PR target/58115
[official-gcc.git] / gcc / ada / sem_util.ads
blob8227ee2735ba9871bb5b42ecbc41519b5a4c9dc8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
36 package Sem_Util is
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
46 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
47 -- Add pragma Prag to the contract of an entry, a package [body] or a
48 -- subprogram [body] denoted by Id. The following are valid pragmas:
49 -- Abstract_States
50 -- Contract_Cases
51 -- Depends
52 -- Global
53 -- Initial_Condition
54 -- Initializes
55 -- Postcondition
56 -- Precondition
57 -- Refined_Depends
58 -- Refined_Global
59 -- Refined_States
60 -- Test_Case
62 procedure Add_Global_Declaration (N : Node_Id);
63 -- These procedures adds a declaration N at the library level, to be
64 -- elaborated before any other code in the unit. It is used for example
65 -- for the entity that marks whether a unit has been elaborated. The
66 -- declaration is added to the Declarations list of the Aux_Decls_Node
67 -- for the current unit. The declarations are added in the current scope,
68 -- so the caller should push a new scope as required before the call.
70 function Addressable (V : Uint) return Boolean;
71 function Addressable (V : Int) return Boolean;
72 pragma Inline (Addressable);
73 -- Returns True if the value of V is the word size of an addressable
74 -- factor of the word size (typically 8, 16, 32 or 64).
76 function Alignment_In_Bits (E : Entity_Id) return Uint;
77 -- If the alignment of the type or object E is currently known to the
78 -- compiler, then this function returns the alignment value in bits.
79 -- Otherwise Uint_0 is returned, indicating that the alignment of the
80 -- entity is not yet known to the compiler.
82 procedure Append_Inherited_Subprogram (S : Entity_Id);
83 -- If the parent of the operation is declared in the visible part of
84 -- the current scope, the inherited operation is visible even though the
85 -- derived type that inherits the operation may be completed in the private
86 -- part of the current package.
88 procedure Apply_Compile_Time_Constraint_Error
89 (N : Node_Id;
90 Msg : String;
91 Reason : RT_Exception_Code;
92 Ent : Entity_Id := Empty;
93 Typ : Entity_Id := Empty;
94 Loc : Source_Ptr := No_Location;
95 Rep : Boolean := True;
96 Warn : Boolean := False);
97 -- N is a subexpression which will raise constraint error when evaluated
98 -- at runtime. Msg is a message that explains the reason for raising the
99 -- exception. The last character is ? if the message is always a warning,
100 -- even in Ada 95, and is not a ? if the message represents an illegality
101 -- (because of violation of static expression rules) in Ada 95 (but not
102 -- in Ada 83). Typically this routine posts all messages at the Sloc of
103 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
104 -- the message. After posting the appropriate message, and if the flag
105 -- Rep is set, this routine replaces the expression with an appropriate
106 -- N_Raise_Constraint_Error node using the given Reason code. This node
107 -- is then marked as being static if the original node is static, but
108 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
109 -- The error message may contain a } or & insertion character. This
110 -- normally references Etype (N), unless the Ent argument is given
111 -- explicitly, in which case it is used instead. The type of the raise
112 -- node that is built is normally Etype (N), but if the Typ parameter
113 -- is present, this is used instead. Warn is normally False. If it is
114 -- True then the message is treated as a warning even though it does
115 -- not end with a ? (this is used when the caller wants to parameterize
116 -- whether an error or warning is given.
118 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
119 -- If at the point of declaration an array type has a private or limited
120 -- component, several array operations are not avaiable on the type, and
121 -- the array type is flagged accordingly. If in the immediate scope of
122 -- the array type the component becomes non-private or non-limited, these
123 -- operations become avaiable. This can happen if the scopes of both types
124 -- are open, and the scope of the array is not outside the scope of the
125 -- component.
127 procedure Bad_Attribute
128 (N : Node_Id;
129 Nam : Name_Id;
130 Warn : Boolean := False);
131 -- Called when node N is expected to contain a valid attribute name, and
132 -- Nam is found instead. If Warn is set True this is a warning, else this
133 -- is an error.
135 procedure Bad_Predicated_Subtype_Use
136 (Msg : String;
137 N : Node_Id;
138 Typ : Entity_Id;
139 Suggest_Static : Boolean := False);
140 -- This is called when Typ, a predicated subtype, is used in a context
141 -- which does not allow the use of a predicated subtype. Msg is passed to
142 -- Error_Msg_FE to output an appropriate message using N as the location,
143 -- and Typ as the entity. The caller must set up any insertions other than
144 -- the & for the type itself. Note that if Typ is a generic actual type,
145 -- then the message will be output as a warning, and a raise Program_Error
146 -- is inserted using Insert_Action with node N as the insertion point. Node
147 -- N also supplies the source location for construction of the raise node.
148 -- If Typ does not have any predicates, the call has no effect. Set flag
149 -- Suggest_Static when the context warrants an advice on how to avoid the
150 -- use error.
152 function Build_Actual_Subtype
153 (T : Entity_Id;
154 N : Node_Or_Entity_Id) return Node_Id;
155 -- Build an anonymous subtype for an entity or expression, using the
156 -- bounds of the entity or the discriminants of the enclosing record.
157 -- T is the type for which the actual subtype is required, and N is either
158 -- a defining identifier, or any subexpression.
160 function Build_Actual_Subtype_Of_Component
161 (T : Entity_Id;
162 N : Node_Id) return Node_Id;
163 -- Determine whether a selected component has a type that depends on
164 -- discriminants, and build actual subtype for it if so.
166 function Build_Default_Subtype
167 (T : Entity_Id;
168 N : Node_Id) return Entity_Id;
169 -- If T is an unconstrained type with defaulted discriminants, build a
170 -- subtype constrained by the default values, insert the subtype
171 -- declaration in the tree before N, and return the entity of that
172 -- subtype. Otherwise, simply return T.
174 function Build_Discriminal_Subtype_Of_Component
175 (T : Entity_Id) return Node_Id;
176 -- Determine whether a record component has a type that depends on
177 -- discriminants, and build actual subtype for it if so.
179 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
180 -- Given a compilation unit node N, allocate an elaboration counter for
181 -- the compilation unit, and install it in the Elaboration_Entity field
182 -- of Spec_Id, the entity for the compilation unit.
184 procedure Build_Explicit_Dereference
185 (Expr : Node_Id;
186 Disc : Entity_Id);
187 -- AI05-139: Names with implicit dereference. If the expression N is a
188 -- reference type and the context imposes the corresponding designated
189 -- type, convert N into N.Disc.all. Such expressions are always over-
190 -- loaded with both interpretations, and the dereference interpretation
191 -- carries the name of the reference discriminant.
193 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
194 -- Returns True if the expression cannot possibly raise Constraint_Error.
195 -- The response is conservative in the sense that a result of False does
196 -- not necessarily mean that CE could be raised, but a response of True
197 -- means that for sure CE cannot be raised.
199 procedure Check_Dynamically_Tagged_Expression
200 (Expr : Node_Id;
201 Typ : Entity_Id;
202 Related_Nod : Node_Id);
203 -- Check wrong use of dynamically tagged expression
205 procedure Check_Expression_Against_Static_Predicate
206 (Expr : Node_Id;
207 Typ : Entity_Id);
208 -- Determine whether an arbitrary expression satisfies the static predicate
209 -- of a type. The routine does nothing if Expr is not known at compile time
210 -- or Typ lacks a static predicate, otherwise it may emit a warning if the
211 -- expression is prohibited by the predicate.
213 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
214 -- Verify that the full declaration of type T has been seen. If not, place
215 -- error message on node N. Used in object declarations, type conversions
216 -- and qualified expressions.
218 procedure Check_Function_Writable_Actuals (N : Node_Id);
219 -- (Ada 2012): If the construct N has two or more direct constituents that
220 -- are names or expressions whose evaluation may occur in an arbitrary
221 -- order, at least one of which contains a function call with an in out or
222 -- out parameter, then the construct is legal only if: for each name that
223 -- is passed as a parameter of mode in out or out to some inner function
224 -- call C2 (not including the construct N itself), there is no other name
225 -- anywhere within a direct constituent of the construct C other than
226 -- the one containing C2, that is known to refer to the same object (RM
227 -- 6.4.1(6.17/3)).
