2012-08-15 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob2edf007f0795f27ec8eed2eb150beeea10c5cebf
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2012 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_DCI
93 #define ASM_CPU_476_SPEC "-m476"
94 #else
95 #define ASM_CPU_476_SPEC "-mpower4"
96 #endif
98 /* Common ASM definitions used by ASM_SPEC among the various targets for
99 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
100 provide the default assembler options if the user uses -mcpu=native, so if
101 you make changes here, make them also there. */
102 #define ASM_CPU_SPEC \
103 "%{!mcpu*: \
104 %{mpowerpc64*: -mppc64} \
105 %{!mpowerpc64*: %(asm_default)}} \
106 %{mcpu=native: %(asm_cpu_native)} \
107 %{mcpu=cell: -mcell} \
108 %{mcpu=power3: -mppc64} \
109 %{mcpu=power4: -mpower4} \
110 %{mcpu=power5: %(asm_cpu_power5)} \
111 %{mcpu=power5+: %(asm_cpu_power5)} \
112 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
113 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
114 %{mcpu=power7: %(asm_cpu_power7)} \
115 %{mcpu=a2: -ma2} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rs64a: -mppc64} \
118 %{mcpu=401: -mppc} \
119 %{mcpu=403: -m403} \
120 %{mcpu=405: -m405} \
121 %{mcpu=405fp: -m405} \
122 %{mcpu=440: -m440} \
123 %{mcpu=440fp: -m440} \
124 %{mcpu=464: -m440} \
125 %{mcpu=464fp: -m440} \
126 %{mcpu=476: %(asm_cpu_476)} \
127 %{mcpu=476fp: %(asm_cpu_476)} \
128 %{mcpu=505: -mppc} \
129 %{mcpu=601: -m601} \
130 %{mcpu=602: -mppc} \
131 %{mcpu=603: -mppc} \
132 %{mcpu=603e: -mppc} \
133 %{mcpu=ec603e: -mppc} \
134 %{mcpu=604: -mppc} \
135 %{mcpu=604e: -mppc} \
136 %{mcpu=620: -mppc64} \
137 %{mcpu=630: -mppc64} \
138 %{mcpu=740: -mppc} \
139 %{mcpu=750: -mppc} \
140 %{mcpu=G3: -mppc} \
141 %{mcpu=7400: -mppc -maltivec} \
142 %{mcpu=7450: -mppc -maltivec} \
143 %{mcpu=G4: -mppc -maltivec} \
144 %{mcpu=801: -mppc} \
145 %{mcpu=821: -mppc} \
146 %{mcpu=823: -mppc} \
147 %{mcpu=860: -mppc} \
148 %{mcpu=970: -mpower4 -maltivec} \
149 %{mcpu=G5: -mpower4 -maltivec} \
150 %{mcpu=8540: -me500} \
151 %{mcpu=8548: -me500} \
152 %{mcpu=e300c2: -me300} \
153 %{mcpu=e300c3: -me300} \
154 %{mcpu=e500mc: -me500mc} \
155 %{mcpu=e500mc64: -me500mc64} \
156 %{mcpu=e5500: -me5500} \
157 %{mcpu=e6500: -me6500} \
158 %{maltivec: -maltivec} \
159 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
160 -many"
162 #define CPP_DEFAULT_SPEC ""
164 #define ASM_DEFAULT_SPEC ""
166 /* This macro defines names of additional specifications to put in the specs
167 that can be used in various specifications like CC1_SPEC. Its definition
168 is an initializer with a subgrouping for each command option.
170 Each subgrouping contains a string constant, that defines the
171 specification name, and a string constant that used by the GCC driver
172 program.
174 Do not define this macro if it does not need to do anything. */
176 #define SUBTARGET_EXTRA_SPECS
178 #define EXTRA_SPECS \
179 { "cpp_default", CPP_DEFAULT_SPEC }, \
180 { "asm_cpu", ASM_CPU_SPEC }, \
181 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
182 { "asm_default", ASM_DEFAULT_SPEC }, \
183 { "cc1_cpu", CC1_CPU_SPEC }, \
184 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
185 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
186 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
187 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
188 SUBTARGET_EXTRA_SPECS
190 /* -mcpu=native handling only makes sense with compiler running on
191 an PowerPC chip. If changing this condition, also change
192 the condition in driver-rs6000.c. */
193 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
194 /* In driver-rs6000.c. */
195 extern const char *host_detect_local_cpu (int argc, const char **argv);
196 #define EXTRA_SPEC_FUNCTIONS \
197 { "local_cpu_detect", host_detect_local_cpu },
198 #define HAVE_LOCAL_CPU_DETECT
199 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
201 #else
202 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
203 #endif
205 #ifndef CC1_CPU_SPEC
206 #ifdef HAVE_LOCAL_CPU_DETECT
207 #define CC1_CPU_SPEC \
208 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
209 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
210 #else
211 #define CC1_CPU_SPEC ""
212 #endif
213 #endif
215 /* Architecture type. */
217 /* Define TARGET_MFCRF if the target assembler does not support the
218 optional field operand for mfcr. */
220 #ifndef HAVE_AS_MFCRF
221 #undef TARGET_MFCRF
222 #define TARGET_MFCRF 0
223 #endif
225 /* Define TARGET_POPCNTB if the target assembler does not support the
226 popcount byte instruction. */
228 #ifndef HAVE_AS_POPCNTB
229 #undef TARGET_POPCNTB
230 #define TARGET_POPCNTB 0
231 #endif
233 /* Define TARGET_FPRND if the target assembler does not support the
234 fp rounding instructions. */
236 #ifndef HAVE_AS_FPRND
237 #undef TARGET_FPRND
238 #define TARGET_FPRND 0
239 #endif
241 /* Define TARGET_CMPB if the target assembler does not support the
242 cmpb instruction. */
244 #ifndef HAVE_AS_CMPB
245 #undef TARGET_CMPB
246 #define TARGET_CMPB 0
247 #endif
249 /* Define TARGET_MFPGPR if the target assembler does not support the
250 mffpr and mftgpr instructions. */
252 #ifndef HAVE_AS_MFPGPR
253 #undef TARGET_MFPGPR
254 #define TARGET_MFPGPR 0
255 #endif
257 /* Define TARGET_DFP if the target assembler does not support decimal
258 floating point instructions. */
259 #ifndef HAVE_AS_DFP
260 #undef TARGET_DFP
261 #define TARGET_DFP 0
262 #endif
264 /* Define TARGET_POPCNTD if the target assembler does not support the
265 popcount word and double word instructions. */
267 #ifndef HAVE_AS_POPCNTD
268 #undef TARGET_POPCNTD
269 #define TARGET_POPCNTD 0
270 #endif
272 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
273 not, generate the lwsync code as an integer constant. */
274 #ifdef HAVE_AS_LWSYNC
275 #define TARGET_LWSYNC_INSTRUCTION 1
276 #else
277 #define TARGET_LWSYNC_INSTRUCTION 0
278 #endif
280 /* Define TARGET_TLS_MARKERS if the target assembler does not support
281 arg markers for __tls_get_addr calls. */
282 #ifndef HAVE_AS_TLS_MARKERS
283 #undef TARGET_TLS_MARKERS
284 #define TARGET_TLS_MARKERS 0
285 #else
286 #define TARGET_TLS_MARKERS tls_markers
287 #endif
289 #ifndef TARGET_SECURE_PLT
290 #define TARGET_SECURE_PLT 0
291 #endif
293 #ifndef TARGET_CMODEL
294 #define TARGET_CMODEL CMODEL_SMALL
295 #endif
297 #define TARGET_32BIT (! TARGET_64BIT)
299 #ifndef HAVE_AS_TLS
300 #define HAVE_AS_TLS 0
301 #endif
303 #ifndef TARGET_LINK_STACK
304 #define TARGET_LINK_STACK 0
305 #endif
307 #ifndef SET_TARGET_LINK_STACK
308 #define SET_TARGET_LINK_STACK(X) do { } while (0)
309 #endif
311 /* Return 1 for a symbol ref for a thread-local storage symbol. */
312 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
313 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
315 #ifdef IN_LIBGCC2
316 /* For libgcc2 we make sure this is a compile time constant */
317 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
318 #undef TARGET_POWERPC64
319 #define TARGET_POWERPC64 1
320 #else
321 #undef TARGET_POWERPC64
322 #define TARGET_POWERPC64 0
323 #endif
324 #else
325 /* The option machinery will define this. */
326 #endif
328 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
330 /* FPU operations supported.
