PR target/58115
[official-gcc.git] / gcc / ada / freeze.adb
blobf6c60678143c85dcfcd91ea1ee3aacfb55a61d8d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch7; use Sem_Ch7;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Ch9; use Sem_Ch9;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Prag; use Sem_Prag;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sinfo; use Sinfo;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Ttypes; use Ttypes;
66 with Uintp; use Uintp;
67 with Urealp; use Urealp;
69 package body Freeze is
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
76 -- Typ is a type that is being frozen. If no size clause is given,
77 -- but a default Esize has been computed, then this default Esize is
78 -- adjusted up if necessary to be consistent with a given alignment,
79 -- but never to a value greater than Long_Long_Integer'Size. This
80 -- is used for all discrete types and for fixed-point types.
82 procedure Build_And_Analyze_Renamed_Body
83 (Decl : Node_Id;
84 New_S : Entity_Id;
85 After : in out Node_Id);
86 -- Build body for a renaming declaration, insert in tree and analyze
88 procedure Check_Address_Clause (E : Entity_Id);
89 -- Apply legality checks to address clauses for object declarations,
90 -- at the point the object is frozen. Also ensure any initialization is
91 -- performed only after the object has been frozen.
93 procedure Check_Component_Storage_Order
94 (Encl_Type : Entity_Id;
95 Comp : Entity_Id;
96 ADC : Node_Id);
97 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
98 -- clause, verify that the component type has an explicit and compatible
99 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
100 -- entity of the component under consideration. For an Encl_Type that
101 -- does not have a Scalar_Storage_Order attribute definition clause,
102 -- verify that the component also does not have such a clause.
103 -- ADC is the attribute definition clause if present (or Empty).
105 procedure Check_Strict_Alignment (E : Entity_Id);
106 -- E is a base type. If E is tagged or has a component that is aliased
107 -- or tagged or contains something this is aliased or tagged, set
108 -- Strict_Alignment.
110 procedure Check_Unsigned_Type (E : Entity_Id);
111 pragma Inline (Check_Unsigned_Type);
112 -- If E is a fixed-point or discrete type, then all the necessary work
113 -- to freeze it is completed except for possible setting of the flag
114 -- Is_Unsigned_Type, which is done by this procedure. The call has no
115 -- effect if the entity E is not a discrete or fixed-point type.
117 procedure Freeze_And_Append
118 (Ent : Entity_Id;
119 N : Node_Id;
120 Result : in out List_Id);
121 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
122 -- nodes to Result, modifying Result from No_List if necessary. N has
123 -- the same usage as in Freeze_Entity.
125 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
126 -- Freeze enumeration type. The Esize field is set as processing
127 -- proceeds (i.e. set by default when the type is declared and then
128 -- adjusted by rep clauses. What this procedure does is to make sure
129 -- that if a foreign convention is specified, and no specific size
130 -- is given, then the size must be at least Integer'Size.
132 procedure Freeze_Static_Object (E : Entity_Id);
133 -- If an object is frozen which has Is_Statically_Allocated set, then
134 -- all referenced types must also be marked with this flag. This routine
135 -- is in charge of meeting this requirement for the object entity E.
137 procedure Freeze_Subprogram (E : Entity_Id);
138 -- Perform freezing actions for a subprogram (create extra formals,
139 -- and set proper default mechanism values). Note that this routine
140 -- is not called for internal subprograms, for which neither of these
141 -- actions is needed (or desirable, we do not want for example to have
142 -- these extra formals present in initialization procedures, where they
143 -- would serve no purpose). In this call E is either a subprogram or
144 -- a subprogram type (i.e. an access to a subprogram).
146 function Is_Fully_Defined (T : Entity_Id) return Boolean;
147 -- True if T is not private and has no private components, or has a full
148 -- view. Used to determine whether the designated type of an access type
149 -- should be frozen when the access type is frozen. This is done when an
150 -- allocator is frozen, or an expression that may involve attributes of
151 -- the designated type. Otherwise freezing the access type does not freeze
152 -- the designated type.
154 procedure Process_Default_Expressions
155 (E : Entity_Id;
156 After : in out Node_Id);
157 -- This procedure is called for each subprogram to complete processing of
158 -- default expressions at the point where all types are known to be frozen.
159 -- The expressions must be analyzed in full, to make sure that all error
160 -- processing is done (they have only been pre-analyzed). If the expression
161 -- is not an entity or literal, its analysis may generate code which must
162 -- not be executed. In that case we build a function body to hold that
163 -- code. This wrapper function serves no other purpose (it used to be
164 -- called to evaluate the default, but now the default is inlined at each
165 -- point of call).
167 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
168 -- Typ is a record or array type that is being frozen. This routine sets
169 -- the default component alignment from the scope stack values if the
170 -- alignment is otherwise not specified.
172 procedure Check_Debug_Info_Needed (T : Entity_Id);
173 -- As each entity is frozen, this routine is called to deal with the
174 -- setting of Debug_Info_Needed for the entity. This flag is set if
175 -- the entity comes from source, or if we are in Debug_Generated_Code
176 -- mode or if the -gnatdV debug flag is set. However, it never sets
177 -- the flag if Debug_Info_Off is set. This procedure also ensures that
178 -- subsidiary entities have the flag set as required.
180 procedure Undelay_Type (T : Entity_Id);
181 -- T is a type of a component that we know to be an Itype. We don't want
182 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
183 -- Full_View or Corresponding_Record_Type.
185 procedure Warn_Overlay
186 (Expr : Node_Id;
187 Typ : Entity_Id;
188 Nam : Node_Id);
189 -- Expr is the expression for an address clause for entity Nam whose type
190 -- is Typ. If Typ has a default initialization, and there is no explicit
191 -- initialization in the source declaration, check whether the address
192 -- clause might cause overlaying of an entity, and emit a warning on the
193 -- side effect that the initialization will cause.
195 -------------------------------
196 -- Adjust_Esize_For_Alignment --
197 -------------------------------
199 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
200 Align : Uint;
202 begin
203 if Known_Esize (Typ) and then Known_Alignment (Typ) then
204 Align := Alignment_In_Bits (Typ);
206 if Align > Esize (Typ)
207 and then Align <= Standard_Long_Long_Integer_Size
208 then
209 Set_Esize (Typ, Align);
210 end if;
211 end if;
212 end Adjust_Esize_For_Alignment;
214 ------------------------------------
215 -- Build_And_Analyze_Renamed_Body --
216 ------------------------------------
218 procedure Build_And_Analyze_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id;
221 After : in out Node_Id)
223 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
224 Ent : constant Entity_Id := Defining_Entity (Decl);
225 Body_Node : Node_Id;
226 Renamed_Subp : Entity_Id;
228 begin
229 -- If the renamed subprogram is intrinsic, there is no need for a
230 -- wrapper body: we set the alias that will be called and expanded which
231 -- completes the declaration. This transformation is only legal if the
232 -- renamed entity has already been elaborated.
234 -- Note that it is legal for a renaming_as_body to rename an intrinsic
235 -- subprogram, as long as the renaming occurs before the new entity
236 -- is frozen. See RM 8.5.4 (5).
238 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
239 and then Is_Entity_Name (Name (Body_Decl))
240 then
241 Renamed_Subp := Entity (Name (Body_Decl));
242 else
243 Renamed_Subp := Empty;
244 end if;
246 if Present (Renamed_Subp)
247 and then Is_Intrinsic_Subprogram (Renamed_Subp)
248 and then
249 (not In_Same_Source_Unit (Renamed_Subp, Ent)
250 or else Sloc (Renamed_Subp) < Sloc (Ent))
252 -- We can make the renaming entity intrinsic if the renamed function
253 -- has an interface name, or if it is one of the shift/rotate
254 -- operations known to the compiler.
256 and then
257 (Present (Interface_Name (Renamed_Subp))
258 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
259 Name_Rotate_Right,
260 Name_Shift_Left,
261 Name_Shift_Right,
262 Name_Shift_Right_Arithmetic))
263 then
264 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
266 if Present (Alias (Renamed_Subp)) then
267 Set_Alias (Ent, Alias (Renamed_Subp));
268 else
269 Set_Alias (Ent, Renamed_Subp);
270 end if;
272 Set_Is_Intrinsic_Subprogram (Ent);
273 Set_Has_Completion (Ent);
275 else
276 Body_Node := Build_Renamed_Body (Decl, New_S);
277 Insert_After (After, Body_Node);
278 Mark_Rewrite_Insertion (Body_Node);
279 Analyze (Body_Node);
280 After := Body_Node;
281 end if;
282 end Build_And_Analyze_Renamed_Body;
284 ------------------------
285 -- Build_Renamed_Body --
286 ------------------------
288 function Build_Renamed_Body
289 (Decl : Node_Id;
290 New_S : Entity_Id) return Node_Id
292 Loc : constant Source_Ptr := Sloc (New_S);
293 -- We use for the source location of the renamed body, the location of
294 -- the spec entity. It might seem more natural to use the location of
295 -- the renaming declaration itself, but that would be wrong, since then
296 -- the body we create would look as though it was created far too late,
297 -- and this could cause problems with elaboration order analysis,
298 -- particularly in connection with instantiations.
300 N : constant Node_Id := Unit_Declaration_Node (New_S);
301 Nam : constant Node_Id := Name (N);
302 Old_S : Entity_Id;
303 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
304 Actuals : List_Id := No_List;
305 Call_Node : Node_Id;
306 Call_Name : Node_Id;
307 Body_Node : Node_Id;
308 Formal : Entity_Id;
309 O_Formal : Entity_Id;
310 Param_Spec : Node_Id;
312 Pref : Node_Id := Empty;
313 -- If the renamed entity is a primitive operation given in prefix form,
314 -- the prefix is the target object and it has to be added as the first
315 -- actual in the generated call.
317 begin
318 -- Determine the entity being renamed, which is the target of the call
319 -- statement. If the name is an explicit dereference, this is a renaming
320 -- of a subprogram type rather than a subprogram. The name itself is
321 -- fully analyzed.
323 if Nkind (Nam) = N_Selected_Component then
324 Old_S := Entity (Selector_Name (Nam));
326 elsif Nkind (Nam) = N_Explicit_Dereference then
327 Old_S := Etype (Nam);
329 elsif Nkind (Nam) = N_Indexed_Component then
330 if Is_Entity_Name (Prefix (Nam)) then
331 Old_S := Entity (Prefix (Nam));
332 else
333 Old_S := Entity (Selector_Name (Prefix (Nam)));
334 end if;
336 elsif Nkind (Nam) = N_Character_Literal then
337 Old_S := Etype (New_S);
339 else
340 Old_S := Entity (Nam);
341 end if;
343 if Is_Entity_Name (Nam) then
345 -- If the renamed entity is a predefined operator, retain full name
346 -- to ensure its visibility.
348 if Ekind (Old_S) = E_Operator
349 and then Nkind (Nam) = N_Expanded_Name
350 then
351 Call_Name := New_Copy (Name (N));
352 else
353 Call_Name := New_Reference_To (Old_S, Loc);
354 end if;
356 else
357 if Nkind (Nam) = N_Selected_Component
358 and then Present (First_Formal (Old_S))
359 and then
360 (Is_Controlling_Formal (First_Formal (Old_S))
361 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
362 then
364 -- Retrieve the target object, to be added as a first actual
365 -- in the call.
367 Call_Name := New_Occurrence_Of (Old_S, Loc);
368 Pref := Prefix (Nam);
370 else
371 Call_Name := New_Copy (Name (N));
372 end if;
374 -- Original name may have been overloaded, but is fully resolved now
376 Set_Is_Overloaded (Call_Name, False);
377 end if;
379 -- For simple renamings, subsequent calls can be expanded directly as
380 -- calls to the renamed entity. The body must be generated in any case
381 -- for calls that may appear elsewhere. This is not done in the case
382 -- where the subprogram is an instantiation because the actual proper
383 -- body has not been built yet.
385 if Ekind_In (Old_S, E_Function, E_Procedure)
386 and then Nkind (Decl) = N_Subprogram_Declaration
387 and then not Is_Generic_Instance (Old_S)
388 then
389 Set_Body_To_Inline (Decl, Old_S);
390 end if;
392 -- The body generated for this renaming is an internal artifact, and
393 -- does not constitute a freeze point for the called entity.
395 Set_Must_Not_Freeze (Call_Name);
397 Formal := First_Formal (Defining_Entity (Decl));
399 if Present (Pref) then
400 declare
401 Pref_Type : constant Entity_Id := Etype (Pref);
402 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
404 begin
405 -- The controlling formal may be an access parameter, or the
406 -- actual may be an access value, so adjust accordingly.
408 if Is_Access_Type (Pref_Type)
409 and then not Is_Access_Type (Form_Type)
410 then
411 Actuals := New_List
412 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
414 elsif Is_Access_Type (Form_Type)
415 and then not Is_Access_Type (Pref)
416 then
417 Actuals := New_List
418 (Make_Attribute_Reference (Loc,
419 Attribute_Name => Name_Access,
420 Prefix => Relocate_Node (Pref)));
421 else
422 Actuals := New_List (Pref);
423 end if;
424 end;
426 elsif Present (Formal) then
427 Actuals := New_List;
429 else
430 Actuals := No_List;
431 end if;
433 if Present (Formal) then
434 while Present (Formal) loop
435 Append (New_Reference_To (Formal, Loc), Actuals);
436 Next_Formal (Formal);
437 end loop;
438 end if;
440 -- If the renamed entity is an entry, inherit its profile. For other
441 -- renamings as bodies, both profiles must be subtype conformant, so it
442 -- is not necessary to replace the profile given in the declaration.
443 -- However, default values that are aggregates are rewritten when
444 -- partially analyzed, so we recover the original aggregate to insure
445 -- that subsequent conformity checking works. Similarly, if the default
446 -- expression was constant-folded, recover the original expression.
448 Formal := First_Formal (Defining_Entity (Decl));
450 if Present (Formal) then
451 O_Formal := First_Formal (Old_S);
452 Param_Spec := First (Parameter_Specifications (Spec));
453 while Present (Formal) loop
454 if Is_Entry (Old_S) then
455 if Nkind (Parameter_Type (Param_Spec)) /=
456 N_Access_Definition
457 then
458 Set_Etype (Formal, Etype (O_Formal));
459 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
460 end if;
462 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
463 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
464 Nkind (Default_Value (O_Formal))
465 then
466 Set_Expression (Param_Spec,
467 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
468 end if;
470 Next_Formal (Formal);
471 Next_Formal (O_Formal);
472 Next (Param_Spec);
473 end loop;
474 end if;
476 -- If the renamed entity is a function, the generated body contains a
477 -- return statement. Otherwise, build a procedure call. If the entity is
478 -- an entry, subsequent analysis of the call will transform it into the
479 -- proper entry or protected operation call. If the renamed entity is
480 -- a character literal, return it directly.
482 if Ekind (Old_S) = E_Function
483 or else Ekind (Old_S) = E_Operator
484 or else (Ekind (Old_S) = E_Subprogram_Type
485 and then Etype (Old_S) /= Standard_Void_Type)
486 then
487 Call_Node :=
488 Make_Simple_Return_Statement (Loc,
489 Expression =>
490 Make_Function_Call (Loc,
491 Name => Call_Name,
492 Parameter_Associations => Actuals));
494 elsif Ekind (Old_S) = E_Enumeration_Literal then
495 Call_Node :=
496 Make_Simple_Return_Statement (Loc,
497 Expression => New_Occurrence_Of (Old_S, Loc));
499 elsif Nkind (Nam) = N_Character_Literal then
500 Call_Node :=
501 Make_Simple_Return_Statement (Loc,
502 Expression => Call_Name);
504 else
505 Call_Node :=
506 Make_Procedure_Call_Statement (Loc,
507 Name => Call_Name,
508 Parameter_Associations => Actuals);
509 end if;
511 -- Create entities for subprogram body and formals
513 Set_Defining_Unit_Name (Spec,
514 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
516 Param_Spec := First (Parameter_Specifications (Spec));
517 while Present (Param_Spec) loop
518 Set_Defining_Identifier (Param_Spec,
519 Make_Defining_Identifier (Loc,
520 Chars => Chars (Defining_Identifier (Param_Spec))));
521 Next (Param_Spec);
522 end loop;
524 Body_Node :=
525 Make_Subprogram_Body (Loc,
526 Specification => Spec,
527 Declarations => New_List,
528 Handled_Statement_Sequence =>
529 Make_Handled_Sequence_Of_Statements (Loc,
530 Statements => New_List (Call_Node)));
532 if Nkind (Decl) /= N_Subprogram_Declaration then
533 Rewrite (N,
534 Make_Subprogram_Declaration (Loc,
535 Specification => Specification (N)));
536 end if;
538 -- Link the body to the entity whose declaration it completes. If
539 -- the body is analyzed when the renamed entity is frozen, it may
540 -- be necessary to restore the proper scope (see package Exp_Ch13).
542 if Nkind (N) = N_Subprogram_Renaming_Declaration
543 and then Present (Corresponding_Spec (N))
544 then
545 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
546 else
547 Set_Corresponding_Spec (Body_Node, New_S);
548 end if;
550 return Body_Node;
551 end Build_Renamed_Body;
553 --------------------------
554 -- Check_Address_Clause --
555 --------------------------
557 procedure Check_Address_Clause (E : Entity_Id) is
558 Addr : constant Node_Id := Address_Clause (E);
559 Expr : Node_Id;
560 Decl : constant Node_Id := Declaration_Node (E);
561 Loc : constant Source_Ptr := Sloc (Decl);
562 Typ : constant Entity_Id := Etype (E);
564 begin
565 if Present (Addr) then
566 Expr := Expression (Addr);
568 if Needs_Constant_Address (Decl, Typ) then
569 Check_Constant_Address_Clause (Expr, E);
571 -- Has_Delayed_Freeze was set on E when the address clause was
572 -- analyzed, and must remain set because we want the address
573 -- clause to be elaborated only after any entity it references
574 -- has been elaborated.
575 end if;
577 -- If Rep_Clauses are to be ignored, remove address clause from
578 -- list attached to entity, because it may be illegal for gigi,
579 -- for example by breaking order of elaboration..
581 if Ignore_Rep_Clauses then
582 declare
583 Rep : Node_Id;
585 begin
586 Rep := First_Rep_Item (E);
588 if Rep = Addr then
589 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
591 else
592 while Present (Rep)
593 and then Next_Rep_Item (Rep) /= Addr
594 loop
595 Rep := Next_Rep_Item (Rep);
596 end loop;
597 end if;
599 if Present (Rep) then
600 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
601 end if;
602 end;
604 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
606 elsif not Error_Posted (Expr)
607 and then not Needs_Finalization (Typ)
608 then
609 Warn_Overlay (Expr, Typ, Name (Addr));
610 end if;
612 if Present (Expression (Decl)) then
614 -- Capture initialization value at point of declaration
616 Remove_Side_Effects (Expression (Decl));
618 -- Move initialization to freeze actions (once the object has
619 -- been frozen, and the address clause alignment check has been
620 -- performed.
622 Append_Freeze_Action (E,
623 Make_Assignment_Statement (Loc,
624 Name => New_Occurrence_Of (E, Loc),
625 Expression => Expression (Decl)));
627 Set_No_Initialization (Decl);
628 end if;
629 end if;
630 end Check_Address_Clause;
632 -----------------------------
633 -- Check_Compile_Time_Size --
634 -----------------------------
636 procedure Check_Compile_Time_Size (T : Entity_Id) is
638 procedure Set_Small_Size (T : Entity_Id; S : Uint);
639 -- Sets the compile time known size (32 bits or less) in the Esize
640 -- field, of T checking for a size clause that was given which attempts
641 -- to give a smaller size, and also checking for an alignment clause.