229 procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
230 -- AI05-139-2: Accessors and iterators for containers. This procedure
231 -- checks whether T is a reference type, and if so it adds an interprettion
232 -- to Expr whose type is the designated type of the reference_discriminant.
234 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
235 -- Within a protected function, the current object is a constant, and
236 -- internal calls to a procedure or entry are illegal. Similarly, other
237 -- uses of a protected procedure in a renaming or a generic instantiation
238 -- in the context of a protected function are illegal (AI05-0225).
240 procedure Check_Later_Vs_Basic_Declarations
241 (Decls : List_Id;
242 During_Parsing : Boolean);
243 -- If During_Parsing is True, check for misplacement of later vs basic
244 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
245 -- restriction is set, do the same: although SPARK 95 removes the
246 -- distinction between initial and later declarative items, the distinction
247 -- remains in the Examiner (JB01-005). Note that the Examiner does not
248 -- count package declarations in later declarative items.
250 procedure Check_Nested_Access (Ent : Entity_Id);
251 -- Check whether Ent denotes an entity declared in an uplevel scope, which
252 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
253 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
255 procedure Check_No_Hidden_State (Id : Entity_Id);
256 -- Determine whether object or state Id introduces a hidden state. If this
257 -- is the case, emit an error.
259 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
260 -- N is one of the statement forms that is a potentially blocking
261 -- operation. If it appears within a protected action, emit warning.
263 procedure Check_Unprotected_Access
264 (Context : Node_Id;
265 Expr : Node_Id);
266 -- Check whether the expression is a pointer to a protected component,
267 -- and the context is external to the protected operation, to warn against
268 -- a possible unlocked access to data.
270 procedure Check_VMS (Construct : Node_Id);
271 -- Check that this the target is OpenVMS, and if so, return with no effect,
272 -- otherwise post an error noting this can only be used with OpenVMS ports.
273 -- The argument is the construct in question and is used to post the error
274 -- message.
276 procedure Collect_Interfaces
277 (T : Entity_Id;
278 Ifaces_List : out Elist_Id;
279 Exclude_Parents : Boolean := False;
280 Use_Full_View : Boolean := True);
281 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
282 -- directly or indirectly implemented by T. Exclude_Parents is used to
283 -- avoid the addition of inherited interfaces to the generated list.
284 -- Use_Full_View is used to collect the interfaces using the full-view
285 -- (if available).
287 procedure Collect_Interface_Components
288 (Tagged_Type : Entity_Id;
289 Components_List : out Elist_Id);
290 -- Ada 2005 (AI-251): Collect all the tag components associated with the
291 -- secondary dispatch tables of a tagged type.
293 procedure Collect_Interfaces_Info
294 (T : Entity_Id;
295 Ifaces_List : out Elist_Id;
296 Components_List : out Elist_Id;
297 Tags_List : out Elist_Id);
298 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
299 -- the record component and tag associated with each of these interfaces.
300 -- On exit Ifaces_List, Components_List and Tags_List have the same number
301 -- of elements, and elements at the same position on these tables provide
302 -- information on the same interface type.
304 procedure Collect_Parents
305 (T : Entity_Id;
306 List : out Elist_Id;
307 Use_Full_View : Boolean := True);
308 -- Collect all the parents of Typ. Use_Full_View is used to collect them
309 -- using the full-view of private parents (if available).
311 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
312 -- Called upon type derivation and extension. We scan the declarative part
313 -- in which the type appears, and collect subprograms that have one
314 -- subsidiary subtype of the type. These subprograms can only appear after
315 -- the type itself.
317 function Compile_Time_Constraint_Error
318 (N : Node_Id;
319 Msg : String;
320 Ent : Entity_Id := Empty;
321 Loc : Source_Ptr := No_Location;
322 Warn : Boolean := False) return Node_Id;
323 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
324 -- generates a warning (or error) message in the same manner, but it does
325 -- not replace any nodes. For convenience, the function always returns its
326 -- first argument. The message is a warning if the message ends with ?, or
327 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
329 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
330 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
331 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
333 function Contains_Refined_State (Prag : Node_Id) return Boolean;
334 -- Determine whether pragma Prag contains a reference to the entity of an
335 -- abstract state with a visible refinement. Prag must denote one of the
336 -- following pragmas:
337 -- Depends
338 -- Global
340 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
341 -- Utility to create a parameter profile for a new subprogram spec, when
342 -- the subprogram has a body that acts as spec. This is done for some cases
343 -- of inlining, and for private protected ops. Also used to create bodies
344 -- for stubbed subprograms.
346 function Copy_Component_List
347 (R_Typ : Entity_Id;
348 Loc : Source_Ptr) return List_Id;
349 -- Copy components from record type R_Typ that come from source. Used to
350 -- create a new compatible record type. Loc is the source location assigned
351 -- to the created nodes.
353 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
354 -- If a type is a generic actual type, return the corresponding formal in
355 -- the generic parent unit. There is no direct link in the tree for this
356 -- attribute, except in the case of formal private and derived types.
357 -- Possible optimization???
359 function Current_Entity (N : Node_Id) return Entity_Id;
360 pragma Inline (Current_Entity);
361 -- Find the currently visible definition for a given identifier, that is to
362 -- say the first entry in the visibility chain for the Chars of N.
364 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
365 -- Find whether there is a previous definition for identifier N in the
366 -- current scope. Because declarations for a scope are not necessarily
367 -- contiguous (e.g. for packages) the first entry on the visibility chain
368 -- for N is not necessarily in the current scope.
370 function Current_Scope return Entity_Id;
371 -- Get entity representing current scope
373 function Current_Subprogram return Entity_Id;
374 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
375 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
376 -- Current_Scope is returned. The returned value is Empty if this is called
377 -- from a library package which is not within any subprogram.
379 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
380 -- Same as Type_Access_Level, except that if the type is the type of an Ada
381 -- 2012 stand-alone object of an anonymous access type, then return the
382 -- static accesssibility level of the object. In that case, the dynamic
383 -- accessibility level of the object may take on values in a range. The low
384 -- bound of of that range is returned by Type_Access_Level; this function
385 -- yields the high bound of that range. Also differs from Type_Access_Level
386 -- in the case of a descendant of a generic formal type (returns Int'Last
387 -- instead of 0).
389 function Defining_Entity (N : Node_Id) return Entity_Id;
390 -- Given a declaration N, returns the associated defining entity. If the
391 -- declaration has a specification, the entity is obtained from the
392 -- specification. If the declaration has a defining unit name, then the
393 -- defining entity is obtained from the defining unit name ignoring any
394 -- child unit prefixes.
396 function Denotes_Discriminant
397 (N : Node_Id;
398 Check_Concurrent : Boolean := False) return Boolean;
399 -- Returns True if node N is an Entity_Name node for a discriminant. If the
400 -- flag Check_Concurrent is true, function also returns true when N denotes
401 -- the discriminal of the discriminant of a concurrent type. This is needed
402 -- to disable some optimizations on private components of protected types,
403 -- and constraint checks on entry families constrained by discriminants.
405 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
406 -- Detect suspicious overlapping between actuals in a call, when both are
407 -- writable (RM 2012 6.4.1(6.4/3))
409 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
410 -- Functions to detect suspicious overlapping between actuals in a call,
411 -- when one of them is writable. The predicates are those proposed in
412 -- AI05-0144, to detect dangerous order dependence in complex calls.
413 -- I would add a parameter Warn which enables more extensive testing of
414 -- cases as we find appropriate when we are only warning ??? Or perhaps
415 -- return an indication of (Error, Warn, OK) ???
417 function Denotes_Variable (N : Node_Id) return Boolean;
418 -- Returns True if node N denotes a single variable without parentheses
420 function Depends_On_Discriminant (N : Node_Id) return Boolean;
421 -- Returns True if N denotes a discriminant or if N is a range, a subtype
422 -- indication or a scalar subtype where one of the bounds is a
423 -- discriminant.
425 function Designate_Same_Unit
426 (Name1 : Node_Id;
427 Name2 : Node_Id) return Boolean;
428 -- Return true if Name1 and Name2 designate the same unit name; each of
429 -- these names is supposed to be a selected component name, an expanded
430 -- name, a defining program unit name or an identifier.
432 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
433 -- Expr should be an expression of an access type. Builds an integer
434 -- literal except in cases involving anonymous access types where
435 -- accessibility levels are tracked at runtime (access parameters and Ada
436 -- 2012 stand-alone objects).