331 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
332 also test TARGET_HARD_FLOAT. */
333 #define TARGET_SINGLE_FLOAT 1
334 #define TARGET_DOUBLE_FLOAT 1
335 #define TARGET_SINGLE_FPU 0
336 #define TARGET_SIMPLE_FPU 0
337 #define TARGET_XILINX_FPU 0
339 /* Recast the processor type to the cpu attribute. */
340 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
342 /* Define generic processor types based upon current deployment. */
343 #define PROCESSOR_COMMON PROCESSOR_PPC601
344 #define PROCESSOR_POWERPC PROCESSOR_PPC604
345 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
347 /* Define the default processor. This is overridden by other tm.h files. */
348 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
349 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
351 /* Specify the dialect of assembler to use. New mnemonics is dialect one
352 and the old mnemonics are dialect zero. */
353 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
355 /* Debug support */
356 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
357 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
358 #define MASK_DEBUG_REG 0x04 /* debug register handling */
359 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
360 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
361 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
362 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
363 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
364 | MASK_DEBUG_ARG \
365 | MASK_DEBUG_REG \
366 | MASK_DEBUG_ADDR \
367 | MASK_DEBUG_COST \
368 | MASK_DEBUG_TARGET \
369 | MASK_DEBUG_BUILTIN)
371 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
372 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
373 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
374 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
375 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
376 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
377 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
379 extern enum rs6000_vector rs6000_vector_unit[];
381 #define VECTOR_UNIT_NONE_P(MODE) \
382 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
384 #define VECTOR_UNIT_VSX_P(MODE) \
385 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
387 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
388 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
390 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
391 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
392 || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
394 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
395 same unit as the vector unit we are using, but we may want to migrate to
396 using VSX style loads even for types handled by altivec. */
397 extern enum rs6000_vector rs6000_vector_mem[];
399 #define VECTOR_MEM_NONE_P(MODE) \
400 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
402 #define VECTOR_MEM_VSX_P(MODE) \
403 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
405 #define VECTOR_MEM_ALTIVEC_P(MODE) \
406 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
408 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
409 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
410 || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
412 /* Return the alignment of a given vector type, which is set based on the
413 vector unit use. VSX for instance can load 32 or 64 bit aligned words
414 without problems, while Altivec requires 128-bit aligned vectors. */
415 extern int rs6000_vector_align[];
417 #define VECTOR_ALIGN(MODE) \
418 ((rs6000_vector_align[(MODE)] != 0) \
419 ? rs6000_vector_align[(MODE)] \
420 : (int)GET_MODE_BITSIZE ((MODE)))
422 /* Alignment options for fields in structures for sub-targets following
423 AIX-like ABI.
424 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
425 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
427 Override the macro definitions when compiling libobjc to avoid undefined
428 reference to rs6000_alignment_flags due to library's use of GCC alignment
429 macros which use the macros below. */
431 #ifndef IN_TARGET_LIBS
432 #define MASK_ALIGN_POWER 0x00000000
433 #define MASK_ALIGN_NATURAL 0x00000001
434 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
435 #else
436 #define TARGET_ALIGN_NATURAL 0
437 #endif
439 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
440 #define TARGET_IEEEQUAD rs6000_ieeequad
441 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
442 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
444 #define TARGET_SPE_ABI 0
445 #define TARGET_SPE 0
446 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
447 #define TARGET_FPRS 1
448 #define TARGET_E500_SINGLE 0
449 #define TARGET_E500_DOUBLE 0
450 #define CHECK_E500_OPTIONS do { } while (0)
452 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
453 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
454 XILINX. */
455 #define TARGET_FCFID (TARGET_POWERPC64 \
456 || TARGET_PPC_GPOPT /* 970/power4 */ \
457 || TARGET_POPCNTB /* ISA 2.02 */ \
458 || TARGET_CMPB /* ISA 2.05 */ \
459 || TARGET_POPCNTD /* ISA 2.06 */ \
460 || TARGET_XILINX_FPU)
462 #define TARGET_FCTIDZ TARGET_FCFID
463 #define TARGET_STFIWX TARGET_PPC_GFXOPT
464 #define TARGET_LFIWAX TARGET_CMPB
465 #define TARGET_LFIWZX TARGET_POPCNTD
466 #define TARGET_FCFIDS TARGET_POPCNTD
467 #define TARGET_FCFIDU TARGET_POPCNTD
468 #define TARGET_FCFIDUS TARGET_POPCNTD
469 #define TARGET_FCTIDUZ TARGET_POPCNTD
470 #define TARGET_FCTIWUZ TARGET_POPCNTD
472 /* For power systems, we want to enable Altivec and VSX builtins even if the
473 user did not use -maltivec or -mvsx to allow the builtins to be used inside
474 of #pragma GCC target or the target attribute to change the code level for a
475 given system. The SPE and Paired builtins are only enabled if you configure
476 the compiler for those builtins, and those machines don't support altivec or
477 VSX. */
479 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
480 && ((TARGET_POWERPC64 \
481 || TARGET_PPC_GPOPT /* 970/power4 */ \
482 || TARGET_POPCNTB /* ISA 2.02 */ \
483 || TARGET_CMPB /* ISA 2.05 */ \
484 || TARGET_POPCNTD /* ISA 2.06 */ \
485 || TARGET_ALTIVEC \
486 || TARGET_VSX)))
488 /* E500 cores only support plain "sync", not lwsync. */
489 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
490 || rs6000_cpu == PROCESSOR_PPC8548)
493 /* Which machine supports the various reciprocal estimate instructions. */
494 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
495 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
497 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
498 && TARGET_DOUBLE_FLOAT \
499 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
501 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
502 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
504 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
505 && TARGET_DOUBLE_FLOAT \
506 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
508 /* Whether the various reciprocal divide/square root estimate instructions
509 exist, and whether we should automatically generate code for the instruction
510 by default. */
511 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
512 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
513 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
514 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
516 extern unsigned char rs6000_recip_bits[];
518 #define RS6000_RECIP_HAVE_RE_P(MODE) \
519 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
521 #define RS6000_RECIP_AUTO_RE_P(MODE) \
522 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
524 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
525 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
527 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
528 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
530 #define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
531 ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
533 /* The default CPU for TARGET_OPTION_OVERRIDE. */
534 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
536 /* Target pragma. */
537 #define REGISTER_TARGET_PRAGMAS() do { \
538 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
539 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
540 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
541 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
542 } while (0)
544 /* Target #defines. */
545 #define TARGET_CPU_CPP_BUILTINS() \
546 rs6000_cpu_cpp_builtins (pfile)
548 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
549 we're compiling for. Some configurations may need to override it. */
550 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
551 do \
553 if (BYTES_BIG_ENDIAN) \
555 builtin_define ("__BIG_ENDIAN__"); \
556 builtin_define ("_BIG_ENDIAN"); \
557 builtin_assert ("machine=bigendian"); \
559 else \
561 builtin_define ("__LITTLE_ENDIAN__"); \
562 builtin_define ("_LITTLE_ENDIAN"); \
563 builtin_assert ("machine=littleendian"); \
566 while (0)
568 /* Target machine storage layout. */
570 /* Define this macro if it is advisable to hold scalars in registers
571 in a wider mode than that declared by the program. In such cases,
572 the value is constrained to be within the bounds of the declared
573 type, but kept valid in the wider mode. The signedness of the
574 extension may differ from that of the type. */
576 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
577 if (GET_MODE_CLASS (MODE) == MODE_INT \
578 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
579 (MODE) = TARGET_32BIT ? SImode : DImode;
581 /* Define this if most significant bit is lowest numbered
582 in instructions that operate on numbered bit-fields. */
583 /* That is true on RS/6000. */
584 #define BITS_BIG_ENDIAN 1
586 /* Define this if most significant byte of a word is the lowest numbered. */
587 /* That is true on RS/6000. */
588 #define BYTES_BIG_ENDIAN 1
590 /* Define this if most significant word of a multiword number is lowest
591 numbered.
593 For RS/6000 we can decide arbitrarily since there are no machine
594 instructions for them. Might as well be consistent with bits and bytes. */
595 #define WORDS_BIG_ENDIAN 1
597 #define MAX_BITS_PER_WORD 64
599 /* Width of a word, in units (bytes). */
600 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
601 #ifdef IN_LIBGCC2
602 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
603 #else
604 #define MIN_UNITS_PER_WORD 4
605 #endif
606 #define UNITS_PER_FP_WORD 8
607 #define UNITS_PER_ALTIVEC_WORD 16
608 #define UNITS_PER_VSX_WORD 16
609 #define UNITS_PER_SPE_WORD 8
610 #define UNITS_PER_PAIRED_WORD 8
612 /* Type used for ptrdiff_t, as a string used in a declaration. */
613 #define PTRDIFF_TYPE "int"
615 /* Type used for size_t, as a string used in a declaration. */
616 #define SIZE_TYPE "long unsigned int"
618 /* Type used for wchar_t, as a string used in a declaration. */
619 #define WCHAR_TYPE "short unsigned int"
621 /* Width of wchar_t in bits. */
622 #define WCHAR_TYPE_SIZE 16
624 /* A C expression for the size in bits of the type `short' on the
625 target machine. If you don't define this, the default is half a
626 word. (If this would be less than one storage unit, it is
627 rounded up to one unit.) */
628 #define SHORT_TYPE_SIZE 16
630 /* A C expression for the size in bits of the type `int' on the
631 target machine. If you don't define this, the default is one
632 word. */
633 #define INT_TYPE_SIZE 32
635 /* A C expression for the size in bits of the type `long' on the
636 target machine. If you don't define this, the default is one
637 word. */
638 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
640 /* A C expression for the size in bits of the type `long long' on the
641 target machine. If you don't define this, the default is two
642 words. */
643 #define LONG_LONG_TYPE_SIZE 64
645 /* A C expression for the size in bits of the type `float' on the
646 target machine. If you don't define this, the default is one
647 word. */
648 #define FLOAT_TYPE_SIZE 32
650 /* A C expression for the size in bits of the type `double' on the
651 target machine. If you don't define this, the default is two
652 words. */
653 #define DOUBLE_TYPE_SIZE 64
655 /* A C expression for the size in bits of the type `long double' on
656 the target machine. If you don't define this, the default is two
657 words. */
658 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
660 /* Define this to set long double type size to use in libgcc2.c, which can
661 not depend on target_flags. */
662 #ifdef __LONG_DOUBLE_128__
663 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
664 #else
665 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
666 #endif
668 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
669 #define WIDEST_HARDWARE_FP_SIZE 64
671 /* Width in bits of a pointer.
