454 -- from its parents (RM 13.1(8)).
3456 Inherit_Aspects_At_Freeze_Point (E);
3458 -- For a derived type, freeze its parent type first (RM 13.14(15))
3460 elsif Is_Derived_Type (E) then
3461 Freeze_And_Append (Etype (E), N, Result);
3462 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
3464 -- A derived type inherits each type-related representation aspect
3465 -- of its parent type that was directly specified before the
3466 -- declaration of the derived type (RM 13.1(15)).
3468 Inherit_Aspects_At_Freeze_Point (E);
3469 end if;
3471 -- For array type, freeze index types and component type first
3472 -- before freezing the array (RM 13.14(15)).
3474 if Is_Array_Type (E) then
3475 declare
3476 FS : constant Entity_Id := First_Subtype (E);
3477 Ctyp : constant Entity_Id := Component_Type (E);
3478 Clause : Entity_Id;
3480 Non_Standard_Enum : Boolean := False;
3481 -- Set true if any of the index types is an enumeration type
3482 -- with a non-standard representation.
3484 begin
3485 Freeze_And_Append (Ctyp, N, Result);
3487 Indx := First_Index (E);
3488 while Present (Indx) loop
3489 Freeze_And_Append (Etype (Indx), N, Result);
3491 if Is_Enumeration_Type (Etype (Indx))
3492 and then Has_Non_Standard_Rep (Etype (Indx))
3493 then
3494 Non_Standard_Enum := True;
3495 end if;
3497 Next_Index (Indx);
3498 end loop;
3500 -- Processing that is done only for base types
3502 if Ekind (E) = E_Array_Type then
3504 -- Propagate flags for component type
3506 if Is_Controlled (Component_Type (E))
3507 or else Has_Controlled_Component (Ctyp)
3508 then
3509 Set_Has_Controlled_Component (E);
3510 end if;
3512 if Has_Unchecked_Union (Component_Type (E)) then
3513 Set_Has_Unchecked_Union (E);
3514 end if;
3516 -- If packing was requested or if the component size was set
3517 -- explicitly, then see if bit packing is required. This
3518 -- processing is only done for base types, since all the
3519 -- representation aspects involved are type-related. This
3520 -- is not just an optimization, if we start processing the
3521 -- subtypes, they interfere with the settings on the base
3522 -- type (this is because Is_Packed has a slightly different
3523 -- meaning before and after freezing).
3525 declare
3526 Csiz : Uint;
3527 Esiz : Uint;
3529 begin
3530 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3531 and then Known_Static_RM_Size (Ctyp)
3532 and then not Has_Component_Size_Clause (E)
3533 then
3534 Csiz := UI_Max (RM_Size (Ctyp), 1);
3536 elsif Known_Component_Size (E) then
3537 Csiz := Component_Size (E);
3539 elsif not Known_Static_Esize (Ctyp) then
3540 Csiz := Uint_0;
3542 else
3543 Esiz := Esize (Ctyp);
3545 -- We can set the component size if it is less than
3546 -- 16, rounding it up to the next storage unit size.
3548 if Esiz <= 8 then
3549 Csiz := Uint_8;
3550 elsif Esiz <= 16 then
3551 Csiz := Uint_16;
3552 else
3553 Csiz := Uint_0;
3554 end if;
3556 -- Set component size up to match alignment if it
3557 -- would otherwise be less than the alignment. This
3558 -- deals with cases of types whose alignment exceeds
3559 -- their size (padded types).
3561 if Csiz /= 0 then
3562 declare
3563 A : constant Uint := Alignment_In_Bits (Ctyp);
3564 begin
3565 if Csiz < A then
3566 Csiz := A;
3567 end if;
3568 end;
3569 end if;
3570 end if;
3572 -- Case of component size that may result in packing
3574 if 1 <= Csiz and then Csiz <= 64 then
3575 declare
3576 Ent : constant Entity_Id :=
3577 First_Subtype (E);
3578 Pack_Pragma : constant Node_Id :=
3579 Get_Rep_Pragma (Ent, Name_Pack);
3580 Comp_Size_C : constant Node_Id :=
3581 Get_Attribute_Definition_Clause
3582 (Ent, Attribute_Component_Size);
3583 begin
3584 -- Warn if we have pack and component size so that
3585 -- the pack is ignored.
3587 -- Note: here we must check for the presence of a
3588 -- component size before checking for a Pack pragma
3589 -- to deal with the case where the array type is a
3590 -- derived type whose parent is currently private.
3592 if Present (Comp_Size_C)
3593 and then Has_Pragma_Pack (Ent)
3594 and then Warn_On_Redundant_Constructs
3595 then
3596 Error_Msg_Sloc := Sloc (Comp_Size_C);
3597 Error_Msg_NE
3598 ("?pragma Pack for& ignored!",
3599 Pack_Pragma, Ent);
3600 Error_Msg_N
3601 ("\?explicit component size given#!",
3602 Pack_Pragma);
3603 Set_Is_Packed (Base_Type (Ent), False);
3604 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
3605 end if;
3607 -- Set component size if not already set by a
3608 -- component size clause.
3610 if not Present (Comp_Size_C) then
3611 Set_Component_Size (E, Csiz);
3612 end if;
3614 -- Check for base type of 8, 16, 32 bits, where an
3615 -- unsigned subtype has a length one less than the
3616 -- base type (e.g. Natural subtype of Integer).
3618 -- In such cases, if a component size was not set
3619 -- explicitly, then generate a warning.
3621 if Has_Pragma_Pack (E)
3622 and then not Present (Comp_Size_C)
3623 and then
3624 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3625 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3626 then
3627 Error_Msg_Uint_1 := Csiz;
3629 if Present (Pack_Pragma) then
3630 Error_Msg_N
3631 ("?pragma Pack causes component size "
3632 & "to be ^!", Pack_Pragma);
3633 Error_Msg_N
3634 ("\?use Component_Size to set "
3635 & "desired value!", Pack_Pragma);
3636 end if;
3637 end if;
3639 -- Actual packing is not needed for 8, 16, 32, 64.
3640 -- Also not needed for 24 if alignment is 1.
3642 if Csiz = 8
3643 or else Csiz = 16
3644 or else Csiz = 32
3645 or else Csiz = 64
3646 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3647 then
3648 -- Here the array was requested to be packed,
3649 -- but the packing request had no effect, so
3650 -- Is_Packed is reset.
3652 -- Note: semantically this means that we lose
3653 -- track of the fact that a derived type
3654 -- inherited a pragma Pack that was non-
3655 -- effective, but that seems fine.
3657 -- We regard a Pack pragma as a request to set
3658 -- a representation characteristic, and this
3659 -- request may be ignored.
3661 Set_Is_Packed (Base_Type (E), False);
3662 Set_Is_Bit_Packed_Array (Base_Type (E), False);
3664 if Known_Static_Esize (Component_Type (E))
3665 and then Esize (Component_Type (E)) = Csiz
3666 then
3667 Set_Has_Non_Standard_Rep
3668 (Base_Type (E), False);
3669 end if;
3671 -- In all other cases, packing is indeed needed
3673 else
3674 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3675 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3676 Set_Is_Packed (Base_Type (E), True);
3677 end if;
3678 end;
3679 end if;
3680 end;
3682 -- Check for Atomic_Components or Aliased with unsuitable
3683 -- packing or explicit component size clause given.
3685 if (Has_Atomic_Components (E)
3686 or else Has_Aliased_Components (E))
3687 and then (Has_Component_Size_Clause (E)
3688 or else Is_Packed (E))
3689 then
3690 Alias_Atomic_Check : declare
3692 procedure Complain_CS (T : String);
3693 -- Outputs error messages for incorrect CS clause or
3694 -- pragma Pack for aliased or atomic components (T is
3695 -- "aliased" or "atomic");
3697 -----------------
3698 -- Complain_CS --
3699 -----------------
3701 procedure Complain_CS (T : String) is
3702 begin
3703 if Has_Component_Size_Clause (E) then
3704 Clause :=
3705 Get_Attribute_Definition_Clause
3706 (FS, Attribute_Component_Size);
3708 if Known_Static_Esize (Ctyp) then
3709 Error_Msg_N
3710 ("incorrect component size for "
3711 & T & " components", Clause);
3712 Error_Msg_Uint_1 := Esize (Ctyp);
3713 Error_Msg_N
3714 ("\only allowed value is^", Clause);
3716 else
3717 Error_Msg_N
3718 ("component size cannot be given for "
3719 & T & " components", Clause);
3720 end if;
3722 else
3723 Error_Msg_N
3724 ("cannot pack " & T & " components",
3725 Get_Rep_Pragma (FS, Name_Pack));
3726 end if;
3728 return;
3729 end Complain_CS;
3731 -- Start of processing for Alias_Atomic_Check
3733 begin
3735 -- If object size of component type isn't known, we
3736 -- cannot be sure so we defer to the back end.
3738 if not Known_Static_Esize (Ctyp) then
3739 null;
3741 -- Case where component size has no effect. First
3742 -- check for object size of component type multiple
3743 -- of the storage unit size.
3745 elsif Esize (Ctyp) mod System_Storage_Unit = 0
3747 -- OK in both packing case and component size case
3748 -- if RM size is known and static and the same as
3749 -- the object size.
3751 and then
3752 ((Known_Static_RM_Size (Ctyp)
3753 and then Esize (Ctyp) = RM_Size (Ctyp))
3755 -- Or if we have an explicit component size
3756 -- clause and the component size and object size
3757 -- are equal.
3759 or else
3760 (Has_Component_Size_Clause (E)
3761 and then Component_Size (E) = Esize (Ctyp)))
3762 then
3763 null;
3765 elsif Has_Aliased_Components (E)
3766 or else Is_Aliased (Ctyp)
3767 then
3768 Complain_CS ("aliased");
3770 elsif Has_Atomic_Components (E)
3771 or else Is_Atomic (Ctyp)
3772 then
3773 Complain_CS ("atomic");
3774 end if;
3775 end Alias_Atomic_Check;
3776 end if;
3778 -- Warn for case of atomic type
3780 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3782 if Present (Clause)
3783 and then not Addressable (Component_Size (FS))
3784 then
3785 Error_Msg_NE
3786 ("non-atomic components of type& may not be "
3787 & "accessible by separate tasks?", Clause, E);
3789 if Has_Component_Size_Clause (E) then
3790 Error_Msg_Sloc :=
3791 Sloc
3792 (Get_Attribute_Definition_Clause
3793 (FS, Attribute_Component_Size));
3794 Error_Msg_N
3795 ("\because of component size clause#?",
3796 Clause);
3798 elsif Has_Pragma_Pack (E) then
3799 Error_Msg_Sloc :=
3800 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3801 Error_Msg_N
3802 ("\because of pragma Pack#?", Clause);
3803 end if;
3804 end if;
3806 -- Check for scalar storage order
3808 if Present (Get_Attribute_Definition_Clause
3809 (E, Attribute_Scalar_Storage_Order))
3810 then
3811 Check_Component_Storage_Order (E, Empty);
3812 end if;
3814 -- Processing that is done only for subtypes
3816 else
3817 -- Acquire alignment from base type
3819 if Unknown_Alignment (E) then
3820 Set_Alignment (E, Alignment (Base_Type (E)));
3821 Adjust_Esize_Alignment (E);
3822 end if;
3823 end if;
3825 -- For bit-packed arrays, check the size
3827 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
3828 declare
3829 SizC : constant Node_Id := Size_Clause (E);
3831 Discard : Boolean;
3832 pragma Warnings (Off, Discard);
3834 begin
3835 -- It is not clear if it is possible to have no size
3836 -- clause at this stage, but it is not worth worrying
3837 -- about. Post error on the entity name in the size
3838 -- clause if present, else on the type entity itself.
3840 if Present (SizC) then
3841 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3842 else
3843 Check_Size (E, E, RM_Size (E), Discard);
3844 end if;
3845 end;
3846 end if;
3848 -- If any of the index types was an enumeration type with a
3849 -- non-standard rep clause, then we indicate that the array
3850 -- type is always packed (even if it is not bit packed).
3852 if Non_Standard_Enum then
3853 Set_Has_Non_Standard_Rep (Base_Type (E));
3854 Set_Is_Packed (Base_Type (E));
3855 end if;
3857 Set_Component_Alignment_If_Not_Set (E);
3859 -- If the array is packed, we must create the packed array
3860 -- type to be used to actually implement the type. This is
3861 -- only needed for real array types (not for string literal
3862 -- types, since they are present only for the front end).
3864 if Is_Packed (E)
3865 and then Ekind (E) /= E_String_Literal_Subtype
3866 then
3867 Create_Packed_Array_Type (E);
3868 Freeze_And_Append (Packed_Array_Type (E), N, Result);
3870 -- Size information of packed array type is copied to the
3871 -- array type, since this is really the representation. But
3872 -- do not override explicit existing size values. If the
3873 -- ancestor subtype is constrained the packed_array_type
3874 -- will be inherited from it, but the size may have been
3875 -- provided already, and must not be overridden either.