438 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
439 -- Same as Einfo.Extra_Accessibility except thtat object renames
440 -- are looked through.
442 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
443 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
444 -- subtree containing N.
446 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
447 -- Returns the closest ancestor of Typ that is a CPP type.
449 function Enclosing_Generic_Body
450 (N : Node_Id) return Node_Id;
451 -- Returns the Node_Id associated with the innermost enclosing generic
452 -- body, if any. If none, then returns Empty.
454 function Enclosing_Generic_Unit
455 (N : Node_Id) return Node_Id;
456 -- Returns the Node_Id associated with the innermost enclosing generic
457 -- unit, if any. If none, then returns Empty.
459 function Enclosing_Lib_Unit_Entity
460 (E : Entity_Id := Current_Scope) return Entity_Id;
461 -- Returns the entity of enclosing library unit node which is the
462 -- root of the current scope (which must not be Standard_Standard, and the
463 -- caller is responsible for ensuring this condition) or other specified
464 -- entity.
466 function Enclosing_Package (E : Entity_Id) return Entity_Id;
467 -- Utility function to return the Ada entity of the package enclosing
468 -- the entity E, if any. Returns Empty if no enclosing package.
470 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
471 -- Utility function to return the Ada entity of the subprogram enclosing
472 -- the entity E, if any. Returns Empty if no enclosing subprogram.
474 procedure Ensure_Freeze_Node (E : Entity_Id);
475 -- Make sure a freeze node is allocated for entity E. If necessary, build
476 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
478 procedure Enter_Name (Def_Id : Entity_Id);
479 -- Insert new name in symbol table of current scope with check for
480 -- duplications (error message is issued if a conflict is found).
481 -- Note: Enter_Name is not used for overloadable entities, instead these
482 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
484 function Entity_Of (N : Node_Id) return Entity_Id;
485 -- Return the entity of N or Empty. If N is a renaming, return the entity
486 -- of the root renamed object.
488 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
489 -- This procedure is called after issuing a message complaining about an
490 -- inappropriate use of limited type T. If useful, it adds additional
491 -- continuation lines to the message explaining why type T is limited.
492 -- Messages are placed at node N.
494 procedure Find_Actual
495 (N : Node_Id;
496 Formal : out Entity_Id;
497 Call : out Node_Id);
498 -- Determines if the node N is an actual parameter of a function of a
499 -- procedure call. If so, then Formal points to the entity for the formal
500 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
501 -- Call is set to the node for the corresponding call. If the node N is not
502 -- an actual parameter then Formal and Call are set to Empty.
504 function Find_Corresponding_Discriminant
505 (Id : Node_Id;
506 Typ : Entity_Id) return Entity_Id;
507 -- Because discriminants may have different names in a generic unit and in
508 -- an instance, they are resolved positionally when possible. A reference
509 -- to a discriminant carries the discriminant that it denotes when it is
510 -- analyzed. Subsequent uses of this id on a different type denotes the
511 -- discriminant at the same position in this new type.
513 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
514 -- Find the nested loop statement in a conditional block. Loops subject to
515 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
516 -- loop are nested within the block.
518 procedure Find_Overlaid_Entity
519 (N : Node_Id;
520 Ent : out Entity_Id;
521 Off : out Boolean);
522 -- The node N should be an address representation clause. Determines if
523 -- the target expression is the address of an entity with an optional
524 -- offset. If so, set Ent to the entity and, if there is an offset, set
525 -- Off to True, otherwise to False. If N is not an address representation
526 -- clause, or if it is not possible to determine that the address is of
527 -- this form, then set Ent to Empty.
529 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
530 -- Return the type of formal parameter Param as determined by its
531 -- specification.
533 function Find_Static_Alternative (N : Node_Id) return Node_Id;
534 -- N is a case statement whose expression is a compile-time value.
535 -- Determine the alternative chosen, so that the code of non-selected
536 -- alternatives, and the warnings that may apply to them, are removed.
538 function Find_Body_Discriminal
539 (Spec_Discriminant : Entity_Id) return Entity_Id;
540 -- Given a discriminant of the record type that implements a task or
541 -- protected type, return the discriminal of the corresponding discriminant
542 -- of the actual concurrent type.
544 function First_Actual (Node : Node_Id) return Node_Id;
545 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
546 -- result returned is the first actual parameter in declaration order
547 -- (not the order of parameters as they appeared in the source, which
548 -- can be quite different as a result of the use of named parameters).
549 -- Empty is returned for a call with no parameters. The procedure for
550 -- iterating through the actuals in declaration order is to use this
551 -- function to find the first actual, and then use Next_Actual to obtain
552 -- the next actual in declaration order. Note that the value returned
553 -- is always the expression (not the N_Parameter_Association nodes,
554 -- even if named association is used).
556 procedure Gather_Components
557 (Typ : Entity_Id;
558 Comp_List : Node_Id;
559 Governed_By : List_Id;
560 Into : Elist_Id;
561 Report_Errors : out Boolean);
562 -- The purpose of this procedure is to gather the valid components in a
563 -- record type according to the values of its discriminants, in order to
564 -- validate the components of a record aggregate.
566 -- Typ is the type of the aggregate when its constrained discriminants
567 -- need to be collected, otherwise it is Empty.
569 -- Comp_List is an N_Component_List node.
571 -- Governed_By is a list of N_Component_Association nodes, where each
572 -- choice list contains the name of a discriminant and the expression
573 -- field gives its value. The values of the discriminants governing
574 -- the (possibly nested) variant parts in Comp_List are found in this
575 -- Component_Association List.
577 -- Into is the list where the valid components are appended. Note that
578 -- Into need not be an Empty list. If it's not, components are attached
579 -- to its tail.
581 -- Report_Errors is set to True if the values of the discriminants are
582 -- non-static.
584 -- This procedure is also used when building a record subtype. If the
585 -- discriminant constraint of the subtype is static, the components of the
586 -- subtype are only those of the variants selected by the values of the
587 -- discriminants. Otherwise all components of the parent must be included
588 -- in the subtype for semantic analysis.
590 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
591 -- Given a node for an expression, obtain the actual subtype of the
592 -- expression. In the case of a parameter where the formal is an
593 -- unconstrained array or discriminated type, this will be the previously
594 -- constructed subtype of the actual. Note that this is not quite the
595 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
596 -- it is the subtype of the value of the actual. The actual subtype is also
597 -- returned in other cases where it has already been constructed for an
598 -- object. Otherwise the expression type is returned unchanged, except for
599 -- the case of an unconstrained array type, where an actual subtype is
600 -- created, using Insert_Actions if necessary to insert any associated
601 -- actions.
603 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
604 -- This is like Get_Actual_Subtype, except that it never constructs an
605 -- actual subtype. If an actual subtype is already available, i.e. the
606 -- Actual_Subtype field of the corresponding entity is set, then it is
607 -- returned. Otherwise the Etype of the node is returned.
609 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
610 -- Return the body node for a stub (subprogram or package)
612 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
613 -- This is used to construct the string literal node representing a
614 -- default external name, i.e. one that is constructed from the name of an
615 -- entity, or (in the case of extended DEC import/export pragmas, an
616 -- identifier provided as the external name. Letters in the name are
617 -- according to the setting of Opt.External_Name_Default_Casing.
619 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
620 -- If expression N references a part of an object, return this object.
621 -- Otherwise return Empty. Expression N should have been resolved already.
623 function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
624 -- Return the Ensures component of Test_Case pragma N, or Empty otherwise
625 -- Bad name now that this no longer applies to Contract_Case ???
627 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
628 -- Returns the true generic entity in an instantiation. If the name in the
629 -- instantiation is a renaming, the function returns the renamed generic.
631 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
632 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
633 -- in a child unit a derived type is within the derivation class of an
634 -- ancestor declared in a parent unit, even if there is an intermediate
635 -- derivation that does not see the full view of that ancestor.
637 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
638 -- This procedure assigns to L and H respectively the values of the low and
639 -- high bounds of node N, which must be a range, subtype indication, or the
640 -- name of a scalar subtype. The result in L, H may be set to Error if
641 -- there was an earlier error in the range.
643 function Get_Enum_Lit_From_Pos
644 (T : Entity_Id;
645 Pos : Uint;
646 Loc : Source_Ptr) return Node_Id;
647 -- This function returns an identifier denoting the E_Enumeration_Literal
648 -- entity for the specified value from the enumeration type or subtype T.