672 See also the macro `Pmode' defined below. */
673 extern unsigned rs6000_pointer_size;
674 #define POINTER_SIZE rs6000_pointer_size
676 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
677 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
679 /* Boundary (in *bits*) on which stack pointer should be aligned. */
680 #define STACK_BOUNDARY \
681 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
682 ? 64 : 128)
684 /* Allocation boundary (in *bits*) for the code of a function. */
685 #define FUNCTION_BOUNDARY 32
687 /* No data type wants to be aligned rounder than this. */
688 #define BIGGEST_ALIGNMENT 128
690 /* A C expression to compute the alignment for a variables in the
691 local store. TYPE is the data type, and ALIGN is the alignment
692 that the object would ordinarily have. */
693 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
694 DATA_ALIGNMENT (TYPE, ALIGN)
696 /* Alignment of field after `int : 0' in a structure. */
697 #define EMPTY_FIELD_BOUNDARY 32
699 /* Every structure's size must be a multiple of this. */
700 #define STRUCTURE_SIZE_BOUNDARY 8
702 /* Return 1 if a structure or array containing FIELD should be
703 accessed using `BLKMODE'.
705 For the SPE, simd types are V2SI, and gcc can be tempted to put the
706 entire thing in a DI and use subregs to access the internals.
707 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
708 back-end. Because a single GPR can hold a V2SI, but not a DI, the
709 best thing to do is set structs to BLKmode and avoid Severe Tire
710 Damage.
712 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
713 fit into 1, whereas DI still needs two. */
714 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
715 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
716 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
718 /* A bit-field declared as `int' forces `int' alignment for the struct. */
719 #define PCC_BITFIELD_TYPE_MATTERS 1
721 /* Make strings word-aligned so strcpy from constants will be faster.
722 Make vector constants quadword aligned. */
723 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
724 (TREE_CODE (EXP) == STRING_CST \
725 && (STRICT_ALIGNMENT || !optimize_size) \
726 && (ALIGN) < BITS_PER_WORD \
727 ? BITS_PER_WORD \
728 : (ALIGN))
730 /* Make arrays of chars word-aligned for the same reasons.
731 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
732 64 bits. */
733 #define DATA_ALIGNMENT(TYPE, ALIGN) \
734 (TREE_CODE (TYPE) == VECTOR_TYPE \
735 ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
736 || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
737 ? 64 : 128) \
738 : ((TARGET_E500_DOUBLE \
739 && TREE_CODE (TYPE) == REAL_TYPE \
740 && TYPE_MODE (TYPE) == DFmode) \
741 ? 64 \
742 : (TREE_CODE (TYPE) == ARRAY_TYPE \
743 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
744 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
746 /* Nonzero if move instructions will actually fail to work
747 when given unaligned data. */
748 #define STRICT_ALIGNMENT 0
750 /* Define this macro to be the value 1 if unaligned accesses have a cost
751 many times greater than aligned accesses, for example if they are
752 emulated in a trap handler. */
753 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
754 memory instructions trap on unaligned accesses; VSX memory instructions are
755 aligned to 4 or 8 bytes. */
756 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
757 (STRICT_ALIGNMENT \
758 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
759 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
760 && (ALIGN) < 32) \
761 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
764 /* Standard register usage. */
766 /* Number of actual hardware registers.
767 The hardware registers are assigned numbers for the compiler
768 from 0 to just below FIRST_PSEUDO_REGISTER.
769 All registers that the compiler knows about must be given numbers,
770 even those that are not normally considered general registers.
772 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
773 a count register, a link register, and 8 condition register fields,
774 which we view here as separate registers. AltiVec adds 32 vector
775 registers and a VRsave register.
777 In addition, the difference between the frame and argument pointers is
778 a function of the number of registers saved, so we need to have a
779 register for AP that will later be eliminated in favor of SP or FP.
780 This is a normal register, but it is fixed.
782 We also create a pseudo register for float/int conversions, that will
783 really represent the memory location used. It is represented here as
784 a register, in order to work around problems in allocating stack storage
785 in inline functions.
787 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
788 pointer, which is eventually eliminated in favor of SP or FP. */
790 #define FIRST_PSEUDO_REGISTER 114
792 /* This must be included for pre gcc 3.0 glibc compatibility. */
793 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
795 /* Add 32 dwarf columns for synthetic SPE registers. */
796 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
798 /* The SPE has an additional 32 synthetic registers, with DWARF debug
799 info numbering for these registers starting at 1200. While eh_frame
800 register numbering need not be the same as the debug info numbering,
801 we choose to number these regs for eh_frame at 1200 too. This allows
802 future versions of the rs6000 backend to add hard registers and
803 continue to use the gcc hard register numbering for eh_frame. If the
804 extra SPE registers in eh_frame were numbered starting from the
805 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
806 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
807 avoid invalidating older SPE eh_frame info.
809 We must map them here to avoid huge unwinder tables mostly consisting
810 of unused space. */
811 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
812 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
814 /* Use standard DWARF numbering for DWARF debugging information. */
815 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
817 /* Use gcc hard register numbering for eh_frame. */
818 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
820 /* Map register numbers held in the call frame info that gcc has
821 collected using DWARF_FRAME_REGNUM to those that should be output in
822 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
823 for .eh_frame, but use the numbers mandated by the various ABIs for
824 .debug_frame. rs6000_emit_prologue has translated any combination of
825 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
826 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
827 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
828 ((FOR_EH) ? (REGNO) \
829 : (REGNO) == CR2_REGNO ? 64 \
830 : DBX_REGISTER_NUMBER (REGNO))
832 /* 1 for registers that have pervasive standard uses
833 and are not available for the register allocator.
835 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
836 as a local register; for all other OS's r2 is the TOC pointer.
838 cr5 is not supposed to be used.
840 On System V implementations, r13 is fixed and not available for use. */
842 #define FIXED_REGISTERS \
843 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
844 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
845 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
846 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
847 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
848 /* AltiVec registers. */ \
849 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
850 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
851 1, 1 \
852 , 1, 1, 1 \
855 /* 1 for registers not available across function calls.
856 These must include the FIXED_REGISTERS and also any
857 registers that can be used without being saved.
858 The latter must include the registers where values are returned
859 and the register where structure-value addresses are passed.
860 Aside from that, you can include as many other registers as you like. */
862 #define CALL_USED_REGISTERS \
863 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
864 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
866 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
868 /* AltiVec registers. */ \
869 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
871 1, 1 \
872 , 1, 1, 1 \
875 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
876 the entire set of `FIXED_REGISTERS' be included.
877 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
878 This macro is optional. If not specified, it defaults to the value
879 of `CALL_USED_REGISTERS'. */
881 #define CALL_REALLY_USED_REGISTERS \
882 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
883 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
885 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
886 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
887 /* AltiVec registers. */ \
888 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
890 0, 0 \
891 , 0, 0, 0 \
894 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
896 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
897 #define FIRST_SAVED_FP_REGNO (14+32)
898 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
900 /* List the order in which to allocate registers. Each register must be
901 listed once, even those in FIXED_REGISTERS.
903 We allocate in the following order:
904 fp0 (not saved or used for anything)
905 fp13 - fp2 (not saved; incoming fp arg registers)
906 fp1 (not saved; return value)
907 fp31 - fp14 (saved; order given to save least number)
908 cr7, cr6 (not saved or special)
909 cr1 (not saved, but used for FP operations)
910 cr0 (not saved, but used for arithmetic operations)
911 cr4, cr3, cr2 (saved)
912 r9 (not saved; best for TImode)
913 r10, r8-r4 (not saved; highest first for less conflict with params)
914 r3 (not saved; return value register)
915 r11 (not saved; later alloc to help shrink-wrap)
916 r0 (not saved; cannot be base reg)
917 r31 - r13 (saved; order given to save least number)
918 r12 (not saved; if used for DImode or DFmode would use r13)
919 ctr (not saved; when we have the choice ctr is better)
920 lr (saved)
921 cr5, r1, r2, ap, ca (fixed)
922 v0 - v1 (not saved or used for anything)
923 v13 - v3 (not saved; incoming vector arg registers)
924 v2 (not saved; incoming vector arg reg; return value)
925 v19 - v14 (not saved or used for anything)
926 v31 - v20 (saved; order given to save least number)
927 vrsave, vscr (fixed)
928 spe_acc, spefscr (fixed)
929 sfp (fixed)
932 #if FIXED_R2 == 1
933 #define MAYBE_R2_AVAILABLE
934 #define MAYBE_R2_FIXED 2,
935 #else
936 #define MAYBE_R2_AVAILABLE 2,
937 #define MAYBE_R2_FIXED
938 #endif
940 #if FIXED_R13 == 1
941 #define EARLY_R12 12,
942 #define LATE_R12
943 #else
944 #define EARLY_R12
945 #define LATE_R12 12,
946 #endif
948 #define REG_ALLOC_ORDER \
949 {32, \
950 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
951 33, \
952 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
953 50, 49, 48, 47, 46, \
954 75, 74, 69, 68, 72, 71, 70, \
955 MAYBE_R2_AVAILABLE \
956 9, 10, 8, 7, 6, 5, 4, \
957 3, EARLY_R12 11, 0, \
958 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
959 18, 17, 16, 15, 14, 13, LATE_R12 \
960 66, 65, \
961 73, 1, MAYBE_R2_FIXED 67, 76, \
962 /* AltiVec registers. */ \
963 77, 78, \
964 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
965 79, \
966 96, 95, 94, 93, 92, 91, \
967 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
968 109, 110, \
969 111, 112, 113 \
972 /* True if register is floating-point. */
973 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
975 /* True if register is a condition register. */
976 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
978 /* True if register is a condition register, but not cr0. */
979 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
981 /* True if register is an integer register. */
982 #define INT_REGNO_P(N) \
983 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
985 /* SPE SIMD registers are just the GPRs. */
986 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
988 /* PAIRED SIMD registers are just the FPRs. */
989 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
991 /* True if register is the CA register. */
992 #define CA_REGNO_P(N) ((N) == CA_REGNO)
994 /* True if register is an AltiVec register. */
995 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
997 /* True if register is a VSX register. */
998 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1000 /* Alternate name for any vector register supporting floating point, no matter
1001 which instruction set(s) are available. */
1002 #define VFLOAT_REGNO_P(N) \
1003 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1005 /* Alternate name for any vector register supporting integer, no matter which
1006 instruction set(s) are available. */
1007 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1009 /* Alternate name for any vector register supporting logical operations, no
1010 matter which instruction set(s) are available. */
1011 #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1013 /* Return number of consecutive hard regs needed starting at reg REGNO
1014 to hold something of mode MODE. */
1016 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1018 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1019 enough space to account for vectors in FP regs. */
1020 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1021 (TARGET_VSX \
1022 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1023 && FP_REGNO_P (REGNO) \
1024 ? V2DFmode \
1025 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1027 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1028 (((TARGET_32BIT && TARGET_POWERPC64 \
1029 && (GET_MODE_SIZE (MODE) > 4) \
1030 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1031 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1032 && GET_MODE_SIZE (MODE) > 8))
1034 #define VSX_VECTOR_MODE(MODE) \
1035 ((MODE) == V4SFmode \
1036 || (MODE) == V2DFmode) \
1038 #define ALTIVEC_VECTOR_MODE(MODE) \
1039 ((MODE) == V16QImode \
1040 || (MODE) == V8HImode \
1041 || (MODE) == V4SFmode \
1042 || (MODE) == V4SImode)
1044 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1045 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1046 || (MODE) == V2DImode)
1048 #define SPE_VECTOR_MODE(MODE) \
1049 ((MODE) == V4HImode \
1050 || (MODE) == V2SFmode \
1051 || (MODE) == V1DImode \
1052 || (MODE) == V2SImode)
1054 #define PAIRED_VECTOR_MODE(MODE) \
1055 ((MODE) == V2SFmode)
1057 /* Value is TRUE if hard register REGNO can hold a value of
1058 machine-mode MODE. */
1059 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1060 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1062 /* Value is 1 if it is a good idea to tie two pseudo registers
1063 when one has mode MODE1 and one has mode MODE2.