3877 if not Has_Size_Clause (E)
3878 and then
3879 (No (Ancestor_Subtype (E))
3880 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3881 then
3882 Set_Esize (E, Esize (Packed_Array_Type (E)));
3883 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3884 end if;
3886 if not Has_Alignment_Clause (E) then
3887 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3888 end if;
3889 end if;
3891 -- For non-packed arrays set the alignment of the array to the
3892 -- alignment of the component type if it is unknown. Skip this
3893 -- in atomic case (atomic arrays may need larger alignments).
3895 if not Is_Packed (E)
3896 and then Unknown_Alignment (E)
3897 and then Known_Alignment (Ctyp)
3898 and then Known_Static_Component_Size (E)
3899 and then Known_Static_Esize (Ctyp)
3900 and then Esize (Ctyp) = Component_Size (E)
3901 and then not Is_Atomic (E)
3902 then
3903 Set_Alignment (E, Alignment (Component_Type (E)));
3904 end if;
3905 end;
3907 -- For a class-wide type, the corresponding specific type is
3908 -- frozen as well (RM 13.14(15))
3910 elsif Is_Class_Wide_Type (E) then
3911 Freeze_And_Append (Root_Type (E), N, Result);
3913 -- If the base type of the class-wide type is still incomplete,
3914 -- the class-wide remains unfrozen as well. This is legal when
3915 -- E is the formal of a primitive operation of some other type
3916 -- which is being frozen.
3918 if not Is_Frozen (Root_Type (E)) then
3919 Set_Is_Frozen (E, False);
3920 return Result;
3921 end if;
3923 -- The equivalent type associated with a class-wide subtype needs
3924 -- to be frozen to ensure that its layout is done.
3926 if Ekind (E) = E_Class_Wide_Subtype
3927 and then Present (Equivalent_Type (E))
3928 then
3929 Freeze_And_Append (Equivalent_Type (E), N, Result);
3930 end if;
3932 -- Generate an itype reference for a library-level class-wide type
3933 -- at the freeze point. Otherwise the first explicit reference to
3934 -- the type may appear in an inner scope which will be rejected by
3935 -- the back-end.
3937 if Is_Itype (E)
3938 and then Is_Compilation_Unit (Scope (E))
3939 then
3940 declare
3941 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3943 begin
3944 Set_Itype (Ref, E);
3946 -- From a gigi point of view, a class-wide subtype derives
3947 -- from its record equivalent type. As a result, the itype
3948 -- reference must appear after the freeze node of the
3949 -- equivalent type or gigi will reject the reference.
3951 if Ekind (E) = E_Class_Wide_Subtype
3952 and then Present (Equivalent_Type (E))
3953 then
3954 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
3955 else
3956 Add_To_Result (Ref);
3957 end if;
3958 end;
3959 end if;
3961 -- For a record type or record subtype, freeze all component types
3962 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
3963 -- using Is_Record_Type, because we don't want to attempt the freeze
3964 -- for the case of a private type with record extension (we will do
3965 -- that later when the full type is frozen).
3967 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
3968 Freeze_Record_Type (E);
3970 -- For a concurrent type, freeze corresponding record type. This
3971 -- does not correspond to any specific rule in the RM, but the
3972 -- record type is essentially part of the concurrent type.
3973 -- Freeze as well all local entities. This includes record types
3974 -- created for entry parameter blocks, and whatever local entities
3975 -- may appear in the private part.
3977 elsif Is_Concurrent_Type (E) then
3978 if Present (Corresponding_Record_Type (E)) then
3979 Freeze_And_Append
3980 (Corresponding_Record_Type (E), N, Result);
3981 end if;
3983 Comp := First_Entity (E);
3984 while Present (Comp) loop
3985 if Is_Type (Comp) then
3986 Freeze_And_Append (Comp, N, Result);
3988 elsif (Ekind (Comp)) /= E_Function then
3989 if Is_Itype (Etype (Comp))
3990 and then Underlying_Type (Scope (Etype (Comp))) = E
3991 then
3992 Undelay_Type (Etype (Comp));
3993 end if;
3995 Freeze_And_Append (Etype (Comp), N, Result);
3996 end if;
3998 Next_Entity (Comp);
3999 end loop;
4001 -- Private types are required to point to the same freeze node as
4002 -- their corresponding full views. The freeze node itself has to
4003 -- point to the partial view of the entity (because from the partial
4004 -- view, we can retrieve the full view, but not the reverse).
4005 -- However, in order to freeze correctly, we need to freeze the full
4006 -- view. If we are freezing at the end of a scope (or within the
4007 -- scope of the private type), the partial and full views will have
4008 -- been swapped, the full view appears first in the entity chain and
4009 -- the swapping mechanism ensures that the pointers are properly set
4010 -- (on scope exit).
4012 -- If we encounter the partial view before the full view (e.g. when
4013 -- freezing from another scope), we freeze the full view, and then
4014 -- set the pointers appropriately since we cannot rely on swapping to
4015 -- fix things up (subtypes in an outer scope might not get swapped).
4017 elsif Is_Incomplete_Or_Private_Type (E)
4018 and then not Is_Generic_Type (E)
4019 then
4020 -- The construction of the dispatch table associated with library
4021 -- level tagged types forces freezing of all the primitives of the
4022 -- type, which may cause premature freezing of the partial view.
4023 -- For example:
4025 -- package Pkg is
4026 -- type T is tagged private;
4027 -- type DT is new T with private;
4028 -- procedure Prim (X : in out T; Y : in out DT'Class);
4029 -- private
4030 -- type T is tagged null record;
4031 -- Obj : T;
4032 -- type DT is new T with null record;
4033 -- end;
4035 -- In this case the type will be frozen later by the usual
4036 -- mechanism: an object declaration, an instantiation, or the
4037 -- end of a declarative part.
4039 if Is_Library_Level_Tagged_Type (E)
4040 and then not Present (Full_View (E))
4041 then
4042 Set_Is_Frozen (E, False);
4043 return Result;
4045 -- Case of full view present
4047 elsif Present (Full_View (E)) then
4049 -- If full view has already been frozen, then no further
4050 -- processing is required
4052 if Is_Frozen (Full_View (E)) then
4053 Set_Has_Delayed_Freeze (E, False);
4054 Set_Freeze_Node (E, Empty);
4055 Check_Debug_Info_Needed (E);
4057 -- Otherwise freeze full view and patch the pointers so that
4058 -- the freeze node will elaborate both views in the back-end.
4060 else
4061 declare
4062 Full : constant Entity_Id := Full_View (E);
4064 begin
4065 if Is_Private_Type (Full)
4066 and then Present (Underlying_Full_View (Full))
4067 then
4068 Freeze_And_Append
4069 (Underlying_Full_View (Full), N, Result);
4070 end if;
4072 Freeze_And_Append (Full, N, Result);
4074 if Has_Delayed_Freeze (E) then
4075 F_Node := Freeze_Node (Full);
4077 if Present (F_Node) then
4078 Set_Freeze_Node (E, F_Node);
4079 Set_Entity (F_Node, E);
4081 else
4082 -- {Incomplete,Private}_Subtypes with Full_Views
4083 -- constrained by discriminants.
4085 Set_Has_Delayed_Freeze (E, False);
4086 Set_Freeze_Node (E, Empty);
4087 end if;
4088 end if;
4089 end;
4091 Check_Debug_Info_Needed (E);
4092 end if;
4094 -- AI-117 requires that the convention of a partial view be the
4095 -- same as the convention of the full view. Note that this is a
4096 -- recognized breach of privacy, but it's essential for logical
4097 -- consistency of representation, and the lack of a rule in
4098 -- RM95 was an oversight.
4100 Set_Convention (E, Convention (Full_View (E)));
4102 Set_Size_Known_At_Compile_Time (E,
4103 Size_Known_At_Compile_Time (Full_View (E)));
4105 -- Size information is copied from the full view to the
4106 -- incomplete or private view for consistency.
4108 -- We skip this is the full view is not a type. This is very
4109 -- strange of course, and can only happen as a result of
4110 -- certain illegalities, such as a premature attempt to derive
4111 -- from an incomplete type.
4113 if Is_Type (Full_View (E)) then
4114 Set_Size_Info (E, Full_View (E));
4115 Set_RM_Size (E, RM_Size (Full_View (E)));
4116 end if;
4118 return Result;
4120 -- Case of no full view present. If entity is derived or subtype,
4121 -- it is safe to freeze, correctness depends on the frozen status
4122 -- of parent. Otherwise it is either premature usage, or a Taft
4123 -- amendment type, so diagnosis is at the point of use and the
4124 -- type might be frozen later.
4126 elsif E /= Base_Type (E)
4127 or else Is_Derived_Type (E)
4128 then
4129 null;
4131 else
4132 Set_Is_Frozen (E, False);
4133 return No_List;
4134 end if;
4136 -- For access subprogram, freeze types of all formals, the return
4137 -- type was already frozen, since it is the Etype of the function.
4138 -- Formal types can be tagged Taft amendment types, but otherwise
4139 -- they cannot be incomplete.
4141 elsif Ekind (E) = E_Subprogram_Type then
4142 Formal := First_Formal (E);
4143 while Present (Formal) loop
4144 if Ekind (Etype (Formal)) = E_Incomplete_Type
4145 and then No (Full_View (Etype (Formal)))
4146 and then not Is_Value_Type (Etype (Formal))
4147 then
4148 if Is_Tagged_Type (Etype (Formal)) then
4149 null;
4151 -- AI05-151: Incomplete types are allowed in access to
4152 -- subprogram specifications.
4154 elsif Ada_Version < Ada_2012 then
4155 Error_Msg_NE
4156 ("invalid use of incomplete type&", E, Etype (Formal));
4157 end if;
4158 end if;
4160 Freeze_And_Append (Etype (Formal), N, Result);
4161 Next_Formal (Formal);
4162 end loop;
4164 Freeze_Subprogram (E);
4166 -- For access to a protected subprogram, freeze the equivalent type
4167 -- (however this is not set if we are not generating code or if this
4168 -- is an anonymous type used just for resolution).
4170 elsif Is_Access_Protected_Subprogram_Type (E) then
4171 if Present (Equivalent_Type (E)) then
4172 Freeze_And_Append (Equivalent_Type (E), N, Result);
4173 end if;
4174 end if;
4176 -- Generic types are never seen by the back-end, and are also not
4177 -- processed by the expander (since the expander is turned off for
4178 -- generic processing), so we never need freeze nodes for them.
4180 if Is_Generic_Type (E) then
4181 return Result;
4182 end if;
4184 -- Some special processing for non-generic types to complete
4185 -- representation details not known till the freeze point.
4187 if Is_Fixed_Point_Type (E) then
4188 Freeze_Fixed_Point_Type (E);
4190 -- Some error checks required for ordinary fixed-point type. Defer
4191 -- these till the freeze-point since we need the small and range
4192 -- values. We only do these checks for base types
4194 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
4195 if Small_Value (E) < Ureal_2_M_80 then
4196 Error_Msg_Name_1 := Name_Small;
4197 Error_Msg_N
4198 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
4200 elsif Small_Value (E) > Ureal_2_80 then
4201 Error_Msg_Name_1 := Name_Small;
4202 Error_Msg_N
4203 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
4204 end if;
4206 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
4207 Error_Msg_Name_1 := Name_First;
4208 Error_Msg_N
4209 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
4210 end if;
4212 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
4213 Error_Msg_Name_1 := Name_Last;
4214 Error_Msg_N
4215 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
4216 end if;
4217 end if;
4219 elsif Is_Enumeration_Type (E) then
4220 Freeze_Enumeration_Type (E);
4222 elsif Is_Integer_Type (E) then
4223 Adjust_Esize_For_Alignment (E);
4225 if Is_Modular_Integer_Type (E)
4226 and then Warn_On_Suspicious_Modulus_Value
4227 then
4228 Check_Suspicious_Modulus (E);
4229 end if;
4231 elsif Is_Access_Type (E)
4232 and then not Is_Access_Subprogram_Type (E)
4233 then
4234 -- If a pragma Default_Storage_Pool applies, and this type has no
4235 -- Storage_Pool or Storage_Size clause (which must have occurred
4236 -- before the freezing point), then use the default. This applies
4237 -- only to base types.
4239 -- None of this applies to access to subprograms, for which there
4240 -- are clearly no pools.
4242 if Present (Default_Pool)
4243 and then Is_Base_Type (E)
4244 and then not Has_Storage_Size_Clause (E)
4245 and then No (Associated_Storage_Pool (E))
4246 then
4247 -- Case of pragma Default_Storage_Pool (null)
4249 if Nkind (Default_Pool) = N_Null then
4250 Set_No_Pool_Assigned (E);
4252 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
4254 else
4255 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
4256 end if;
4257 end if;
4259 -- Check restriction for standard storage pool
4261 if No (Associated_Storage_Pool (E)) then
4262 Check_Restriction (No_Standard_Storage_Pools, E);
4263 end if;
4265 -- Deal with error message for pure access type. This is not an
4266 -- error in Ada 2005 if there is no pool (see AI-366).