649 -- The second argument is the Pos value, which is assumed to be in range.
650 -- The third argument supplies a source location for constructed nodes
651 -- returned by this function.
653 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
654 -- Retrieve the fully expanded name of the library unit declared by
655 -- Decl_Node into the name buffer.
657 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
658 pragma Inline (Get_Name_Entity_Id);
659 -- An entity value is associated with each name in the name table. The
660 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
661 -- is the innermost visible entity with the given name. See the body of
662 -- Sem_Ch8 for further details on handling of entity visibility.
664 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
665 -- Return the Name component of Test_Case pragma N
666 -- Bad name now that this no longer applies to Contract_Case ???
668 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
669 pragma Inline (Get_Pragma_Id);
670 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
672 function Get_Referenced_Object (N : Node_Id) return Node_Id;
673 -- Given a node, return the renamed object if the node represents a renamed
674 -- object, otherwise return the node unchanged. The node may represent an
675 -- arbitrary expression.
677 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
678 -- Given an entity for an exception, package, subprogram or generic unit,
679 -- returns the ultimately renamed entity if this is a renaming. If this is
680 -- not a renamed entity, returns its argument. It is an error to call this
681 -- with any other kind of entity.
683 function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
684 -- Return the Requires component of Test_Case pragma N, or Empty otherwise
685 -- Bad name now that this no longer applies to Contract_Case ???
687 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
688 -- Nod is either a procedure call statement, or a function call, or an
689 -- accept statement node. This procedure finds the Entity_Id of the related
690 -- subprogram or entry and returns it, or if no subprogram can be found,
691 -- returns Empty.
693 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
694 -- Given the entity for a subprogram (E_Function or E_Procedure), return
695 -- the corresponding N_Subprogram_Body node. If the corresponding body
696 -- is missing (as for an imported subprogram), return Empty.
698 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
699 pragma Inline (Get_Task_Body_Procedure);
700 -- Given an entity for a task type or subtype, retrieves the
701 -- Task_Body_Procedure field from the corresponding task type declaration.
703 function Has_Access_Values (T : Entity_Id) return Boolean;
704 -- Returns true if type or subtype T is an access type, or has a component
705 -- (at any recursive level) that is an access type. This is a conservative
706 -- predicate, if it is not known whether or not T contains access values
707 -- (happens for generic formals in some cases), then False is returned.
708 -- Note that tagged types return False. Even though the tag is implemented
709 -- as an access type internally, this function tests only for access types
710 -- known to the programmer. See also Has_Tagged_Component.
712 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
713 -- Result of Has_Compatible_Alignment test, description found below. Note
714 -- that the values are arranged in increasing order of problematicness.
716 function Has_Compatible_Alignment
717 (Obj : Entity_Id;
718 Expr : Node_Id) return Alignment_Result;
719 -- Obj is an object entity, and expr is a node for an object reference. If
720 -- the alignment of the object referenced by Expr is known to be compatible
721 -- with the alignment of Obj (i.e. is larger or the same), then the result
722 -- is Known_Compatible. If the alignment of the object referenced by Expr
723 -- is known to be less than the alignment of Obj, then Known_Incompatible
724 -- is returned. If neither condition can be reliably established at compile
725 -- time, then Unknown is returned. This is used to determine if alignment
726 -- checks are required for address clauses, and also whether copies must
727 -- be made when objects are passed by reference.
729 -- Note: Known_Incompatible does not mean that at run time the alignment
730 -- of Expr is known to be wrong for Obj, just that it can be determined
731 -- that alignments have been explicitly or implicitly specified which are
732 -- incompatible (whereas Unknown means that even this is not known). The
733 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
734 -- Unknown, but issue a warning that there may be an alignment error.
736 function Has_Declarations (N : Node_Id) return Boolean;
737 -- Determines if the node can have declarations
739 function Has_Denormals (E : Entity_Id) return Boolean;
740 -- Determines if the floating-point type E supports denormal numbers.
741 -- Returns False if E is not a floating-point type.
743 function Has_Discriminant_Dependent_Constraint
744 (Comp : Entity_Id) return Boolean;
745 -- Returns True if and only if Comp has a constrained subtype that depends
746 -- on a discriminant.
748 function Has_Infinities (E : Entity_Id) return Boolean;
749 -- Determines if the range of the floating-point type E includes
750 -- infinities. Returns False if E is not a floating-point type.
752 function Has_Interfaces
753 (T : Entity_Id;
754 Use_Full_View : Boolean := True) return Boolean;
755 -- Where T is a concurrent type or a record type, returns true if T covers
756 -- any abstract interface types. In case of private types the argument
757 -- Use_Full_View controls if the check is done using its full view (if
758 -- available).
760 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
761 -- This is a simple minded function for determining whether an expression
762 -- has no obvious side effects. It is used only for determining whether
763 -- warnings are needed in certain situations, and is not guaranteed to
764 -- be accurate in either direction. Exceptions may mean an expression
765 -- does in fact have side effects, but this may be ignored and True is
766 -- returned, or a complex expression may in fact be side effect free
767 -- but we don't recognize it here and return False. The Side_Effect_Free
768 -- routine in Remove_Side_Effects is much more extensive and perhaps could
769 -- be shared, so that this routine would be more accurate.
771 function Has_Null_Exclusion (N : Node_Id) return Boolean;
772 -- Determine whether node N has a null exclusion
774 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
775 -- Predicate to determine whether a controlled type has a user-defined
776 -- Initialize primitive (and, in Ada 2012, whether that primitive is
777 -- non-null), which causes the type to not have preelaborable
778 -- initialization.
780 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
781 -- Return True iff type E has preelaborable initialization as defined in
782 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
784 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
785 -- Check if a type has a (sub)component of a private type that has not
786 -- yet received a full declaration.
788 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
789 -- Determines if the floating-point type E supports signed zeros.
790 -- Returns False if E is not a floating-point type.
792 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
793 -- Return whether an array type has static bounds
795 function Has_Stream (T : Entity_Id) return Boolean;
796 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
797 -- case of a composite type, has a component for which this predicate is
798 -- True, and if so returns True. Otherwise a result of False means that
799 -- there is no Stream type in sight. For a private type, the test is
800 -- applied to the underlying type (or returns False if there is no
801 -- underlying type).
803 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
804 -- Returns true if the last character of E is Suffix. Used in Assertions.
806 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
807 -- Returns the name of E adding Suffix
809 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
810 -- Returns the name of E without Suffix
812 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
813 -- Returns True if Typ is a composite type (array or record) which is
814 -- either itself a tagged type, or has a component (recursively) which is
815 -- a tagged type. Returns False for non-composite type, or if no tagged
816 -- component is present. This function is used to check if "=" has to be
817 -- expanded into a bunch component comparisons.
819 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
820 -- Subp is a subprogram marked with pragma Implemented. Return the specific
821 -- implementation requirement which the pragma imposes. The return value is
822 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
824 function Implements_Interface
825 (Typ_Ent : Entity_Id;
826 Iface_Ent : Entity_Id;
827 Exclude_Parents : Boolean := False) return Boolean;
828 -- Returns true if the Typ_Ent implements interface Iface_Ent
830 function In_Instance return Boolean;
831 -- Returns True if the current scope is within a generic instance
833 function In_Instance_Body return Boolean;
834 -- Returns True if current scope is within the body of an instance, where
835 -- several semantic checks (e.g. accessibility checks) are relaxed.
837 function In_Instance_Not_Visible return Boolean;
838 -- Returns True if current scope is with the private part or the body of
839 -- an instance. Other semantic checks are suppressed in this context.
841 function In_Instance_Visible_Part return Boolean;
842 -- Returns True if current scope is within the visible part of a package
843 -- instance, where several additional semantic checks apply.
845 function In_Package_Body return Boolean;
846 -- Returns True if current scope is within a package body
848 function In_Parameter_Specification (N : Node_Id) return Boolean;
849 -- Returns True if node N belongs to a parameter specification
851 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
852 -- Returns True if N denotes a component or subcomponent in a record or
853 -- array that has Reverse_Storage_Order.
855 function In_Subprogram_Or_Concurrent_Unit return Boolean;
856 -- Determines if the current scope is within a subprogram compilation unit
857 -- (inside a subprogram declaration, subprogram body, or generic
858 -- subprogram declaration) or within a task or protected body. The test is
859 -- for appearing anywhere within such a construct (that is it does not need
860 -- to be directly within).