1064 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1065 for any hard reg, then this must be 0 for correct output. */
1066 #define MODES_TIEABLE_P(MODE1, MODE2) \
1067 (SCALAR_FLOAT_MODE_P (MODE1) \
1068 ? SCALAR_FLOAT_MODE_P (MODE2) \
1069 : SCALAR_FLOAT_MODE_P (MODE2) \
1070 ? SCALAR_FLOAT_MODE_P (MODE1) \
1071 : GET_MODE_CLASS (MODE1) == MODE_CC \
1072 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1073 : GET_MODE_CLASS (MODE2) == MODE_CC \
1074 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1075 : SPE_VECTOR_MODE (MODE1) \
1076 ? SPE_VECTOR_MODE (MODE2) \
1077 : SPE_VECTOR_MODE (MODE2) \
1078 ? SPE_VECTOR_MODE (MODE1) \
1079 : ALTIVEC_VECTOR_MODE (MODE1) \
1080 ? ALTIVEC_VECTOR_MODE (MODE2) \
1081 : ALTIVEC_VECTOR_MODE (MODE2) \
1082 ? ALTIVEC_VECTOR_MODE (MODE1) \
1083 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1084 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1085 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1086 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1087 : 1)
1089 /* Post-reload, we can't use any new AltiVec registers, as we already
1090 emitted the vrsave mask. */
1092 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1093 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1095 /* Specify the cost of a branch insn; roughly the number of extra insns that
1096 should be added to avoid a branch.
1098 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1099 unscheduled conditional branch. */
1101 #define BRANCH_COST(speed_p, predictable_p) 3
1103 /* Override BRANCH_COST heuristic which empirically produces worse
1104 performance for removing short circuiting from the logical ops. */
1106 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1108 /* A fixed register used at epilogue generation to address SPE registers
1109 with negative offsets. The 64-bit load/store instructions on the SPE
1110 only take positive offsets (and small ones at that), so we need to
1111 reserve a register for consing up negative offsets. */
1113 #define FIXED_SCRATCH 0
1115 /* Specify the registers used for certain standard purposes.
1116 The values of these macros are register numbers. */
1118 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1119 /* #define PC_REGNUM */
1121 /* Register to use for pushing function arguments. */
1122 #define STACK_POINTER_REGNUM 1
1124 /* Base register for access to local variables of the function. */
1125 #define HARD_FRAME_POINTER_REGNUM 31
1127 /* Base register for access to local variables of the function. */
1128 #define FRAME_POINTER_REGNUM 113
1130 /* Base register for access to arguments of the function. */
1131 #define ARG_POINTER_REGNUM 67
1133 /* Place to put static chain when calling a function that requires it. */
1134 #define STATIC_CHAIN_REGNUM 11
1137 /* Define the classes of registers for register constraints in the
1138 machine description. Also define ranges of constants.
1140 One of the classes must always be named ALL_REGS and include all hard regs.
1141 If there is more than one class, another class must be named NO_REGS
1142 and contain no registers.
1144 The name GENERAL_REGS must be the name of a class (or an alias for
1145 another name such as ALL_REGS). This is the class of registers
1146 that is allowed by "g" or "r" in a register constraint.
1147 Also, registers outside this class are allocated only when
1148 instructions express preferences for them.
1150 The classes must be numbered in nondecreasing order; that is,
1151 a larger-numbered class must never be contained completely
1152 in a smaller-numbered class.
1154 For any two classes, it is very desirable that there be another
1155 class that represents their union. */
1157 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1158 condition registers, plus three special registers, CTR, and the link
1159 register. AltiVec adds a vector register class. VSX registers overlap the
1160 FPR registers and the Altivec registers.
1162 However, r0 is special in that it cannot be used as a base register.
1163 So make a class for registers valid as base registers.
1165 Also, cr0 is the only condition code register that can be used in
1166 arithmetic insns, so make a separate class for it. */
1168 enum reg_class
1170 NO_REGS,
1171 BASE_REGS,
1172 GENERAL_REGS,
1173 FLOAT_REGS,
1174 ALTIVEC_REGS,
1175 VSX_REGS,
1176 VRSAVE_REGS,
1177 VSCR_REGS,
1178 SPE_ACC_REGS,
1179 SPEFSCR_REGS,
1180 NON_SPECIAL_REGS,
1181 LINK_REGS,
1182 CTR_REGS,
1183 LINK_OR_CTR_REGS,
1184 SPECIAL_REGS,
1185 SPEC_OR_GEN_REGS,
1186 CR0_REGS,
1187 CR_REGS,
1188 NON_FLOAT_REGS,
1189 CA_REGS,
1190 ALL_REGS,
1191 LIM_REG_CLASSES
1194 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1196 /* Give names of register classes as strings for dump file. */
1198 #define REG_CLASS_NAMES \
1200 "NO_REGS", \
1201 "BASE_REGS", \
1202 "GENERAL_REGS", \
1203 "FLOAT_REGS", \
1204 "ALTIVEC_REGS", \
1205 "VSX_REGS", \
1206 "VRSAVE_REGS", \
1207 "VSCR_REGS", \
1208 "SPE_ACC_REGS", \
1209 "SPEFSCR_REGS", \
1210 "NON_SPECIAL_REGS", \
1211 "LINK_REGS", \
1212 "CTR_REGS", \
1213 "LINK_OR_CTR_REGS", \
1214 "SPECIAL_REGS", \
1215 "SPEC_OR_GEN_REGS", \
1216 "CR0_REGS", \
1217 "CR_REGS", \
1218 "NON_FLOAT_REGS", \
1219 "CA_REGS", \
1220 "ALL_REGS" \
1223 /* Define which registers fit in which classes.
1224 This is an initializer for a vector of HARD_REG_SET
1225 of length N_REG_CLASSES. */
1227 #define REG_CLASS_CONTENTS \
1229 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1230 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1231 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1232 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1233 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1234 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1235 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1236 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1237 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1238 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1239 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1240 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1241 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1242 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1243 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
1244 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1245 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1246 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1247 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
1248 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
1249 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0003ffff } /* ALL_REGS */ \
1252 /* The same information, inverted:
1253 Return the class number of the smallest class containing
1254 reg number REGNO. This could be a conditional expression
1255 or could index an array. */
1257 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1259 #if ENABLE_CHECKING
1260 #define REGNO_REG_CLASS(REGNO) \
1261 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1262 rs6000_regno_regclass[(REGNO)])
1264 #else
1265 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1266 #endif
1268 /* Register classes for various constraints that are based on the target
1269 switches. */
1270 enum r6000_reg_class_enum {
1271 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1272 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1273 RS6000_CONSTRAINT_v, /* Altivec registers */
1274 RS6000_CONSTRAINT_wa, /* Any VSX register */
1275 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1276 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1277 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1278 RS6000_CONSTRAINT_MAX
1281 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1283 /* The class value for index registers, and the one for base regs. */
1284 #define INDEX_REG_CLASS GENERAL_REGS
1285 #define BASE_REG_CLASS BASE_REGS
1287 /* Return whether a given register class can hold VSX objects. */
1288 #define VSX_REG_CLASS_P(CLASS) \
1289 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1291 /* Given an rtx X being reloaded into a reg required to be
1292 in class CLASS, return the class of reg to actually use.