4268 if Is_Pure_Unit_Access_Type (E)
4269 and then (Ada_Version < Ada_2005
4270 or else not No_Pool_Assigned (E))
4271 then
4272 Error_Msg_N ("named access type not allowed in pure unit", E);
4274 if Ada_Version >= Ada_2005 then
4275 Error_Msg_N
4276 ("\would be legal if Storage_Size of 0 given?", E);
4278 elsif No_Pool_Assigned (E) then
4279 Error_Msg_N
4280 ("\would be legal in Ada 2005?", E);
4282 else
4283 Error_Msg_N
4284 ("\would be legal in Ada 2005 if "
4285 & "Storage_Size of 0 given?", E);
4286 end if;
4287 end if;
4288 end if;
4290 -- Case of composite types
4292 if Is_Composite_Type (E) then
4294 -- AI-117 requires that all new primitives of a tagged type must
4295 -- inherit the convention of the full view of the type. Inherited
4296 -- and overriding operations are defined to inherit the convention
4297 -- of their parent or overridden subprogram (also specified in
4298 -- AI-117), which will have occurred earlier (in Derive_Subprogram
4299 -- and New_Overloaded_Entity). Here we set the convention of
4300 -- primitives that are still convention Ada, which will ensure
4301 -- that any new primitives inherit the type's convention. Class-
4302 -- wide types can have a foreign convention inherited from their
4303 -- specific type, but are excluded from this since they don't have
4304 -- any associated primitives.
4306 if Is_Tagged_Type (E)
4307 and then not Is_Class_Wide_Type (E)
4308 and then Convention (E) /= Convention_Ada
4309 then
4310 declare
4311 Prim_List : constant Elist_Id := Primitive_Operations (E);
4312 Prim : Elmt_Id;
4314 begin
4315 Prim := First_Elmt (Prim_List);
4316 while Present (Prim) loop
4317 if Convention (Node (Prim)) = Convention_Ada then
4318 Set_Convention (Node (Prim), Convention (E));
4319 end if;
4321 Next_Elmt (Prim);
4322 end loop;
4323 end;
4324 end if;
4326 -- If the type is a simple storage pool type, then this is where
4327 -- we attempt to locate and validate its Allocate, Deallocate, and
4328 -- Storage_Size operations (the first is required, and the latter
4329 -- two are optional). We also verify that the full type for a
4330 -- private type is allowed to be a simple storage pool type.
4332 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
4333 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
4334 then
4335 -- If the type is marked Has_Private_Declaration, then this is
4336 -- a full type for a private type that was specified with the
4337 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
4338 -- pragma is allowed for the full type (for example, it can't
4339 -- be an array type, or a nonlimited record type).
4341 if Has_Private_Declaration (E) then
4342 if (not Is_Record_Type (E)
4343 or else not Is_Immutably_Limited_Type (E))
4344 and then not Is_Private_Type (E)
4345 then
4346 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
4347 Error_Msg_N
4348 ("pragma% can only apply to full type that is an " &
4349 "explicitly limited type", E);
4350 end if;
4351 end if;
4353 Validate_Simple_Pool_Ops : declare
4354 Pool_Type : Entity_Id renames E;
4355 Address_Type : constant Entity_Id := RTE (RE_Address);
4356 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
4358 procedure Validate_Simple_Pool_Op_Formal
4359 (Pool_Op : Entity_Id;
4360 Pool_Op_Formal : in out Entity_Id;
4361 Expected_Mode : Formal_Kind;
4362 Expected_Type : Entity_Id;
4363 Formal_Name : String;
4364 OK_Formal : in out Boolean);
4365 -- Validate one formal Pool_Op_Formal of the candidate pool
4366 -- operation Pool_Op. The formal must be of Expected_Type
4367 -- and have mode Expected_Mode. OK_Formal will be set to
4368 -- False if the formal doesn't match. If OK_Formal is False
4369 -- on entry, then the formal will effectively be ignored
4370 -- (because validation of the pool op has already failed).
4371 -- Upon return, Pool_Op_Formal will be updated to the next
4372 -- formal, if any.
4374 procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id);
4375 -- Search for and validate a simple pool operation with the
4376 -- name Op_Name. If the name is Allocate, then there must be
4377 -- exactly one such primitive operation for the simple pool
4378 -- type. If the name is Deallocate or Storage_Size, then
4379 -- there can be at most one such primitive operation. The
4380 -- profile of the located primitive must conform to what
4381 -- is expected for each operation.
4383 ------------------------------------
4384 -- Validate_Simple_Pool_Op_Formal --
4385 ------------------------------------
4387 procedure Validate_Simple_Pool_Op_Formal
4388 (Pool_Op : Entity_Id;
4389 Pool_Op_Formal : in out Entity_Id;
4390 Expected_Mode : Formal_Kind;
4391 Expected_Type : Entity_Id;
4392 Formal_Name : String;
4393 OK_Formal : in out Boolean)
4395 begin
4396 -- If OK_Formal is False on entry, then simply ignore
4397 -- the formal, because an earlier formal has already
4398 -- been flagged.
4400 if not OK_Formal then
4401 return;
4403 -- If no formal is passed in, then issue an error for a
4404 -- missing formal.
4406 elsif not Present (Pool_Op_Formal) then
4407 Error_Msg_NE
4408 ("simple storage pool op missing formal " &
4409 Formal_Name & " of type&", Pool_Op, Expected_Type);
4410 OK_Formal := False;
4412 return;
4413 end if;
4415 if Etype (Pool_Op_Formal) /= Expected_Type then
4417 -- If the pool type was expected for this formal, then
4418 -- this will not be considered a candidate operation
4419 -- for the simple pool, so we unset OK_Formal so that
4420 -- the op and any later formals will be ignored.
4422 if Expected_Type = Pool_Type then
4423 OK_Formal := False;
4425 return;
4427 else
4428 Error_Msg_NE
4429 ("wrong type for formal " & Formal_Name &
4430 " of simple storage pool op; expected type&",
4431 Pool_Op_Formal, Expected_Type);
4432 end if;
4433 end if;
4435 -- Issue error if formal's mode is not the expected one
4437 if Ekind (Pool_Op_Formal) /= Expected_Mode then
4438 Error_Msg_N
4439 ("wrong mode for formal of simple storage pool op",
4440 Pool_Op_Formal);
4441 end if;
4443 -- Advance to the next formal
4445 Next_Formal (Pool_Op_Formal);
4446 end Validate_Simple_Pool_Op_Formal;
4448 ------------------------------------
4449 -- Validate_Simple_Pool_Operation --
4450 ------------------------------------
4452 procedure Validate_Simple_Pool_Operation
4453 (Op_Name : Name_Id)
4455 Op : Entity_Id;
4456 Found_Op : Entity_Id := Empty;
4457 Formal : Entity_Id;
4458 Is_OK : Boolean;
4460 begin
4461 pragma Assert
4462 (Op_Name = Name_Allocate
4463 or else Op_Name = Name_Deallocate
4464 or else Op_Name = Name_Storage_Size);
4466 Error_Msg_Name_1 := Op_Name;
4468 -- For each homonym declared immediately in the scope
4469 -- of the simple storage pool type, determine whether
4470 -- the homonym is an operation of the pool type, and,
4471 -- if so, check that its profile is as expected for
4472 -- a simple pool operation of that name.
4474 Op := Get_Name_Entity_Id (Op_Name);
4475 while Present (Op) loop
4476 if Ekind_In (Op, E_Function, E_Procedure)
4477 and then Scope (Op) = Current_Scope
4478 then
4479 Formal := First_Entity (Op);
4481 Is_OK := True;
4483 -- The first parameter must be of the pool type
4484 -- in order for the operation to qualify.
4486 if Op_Name = Name_Storage_Size then
4487 Validate_Simple_Pool_Op_Formal
4488 (Op, Formal, E_In_Parameter, Pool_Type,
4489 "Pool", Is_OK);
4490 else
4491 Validate_Simple_Pool_Op_Formal
4492 (Op, Formal, E_In_Out_Parameter, Pool_Type,
4493 "Pool", Is_OK);
4494 end if;
4496 -- If another operation with this name has already
4497 -- been located for the type, then flag an error,
4498 -- since we only allow the type to have a single
4499 -- such primitive.
4501 if Present (Found_Op) and then Is_OK then
4502 Error_Msg_NE
4503 ("only one % operation allowed for " &
4504 "simple storage pool type&", Op, Pool_Type);
4505 end if;
4507 -- In the case of Allocate and Deallocate, a formal
4508 -- of type System.Address is required.
4510 if Op_Name = Name_Allocate then
4511 Validate_Simple_Pool_Op_Formal
4512 (Op, Formal, E_Out_Parameter,
4513 Address_Type, "Storage_Address", Is_OK);
4514 elsif Op_Name = Name_Deallocate then
4515 Validate_Simple_Pool_Op_Formal
4516 (Op, Formal, E_In_Parameter,
4517 Address_Type, "Storage_Address", Is_OK);
4518 end if;
4520 -- In the case of Allocate and Deallocate, formals
4521 -- of type Storage_Count are required as the third
4522 -- and fourth parameters.
4524 if Op_Name /= Name_Storage_Size then
4525 Validate_Simple_Pool_Op_Formal
4526 (Op, Formal, E_In_Parameter,
4527 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
4528 Validate_Simple_Pool_Op_Formal
4529 (Op, Formal, E_In_Parameter,
4530 Stg_Cnt_Type, "Alignment", Is_OK);
4531 end if;
4533 -- If no mismatched formals have been found (Is_OK)
4534 -- and no excess formals are present, then this
4535 -- operation has been validated, so record it.
4537 if not Present (Formal) and then Is_OK then
4538 Found_Op := Op;
4539 end if;
4540 end if;
4542 Op := Homonym (Op);
4543 end loop;
4545 -- There must be a valid Allocate operation for the type,
4546 -- so issue an error if none was found.
4548 if Op_Name = Name_Allocate
4549 and then not Present (Found_Op)
4550 then
4551 Error_Msg_N ("missing % operation for simple " &
4552 "storage pool type", Pool_Type);
4554 elsif Present (Found_Op) then
4556 -- Simple pool operations can't be abstract
4558 if Is_Abstract_Subprogram (Found_Op) then
4559 Error_Msg_N
4560 ("simple storage pool operation must not be " &
4561 "abstract", Found_Op);
4562 end if;
4564 -- The Storage_Size operation must be a function with
4565 -- Storage_Count as its result type.
4567 if Op_Name = Name_Storage_Size then
4568 if Ekind (Found_Op) = E_Procedure then
4569 Error_Msg_N
4570 ("% operation must be a function", Found_Op);
4572 elsif Etype (Found_Op) /= Stg_Cnt_Type then
4573 Error_Msg_NE
4574 ("wrong result type for%, expected type&",
4575 Found_Op, Stg_Cnt_Type);
4576 end if;
4578 -- Allocate and Deallocate must be procedures
4580 elsif Ekind (Found_Op) = E_Function then
4581 Error_Msg_N
4582 ("% operation must be a procedure", Found_Op);
4583 end if;
4584 end if;
4585 end Validate_Simple_Pool_Operation;
4587 -- Start of processing for Validate_Simple_Pool_Ops
4589 begin
4590 Validate_Simple_Pool_Operation (Name_Allocate);
4591 Validate_Simple_Pool_Operation (Name_Deallocate);
4592 Validate_Simple_Pool_Operation (Name_Storage_Size);
4593 end Validate_Simple_Pool_Ops;
4594 end if;
4595 end if;
4597 -- Now that all types from which E may depend are frozen, see if the
4598 -- size is known at compile time, if it must be unsigned, or if
4599 -- strict alignment is required
4601 Check_Compile_Time_Size (E);
4602 Check_Unsigned_Type (E);
4604 if Base_Type (E) = E then
4605 Check_Strict_Alignment (E);
4606 end if;
4608 -- Do not allow a size clause for a type which does not have a size
4609 -- that is known at compile time
4611 if Has_Size_Clause (E)
4612 and then not Size_Known_At_Compile_Time (E)
4613 then
4614 -- Suppress this message if errors posted on E, even if we are
4615 -- in all errors mode, since this is often a junk message
4617 if not Error_Posted (E) then
4618 Error_Msg_N
4619 ("size clause not allowed for variable length type",
4620 Size_Clause (E));
4621 end if;
4622 end if;
4624 -- Now we set/verify the representation information, in particular
4625 -- the size and alignment values. This processing is not required for
4626 -- generic types, since generic types do not play any part in code
4627 -- generation, and so the size and alignment values for such types
4628 -- are irrelevant. Ditto for types declared within a generic unit,
4629 -- which may have components that depend on generic parameters, and
4630 -- that will be recreated in an instance.
4632 if Inside_A_Generic then
4633 null;
4635 -- Otherwise we call the layout procedure
4637 else
4638 Layout_Type (E);
4639 end if;
4641 -- If this is an access to subprogram whose designated type is itself
4642 -- a subprogram type, the return type of this anonymous subprogram
4643 -- type must be decorated as well.
4645 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
4646 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
4647 then
4648 Layout_Type (Etype (Designated_Type (E)));
4649 end if;
4651 -- If the type has a Defaut_Value/Default_Component_Value aspect,
4652 -- this is where we analye the expression (after the type is frozen,
4653 -- since in the case of Default_Value, we are analyzing with the
4654 -- type itself, and we treat Default_Component_Value similarly for
4655 -- the sake of uniformity).