862 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
863 -- Determine whether a declaration occurs within the visible part of a
864 -- package specification. The package must be on the scope stack, and the
865 -- corresponding private part must not.
867 function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
868 -- Given the entity of a type, retrieve the incomplete or private view of
869 -- the same type. Note that Typ may not have a partial view to begin with,
870 -- in that case the function returns Empty.
872 procedure Insert_Explicit_Dereference (N : Node_Id);
873 -- In a context that requires a composite or subprogram type and where a
874 -- prefix is an access type, rewrite the access type node N (which is the
875 -- prefix, e.g. of an indexed component) as an explicit dereference.
877 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
878 -- Examine all deferred constants in the declaration list Decls and check
879 -- whether they have been completed by a full constant declaration or an
880 -- Import pragma. Emit the error message if that is not the case.
882 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
883 -- Determines if N is an actual parameter of out mode in a subprogram call
885 function Is_Actual_Parameter (N : Node_Id) return Boolean;
886 -- Determines if N is an actual parameter in a subprogram call
888 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
889 -- Determines if N is an actual parameter of a formal of tagged type in a
890 -- subprogram call.
892 function Is_Aliased_View (Obj : Node_Id) return Boolean;
893 -- Determine if Obj is an aliased view, i.e. the name of an object to which
894 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
895 -- rules of the language, it does not take into account the restriction
896 -- No_Implicit_Aliasing, so it can return True if the restriction is active
897 -- and Obj violates the restriction. The caller is responsible for calling
898 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
899 -- requirement for obeying the restriction in the call context.
901 function Is_Ancestor_Package
902 (E1 : Entity_Id;
903 E2 : Entity_Id) return Boolean;
904 -- Determine whether package E1 is an ancestor of E2
906 function Is_Atomic_Object (N : Node_Id) return Boolean;
907 -- Determines if the given node denotes an atomic object in the sense of
908 -- the legality checks described in RM C.6(12).
910 function Is_Attribute_Result (N : Node_Id) return Boolean;
911 -- Determine whether node N denotes attribute 'Result
913 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
914 -- Determine whether node N denotes a body or a package declaration
916 function Is_Bounded_String (T : Entity_Id) return Boolean;
917 -- True if T is a bounded string type. Used to make sure "=" composes
918 -- properly for bounded string types.
920 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
921 -- Exp is the expression for an array bound. Determines whether the
922 -- bound is a compile-time known value, or a constant entity, or an
923 -- enumeration literal, or an expression composed of constant-bound
924 -- subexpressions which are evaluated by means of standard operators.
926 function Is_Controlling_Limited_Procedure
927 (Proc_Nam : Entity_Id) return Boolean;
928 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
929 -- of a limited interface with a controlling first parameter.
931 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
932 -- Returns True if N is a call to a CPP constructor
934 function Is_Dependent_Component_Of_Mutable_Object
935 (Object : Node_Id) return Boolean;
936 -- Returns True if Object is the name of a subcomponent that depends on
937 -- discriminants of a variable whose nominal subtype is unconstrained and
938 -- not indefinite, and the variable is not aliased. Otherwise returns
939 -- False. The nodes passed to this function are assumed to denote objects.
941 function Is_Dereferenced (N : Node_Id) return Boolean;
942 -- N is a subexpression node of an access type. This function returns true
943 -- if N appears as the prefix of a node that does a dereference of the
944 -- access value (selected/indexed component, explicit dereference or a
945 -- slice), and false otherwise.
947 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
948 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
949 -- This is the RM definition, a type is a descendent of another type if it
950 -- is the same type or is derived from a descendent of the other type.
952 function Is_Child_Or_Sibling
953 (Pack_1 : Entity_Id;
954 Pack_2 : Entity_Id;
955 Private_Child : Boolean) return Boolean;
956 -- Determine the following relations between two arbitrary packages:
957 -- 1) One package is the parent of a child package
958 -- 2) Both packages are siblings and share a common parent
959 -- If flag Private_Child is set, then the child in case 1) or both siblings
960 -- in case 2) must be private.
962 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
963 -- First determine whether type T is an interface and then check whether
964 -- it is of protected, synchronized or task kind.
966 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
967 -- Predicate to determine whether a scope entity comes from a rewritten
968 -- expression function call, and should be inlined unconditionally. Also
969 -- used to determine that such a call does not constitute a freeze point.
971 function Is_False (U : Uint) return Boolean;
972 pragma Inline (Is_False);
973 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
974 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
975 -- if it is False (i.e. zero).
977 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
978 -- Returns True iff the number U is a model number of the fixed-point type
979 -- T, i.e. if it is an exact multiple of Small.
981 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
982 -- Typ is a type entity. This function returns true if this type is fully
983 -- initialized, meaning that an object of the type is fully initialized.
984 -- Note that initialization resulting from use of pragma Normalized_Scalars
985 -- does not count. Note that this is only used for the purpose of issuing
986 -- warnings for objects that are potentially referenced uninitialized. This
987 -- means that the result returned is not crucial, but should err on the
988 -- side of thinking things are fully initialized if it does not know.
990 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
991 -- E is a subprogram. Return True is E is an implicit operation inherited
992 -- by a derived type declaration.
994 function Is_Inherited_Operation_For_Type
995 (E : Entity_Id;
996 Typ : Entity_Id) return Boolean;
997 -- E is a subprogram. Return True is E is an implicit operation inherited
998 -- by the derived type declaration for type Typ.
1000 function Is_Iterator (Typ : Entity_Id) return Boolean;
1001 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1002 -- Ada.Iterator_Interfaces, or it is derived from one.
1004 function Is_LHS (N : Node_Id) return Boolean;
1005 -- Returns True iff N is used as Name in an assignment statement
1007 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1008 -- A library-level declaration is one that is accessible from Standard,
1009 -- i.e. a library unit or an entity declared in a library package.
1011 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1012 -- Determine whether a given type is a limited class-wide type, in which
1013 -- case it needs a Master_Id, because extensions of its designated type
1014 -- may include task components. A class-wide type that comes from a
1015 -- limited view must be treated in the same way.
1017 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1018 -- Determines whether Expr is a reference to a variable or IN OUT mode
1019 -- parameter of the current enclosing subprogram.
1020 -- Why are OUT parameters not considered here ???
1022 function Is_Object_Reference (N : Node_Id) return Boolean;
1023 -- Determines if the tree referenced by N represents an object. Both
1024 -- variable and constant objects return True (compare Is_Variable).
1026 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1027 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1028 -- Note that the Is_Variable function is not quite the right test because
1029 -- this is a case in which conversions whose expression is a variable (in
1030 -- the Is_Variable sense) with a non-tagged type target are considered view
1031 -- conversions and hence variables.
1033 function Is_Partially_Initialized_Type
1034 (Typ : Entity_Id;
1035 Include_Implicit : Boolean := True) return Boolean;
1036 -- Typ is a type entity. This function returns true if this type is partly
1037 -- initialized, meaning that an object of the type is at least partly
1038 -- initialized (in particular in the record case, that at least one
1039 -- component has an initialization expression). Note that initialization
1040 -- resulting from the use of pragma Normalized_Scalars does not count.
1041 -- Include_Implicit controls whether implicit initialization of access
1042 -- values to null, and of discriminant values, is counted as making the
1043 -- type be partially initialized. For the default setting of True, these
1044 -- implicit cases do count, and discriminated types or types containing
1045 -- access values not explicitly initialized will return True. Otherwise
1046 -- if Include_Implicit is False, these cases do not count as making the
1047 -- type be partially initialized.
1049 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1050 -- Determines if type T is a potentially persistent type. A potentially
1051 -- persistent type is defined (recursively) as a scalar type, a non-tagged
1052 -- record whose components are all of a potentially persistent type, or an
1053 -- array with all static constraints whose component type is potentially
1054 -- persistent. A private type is potentially persistent if the full type
1055 -- is potentially persistent.
1057 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1058 -- Return True if node N denotes a protected type name which represents
1059 -- the current instance of a protected object according to RM 9.4(21/2).
1061 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1062 -- Return True if a compilation unit is the specification or the
1063 -- body of a remote call interface package.