1293 In general this is just CLASS; but on some machines
1294 in some cases it is preferable to use a more restrictive class.
1296 On the RS/6000, we have to return NO_REGS when we want to reload a
1297 floating-point CONST_DOUBLE to force it to be copied to memory.
1299 We also don't want to reload integer values into floating-point
1300 registers if we can at all help it. In fact, this can
1301 cause reload to die, if it tries to generate a reload of CTR
1302 into a FP register and discovers it doesn't have the memory location
1303 required.
1305 ??? Would it be a good idea to have reload do the converse, that is
1306 try to reload floating modes into FP registers if possible?
1309 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1310 rs6000_preferred_reload_class_ptr (X, CLASS)
1312 /* Return the register class of a scratch register needed to copy IN into
1313 or out of a register in CLASS in MODE. If it can be done directly,
1314 NO_REGS is returned. */
1316 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1317 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1319 /* If we are copying between FP or AltiVec registers and anything
1320 else, we need a memory location. The exception is when we are
1321 targeting ppc64 and the move to/from fpr to gpr instructions
1322 are available.*/
1324 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1325 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1327 /* For cpus that cannot load/store SDmode values from the 64-bit
1328 FP registers without using a full 64-bit load/store, we need
1329 to allocate a full 64-bit stack slot for them. */
1331 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1332 rs6000_secondary_memory_needed_rtx (MODE)
1334 /* Return the maximum number of consecutive registers
1335 needed to represent mode MODE in a register of class CLASS.
1337 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1338 a single reg is enough for two words, unless we have VSX, where the FP
1339 registers can hold 128 bits. */
1340 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1342 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1344 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1345 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1347 /* Stack layout; function entry, exit and calling. */
1349 /* Define this if pushing a word on the stack
1350 makes the stack pointer a smaller address. */
1351 #define STACK_GROWS_DOWNWARD
1353 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1354 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1356 /* Define this to nonzero if the nominal address of the stack frame
1357 is at the high-address end of the local variables;
1358 that is, each additional local variable allocated
1359 goes at a more negative offset in the frame.
1361 On the RS/6000, we grow upwards, from the area after the outgoing
1362 arguments. */
1363 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1365 /* Size of the outgoing register save area */
1366 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1367 || DEFAULT_ABI == ABI_DARWIN) \
1368 ? (TARGET_64BIT ? 64 : 32) \
1369 : 0)
1371 /* Size of the fixed area on the stack */
1372 #define RS6000_SAVE_AREA \
1373 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1374 << (TARGET_64BIT ? 1 : 0))
1376 /* MEM representing address to save the TOC register */
1377 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1378 plus_constant (Pmode, stack_pointer_rtx, \
1379 (TARGET_32BIT ? 20 : 40)))
1381 /* Align an address */
1382 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1384 /* Offset within stack frame to start allocating local variables at.
1385 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1386 first local allocated. Otherwise, it is the offset to the BEGINNING
1387 of the first local allocated.
1389 On the RS/6000, the frame pointer is the same as the stack pointer,
1390 except for dynamic allocations. So we start after the fixed area and
1391 outgoing parameter area. */
1393 #define STARTING_FRAME_OFFSET \
1394 (FRAME_GROWS_DOWNWARD \
1395 ? 0 \
1396 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1397 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1398 + RS6000_SAVE_AREA))
1400 /* Offset from the stack pointer register to an item dynamically
1401 allocated on the stack, e.g., by `alloca'.
1403 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1404 length of the outgoing arguments. The default is correct for most
1405 machines. See `function.c' for details. */
1406 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1407 (RS6000_ALIGN (crtl->outgoing_args_size, \
1408 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1409 + (STACK_POINTER_OFFSET))
1411 /* If we generate an insn to push BYTES bytes,
1412 this says how many the stack pointer really advances by.
1413 On RS/6000, don't define this because there are no push insns. */
1414 /* #define PUSH_ROUNDING(BYTES) */
1416 /* Offset of first parameter from the argument pointer register value.
1417 On the RS/6000, we define the argument pointer to the start of the fixed
1418 area. */
1419 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1421 /* Offset from the argument pointer register value to the top of
1422 stack. This is different from FIRST_PARM_OFFSET because of the
1423 register save area. */
1424 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1426 /* Define this if stack space is still allocated for a parameter passed
1427 in a register. The value is the number of bytes allocated to this
1428 area. */
1429 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1431 /* Define this if the above stack space is to be considered part of the
1432 space allocated by the caller. */
1433 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1435 /* This is the difference between the logical top of stack and the actual sp.
1437 For the RS/6000, sp points past the fixed area. */
1438 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1440 /* Define this if the maximum size of all the outgoing args is to be
1441 accumulated and pushed during the prologue. The amount can be
1442 found in the variable crtl->outgoing_args_size. */
1443 #define ACCUMULATE_OUTGOING_ARGS 1
1445 /* Define how to find the value returned by a library function
1446 assuming the value has mode MODE. */
1448 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1450 /* DRAFT_V4_STRUCT_RET defaults off. */
1451 #define DRAFT_V4_STRUCT_RET 0
1453 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1454 #define DEFAULT_PCC_STRUCT_RETURN 0
1456 /* Mode of stack savearea.
1457 FUNCTION is VOIDmode because calling convention maintains SP.
1458 BLOCK needs Pmode for SP.
1459 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1460 #define STACK_SAVEAREA_MODE(LEVEL) \
1461 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1462 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1464 /* Minimum and maximum general purpose registers used to hold arguments. */
1465 #define GP_ARG_MIN_REG 3
1466 #define GP_ARG_MAX_REG 10
1467 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1469 /* Minimum and maximum floating point registers used to hold arguments. */
1470 #define FP_ARG_MIN_REG 33
1471 #define FP_ARG_AIX_MAX_REG 45
1472 #define FP_ARG_V4_MAX_REG 40
1473 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1474 || DEFAULT_ABI == ABI_DARWIN) \
1475 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1476 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1478 /* Minimum and maximum AltiVec registers used to hold arguments. */
1479 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1480 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1481 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1483 /* Return registers */
1484 #define GP_ARG_RETURN GP_ARG_MIN_REG
1485 #define FP_ARG_RETURN FP_ARG_MIN_REG
1486 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1488 /* Flags for the call/call_value rtl operations set up by function_arg */
1489 #define CALL_NORMAL 0x00000000 /* no special processing */
1490 /* Bits in 0x00000001 are unused. */
1491 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1492 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1493 #define CALL_LONG 0x00000008 /* always call indirect */
1494 #define CALL_LIBCALL 0x00000010 /* libcall */
1496 /* We don't have prologue and epilogue functions to save/restore
1497 everything for most ABIs. */
1498 #define WORLD_SAVE_P(INFO) 0
1500 /* 1 if N is a possible register number for a function value
1501 as seen by the caller.
1503 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1504 #define FUNCTION_VALUE_REGNO_P(N) \
1505 ((N) == GP_ARG_RETURN \
1506 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1507 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1509 /* 1 if N is a possible register number for function argument passing.
1510 On RS/6000, these are r3-r10 and fp1-fp13.
1511 On AltiVec, v2 - v13 are used for passing vectors. */
1512 #define FUNCTION_ARG_REGNO_P(N) \
1513 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1514 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1515 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1516 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1517 && TARGET_HARD_FLOAT && TARGET_FPRS))
1519 /* Define a data type for recording info about an argument list
1520 during the scan of that argument list. This data type should
1521 hold all necessary information about the function itself
1522 and about the args processed so far, enough to enable macros
1523 such as FUNCTION_ARG to determine where the next arg should go.
1525 On the RS/6000, this is a structure. The first element is the number of
1526 total argument words, the second is used to store the next
1527 floating-point register number, and the third says how many more args we
1528 have prototype types for.
1530 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1531 the next available GP register, `fregno' is the next available FP
1532 register, and `words' is the number of words used on the stack.
1534 The varargs/stdarg support requires that this structure's size
1535 be a multiple of sizeof(int). */
1537 typedef struct rs6000_args
1539 int words; /* # words used for passing GP registers */
1540 int fregno; /* next available FP register */
1541 int vregno; /* next available AltiVec register */
1542 int nargs_prototype; /* # args left in the current prototype */
1543 int prototype; /* Whether a prototype was defined */
1544 int stdarg; /* Whether function is a stdarg function. */
1545 int call_cookie; /* Do special things for this call */
1546 int sysv_gregno; /* next available GP register */
1547 int intoffset; /* running offset in struct (darwin64) */
1548 int use_stack; /* any part of struct on stack (darwin64) */
1549 int floats_in_gpr; /* count of SFmode floats taking up
1550 GPR space (darwin64) */
1551 int named; /* false for varargs params */
1552 int escapes; /* if function visible outside tu */
1553 } CUMULATIVE_ARGS;
1555 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1556 for a call to a function whose data type is FNTYPE.
1557 For a library call, FNTYPE is 0. */
1559 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1560 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1561 N_NAMED_ARGS, FNDECL, VOIDmode)
1563 /* Similar, but when scanning the definition of a procedure. We always
1564 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1566 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1567 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1568 1000, current_function_decl, VOIDmode)
1570 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1572 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1573 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1574 0, NULL_TREE, MODE)
1576 /* If defined, a C expression which determines whether, and in which
1577 direction, to pad out an argument with extra space. The value
1578 should be of type `enum direction': either `upward' to pad above
1579 the argument, `downward' to pad below, or `none' to inhibit
1580 padding. */
1582 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1584 #define PAD_VARARGS_DOWN \
1585 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1587 /* Output assembler code to FILE to increment profiler label # LABELNO
1588 for profiling a function entry. */
1590 #define FUNCTION_PROFILER(FILE, LABELNO) \
1591 output_function_profiler ((FILE), (LABELNO));
1593 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1594 the stack pointer does not matter. No definition is equivalent to
1595 always zero.