643 function Size_Known (T : Entity_Id) return Boolean;
644 -- Recursive function that does all the work
646 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
647 -- If T is a constrained subtype, its size is not known if any of its
648 -- discriminant constraints is not static and it is not a null record.
649 -- The test is conservative and doesn't check that the components are
650 -- in fact constrained by non-static discriminant values. Could be made
651 -- more precise ???
653 --------------------
654 -- Set_Small_Size --
655 --------------------
657 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
658 begin
659 if S > 32 then
660 return;
662 -- Check for bad size clause given
664 elsif Has_Size_Clause (T) then
665 if RM_Size (T) < S then
666 Error_Msg_Uint_1 := S;
667 Error_Msg_NE
668 ("size for& too small, minimum allowed is ^",
669 Size_Clause (T), T);
670 end if;
672 -- Set size if not set already
674 elsif Unknown_RM_Size (T) then
675 Set_RM_Size (T, S);
676 end if;
677 end Set_Small_Size;
679 ----------------
680 -- Size_Known --
681 ----------------
683 function Size_Known (T : Entity_Id) return Boolean is
684 Index : Entity_Id;
685 Comp : Entity_Id;
686 Ctyp : Entity_Id;
687 Low : Node_Id;
688 High : Node_Id;
690 begin
691 if Size_Known_At_Compile_Time (T) then
692 return True;
694 -- Always True for scalar types. This is true even for generic formal
695 -- scalar types. We used to return False in the latter case, but the
696 -- size is known at compile time, even in the template, we just do
697 -- not know the exact size but that's not the point of this routine.
699 elsif Is_Scalar_Type (T)
700 or else Is_Task_Type (T)
701 then
702 return True;
704 -- Array types
706 elsif Is_Array_Type (T) then
708 -- String literals always have known size, and we can set it
710 if Ekind (T) = E_String_Literal_Subtype then
711 Set_Small_Size (T, Component_Size (T)
712 * String_Literal_Length (T));
713 return True;
715 -- Unconstrained types never have known at compile time size
717 elsif not Is_Constrained (T) then
718 return False;
720 -- Don't do any recursion on type with error posted, since we may
721 -- have a malformed type that leads us into a loop.
723 elsif Error_Posted (T) then
724 return False;
726 -- Otherwise if component size unknown, then array size unknown
728 elsif not Size_Known (Component_Type (T)) then
729 return False;
730 end if;
732 -- Check for all indexes static, and also compute possible size
733 -- (in case it is less than 32 and may be packable).
735 declare
736 Esiz : Uint := Component_Size (T);
737 Dim : Uint;
739 begin
740 Index := First_Index (T);
741 while Present (Index) loop
742 if Nkind (Index) = N_Range then
743 Get_Index_Bounds (Index, Low, High);
745 elsif Error_Posted (Scalar_Range (Etype (Index))) then
746 return False;
748 else
749 Low := Type_Low_Bound (Etype (Index));
750 High := Type_High_Bound (Etype (Index));
751 end if;
753 if not Compile_Time_Known_Value (Low)
754 or else not Compile_Time_Known_Value (High)
755 or else Etype (Index) = Any_Type
756 then
757 return False;
759 else
760 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
762 if Dim >= 0 then
763 Esiz := Esiz * Dim;
764 else
765 Esiz := Uint_0;
766 end if;
767 end if;
769 Next_Index (Index);
770 end loop;
772 Set_Small_Size (T, Esiz);
773 return True;
774 end;
776 -- Access types always have known at compile time sizes
778 elsif Is_Access_Type (T) then
779 return True;
781 -- For non-generic private types, go to underlying type if present
783 elsif Is_Private_Type (T)
784 and then not Is_Generic_Type (T)
785 and then Present (Underlying_Type (T))
786 then
787 -- Don't do any recursion on type with error posted, since we may
788 -- have a malformed type that leads us into a loop.
790 if Error_Posted (T) then
791 return False;
792 else
793 return Size_Known (Underlying_Type (T));
794 end if;
796 -- Record types
798 elsif Is_Record_Type (T) then
800 -- A class-wide type is never considered to have a known size
802 if Is_Class_Wide_Type (T) then
803 return False;
805 -- A subtype of a variant record must not have non-static
806 -- discriminated components.
808 elsif T /= Base_Type (T)
809 and then not Static_Discriminated_Components (T)
810 then
811 return False;
813 -- Don't do any recursion on type with error posted, since we may
814 -- have a malformed type that leads us into a loop.
816 elsif Error_Posted (T) then
817 return False;
818 end if;
820 -- Now look at the components of the record
822 declare
823 -- The following two variables are used to keep track of the
824 -- size of packed records if we can tell the size of the packed
825 -- record in the front end. Packed_Size_Known is True if so far
826 -- we can figure out the size. It is initialized to True for a
827 -- packed record, unless the record has discriminants or atomic
828 -- components or independent components.
830 -- The reason we eliminate the discriminated case is that
831 -- we don't know the way the back end lays out discriminated
832 -- packed records. If Packed_Size_Known is True, then
833 -- Packed_Size is the size in bits so far.
835 Packed_Size_Known : Boolean :=
836 Is_Packed (T)
837 and then not Has_Discriminants (T)
838 and then not Has_Atomic_Components (T)
839 and then not Has_Independent_Components (T);
841 Packed_Size : Uint := Uint_0;
842 -- Size in bits so far
844 begin
845 -- Test for variant part present
847 if Has_Discriminants (T)
848 and then Present (Parent (T))
849 and then Nkind (Parent (T)) = N_Full_Type_Declaration
850 and then Nkind (Type_Definition (Parent (T))) =
851 N_Record_Definition
852 and then not Null_Present (Type_Definition (Parent (T)))
853 and then
854 Present (Variant_Part
855 (Component_List (Type_Definition (Parent (T)))))
856 then
857 -- If variant part is present, and type is unconstrained,
858 -- then we must have defaulted discriminants, or a size
859 -- clause must be present for the type, or else the size
860 -- is definitely not known at compile time.
862 if not Is_Constrained (T)
863 and then
864 No (Discriminant_Default_Value (First_Discriminant (T)))
865 and then Unknown_RM_Size (T)
866 then
867 return False;
868 end if;
869 end if;
871 -- Loop through components
873 Comp := First_Component_Or_Discriminant (T);
874 while Present (Comp) loop
875 Ctyp := Etype (Comp);
877 -- We do not know the packed size if there is a component
878 -- clause present (we possibly could, but this would only
879 -- help in the case of a record with partial rep clauses.
880 -- That's because in the case of full rep clauses, the
881 -- size gets figured out anyway by a different circuit).
883 if Present (Component_Clause (Comp)) then
884 Packed_Size_Known := False;
885 end if;
887 -- We do not know the packed size if we have a by reference
888 -- type, or an atomic type or an atomic component, or an
889 -- aliased component (because packing does not touch these).
891 if Is_Atomic (Ctyp)
892 or else Is_Atomic (Comp)
893 or else Is_By_Reference_Type (Ctyp)
894 or else Is_Aliased (Comp)
895 then
896 Packed_Size_Known := False;
897 end if;
899 -- We need to identify a component that is an array where
900 -- the index type is an enumeration type with non-standard
901 -- representation, and some bound of the type depends on a
902 -- discriminant.
904 -- This is because gigi computes the size by doing a
905 -- substitution of the appropriate discriminant value in
906 -- the size expression for the base type, and gigi is not
907 -- clever enough to evaluate the resulting expression (which
908 -- involves a call to rep_to_pos) at compile time.
910 -- It would be nice if gigi would either recognize that
911 -- this expression can be computed at compile time, or
912 -- alternatively figured out the size from the subtype
913 -- directly, where all the information is at hand ???
915 if Is_Array_Type (Etype (Comp))
916 and then Present (Packed_Array_Type (Etype (Comp)))
917 then
918 declare
919 Ocomp : constant Entity_Id :=
920 Original_Record_Component (Comp);
921 OCtyp : constant Entity_Id := Etype (Ocomp);
922 Ind : Node_Id;
923 Indtyp : Entity_Id;
924 Lo, Hi : Node_Id;
926 begin
927 Ind := First_Index (OCtyp);
928 while Present (Ind) loop
929 Indtyp := Etype (Ind);
931 if Is_Enumeration_Type (Indtyp)
932 and then Has_Non_Standard_Rep (Indtyp)
933 then
934 Lo := Type_Low_Bound (Indtyp);
935 Hi := Type_High_Bound (Indtyp);
937 if Is_Entity_Name (Lo)
938 and then Ekind (Entity (Lo)) = E_Discriminant
939 then
940 return False;
942 elsif Is_Entity_Name (Hi)
943 and then Ekind (Entity (Hi)) = E_Discriminant
944 then
945 return False;
946 end if;
947 end if;
949 Next_Index (Ind);
950 end loop;
951 end;
952 end if;
954 -- Clearly size of record is not known if the size of one of
955 -- the components is not known.
957 if not Size_Known (Ctyp) then
958 return False;
959 end if;
961 -- Accumulate packed size if possible
963 if Packed_Size_Known then
965 -- We can only deal with elementary types, since for
966 -- non-elementary components, alignment enters into the
967 -- picture, and we don't know enough to handle proper
968 -- alignment in this context. Packed arrays count as
969 -- elementary if the representation is a modular type.
971 if Is_Elementary_Type (Ctyp)
972 or else (Is_Array_Type (Ctyp)
973 and then Present (Packed_Array_Type (Ctyp))
974 and then Is_Modular_Integer_Type
975 (Packed_Array_Type (Ctyp)))
976 then
977 -- Packed size unknown if we have an atomic type
978 -- or a by reference type, since the back end
979 -- knows how these are layed out.
981 if Is_Atomic (Ctyp)
982 or else Is_By_Reference_Type (Ctyp)
983 then
984 Packed_Size_Known := False;
986 -- If RM_Size is known and static, then we can keep
987 -- accumulating the packed size
989 elsif Known_Static_RM_Size (Ctyp) then
991 -- A little glitch, to be removed sometime ???
992 -- gigi does not understand zero sizes yet.
994 if RM_Size (Ctyp) = Uint_0 then
995 Packed_Size_Known := False;
997 -- Normal case where we can keep accumulating the
998 -- packed array size.
1000 else
1001 Packed_Size := Packed_Size + RM_Size (Ctyp);
1002 end if;
1004 -- If we have a field whose RM_Size is not known then
1005 -- we can't figure out the packed size here.
1007 else
1008 Packed_Size_Known := False;
1009 end if;
1011 -- If we have a non-elementary type we can't figure out
1012 -- the packed array size (alignment issues).
1014 else
1015 Packed_Size_Known := False;
1016 end if;
1017 end if;
1019 Next_Component_Or_Discriminant (Comp);
1020 end loop;
1022 if Packed_Size_Known then
1023 Set_Small_Size (T, Packed_Size);
1024 end if;
1026 return True;
1027 end;
1029 -- All other cases, size not known at compile time
1031 else
1032 return False;
1033 end if;
1034 end Size_Known;
1036 -------------------------------------
1037 -- Static_Discriminated_Components --
1038 -------------------------------------
1040 function Static_Discriminated_Components
1041 (T : Entity_Id) return Boolean
1043 Constraint : Elmt_Id;
1045 begin
1046 if Has_Discriminants (T)
1047 and then Present (Discriminant_Constraint (T))
1048 and then Present (First_Component (T))
1049 then
1050 Constraint := First_Elmt (Discriminant_Constraint (T));
1051 while Present (Constraint) loop
1052 if not Compile_Time_Known_Value (Node (Constraint)) then
1053 return False;
1054 end if;
1056 Next_Elmt (Constraint);
1057 end loop;
1058 end if;
1060 return True;
1061 end Static_Discriminated_Components;
1063 -- Start of processing for Check_Compile_Time_Size
1065 begin
1066 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1067 end Check_Compile_Time_Size;
1069 -----------------------------------
1070 -- Check_Component_Storage_Order --
1071 -----------------------------------
1073 procedure Check_Component_Storage_Order
1074 (Encl_Type : Entity_Id;
1075 Comp : Entity_Id;
1076 ADC : Node_Id)
1078 Comp_Type : Entity_Id;
1079 Comp_ADC : Node_Id;
1080 Err_Node : Node_Id;
1082 Comp_Byte_Aligned : Boolean;
1083 -- Set True for the record case, when Comp starts on a byte boundary
1084 -- (in which case it is allowed to have different storage order).
1086 Component_Aliased : Boolean;
1088 begin
1089 -- Record case
1091 if Present (Comp) then
1092 Err_Node := Comp;
1093 Comp_Type := Etype (Comp);
1095 if Is_Tag (Comp) then
1096 Comp_Byte_Aligned := True;
1097 Component_Aliased := False;
1099 else
1100 Comp_Byte_Aligned :=
1101 Present (Component_Clause (Comp))
1102 and then
1103 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1104 Component_Aliased := Is_Aliased (Comp);
1105 end if;
1107 -- Array case
1109 else
1110 Err_Node := Encl_Type;
1111 Comp_Type := Component_Type (Encl_Type);
1113 Comp_Byte_Aligned := False;
1114 Component_Aliased := Has_Aliased_Components (Encl_Type);
1115 end if;
1117 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1118 -- the attribute definition clause is attached to the first subtype.
1120 Comp_Type := Base_Type (Comp_Type);
1121 Comp_ADC := Get_Attribute_Definition_Clause
1122 (First_Subtype (Comp_Type),
1123 Attribute_Scalar_Storage_Order);
1125 -- Case of enclosing type not having explicit SSO: component cannot
1126 -- have it either.
1128 if No (ADC) then
1129 if Present (Comp_ADC) then
1130 Error_Msg_N
1131 ("composite type must have explicit scalar storage order",
1132 Err_Node);
1133 end if;
1135 -- Case of enclosing type having explicit SSO: check compatible
1136 -- attribute on Comp_Type if composite.
1138 elsif Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1139 if Present (Comp) and then Chars (Comp) = Name_uParent then
1140 if Reverse_Storage_Order (Encl_Type)
1142 Reverse_Storage_Order (Comp_Type)
1143 then
1144 Error_Msg_N
1145 ("record extension must have same scalar storage order as "
1146 & "parent", Err_Node);
1147 end if;
1149 elsif No (ADC) then
1150 Error_Msg_N ("nested composite must have explicit scalar "
1151 & "storage order", Err_Node);
1153 elsif (Reverse_Storage_Order (Encl_Type)
1155 Reverse_Storage_Order (Comp_Type))
1156 and then not Comp_Byte_Aligned
1157 then
1158 Error_Msg_N
1159 ("type of non-byte-aligned component must have same scalar "
1160 & "storage order as enclosing composite", Err_Node);
1161 end if;
1163 -- Enclosing type has explicit SSO, non-composite component must not
1164 -- be aliased.
1166 elsif Component_Aliased then
1167 Error_Msg_N
1168 ("aliased component not permitted for type with "
1169 & "explicit Scalar_Storage_Order", Err_Node);
1170 end if;
1171 end Check_Component_Storage_Order;
1173 -----------------------------
1174 -- Check_Debug_Info_Needed --
1175 -----------------------------
1177 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1178 begin
1179 if Debug_Info_Off (T) then
1180 return;
1182 elsif Comes_From_Source (T)
1183 or else Debug_Generated_Code
1184 or else Debug_Flag_VV
1185 or else Needs_Debug_Info (T)
1186 then
1187 Set_Debug_Info_Needed (T);
1188 end if;
1189 end Check_Debug_Info_Needed;
1191 ----------------------------
1192 -- Check_Strict_Alignment --
1193 ----------------------------
1195 procedure Check_Strict_Alignment (E : Entity_Id) is
1196 Comp : Entity_Id;
1198 begin
1199 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1200 Set_Strict_Alignment (E);
1202 elsif Is_Array_Type (E) then
1203 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1205 elsif Is_Record_Type (E) then
1206 if Is_Limited_Record (E) then
1207 Set_Strict_Alignment (E);
1208 return;
1209 end if;
1211 Comp := First_Component (E);
1212 while Present (Comp) loop
1213 if not Is_Type (Comp)
1214 and then (Strict_Alignment (Etype (Comp))
1215 or else Is_Aliased (Comp))
1216 then
1217 Set_Strict_Alignment (E);
1218 return;
1219 end if;
1221 Next_Component (Comp);
1222 end loop;
1223 end if;
1224 end Check_Strict_Alignment;
1226 -------------------------
1227 -- Check_Unsigned_Type --
1228 -------------------------
1230 procedure Check_Unsigned_Type (E : Entity_Id) is
1231 Ancestor : Entity_Id;
1232 Lo_Bound : Node_Id;
1233 Btyp : Entity_Id;
1235 begin
1236 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1237 return;
1238 end if;
1240 -- Do not attempt to analyze case where range was in error
1242 if No (Scalar_Range (E))
1243 or else Error_Posted (Scalar_Range (E))
1244 then
1245 return;
1246 end if;
1248 -- The situation that is non trivial is something like
1250 -- subtype x1 is integer range -10 .. +10;
1251 -- subtype x2 is x1 range 0 .. V1;
1252 -- subtype x3 is x2 range V2 .. V3;
1253 -- subtype x4 is x3 range V4 .. V5;
1255 -- where Vn are variables. Here the base type is signed, but we still
1256 -- know that x4 is unsigned because of the lower bound of x2.
1258 -- The only way to deal with this is to look up the ancestor chain
1260 Ancestor := E;
1261 loop
1262 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1263 return;
1264 end if;
1266 Lo_Bound := Type_Low_Bound (Ancestor);
1268 if Compile_Time_Known_Value (Lo_Bound) then
1270 if Expr_Rep_Value (Lo_Bound) >= 0 then
1271 Set_Is_Unsigned_Type (E, True);
1272 end if;
1274 return;
1276 else
1277 Ancestor := Ancestor_Subtype (Ancestor);
1279 -- If no ancestor had a static lower bound, go to base type
1281 if No (Ancestor) then
1283 -- Note: the reason we still check for a compile time known
1284 -- value for the base type is that at least in the case of
1285 -- generic formals, we can have bounds that fail this test,
1286 -- and there may be other cases in error situations.
1288 Btyp := Base_Type (E);
1290 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1291 return;
1292 end if;
1294 Lo_Bound := Type_Low_Bound (Base_Type (E));
1296 if Compile_Time_Known_Value (Lo_Bound)
1297 and then Expr_Rep_Value (Lo_Bound) >= 0
1298 then
1299 Set_Is_Unsigned_Type (E, True);
1300 end if;
1302 return;
1303 end if;
1304 end if;
1305 end loop;
1306 end Check_Unsigned_Type;
1308 -------------------------
1309 -- Is_Atomic_Aggregate --
1310 -------------------------
1312 function Is_Atomic_Aggregate
1313 (E : Entity_Id;
1314 Typ : Entity_Id) return Boolean
1316 Loc : constant Source_Ptr := Sloc (E);
1317 New_N : Node_Id;
1318 Par : Node_Id;
1319 Temp : Entity_Id;
1321 begin
1322 Par := Parent (E);
1324 -- Array may be qualified, so find outer context
1326 if Nkind (Par) = N_Qualified_Expression then
1327 Par := Parent (Par);
1328 end if;
1330 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1331 and then Comes_From_Source (Par)
1332 then
1333 Temp := Make_Temporary (Loc, 'T', E);
1334 New_N :=
1335 Make_Object_Declaration (Loc,
1336 Defining_Identifier => Temp,
1337 Object_Definition => New_Occurrence_Of (Typ, Loc),
1338 Expression => Relocate_Node (E));
1339 Insert_Before (Par, New_N);
1340 Analyze (New_N);
1342 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1343 return True;
1345 else
1346 return False;
1347 end if;
1348 end Is_Atomic_Aggregate;
1350 ----------------
1351 -- Freeze_All --
1352 ----------------
1354 -- Note: the easy coding for this procedure would be to just build a
1355 -- single list of freeze nodes and then insert them and analyze them
1356 -- all at once. This won't work, because the analysis of earlier freeze
1357 -- nodes may recursively freeze types which would otherwise appear later
1358 -- on in the freeze list. So we must analyze and expand the freeze nodes
1359 -- as they are generated.