1065 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1066 -- Return True if E is a remote access-to-class-wide type
1068 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1069 -- Return True if E is a remote access to subprogram type
1071 function Is_Remote_Call (N : Node_Id) return Boolean;
1072 -- Return True if N denotes a potentially remote call
1074 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1075 -- Return True if Proc_Nam is a procedure renaming of an entry
1077 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1078 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1079 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1081 function Is_Selector_Name (N : Node_Id) return Boolean;
1082 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1083 -- As described in Sinfo, Selector_Names are special because they
1084 -- represent use of the N_Identifier node for a true identifier, when
1085 -- normally such nodes represent a direct name.
1087 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
1088 -- Determines if the tree referenced by N represents an initialization
1089 -- expression in SPARK, suitable for initializing an object in an object
1090 -- declaration.
1092 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1093 -- Determines if the tree referenced by N represents an object in SPARK
1095 function Is_Statement (N : Node_Id) return Boolean;
1096 pragma Inline (Is_Statement);
1097 -- Check if the node N is a statement node. Note that this includes
1098 -- the case of procedure call statements (unlike the direct use of
1099 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1100 -- Note that a label is *not* a statement, and will return False.
1102 function Is_Subprogram_Stub_Without_Prior_Declaration
1103 (N : Node_Id) return Boolean;
1104 -- Return True if N is a subprogram stub with no prior subprogram
1105 -- declaration.
1107 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1108 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1110 function Is_Transfer (N : Node_Id) return Boolean;
1111 -- Returns True if the node N is a statement which is known to cause an
1112 -- unconditional transfer of control at runtime, i.e. the following
1113 -- statement definitely will not be executed.
1115 function Is_True (U : Uint) return Boolean;
1116 pragma Inline (Is_True);
1117 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1118 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1119 -- if it is True (i.e. non-zero).
1121 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1122 pragma Inline (Is_Universal_Numeric_Type);
1123 -- True if T is Universal_Integer or Universal_Real
1125 function Is_Value_Type (T : Entity_Id) return Boolean;
1126 -- Returns true if type T represents a value type. This is only relevant to
1127 -- CIL, will always return false for other targets. A value type is a CIL
1128 -- object that is accessed directly, as opposed to the other CIL objects
1129 -- that are accessed through managed pointers.
1131 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1132 -- Returns true if E has variable size components
1134 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1135 -- Returns true if E has variable size components
1137 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1138 -- Determine whether an operator is one of the intrinsics defined
1139 -- in the DEC system extension.
1141 function Is_Delegate (T : Entity_Id) return Boolean;
1142 -- Returns true if type T represents a delegate. A Delegate is the CIL
1143 -- object used to represent access-to-subprogram types. This is only
1144 -- relevant to CIL, will always return false for other targets.
1146 function Is_Variable
1147 (N : Node_Id;
1148 Use_Original_Node : Boolean := True) return Boolean;
1149 -- Determines if the tree referenced by N represents a variable, i.e. can
1150 -- appear on the left side of an assignment. There is one situation (formal
1151 -- parameters) in which non-tagged type conversions are also considered
1152 -- variables, but Is_Variable returns False for such cases, since it has
1153 -- no knowledge of the context. Note that this is the point at which
1154 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1155 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1156 -- default is True since this routine is commonly invoked as part of the
1157 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1159 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1160 -- Check whether T is derived from a visibly controlled type. This is true
1161 -- if the root type is declared in Ada.Finalization. If T is derived
1162 -- instead from a private type whose full view is controlled, an explicit
1163 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1164 -- one.
1166 function Is_Volatile_Object (N : Node_Id) return Boolean;
1167 -- Determines if the given node denotes an volatile object in the sense of
1168 -- the legality checks described in RM C.6(12). Note that the test here is
1169 -- for something actually declared as volatile, not for an object that gets
1170 -- treated as volatile (see Einfo.Treat_As_Volatile).
1172 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1173 -- Applies to Itypes. True if the Itype is attached to a declaration for
1174 -- the type through its Parent field, which may or not be present in the
1175 -- tree.
1177 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1178 -- This procedure is called to clear all constant indications from all
1179 -- entities in the current scope and in any parent scopes if the current
1180 -- scope is a block or a package (and that recursion continues to the top
1181 -- scope that is not a block or a package). This is used when the
1182 -- sequential flow-of-control assumption is violated (occurrence of a
1183 -- label, head of a loop, or start of an exception handler). The effect of
1184 -- the call is to clear the Current_Value field (but we do not need to
1185 -- clear the Is_True_Constant flag, since that only gets reset if there
1186 -- really is an assignment somewhere in the entity scope). This procedure
1187 -- also calls Kill_All_Checks, since this is a special case of needing to
1188 -- forget saved values. This procedure also clears the Is_Known_Null and
1189 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1190 -- parameters since these are also not known to be trustable any more.
1192 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1193 -- fields and leave other fields unchanged. This is used when we encounter
1194 -- an unconditional flow of control change (return, goto, raise). In such
1195 -- cases we don't need to clear the current values, since it may be that
1196 -- the flow of control change occurs in a conditional context, and if it
1197 -- is not taken, then it is just fine to keep the current values. But the
1198 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1199 -- conditional-return, assign-to-v, we do not want to complain that the
1200 -- second assignment clobbers the first.
1202 procedure Kill_Current_Values
1203 (Ent : Entity_Id;
1204 Last_Assignment_Only : Boolean := False);
1205 -- This performs the same processing as described above for the form with
1206 -- no argument, but for the specific entity given. The call has no effect
1207 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1208 -- same meaning as for the call with no Ent.
1210 procedure Kill_Size_Check_Code (E : Entity_Id);
1211 -- Called when an address clause or pragma Import is applied to an entity.
1212 -- If the entity is a variable or a constant, and size check code is
1213 -- present, this size check code is killed, since the object will not be
1214 -- allocated by the program.
1216 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1217 -- The node N is an entity reference. This function determines whether the
1218 -- reference is for sure an assignment of the entity, returning True if
1219 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1220 -- direction. Cases which may possibly be assignments but are not known to
1221 -- be may return True from May_Be_Lvalue, but False from this function.
1223 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1224 -- HSS is a handled statement sequence. This function returns the last
1225 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1226 -- such statement exists, Empty is returned.
1228 function Matching_Static_Array_Bounds
1229 (L_Typ : Node_Id;
1230 R_Typ : Node_Id) return Boolean;
1231 -- L_Typ and R_Typ are two array types. Returns True when they have the
1232 -- same number of dimensions, and the same static bounds for each index
1233 -- position.
1235 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1236 -- Given a node which designates the context of analysis and an origin in
1237 -- the tree, traverse from Root_Nod and mark all allocators as either
1238 -- dynamic or static depending on Context_Nod. Any erroneous marking is
1239 -- cleaned up during resolution.
1241 function May_Be_Lvalue (N : Node_Id) return Boolean;
1242 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1243 -- An lvalue is defined as any expression which appears in a context where
1244 -- a name is required by the syntax, and the identity, rather than merely
1245 -- the value of the node is needed (for example, the prefix of an Access
1246 -- attribute is in this category). Note that, as implied by the name, this
1247 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1248 -- it returns True. It tries hard to get the answer right, but it is hard
1249 -- to guarantee this in all cases. Note that it is more possible to give
1250 -- correct answer if the tree is fully analyzed.
1252 function Must_Inline (Subp : Entity_Id) return Boolean;
1253 -- Return true if Subp must be inlined by the frontend
1255 function Needs_One_Actual (E : Entity_Id) return Boolean;
1256 -- Returns True if a function has defaults for all but its first
1257 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1258 -- results from an indexing of a function call written in prefix form.
1260 function New_Copy_List_Tree (List : List_Id) return List_Id;
1261 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1262 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1263 -- nodes (entities) either directly or indirectly using this function.
1265 function New_Copy_Tree
1266 (Source : Node_Id;
1267 Map : Elist_Id := No_Elist;
1268 New_Sloc : Source_Ptr := No_Location;
1269 New_Scope : Entity_Id := Empty) return Node_Id;
1270 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1271 -- syntactic subtree, including recursively any descendents whose parent
1272 -- field references a copied node (descendents not linked to a copied node
1273 -- by the parent field are not copied, instead the copied tree references
1274 -- the same descendent as the original in this case, which is appropriate
1275 -- for non-syntactic fields such as Etype). The parent pointers in the
1276 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1277 -- The one exception to the rule of not copying semantic fields is that
1278 -- any implicit types attached to the subtree are duplicated, so that
1279 -- the copy contains a distinct set of implicit type entities. Thus this
1280 -- function is used when it is necessary to duplicate an analyzed tree,
1281 -- declared in the same or some other compilation unit. This function is
1282 -- declared here rather than in atree because it uses semantic information
1283 -- in particular concerning the structure of itypes and the generation of
1284 -- public symbols.