4657 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
4658 declare
4659 Nam : Name_Id;
4660 Exp : Node_Id;
4661 Typ : Entity_Id;
4663 begin
4664 if Is_Scalar_Type (E) then
4665 Nam := Name_Default_Value;
4666 Typ := E;
4667 Exp := Default_Aspect_Value (Typ);
4668 else
4669 Nam := Name_Default_Component_Value;
4670 Typ := Component_Type (E);
4671 Exp := Default_Aspect_Component_Value (E);
4672 end if;
4674 Analyze_And_Resolve (Exp, Typ);
4676 if Etype (Exp) /= Any_Type then
4677 if not Is_Static_Expression (Exp) then
4678 Error_Msg_Name_1 := Nam;
4679 Flag_Non_Static_Expr
4680 ("aspect% requires static expression", Exp);
4681 end if;
4682 end if;
4683 end;
4684 end if;
4686 -- End of freeze processing for type entities
4687 end if;
4689 -- Here is where we logically freeze the current entity. If it has a
4690 -- freeze node, then this is the point at which the freeze node is
4691 -- linked into the result list.
4693 if Has_Delayed_Freeze (E) then
4695 -- If a freeze node is already allocated, use it, otherwise allocate
4696 -- a new one. The preallocation happens in the case of anonymous base
4697 -- types, where we preallocate so that we can set First_Subtype_Link.
4698 -- Note that we reset the Sloc to the current freeze location.
4700 if Present (Freeze_Node (E)) then
4701 F_Node := Freeze_Node (E);
4702 Set_Sloc (F_Node, Loc);
4704 else
4705 F_Node := New_Node (N_Freeze_Entity, Loc);
4706 Set_Freeze_Node (E, F_Node);
4707 Set_Access_Types_To_Process (F_Node, No_Elist);
4708 Set_TSS_Elist (F_Node, No_Elist);
4709 Set_Actions (F_Node, No_List);
4710 end if;
4712 Set_Entity (F_Node, E);
4713 Add_To_Result (F_Node);
4715 -- A final pass over record types with discriminants. If the type
4716 -- has an incomplete declaration, there may be constrained access
4717 -- subtypes declared elsewhere, which do not depend on the discrimi-
4718 -- nants of the type, and which are used as component types (i.e.
4719 -- the full view is a recursive type). The designated types of these
4720 -- subtypes can only be elaborated after the type itself, and they
4721 -- need an itype reference.
4723 if Ekind (E) = E_Record_Type
4724 and then Has_Discriminants (E)
4725 then
4726 declare
4727 Comp : Entity_Id;
4728 IR : Node_Id;
4729 Typ : Entity_Id;
4731 begin
4732 Comp := First_Component (E);
4733 while Present (Comp) loop
4734 Typ := Etype (Comp);
4736 if Ekind (Comp) = E_Component
4737 and then Is_Access_Type (Typ)
4738 and then Scope (Typ) /= E
4739 and then Base_Type (Designated_Type (Typ)) = E
4740 and then Is_Itype (Designated_Type (Typ))
4741 then
4742 IR := Make_Itype_Reference (Sloc (Comp));
4743 Set_Itype (IR, Designated_Type (Typ));
4744 Append (IR, Result);
4745 end if;
4747 Next_Component (Comp);
4748 end loop;
4749 end;
4750 end if;
4751 end if;
4753 -- When a type is frozen, the first subtype of the type is frozen as
4754 -- well (RM 13.14(15)). This has to be done after freezing the type,
4755 -- since obviously the first subtype depends on its own base type.
4757 if Is_Type (E) then
4758 Freeze_And_Append (First_Subtype (E), N, Result);
4760 -- If we just froze a tagged non-class wide record, then freeze the
4761 -- corresponding class-wide type. This must be done after the tagged
4762 -- type itself is frozen, because the class-wide type refers to the
4763 -- tagged type which generates the class.
4765 if Is_Tagged_Type (E)
4766 and then not Is_Class_Wide_Type (E)
4767 and then Present (Class_Wide_Type (E))
4768 then
4769 Freeze_And_Append (Class_Wide_Type (E), N, Result);
4770 end if;
4771 end if;
4773 Check_Debug_Info_Needed (E);
4775 -- Special handling for subprograms
4777 if Is_Subprogram (E) then
4779 -- If subprogram has address clause then reset Is_Public flag, since
4780 -- we do not want the backend to generate external references.
4782 if Present (Address_Clause (E))
4783 and then not Is_Library_Level_Entity (E)
4784 then
4785 Set_Is_Public (E, False);
4787 -- If no address clause and not intrinsic, then for imported
4788 -- subprogram in main unit, generate descriptor if we are in
4789 -- Propagate_Exceptions mode.
4791 -- This is very odd code, it makes a null result, why ???
4793 elsif Propagate_Exceptions
4794 and then Is_Imported (E)
4795 and then not Is_Intrinsic_Subprogram (E)
4796 and then Convention (E) /= Convention_Stubbed
4797 then
4798 if Result = No_List then
4799 Result := Empty_List;
4800 end if;
4801 end if;
4802 end if;
4804 return Result;
4805 end Freeze_Entity;
4807 -----------------------------
4808 -- Freeze_Enumeration_Type --
4809 -----------------------------
4811 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4812 begin
4813 -- By default, if no size clause is present, an enumeration type with
4814 -- Convention C is assumed to interface to a C enum, and has integer
4815 -- size. This applies to types. For subtypes, verify that its base
4816 -- type has no size clause either. Treat other foreign conventions
4817 -- in the same way, and also make sure alignment is set right.
4819 if Has_Foreign_Convention (Typ)
4820 and then not Has_Size_Clause (Typ)
4821 and then not Has_Size_Clause (Base_Type (Typ))
4822 and then Esize (Typ) < Standard_Integer_Size
4823 then
4824 Init_Esize (Typ, Standard_Integer_Size);
4825 Set_Alignment (Typ, Alignment (Standard_Integer));
4827 else
4828 -- If the enumeration type interfaces to C, and it has a size clause
4829 -- that specifies less than int size, it warrants a warning. The
4830 -- user may intend the C type to be an enum or a char, so this is
4831 -- not by itself an error that the Ada compiler can detect, but it
4832 -- it is a worth a heads-up. For Boolean and Character types we
4833 -- assume that the programmer has the proper C type in mind.
4835 if Convention (Typ) = Convention_C
4836 and then Has_Size_Clause (Typ)
4837 and then Esize (Typ) /= Esize (Standard_Integer)
4838 and then not Is_Boolean_Type (Typ)
4839 and then not Is_Character_Type (Typ)
4840 then
4841 Error_Msg_N
4842 ("C enum types have the size of a C int?", Size_Clause (Typ));
4843 end if;
4845 Adjust_Esize_For_Alignment (Typ);
4846 end if;
4847 end Freeze_Enumeration_Type;
4849 -----------------------
4850 -- Freeze_Expression --
4851 -----------------------
4853 procedure Freeze_Expression (N : Node_Id) is
4854 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4855 Typ : Entity_Id;
4856 Nam : Entity_Id;
4857 Desig_Typ : Entity_Id;
4858 P : Node_Id;
4859 Parent_P : Node_Id;
4861 Freeze_Outside : Boolean := False;
4862 -- This flag is set true if the entity must be frozen outside the
4863 -- current subprogram. This happens in the case of expander generated
4864 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4865 -- not freeze all entities like other bodies, but which nevertheless
4866 -- may reference entities that have to be frozen before the body and
4867 -- obviously cannot be frozen inside the body.
4869 function In_Exp_Body (N : Node_Id) return Boolean;
4870 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
4871 -- it is the handled statement sequence of an expander-generated
4872 -- subprogram (init proc, stream subprogram, or renaming as body).
4873 -- If so, this is not a freezing context.
4875 -----------------
4876 -- In_Exp_Body --
4877 -----------------
4879 function In_Exp_Body (N : Node_Id) return Boolean is
4880 P : Node_Id;
4881 Id : Entity_Id;
4883 begin
4884 if Nkind (N) = N_Subprogram_Body then
4885 P := N;
4886 else
4887 P := Parent (N);
4888 end if;
4890 if Nkind (P) /= N_Subprogram_Body then
4891 return False;
4893 else
4894 Id := Defining_Unit_Name (Specification (P));
4896 -- Following complex conditional could use comments ???
4898 if Nkind (Id) = N_Defining_Identifier
4899 and then (Is_Init_Proc (Id)
4900 or else Is_TSS (Id, TSS_Stream_Input)
4901 or else Is_TSS (Id, TSS_Stream_Output)
4902 or else Is_TSS (Id, TSS_Stream_Read)
4903 or else Is_TSS (Id, TSS_Stream_Write)
4904 or else Nkind_In (Original_Node (P),
4905 N_Subprogram_Renaming_Declaration,
4906 N_Expression_Function))
4907 then
4908 return True;
4909 else
4910 return False;
4911 end if;
4912 end if;
4913 end In_Exp_Body;
4915 -- Start of processing for Freeze_Expression
4917 begin
4918 -- Immediate return if freezing is inhibited. This flag is set by the
4919 -- analyzer to stop freezing on generated expressions that would cause
4920 -- freezing if they were in the source program, but which are not
4921 -- supposed to freeze, since they are created.
4923 if Must_Not_Freeze (N) then
4924 return;
4925 end if;
4927 -- If expression is non-static, then it does not freeze in a default
4928 -- expression, see section "Handling of Default Expressions" in the
4929 -- spec of package Sem for further details. Note that we have to make
4930 -- sure that we actually have a real expression (if we have a subtype
4931 -- indication, we can't test Is_Static_Expression!) However, we exclude
4932 -- the case of the prefix of an attribute of a static scalar subtype
4933 -- from this early return, because static subtype attributes should
4934 -- always cause freezing, even in default expressions, but the attribute
4935 -- may not have been marked as static yet (because in Resolve_Attribute,
4936 -- the call to Eval_Attribute follows the call of Freeze_Expression on
4937 -- the prefix).
4939 if In_Spec_Exp
4940 and then Nkind (N) in N_Subexpr
4941 and then not Is_Static_Expression (N)
4942 and then (Nkind (Parent (N)) /= N_Attribute_Reference
4943 or else not (Is_Entity_Name (N)
4944 and then Is_Type (Entity (N))
4945 and then Is_Static_Subtype (Entity (N))))
4946 then
4947 return;
4948 end if;
4950 -- Freeze type of expression if not frozen already
4952 Typ := Empty;
4954 if Nkind (N) in N_Has_Etype then
4955 if not Is_Frozen (Etype (N)) then
4956 Typ := Etype (N);
4958 -- Base type may be an derived numeric type that is frozen at
4959 -- the point of declaration, but first_subtype is still unfrozen.
4961 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4962 Typ := First_Subtype (Etype (N));
4963 end if;
4964 end if;
4966 -- For entity name, freeze entity if not frozen already. A special
4967 -- exception occurs for an identifier that did not come from source.
4968 -- We don't let such identifiers freeze a non-internal entity, i.e.
4969 -- an entity that did come from source, since such an identifier was
4970 -- generated by the expander, and cannot have any semantic effect on
4971 -- the freezing semantics. For example, this stops the parameter of
4972 -- an initialization procedure from freezing the variable.
4974 if Is_Entity_Name (N)
4975 and then not Is_Frozen (Entity (N))
4976 and then (Nkind (N) /= N_Identifier
4977 or else Comes_From_Source (N)
4978 or else not Comes_From_Source (Entity (N)))
4979 then
4980 Nam := Entity (N);
4981 else
4982 Nam := Empty;
4983 end if;
4985 -- For an allocator freeze designated type if not frozen already
4987 -- For an aggregate whose component type is an access type, freeze the
4988 -- designated type now, so that its freeze does not appear within the
4989 -- loop that might be created in the expansion of the aggregate. If the
4990 -- designated type is a private type without full view, the expression
4991 -- cannot contain an allocator, so the type is not frozen.
4993 -- For a function, we freeze the entity when the subprogram declaration
4994 -- is frozen, but a function call may appear in an initialization proc.
4995 -- before the declaration is frozen. We need to generate the extra
4996 -- formals, if any, to ensure that the expansion of the call includes
4997 -- the proper actuals. This only applies to Ada subprograms, not to
4998 -- imported ones.