1361 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1362 E : Entity_Id;
1363 Decl : Node_Id;
1365 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1366 -- This is the internal recursive routine that does freezing of entities
1367 -- (but NOT the analysis of default expressions, which should not be
1368 -- recursive, we don't want to analyze those till we are sure that ALL
1369 -- the types are frozen).
1371 --------------------
1372 -- Freeze_All_Ent --
1373 --------------------
1375 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1376 E : Entity_Id;
1377 Flist : List_Id;
1378 Lastn : Node_Id;
1380 procedure Process_Flist;
1381 -- If freeze nodes are present, insert and analyze, and reset cursor
1382 -- for next insertion.
1384 -------------------
1385 -- Process_Flist --
1386 -------------------
1388 procedure Process_Flist is
1389 begin
1390 if Is_Non_Empty_List (Flist) then
1391 Lastn := Next (After);
1392 Insert_List_After_And_Analyze (After, Flist);
1394 if Present (Lastn) then
1395 After := Prev (Lastn);
1396 else
1397 After := Last (List_Containing (After));
1398 end if;
1399 end if;
1400 end Process_Flist;
1402 -- Start or processing for Freeze_All_Ent
1404 begin
1405 E := From;
1406 while Present (E) loop
1408 -- If the entity is an inner package which is not a package
1409 -- renaming, then its entities must be frozen at this point. Note
1410 -- that such entities do NOT get frozen at the end of the nested
1411 -- package itself (only library packages freeze).
1413 -- Same is true for task declarations, where anonymous records
1414 -- created for entry parameters must be frozen.
1416 if Ekind (E) = E_Package
1417 and then No (Renamed_Object (E))
1418 and then not Is_Child_Unit (E)
1419 and then not Is_Frozen (E)
1420 then
1421 Push_Scope (E);
1422 Install_Visible_Declarations (E);
1423 Install_Private_Declarations (E);
1425 Freeze_All (First_Entity (E), After);
1427 End_Package_Scope (E);
1429 if Is_Generic_Instance (E)
1430 and then Has_Delayed_Freeze (E)
1431 then
1432 Set_Has_Delayed_Freeze (E, False);
1433 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1434 end if;
1436 elsif Ekind (E) in Task_Kind
1437 and then
1438 (Nkind (Parent (E)) = N_Task_Type_Declaration
1439 or else
1440 Nkind (Parent (E)) = N_Single_Task_Declaration)
1441 then
1442 Push_Scope (E);
1443 Freeze_All (First_Entity (E), After);
1444 End_Scope;
1446 -- For a derived tagged type, we must ensure that all the
1447 -- primitive operations of the parent have been frozen, so that
1448 -- their addresses will be in the parent's dispatch table at the
1449 -- point it is inherited.
1451 elsif Ekind (E) = E_Record_Type
1452 and then Is_Tagged_Type (E)
1453 and then Is_Tagged_Type (Etype (E))
1454 and then Is_Derived_Type (E)
1455 then
1456 declare
1457 Prim_List : constant Elist_Id :=
1458 Primitive_Operations (Etype (E));
1460 Prim : Elmt_Id;
1461 Subp : Entity_Id;
1463 begin
1464 Prim := First_Elmt (Prim_List);
1465 while Present (Prim) loop
1466 Subp := Node (Prim);
1468 if Comes_From_Source (Subp)
1469 and then not Is_Frozen (Subp)
1470 then
1471 Flist := Freeze_Entity (Subp, After);
1472 Process_Flist;
1473 end if;
1475 Next_Elmt (Prim);
1476 end loop;
1477 end;
1478 end if;
1480 if not Is_Frozen (E) then
1481 Flist := Freeze_Entity (E, After);
1482 Process_Flist;
1484 -- If already frozen, and there are delayed aspects, this is where
1485 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1486 -- for a description of how we handle aspect visibility).
1488 elsif Has_Delayed_Aspects (E) then
1490 -- Retrieve the visibility to the discriminants in order to
1491 -- analyze properly the aspects.
1493 Push_Scope_And_Install_Discriminants (E);
1495 declare
1496 Ritem : Node_Id;
1498 begin
1499 Ritem := First_Rep_Item (E);
1500 while Present (Ritem) loop
1501 if Nkind (Ritem) = N_Aspect_Specification
1502 and then Entity (Ritem) = E
1503 and then Is_Delayed_Aspect (Ritem)
1504 then
1505 Check_Aspect_At_End_Of_Declarations (Ritem);
1506 end if;
1508 Ritem := Next_Rep_Item (Ritem);
1509 end loop;
1510 end;
1512 Uninstall_Discriminants_And_Pop_Scope (E);
1513 end if;
1515 -- If an incomplete type is still not frozen, this may be a
1516 -- premature freezing because of a body declaration that follows.
1517 -- Indicate where the freezing took place. Freezing will happen
1518 -- if the body comes from source, but not if it is internally
1519 -- generated, for example as the body of a type invariant.
1521 -- If the freezing is caused by the end of the current declarative
1522 -- part, it is a Taft Amendment type, and there is no error.
1524 if not Is_Frozen (E)
1525 and then Ekind (E) = E_Incomplete_Type
1526 then
1527 declare
1528 Bod : constant Node_Id := Next (After);
1530 begin
1531 -- The presence of a body freezes all entities previously
1532 -- declared in the current list of declarations, but this
1533 -- does not apply if the body does not come from source.
1534 -- A type invariant is transformed into a subprogram body
1535 -- which is placed at the end of the private part of the
1536 -- current package, but this body does not freeze incomplete
1537 -- types that may be declared in this private part.
1539 if (Nkind_In (Bod, N_Subprogram_Body,
1540 N_Entry_Body,
1541 N_Package_Body,
1542 N_Protected_Body,
1543 N_Task_Body)
1544 or else Nkind (Bod) in N_Body_Stub)
1545 and then
1546 List_Containing (After) = List_Containing (Parent (E))
1547 and then Comes_From_Source (Bod)
1548 then
1549 Error_Msg_Sloc := Sloc (Next (After));
1550 Error_Msg_NE
1551 ("type& is frozen# before its full declaration",
1552 Parent (E), E);
1553 end if;
1554 end;
1555 end if;
1557 Next_Entity (E);
1558 end loop;
1559 end Freeze_All_Ent;
1561 -- Start of processing for Freeze_All
1563 begin
1564 Freeze_All_Ent (From, After);
1566 -- Now that all types are frozen, we can deal with default expressions
1567 -- that require us to build a default expression functions. This is the
1568 -- point at which such functions are constructed (after all types that
1569 -- might be used in such expressions have been frozen).
1571 -- For subprograms that are renaming_as_body, we create the wrapper
1572 -- bodies as needed.
1574 -- We also add finalization chains to access types whose designated
1575 -- types are controlled. This is normally done when freezing the type,
1576 -- but this misses recursive type definitions where the later members
1577 -- of the recursion introduce controlled components.
1579 -- Loop through entities
1581 E := From;
1582 while Present (E) loop
1583 if Is_Subprogram (E) then
1585 if not Default_Expressions_Processed (E) then
1586 Process_Default_Expressions (E, After);
1587 end if;
1589 if not Has_Completion (E) then
1590 Decl := Unit_Declaration_Node (E);
1592 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1593 if Error_Posted (Decl) then
1594 Set_Has_Completion (E);
1595 else
1596 Build_And_Analyze_Renamed_Body (Decl, E, After);
1597 end if;
1599 elsif Nkind (Decl) = N_Subprogram_Declaration
1600 and then Present (Corresponding_Body (Decl))
1601 and then
1602 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1603 = N_Subprogram_Renaming_Declaration
1604 then
1605 Build_And_Analyze_Renamed_Body
1606 (Decl, Corresponding_Body (Decl), After);
1607 end if;
1608 end if;
1610 elsif Ekind (E) in Task_Kind
1611 and then
1612 (Nkind (Parent (E)) = N_Task_Type_Declaration
1613 or else
1614 Nkind (Parent (E)) = N_Single_Task_Declaration)
1615 then
1616 declare
1617 Ent : Entity_Id;
1619 begin
1620 Ent := First_Entity (E);
1621 while Present (Ent) loop
1622 if Is_Entry (Ent)
1623 and then not Default_Expressions_Processed (Ent)
1624 then
1625 Process_Default_Expressions (Ent, After);
1626 end if;
1628 Next_Entity (Ent);
1629 end loop;
1630 end;
1632 -- We add finalization masters to access types whose designated types
1633 -- require finalization. This is normally done when freezing the
1634 -- type, but this misses recursive type definitions where the later
1635 -- members of the recursion introduce controlled components (such as
1636 -- can happen when incomplete types are involved), as well cases
1637 -- where a component type is private and the controlled full type
1638 -- occurs after the access type is frozen. Cases that don't need a
1639 -- finalization master are generic formal types (the actual type will
1640 -- have it) and types with Java and CIL conventions, since those are
1641 -- used for API bindings. (Are there any other cases that should be
1642 -- excluded here???)
1644 elsif Is_Access_Type (E)
1645 and then Comes_From_Source (E)
1646 and then not Is_Generic_Type (E)
1647 and then Needs_Finalization (Designated_Type (E))
1648 then
1649 Build_Finalization_Master (E);
1650 end if;
1652 Next_Entity (E);
1653 end loop;
1654 end Freeze_All;
1656 -----------------------
1657 -- Freeze_And_Append --
1658 -----------------------
1660 procedure Freeze_And_Append
1661 (Ent : Entity_Id;
1662 N : Node_Id;
1663 Result : in out List_Id)
1665 L : constant List_Id := Freeze_Entity (Ent, N);
1666 begin
1667 if Is_Non_Empty_List (L) then
1668 if Result = No_List then
1669 Result := L;
1670 else
1671 Append_List (L, Result);
1672 end if;
1673 end if;
1674 end Freeze_And_Append;
1676 -------------------
1677 -- Freeze_Before --
1678 -------------------
1680 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1681 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1682 begin
1683 if Is_Non_Empty_List (Freeze_Nodes) then
1684 Insert_Actions (N, Freeze_Nodes);
1685 end if;
1686 end Freeze_Before;
1688 -------------------
1689 -- Freeze_Entity --
1690 -------------------
1692 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1693 Loc : constant Source_Ptr := Sloc (N);
1694 Test_E : Entity_Id := E;
1695 Comp : Entity_Id;
1696 F_Node : Node_Id;
1697 Indx : Node_Id;
1698 Formal : Entity_Id;
1699 Atype : Entity_Id;
1701 Result : List_Id := No_List;
1702 -- List of freezing actions, left at No_List if none
1704 Has_Default_Initialization : Boolean := False;
1705 -- This flag gets set to true for a variable with default initialization
1707 procedure Add_To_Result (N : Node_Id);
1708 -- N is a freezing action to be appended to the Result
1710 function After_Last_Declaration return Boolean;
1711 -- If Loc is a freeze_entity that appears after the last declaration
1712 -- in the scope, inhibit error messages on late completion.
1714 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1715 -- Check that an Access or Unchecked_Access attribute with a prefix
1716 -- which is the current instance type can only be applied when the type
1717 -- is limited.
1719 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1720 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1721 -- integer literal without an explicit corresponding size clause. The
1722 -- caller has checked that Utype is a modular integer type.
1724 procedure Freeze_Array_Type (Arr : Entity_Id);
1725 -- Freeze array type, including freezing index and component types
1727 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1728 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1729 -- package. Recurse on inner generic packages.
1731 procedure Freeze_Record_Type (Rec : Entity_Id);
1732 -- Freeze record type, including freezing component types, and freezing
1733 -- primitive operations if this is a tagged type.
1735 -------------------
1736 -- Add_To_Result --
1737 -------------------
1739 procedure Add_To_Result (N : Node_Id) is
1740 begin
1741 if No (Result) then
1742 Result := New_List (N);
1743 else
1744 Append (N, Result);
1745 end if;
1746 end Add_To_Result;
1748 ----------------------------
1749 -- After_Last_Declaration --
1750 ----------------------------
1752 function After_Last_Declaration return Boolean is
1753 Spec : constant Node_Id := Parent (Current_Scope);
1754 begin
1755 if Nkind (Spec) = N_Package_Specification then
1756 if Present (Private_Declarations (Spec)) then
1757 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1758 elsif Present (Visible_Declarations (Spec)) then
1759 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1760 else
1761 return False;
1762 end if;
1763 else
1764 return False;
1765 end if;
1766 end After_Last_Declaration;
1768 ----------------------------
1769 -- Check_Current_Instance --
1770 ----------------------------
1772 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1774 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1775 -- Determine whether Typ is compatible with the rules for aliased
1776 -- views of types as defined in RM 3.10 in the various dialects.
1778 function Process (N : Node_Id) return Traverse_Result;
1779 -- Process routine to apply check to given node
1781 -----------------------------
1782 -- Is_Aliased_View_Of_Type --
1783 -----------------------------
1785 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1786 Typ_Decl : constant Node_Id := Parent (Typ);
1788 begin
1789 -- Common case
1791 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1792 and then Limited_Present (Type_Definition (Typ_Decl))
1793 then
1794 return True;
1796 -- The following paragraphs describe what a legal aliased view of
1797 -- a type is in the various dialects of Ada.
1799 -- Ada 95
1801 -- The current instance of a limited type, and a formal parameter
1802 -- or generic formal object of a tagged type.
1804 -- Ada 95 limited type
1805 -- * Type with reserved word "limited"
1806 -- * A protected or task type
1807 -- * A composite type with limited component
1809 elsif Ada_Version <= Ada_95 then
1810 return Is_Limited_Type (Typ);
1812 -- Ada 2005
1814 -- The current instance of a limited tagged type, a protected
1815 -- type, a task type, or a type that has the reserved word
1816 -- "limited" in its full definition ... a formal parameter or
1817 -- generic formal object of a tagged type.
1819 -- Ada 2005 limited type
1820 -- * Type with reserved word "limited", "synchronized", "task"
1821 -- or "protected"
1822 -- * A composite type with limited component
1823 -- * A derived type whose parent is a non-interface limited type
1825 elsif Ada_Version = Ada_2005 then
1826 return
1827 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1828 or else
1829 (Is_Derived_Type (Typ)
1830 and then not Is_Interface (Etype (Typ))
1831 and then Is_Limited_Type (Etype (Typ)));
1833 -- Ada 2012 and beyond
1835 -- The current instance of an immutably limited type ... a formal
1836 -- parameter or generic formal object of a tagged type.
1838 -- Ada 2012 limited type
1839 -- * Type with reserved word "limited", "synchronized", "task"
1840 -- or "protected"
1841 -- * A composite type with limited component
1842 -- * A derived type whose parent is a non-interface limited type
1843 -- * An incomplete view
1845 -- Ada 2012 immutably limited type
1846 -- * Explicitly limited record type
1847 -- * Record extension with "limited" present
1848 -- * Non-formal limited private type that is either tagged
1849 -- or has at least one access discriminant with a default
1850 -- expression
1851 -- * Task type, protected type or synchronized interface
1852 -- * Type derived from immutably limited type
1854 else
1855 return
1856 Is_Immutably_Limited_Type (Typ)
1857 or else Is_Incomplete_Type (Typ);
1858 end if;
1859 end Is_Aliased_View_Of_Type;
1861 -------------
1862 -- Process --
1863 -------------
1865 function Process (N : Node_Id) return Traverse_Result is
1866 begin
1867 case Nkind (N) is
1868 when N_Attribute_Reference =>
1869 if Nam_In (Attribute_Name (N), Name_Access,
1870 Name_Unchecked_Access)
1871 and then Is_Entity_Name (Prefix (N))
1872 and then Is_Type (Entity (Prefix (N)))
1873 and then Entity (Prefix (N)) = E
1874 then
1875 if Ada_Version < Ada_2012 then
1876 Error_Msg_N
1877 ("current instance must be a limited type",
1878 Prefix (N));
1879 else
1880 Error_Msg_N
1881 ("current instance must be an immutably limited " &
1882 "type (RM-2012, 7.5 (8.1/3))",
1883 Prefix (N));
1884 end if;
1885 return Abandon;
1886 else
1887 return OK;
1888 end if;
1890 when others => return OK;
1891 end case;
1892 end Process;
1894 procedure Traverse is new Traverse_Proc (Process);
1896 -- Local variables
1898 Rec_Type : constant Entity_Id :=
1899 Scope (Defining_Identifier (Comp_Decl));
1901 -- Start of processing for Check_Current_Instance
1903 begin
1904 if not Is_Aliased_View_Of_Type (Rec_Type) then
1905 Traverse (Comp_Decl);
1906 end if;
1907 end Check_Current_Instance;
1909 ------------------------------
1910 -- Check_Suspicious_Modulus --
1911 ------------------------------
1913 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1914 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1916 begin
1917 if not Warn_On_Suspicious_Modulus_Value then
1918 return;
1919 end if;
1921 if Nkind (Decl) = N_Full_Type_Declaration then
1922 declare
1923 Tdef : constant Node_Id := Type_Definition (Decl);
1925 begin
1926 if Nkind (Tdef) = N_Modular_Type_Definition then
1927 declare
1928 Modulus : constant Node_Id :=
1929 Original_Node (Expression (Tdef));
1931 begin
1932 if Nkind (Modulus) = N_Integer_Literal then
1933 declare
1934 Modv : constant Uint := Intval (Modulus);
1935 Sizv : constant Uint := RM_Size (Utype);
1937 begin
1938 -- First case, modulus and size are the same. This
1939 -- happens if you have something like mod 32, with
1940 -- an explicit size of 32, this is for sure a case
1941 -- where the warning is given, since it is seems
1942 -- very unlikely that someone would want e.g. a
1943 -- five bit type stored in 32 bits. It is much
1944 -- more likely they wanted a 32-bit type.
1946 if Modv = Sizv then
1947 null;
1949 -- Second case, the modulus is 32 or 64 and no
1950 -- size clause is present. This is a less clear
1951 -- case for giving the warning, but in the case
1952 -- of 32/64 (5-bit or 6-bit types) these seem rare
1953 -- enough that it is a likely error (and in any
1954 -- case using 2**5 or 2**6 in these cases seems
1955 -- clearer. We don't include 8 or 16 here, simply
1956 -- because in practice 3-bit and 4-bit types are
1957 -- more common and too many false positives if
1958 -- we warn in these cases.
1960 elsif not Has_Size_Clause (Utype)
1961 and then (Modv = Uint_32 or else Modv = Uint_64)
1962 then
1963 null;
1965 -- No warning needed
1967 else
1968 return;
1969 end if;
1971 -- If we fall through, give warning
1973 Error_Msg_Uint_1 := Modv;
1974 Error_Msg_N
1975 ("?M?2 '*'*^' may have been intended here",
1976 Modulus);
1977 end;
1978 end if;
1979 end;
1980 end if;
1981 end;
1982 end if;
1983 end Check_Suspicious_Modulus;
1985 -----------------------
1986 -- Freeze_Array_Type --
1987 -----------------------
1989 procedure Freeze_Array_Type (Arr : Entity_Id) is
1990 FS : constant Entity_Id := First_Subtype (Arr);
1991 Ctyp : constant Entity_Id := Component_Type (Arr);
1992 Clause : Entity_Id;
1994 Non_Standard_Enum : Boolean := False;
1995 -- Set true if any of the index types is an enumeration type with a
1996 -- non-standard representation.