1597 On the RS/6000, this is nonzero because we can restore the stack from
1598 its backpointer, which we maintain. */
1599 #define EXIT_IGNORE_STACK 1
1601 /* Define this macro as a C expression that is nonzero for registers
1602 that are used by the epilogue or the return' pattern. The stack
1603 and frame pointer registers are already be assumed to be used as
1604 needed. */
1606 #define EPILOGUE_USES(REGNO) \
1607 ((reload_completed && (REGNO) == LR_REGNO) \
1608 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1609 || (crtl->calls_eh_return \
1610 && TARGET_AIX \
1611 && (REGNO) == 2))
1614 /* Length in units of the trampoline for entering a nested function. */
1616 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1618 /* Definitions for __builtin_return_address and __builtin_frame_address.
1619 __builtin_return_address (0) should give link register (65), enable
1620 this. */
1621 /* This should be uncommented, so that the link register is used, but
1622 currently this would result in unmatched insns and spilling fixed
1623 registers so we'll leave it for another day. When these problems are
1624 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1625 (mrs) */
1626 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1628 /* Number of bytes into the frame return addresses can be found. See
1629 rs6000_stack_info in rs6000.c for more information on how the different
1630 abi's store the return address. */
1631 #define RETURN_ADDRESS_OFFSET \
1632 ((DEFAULT_ABI == ABI_AIX \
1633 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1634 (DEFAULT_ABI == ABI_V4) ? 4 : \
1635 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1637 /* The current return address is in link register (65). The return address
1638 of anything farther back is accessed normally at an offset of 8 from the
1639 frame pointer. */
1640 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1641 (rs6000_return_addr (COUNT, FRAME))
1644 /* Definitions for register eliminations.
1646 We have two registers that can be eliminated on the RS/6000. First, the
1647 frame pointer register can often be eliminated in favor of the stack
1648 pointer register. Secondly, the argument pointer register can always be
1649 eliminated; it is replaced with either the stack or frame pointer.
1651 In addition, we use the elimination mechanism to see if r30 is needed
1652 Initially we assume that it isn't. If it is, we spill it. This is done
1653 by making it an eliminable register. We replace it with itself so that
1654 if it isn't needed, then existing uses won't be modified. */
1656 /* This is an array of structures. Each structure initializes one pair
1657 of eliminable registers. The "from" register number is given first,
1658 followed by "to". Eliminations of the same "from" register are listed
1659 in order of preference. */
1660 #define ELIMINABLE_REGS \
1661 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1662 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1663 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1664 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1665 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1666 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1668 /* Define the offset between two registers, one to be eliminated, and the other
1669 its replacement, at the start of a routine. */
1670 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1671 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1673 /* Addressing modes, and classification of registers for them. */
1675 #define HAVE_PRE_DECREMENT 1
1676 #define HAVE_PRE_INCREMENT 1
1677 #define HAVE_PRE_MODIFY_DISP 1
1678 #define HAVE_PRE_MODIFY_REG 1
1680 /* Macros to check register numbers against specific register classes. */
1682 /* These assume that REGNO is a hard or pseudo reg number.
1683 They give nonzero only if REGNO is a hard reg of the suitable class
1684 or a pseudo reg currently allocated to a suitable hard reg.
1685 Since they use reg_renumber, they are safe only once reg_renumber
1686 has been allocated, which happens in local-alloc.c. */
1688 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1689 ((REGNO) < FIRST_PSEUDO_REGISTER \
1690 ? (REGNO) <= 31 || (REGNO) == 67 \
1691 || (REGNO) == FRAME_POINTER_REGNUM \
1692 : (reg_renumber[REGNO] >= 0 \
1693 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1694 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1696 #define REGNO_OK_FOR_BASE_P(REGNO) \
1697 ((REGNO) < FIRST_PSEUDO_REGISTER \
1698 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1699 || (REGNO) == FRAME_POINTER_REGNUM \
1700 : (reg_renumber[REGNO] > 0 \
1701 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1702 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1704 /* Nonzero if X is a hard reg that can be used as an index
1705 or if it is a pseudo reg in the non-strict case. */
1706 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1707 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1708 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1710 /* Nonzero if X is a hard reg that can be used as a base reg
1711 or if it is a pseudo reg in the non-strict case. */
1712 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1713 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1714 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1717 /* Maximum number of registers that can appear in a valid memory address. */
1719 #define MAX_REGS_PER_ADDRESS 2
1721 /* Recognize any constant value that is a valid address. */
1723 #define CONSTANT_ADDRESS_P(X) \
1724 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1725 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1726 || GET_CODE (X) == HIGH)
1728 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1729 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1730 && EASY_VECTOR_15((n) >> 1) \
1731 && ((n) & 1) == 0)
1733 #define EASY_VECTOR_MSB(n,mode) \
1734 (((unsigned HOST_WIDE_INT)n) == \
1735 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1738 /* Try a machine-dependent way of reloading an illegitimate address
1739 operand. If we find one, push the reload and jump to WIN. This
1740 macro is used in only one place: `find_reloads_address' in reload.c.
1742 Implemented on rs6000 by rs6000_legitimize_reload_address.
1743 Note that (X) is evaluated twice; this is safe in current usage. */
1745 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1746 do { \
1747 int win; \
1748 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1749 (int)(TYPE), (IND_LEVELS), &win); \
1750 if ( win ) \
1751 goto WIN; \
1752 } while (0)
1754 #define FIND_BASE_TERM rs6000_find_base_term
1756 /* The register number of the register used to address a table of
1757 static data addresses in memory. In some cases this register is
1758 defined by a processor's "application binary interface" (ABI).
1759 When this macro is defined, RTL is generated for this register
1760 once, as with the stack pointer and frame pointer registers. If
1761 this macro is not defined, it is up to the machine-dependent files
1762 to allocate such a register (if necessary). */
1764 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1765 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1767 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1769 /* Define this macro if the register defined by
1770 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1771 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1773 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1775 /* A C expression that is nonzero if X is a legitimate immediate
1776 operand on the target machine when generating position independent
1777 code. You can assume that X satisfies `CONSTANT_P', so you need
1778 not check this. You can also assume FLAG_PIC is true, so you need
1779 not check it either. You need not define this macro if all
1780 constants (including `SYMBOL_REF') can be immediate operands when
1781 generating position independent code. */
1783 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1785 /* Define this if some processing needs to be done immediately before
1786 emitting code for an insn. */
1788 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1789 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1791 /* Specify the machine mode that this machine uses
1792 for the index in the tablejump instruction. */
1793 #define CASE_VECTOR_MODE SImode
1795 /* Define as C expression which evaluates to nonzero if the tablejump
1796 instruction expects the table to contain offsets from the address of the
1797 table.
1798 Do not define this if the table should contain absolute addresses. */
1799 #define CASE_VECTOR_PC_RELATIVE 1
1801 /* Define this as 1 if `char' should by default be signed; else as 0. */
1802 #define DEFAULT_SIGNED_CHAR 0
1804 /* An integer expression for the size in bits of the largest integer machine
1805 mode that should actually be used. */
1807 /* Allow pairs of registers to be used, which is the intent of the default. */
1808 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1810 /* Max number of bytes we can move from memory to memory
1811 in one reasonably fast instruction. */
1812 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1813 #define MAX_MOVE_MAX 8
1815 /* Nonzero if access to memory by bytes is no faster than for words.
1816 Also nonzero if doing byte operations (specifically shifts) in registers
1817 is undesirable. */
1818 #define SLOW_BYTE_ACCESS 1
1820 /* Define if operations between registers always perform the operation
1821 on the full register even if a narrower mode is specified. */
1822 #define WORD_REGISTER_OPERATIONS
1824 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1825 will either zero-extend or sign-extend. The value of this macro should
1826 be the code that says which one of the two operations is implicitly
1827 done, UNKNOWN if none. */
1828 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1830 /* Define if loading short immediate values into registers sign extends. */
1831 #define SHORT_IMMEDIATES_SIGN_EXTEND
1833 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1834 is done just by pretending it is already truncated. */
1835 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1837 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1838 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1839 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1841 /* The CTZ patterns return -1 for input of zero. */
1842 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1844 /* Specify the machine mode that pointers have.
1845 After generation of rtl, the compiler makes no further distinction
1846 between pointers and any other objects of this machine mode. */
1847 extern unsigned rs6000_pmode;
1848 #define Pmode ((enum machine_mode)rs6000_pmode)
1850 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1851 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1853 /* Mode of a function address in a call instruction (for indexing purposes).
1854 Doesn't matter on RS/6000. */
1855 #define FUNCTION_MODE SImode
1857 /* Define this if addresses of constant functions
1858 shouldn't be put through pseudo regs where they can be cse'd.
1859 Desirable on machines where ordinary constants are expensive
1860 but a CALL with constant address is cheap. */
1861 #define NO_FUNCTION_CSE
1863 /* Define this to be nonzero if shift instructions ignore all but the low-order
1864 few bits.