1286 -- The Map argument, if set to a non-empty Elist, specifies a set of
1287 -- mappings to be applied to entities in the tree. The map has the form:
1289 -- old entity 1
1290 -- new entity to replace references to entity 1
1291 -- old entity 2
1292 -- new entity to replace references to entity 2
1293 -- ...
1295 -- The call destroys the contents of Map in this case
1297 -- The parameter New_Sloc, if set to a value other than No_Location, is
1298 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1299 -- set to its default value No_Location, then the Sloc values of the
1300 -- nodes in the copy are simply copied from the corresponding original.
1302 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1303 -- the default No_Location value, but is reset if New_Sloc is given, since
1304 -- in this case the result clearly is neither a source node or an exact
1305 -- copy of a source node.
1307 -- The parameter New_Scope, if set to a value other than Empty, is the
1308 -- value to use as the Scope for any Itypes that are copied. The most
1309 -- typical value for this parameter, if given, is Current_Scope.
1311 function New_External_Entity
1312 (Kind : Entity_Kind;
1313 Scope_Id : Entity_Id;
1314 Sloc_Value : Source_Ptr;
1315 Related_Id : Entity_Id;
1316 Suffix : Character;
1317 Suffix_Index : Nat := 0;
1318 Prefix : Character := ' ') return Entity_Id;
1319 -- This function creates an N_Defining_Identifier node for an internal
1320 -- created entity, such as an implicit type or subtype, or a record
1321 -- initialization procedure. The entity name is constructed with a call
1322 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1323 -- that the generated name may be referenced as a public entry, and the
1324 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1325 -- entity is for a type or subtype, the size/align fields are initialized
1326 -- to unknown (Uint_0).
1328 function New_Internal_Entity
1329 (Kind : Entity_Kind;
1330 Scope_Id : Entity_Id;
1331 Sloc_Value : Source_Ptr;
1332 Id_Char : Character) return Entity_Id;
1333 -- This function is similar to New_External_Entity, except that the
1334 -- name is constructed by New_Internal_Name (Id_Char). This is used
1335 -- when the resulting entity does not have to be referenced as a
1336 -- public entity (and in this case Is_Public is not set).
1338 procedure Next_Actual (Actual_Id : in out Node_Id);
1339 pragma Inline (Next_Actual);
1340 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1341 -- inline this procedural form, but not the functional form that follows.
1343 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1344 -- Find next actual parameter in declaration order. As described for
1345 -- First_Actual, this is the next actual in the declaration order, not
1346 -- the call order, so this does not correspond to simply taking the
1347 -- next entry of the Parameter_Associations list. The argument is an
1348 -- actual previously returned by a call to First_Actual or Next_Actual.
1349 -- Note that the result produced is always an expression, not a parameter
1350 -- association node, even if named notation was used.
1352 function No_Scalar_Parts (T : Entity_Id) return Boolean;
1353 -- Tests if type T can be determined at compile time to have no scalar
1354 -- parts in the sense of the Valid_Scalars attribute. Returns True if
1355 -- this is the case, meaning that the result of Valid_Scalars is True.
1357 procedure Normalize_Actuals
1358 (N : Node_Id;
1359 S : Entity_Id;
1360 Report : Boolean;
1361 Success : out Boolean);
1362 -- Reorders lists of actuals according to names of formals, value returned
1363 -- in Success indicates success of reordering. For more details, see body.
1364 -- Errors are reported only if Report is set to True.
1366 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1367 -- This routine is called if the sub-expression N maybe the target of
1368 -- an assignment (e.g. it is the left side of an assignment, used as
1369 -- an out parameters, or used as prefixes of access attributes). It
1370 -- sets May_Be_Modified in the associated entity if there is one,
1371 -- taking into account the rule that in the case of renamed objects,
1372 -- it is the flag in the renamed object that must be set.
1374 -- The parameter Sure is set True if the modification is sure to occur
1375 -- (e.g. target of assignment, or out parameter), and to False if the
1376 -- modification is only potential (e.g. address of entity taken).
1378 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1379 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1380 -- or overrides an inherited dispatching primitive S2, the original
1381 -- corresponding operation of S is the original corresponding operation of
1382 -- S2. Otherwise, it is S itself.
1384 function Object_Access_Level (Obj : Node_Id) return Uint;
1385 -- Return the accessibility level of the view of the object Obj. For
1386 -- convenience, qualified expressions applied to object names are also
1387 -- allowed as actuals for this function.
1389 function Original_Aspect_Name (N : Node_Id) return Name_Id;
1390 -- N is a pragma node or aspect specification node. This function returns
1391 -- the name of the pragma or aspect in original source form, taking into
1392 -- account possible rewrites, and also cases where a pragma comes from an
1393 -- aspect (in such cases, the name can be different from the pragma name,
1394 -- e.g. a Pre aspect generates a Precondition pragma). This also deals with
1395 -- the presence of 'Class, which results in one of the special names
1396 -- Name_uPre, Name_uPost, Name_uInvariant, or Name_uType_Invariant being
1397 -- returned to represent the corresponding aspects with x'Class names.
1399 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1400 -- Returns True if the names of both entities correspond with matching
1401 -- primitives. This routine includes support for the case in which one
1402 -- or both entities correspond with entities built by Derive_Subprogram
1403 -- with a special name to avoid being overridden (i.e. return true in case
1404 -- of entities with names "nameP" and "name" or vice versa).
1406 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1407 -- Returns some private component (if any) of the given Type_Id.
1408 -- Used to enforce the rules on visibility of operations on composite
1409 -- types, that depend on the full view of the component type. For a
1410 -- record type there may be several such components, we just return
1411 -- the first one.
1413 procedure Process_End_Label
1414 (N : Node_Id;
1415 Typ : Character;
1416 Ent : Entity_Id);
1417 -- N is a node whose End_Label is to be processed, generating all
1418 -- appropriate cross-reference entries, and performing style checks
1419 -- for any identifier references in the end label. Typ is either
1420 -- 'e' or 't indicating the type of the cross-reference entity
1421 -- (e for spec, t for body, see Lib.Xref spec for details). The
1422 -- parameter Ent gives the entity to which the End_Label refers,
1423 -- and to which cross-references are to be generated.
1425 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1426 -- Determine whether entity Id is referenced within expression Expr
1428 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1429 -- Returns True if the expression Expr contains any references to a
1430 -- generic type. This can only happen within a generic template.
1432 procedure Remove_Homonym (E : Entity_Id);
1433 -- Removes E from the homonym chain
1435 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1436 -- This is used to construct the second argument in a call to Rep_To_Pos
1437 -- which is Standard_True if range checks are enabled (E is an entity to
1438 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1439 -- if range checks are suppressed. Loc is the location for the node that
1440 -- is returned (which is a New_Occurrence of the appropriate entity).
1442 -- Note: one might think that it would be fine to always use True and
1443 -- to ignore the suppress in this case, but it is generally better to
1444 -- believe a request to suppress exceptions if possible, and further
1445 -- more there is at least one case in the generated code (the code for
1446 -- array assignment in a loop) that depends on this suppression.
1448 procedure Require_Entity (N : Node_Id);
1449 -- N is a node which should have an entity value if it is an entity name.
1450 -- If not, then check if there were previous errors. If so, just fill
1451 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1452 -- This is used as a defense mechanism against ill-formed trees caused by
1453 -- previous errors (particularly in -gnatq mode).
1455 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1456 -- Id is a type entity. The result is True when temporaries of this type
1457 -- need to be wrapped in a transient scope to be reclaimed properly when a
1458 -- secondary stack is in use. Examples of types requiring such wrapping are
1459 -- controlled types and variable-sized types including unconstrained
1460 -- arrays.