1998 begin
1999 Freeze_And_Append (Ctyp, N, Result);
2001 Indx := First_Index (Arr);
2002 while Present (Indx) loop
2003 Freeze_And_Append (Etype (Indx), N, Result);
2005 if Is_Enumeration_Type (Etype (Indx))
2006 and then Has_Non_Standard_Rep (Etype (Indx))
2007 then
2008 Non_Standard_Enum := True;
2009 end if;
2011 Next_Index (Indx);
2012 end loop;
2014 -- Processing that is done only for base types
2016 if Ekind (Arr) = E_Array_Type then
2018 -- Propagate flags for component type
2020 if Is_Controlled (Component_Type (Arr))
2021 or else Has_Controlled_Component (Ctyp)
2022 then
2023 Set_Has_Controlled_Component (Arr);
2024 end if;
2026 if Has_Unchecked_Union (Component_Type (Arr)) then
2027 Set_Has_Unchecked_Union (Arr);
2028 end if;
2030 -- Warn for pragma Pack overriding foreign convention
2032 if Has_Foreign_Convention (Ctyp)
2033 and then Has_Pragma_Pack (Arr)
2034 then
2035 declare
2036 CN : constant Name_Id :=
2037 Get_Convention_Name (Convention (Ctyp));
2038 PP : constant Node_Id :=
2039 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2040 begin
2041 if Present (PP) then
2042 Error_Msg_Name_1 := CN;
2043 Error_Msg_Sloc := Sloc (Arr);
2044 Error_Msg_N
2045 ("pragma Pack affects convention % components #??",
2046 PP);
2047 Error_Msg_Name_1 := CN;
2048 Error_Msg_N
2049 ("\array components may not have % compatible "
2050 & "representation??", PP);
2051 end if;
2052 end;
2053 end if;
2055 -- If packing was requested or if the component size was
2056 -- set explicitly, then see if bit packing is required. This
2057 -- processing is only done for base types, since all of the
2058 -- representation aspects involved are type-related. This is not
2059 -- just an optimization, if we start processing the subtypes, they
2060 -- interfere with the settings on the base type (this is because
2061 -- Is_Packed has a slightly different meaning before and after
2062 -- freezing).
2064 declare
2065 Csiz : Uint;
2066 Esiz : Uint;
2068 begin
2069 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2070 and then Known_Static_RM_Size (Ctyp)
2071 and then not Has_Component_Size_Clause (Arr)
2072 then
2073 Csiz := UI_Max (RM_Size (Ctyp), 1);
2075 elsif Known_Component_Size (Arr) then
2076 Csiz := Component_Size (Arr);
2078 elsif not Known_Static_Esize (Ctyp) then
2079 Csiz := Uint_0;
2081 else
2082 Esiz := Esize (Ctyp);
2084 -- We can set the component size if it is less than 16,
2085 -- rounding it up to the next storage unit size.
2087 if Esiz <= 8 then
2088 Csiz := Uint_8;
2089 elsif Esiz <= 16 then
2090 Csiz := Uint_16;
2091 else
2092 Csiz := Uint_0;
2093 end if;
2095 -- Set component size up to match alignment if it would
2096 -- otherwise be less than the alignment. This deals with
2097 -- cases of types whose alignment exceeds their size (the
2098 -- padded type cases).
2100 if Csiz /= 0 then
2101 declare
2102 A : constant Uint := Alignment_In_Bits (Ctyp);
2103 begin
2104 if Csiz < A then
2105 Csiz := A;
2106 end if;
2107 end;
2108 end if;
2109 end if;
2111 -- Case of component size that may result in packing
2113 if 1 <= Csiz and then Csiz <= 64 then
2114 declare
2115 Ent : constant Entity_Id :=
2116 First_Subtype (Arr);
2117 Pack_Pragma : constant Node_Id :=
2118 Get_Rep_Pragma (Ent, Name_Pack);
2119 Comp_Size_C : constant Node_Id :=
2120 Get_Attribute_Definition_Clause
2121 (Ent, Attribute_Component_Size);
2122 begin
2123 -- Warn if we have pack and component size so that the
2124 -- pack is ignored.
2126 -- Note: here we must check for the presence of a
2127 -- component size before checking for a Pack pragma to
2128 -- deal with the case where the array type is a derived
2129 -- type whose parent is currently private.
2131 if Present (Comp_Size_C)
2132 and then Has_Pragma_Pack (Ent)
2133 and then Warn_On_Redundant_Constructs
2134 then
2135 Error_Msg_Sloc := Sloc (Comp_Size_C);
2136 Error_Msg_NE
2137 ("?r?pragma Pack for& ignored!",
2138 Pack_Pragma, Ent);
2139 Error_Msg_N
2140 ("\?r?explicit component size given#!",
2141 Pack_Pragma);
2142 Set_Is_Packed (Base_Type (Ent), False);
2143 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2144 end if;
2146 -- Set component size if not already set by a component
2147 -- size clause.
2149 if not Present (Comp_Size_C) then
2150 Set_Component_Size (Arr, Csiz);
2151 end if;
2153 -- Check for base type of 8, 16, 32 bits, where an
2154 -- unsigned subtype has a length one less than the
2155 -- base type (e.g. Natural subtype of Integer).
2157 -- In such cases, if a component size was not set
2158 -- explicitly, then generate a warning.
2160 if Has_Pragma_Pack (Arr)
2161 and then not Present (Comp_Size_C)
2162 and then
2163 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2164 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2165 then
2166 Error_Msg_Uint_1 := Csiz;
2168 if Present (Pack_Pragma) then
2169 Error_Msg_N
2170 ("??pragma Pack causes component size "
2171 & "to be ^!", Pack_Pragma);
2172 Error_Msg_N
2173 ("\??use Component_Size to set "
2174 & "desired value!", Pack_Pragma);
2175 end if;
2176 end if;
2178 -- Actual packing is not needed for 8, 16, 32, 64. Also
2179 -- not needed for 24 if alignment is 1.
2181 if Csiz = 8
2182 or else Csiz = 16
2183 or else Csiz = 32
2184 or else Csiz = 64
2185 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2186 then
2187 -- Here the array was requested to be packed, but
2188 -- the packing request had no effect, so Is_Packed
2189 -- is reset.
2191 -- Note: semantically this means that we lose track
2192 -- of the fact that a derived type inherited a pragma
2193 -- Pack that was non- effective, but that seems fine.
2195 -- We regard a Pack pragma as a request to set a
2196 -- representation characteristic, and this request
2197 -- may be ignored.
2199 Set_Is_Packed (Base_Type (Arr), False);
2200 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2202 if Known_Static_Esize (Component_Type (Arr))
2203 and then Esize (Component_Type (Arr)) = Csiz
2204 then
2205 Set_Has_Non_Standard_Rep
2206 (Base_Type (Arr), False);
2207 end if;
2209 -- In all other cases, packing is indeed needed
2211 else
2212 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2213 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2214 Set_Is_Packed (Base_Type (Arr), True);
2215 end if;
2216 end;
2217 end if;
2218 end;
2220 -- Check for Atomic_Components or Aliased with unsuitable packing
2221 -- or explicit component size clause given.
2223 if (Has_Atomic_Components (Arr)
2224 or else Has_Aliased_Components (Arr))
2225 and then (Has_Component_Size_Clause (Arr)
2226 or else Is_Packed (Arr))
2227 then
2228 Alias_Atomic_Check : declare
2230 procedure Complain_CS (T : String);
2231 -- Outputs error messages for incorrect CS clause or pragma
2232 -- Pack for aliased or atomic components (T is "aliased" or
2233 -- "atomic");
2235 -----------------
2236 -- Complain_CS --
2237 -----------------
2239 procedure Complain_CS (T : String) is
2240 begin
2241 if Has_Component_Size_Clause (Arr) then
2242 Clause :=
2243 Get_Attribute_Definition_Clause
2244 (FS, Attribute_Component_Size);
2246 if Known_Static_Esize (Ctyp) then
2247 Error_Msg_N
2248 ("incorrect component size for "
2249 & T & " components", Clause);
2250 Error_Msg_Uint_1 := Esize (Ctyp);
2251 Error_Msg_N
2252 ("\only allowed value is^", Clause);
2254 else
2255 Error_Msg_N
2256 ("component size cannot be given for "
2257 & T & " components", Clause);
2258 end if;
2260 else
2261 Error_Msg_N
2262 ("cannot pack " & T & " components",
2263 Get_Rep_Pragma (FS, Name_Pack));
2264 end if;
2266 return;
2267 end Complain_CS;
2269 -- Start of processing for Alias_Atomic_Check
2271 begin
2273 -- If object size of component type isn't known, we cannot
2274 -- be sure so we defer to the back end.
2276 if not Known_Static_Esize (Ctyp) then
2277 null;
2279 -- Case where component size has no effect. First check for
2280 -- object size of component type multiple of the storage
2281 -- unit size.
2283 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2285 -- OK in both packing case and component size case if RM
2286 -- size is known and static and same as the object size.
2288 and then
2289 ((Known_Static_RM_Size (Ctyp)
2290 and then Esize (Ctyp) = RM_Size (Ctyp))
2292 -- Or if we have an explicit component size clause and
2293 -- the component size and object size are equal.
2295 or else
2296 (Has_Component_Size_Clause (Arr)
2297 and then Component_Size (Arr) = Esize (Ctyp)))
2298 then
2299 null;
2301 elsif Has_Aliased_Components (Arr)
2302 or else Is_Aliased (Ctyp)
2303 then
2304 Complain_CS ("aliased");
2306 elsif Has_Atomic_Components (Arr)
2307 or else Is_Atomic (Ctyp)
2308 then
2309 Complain_CS ("atomic");
2310 end if;
2311 end Alias_Atomic_Check;
2312 end if;
2314 -- Warn for case of atomic type
2316 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2318 if Present (Clause)
2319 and then not Addressable (Component_Size (FS))
2320 then
2321 Error_Msg_NE
2322 ("non-atomic components of type& may not be "
2323 & "accessible by separate tasks??", Clause, Arr);
2325 if Has_Component_Size_Clause (Arr) then
2326 Error_Msg_Sloc :=
2327 Sloc
2328 (Get_Attribute_Definition_Clause
2329 (FS, Attribute_Component_Size));
2330 Error_Msg_N
2331 ("\because of component size clause#??",
2332 Clause);
2334 elsif Has_Pragma_Pack (Arr) then
2335 Error_Msg_Sloc :=
2336 Sloc (Get_Rep_Pragma (FS, Name_Pack));
2337 Error_Msg_N
2338 ("\because of pragma Pack#??", Clause);
2339 end if;
2340 end if;
2342 -- Check for scalar storage order
2344 Check_Component_Storage_Order
2345 (Encl_Type => Arr,
2346 Comp => Empty,
2347 ADC => Get_Attribute_Definition_Clause
2348 (First_Subtype (Arr),
2349 Attribute_Scalar_Storage_Order));
2351 -- Processing that is done only for subtypes
2353 else
2354 -- Acquire alignment from base type
2356 if Unknown_Alignment (Arr) then
2357 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2358 Adjust_Esize_Alignment (Arr);
2359 end if;
2360 end if;
2362 -- Specific checks for bit-packed arrays
2364 if Is_Bit_Packed_Array (Arr) then
2366 -- Check number of elements for bit packed arrays that come from
2367 -- source and have compile time known ranges. The bit-packed
2368 -- arrays circuitry does not support arrays with more than
2369 -- Integer'Last + 1 elements, and when this restriction is
2370 -- violated, causes incorrect data access.
2372 -- For the case where this is not compile time known, a run-time
2373 -- check should be generated???
2375 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2376 declare
2377 Elmts : Uint;
2378 Index : Node_Id;
2379 Ilen : Node_Id;
2380 Ityp : Entity_Id;
2382 begin
2383 Elmts := Uint_1;
2384 Index := First_Index (Arr);
2385 while Present (Index) loop
2386 Ityp := Etype (Index);
2388 -- Never generate an error if any index is of a generic
2389 -- type. We will check this in instances.
2391 if Is_Generic_Type (Ityp) then
2392 Elmts := Uint_0;
2393 exit;
2394 end if;
2396 Ilen :=
2397 Make_Attribute_Reference (Loc,
2398 Prefix =>
2399 New_Occurrence_Of (Ityp, Loc),
2400 Attribute_Name => Name_Range_Length);
2401 Analyze_And_Resolve (Ilen);
2403 -- No attempt is made to check number of elements
2404 -- if not compile time known.
2406 if Nkind (Ilen) /= N_Integer_Literal then
2407 Elmts := Uint_0;
2408 exit;
2409 end if;
2411 Elmts := Elmts * Intval (Ilen);
2412 Next_Index (Index);
2413 end loop;
2415 if Elmts > Intval (High_Bound
2416 (Scalar_Range
2417 (Standard_Integer))) + 1
2418 then
2419 Error_Msg_N
2420 ("bit packed array type may not have "
2421 & "more than Integer''Last+1 elements", Arr);
2422 end if;
2423 end;
2424 end if;
2426 -- Check size
2428 if Known_RM_Size (Arr) then
2429 declare
2430 SizC : constant Node_Id := Size_Clause (Arr);
2432 Discard : Boolean;
2433 pragma Warnings (Off, Discard);
2435 begin
2436 -- It is not clear if it is possible to have no size clause
2437 -- at this stage, but it is not worth worrying about. Post
2438 -- error on the entity name in the size clause if present,
2439 -- else on the type entity itself.
2441 if Present (SizC) then
2442 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2443 else
2444 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2445 end if;
2446 end;
2447 end if;
2448 end if;
2450 -- If any of the index types was an enumeration type with a
2451 -- non-standard rep clause, then we indicate that the array type
2452 -- is always packed (even if it is not bit packed).
2454 if Non_Standard_Enum then
2455 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2456 Set_Is_Packed (Base_Type (Arr));
2457 end if;
2459 Set_Component_Alignment_If_Not_Set (Arr);
2461 -- If the array is packed, we must create the packed array type to be
2462 -- used to actually implement the type. This is only needed for real
2463 -- array types (not for string literal types, since they are present
2464 -- only for the front end).
2466 if Is_Packed (Arr)
2467 and then Ekind (Arr) /= E_String_Literal_Subtype
2468 then
2469 Create_Packed_Array_Type (Arr);
2470 Freeze_And_Append (Packed_Array_Type (Arr), N, Result);
2472 -- Size information of packed array type is copied to the array
2473 -- type, since this is really the representation. But do not
2474 -- override explicit existing size values. If the ancestor subtype
2475 -- is constrained the packed_array_type will be inherited from it,
2476 -- but the size may have been provided already, and must not be
2477 -- overridden either.
2479 if not Has_Size_Clause (Arr)
2480 and then
2481 (No (Ancestor_Subtype (Arr))
2482 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2483 then
2484 Set_Esize (Arr, Esize (Packed_Array_Type (Arr)));
2485 Set_RM_Size (Arr, RM_Size (Packed_Array_Type (Arr)));
2486 end if;
2488 if not Has_Alignment_Clause (Arr) then
2489 Set_Alignment (Arr, Alignment (Packed_Array_Type (Arr)));
2490 end if;
2491 end if;
2493 -- For non-packed arrays set the alignment of the array to the
2494 -- alignment of the component type if it is unknown. Skip this
2495 -- in atomic case (atomic arrays may need larger alignments).
2497 if not Is_Packed (Arr)
2498 and then Unknown_Alignment (Arr)
2499 and then Known_Alignment (Ctyp)
2500 and then Known_Static_Component_Size (Arr)
2501 and then Known_Static_Esize (Ctyp)
2502 and then Esize (Ctyp) = Component_Size (Arr)
2503 and then not Is_Atomic (Arr)
2504 then
2505 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2506 end if;
2507 end Freeze_Array_Type;
2509 -----------------------------
2510 -- Freeze_Generic_Entities --
2511 -----------------------------
2513 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
2514 E : Entity_Id;
2515 F : Node_Id;
2516 Flist : List_Id;
2518 begin
2519 Flist := New_List;
2520 E := First_Entity (Pack);
2521 while Present (E) loop
2522 if Is_Type (E) and then not Is_Generic_Type (E) then
2523 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2524 Set_Entity (F, E);
2525 Append_To (Flist, F);
2527 elsif Ekind (E) = E_Generic_Package then
2528 Append_List_To (Flist, Freeze_Generic_Entities (E));
2529 end if;
2531 Next_Entity (E);
2532 end loop;
2534 return Flist;
2535 end Freeze_Generic_Entities;
2537 ------------------------
2538 -- Freeze_Record_Type --
2539 ------------------------
2541 procedure Freeze_Record_Type (Rec : Entity_Id) is
2542 Comp : Entity_Id;
2543 IR : Node_Id;
2544 ADC : Node_Id;
2545 Prev : Entity_Id;
2547 Junk : Boolean;
2548 pragma Warnings (Off, Junk);
2550 Rec_Pushed : Boolean := False;
2551 -- Set True if the record type scope Rec has been pushed on the scope
2552 -- stack. Needed for the analysis of delayed aspects specified to the
2553 -- components of Rec.
2555 Unplaced_Component : Boolean := False;
2556 -- Set True if we find at least one component with no component
2557 -- clause (used to warn about useless Pack pragmas).
2559 Placed_Component : Boolean := False;
2560 -- Set True if we find at least one component with a component
2561 -- clause (used to warn about useless Bit_Order pragmas, and also
2562 -- to detect cases where Implicit_Packing may have an effect).
2564 Aliased_Component : Boolean := False;
2565 -- Set True if we find at least one component which is aliased. This
2566 -- is used to prevent Implicit_Packing of the record, since packing
2567 -- cannot modify the size of alignment of an aliased component.
2569 All_Scalar_Components : Boolean := True;
2570 -- Set False if we encounter a component of a non-scalar type
2572 Scalar_Component_Total_RM_Size : Uint := Uint_0;
2573 Scalar_Component_Total_Esize : Uint := Uint_0;
2574 -- Accumulates total RM_Size values and total Esize values of all
2575 -- scalar components. Used for processing of Implicit_Packing.
2577 function Check_Allocator (N : Node_Id) return Node_Id;
2578 -- If N is an allocator, possibly wrapped in one or more level of
2579 -- qualified expression(s), return the inner allocator node, else
2580 -- return Empty.
2582 procedure Check_Itype (Typ : Entity_Id);
2583 -- If the component subtype is an access to a constrained subtype of
2584 -- an already frozen type, make the subtype frozen as well. It might
2585 -- otherwise be frozen in the wrong scope, and a freeze node on
2586 -- subtype has no effect. Similarly, if the component subtype is a
2587 -- regular (not protected) access to subprogram, set the anonymous
2588 -- subprogram type to frozen as well, to prevent an out-of-scope
2589 -- freeze node at some eventual point of call. Protected operations
2590 -- are handled elsewhere.
2592 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
2593 -- Make sure that all types mentioned in Discrete_Choices of the
2594 -- variants referenceed by the Variant_Part VP are frozen. This is
2595 -- a recursive routine to deal with nested variants.
2597 ---------------------
2598 -- Check_Allocator --
2599 ---------------------
2601 function Check_Allocator (N : Node_Id) return Node_Id is
2602 Inner : Node_Id;
2603 begin
2604 Inner := N;
2605 loop
2606 if Nkind (Inner) = N_Allocator then
2607 return Inner;
2608 elsif Nkind (Inner) = N_Qualified_Expression then
2609 Inner := Expression (Inner);
2610 else
2611 return Empty;
2612 end if;
2613 end loop;
2614 end Check_Allocator;
2616 -----------------
2617 -- Check_Itype --
2618 -----------------
2620 procedure Check_Itype (Typ : Entity_Id) is
2621 Desig : constant Entity_Id := Designated_Type (Typ);
2623 begin
2624 if not Is_Frozen (Desig)
2625 and then Is_Frozen (Base_Type (Desig))
2626 then
2627 Set_Is_Frozen (Desig);
2629 -- In addition, add an Itype_Reference to ensure that the
2630 -- access subtype is elaborated early enough. This cannot be
2631 -- done if the subtype may depend on discriminants.