1866 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1867 have been dropped from the PowerPC architecture. */
1868 #define SHIFT_COUNT_TRUNCATED 0
1870 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1871 should be adjusted to reflect any required changes. This macro is used when
1872 there is some systematic length adjustment required that would be difficult
1873 to express in the length attribute. */
1875 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1877 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1878 COMPARE, return the mode to be used for the comparison. For
1879 floating-point, CCFPmode should be used. CCUNSmode should be used
1880 for unsigned comparisons. CCEQmode should be used when we are
1881 doing an inequality comparison on the result of a
1882 comparison. CCmode should be used in all other cases. */
1884 #define SELECT_CC_MODE(OP,X,Y) \
1885 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1886 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1887 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1888 ? CCEQmode : CCmode))
1890 /* Can the condition code MODE be safely reversed? This is safe in
1891 all cases on this port, because at present it doesn't use the
1892 trapping FP comparisons (fcmpo). */
1893 #define REVERSIBLE_CC_MODE(MODE) 1
1895 /* Given a condition code and a mode, return the inverse condition. */
1896 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1899 /* Control the assembler format that we output. */
1901 /* A C string constant describing how to begin a comment in the target
1902 assembler language. The compiler assumes that the comment will end at
1903 the end of the line. */
1904 #define ASM_COMMENT_START " #"
1906 /* Flag to say the TOC is initialized */
1907 extern int toc_initialized;
1909 /* Macro to output a special constant pool entry. Go to WIN if we output
1910 it. Otherwise, it is written the usual way.
1912 On the RS/6000, toc entries are handled this way. */
1914 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1915 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1917 output_toc (FILE, X, LABELNO, MODE); \
1918 goto WIN; \
1922 #ifdef HAVE_GAS_WEAK
1923 #define RS6000_WEAK 1
1924 #else
1925 #define RS6000_WEAK 0
1926 #endif
1928 #if RS6000_WEAK
1929 /* Used in lieu of ASM_WEAKEN_LABEL. */
1930 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1931 do \
1933 fputs ("\t.weak\t", (FILE)); \
1934 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1935 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1936 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1938 if (TARGET_XCOFF) \
1939 fputs ("[DS]", (FILE)); \
1940 fputs ("\n\t.weak\t.", (FILE)); \
1941 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1943 fputc ('\n', (FILE)); \
1944 if (VAL) \
1946 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
1947 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1948 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1950 fputs ("\t.set\t.", (FILE)); \
1951 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1952 fputs (",.", (FILE)); \
1953 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
1954 fputc ('\n', (FILE)); \
1958 while (0)
1959 #endif
1961 #if HAVE_GAS_WEAKREF
1962 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1963 do \
1965 fputs ("\t.weakref\t", (FILE)); \
1966 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1967 fputs (", ", (FILE)); \
1968 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1969 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1970 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1972 fputs ("\n\t.weakref\t.", (FILE)); \
1973 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1974 fputs (", .", (FILE)); \
1975 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1977 fputc ('\n', (FILE)); \
1978 } while (0)
1979 #endif
1981 /* This implements the `alias' attribute. */
1982 #undef ASM_OUTPUT_DEF_FROM_DECLS
1983 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1984 do \
1986 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1987 const char *name = IDENTIFIER_POINTER (TARGET); \
1988 if (TREE_CODE (DECL) == FUNCTION_DECL \
1989 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1991 if (TREE_PUBLIC (DECL)) \
1993 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1995 fputs ("\t.globl\t.", FILE); \
1996 RS6000_OUTPUT_BASENAME (FILE, alias); \
1997 putc ('\n', FILE); \
2000 else if (TARGET_XCOFF) \
2002 fputs ("\t.lglobl\t.", FILE); \
2003 RS6000_OUTPUT_BASENAME (FILE, alias); \
2004 putc ('\n', FILE); \
2006 fputs ("\t.set\t.", FILE); \
2007 RS6000_OUTPUT_BASENAME (FILE, alias); \
2008 fputs (",.", FILE); \
2009 RS6000_OUTPUT_BASENAME (FILE, name); \
2010 fputc ('\n', FILE); \
2012 ASM_OUTPUT_DEF (FILE, alias, name); \
2014 while (0)
2016 #define TARGET_ASM_FILE_START rs6000_file_start
2018 /* Output to assembler file text saying following lines
2019 may contain character constants, extra white space, comments, etc. */
2021 #define ASM_APP_ON ""
2023 /* Output to assembler file text saying following lines
2024 no longer contain unusual constructs. */
2026 #define ASM_APP_OFF ""
2028 /* How to refer to registers in assembler output.
2029 This sequence is indexed by compiler's hard-register-number (see above). */
2031 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2033 #define REGISTER_NAMES \
2035 &rs6000_reg_names[ 0][0], /* r0 */ \
2036 &rs6000_reg_names[ 1][0], /* r1 */ \
2037 &rs6000_reg_names[ 2][0], /* r2 */ \
2038 &rs6000_reg_names[ 3][0], /* r3 */ \
2039 &rs6000_reg_names[ 4][0], /* r4 */ \
2040 &rs6000_reg_names[ 5][0], /* r5 */ \
2041 &rs6000_reg_names[ 6][0], /* r6 */ \
2042 &rs6000_reg_names[ 7][0], /* r7 */ \
2043 &rs6000_reg_names[ 8][0], /* r8 */ \
2044 &rs6000_reg_names[ 9][0], /* r9 */ \
2045 &rs6000_reg_names[10][0], /* r10 */ \
2046 &rs6000_reg_names[11][0], /* r11 */ \
2047 &rs6000_reg_names[12][0], /* r12 */ \
2048 &rs6000_reg_names[13][0], /* r13 */ \
2049 &rs6000_reg_names[14][0], /* r14 */ \
2050 &rs6000_reg_names[15][0], /* r15 */ \
2051 &rs6000_reg_names[16][0], /* r16 */ \
2052 &rs6000_reg_names[17][0], /* r17 */ \
2053 &rs6000_reg_names[18][0], /* r18 */ \
2054 &rs6000_reg_names[19][0], /* r19 */ \
2055 &rs6000_reg_names[20][0], /* r20 */ \
2056 &rs6000_reg_names[21][0], /* r21 */ \
2057 &rs6000_reg_names[22][0], /* r22 */ \
2058 &rs6000_reg_names[23][0], /* r23 */ \
2059 &rs6000_reg_names[24][0], /* r24 */ \
2060 &rs6000_reg_names[25][0], /* r25 */ \
2061 &rs6000_reg_names[26][0], /* r26 */ \
2062 &rs6000_reg_names[27][0], /* r27 */ \
2063 &rs6000_reg_names[28][0], /* r28 */ \
2064 &rs6000_reg_names[29][0], /* r29 */ \
2065 &rs6000_reg_names[30][0], /* r30 */ \
2066 &rs6000_reg_names[31][0], /* r31 */ \
2068 &rs6000_reg_names[32][0], /* fr0 */ \
2069 &rs6000_reg_names[33][0], /* fr1 */ \
2070 &rs6000_reg_names[34][0], /* fr2 */ \
2071 &rs6000_reg_names[35][0], /* fr3 */ \
2072 &rs6000_reg_names[36][0], /* fr4 */ \
2073 &rs6000_reg_names[37][0], /* fr5 */ \
2074 &rs6000_reg_names[38][0], /* fr6 */ \
2075 &rs6000_reg_names[39][0], /* fr7 */ \
2076 &rs6000_reg_names[40][0], /* fr8 */ \
2077 &rs6000_reg_names[41][0], /* fr9 */ \
2078 &rs6000_reg_names[42][0], /* fr10 */ \
2079 &rs6000_reg_names[43][0], /* fr11 */ \
2080 &rs6000_reg_names[44][0], /* fr12 */ \
2081 &rs6000_reg_names[45][0], /* fr13 */ \
2082 &rs6000_reg_names[46][0], /* fr14 */ \
2083 &rs6000_reg_names[47][0], /* fr15 */ \
2084 &rs6000_reg_names[48][0], /* fr16 */ \
2085 &rs6000_reg_names[49][0], /* fr17 */ \
2086 &rs6000_reg_names[50][0], /* fr18 */ \
2087 &rs6000_reg_names[51][0], /* fr19 */ \
2088 &rs6000_reg_names[52][0], /* fr20 */ \
2089 &rs6000_reg_names[53][0], /* fr21 */ \
2090 &rs6000_reg_names[54][0], /* fr22 */ \
2091 &rs6000_reg_names[55][0], /* fr23 */ \
2092 &rs6000_reg_names[56][0], /* fr24 */ \
2093 &rs6000_reg_names[57][0], /* fr25 */ \
2094 &rs6000_reg_names[58][0], /* fr26 */ \
2095 &rs6000_reg_names[59][0], /* fr27 */ \
2096 &rs6000_reg_names[60][0], /* fr28 */ \
2097 &rs6000_reg_names[61][0], /* fr29 */ \
2098 &rs6000_reg_names[62][0], /* fr30 */ \
2099 &rs6000_reg_names[63][0], /* fr31 */ \
2101 &rs6000_reg_names[64][0], /* was mq */ \
2102 &rs6000_reg_names[65][0], /* lr */ \
2103 &rs6000_reg_names[66][0], /* ctr */ \
2104 &rs6000_reg_names[67][0], /* ap */ \
2106 &rs6000_reg_names[68][0], /* cr0 */ \
2107 &rs6000_reg_names[69][0], /* cr1 */ \
2108 &rs6000_reg_names[70][0], /* cr2 */ \
2109 &rs6000_reg_names[71][0], /* cr3 */ \
2110 &rs6000_reg_names[72][0], /* cr4 */ \
2111 &rs6000_reg_names[73][0], /* cr5 */ \
2112 &rs6000_reg_names[74][0], /* cr6 */ \
2113 &rs6000_reg_names[75][0], /* cr7 */ \
2115 &rs6000_reg_names[76][0], /* ca */ \
2117 &rs6000_reg_names[77][0], /* v0 */ \
2118 &rs6000_reg_names[78][0], /* v1 */ \
2119 &rs6000_reg_names[79][0], /* v2 */ \
2120 &rs6000_reg_names[80][0], /* v3 */ \
2121 &rs6000_reg_names[81][0], /* v4 */ \
2122 &rs6000_reg_names[82][0], /* v5 */ \
2123 &rs6000_reg_names[83][0], /* v6 */ \
2124 &rs6000_reg_names[84][0], /* v7 */ \
2125 &rs6000_reg_names[85][0], /* v8 */ \
2126 &rs6000_reg_names[86][0], /* v9 */ \
2127 &rs6000_reg_names[87][0], /* v10 */ \
2128 &rs6000_reg_names[88][0], /* v11 */ \
2129 &rs6000_reg_names[89][0], /* v12 */ \
2130 &rs6000_reg_names[90][0], /* v13 */ \
2131 &rs6000_reg_names[91][0], /* v14 */ \
2132 &rs6000_reg_names[92][0], /* v15 */ \
2133 &rs6000_reg_names[93][0], /* v16 */ \
2134 &rs6000_reg_names[94][0], /* v17 */ \
2135 &rs6000_reg_names[95][0], /* v18 */ \
2136 &rs6000_reg_names[96][0], /* v19 */ \
2137 &rs6000_reg_names[97][0], /* v20 */ \
2138 &rs6000_reg_names[98][0], /* v21 */ \
2139 &rs6000_reg_names[99][0], /* v22 */ \
2140 &rs6000_reg_names[100][0], /* v23 */ \
2141 &rs6000_reg_names[101][0], /* v24 */ \
2142 &rs6000_reg_names[102][0], /* v25 */ \
2143 &rs6000_reg_names[103][0], /* v26 */ \
2144 &rs6000_reg_names[104][0], /* v27 */ \
2145 &rs6000_reg_names[105][0], /* v28 */ \
2146 &rs6000_reg_names[106][0], /* v29 */ \
2147 &rs6000_reg_names[107][0], /* v30 */ \
2148 &rs6000_reg_names[108][0], /* v31 */ \
2149 &rs6000_reg_names[109][0], /* vrsave */ \
2150 &rs6000_reg_names[110][0], /* vscr */ \
2151 &rs6000_reg_names[111][0], /* spe_acc */ \
2152 &rs6000_reg_names[112][0], /* spefscr */ \
2153 &rs6000_reg_names[113][0], /* sfp */ \
2156 /* Table of additional register names to use in user input. */
2158 #define ADDITIONAL_REGISTER_NAMES \
2159 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2160 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2161 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2162 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2163 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2164 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2165 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2166 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2167 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2168 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2169 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2170 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2171 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2172 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2173 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2174 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2175 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2176 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2177 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2178 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2179 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2180 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2181 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2182 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2183 {"vrsave", 109}, {"vscr", 110}, \