1462 procedure Reset_Analyzed_Flags (N : Node_Id);
1463 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1465 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1466 -- Return true if Subp is a function that returns an unconstrained type
1468 function Safe_To_Capture_Value
1469 (N : Node_Id;
1470 Ent : Entity_Id;
1471 Cond : Boolean := False) return Boolean;
1472 -- The caller is interested in capturing a value (either the current value,
1473 -- or an indication that the value is non-null) for the given entity Ent.
1474 -- This value can only be captured if sequential execution semantics can be
1475 -- properly guaranteed so that a subsequent reference will indeed be sure
1476 -- that this current value indication is correct. The node N is the
1477 -- construct which resulted in the possible capture of the value (this
1478 -- is used to check if we are in a conditional).
1480 -- Cond is used to skip the test for being inside a conditional. It is used
1481 -- in the case of capturing values from if/while tests, which already do a
1482 -- proper job of handling scoping issues without this help.
1484 -- The only entities whose values can be captured are OUT and IN OUT formal
1485 -- parameters, and variables unless Cond is True, in which case we also
1486 -- allow IN formals, loop parameters and constants, where we cannot ever
1487 -- capture actual value information, but we can capture conditional tests.
1489 function Same_Name (N1, N2 : Node_Id) return Boolean;
1490 -- Determine if two (possibly expanded) names are the same name. This is
1491 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1493 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1494 -- Determine if Node1 and Node2 are known to designate the same object.
1495 -- This is a semantic test and both nodes must be fully analyzed. A result
1496 -- of True is decisively correct. A result of False does not necessarily
1497 -- mean that different objects are designated, just that this could not
1498 -- be reliably determined at compile time.
1500 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1501 -- Determines if T1 and T2 represent exactly the same type. Two types
1502 -- are the same if they are identical, or if one is an unconstrained
1503 -- subtype of the other, or they are both common subtypes of the same
1504 -- type with identical constraints. The result returned is conservative.
1505 -- It is True if the types are known to be the same, but a result of
1506 -- False is indecisive (e.g. the compiler may not be able to tell that
1507 -- two constraints are identical).
1509 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1510 -- Determines if Node1 and Node2 are known to be the same value, which is
1511 -- true if they are both compile time known values and have the same value,
1512 -- or if they are the same object (in the sense of function Same_Object).
1513 -- A result of False does not necessarily mean they have different values,
1514 -- just that it is not possible to determine they have the same value.
1516 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1517 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1518 -- inside it, where both entities represent scopes. Note that scopes
1519 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1520 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1522 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1523 -- Like Scope_Within_Or_Same, except that this function returns
1524 -- False in the case where Scope1 and Scope2 are the same scope.
1526 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1527 -- Same as Basic_Set_Convention, but with an extra check for access types.
1528 -- In particular, if E is an access-to-subprogram type, and Val is a
1529 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1531 procedure Set_Current_Entity (E : Entity_Id);
1532 pragma Inline (Set_Current_Entity);
1533 -- Establish the entity E as the currently visible definition of its
1534 -- associated name (i.e. the Node_Id associated with its name).
1536 procedure Set_Debug_Info_Needed (T : Entity_Id);
1537 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1538 -- that are needed by T (for an object, the type of the object is needed,
1539 -- and for a type, various subsidiary types are needed -- see body for
1540 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1541 -- This routine should always be used instead of Set_Needs_Debug_Info to
1542 -- ensure that subsidiary entities are properly handled.
1544 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1545 -- This procedure has the same calling sequence as Set_Entity, but
1546 -- if Style_Check is set, then it calls a style checking routine which
1547 -- can check identifier spelling style. This procedure also takes care
1548 -- of checking the restriction No_Implementation_Identifiers.
1550 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1551 pragma Inline (Set_Name_Entity_Id);
1552 -- Sets the Entity_Id value associated with the given name, which is the
1553 -- Id of the innermost visible entity with the given name. See the body
1554 -- of package Sem_Ch8 for further details on the handling of visibility.
1556 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1557 -- The arguments may be parameter associations, whose descendants
1558 -- are the optional formal name and the actual parameter. Positional
1559 -- parameters are already members of a list, and do not need to be
1560 -- chained separately. See also First_Actual and Next_Actual.
1562 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1563 pragma Inline (Set_Optimize_Alignment_Flags);
1564 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1566 procedure Set_Public_Status (Id : Entity_Id);
1567 -- If an entity (visible or otherwise) is defined in a library
1568 -- package, or a package that is itself public, then this subprogram
1569 -- labels the entity public as well.
1571 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1572 -- N is the node for either a left hand side (Out_Param set to False),
1573 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1574 -- an assignable entity being referenced, then the appropriate flag
1575 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1576 -- if Out_Param is True) is set True, and the other flag set False.
1578 procedure Set_Scope_Is_Transient (V : Boolean := True);
1579 -- Set the flag Is_Transient of the current scope
1581 procedure Set_Size_Info (T1, T2 : Entity_Id);
1582 pragma Inline (Set_Size_Info);
1583 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1584 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1585 -- in the fixed-point and discrete cases, and also copies the alignment
1586 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1587 -- separately set if this is required to be copied also.
1589 function Scope_Is_Transient return Boolean;
1590 -- True if the current scope is transient
1592 function Static_Boolean (N : Node_Id) return Uint;
1593 -- This function analyzes the given expression node and then resolves it
1594 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1595 -- returned corresponding to the value, otherwise an error message is
1596 -- output and No_Uint is returned.
1598 function Static_Integer (N : Node_Id) return Uint;
1599 -- This function analyzes the given expression node and then resolves it
1600 -- as any integer type. If the result is static, then the value of the
1601 -- universal expression is returned, otherwise an error message is output
1602 -- and a value of No_Uint is returned.
1604 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1605 -- Return True if it can be statically determined that the Expressions
1606 -- E1 and E2 refer to different objects
1608 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
1609 -- Determine whether node N is a loop statement subject to at least one
1610 -- 'Loop_Entry attribute.
1612 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1613 -- Return the accessibility level of the view denoted by Subp
1615 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1616 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
1617 -- Typ is properly sized and aligned).
1619 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1620 -- Print debugging information on entry to each unit being analyzed
1622 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1623 -- Move a list of entities from one scope to another, and recompute
1624 -- Is_Public based upon the new scope.
1626 function Type_Access_Level (Typ : Entity_Id) return Uint;
1627 -- Return the accessibility level of Typ
1629 function Type_Without_Stream_Operation
1630 (T : Entity_Id;
1631 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1632 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1633 -- is active then we cannot generate stream subprograms for composite types
1634 -- with elementary subcomponents that lack user-defined stream subprograms.
1635 -- This predicate determines whether a type has such an elementary
1636 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1637 -- prevents the construction of a composite stream operation. If Op is
1638 -- specified we check only for the given stream operation.
1640 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1641 -- Return the entity which represents declaration N, so that different
1642 -- views of the same entity have the same unique defining entity:
1643 -- * package spec and body;
1644 -- * subprogram declaration, subprogram stub and subprogram body;
1645 -- * private view and full view of a type;
1646 -- * private view and full view of a deferred constant.
1647 -- In other cases, return the defining entity for N.
1649 function Unique_Entity (E : Entity_Id) return Entity_Id;
1650 -- Return the unique entity for entity E, which would be returned by
1651 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1653 function Unique_Name (E : Entity_Id) return String;
1654 -- Return a unique name for entity E, which could be used to identify E
1655 -- across compilation units.
1657 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1658 -- Determine whether a compilation unit is visible in the current context,
1659 -- because there is a with_clause that makes the unit available. Used to
1660 -- provide better messages on common visiblity errors on operators.
1662 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1663 -- Yields Universal_Integer or Universal_Real if this is a candidate
1665 function Unqualify (Expr : Node_Id) return Node_Id;
1666 pragma Inline (Unqualify);
1667 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1668 -- returns X. If Expr is not a qualified expression, returns Expr.
1670 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1671 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1672 -- of a type extension or private extension declaration. If the full-view
1673 -- of private parents and progenitors is available then it is used to
1674 -- generate the list of visible ancestors; otherwise their partial
1675 -- view is added to the resulting list.
1677 function Within_Init_Proc return Boolean;
1678 -- Determines if Current_Scope is within an init proc
1680 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1681 -- Output error message for incorrectly typed expression. Expr is the node
1682 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1683 -- and Expected_Type is the entity for the expected type. Note that Expr
1684 -- does not have to be a subexpression, anything with an Etype field may
1685 -- be used.
1687 end Sem_Util;