2633 if Ekind (Comp) = E_Component
2634 and then Is_Itype (Etype (Comp))
2635 and then not Has_Discriminants (Rec)
2636 then
2637 IR := Make_Itype_Reference (Sloc (Comp));
2638 Set_Itype (IR, Desig);
2639 Add_To_Result (IR);
2640 end if;
2642 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
2643 and then Convention (Desig) /= Convention_Protected
2644 then
2645 Set_Is_Frozen (Desig);
2646 end if;
2647 end Check_Itype;
2649 ------------------------------------
2650 -- Freeze_Choices_In_Variant_Part --
2651 ------------------------------------
2653 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
2654 pragma Assert (Nkind (VP) = N_Variant_Part);
2656 Variant : Node_Id;
2657 Choice : Node_Id;
2658 CL : Node_Id;
2660 begin
2661 -- Loop through variants
2663 Variant := First_Non_Pragma (Variants (VP));
2664 while Present (Variant) loop
2666 -- Loop through choices, checking that all types are frozen
2668 Choice := First_Non_Pragma (Discrete_Choices (Variant));
2669 while Present (Choice) loop
2670 if Nkind (Choice) in N_Has_Etype
2671 and then Present (Etype (Choice))
2672 then
2673 Freeze_And_Append (Etype (Choice), N, Result);
2674 end if;
2676 Next_Non_Pragma (Choice);
2677 end loop;
2679 -- Check for nested variant part to process
2681 CL := Component_List (Variant);
2683 if not Null_Present (CL) then
2684 if Present (Variant_Part (CL)) then
2685 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
2686 end if;
2687 end if;
2689 Next_Non_Pragma (Variant);
2690 end loop;
2691 end Freeze_Choices_In_Variant_Part;
2693 -- Start of processing for Freeze_Record_Type
2695 begin
2696 -- Deal with delayed aspect specifications for components. The
2697 -- analysis of the aspect is required to be delayed to the freeze
2698 -- point, thus we analyze the pragma or attribute definition
2699 -- clause in the tree at this point. We also analyze the aspect
2700 -- specification node at the freeze point when the aspect doesn't
2701 -- correspond to pragma/attribute definition clause.
2703 Comp := First_Entity (Rec);
2704 while Present (Comp) loop
2705 if Ekind (Comp) = E_Component
2706 and then Has_Delayed_Aspects (Comp)
2707 then
2708 if not Rec_Pushed then
2709 Push_Scope (Rec);
2710 Rec_Pushed := True;
2712 -- The visibility to the discriminants must be restored in
2713 -- order to properly analyze the aspects.
2715 if Has_Discriminants (Rec) then
2716 Install_Discriminants (Rec);
2717 end if;
2718 end if;
2720 Analyze_Aspects_At_Freeze_Point (Comp);
2721 end if;
2723 Next_Entity (Comp);
2724 end loop;
2726 -- Pop the scope if Rec scope has been pushed on the scope stack
2727 -- during the delayed aspect analysis process.
2729 if Rec_Pushed then
2730 if Has_Discriminants (Rec) then
2731 Uninstall_Discriminants (Rec);
2732 end if;
2734 Pop_Scope;
2735 end if;
2737 -- Freeze components and embedded subtypes
2739 Comp := First_Entity (Rec);
2740 Prev := Empty;
2741 while Present (Comp) loop
2742 if Is_Aliased (Comp) then
2743 Aliased_Component := True;
2744 end if;
2746 -- Handle the component and discriminant case
2748 if Ekind_In (Comp, E_Component, E_Discriminant) then
2749 declare
2750 CC : constant Node_Id := Component_Clause (Comp);
2752 begin
2753 -- Freezing a record type freezes the type of each of its
2754 -- components. However, if the type of the component is
2755 -- part of this record, we do not want or need a separate
2756 -- Freeze_Node. Note that Is_Itype is wrong because that's
2757 -- also set in private type cases. We also can't check for
2758 -- the Scope being exactly Rec because of private types and
2759 -- record extensions.
2761 if Is_Itype (Etype (Comp))
2762 and then Is_Record_Type (Underlying_Type
2763 (Scope (Etype (Comp))))
2764 then
2765 Undelay_Type (Etype (Comp));
2766 end if;
2768 Freeze_And_Append (Etype (Comp), N, Result);
2770 -- Warn for pragma Pack overriding foreign convention
2772 if Has_Foreign_Convention (Etype (Comp))
2773 and then Has_Pragma_Pack (Rec)
2775 -- Don't warn for aliased components, since override
2776 -- cannot happen in that case.
2778 and then not Is_Aliased (Comp)
2779 then
2780 declare
2781 CN : constant Name_Id :=
2782 Get_Convention_Name (Convention (Etype (Comp)));
2783 PP : constant Node_Id :=
2784 Get_Pragma (Rec, Pragma_Pack);
2785 begin
2786 if Present (PP) then
2787 Error_Msg_Name_1 := CN;
2788 Error_Msg_Sloc := Sloc (Comp);
2789 Error_Msg_N
2790 ("pragma Pack affects convention % component#??",
2791 PP);
2792 Error_Msg_Name_1 := CN;
2793 Error_Msg_NE
2794 ("\component & may not have % compatible "
2795 & "representation??", PP, Comp);
2796 end if;
2797 end;
2798 end if;
2800 -- Check for error of component clause given for variable
2801 -- sized type. We have to delay this test till this point,
2802 -- since the component type has to be frozen for us to know
2803 -- if it is variable length. We omit this test in a generic
2804 -- context, it will be applied at instantiation time.
2806 -- We also omit this test in CodePeer mode, since we do not
2807 -- have sufficient info on size and representation clauses.
2809 if Present (CC) then
2810 Placed_Component := True;
2812 if Inside_A_Generic then
2813 null;
2815 elsif CodePeer_Mode then
2816 null;
2818 elsif not
2819 Size_Known_At_Compile_Time
2820 (Underlying_Type (Etype (Comp)))
2821 then
2822 Error_Msg_N
2823 ("component clause not allowed for variable " &
2824 "length component", CC);
2825 end if;
2827 else
2828 Unplaced_Component := True;
2829 end if;
2831 -- Case of component requires byte alignment
2833 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
2835 -- Set the enclosing record to also require byte align
2837 Set_Must_Be_On_Byte_Boundary (Rec);
2839 -- Check for component clause that is inconsistent with
2840 -- the required byte boundary alignment.
2842 if Present (CC)
2843 and then Normalized_First_Bit (Comp) mod
2844 System_Storage_Unit /= 0
2845 then
2846 Error_Msg_N
2847 ("component & must be byte aligned",
2848 Component_Name (Component_Clause (Comp)));
2849 end if;
2850 end if;
2851 end;
2852 end if;
2854 -- Gather data for possible Implicit_Packing later. Note that at
2855 -- this stage we might be dealing with a real component, or with
2856 -- an implicit subtype declaration.
2858 if not Is_Scalar_Type (Etype (Comp)) then
2859 All_Scalar_Components := False;
2860 else
2861 Scalar_Component_Total_RM_Size :=
2862 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
2863 Scalar_Component_Total_Esize :=
2864 Scalar_Component_Total_Esize + Esize (Etype (Comp));
2865 end if;
2867 -- If the component is an Itype with Delayed_Freeze and is either
2868 -- a record or array subtype and its base type has not yet been
2869 -- frozen, we must remove this from the entity list of this record
2870 -- and put it on the entity list of the scope of its base type.
2871 -- Note that we know that this is not the type of a component
2872 -- since we cleared Has_Delayed_Freeze for it in the previous
2873 -- loop. Thus this must be the Designated_Type of an access type,
2874 -- which is the type of a component.
2876 if Is_Itype (Comp)
2877 and then Is_Type (Scope (Comp))
2878 and then Is_Composite_Type (Comp)
2879 and then Base_Type (Comp) /= Comp
2880 and then Has_Delayed_Freeze (Comp)
2881 and then not Is_Frozen (Base_Type (Comp))
2882 then
2883 declare
2884 Will_Be_Frozen : Boolean := False;
2885 S : Entity_Id;
2887 begin
2888 -- We have a pretty bad kludge here. Suppose Rec is subtype
2889 -- being defined in a subprogram that's created as part of
2890 -- the freezing of Rec'Base. In that case, we know that
2891 -- Comp'Base must have already been frozen by the time we
2892 -- get to elaborate this because Gigi doesn't elaborate any
2893 -- bodies until it has elaborated all of the declarative
2894 -- part. But Is_Frozen will not be set at this point because
2895 -- we are processing code in lexical order.
2897 -- We detect this case by going up the Scope chain of Rec
2898 -- and seeing if we have a subprogram scope before reaching
2899 -- the top of the scope chain or that of Comp'Base. If we
2900 -- do, then mark that Comp'Base will actually be frozen. If
2901 -- so, we merely undelay it.
2903 S := Scope (Rec);
2904 while Present (S) loop
2905 if Is_Subprogram (S) then
2906 Will_Be_Frozen := True;
2907 exit;
2908 elsif S = Scope (Base_Type (Comp)) then
2909 exit;
2910 end if;
2912 S := Scope (S);
2913 end loop;
2915 if Will_Be_Frozen then
2916 Undelay_Type (Comp);
2917 else
2918 if Present (Prev) then
2919 Set_Next_Entity (Prev, Next_Entity (Comp));
2920 else
2921 Set_First_Entity (Rec, Next_Entity (Comp));
2922 end if;
2924 -- Insert in entity list of scope of base type (which
2925 -- must be an enclosing scope, because still unfrozen).
2927 Append_Entity (Comp, Scope (Base_Type (Comp)));
2928 end if;
2929 end;
2931 -- If the component is an access type with an allocator as default
2932 -- value, the designated type will be frozen by the corresponding
2933 -- expression in init_proc. In order to place the freeze node for
2934 -- the designated type before that for the current record type,
2935 -- freeze it now.
2937 -- Same process if the component is an array of access types,
2938 -- initialized with an aggregate. If the designated type is
2939 -- private, it cannot contain allocators, and it is premature
2940 -- to freeze the type, so we check for this as well.
2942 elsif Is_Access_Type (Etype (Comp))
2943 and then Present (Parent (Comp))
2944 and then Present (Expression (Parent (Comp)))
2945 then
2946 declare
2947 Alloc : constant Node_Id :=
2948 Check_Allocator (Expression (Parent (Comp)));
2950 begin
2951 if Present (Alloc) then
2953 -- If component is pointer to a class-wide type, freeze
2954 -- the specific type in the expression being allocated.
2955 -- The expression may be a subtype indication, in which
2956 -- case freeze the subtype mark.
2958 if Is_Class_Wide_Type
2959 (Designated_Type (Etype (Comp)))
2960 then
2961 if Is_Entity_Name (Expression (Alloc)) then
2962 Freeze_And_Append
2963 (Entity (Expression (Alloc)), N, Result);
2964 elsif
2965 Nkind (Expression (Alloc)) = N_Subtype_Indication
2966 then
2967 Freeze_And_Append
2968 (Entity (Subtype_Mark (Expression (Alloc))),
2969 N, Result);
2970 end if;
2972 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2973 Check_Itype (Etype (Comp));
2975 else
2976 Freeze_And_Append
2977 (Designated_Type (Etype (Comp)), N, Result);
2978 end if;
2979 end if;
2980 end;
2982 elsif Is_Access_Type (Etype (Comp))
2983 and then Is_Itype (Designated_Type (Etype (Comp)))
2984 then
2985 Check_Itype (Etype (Comp));
2987 elsif Is_Array_Type (Etype (Comp))
2988 and then Is_Access_Type (Component_Type (Etype (Comp)))
2989 and then Present (Parent (Comp))
2990 and then Nkind (Parent (Comp)) = N_Component_Declaration
2991 and then Present (Expression (Parent (Comp)))
2992 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2993 and then Is_Fully_Defined
2994 (Designated_Type (Component_Type (Etype (Comp))))
2995 then
2996 Freeze_And_Append
2997 (Designated_Type
2998 (Component_Type (Etype (Comp))), N, Result);
2999 end if;
3001 Prev := Comp;
3002 Next_Entity (Comp);
3003 end loop;
3005 ADC := Get_Attribute_Definition_Clause
3006 (Rec, Attribute_Scalar_Storage_Order);
3008 if Present (ADC) then
3010 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3011 -- the former is specified.
3013 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3015 -- Note: report error on Rec, not on ADC, as ADC may apply to
3016 -- an ancestor type.
3018 Error_Msg_Sloc := Sloc (ADC);
3019 Error_Msg_N
3020 ("scalar storage order for& specified# inconsistent with "
3021 & "bit order", Rec);
3022 end if;
3024 -- Warn if there is a Scalar_Storage_Order but no component clause
3025 -- (or pragma Pack).
3027 if not (Placed_Component or else Is_Packed (Rec)) then
3028 Error_Msg_N
3029 ("??scalar storage order specified but no component clause",
3030 ADC);
3031 end if;
3032 end if;
3034 -- Check consistent attribute setting on component types
3036 Comp := First_Component (Rec);
3037 while Present (Comp) loop
3038 Check_Component_Storage_Order
3039 (Encl_Type => Rec, Comp => Comp, ADC => ADC);
3040 Next_Component (Comp);
3041 end loop;
3043 -- Deal with Bit_Order aspect specifying a non-default bit order
3045 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3047 if Present (ADC) and then Base_Type (Rec) = Rec then
3048 if not (Placed_Component or else Is_Packed (Rec)) then
3049 Error_Msg_N
3050 ("??bit order specification has no effect", ADC);
3051 Error_Msg_N
3052 ("\??since no component clauses were specified", ADC);
3054 -- Here is where we do the processing for reversed bit order
3056 elsif Reverse_Bit_Order (Rec)
3057 and then not Reverse_Storage_Order (Rec)
3058 then
3059 Adjust_Record_For_Reverse_Bit_Order (Rec);
3061 -- Case where we have both an explicit Bit_Order and the same
3062 -- Scalar_Storage_Order: leave record untouched, the back-end
3063 -- will take care of required layout conversions.
3065 else
3066 null;
3068 end if;
3069 end if;
3071 -- Complete error checking on record representation clause (e.g.
3072 -- overlap of components). This is called after adjusting the
3073 -- record for reverse bit order.
3075 declare
3076 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3077 begin
3078 if Present (RRC) then
3079 Check_Record_Representation_Clause (RRC);
3080 end if;
3081 end;
3083 -- Set OK_To_Reorder_Components depending on debug flags
3085 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
3086 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
3087 or else
3088 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
3089 then
3090 Set_OK_To_Reorder_Components (Rec);
3091 end if;
3092 end if;
3094 -- Check for useless pragma Pack when all components placed. We only
3095 -- do this check for record types, not subtypes, since a subtype may
3096 -- have all its components placed, and it still makes perfectly good
3097 -- sense to pack other subtypes or the parent type. We do not give
3098 -- this warning if Optimize_Alignment is set to Space, since the
3099 -- pragma Pack does have an effect in this case (it always resets
3100 -- the alignment to one).
3102 if Ekind (Rec) = E_Record_Type
3103 and then Is_Packed (Rec)
3104 and then not Unplaced_Component
3105 and then Optimize_Alignment /= 'S'
3106 then
3107 -- Reset packed status. Probably not necessary, but we do it so
3108 -- that there is no chance of the back end doing something strange
3109 -- with this redundant indication of packing.
3111 Set_Is_Packed (Rec, False);
3113 -- Give warning if redundant constructs warnings on
3115 if Warn_On_Redundant_Constructs then
3116 Error_Msg_N -- CODEFIX
3117 ("??pragma Pack has no effect, no unplaced components",
3118 Get_Rep_Pragma (Rec, Name_Pack));
3119 end if;
3120 end if;
3122 -- If this is the record corresponding to a remote type, freeze the
3123 -- remote type here since that is what we are semantically freezing.
3124 -- This prevents the freeze node for that type in an inner scope.
3126 if Ekind (Rec) = E_Record_Type then
3127 if Present (Corresponding_Remote_Type (Rec)) then
3128 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
3129 end if;
3131 -- Check for controlled components and unchecked unions.
3133 Comp := First_Component (Rec);
3134 while Present (Comp) loop
3136 -- Do not set Has_Controlled_Component on a class-wide
3137 -- equivalent type. See Make_CW_Equivalent_Type.
3139 if not Is_Class_Wide_Equivalent_Type (Rec)
3140 and then
3141 (Has_Controlled_Component (Etype (Comp))
3142 or else
3143 (Chars (Comp) /= Name_uParent
3144 and then Is_Controlled (Etype (Comp)))
3145 or else
3146 (Is_Protected_Type (Etype (Comp))
3147 and then
3148 Present (Corresponding_Record_Type (Etype (Comp)))
3149 and then
3150 Has_Controlled_Component
3151 (Corresponding_Record_Type (Etype (Comp)))))
3152 then
3153 Set_Has_Controlled_Component (Rec);
3154 end if;
3156 if Has_Unchecked_Union (Etype (Comp)) then
3157 Set_Has_Unchecked_Union (Rec);
3158 end if;
3160 -- Scan component declaration for likely misuses of current
3161 -- instance, either in a constraint or a default expression.
3163 if Has_Per_Object_Constraint (Comp) then
3164 Check_Current_Instance (Parent (Comp));
3165 end if;
3167 Next_Component (Comp);
3168 end loop;
3169 end if;
3171 -- Enforce the restriction that access attributes with a current
3172 -- instance prefix can only apply to limited types. This comment
3173 -- is floating here, but does not seem to belong here???
3175 -- Set component alignment if not otherwise already set
3177 Set_Component_Alignment_If_Not_Set (Rec);
3179 -- For first subtypes, check if there are any fixed-point fields with
3180 -- component clauses, where we must check the size. This is not done
3181 -- till the freeze point since for fixed-point types, we do not know
3182 -- the size until the type is frozen. Similar processing applies to
3183 -- bit packed arrays.
3185 if Is_First_Subtype (Rec) then
3186 Comp := First_Component (Rec);
3187 while Present (Comp) loop
3188 if Present (Component_Clause (Comp))
3189 and then (Is_Fixed_Point_Type (Etype (Comp))
3190 or else
3191 Is_Bit_Packed_Array (Etype (Comp)))
3192 then
3193 Check_Size
3194 (Component_Name (Component_Clause (Comp)),
3195 Etype (Comp),
3196 Esize (Comp),
3197 Junk);
3198 end if;
3200 Next_Component (Comp);
3201 end loop;
3202 end if;
3204 -- Generate warning for applying C or C++ convention to a record
3205 -- with discriminants. This is suppressed for the unchecked union
3206 -- case, since the whole point in this case is interface C. We also
3207 -- do not generate this within instantiations, since we will have
3208 -- generated a message on the template.
3210 if Has_Discriminants (E)
3211 and then not Is_Unchecked_Union (E)
3212 and then (Convention (E) = Convention_C
3213 or else
3214 Convention (E) = Convention_CPP)
3215 and then Comes_From_Source (E)
3216 and then not In_Instance
3217 and then not Has_Warnings_Off (E)
3218 and then not Has_Warnings_Off (Base_Type (E))
3219 then
3220 declare
3221 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3222 A2 : Node_Id;
3224 begin
3225 if Present (Cprag) then
3226 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3228 if Convention (E) = Convention_C then
3229 Error_Msg_N
3230 ("?x?variant record has no direct equivalent in C",
3231 A2);
3232 else
3233 Error_Msg_N
3234 ("?x?variant record has no direct equivalent in C++",
3235 A2);
3236 end if;
3238 Error_Msg_NE
3239 ("\?x?use of convention for type& is dubious", A2, E);
3240 end if;
3241 end;
3242 end if;
3244 -- See if Size is too small as is (and implicit packing might help)
3246 if not Is_Packed (Rec)
3248 -- No implicit packing if even one component is explicitly placed
3250 and then not Placed_Component
3252 -- Or even one component is aliased
3254 and then not Aliased_Component
3256 -- Must have size clause and all scalar components
3258 and then Has_Size_Clause (Rec)
3259 and then All_Scalar_Components
3261 -- Do not try implicit packing on records with discriminants, too
3262 -- complicated, especially in the variant record case.