5000 Desig_Typ := Empty;
5002 case Nkind (N) is
5003 when N_Allocator =>
5004 Desig_Typ := Designated_Type (Etype (N));
5006 when N_Aggregate =>
5007 if Is_Array_Type (Etype (N))
5008 and then Is_Access_Type (Component_Type (Etype (N)))
5009 then
5010 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
5011 end if;
5013 when N_Selected_Component |
5014 N_Indexed_Component |
5015 N_Slice =>
5017 if Is_Access_Type (Etype (Prefix (N))) then
5018 Desig_Typ := Designated_Type (Etype (Prefix (N)));
5019 end if;
5021 when N_Identifier =>
5022 if Present (Nam)
5023 and then Ekind (Nam) = E_Function
5024 and then Nkind (Parent (N)) = N_Function_Call
5025 and then Convention (Nam) = Convention_Ada
5026 then
5027 Create_Extra_Formals (Nam);
5028 end if;
5030 when others =>
5031 null;
5032 end case;
5034 if Desig_Typ /= Empty
5035 and then (Is_Frozen (Desig_Typ)
5036 or else (not Is_Fully_Defined (Desig_Typ)))
5037 then
5038 Desig_Typ := Empty;
5039 end if;
5041 -- All done if nothing needs freezing
5043 if No (Typ)
5044 and then No (Nam)
5045 and then No (Desig_Typ)
5046 then
5047 return;
5048 end if;
5050 -- Loop for looking at the right place to insert the freeze nodes,
5051 -- exiting from the loop when it is appropriate to insert the freeze
5052 -- node before the current node P.
5054 -- Also checks some special exceptions to the freezing rules. These
5055 -- cases result in a direct return, bypassing the freeze action.
5057 P := N;
5058 loop
5059 Parent_P := Parent (P);
5061 -- If we don't have a parent, then we are not in a well-formed tree.
5062 -- This is an unusual case, but there are some legitimate situations
5063 -- in which this occurs, notably when the expressions in the range of
5064 -- a type declaration are resolved. We simply ignore the freeze
5065 -- request in this case. Is this right ???
5067 if No (Parent_P) then
5068 return;
5069 end if;
5071 -- See if we have got to an appropriate point in the tree
5073 case Nkind (Parent_P) is
5075 -- A special test for the exception of (RM 13.14(8)) for the case
5076 -- of per-object expressions (RM 3.8(18)) occurring in component
5077 -- definition or a discrete subtype definition. Note that we test
5078 -- for a component declaration which includes both cases we are
5079 -- interested in, and furthermore the tree does not have explicit
5080 -- nodes for either of these two constructs.
5082 when N_Component_Declaration =>
5084 -- The case we want to test for here is an identifier that is
5085 -- a per-object expression, this is either a discriminant that
5086 -- appears in a context other than the component declaration
5087 -- or it is a reference to the type of the enclosing construct.
5089 -- For either of these cases, we skip the freezing
5091 if not In_Spec_Expression
5092 and then Nkind (N) = N_Identifier
5093 and then (Present (Entity (N)))
5094 then
5095 -- We recognize the discriminant case by just looking for
5096 -- a reference to a discriminant. It can only be one for
5097 -- the enclosing construct. Skip freezing in this case.
5099 if Ekind (Entity (N)) = E_Discriminant then
5100 return;
5102 -- For the case of a reference to the enclosing record,
5103 -- (or task or protected type), we look for a type that
5104 -- matches the current scope.
5106 elsif Entity (N) = Current_Scope then
5107 return;
5108 end if;
5109 end if;
5111 -- If we have an enumeration literal that appears as the choice in
5112 -- the aggregate of an enumeration representation clause, then
5113 -- freezing does not occur (RM 13.14(10)).
5115 when N_Enumeration_Representation_Clause =>
5117 -- The case we are looking for is an enumeration literal
5119 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
5120 and then Is_Enumeration_Type (Etype (N))
5121 then
5122 -- If enumeration literal appears directly as the choice,
5123 -- do not freeze (this is the normal non-overloaded case)
5125 if Nkind (Parent (N)) = N_Component_Association
5126 and then First (Choices (Parent (N))) = N
5127 then
5128 return;
5130 -- If enumeration literal appears as the name of function
5131 -- which is the choice, then also do not freeze. This
5132 -- happens in the overloaded literal case, where the
5133 -- enumeration literal is temporarily changed to a function
5134 -- call for overloading analysis purposes.
5136 elsif Nkind (Parent (N)) = N_Function_Call
5137 and then
5138 Nkind (Parent (Parent (N))) = N_Component_Association
5139 and then
5140 First (Choices (Parent (Parent (N)))) = Parent (N)
5141 then
5142 return;
5143 end if;
5144 end if;
5146 -- Normally if the parent is a handled sequence of statements,
5147 -- then the current node must be a statement, and that is an
5148 -- appropriate place to insert a freeze node.
5150 when N_Handled_Sequence_Of_Statements =>
5152 -- An exception occurs when the sequence of statements is for
5153 -- an expander generated body that did not do the usual freeze
5154 -- all operation. In this case we usually want to freeze
5155 -- outside this body, not inside it, and we skip past the
5156 -- subprogram body that we are inside.
5158 if In_Exp_Body (Parent_P) then
5159 declare
5160 Subp : constant Node_Id := Parent (Parent_P);
5161 Spec : Entity_Id;
5163 begin
5164 -- Freeze the entity only when it is declared inside the
5165 -- body of the expander generated procedure. This case
5166 -- is recognized by the scope of the entity or its type,
5167 -- which is either the spec for some enclosing body, or
5168 -- (in the case of init_procs, for which there are no
5169 -- separate specs) the current scope.
5171 if Nkind (Subp) = N_Subprogram_Body then
5172 Spec := Corresponding_Spec (Subp);
5174 if (Present (Typ) and then Scope (Typ) = Spec)
5175 or else
5176 (Present (Nam) and then Scope (Nam) = Spec)
5177 then
5178 exit;
5180 elsif Present (Typ)
5181 and then Scope (Typ) = Current_Scope
5182 and then Defining_Entity (Subp) = Current_Scope
5183 then
5184 exit;
5185 end if;
5186 end if;
5188 -- An expression function may act as a completion of
5189 -- a function declaration. As such, it can reference
5190 -- entities declared between the two views:
5192 -- Hidden []; -- 1
5193 -- function F return ...;
5194 -- private
5195 -- function Hidden return ...;
5196 -- function F return ... is (Hidden); -- 2
5198 -- Refering to the example above, freezing the expression
5199 -- of F (2) would place Hidden's freeze node (1) in the
5200 -- wrong place. Avoid explicit freezing and let the usual
5201 -- scenarios do the job - for example, reaching the end
5202 -- of the private declarations.
5204 if Nkind (Original_Node (Subp)) =
5205 N_Expression_Function
5206 then
5207 null;
5209 -- Freeze outside the body
5211 else
5212 Parent_P := Parent (Parent_P);
5213 Freeze_Outside := True;
5214 end if;
5215 end;
5217 -- Here if normal case where we are in handled statement
5218 -- sequence and want to do the insertion right there.
5220 else
5221 exit;
5222 end if;
5224 -- If parent is a body or a spec or a block, then the current node
5225 -- is a statement or declaration and we can insert the freeze node
5226 -- before it.
5228 when N_Block_Statement |
5229 N_Entry_Body |
5230 N_Package_Body |
5231 N_Package_Specification |
5232 N_Protected_Body |
5233 N_Subprogram_Body |
5234 N_Task_Body => exit;
5236 -- The expander is allowed to define types in any statements list,
5237 -- so any of the following parent nodes also mark a freezing point
5238 -- if the actual node is in a list of statements or declarations.
5240 when N_Abortable_Part |
5241 N_Accept_Alternative |
5242 N_And_Then |
5243 N_Case_Statement_Alternative |
5244 N_Compilation_Unit_Aux |
5245 N_Conditional_Entry_Call |
5246 N_Delay_Alternative |
5247 N_Elsif_Part |
5248 N_Entry_Call_Alternative |
5249 N_Exception_Handler |
5250 N_Extended_Return_Statement |
5251 N_Freeze_Entity |
5252 N_If_Statement |
5253 N_Or_Else |
5254 N_Selective_Accept |
5255 N_Triggering_Alternative =>
5257 exit when Is_List_Member (P);
5259 -- Note: The N_Loop_Statement is a special case. A type that
5260 -- appears in the source can never be frozen in a loop (this
5261 -- occurs only because of a loop expanded by the expander), so we
5262 -- keep on going. Otherwise we terminate the search. Same is true
5263 -- of any entity which comes from source. (if they have predefined
5264 -- type, that type does not appear to come from source, but the
5265 -- entity should not be frozen here).
5267 when N_Loop_Statement =>
5268 exit when not Comes_From_Source (Etype (N))
5269 and then (No (Nam) or else not Comes_From_Source (Nam));
5271 -- For all other cases, keep looking at parents
5273 when others =>
5274 null;
5275 end case;
5277 -- We fall through the case if we did not yet find the proper
5278 -- place in the free for inserting the freeze node, so climb!
5280 P := Parent_P;
5281 end loop;
5283 -- If the expression appears in a record or an initialization procedure,
5284 -- the freeze nodes are collected and attached to the current scope, to
5285 -- be inserted and analyzed on exit from the scope, to insure that
5286 -- generated entities appear in the correct scope. If the expression is
5287 -- a default for a discriminant specification, the scope is still void.
5288 -- The expression can also appear in the discriminant part of a private
5289 -- or concurrent type.
5291 -- If the expression appears in a constrained subcomponent of an
5292 -- enclosing record declaration, the freeze nodes must be attached to
5293 -- the outer record type so they can eventually be placed in the
5294 -- enclosing declaration list.
5296 -- The other case requiring this special handling is if we are in a
5297 -- default expression, since in that case we are about to freeze a
5298 -- static type, and the freeze scope needs to be the outer scope, not
5299 -- the scope of the subprogram with the default parameter.
5301 -- For default expressions and other spec expressions in generic units,
5302 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
5303 -- placing them at the proper place, after the generic unit.
5305 if (In_Spec_Exp and not Inside_A_Generic)
5306 or else Freeze_Outside
5307 or else (Is_Type (Current_Scope)
5308 and then (not Is_Concurrent_Type (Current_Scope)
5309 or else not Has_Completion (Current_Scope)))
5310 or else Ekind (Current_Scope) = E_Void
5311 then
5312 declare
5313 N : constant Node_Id := Current_Scope;
5314 Freeze_Nodes : List_Id := No_List;
5315 Pos : Int := Scope_Stack.Last;
5317 begin
5318 if Present (Desig_Typ) then
5319 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
5320 end if;
5322 if Present (Typ) then
5323 Freeze_And_Append (Typ, N, Freeze_Nodes);
5324 end if;
5326 if Present (Nam) then
5327 Freeze_And_Append (Nam, N, Freeze_Nodes);
5328 end if;
5330 -- The current scope may be that of a constrained component of
5331 -- an enclosing record declaration, or of a loop of an enclosing
5332 -- quantified expression, which is above the current scope in the
5333 -- scope stack. Indeed in the context of a quantified expression,
5334 -- a scope is created and pushed above the current scope in order
5335 -- to emulate the loop-like behavior of the quantified expression.
5336 -- If the expression is within a top-level pragma, as for a pre-
5337 -- condition on a library-level subprogram, nothing to do.
5339 if not Is_Compilation_Unit (Current_Scope)
5340 and then (Is_Record_Type (Scope (Current_Scope))
5341 or else Nkind (Parent (Current_Scope)) =
5342 N_Quantified_Expression)
5343 then
5344 Pos := Pos - 1;
5345 end if;
5347 if Is_Non_Empty_List (Freeze_Nodes) then
5348 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
5349 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
5350 Freeze_Nodes;
5351 else
5352 Append_List (Freeze_Nodes,
5353 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
5354 end if;
5355 end if;
5356 end;
5358 return;
5359 end if;
5361 -- Now we have the right place to do the freezing. First, a special
5362 -- adjustment, if we are in spec-expression analysis mode, these freeze
5363 -- actions must not be thrown away (normally all inserted actions are
5364 -- thrown away in this mode. However, the freeze actions are from static
5365 -- expressions and one of the important reasons we are doing this
5366 -- special analysis is to get these freeze actions. Therefore we turn
5367 -- off the In_Spec_Expression mode to propagate these freeze actions.
5368 -- This also means they get properly analyzed and expanded.
5370 In_Spec_Expression := False;
5372 -- Freeze the designated type of an allocator (RM 13.14(13))
5374 if Present (Desig_Typ) then
5375 Freeze_Before (P, Desig_Typ);
5376 end if;
5378 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
5379 -- the enumeration representation clause exception in the loop above.
5381 if Present (Typ) then
5382 Freeze_Before (P, Typ);
5383 end if;
5385 -- Freeze name if one is present (RM 13.14(11))
5387 if Present (Nam) then
5388 Freeze_Before (P, Nam);
5389 end if;
5391 -- Restore In_Spec_Expression flag
5393 In_Spec_Expression := In_Spec_Exp;
5394 end Freeze_Expression;
5396 -----------------------------
5397 -- Freeze_Fixed_Point_Type --
5398 -----------------------------
5400 -- Certain fixed-point types and subtypes, including implicit base types
5401 -- and declared first subtypes, have not yet set up a range. This is
5402 -- because the range cannot be set until the Small and Size values are
5403 -- known, and these are not known till the type is frozen.
5405 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
5406 -- whose bounds are unanalyzed real literals. This routine will recognize
5407 -- this case, and transform this range node into a properly typed range
5408 -- with properly analyzed and resolved values.