2184 {"spe_acc", 111}, {"spefscr", 112}, \
2185 /* no additional names for: lr, ctr, ap */ \
2186 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2187 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2188 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2189 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2190 {"xer", 76}, \
2191 /* VSX registers overlaid on top of FR, Altivec registers */ \
2192 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2193 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2194 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2195 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2196 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2197 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2198 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2199 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2200 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2201 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2202 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2203 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2204 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2205 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2206 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2207 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2209 /* Text to write out after a CALL that may be replaced by glue code by
2210 the loader. This depends on the AIX version. */
2211 #define RS6000_CALL_GLUE "cror 31,31,31"
2213 /* This is how to output an element of a case-vector that is relative. */
2215 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2216 do { char buf[100]; \
2217 fputs ("\t.long ", FILE); \
2218 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2219 assemble_name (FILE, buf); \
2220 putc ('-', FILE); \
2221 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2222 assemble_name (FILE, buf); \
2223 putc ('\n', FILE); \
2224 } while (0)
2226 /* This is how to output an assembler line
2227 that says to advance the location counter
2228 to a multiple of 2**LOG bytes. */
2230 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2231 if ((LOG) != 0) \
2232 fprintf (FILE, "\t.align %d\n", (LOG))
2234 /* How to align the given loop. */
2235 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2237 /* Pick up the return address upon entry to a procedure. Used for
2238 dwarf2 unwind information. This also enables the table driven
2239 mechanism. */
2241 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2242 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2244 /* Describe how we implement __builtin_eh_return. */
2245 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2246 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2248 /* Print operand X (an rtx) in assembler syntax to file FILE.
2249 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2250 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2252 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2254 /* Define which CODE values are valid. */
2256 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2257 ((CODE) == '.' || (CODE) == '&')
2259 /* Print a memory address as an operand to reference that memory location. */
2261 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2263 /* uncomment for disabling the corresponding default options */
2264 /* #define MACHINE_no_sched_interblock */
2265 /* #define MACHINE_no_sched_speculative */
2266 /* #define MACHINE_no_sched_speculative_load */
2268 /* General flags. */
2269 extern int frame_pointer_needed;
2271 /* Classification of the builtin functions as to which switches enable the
2272 builtin, and what attributes it should have. We used to use the target
2273 flags macros, but we've run out of bits, so we now map the options into new
2274 settings used here. */
2276 /* Builtin attributes. */
2277 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2278 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2279 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2280 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2281 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2282 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2283 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2284 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2285 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2287 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2288 #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2289 #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2290 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2291 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2293 /* Miscellaneous information. */
2294 #define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
2296 /* Convenience macros to document the instruction type. */
2297 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2298 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2300 /* Builtin targets. For now, we reuse the masks for those options that are in
2301 target flags, and pick two random bits for SPE and paired which aren't in
2302 target_flags. */
2303 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2304 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2305 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2306 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2307 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2308 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2309 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2310 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2311 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2312 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2313 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2315 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2316 | RS6000_BTM_VSX \
2317 | RS6000_BTM_FRE \
2318 | RS6000_BTM_FRES \
2319 | RS6000_BTM_FRSQRTE \
2320 | RS6000_BTM_FRSQRTES \
2321 | RS6000_BTM_POPCNTD \
2322 | RS6000_BTM_CELL)
2324 /* Define builtin enum index. */
2326 #undef RS6000_BUILTIN_1
2327 #undef RS6000_BUILTIN_2
2328 #undef RS6000_BUILTIN_3
2329 #undef RS6000_BUILTIN_A
2330 #undef RS6000_BUILTIN_D
2331 #undef RS6000_BUILTIN_E
2332 #undef RS6000_BUILTIN_P
2333 #undef RS6000_BUILTIN_Q
2334 #undef RS6000_BUILTIN_S
2335 #undef RS6000_BUILTIN_X
2337 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2338 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2339 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2340 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2341 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2342 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2343 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2344 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2345 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2346 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2348 enum rs6000_builtins
2350 #include "rs6000-builtin.def"
2352 RS6000_BUILTIN_COUNT
2355 #undef RS6000_BUILTIN_1
2356 #undef RS6000_BUILTIN_2
2357 #undef RS6000_BUILTIN_3
2358 #undef RS6000_BUILTIN_A
2359 #undef RS6000_BUILTIN_D
2360 #undef RS6000_BUILTIN_E
2361 #undef RS6000_BUILTIN_P
2362 #undef RS6000_BUILTIN_Q
2363 #undef RS6000_BUILTIN_S
2364 #undef RS6000_BUILTIN_X
2366 enum rs6000_builtin_type_index
2368 RS6000_BTI_NOT_OPAQUE,
2369 RS6000_BTI_opaque_V2SI,
2370 RS6000_BTI_opaque_V2SF,
2371 RS6000_BTI_opaque_p_V2SI,
2372 RS6000_BTI_opaque_V4SI,
2373 RS6000_BTI_V16QI,
2374 RS6000_BTI_V2SI,
2375 RS6000_BTI_V2SF,
2376 RS6000_BTI_V2DI,
2377 RS6000_BTI_V2DF,
2378 RS6000_BTI_V4HI,
2379 RS6000_BTI_V4SI,
2380 RS6000_BTI_V4SF,
2381 RS6000_BTI_V8HI,
2382 RS6000_BTI_unsigned_V16QI,
2383 RS6000_BTI_unsigned_V8HI,
2384 RS6000_BTI_unsigned_V4SI,
2385 RS6000_BTI_unsigned_V2DI,
2386 RS6000_BTI_bool_char, /* __bool char */
2387 RS6000_BTI_bool_short, /* __bool short */
2388 RS6000_BTI_bool_int, /* __bool int */
2389 RS6000_BTI_bool_long, /* __bool long */
2390 RS6000_BTI_pixel, /* __pixel */
2391 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2392 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2393 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2394 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2395 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2396 RS6000_BTI_long, /* long_integer_type_node */
2397 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2398 RS6000_BTI_long_long, /* long_long_integer_type_node */
2399 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2400 RS6000_BTI_INTQI, /* intQI_type_node */
2401 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2402 RS6000_BTI_INTHI, /* intHI_type_node */
2403 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2404 RS6000_BTI_INTSI, /* intSI_type_node */
2405 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2406 RS6000_BTI_INTDI, /* intDI_type_node */
2407 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2408 RS6000_BTI_float, /* float_type_node */
2409 RS6000_BTI_double, /* double_type_node */
2410 RS6000_BTI_void, /* void_type_node */
2411 RS6000_BTI_MAX
2415 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2416 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2417 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2418 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2419 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2420 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2421 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2422 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2423 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2424 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2425 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2426 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2427 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2428 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2429 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2430 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2431 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2432 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2433 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2434 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2435 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2436 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2437 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2438 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2439 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2440 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2441 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2443 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2444 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2445 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2446 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2447 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2448 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2449 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2450 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2451 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2452 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2453 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2454 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2455 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2456 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2457 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2459 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2460 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];