3264 and then not Has_Discriminants (Rec)
3266 -- We can implicitly pack if the specified size of the record is
3267 -- less than the sum of the object sizes (no point in packing if
3268 -- this is not the case).
3270 and then RM_Size (Rec) < Scalar_Component_Total_Esize
3272 -- And the total RM size cannot be greater than the specified size
3273 -- since otherwise packing will not get us where we have to be!
3275 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
3277 -- Never do implicit packing in CodePeer or SPARK modes since
3278 -- we don't do any packing in these modes, since this generates
3279 -- over-complex code that confuses static analysis, and in
3280 -- general, neither CodePeer not GNATprove care about the
3281 -- internal representation of objects.
3283 and then not (CodePeer_Mode or SPARK_Mode)
3284 then
3285 -- If implicit packing enabled, do it
3287 if Implicit_Packing then
3288 Set_Is_Packed (Rec);
3290 -- Otherwise flag the size clause
3292 else
3293 declare
3294 Sz : constant Node_Id := Size_Clause (Rec);
3295 begin
3296 Error_Msg_NE -- CODEFIX
3297 ("size given for& too small", Sz, Rec);
3298 Error_Msg_N -- CODEFIX
3299 ("\use explicit pragma Pack "
3300 & "or use pragma Implicit_Packing", Sz);
3301 end;
3302 end if;
3303 end if;
3305 -- All done if not a full record definition
3307 if Ekind (Rec) /= E_Record_Type then
3308 return;
3309 end if;
3311 -- Finally we need to check the variant part to make sure that
3312 -- all types within choices are properly frozen as part of the
3313 -- freezing of the record type.
3315 Check_Variant_Part : declare
3316 D : constant Node_Id := Declaration_Node (Rec);
3317 T : Node_Id;
3318 C : Node_Id;
3320 begin
3321 -- Find component list
3323 C := Empty;
3325 if Nkind (D) = N_Full_Type_Declaration then
3326 T := Type_Definition (D);
3328 if Nkind (T) = N_Record_Definition then
3329 C := Component_List (T);
3331 elsif Nkind (T) = N_Derived_Type_Definition
3332 and then Present (Record_Extension_Part (T))
3333 then
3334 C := Component_List (Record_Extension_Part (T));
3335 end if;
3336 end if;
3338 -- Case of variant part present
3340 if Present (C) and then Present (Variant_Part (C)) then
3341 Freeze_Choices_In_Variant_Part (Variant_Part (C));
3342 end if;
3344 -- Note: we used to call Check_Choices here, but it is too early,
3345 -- since predicated subtypes are frozen here, but their freezing
3346 -- actions are in Analyze_Freeze_Entity, which has not been called
3347 -- yet for entities frozen within this procedure, so we moved that
3348 -- call to the Analyze_Freeze_Entity for the record type.
3350 end Check_Variant_Part;
3351 end Freeze_Record_Type;
3353 -- Start of processing for Freeze_Entity
3355 begin
3356 -- We are going to test for various reasons why this entity need not be
3357 -- frozen here, but in the case of an Itype that's defined within a
3358 -- record, that test actually applies to the record.
3360 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
3361 Test_E := Scope (E);
3362 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
3363 and then Is_Record_Type (Underlying_Type (Scope (E)))
3364 then
3365 Test_E := Underlying_Type (Scope (E));
3366 end if;
3368 -- Do not freeze if already frozen since we only need one freeze node
3370 if Is_Frozen (E) then
3371 return No_List;
3373 -- It is improper to freeze an external entity within a generic because
3374 -- its freeze node will appear in a non-valid context. The entity will
3375 -- be frozen in the proper scope after the current generic is analyzed.
3376 -- However, aspects must be analyzed because they may be queried later
3377 -- within the generic itself, and the corresponding pragma or attribute
3378 -- definition has not been analyzed yet.
3380 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
3381 if Has_Delayed_Aspects (E) then
3382 Analyze_Aspects_At_Freeze_Point (E);
3383 end if;
3385 return No_List;
3387 -- AI05-0213: A formal incomplete type does not freeze the actual. In
3388 -- the instance, the same applies to the subtype renaming the actual.
3390 elsif Is_Private_Type (E)
3391 and then Is_Generic_Actual_Type (E)
3392 and then No (Full_View (Base_Type (E)))
3393 and then Ada_Version >= Ada_2012
3394 then
3395 return No_List;
3397 -- Generic types need no freeze node and have no delayed semantic
3398 -- checks.
3400 elsif Is_Generic_Type (E) then
3401 return No_List;
3403 -- Do not freeze a global entity within an inner scope created during
3404 -- expansion. A call to subprogram E within some internal procedure
3405 -- (a stream attribute for example) might require freezing E, but the
3406 -- freeze node must appear in the same declarative part as E itself.
3407 -- The two-pass elaboration mechanism in gigi guarantees that E will
3408 -- be frozen before the inner call is elaborated. We exclude constants
3409 -- from this test, because deferred constants may be frozen early, and
3410 -- must be diagnosed (e.g. in the case of a deferred constant being used
3411 -- in a default expression). If the enclosing subprogram comes from
3412 -- source, or is a generic instance, then the freeze point is the one
3413 -- mandated by the language, and we freeze the entity. A subprogram that
3414 -- is a child unit body that acts as a spec does not have a spec that
3415 -- comes from source, but can only come from source.
3417 elsif In_Open_Scopes (Scope (Test_E))
3418 and then Scope (Test_E) /= Current_Scope
3419 and then Ekind (Test_E) /= E_Constant
3420 then
3421 declare
3422 S : Entity_Id;
3424 begin
3425 S := Current_Scope;
3426 while Present (S) loop
3427 if Is_Overloadable (S) then
3428 if Comes_From_Source (S)
3429 or else Is_Generic_Instance (S)
3430 or else Is_Child_Unit (S)
3431 then
3432 exit;
3433 else
3434 return No_List;
3435 end if;
3436 end if;
3438 S := Scope (S);
3439 end loop;
3440 end;
3442 -- Similarly, an inlined instance body may make reference to global
3443 -- entities, but these references cannot be the proper freezing point
3444 -- for them, and in the absence of inlining freezing will take place in
3445 -- their own scope. Normally instance bodies are analyzed after the
3446 -- enclosing compilation, and everything has been frozen at the proper
3447 -- place, but with front-end inlining an instance body is compiled
3448 -- before the end of the enclosing scope, and as a result out-of-order
3449 -- freezing must be prevented.
3451 elsif Front_End_Inlining
3452 and then In_Instance_Body
3453 and then Present (Scope (Test_E))
3454 then
3455 declare
3456 S : Entity_Id;
3458 begin
3459 S := Scope (Test_E);
3460 while Present (S) loop
3461 if Is_Generic_Instance (S) then
3462 exit;
3463 else
3464 S := Scope (S);
3465 end if;
3466 end loop;
3468 if No (S) then
3469 return No_List;
3470 end if;
3471 end;
3473 elsif Ekind (E) = E_Generic_Package then
3474 return Freeze_Generic_Entities (E);
3475 end if;
3477 -- Add checks to detect proper initialization of scalars that may appear
3478 -- as subprogram parameters.
3480 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
3481 Apply_Parameter_Validity_Checks (E);
3482 end if;
3484 -- Deal with delayed aspect specifications. The analysis of the aspect
3485 -- is required to be delayed to the freeze point, thus we analyze the
3486 -- pragma or attribute definition clause in the tree at this point. We
3487 -- also analyze the aspect specification node at the freeze point when
3488 -- the aspect doesn't correspond to pragma/attribute definition clause.
3490 if Has_Delayed_Aspects (E) then
3491 Analyze_Aspects_At_Freeze_Point (E);
3492 end if;
3494 -- Here to freeze the entity
3496 Set_Is_Frozen (E);
3498 -- Case of entity being frozen is other than a type
3500 if not Is_Type (E) then
3502 -- If entity is exported or imported and does not have an external
3503 -- name, now is the time to provide the appropriate default name.
3504 -- Skip this if the entity is stubbed, since we don't need a name
3505 -- for any stubbed routine. For the case on intrinsics, if no
3506 -- external name is specified, then calls will be handled in
3507 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
3508 -- external name is provided, then Expand_Intrinsic_Call leaves
3509 -- calls in place for expansion by GIGI.
3511 if (Is_Imported (E) or else Is_Exported (E))
3512 and then No (Interface_Name (E))
3513 and then Convention (E) /= Convention_Stubbed
3514 and then Convention (E) /= Convention_Intrinsic
3515 then
3516 Set_Encoded_Interface_Name
3517 (E, Get_Default_External_Name (E));
3519 -- If entity is an atomic object appearing in a declaration and
3520 -- the expression is an aggregate, assign it to a temporary to
3521 -- ensure that the actual assignment is done atomically rather
3522 -- than component-wise (the assignment to the temp may be done
3523 -- component-wise, but that is harmless).
3525 elsif Is_Atomic (E)
3526 and then Nkind (Parent (E)) = N_Object_Declaration
3527 and then Present (Expression (Parent (E)))
3528 and then Nkind (Expression (Parent (E))) = N_Aggregate
3529 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
3530 then
3531 null;
3532 end if;
3534 -- For a subprogram, freeze all parameter types and also the return
3535 -- type (RM 13.14(14)). However skip this for internal subprograms.
3536 -- This is also the point where any extra formal parameters are
3537 -- created since we now know whether the subprogram will use a
3538 -- foreign convention.
3540 if Is_Subprogram (E) then
3541 if not Is_Internal (E) then
3542 declare
3543 F_Type : Entity_Id;
3544 R_Type : Entity_Id;
3545 Warn_Node : Node_Id;
3547 begin
3548 -- Loop through formals
3550 Formal := First_Formal (E);
3551 while Present (Formal) loop
3552 F_Type := Etype (Formal);
3554 -- AI05-0151 : incomplete types can appear in a profile.
3555 -- By the time the entity is frozen, the full view must
3556 -- be available, unless it is a limited view.
3558 if Is_Incomplete_Type (F_Type)
3559 and then Present (Full_View (F_Type))
3560 and then not From_Limited_With (F_Type)
3561 then
3562 F_Type := Full_View (F_Type);
3563 Set_Etype (Formal, F_Type);
3564 end if;
3566 Freeze_And_Append (F_Type, N, Result);
3568 if Is_Private_Type (F_Type)
3569 and then Is_Private_Type (Base_Type (F_Type))
3570 and then No (Full_View (Base_Type (F_Type)))
3571 and then not Is_Generic_Type (F_Type)
3572 and then not Is_Derived_Type (F_Type)
3573 then
3574 -- If the type of a formal is incomplete, subprogram
3575 -- is being frozen prematurely. Within an instance
3576 -- (but not within a wrapper package) this is an
3577 -- artifact of our need to regard the end of an
3578 -- instantiation as a freeze point. Otherwise it is
3579 -- a definite error.
3581 if In_Instance then
3582 Set_Is_Frozen (E, False);
3583 return No_List;
3585 elsif not After_Last_Declaration
3586 and then not Freezing_Library_Level_Tagged_Type
3587 then
3588 Error_Msg_Node_1 := F_Type;
3589 Error_Msg
3590 ("type& must be fully defined before this point",
3591 Loc);
3592 end if;
3593 end if;
3595 -- Check suspicious parameter for C function. These tests
3596 -- apply only to exported/imported subprograms.
3598 if Warn_On_Export_Import
3599 and then Comes_From_Source (E)
3600 and then (Convention (E) = Convention_C
3601 or else
3602 Convention (E) = Convention_CPP)
3603 and then (Is_Imported (E) or else Is_Exported (E))
3604 and then Convention (E) /= Convention (Formal)
3605 and then not Has_Warnings_Off (E)
3606 and then not Has_Warnings_Off (F_Type)
3607 and then not Has_Warnings_Off (Formal)
3608 then
3609 -- Qualify mention of formals with subprogram name
3611 Error_Msg_Qual_Level := 1;
3613 -- Check suspicious use of fat C pointer
3615 if Is_Access_Type (F_Type)
3616 and then Esize (F_Type) > Ttypes.System_Address_Size
3617 then
3618 Error_Msg_N
3619 ("?x?type of & does not correspond to C pointer!",
3620 Formal);
3622 -- Check suspicious return of boolean
3624 elsif Root_Type (F_Type) = Standard_Boolean
3625 and then Convention (F_Type) = Convention_Ada
3626 and then not Has_Warnings_Off (F_Type)
3627 and then not Has_Size_Clause (F_Type)
3628 and then VM_Target = No_VM
3629 then
3630 Error_Msg_N
3631 ("& is an 8-bit Ada Boolean?x?", Formal);
3632 Error_Msg_N
3633 ("\use appropriate corresponding type in C "
3634 & "(e.g. char)?x?", Formal);
3636 -- Check suspicious tagged type
3638 elsif (Is_Tagged_Type (F_Type)
3639 or else (Is_Access_Type (F_Type)
3640 and then
3641 Is_Tagged_Type
3642 (Designated_Type (F_Type))))
3643 and then Convention (E) = Convention_C
3644 then
3645 Error_Msg_N
3646 ("?x?& involves a tagged type which does not "
3647 & "correspond to any C type!", Formal);
3649 -- Check wrong convention subprogram pointer
3651 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3652 and then not Has_Foreign_Convention (F_Type)
3653 then
3654 Error_Msg_N
3655 ("?x?subprogram pointer & should "
3656 & "have foreign convention!", Formal);
3657 Error_Msg_Sloc := Sloc (F_Type);
3658 Error_Msg_NE
3659 ("\?x?add Convention pragma to declaration of &#",
3660 Formal, F_Type);
3661 end if;
3663 -- Turn off name qualification after message output
3665 Error_Msg_Qual_Level := 0;
3666 end if;
3668 -- Check for unconstrained array in exported foreign
3669 -- convention case.
3671 if Has_Foreign_Convention (E)
3672 and then not Is_Imported (E)
3673 and then Is_Array_Type (F_Type)
3674 and then not Is_Constrained (F_Type)
3675 and then Warn_On_Export_Import
3677 -- Exclude VM case, since both .NET and JVM can handle
3678 -- unconstrained arrays without a problem.
3680 and then VM_Target = No_VM
3681 then
3682 Error_Msg_Qual_Level := 1;
3684 -- If this is an inherited operation, place the
3685 -- warning on the derived type declaration, rather
3686 -- than on the original subprogram.
3688 if Nkind (Original_Node (Parent (E))) =
3689 N_Full_Type_Declaration
3690 then
3691 Warn_Node := Parent (E);
3693 if Formal = First_Formal (E) then
3694 Error_Msg_NE
3695 ("??in inherited operation&", Warn_Node, E);
3696 end if;
3697 else
3698 Warn_Node := Formal;
3699 end if;
3701 Error_Msg_NE
3702 ("?x?type of argument& is unconstrained array",
3703 Warn_Node, Formal);
3704 Error_Msg_NE
3705 ("?x?foreign caller must pass bounds explicitly",
3706 Warn_Node, Formal);
3707 Error_Msg_Qual_Level := 0;
3708 end if;
3710 if not From_Limited_With (F_Type) then
3711 if Is_Access_Type (F_Type) then
3712 F_Type := Designated_Type (F_Type);
3713 end if;
3715 -- If the formal is an anonymous_access_to_subprogram
3716 -- freeze the subprogram type as well, to prevent
3717 -- scope anomalies in gigi, because there is no other
3718 -- clear point at which it could be frozen.
3720 if Is_Itype (Etype (Formal))
3721 and then Ekind (F_Type) = E_Subprogram_Type
3722 then
3723 Freeze_And_Append (F_Type, N, Result);
3724 end if;
3725 end if;
3727 Next_Formal (Formal);
3728 end loop;
3730 -- Case of function: similar checks on return type
3732 if Ekind (E) = E_Function then
3734 -- Freeze return type
3736 R_Type := Etype (E);
3738 -- AI05-0151: the return type may have been incomplete
3739 -- at the point of declaration. Replace it with the full
3740 -- view, unless the current type is a limited view. In
3741 -- that case the full view is in a different unit, and
3742 -- gigi finds the non-limited view after the other unit
3743 -- is elaborated.
3745 if Ekind (R_Type) = E_Incomplete_Type
3746 and then Present (Full_View (R_Type))
3747 and then not From_Limited_With (R_Type)
3748 then
3749 R_Type := Full_View (R_Type);
3750 Set_Etype (E, R_Type);
3751 end if;
3753 Freeze_And_Append (R_Type, N, Result);
3755 -- Check suspicious return type for C function
3757 if Warn_On_Export_Import
3758 and then (Convention (E) = Convention_C
3759 or else
3760 Convention (E) = Convention_CPP)
3761 and then (Is_Imported (E) or else Is_Exported (E))
3762 then
3763 -- Check suspicious return of fat C pointer
3765 if Is_Access_Type (R_Type)
3766 and then Esize (R_Type) > Ttypes.System_Address_Size
3767 and then not Has_Warnings_Off (E)
3768 and then not Has_Warnings_Off (R_Type)
3769 then
3770 Error_Msg_N
3771 ("?x?return type of& does not "
3772 & "correspond to C pointer!", E);
3774 -- Check suspicious return of boolean
3776 elsif Root_Type (R_Type) = Standard_Boolean
3777 and then Convention (R_Type) = Convention_Ada
3778 and then VM_Target = No_VM
3779 and then not Has_Warnings_Off (E)
3780 and then not Has_Warnings_Off (R_Type)
3781 and then not Has_Size_Clause (R_Type)
3782 then
3783 declare
3784 N : constant Node_Id :=
3785 Result_Definition (Declaration_Node (E));
3786 begin
3787 Error_Msg_NE
3788 ("return type of & is an 8-bit Ada Boolean?x?",
3789 N, E);
3790 Error_Msg_NE
3791 ("\use appropriate corresponding type in C "
3792 & "(e.g. char)?x?", N, E);
3793 end;
3795 -- Check suspicious return tagged type
3797 elsif (Is_Tagged_Type (R_Type)
3798 or else (Is_Access_Type (R_Type)
3799 and then
3800 Is_Tagged_Type
3801 (Designated_Type (R_Type))))
3802 and then Convention (E) = Convention_C
3803 and then not Has_Warnings_Off (E)
3804 and then not Has_Warnings_Off (R_Type)
3805 then
3806 Error_Msg_N
3807 ("?x?return type of & does not "
3808 & "correspond to C type!", E);
3810 -- Check return of wrong convention subprogram pointer
3812 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3813 and then not Has_Foreign_Convention (R_Type)
3814 and then not Has_Warnings_Off (E)
3815 and then not Has_Warnings_Off (R_Type)
3816 then
3817 Error_Msg_N
3818 ("?x?& should return a foreign "
3819 & "convention subprogram pointer", E);
3820 Error_Msg_Sloc := Sloc (R_Type);
3821 Error_Msg_NE
3822 ("\?x?add Convention pragma to declaration of& #",
3823 E, R_Type);
3824 end if;
3825 end if;
3827 -- Give warning for suspicious return of a result of an
3828 -- unconstrained array type in a foreign convention
3829 -- function.
3831 if Has_Foreign_Convention (E)
3833 -- We are looking for a return of unconstrained array
3835 and then Is_Array_Type (R_Type)
3836 and then not Is_Constrained (R_Type)
3838 -- Exclude imported routines, the warning does not
3839 -- belong on the import, but rather on the routine
3840 -- definition.