5410 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
5411 Rng : constant Node_Id := Scalar_Range (Typ);
5412 Lo : constant Node_Id := Low_Bound (Rng);
5413 Hi : constant Node_Id := High_Bound (Rng);
5414 Btyp : constant Entity_Id := Base_Type (Typ);
5415 Brng : constant Node_Id := Scalar_Range (Btyp);
5416 BLo : constant Node_Id := Low_Bound (Brng);
5417 BHi : constant Node_Id := High_Bound (Brng);
5418 Small : constant Ureal := Small_Value (Typ);
5419 Loval : Ureal;
5420 Hival : Ureal;
5421 Atype : Entity_Id;
5423 Actual_Size : Nat;
5425 function Fsize (Lov, Hiv : Ureal) return Nat;
5426 -- Returns size of type with given bounds. Also leaves these
5427 -- bounds set as the current bounds of the Typ.
5429 -----------
5430 -- Fsize --
5431 -----------
5433 function Fsize (Lov, Hiv : Ureal) return Nat is
5434 begin
5435 Set_Realval (Lo, Lov);
5436 Set_Realval (Hi, Hiv);
5437 return Minimum_Size (Typ);
5438 end Fsize;
5440 -- Start of processing for Freeze_Fixed_Point_Type
5442 begin
5443 -- If Esize of a subtype has not previously been set, set it now
5445 if Unknown_Esize (Typ) then
5446 Atype := Ancestor_Subtype (Typ);
5448 if Present (Atype) then
5449 Set_Esize (Typ, Esize (Atype));
5450 else
5451 Set_Esize (Typ, Esize (Base_Type (Typ)));
5452 end if;
5453 end if;
5455 -- Immediate return if the range is already analyzed. This means that
5456 -- the range is already set, and does not need to be computed by this
5457 -- routine.
5459 if Analyzed (Rng) then
5460 return;
5461 end if;
5463 -- Immediate return if either of the bounds raises Constraint_Error
5465 if Raises_Constraint_Error (Lo)
5466 or else Raises_Constraint_Error (Hi)
5467 then
5468 return;
5469 end if;
5471 Loval := Realval (Lo);
5472 Hival := Realval (Hi);
5474 -- Ordinary fixed-point case
5476 if Is_Ordinary_Fixed_Point_Type (Typ) then
5478 -- For the ordinary fixed-point case, we are allowed to fudge the
5479 -- end-points up or down by small. Generally we prefer to fudge up,
5480 -- i.e. widen the bounds for non-model numbers so that the end points
5481 -- are included. However there are cases in which this cannot be
5482 -- done, and indeed cases in which we may need to narrow the bounds.
5483 -- The following circuit makes the decision.
5485 -- Note: our terminology here is that Incl_EP means that the bounds
5486 -- are widened by Small if necessary to include the end points, and
5487 -- Excl_EP means that the bounds are narrowed by Small to exclude the
5488 -- end-points if this reduces the size.
5490 -- Note that in the Incl case, all we care about is including the
5491 -- end-points. In the Excl case, we want to narrow the bounds as
5492 -- much as permitted by the RM, to give the smallest possible size.
5494 Fudge : declare
5495 Loval_Incl_EP : Ureal;
5496 Hival_Incl_EP : Ureal;
5498 Loval_Excl_EP : Ureal;
5499 Hival_Excl_EP : Ureal;
5501 Size_Incl_EP : Nat;
5502 Size_Excl_EP : Nat;
5504 Model_Num : Ureal;
5505 First_Subt : Entity_Id;
5506 Actual_Lo : Ureal;
5507 Actual_Hi : Ureal;
5509 begin
5510 -- First step. Base types are required to be symmetrical. Right
5511 -- now, the base type range is a copy of the first subtype range.
5512 -- This will be corrected before we are done, but right away we
5513 -- need to deal with the case where both bounds are non-negative.
5514 -- In this case, we set the low bound to the negative of the high
5515 -- bound, to make sure that the size is computed to include the
5516 -- required sign. Note that we do not need to worry about the
5517 -- case of both bounds negative, because the sign will be dealt
5518 -- with anyway. Furthermore we can't just go making such a bound
5519 -- symmetrical, since in a twos-complement system, there is an
5520 -- extra negative value which could not be accommodated on the
5521 -- positive side.
5523 if Typ = Btyp
5524 and then not UR_Is_Negative (Loval)
5525 and then Hival > Loval
5526 then
5527 Loval := -Hival;
5528 Set_Realval (Lo, Loval);
5529 end if;
5531 -- Compute the fudged bounds. If the number is a model number,
5532 -- then we do nothing to include it, but we are allowed to backoff
5533 -- to the next adjacent model number when we exclude it. If it is
5534 -- not a model number then we straddle the two values with the
5535 -- model numbers on either side.
5537 Model_Num := UR_Trunc (Loval / Small) * Small;
5539 if Loval = Model_Num then
5540 Loval_Incl_EP := Model_Num;
5541 else
5542 Loval_Incl_EP := Model_Num - Small;
5543 end if;
5545 -- The low value excluding the end point is Small greater, but
5546 -- we do not do this exclusion if the low value is positive,
5547 -- since it can't help the size and could actually hurt by
5548 -- crossing the high bound.
5550 if UR_Is_Negative (Loval_Incl_EP) then
5551 Loval_Excl_EP := Loval_Incl_EP + Small;
5553 -- If the value went from negative to zero, then we have the
5554 -- case where Loval_Incl_EP is the model number just below
5555 -- zero, so we want to stick to the negative value for the
5556 -- base type to maintain the condition that the size will
5557 -- include signed values.
5559 if Typ = Btyp
5560 and then UR_Is_Zero (Loval_Excl_EP)
5561 then
5562 Loval_Excl_EP := Loval_Incl_EP;
5563 end if;
5565 else
5566 Loval_Excl_EP := Loval_Incl_EP;
5567 end if;
5569 -- Similar processing for upper bound and high value
5571 Model_Num := UR_Trunc (Hival / Small) * Small;
5573 if Hival = Model_Num then
5574 Hival_Incl_EP := Model_Num;
5575 else
5576 Hival_Incl_EP := Model_Num + Small;
5577 end if;
5579 if UR_Is_Positive (Hival_Incl_EP) then
5580 Hival_Excl_EP := Hival_Incl_EP - Small;
5581 else
5582 Hival_Excl_EP := Hival_Incl_EP;
5583 end if;
5585 -- One further adjustment is needed. In the case of subtypes, we
5586 -- cannot go outside the range of the base type, or we get
5587 -- peculiarities, and the base type range is already set. This
5588 -- only applies to the Incl values, since clearly the Excl values
5589 -- are already as restricted as they are allowed to be.
5591 if Typ /= Btyp then
5592 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
5593 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
5594 end if;
5596 -- Get size including and excluding end points
5598 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
5599 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
5601 -- No need to exclude end-points if it does not reduce size
5603 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
5604 Loval_Excl_EP := Loval_Incl_EP;
5605 end if;
5607 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
5608 Hival_Excl_EP := Hival_Incl_EP;
5609 end if;
5611 -- Now we set the actual size to be used. We want to use the
5612 -- bounds fudged up to include the end-points but only if this
5613 -- can be done without violating a specifically given size
5614 -- size clause or causing an unacceptable increase in size.
5616 -- Case of size clause given
5618 if Has_Size_Clause (Typ) then
5620 -- Use the inclusive size only if it is consistent with
5621 -- the explicitly specified size.
5623 if Size_Incl_EP <= RM_Size (Typ) then
5624 Actual_Lo := Loval_Incl_EP;
5625 Actual_Hi := Hival_Incl_EP;
5626 Actual_Size := Size_Incl_EP;
5628 -- If the inclusive size is too large, we try excluding
5629 -- the end-points (will be caught later if does not work).
5631 else
5632 Actual_Lo := Loval_Excl_EP;
5633 Actual_Hi := Hival_Excl_EP;
5634 Actual_Size := Size_Excl_EP;
5635 end if;
5637 -- Case of size clause not given
5639 else
5640 -- If we have a base type whose corresponding first subtype
5641 -- has an explicit size that is large enough to include our
5642 -- end-points, then do so. There is no point in working hard
5643 -- to get a base type whose size is smaller than the specified
5644 -- size of the first subtype.
5646 First_Subt := First_Subtype (Typ);
5648 if Has_Size_Clause (First_Subt)
5649 and then Size_Incl_EP <= Esize (First_Subt)
5650 then
5651 Actual_Size := Size_Incl_EP;
5652 Actual_Lo := Loval_Incl_EP;
5653 Actual_Hi := Hival_Incl_EP;
5655 -- If excluding the end-points makes the size smaller and
5656 -- results in a size of 8,16,32,64, then we take the smaller
5657 -- size. For the 64 case, this is compulsory. For the other
5658 -- cases, it seems reasonable. We like to include end points
5659 -- if we can, but not at the expense of moving to the next
5660 -- natural boundary of size.
5662 elsif Size_Incl_EP /= Size_Excl_EP
5663 and then Addressable (Size_Excl_EP)
5664 then
5665 Actual_Size := Size_Excl_EP;
5666 Actual_Lo := Loval_Excl_EP;
5667 Actual_Hi := Hival_Excl_EP;
5669 -- Otherwise we can definitely include the end points
5671 else
5672 Actual_Size := Size_Incl_EP;
5673 Actual_Lo := Loval_Incl_EP;
5674 Actual_Hi := Hival_Incl_EP;
5675 end if;
5677 -- One pathological case: normally we never fudge a low bound
5678 -- down, since it would seem to increase the size (if it has
5679 -- any effect), but for ranges containing single value, or no
5680 -- values, the high bound can be small too large. Consider:
5682 -- type t is delta 2.0**(-14)
5683 -- range 131072.0 .. 0;
5685 -- That lower bound is *just* outside the range of 32 bits, and
5686 -- does need fudging down in this case. Note that the bounds
5687 -- will always have crossed here, since the high bound will be
5688 -- fudged down if necessary, as in the case of:
5690 -- type t is delta 2.0**(-14)
5691 -- range 131072.0 .. 131072.0;
5693 -- So we detect the situation by looking for crossed bounds,
5694 -- and if the bounds are crossed, and the low bound is greater
5695 -- than zero, we will always back it off by small, since this
5696 -- is completely harmless.
5698 if Actual_Lo > Actual_Hi then
5699 if UR_Is_Positive (Actual_Lo) then
5700 Actual_Lo := Loval_Incl_EP - Small;
5701 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5703 -- And of course, we need to do exactly the same parallel
5704 -- fudge for flat ranges in the negative region.
5706 elsif UR_Is_Negative (Actual_Hi) then
5707 Actual_Hi := Hival_Incl_EP + Small;
5708 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5709 end if;
5710 end if;
5711 end if;
5713 Set_Realval (Lo, Actual_Lo);
5714 Set_Realval (Hi, Actual_Hi);
5715 end Fudge;
5717 -- For the decimal case, none of this fudging is required, since there
5718 -- are no end-point problems in the decimal case (the end-points are
5719 -- always included).
5721 else
5722 Actual_Size := Fsize (Loval, Hival);
5723 end if;
5725 -- At this stage, the actual size has been calculated and the proper
5726 -- required bounds are stored in the low and high bounds.
5728 if Actual_Size > 64 then
5729 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
5730 Error_Msg_N
5731 ("size required (^) for type& too large, maximum allowed is 64",
5732 Typ);
5733 Actual_Size := 64;
5734 end if;
5736 -- Check size against explicit given size
5738 if Has_Size_Clause (Typ) then
5739 if Actual_Size > RM_Size (Typ) then
5740 Error_Msg_Uint_1 := RM_Size (Typ);
5741 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
5742 Error_Msg_NE
5743 ("size given (^) for type& too small, minimum allowed is ^",
5744 Size_Clause (Typ), Typ);
5746 else
5747 Actual_Size := UI_To_Int (Esize (Typ));
5748 end if;
5750 -- Increase size to next natural boundary if no size clause given
5752 else
5753 if Actual_Size <= 8 then
5754 Actual_Size := 8;
5755 elsif Actual_Size <= 16 then
5756 Actual_Size := 16;
5757 elsif Actual_Size <= 32 then
5758 Actual_Size := 32;
5759 else
5760 Actual_Size := 64;
5761 end if;
5763 Init_Esize (Typ, Actual_Size);
5764 Adjust_Esize_For_Alignment (Typ);
5765 end if;
5767 -- If we have a base type, then expand the bounds so that they extend to
5768 -- the full width of the allocated size in bits, to avoid junk range
5769 -- checks on intermediate computations.
5771 if Base_Type (Typ) = Typ then
5772 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5773 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5774 end if;
5776 -- Final step is to reanalyze the bounds using the proper type
5777 -- and set the Corresponding_Integer_Value fields of the literals.
5779 Set_Etype (Lo, Empty);
5780 Set_Analyzed (Lo, False);
5781 Analyze (Lo);
5783 -- Resolve with universal fixed if the base type, and the base type if
5784 -- it is a subtype. Note we can't resolve the base type with itself,
5785 -- that would be a reference before definition.