3842 and then not Is_Imported (E)
3844 -- Exclude VM case, since both .NET and JVM can handle
3845 -- return of unconstrained arrays without a problem.
3847 and then VM_Target = No_VM
3849 -- Check that general warning is enabled, and that it
3850 -- is not suppressed for this particular case.
3852 and then Warn_On_Export_Import
3853 and then not Has_Warnings_Off (E)
3854 and then not Has_Warnings_Off (R_Type)
3855 then
3856 Error_Msg_N
3857 ("?x?foreign convention function& should not " &
3858 "return unconstrained array!", E);
3859 end if;
3860 end if;
3861 end;
3863 -- Pre/post conditions are implemented through a subprogram in
3864 -- the corresponding body, and therefore are not checked on an
3865 -- imported subprogram for which the body is not available.
3867 -- Could consider generating a wrapper to take care of this???
3869 if Is_Subprogram (E)
3870 and then Is_Imported (E)
3871 and then Present (Contract (E))
3872 and then Present (Pre_Post_Conditions (Contract (E)))
3873 then
3874 Error_Msg_NE
3875 ("pre/post conditions on imported subprogram are not "
3876 & "enforced??", E, Pre_Post_Conditions (Contract (E)));
3877 end if;
3879 end if;
3881 -- Must freeze its parent first if it is a derived subprogram
3883 if Present (Alias (E)) then
3884 Freeze_And_Append (Alias (E), N, Result);
3885 end if;
3887 -- We don't freeze internal subprograms, because we don't normally
3888 -- want addition of extra formals or mechanism setting to happen
3889 -- for those. However we do pass through predefined dispatching
3890 -- cases, since extra formals may be needed in some cases, such as
3891 -- for the stream 'Input function (build-in-place formals).
3893 if not Is_Internal (E)
3894 or else Is_Predefined_Dispatching_Operation (E)
3895 then
3896 Freeze_Subprogram (E);
3897 end if;
3899 -- Here for other than a subprogram or type
3901 else
3902 -- If entity has a type, and it is not a generic unit, then
3903 -- freeze it first (RM 13.14(10)).
3905 if Present (Etype (E))
3906 and then Ekind (E) /= E_Generic_Function
3907 then
3908 Freeze_And_Append (Etype (E), N, Result);
3909 end if;
3911 -- Special processing for objects created by object declaration
3913 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
3915 -- Abstract type allowed only for C++ imported variables or
3916 -- constants.
3918 -- Note: we inhibit this check for objects that do not come
3919 -- from source because there is at least one case (the
3920 -- expansion of x'Class'Input where x is abstract) where we
3921 -- legitimately generate an abstract object.
3923 if Is_Abstract_Type (Etype (E))
3924 and then Comes_From_Source (Parent (E))
3925 and then not (Is_Imported (E)
3926 and then Is_CPP_Class (Etype (E)))
3927 then
3928 Error_Msg_N ("type of object cannot be abstract",
3929 Object_Definition (Parent (E)));
3931 if Is_CPP_Class (Etype (E)) then
3932 Error_Msg_NE
3933 ("\} may need a cpp_constructor",
3934 Object_Definition (Parent (E)), Etype (E));
3935 end if;
3936 end if;
3938 -- For object created by object declaration, perform required
3939 -- categorization (preelaborate and pure) checks. Defer these
3940 -- checks to freeze time since pragma Import inhibits default
3941 -- initialization and thus pragma Import affects these checks.
3943 Validate_Object_Declaration (Declaration_Node (E));
3945 -- If there is an address clause, check that it is valid
3947 Check_Address_Clause (E);
3949 -- Reset Is_True_Constant for aliased object. We consider that
3950 -- the fact that something is aliased may indicate that some
3951 -- funny business is going on, e.g. an aliased object is passed
3952 -- by reference to a procedure which captures the address of
3953 -- the object, which is later used to assign a new value. Such
3954 -- code is highly dubious, but we choose to make it "work" for
3955 -- aliased objects.
3957 -- However, we don't do that for internal entities. We figure
3958 -- that if we deliberately set Is_True_Constant for an internal
3959 -- entity, e.g. a dispatch table entry, then we mean it!
3961 if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3962 and then not Is_Internal_Name (Chars (E))
3963 then
3964 Set_Is_True_Constant (E, False);
3965 end if;
3967 -- If the object needs any kind of default initialization, an
3968 -- error must be issued if No_Default_Initialization applies.
3969 -- The check doesn't apply to imported objects, which are not
3970 -- ever default initialized, and is why the check is deferred
3971 -- until freezing, at which point we know if Import applies.
3972 -- Deferred constants are also exempted from this test because
3973 -- their completion is explicit, or through an import pragma.
3975 if Ekind (E) = E_Constant
3976 and then Present (Full_View (E))
3977 then
3978 null;
3980 elsif Comes_From_Source (E)
3981 and then not Is_Imported (E)
3982 and then not Has_Init_Expression (Declaration_Node (E))
3983 and then
3984 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3985 and then not No_Initialization (Declaration_Node (E))
3986 and then not Is_Value_Type (Etype (E))
3987 and then not Initialization_Suppressed (Etype (E)))
3988 or else
3989 (Needs_Simple_Initialization (Etype (E))
3990 and then not Is_Internal (E)))
3991 then
3992 Has_Default_Initialization := True;
3993 Check_Restriction
3994 (No_Default_Initialization, Declaration_Node (E));
3995 end if;
3997 -- Check that a Thread_Local_Storage variable does not have
3998 -- default initialization, and any explicit initialization must
3999 -- either be the null constant or a static constant.
4001 if Has_Pragma_Thread_Local_Storage (E) then
4002 declare
4003 Decl : constant Node_Id := Declaration_Node (E);
4004 begin
4005 if Has_Default_Initialization
4006 or else
4007 (Has_Init_Expression (Decl)
4008 and then
4009 (No (Expression (Decl))
4010 or else not
4011 (Is_Static_Expression (Expression (Decl))
4012 or else
4013 Nkind (Expression (Decl)) = N_Null)))
4014 then
4015 Error_Msg_NE
4016 ("Thread_Local_Storage variable& is "
4017 & "improperly initialized", Decl, E);
4018 Error_Msg_NE
4019 ("\only allowed initialization is explicit "
4020 & "NULL or static expression", Decl, E);
4021 end if;
4022 end;
4023 end if;
4025 -- For imported objects, set Is_Public unless there is also an
4026 -- address clause, which means that there is no external symbol
4027 -- needed for the Import (Is_Public may still be set for other
4028 -- unrelated reasons). Note that we delayed this processing
4029 -- till freeze time so that we can be sure not to set the flag
4030 -- if there is an address clause. If there is such a clause,
4031 -- then the only purpose of the Import pragma is to suppress
4032 -- implicit initialization.
4034 if Is_Imported (E) and then No (Address_Clause (E)) then
4035 Set_Is_Public (E);
4036 end if;
4038 -- For convention C objects of an enumeration type, warn if
4039 -- the size is not integer size and no explicit size given.
4040 -- Skip warning for Boolean, and Character, assume programmer
4041 -- expects 8-bit sizes for these cases.
4043 if (Convention (E) = Convention_C
4044 or else
4045 Convention (E) = Convention_CPP)
4046 and then Is_Enumeration_Type (Etype (E))
4047 and then not Is_Character_Type (Etype (E))
4048 and then not Is_Boolean_Type (Etype (E))
4049 and then Esize (Etype (E)) < Standard_Integer_Size
4050 and then not Has_Size_Clause (E)
4051 then
4052 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4053 Error_Msg_N
4054 ("??convention C enumeration object has size less than ^",
4056 Error_Msg_N ("\?use explicit size clause to set size", E);
4057 end if;
4058 end if;
4060 -- Check that a constant which has a pragma Volatile[_Components]
4061 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4063 -- Note: Atomic[_Components] also sets Volatile[_Components]
4065 if Ekind (E) = E_Constant
4066 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4067 and then not Is_Imported (E)
4068 then
4069 -- Make sure we actually have a pragma, and have not merely
4070 -- inherited the indication from elsewhere (e.g. an address
4071 -- clause, which is not good enough in RM terms!)
4073 if Has_Rep_Pragma (E, Name_Atomic)
4074 or else
4075 Has_Rep_Pragma (E, Name_Atomic_Components)
4076 then
4077 Error_Msg_N
4078 ("stand alone atomic constant must be " &
4079 "imported (RM C.6(13))", E);
4081 elsif Has_Rep_Pragma (E, Name_Volatile)
4082 or else
4083 Has_Rep_Pragma (E, Name_Volatile_Components)
4084 then
4085 Error_Msg_N
4086 ("stand alone volatile constant must be " &
4087 "imported (RM C.6(13))", E);
4088 end if;
4089 end if;
4091 -- Static objects require special handling
4093 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4094 and then Is_Statically_Allocated (E)
4095 then
4096 Freeze_Static_Object (E);
4097 end if;
4099 -- Remaining step is to layout objects
4101 if Ekind (E) = E_Variable
4102 or else
4103 Ekind (E) = E_Constant
4104 or else
4105 Ekind (E) = E_Loop_Parameter
4106 or else
4107 Is_Formal (E)
4108 then
4109 Layout_Object (E);
4110 end if;
4112 -- If initialization statements were captured in an expression
4113 -- with actions with null expression, and the object does not
4114 -- have delayed freezing, move them back now directly within the
4115 -- enclosing statement sequence.
4117 if Ekind_In (E, E_Constant, E_Variable)
4118 and then not Has_Delayed_Freeze (E)
4119 then
4120 declare
4121 Init_Stmts : constant Node_Id :=
4122 Initialization_Statements (E);
4123 begin
4124 if Present (Init_Stmts)
4125 and then Nkind (Init_Stmts) = N_Expression_With_Actions
4126 and then Nkind (Expression (Init_Stmts)) = N_Null_Statement
4127 then
4128 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
4130 -- Note that we rewrite Init_Stmts into a NULL statement,
4131 -- rather than just removing it, because Freeze_All may
4132 -- depend on this particular Node_Id still being present
4133 -- in the enclosing list to signal where to stop
4134 -- freezing.
4136 Rewrite (Init_Stmts,
4137 Make_Null_Statement (Sloc (Init_Stmts)));
4139 Set_Initialization_Statements (E, Empty);
4140 end if;
4141 end;
4142 end if;
4143 end if;
4145 -- Case of a type or subtype being frozen
4147 else
4148 -- We used to check here that a full type must have preelaborable
4149 -- initialization if it completes a private type specified with
4150 -- pragma Preelaborable_Initialization, but that missed cases where
4151 -- the types occur within a generic package, since the freezing
4152 -- that occurs within a containing scope generally skips traversal
4153 -- of a generic unit's declarations (those will be frozen within
4154 -- instances). This check was moved to Analyze_Package_Specification.
4156 -- The type may be defined in a generic unit. This can occur when
4157 -- freezing a generic function that returns the type (which is
4158 -- defined in a parent unit). It is clearly meaningless to freeze
4159 -- this type. However, if it is a subtype, its size may be determi-
4160 -- nable and used in subsequent checks, so might as well try to
4161 -- compute it.
4163 -- In Ada 2012, Freeze_Entities is also used in the front end to
4164 -- trigger the analysis of aspect expressions, so in this case we
4165 -- want to continue the freezing process.
4167 if Present (Scope (E))
4168 and then Is_Generic_Unit (Scope (E))
4169 and then
4170 (not Has_Predicates (E)
4171 and then not Has_Delayed_Freeze (E))
4172 then
4173 Check_Compile_Time_Size (E);
4174 return No_List;
4175 end if;
4177 -- Deal with special cases of freezing for subtype
4179 if E /= Base_Type (E) then
4181 -- Before we do anything else, a specialized test for the case of
4182 -- a size given for an array where the array needs to be packed,
4183 -- but was not so the size cannot be honored. This is the case
4184 -- where implicit packing may apply. The reason we do this so
4185 -- early is that if we have implicit packing, the layout of the
4186 -- base type is affected, so we must do this before we freeze
4187 -- the base type.
4189 -- We could do this processing only if implicit packing is enabled
4190 -- since in all other cases, the error would be caught by the back
4191 -- end. However, we choose to do the check even if we do not have
4192 -- implicit packing enabled, since this allows us to give a more
4193 -- useful error message (advising use of pragmas Implicit_Packing
4194 -- or Pack).
4196 if Is_Array_Type (E) then
4197 declare
4198 Ctyp : constant Entity_Id := Component_Type (E);
4199 Rsiz : constant Uint := RM_Size (Ctyp);
4200 SZ : constant Node_Id := Size_Clause (E);
4201 Btyp : constant Entity_Id := Base_Type (E);
4203 Lo : Node_Id;
4204 Hi : Node_Id;
4205 Indx : Node_Id;
4207 Num_Elmts : Uint;
4208 -- Number of elements in array
4210 begin
4211 -- Check enabling conditions. These are straightforward
4212 -- except for the test for a limited composite type. This
4213 -- eliminates the rare case of a array of limited components
4214 -- where there are issues of whether or not we can go ahead
4215 -- and pack the array (since we can't freely pack and unpack
4216 -- arrays if they are limited).
4218 -- Note that we check the root type explicitly because the
4219 -- whole point is we are doing this test before we have had
4220 -- a chance to freeze the base type (and it is that freeze
4221 -- action that causes stuff to be inherited).
4223 if Has_Size_Clause (E)
4224 and then Known_Static_RM_Size (E)
4225 and then not Is_Packed (E)
4226 and then not Has_Pragma_Pack (E)
4227 and then not Has_Component_Size_Clause (E)
4228 and then Known_Static_RM_Size (Ctyp)
4229 and then RM_Size (Ctyp) < 64
4230 and then not Is_Limited_Composite (E)
4231 and then not Is_Packed (Root_Type (E))
4232 and then not Has_Component_Size_Clause (Root_Type (E))
4233 and then not (CodePeer_Mode or SPARK_Mode)
4234 then
4235 -- Compute number of elements in array
4237 Num_Elmts := Uint_1;
4238 Indx := First_Index (E);
4239 while Present (Indx) loop
4240 Get_Index_Bounds (Indx, Lo, Hi);
4242 if not (Compile_Time_Known_Value (Lo)
4243 and then
4244 Compile_Time_Known_Value (Hi))
4245 then
4246 goto No_Implicit_Packing;
4247 end if;
4249 Num_Elmts :=
4250 Num_Elmts *
4251 UI_Max (Uint_0,
4252 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4253 Next_Index (Indx);
4254 end loop;
4256 -- What we are looking for here is the situation where
4257 -- the RM_Size given would be exactly right if there was
4258 -- a pragma Pack (resulting in the component size being
4259 -- the same as the RM_Size). Furthermore, the component
4260 -- type size must be an odd size (not a multiple of
4261 -- storage unit). If the component RM size is an exact
4262 -- number of storage units that is a power of two, the
4263 -- array is not packed and has a standard representation.
4265 if RM_Size (E) = Num_Elmts * Rsiz
4266 and then Rsiz mod System_Storage_Unit /= 0
4267 then
4268 -- For implicit packing mode, just set the component
4269 -- size silently.
4271 if Implicit_Packing then
4272 Set_Component_Size (Btyp, Rsiz);
4273 Set_Is_Bit_Packed_Array (Btyp);
4274 Set_Is_Packed (Btyp);
4275 Set_Has_Non_Standard_Rep (Btyp);
4277 -- Otherwise give an error message
4279 else
4280 Error_Msg_NE
4281 ("size given for& too small", SZ, E);
4282 Error_Msg_N -- CODEFIX
4283 ("\use explicit pragma Pack "
4284 & "or use pragma Implicit_Packing", SZ);
4285 end if;
4287 elsif RM_Size (E) = Num_Elmts * Rsiz
4288 and then Implicit_Packing
4289 and then
4290 (Rsiz / System_Storage_Unit = 1
4291 or else
4292 Rsiz / System_Storage_Unit = 2
4293 or else
4294 Rsiz / System_Storage_Unit = 4)
4295 then
4296 -- Not a packed array, but indicate the desired
4297 -- component size, for the back-end.
4299 Set_Component_Size (Btyp, Rsiz);
4300 end if;
4301 end if;
4302 end;
4303 end if;
4305 <<No_Implicit_Packing>>
4307 -- If ancestor subtype present, freeze that first. Note that this
4308 -- will also get the base type frozen. Need RM reference ???
4310 Atype := Ancestor_Subtype (E);
4312 if Present (Atype) then
4313 Freeze_And_Append (Atype, N, Result);
4315 -- No ancestor subtype present
4317 else
4318 -- See if we have a nearest ancestor that has a predicate.
4319 -- That catches the case of derived type with a predicate.
4320 -- Need RM reference here ???
4322 Atype := Nearest_Ancestor (E);
4324 if Present (Atype) and then Has_Predicates (Atype) then
4325 Freeze_And_Append (Atype, N, Result);
4326 end if;
4328 -- Freeze base type before freezing the entity (RM 13.14(15))
4330 if E /= Base_Type (E) then
4331 Freeze_And_Append (Base_Type (E), N, Result);
4332 end if;
4333 end if;
4335 -- A subtype inherits all the type-related representation aspects
4336 -- from its parents (RM 13.1(8)).
4338 Inherit_Aspects_At_Freeze_Point (E);
4340 -- For a derived type, freeze its parent type first (RM 13.14(15))
4342 elsif Is_Derived_Type (E) then
4343 Freeze_And_Append (Etype (E), N, Result);
4344 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
4346 -- A derived type inherits each type-related representation aspect
4347 -- of its parent type that was directly specified before the
4348 -- declaration of the derived type (RM 13.1(15)).
4350 Inherit_Aspects_At_Freeze_Point (E);
4351 end if;
4353 -- Array type
4355 if Is_Array_Type (E) then
4356 Freeze_Array_Type (E);
4358 -- For a class-wide type, the corresponding specific type is
4359 -- frozen as well (RM 13.14(15))
4361 elsif Is_Class_Wide_Type (E) then
4362 Freeze_And_Append (Root_Type (E), N, Result);
4364 -- If the base type of the class-wide type is still incomplete,
4365 -- the class-wide remains unfrozen as well. This is legal when
4366 -- E is the formal of a primitive operation of some other type
4367 -- which is being frozen.
4369 if not Is_Frozen (Root_Type (E)) then
4370 Set_Is_Frozen (E, False);
4371 return Result;
4372 end if;
4374 -- The equivalent type associated with a class-wide subtype needs
4375 -- to be frozen to ensure that its layout is done.
4377 if Ekind (E) = E_Class_Wide_Subtype
4378 and then Present (Equivalent_Type (E))
4379 then
4380 Freeze_And_Append (Equivalent_Type (E), N, Result);
4381 end if;
4383 -- Generate an itype reference for a library-level class-wide type
4384 -- at the freeze point. Otherwise the first explicit reference to
4385 -- the type may appear in an inner scope which will be rejected by
4386 -- the back-end.
4388 if Is_Itype (E)
4389 and then Is_Compilation_Unit (Scope (E))
4390 then
4391 declare
4392 Ref : constant Node_Id := Make_Itype_Reference (Loc);
4394 begin
4395 Set_Itype (Ref, E);
4397 -- From a gigi point of view, a class-wide subtype derives
4398 -- from its record equivalent type. As a result, the itype
4399 -- reference must appear after the freeze node of the
4400 -- equivalent type or gigi will reject the reference.
4402 if Ekind (E) = E_Class_Wide_Subtype
4403 and then Present (Equivalent_Type (E))
4404 then
4405 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
4406 else
4407 Add_To_Result (Ref);
4408 end if;
4409 end;
4410 end if;
4412 -- For a record type or record subtype, freeze all component types
4413 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
4414 -- using Is_Record_Type, because we don't want to attempt the freeze
4415 -- for the case of a private type with record extension (we will do
4416 -- that later when the full type is frozen).