5787 if Typ = Btyp then
5788 Resolve (Lo, Universal_Fixed);
5789 else
5790 Resolve (Lo, Btyp);
5791 end if;
5793 -- Set corresponding integer value for bound
5795 Set_Corresponding_Integer_Value
5796 (Lo, UR_To_Uint (Realval (Lo) / Small));
5798 -- Similar processing for high bound
5800 Set_Etype (Hi, Empty);
5801 Set_Analyzed (Hi, False);
5802 Analyze (Hi);
5804 if Typ = Btyp then
5805 Resolve (Hi, Universal_Fixed);
5806 else
5807 Resolve (Hi, Btyp);
5808 end if;
5810 Set_Corresponding_Integer_Value
5811 (Hi, UR_To_Uint (Realval (Hi) / Small));
5813 -- Set type of range to correspond to bounds
5815 Set_Etype (Rng, Etype (Lo));
5817 -- Set Esize to calculated size if not set already
5819 if Unknown_Esize (Typ) then
5820 Init_Esize (Typ, Actual_Size);
5821 end if;
5823 -- Set RM_Size if not already set. If already set, check value
5825 declare
5826 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5828 begin
5829 if RM_Size (Typ) /= Uint_0 then
5830 if RM_Size (Typ) < Minsiz then
5831 Error_Msg_Uint_1 := RM_Size (Typ);
5832 Error_Msg_Uint_2 := Minsiz;
5833 Error_Msg_NE
5834 ("size given (^) for type& too small, minimum allowed is ^",
5835 Size_Clause (Typ), Typ);
5836 end if;
5838 else
5839 Set_RM_Size (Typ, Minsiz);
5840 end if;
5841 end;
5842 end Freeze_Fixed_Point_Type;
5844 ------------------
5845 -- Freeze_Itype --
5846 ------------------
5848 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5849 L : List_Id;
5851 begin
5852 Set_Has_Delayed_Freeze (T);
5853 L := Freeze_Entity (T, N);
5855 if Is_Non_Empty_List (L) then
5856 Insert_Actions (N, L);
5857 end if;
5858 end Freeze_Itype;
5860 --------------------------
5861 -- Freeze_Static_Object --
5862 --------------------------
5864 procedure Freeze_Static_Object (E : Entity_Id) is
5866 Cannot_Be_Static : exception;
5867 -- Exception raised if the type of a static object cannot be made
5868 -- static. This happens if the type depends on non-global objects.
5870 procedure Ensure_Expression_Is_SA (N : Node_Id);
5871 -- Called to ensure that an expression used as part of a type definition
5872 -- is statically allocatable, which means that the expression type is
5873 -- statically allocatable, and the expression is either static, or a
5874 -- reference to a library level constant.
5876 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5877 -- Called to mark a type as static, checking that it is possible
5878 -- to set the type as static. If it is not possible, then the
5879 -- exception Cannot_Be_Static is raised.
5881 -----------------------------
5882 -- Ensure_Expression_Is_SA --
5883 -----------------------------
5885 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5886 Ent : Entity_Id;
5888 begin
5889 Ensure_Type_Is_SA (Etype (N));
5891 if Is_Static_Expression (N) then
5892 return;
5894 elsif Nkind (N) = N_Identifier then
5895 Ent := Entity (N);
5897 if Present (Ent)
5898 and then Ekind (Ent) = E_Constant
5899 and then Is_Library_Level_Entity (Ent)
5900 then
5901 return;
5902 end if;
5903 end if;
5905 raise Cannot_Be_Static;
5906 end Ensure_Expression_Is_SA;
5908 -----------------------
5909 -- Ensure_Type_Is_SA --
5910 -----------------------
5912 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5913 N : Node_Id;
5914 C : Entity_Id;
5916 begin
5917 -- If type is library level, we are all set
5919 if Is_Library_Level_Entity (Typ) then
5920 return;
5921 end if;
5923 -- We are also OK if the type already marked as statically allocated,
5924 -- which means we processed it before.
5926 if Is_Statically_Allocated (Typ) then
5927 return;
5928 end if;
5930 -- Mark type as statically allocated
5932 Set_Is_Statically_Allocated (Typ);
5934 -- Check that it is safe to statically allocate this type
5936 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5937 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5938 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5940 elsif Is_Array_Type (Typ) then
5941 N := First_Index (Typ);
5942 while Present (N) loop
5943 Ensure_Type_Is_SA (Etype (N));
5944 Next_Index (N);
5945 end loop;
5947 Ensure_Type_Is_SA (Component_Type (Typ));
5949 elsif Is_Access_Type (Typ) then
5950 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5952 declare
5953 F : Entity_Id;
5954 T : constant Entity_Id := Etype (Designated_Type (Typ));
5956 begin
5957 if T /= Standard_Void_Type then
5958 Ensure_Type_Is_SA (T);
5959 end if;
5961 F := First_Formal (Designated_Type (Typ));
5962 while Present (F) loop
5963 Ensure_Type_Is_SA (Etype (F));
5964 Next_Formal (F);
5965 end loop;
5966 end;
5968 else
5969 Ensure_Type_Is_SA (Designated_Type (Typ));
5970 end if;
5972 elsif Is_Record_Type (Typ) then
5973 C := First_Entity (Typ);
5974 while Present (C) loop
5975 if Ekind (C) = E_Discriminant
5976 or else Ekind (C) = E_Component
5977 then
5978 Ensure_Type_Is_SA (Etype (C));
5980 elsif Is_Type (C) then
5981 Ensure_Type_Is_SA (C);
5982 end if;
5984 Next_Entity (C);
5985 end loop;
5987 elsif Ekind (Typ) = E_Subprogram_Type then
5988 Ensure_Type_Is_SA (Etype (Typ));
5990 C := First_Formal (Typ);
5991 while Present (C) loop
5992 Ensure_Type_Is_SA (Etype (C));
5993 Next_Formal (C);
5994 end loop;
5996 else
5997 raise Cannot_Be_Static;
5998 end if;
5999 end Ensure_Type_Is_SA;
6001 -- Start of processing for Freeze_Static_Object
6003 begin
6004 Ensure_Type_Is_SA (Etype (E));
6006 exception
6007 when Cannot_Be_Static =>
6009 -- If the object that cannot be static is imported or exported, then
6010 -- issue an error message saying that this object cannot be imported
6011 -- or exported. If it has an address clause it is an overlay in the
6012 -- current partition and the static requirement is not relevant.
6013 -- Do not issue any error message when ignoring rep clauses.
6015 if Ignore_Rep_Clauses then
6016 null;
6018 elsif Is_Imported (E) then
6019 if No (Address_Clause (E)) then
6020 Error_Msg_N
6021 ("& cannot be imported (local type is not constant)", E);
6022 end if;
6024 -- Otherwise must be exported, something is wrong if compiler
6025 -- is marking something as statically allocated which cannot be).
6027 else pragma Assert (Is_Exported (E));
6028 Error_Msg_N
6029 ("& cannot be exported (local type is not constant)", E);
6030 end if;
6031 end Freeze_Static_Object;
6033 -----------------------
6034 -- Freeze_Subprogram --
6035 -----------------------
6037 procedure Freeze_Subprogram (E : Entity_Id) is
6038 Retype : Entity_Id;
6039 F : Entity_Id;
6041 begin
6042 -- Subprogram may not have an address clause unless it is imported
6044 if Present (Address_Clause (E)) then
6045 if not Is_Imported (E) then
6046 Error_Msg_N
6047 ("address clause can only be given " &
6048 "for imported subprogram",
6049 Name (Address_Clause (E)));
6050 end if;
6051 end if;
6053 -- Reset the Pure indication on an imported subprogram unless an
6054 -- explicit Pure_Function pragma was present. We do this because
6055 -- otherwise it is an insidious error to call a non-pure function from
6056 -- pure unit and have calls mysteriously optimized away. What happens
6057 -- here is that the Import can bypass the normal check to ensure that
6058 -- pure units call only pure subprograms.
6060 if Is_Imported (E)
6061 and then Is_Pure (E)
6062 and then not Has_Pragma_Pure_Function (E)
6063 then
6064 Set_Is_Pure (E, False);
6065 end if;
6067 -- For non-foreign convention subprograms, this is where we create
6068 -- the extra formals (for accessibility level and constrained bit
6069 -- information). We delay this till the freeze point precisely so
6070 -- that we know the convention!
6072 if not Has_Foreign_Convention (E) then
6073 Create_Extra_Formals (E);
6074 Set_Mechanisms (E);
6076 -- If this is convention Ada and a Valued_Procedure, that's odd
6078 if Ekind (E) = E_Procedure
6079 and then Is_Valued_Procedure (E)
6080 and then Convention (E) = Convention_Ada
6081 and then Warn_On_Export_Import
6082 then
6083 Error_Msg_N
6084 ("?Valued_Procedure has no effect for convention Ada", E);
6085 Set_Is_Valued_Procedure (E, False);
6086 end if;
6088 -- Case of foreign convention
6090 else
6091 Set_Mechanisms (E);
6093 -- For foreign conventions, warn about return of an
6094 -- unconstrained array.
6096 -- Note: we *do* allow a return by descriptor for the VMS case,
6097 -- though here there is probably more to be done ???
6099 if Ekind (E) = E_Function then
6100 Retype := Underlying_Type (Etype (E));
6102 -- If no return type, probably some other error, e.g. a
6103 -- missing full declaration, so ignore.
6105 if No (Retype) then
6106 null;
6108 -- If the return type is generic, we have emitted a warning
6109 -- earlier on, and there is nothing else to check here. Specific
6110 -- instantiations may lead to erroneous behavior.
6112 elsif Is_Generic_Type (Etype (E)) then
6113 null;
6115 -- Display warning if returning unconstrained array
6117 elsif Is_Array_Type (Retype)
6118 and then not Is_Constrained (Retype)
6120 -- Exclude cases where descriptor mechanism is set, since the
6121 -- VMS descriptor mechanisms allow such unconstrained returns.
6123 and then Mechanism (E) not in Descriptor_Codes
6125 -- Check appropriate warning is enabled (should we check for
6126 -- Warnings (Off) on specific entities here, probably so???)
6128 and then Warn_On_Export_Import
6130 -- Exclude the VM case, since return of unconstrained arrays
6131 -- is properly handled in both the JVM and .NET cases.
6133 and then VM_Target = No_VM
6134 then
6135 Error_Msg_N
6136 ("?foreign convention function& should not return " &
6137 "unconstrained array", E);
6138 return;
6139 end if;
6140 end if;
6142 -- If any of the formals for an exported foreign convention
6143 -- subprogram have defaults, then emit an appropriate warning since
6144 -- this is odd (default cannot be used from non-Ada code)
6146 if Is_Exported (E) then
6147 F := First_Formal (E);
6148 while Present (F) loop
6149 if Warn_On_Export_Import
6150 and then Present (Default_Value (F))
6151 then
6152 Error_Msg_N
6153 ("?parameter cannot be defaulted in non-Ada call",
6154 Default_Value (F));
6155 end if;
6157 Next_Formal (F);
6158 end loop;
6159 end if;
6160 end if;
6162 -- For VMS, descriptor mechanisms for parameters are allowed only for
6163 -- imported/exported subprograms. Moreover, the NCA descriptor is not
6164 -- allowed for parameters of exported subprograms.
6166 if OpenVMS_On_Target then
6167 if Is_Exported (E) then
6168 F := First_Formal (E);
6169 while Present (F) loop
6170 if Mechanism (F) = By_Descriptor_NCA then
6171 Error_Msg_N
6172 ("'N'C'A' descriptor for parameter not permitted", F);
6173 Error_Msg_N
6174 ("\can only be used for imported subprogram", F);
6175 end if;
6177 Next_Formal (F);
6178 end loop;
6180 elsif not Is_Imported (E) then
6181 F := First_Formal (E);
6182 while Present (F) loop
6183 if Mechanism (F) in Descriptor_Codes then
6184 Error_Msg_N
6185 ("descriptor mechanism for parameter not permitted", F);
6186 Error_Msg_N
6187 ("\can only be used for imported/exported subprogram", F);
6188 end if;
6190 Next_Formal (F);
6191 end loop;
6192 end if;
6193 end if;
6195 -- Pragma Inline_Always is disallowed for dispatching subprograms
6196 -- because the address of such subprograms is saved in the dispatch
6197 -- table to support dispatching calls, and dispatching calls cannot
6198 -- be inlined. This is consistent with the restriction against using
6199 -- 'Access or 'Address on an Inline_Always subprogram.
6201 if Is_Dispatching_Operation (E)
6202 and then Has_Pragma_Inline_Always (E)
6203 then
6204 Error_Msg_N
6205 ("pragma Inline_Always not allowed for dispatching subprograms", E);
6206 end if;
6208 -- Because of the implicit representation of inherited predefined
6209 -- operators in the front-end, the overriding status of the operation
6210 -- may be affected when a full view of a type is analyzed, and this is
6211 -- not captured by the analysis of the corresponding type declaration.
6212 -- Therefore the correctness of a not-overriding indicator must be
6213 -- rechecked when the subprogram is frozen.
6215 if Nkind (E) = N_Defining_Operator_Symbol
6216 and then not Error_Posted (Parent (E))
6217 then
6218 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
6219 end if;
6220 end Freeze_Subprogram;
6222 ----------------------
6223 -- Is_Fully_Defined --
6224 ----------------------
6226 function Is_Fully_Defined (T : Entity_Id) return Boolean is
6227 begin
6228 if Ekind (T) = E_Class_Wide_Type then
6229 return Is_Fully_Defined (Etype (T));
6231 elsif Is_Array_Type (T) then
6232 return Is_Fully_Defined (Component_Type (T));
6234 elsif Is_Record_Type (T)
6235 and not Is_Private_Type (T)
6236 then
6237 -- Verify that the record type has no components with private types
6238 -- without completion.
6240 declare
6241 Comp : Entity_Id;
6243 begin
6244 Comp := First_Component (T);
6245 while Present (Comp) loop
6246 if not Is_Fully_Defined (Etype (Comp)) then
6247 return False;
6248 end if;
6250 Next_Component (Comp);
6251 end loop;
6252 return True;
6253 end;
6255 -- For the designated type of an access to subprogram, all types in
6256 -- the profile must be fully defined.
6258 elsif Ekind (T) = E_Subprogram_Type then
6259 declare
6260 F : Entity_Id;
6262 begin
6263 F := First_Formal (T);
6264 while Present (F) loop
6265 if not Is_Fully_Defined (Etype (F)) then
6266 return False;
6267 end if;
6269 Next_Formal (F);
6270 end loop;
6272 return Is_Fully_Defined (Etype (T));
6273 end;
6275 else
6276 return not Is_Private_Type (T)
6277 or else Present (Full_View (Base_Type (T)));
6278 end if;
6279 end Is_Fully_Defined;
6281 ---------------------------------
6282 -- Process_Default_Expressions --
6283 ---------------------------------
6285 procedure Process_Default_Expressions
6286 (E : Entity_Id;
6287 After : in out Node_Id)
6289 Loc : constant Source_Ptr := Sloc (E);
6290 Dbody : Node_Id;
6291 Formal : Node_Id;
6292 Dcopy : Node_Id;
6293 Dnam : Entity_Id;
6295 begin
6296 Set_Default_Expressions_Processed (E);
6298 -- A subprogram instance and its associated anonymous subprogram share
6299 -- their signature. The default expression functions are defined in the
6300 -- wrapper packages for the anonymous subprogram, and should not be
6301 -- generated again for the instance.
6303 if Is_Generic_Instance (E)
6304 and then Present (Alias (E))
6305 and then Default_Expressions_Processed (Alias (E))
6306 then
6307 return;
6308 end if;
6310 Formal := First_Formal (E);
6311 while Present (Formal) loop
6312 if Present (Default_Value (Formal)) then
6314 -- We work with a copy of the default expression because we
6315 -- do not want to disturb the original, since this would mess
6316 -- up the conformance checking.
6318 Dcopy := New_Copy_Tree (Default_Value (Formal));
6320 -- The analysis of the expression may generate insert actions,
6321 -- which of course must not be executed. We wrap those actions
6322 -- in a procedure that is not called, and later on eliminated.
6323 -- The following cases have no side-effects, and are analyzed
6324 -- directly.
6326 if Nkind (Dcopy) = N_Identifier
6327 or else Nkind (Dcopy) = N_Expanded_Name
6328 or else Nkind (Dcopy) = N_Integer_Literal
6329 or else (Nkind (Dcopy) = N_Real_Literal
6330 and then not Vax_Float (Etype (Dcopy)))
6331 or else Nkind (Dcopy) = N_Character_Literal
6332 or else Nkind (Dcopy) = N_String_Literal
6333 or else Known_Null (Dcopy)
6334 or else (Nkind (Dcopy) = N_Attribute_Reference
6335 and then
6336 Attribute_Name (Dcopy) = Name_Null_Parameter)
6337 then
6339 -- If there is no default function, we must still do a full
6340 -- analyze call on the default value, to ensure that all error
6341 -- checks are performed, e.g. those associated with static
6342 -- evaluation. Note: this branch will always be taken if the
6343 -- analyzer is turned off (but we still need the error checks).
6345 -- Note: the setting of parent here is to meet the requirement
6346 -- that we can only analyze the expression while attached to
6347 -- the tree. Really the requirement is that the parent chain
6348 -- be set, we don't actually need to be in the tree.
6350 Set_Parent (Dcopy, Declaration_Node (Formal));
6351 Analyze (Dcopy);
6353 -- Default expressions are resolved with their own type if the
6354 -- context is generic, to avoid anomalies with private types.
6356 if Ekind (Scope (E)) = E_Generic_Package then
6357 Resolve (Dcopy);
6358 else
6359 Resolve (Dcopy, Etype (Formal));
6360 end if;
6362 -- If that resolved expression will raise constraint error,
6363 -- then flag the default value as raising constraint error.
6364 -- This allows a proper error message on the calls.
6366 if Raises_Constraint_Error (Dcopy) then
6367 Set_Raises_Constraint_Error (Default_Value (Formal));
6368 end if;
6370 -- If the default is a parameterless call, we use the name of
6371 -- the called function directly, and there is no body to build.
6373 elsif Nkind (Dcopy) = N_Function_Call
6374 and then No (Parameter_Associations (Dcopy))
6375 then
6376 null;
6378 -- Else construct and analyze the body of a wrapper procedure
6379 -- that contains an object declaration to hold the expression.
6380 -- Given that this is done only to complete the analysis, it
6381 -- simpler to build a procedure than a function which might
6382 -- involve secondary stack expansion.
6384 else
6385 Dnam := Make_Temporary (Loc, 'D');
6387 Dbody :=
6388 Make_Subprogram_Body (Loc,
6389 Specification =>
6390 Make_Procedure_Specification (Loc,
6391 Defining_Unit_Name => Dnam),
6393 Declarations => New_List (
6394 Make_Object_Declaration (Loc,
6395 Defining_Identifier => Make_Temporary (Loc, 'T'),
6396 Object_Definition =>
6397 New_Occurrence_Of (Etype (Formal), Loc),
6398 Expression => New_Copy_Tree (Dcopy))),
6400 Handled_Statement_Sequence =>
6401 Make_Handled_Sequence_Of_Statements (Loc,
6402 Statements => Empty_List));
6404 Set_Scope (Dnam, Scope (E));
6405 Set_Assignment_OK (First (Declarations (Dbody)));
6406 Set_Is_Eliminated (Dnam);
6407 Insert_After (After, Dbody);
6408 Analyze (Dbody);
6409 After := Dbody;
6410 end if;
6411 end if;
6413 Next_Formal (Formal);
6414 end loop;
6415 end Process_Default_Expressions;
6417 ----------------------------------------
6418 -- Set_Component_Alignment_If_Not_Set --
6419 ----------------------------------------
6421 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
6422 begin
6423 -- Ignore if not base type, subtypes don't need anything
6425 if Typ /= Base_Type (Typ) then
6426 return;
6427 end if;
6429 -- Do not override existing representation
6431 if Is_Packed (Typ) then
6432 return;
6434 elsif Has_Specified_Layout (Typ) then
6435 return;
6437 elsif Component_Alignment (Typ) /= Calign_Default then
6438 return;
6440 else
6441 Set_Component_Alignment
6442 (Typ, Scope_Stack.Table
6443 (Scope_Stack.Last).Component_Alignment_Default);
6444 end if;
6445 end Set_Component_Alignment_If_Not_Set;
6447 ------------------
6448 -- Undelay_Type --
6449 ------------------
6451 procedure Undelay_Type (T : Entity_Id) is
6452 begin
6453 Set_Has_Delayed_Freeze (T, False);
6454 Set_Freeze_Node (T, Empty);
6456 -- Since we don't want T to have a Freeze_Node, we don't want its
6457 -- Full_View or Corresponding_Record_Type to have one either.
6459 -- ??? Fundamentally, this whole handling is a kludge. What we really
6460 -- want is to be sure that for an Itype that's part of record R and is a
6461 -- subtype of type T, that it's frozen after the later of the freeze
6462 -- points of R and T. We have no way of doing that directly, so what we
6463 -- do is force most such Itypes to be frozen as part of freezing R via
6464 -- this procedure and only delay the ones that need to be delayed
6465 -- (mostly the designated types of access types that are defined as part
6466 -- of the record).
6468 if Is_Private_Type (T)
6469 and then Present (Full_View (T))
6470 and then Is_Itype (Full_View (T))
6471 and then Is_Record_Type (Scope (Full_View (T)))
6472 then
6473 Undelay_Type (Full_View (T));
6474 end if;
6476 if Is_Concurrent_Type (T)
6477 and then Present (Corresponding_Record_Type (T))
6478 and then Is_Itype (Corresponding_Record_Type (T))
6479 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
6480 then
6481 Undelay_Type (Corresponding_Record_Type (T));
6482 end if;
6483 end Undelay_Type;
6485 ------------------
6486 -- Warn_Overlay --
6487 ------------------
6489 procedure Warn_Overlay
6490 (Expr : Node_Id;
6491 Typ : Entity_Id;
6492 Nam : Entity_Id)
6494 Ent : constant Entity_Id := Entity (Nam);
6495 -- The object to which the address clause applies
6497 Init : Node_Id;
6498 Old : Entity_Id := Empty;
6499 Decl : Node_Id;
6501 begin
6502 -- No warning if address clause overlay warnings are off
6504 if not Address_Clause_Overlay_Warnings then
6505 return;
6506 end if;
6508 -- No warning if there is an explicit initialization
6510 Init := Original_Node (Expression (Declaration_Node (Ent)));
6512 if Present (Init) and then Comes_From_Source (Init) then
6513 return;
6514 end if;
6516 -- We only give the warning for non-imported entities of a type for
6517 -- which a non-null base init proc is defined, or for objects of access
6518 -- types with implicit null initialization, or when Normalize_Scalars
6519 -- applies and the type is scalar or a string type (the latter being
6520 -- tested for because predefined String types are initialized by inline
6521 -- code rather than by an init_proc). Note that we do not give the
6522 -- warning for Initialize_Scalars, since we suppressed initialization
6523 -- in this case. Also, do not warn if Suppress_Initialization is set.
6525 if Present (Expr)
6526 and then not Is_Imported (Ent)
6527 and then not Initialization_Suppressed (Typ)
6528 and then (Has_Non_Null_Base_Init_Proc (Typ)
6529 or else Is_Access_Type (Typ)
6530 or else (Normalize_Scalars
6531 and then (Is_Scalar_Type (Typ)
6532 or else Is_String_Type (Typ))))
6533 then
6534 if Nkind (Expr) = N_Attribute_Reference
6535 and then Is_Entity_Name (Prefix (Expr))
6536 then
6537 Old := Entity (Prefix (Expr));
6539 elsif Is_Entity_Name (Expr)
6540 and then Ekind (Entity (Expr)) = E_Constant
6541 then
6542 Decl := Declaration_Node (Entity (Expr));
6544 if Nkind (Decl) = N_Object_Declaration
6545 and then Present (Expression (Decl))
6546 and then Nkind (Expression (Decl)) = N_Attribute_Reference
6547 and then Is_Entity_Name (Prefix (Expression (Decl)))
6548 then
6549 Old := Entity (Prefix (Expression (Decl)));
6551 elsif Nkind (Expr) = N_Function_Call then
6552 return;
6553 end if;
6555 -- A function call (most likely to To_Address) is probably not an
6556 -- overlay, so skip warning. Ditto if the function call was inlined
6557 -- and transformed into an entity.
6559 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
6560 return;
6561 end if;
6563 Decl := Next (Parent (Expr));
6565 -- If a pragma Import follows, we assume that it is for the current
6566 -- target of the address clause, and skip the warning.
6568 if Present (Decl)
6569 and then Nkind (Decl) = N_Pragma
6570 and then Pragma_Name (Decl) = Name_Import
6571 then
6572 return;
6573 end if;
6575 if Present (Old) then
6576 Error_Msg_Node_2 := Old;
6577 Error_Msg_N
6578 ("default initialization of & may modify &?",
6579 Nam);
6580 else
6581 Error_Msg_N
6582 ("default initialization of & may modify overlaid storage?",
6583 Nam);
6584 end if;
6586 -- Add friendly warning if initialization comes from a packed array
6587 -- component.
6589 if Is_Record_Type (Typ) then
6590 declare
6591 Comp : Entity_Id;
6593 begin
6594 Comp := First_Component (Typ);
6595 while Present (Comp) loop
6596 if Nkind (Parent (Comp)) = N_Component_Declaration
6597 and then Present (Expression (Parent (Comp)))
6598 then
6599 exit;
6600 elsif Is_Array_Type (Etype (Comp))
6601 and then Present (Packed_Array_Type (Etype (Comp)))
6602 then
6603 Error_Msg_NE
6604 ("\packed array component& " &
6605 "will be initialized to zero?",
6606 Nam, Comp);
6607 exit;
6608 else
6609 Next_Component (Comp);
6610 end if;
6611 end loop;
6612 end;
6613 end if;
6615 Error_Msg_N
6616 ("\use pragma Import for & to " &
6617 "suppress initialization (RM B.1(24))?",
6618 Nam);
6619 end if;
6620 end Warn_Overlay;
6622 end Freeze;