4418 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
4419 and then not Is_Generic_Unit (Scope (E))
4420 then
4421 Freeze_Record_Type (E);
4423 -- For a concurrent type, freeze corresponding record type. This
4424 -- does not correspond to any specific rule in the RM, but the
4425 -- record type is essentially part of the concurrent type.
4426 -- Freeze as well all local entities. This includes record types
4427 -- created for entry parameter blocks, and whatever local entities
4428 -- may appear in the private part.
4430 elsif Is_Concurrent_Type (E) then
4431 if Present (Corresponding_Record_Type (E)) then
4432 Freeze_And_Append
4433 (Corresponding_Record_Type (E), N, Result);
4434 end if;
4436 Comp := First_Entity (E);
4437 while Present (Comp) loop
4438 if Is_Type (Comp) then
4439 Freeze_And_Append (Comp, N, Result);
4441 elsif (Ekind (Comp)) /= E_Function then
4442 if Is_Itype (Etype (Comp))
4443 and then Underlying_Type (Scope (Etype (Comp))) = E
4444 then
4445 Undelay_Type (Etype (Comp));
4446 end if;
4448 Freeze_And_Append (Etype (Comp), N, Result);
4449 end if;
4451 Next_Entity (Comp);
4452 end loop;
4454 -- Private types are required to point to the same freeze node as
4455 -- their corresponding full views. The freeze node itself has to
4456 -- point to the partial view of the entity (because from the partial
4457 -- view, we can retrieve the full view, but not the reverse).
4458 -- However, in order to freeze correctly, we need to freeze the full
4459 -- view. If we are freezing at the end of a scope (or within the
4460 -- scope of the private type), the partial and full views will have
4461 -- been swapped, the full view appears first in the entity chain and
4462 -- the swapping mechanism ensures that the pointers are properly set
4463 -- (on scope exit).
4465 -- If we encounter the partial view before the full view (e.g. when
4466 -- freezing from another scope), we freeze the full view, and then
4467 -- set the pointers appropriately since we cannot rely on swapping to
4468 -- fix things up (subtypes in an outer scope might not get swapped).
4470 elsif Is_Incomplete_Or_Private_Type (E)
4471 and then not Is_Generic_Type (E)
4472 then
4473 -- The construction of the dispatch table associated with library
4474 -- level tagged types forces freezing of all the primitives of the
4475 -- type, which may cause premature freezing of the partial view.
4476 -- For example:
4478 -- package Pkg is
4479 -- type T is tagged private;
4480 -- type DT is new T with private;
4481 -- procedure Prim (X : in out T; Y : in out DT'Class);
4482 -- private
4483 -- type T is tagged null record;
4484 -- Obj : T;
4485 -- type DT is new T with null record;
4486 -- end;
4488 -- In this case the type will be frozen later by the usual
4489 -- mechanism: an object declaration, an instantiation, or the
4490 -- end of a declarative part.
4492 if Is_Library_Level_Tagged_Type (E)
4493 and then not Present (Full_View (E))
4494 then
4495 Set_Is_Frozen (E, False);
4496 return Result;
4498 -- Case of full view present
4500 elsif Present (Full_View (E)) then
4502 -- If full view has already been frozen, then no further
4503 -- processing is required
4505 if Is_Frozen (Full_View (E)) then
4506 Set_Has_Delayed_Freeze (E, False);
4507 Set_Freeze_Node (E, Empty);
4508 Check_Debug_Info_Needed (E);
4510 -- Otherwise freeze full view and patch the pointers so that
4511 -- the freeze node will elaborate both views in the back-end.
4513 else
4514 declare
4515 Full : constant Entity_Id := Full_View (E);
4517 begin
4518 if Is_Private_Type (Full)
4519 and then Present (Underlying_Full_View (Full))
4520 then
4521 Freeze_And_Append
4522 (Underlying_Full_View (Full), N, Result);
4523 end if;
4525 Freeze_And_Append (Full, N, Result);
4527 if Has_Delayed_Freeze (E) then
4528 F_Node := Freeze_Node (Full);
4530 if Present (F_Node) then
4531 Set_Freeze_Node (E, F_Node);
4532 Set_Entity (F_Node, E);
4534 else
4535 -- {Incomplete,Private}_Subtypes with Full_Views
4536 -- constrained by discriminants.
4538 Set_Has_Delayed_Freeze (E, False);
4539 Set_Freeze_Node (E, Empty);
4540 end if;
4541 end if;
4542 end;
4544 Check_Debug_Info_Needed (E);
4545 end if;
4547 -- AI-117 requires that the convention of a partial view be the
4548 -- same as the convention of the full view. Note that this is a
4549 -- recognized breach of privacy, but it's essential for logical
4550 -- consistency of representation, and the lack of a rule in
4551 -- RM95 was an oversight.
4553 Set_Convention (E, Convention (Full_View (E)));
4555 Set_Size_Known_At_Compile_Time (E,
4556 Size_Known_At_Compile_Time (Full_View (E)));
4558 -- Size information is copied from the full view to the
4559 -- incomplete or private view for consistency.
4561 -- We skip this is the full view is not a type. This is very
4562 -- strange of course, and can only happen as a result of
4563 -- certain illegalities, such as a premature attempt to derive
4564 -- from an incomplete type.
4566 if Is_Type (Full_View (E)) then
4567 Set_Size_Info (E, Full_View (E));
4568 Set_RM_Size (E, RM_Size (Full_View (E)));
4569 end if;
4571 return Result;
4573 -- Case of no full view present. If entity is derived or subtype,
4574 -- it is safe to freeze, correctness depends on the frozen status
4575 -- of parent. Otherwise it is either premature usage, or a Taft
4576 -- amendment type, so diagnosis is at the point of use and the
4577 -- type might be frozen later.
4579 elsif E /= Base_Type (E)
4580 or else Is_Derived_Type (E)
4581 then
4582 null;
4584 else
4585 Set_Is_Frozen (E, False);
4586 return No_List;
4587 end if;
4589 -- For access subprogram, freeze types of all formals, the return
4590 -- type was already frozen, since it is the Etype of the function.
4591 -- Formal types can be tagged Taft amendment types, but otherwise
4592 -- they cannot be incomplete.
4594 elsif Ekind (E) = E_Subprogram_Type then
4595 Formal := First_Formal (E);
4596 while Present (Formal) loop
4597 if Ekind (Etype (Formal)) = E_Incomplete_Type
4598 and then No (Full_View (Etype (Formal)))
4599 and then not Is_Value_Type (Etype (Formal))
4600 then
4601 if Is_Tagged_Type (Etype (Formal)) then
4602 null;
4604 -- AI05-151: Incomplete types are allowed in access to
4605 -- subprogram specifications.
4607 elsif Ada_Version < Ada_2012 then
4608 Error_Msg_NE
4609 ("invalid use of incomplete type&", E, Etype (Formal));
4610 end if;
4611 end if;
4613 Freeze_And_Append (Etype (Formal), N, Result);
4614 Next_Formal (Formal);
4615 end loop;
4617 Freeze_Subprogram (E);
4619 -- For access to a protected subprogram, freeze the equivalent type
4620 -- (however this is not set if we are not generating code or if this
4621 -- is an anonymous type used just for resolution).
4623 elsif Is_Access_Protected_Subprogram_Type (E) then
4624 if Present (Equivalent_Type (E)) then
4625 Freeze_And_Append (Equivalent_Type (E), N, Result);
4626 end if;
4627 end if;
4629 -- Generic types are never seen by the back-end, and are also not
4630 -- processed by the expander (since the expander is turned off for
4631 -- generic processing), so we never need freeze nodes for them.
4633 if Is_Generic_Type (E) then
4634 return Result;
4635 end if;
4637 -- Some special processing for non-generic types to complete
4638 -- representation details not known till the freeze point.
4640 if Is_Fixed_Point_Type (E) then
4641 Freeze_Fixed_Point_Type (E);
4643 -- Some error checks required for ordinary fixed-point type. Defer
4644 -- these till the freeze-point since we need the small and range
4645 -- values. We only do these checks for base types
4647 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
4648 if Small_Value (E) < Ureal_2_M_80 then
4649 Error_Msg_Name_1 := Name_Small;
4650 Error_Msg_N
4651 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
4653 elsif Small_Value (E) > Ureal_2_80 then
4654 Error_Msg_Name_1 := Name_Small;
4655 Error_Msg_N
4656 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
4657 end if;
4659 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
4660 Error_Msg_Name_1 := Name_First;
4661 Error_Msg_N
4662 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
4663 end if;
4665 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
4666 Error_Msg_Name_1 := Name_Last;
4667 Error_Msg_N
4668 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
4669 end if;
4670 end if;
4672 elsif Is_Enumeration_Type (E) then
4673 Freeze_Enumeration_Type (E);
4675 elsif Is_Integer_Type (E) then
4676 Adjust_Esize_For_Alignment (E);
4678 if Is_Modular_Integer_Type (E)
4679 and then Warn_On_Suspicious_Modulus_Value
4680 then
4681 Check_Suspicious_Modulus (E);
4682 end if;
4684 elsif Is_Access_Type (E)
4685 and then not Is_Access_Subprogram_Type (E)
4686 then
4687 -- If a pragma Default_Storage_Pool applies, and this type has no
4688 -- Storage_Pool or Storage_Size clause (which must have occurred
4689 -- before the freezing point), then use the default. This applies
4690 -- only to base types.
4692 -- None of this applies to access to subprograms, for which there
4693 -- are clearly no pools.
4695 if Present (Default_Pool)
4696 and then Is_Base_Type (E)
4697 and then not Has_Storage_Size_Clause (E)
4698 and then No (Associated_Storage_Pool (E))
4699 then
4700 -- Case of pragma Default_Storage_Pool (null)
4702 if Nkind (Default_Pool) = N_Null then
4703 Set_No_Pool_Assigned (E);
4705 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
4707 else
4708 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
4709 end if;
4710 end if;
4712 -- Check restriction for standard storage pool
4714 if No (Associated_Storage_Pool (E)) then
4715 Check_Restriction (No_Standard_Storage_Pools, E);
4716 end if;
4718 -- Deal with error message for pure access type. This is not an
4719 -- error in Ada 2005 if there is no pool (see AI-366).
4721 if Is_Pure_Unit_Access_Type (E)
4722 and then (Ada_Version < Ada_2005
4723 or else not No_Pool_Assigned (E))
4724 and then not Is_Generic_Unit (Scope (E))
4725 then
4726 Error_Msg_N ("named access type not allowed in pure unit", E);
4728 if Ada_Version >= Ada_2005 then
4729 Error_Msg_N
4730 ("\would be legal if Storage_Size of 0 given??", E);
4732 elsif No_Pool_Assigned (E) then
4733 Error_Msg_N
4734 ("\would be legal in Ada 2005??", E);
4736 else
4737 Error_Msg_N
4738 ("\would be legal in Ada 2005 if "
4739 & "Storage_Size of 0 given??", E);
4740 end if;
4741 end if;
4742 end if;
4744 -- Case of composite types
4746 if Is_Composite_Type (E) then
4748 -- AI-117 requires that all new primitives of a tagged type must
4749 -- inherit the convention of the full view of the type. Inherited
4750 -- and overriding operations are defined to inherit the convention
4751 -- of their parent or overridden subprogram (also specified in
4752 -- AI-117), which will have occurred earlier (in Derive_Subprogram
4753 -- and New_Overloaded_Entity). Here we set the convention of
4754 -- primitives that are still convention Ada, which will ensure
4755 -- that any new primitives inherit the type's convention. Class-
4756 -- wide types can have a foreign convention inherited from their
4757 -- specific type, but are excluded from this since they don't have
4758 -- any associated primitives.
4760 if Is_Tagged_Type (E)
4761 and then not Is_Class_Wide_Type (E)
4762 and then Convention (E) /= Convention_Ada
4763 then
4764 declare
4765 Prim_List : constant Elist_Id := Primitive_Operations (E);
4766 Prim : Elmt_Id;
4768 begin
4769 Prim := First_Elmt (Prim_List);
4770 while Present (Prim) loop
4771 if Convention (Node (Prim)) = Convention_Ada then
4772 Set_Convention (Node (Prim), Convention (E));
4773 end if;
4775 Next_Elmt (Prim);
4776 end loop;
4777 end;
4778 end if;
4780 -- If the type is a simple storage pool type, then this is where
4781 -- we attempt to locate and validate its Allocate, Deallocate, and
4782 -- Storage_Size operations (the first is required, and the latter
4783 -- two are optional). We also verify that the full type for a
4784 -- private type is allowed to be a simple storage pool type.
4786 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
4787 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
4788 then
4789 -- If the type is marked Has_Private_Declaration, then this is
4790 -- a full type for a private type that was specified with the
4791 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
4792 -- pragma is allowed for the full type (for example, it can't
4793 -- be an array type, or a nonlimited record type).
4795 if Has_Private_Declaration (E) then
4796 if (not Is_Record_Type (E)
4797 or else not Is_Limited_View (E))
4798 and then not Is_Private_Type (E)
4799 then
4800 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
4801 Error_Msg_N
4802 ("pragma% can only apply to full type that is an " &
4803 "explicitly limited type", E);
4804 end if;
4805 end if;
4807 Validate_Simple_Pool_Ops : declare
4808 Pool_Type : Entity_Id renames E;
4809 Address_Type : constant Entity_Id := RTE (RE_Address);
4810 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
4812 procedure Validate_Simple_Pool_Op_Formal
4813 (Pool_Op : Entity_Id;
4814 Pool_Op_Formal : in out Entity_Id;
4815 Expected_Mode : Formal_Kind;
4816 Expected_Type : Entity_Id;
4817 Formal_Name : String;
4818 OK_Formal : in out Boolean);
4819 -- Validate one formal Pool_Op_Formal of the candidate pool
4820 -- operation Pool_Op. The formal must be of Expected_Type
4821 -- and have mode Expected_Mode. OK_Formal will be set to
4822 -- False if the formal doesn't match. If OK_Formal is False
4823 -- on entry, then the formal will effectively be ignored
4824 -- (because validation of the pool op has already failed).
4825 -- Upon return, Pool_Op_Formal will be updated to the next
4826 -- formal, if any.
4828 procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id);
4829 -- Search for and validate a simple pool operation with the
4830 -- name Op_Name. If the name is Allocate, then there must be
4831 -- exactly one such primitive operation for the simple pool
4832 -- type. If the name is Deallocate or Storage_Size, then
4833 -- there can be at most one such primitive operation. The
4834 -- profile of the located primitive must conform to what
4835 -- is expected for each operation.
4837 ------------------------------------
4838 -- Validate_Simple_Pool_Op_Formal --
4839 ------------------------------------
4841 procedure Validate_Simple_Pool_Op_Formal
4842 (Pool_Op : Entity_Id;
4843 Pool_Op_Formal : in out Entity_Id;
4844 Expected_Mode : Formal_Kind;
4845 Expected_Type : Entity_Id;
4846 Formal_Name : String;
4847 OK_Formal : in out Boolean)
4849 begin
4850 -- If OK_Formal is False on entry, then simply ignore
4851 -- the formal, because an earlier formal has already
4852 -- been flagged.
4854 if not OK_Formal then
4855 return;
4857 -- If no formal is passed in, then issue an error for a
4858 -- missing formal.
4860 elsif not Present (Pool_Op_Formal) then
4861 Error_Msg_NE
4862 ("simple storage pool op missing formal " &
4863 Formal_Name & " of type&", Pool_Op, Expected_Type);
4864 OK_Formal := False;
4866 return;
4867 end if;
4869 if Etype (Pool_Op_Formal) /= Expected_Type then
4871 -- If the pool type was expected for this formal, then
4872 -- this will not be considered a candidate operation
4873 -- for the simple pool, so we unset OK_Formal so that
4874 -- the op and any later formals will be ignored.
4876 if Expected_Type = Pool_Type then
4877 OK_Formal := False;
4879 return;
4881 else
4882 Error_Msg_NE
4883 ("wrong type for formal " & Formal_Name &
4884 " of simple storage pool op; expected type&",
4885 Pool_Op_Formal, Expected_Type);
4886 end if;
4887 end if;
4889 -- Issue error if formal's mode is not the expected one
4891 if Ekind (Pool_Op_Formal) /= Expected_Mode then
4892 Error_Msg_N
4893 ("wrong mode for formal of simple storage pool op",
4894 Pool_Op_Formal);
4895 end if;
4897 -- Advance to the next formal
4899 Next_Formal (Pool_Op_Formal);
4900 end Validate_Simple_Pool_Op_Formal;
4902 ------------------------------------
4903 -- Validate_Simple_Pool_Operation --
4904 ------------------------------------
4906 procedure Validate_Simple_Pool_Operation
4907 (Op_Name : Name_Id)
4909 Op : Entity_Id;
4910 Found_Op : Entity_Id := Empty;
4911 Formal : Entity_Id;
4912 Is_OK : Boolean;
4914 begin
4915 pragma Assert
4916 (Nam_In (Op_Name, Name_Allocate,
4917 Name_Deallocate,
4918 Name_Storage_Size));
4920 Error_Msg_Name_1 := Op_Name;
4922 -- For each homonym declared immediately in the scope
4923 -- of the simple storage pool type, determine whether
4924 -- the homonym is an operation of the pool type, and,
4925 -- if so, check that its profile is as expected for
4926 -- a simple pool operation of that name.
4928 Op := Get_Name_Entity_Id (Op_Name);
4929 while Present (Op) loop
4930 if Ekind_In (Op, E_Function, E_Procedure)
4931 and then Scope (Op) = Current_Scope
4932 then
4933 Formal := First_Entity (Op);
4935 Is_OK := True;
4937 -- The first parameter must be of the pool type
4938 -- in order for the operation to qualify.
4940 if Op_Name = Name_Storage_Size then
4941 Validate_Simple_Pool_Op_Formal
4942 (Op, Formal, E_In_Parameter, Pool_Type,
4943 "Pool", Is_OK);
4944 else
4945 Validate_Simple_Pool_Op_Formal
4946 (Op, Formal, E_In_Out_Parameter, Pool_Type,
4947 "Pool", Is_OK);
4948 end if;
4950 -- If another operation with this name has already
4951 -- been located for the type, then flag an error,
4952 -- since we only allow the type to have a single
4953 -- such primitive.
4955 if Present (Found_Op) and then Is_OK then
4956 Error_Msg_NE
4957 ("only one % operation allowed for " &
4958 "simple storage pool type&", Op, Pool_Type);
4959 end if;
4961 -- In the case of Allocate and Deallocate, a formal
4962 -- of type System.Address is required.
4964 if Op_Name = Name_Allocate then
4965 Validate_Simple_Pool_Op_Formal
4966 (Op, Formal, E_Out_Parameter,
4967 Address_Type, "Storage_Address", Is_OK);
4969 elsif Op_Name = Name_Deallocate then
4970 Validate_Simple_Pool_Op_Formal
4971 (Op, Formal, E_In_Parameter,
4972 Address_Type, "Storage_Address", Is_OK);
4973 end if;
4975 -- In the case of Allocate and Deallocate, formals
4976 -- of type Storage_Count are required as the third
4977 -- and fourth parameters.
4979 if Op_Name /= Name_Storage_Size then
4980 Validate_Simple_Pool_Op_Formal
4981 (Op, Formal, E_In_Parameter,
4982 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
4983 Validate_Simple_Pool_Op_Formal
4984 (Op, Formal, E_In_Parameter,
4985 Stg_Cnt_Type, "Alignment", Is_OK);
4986 end if;
4988 -- If no mismatched formals have been found (Is_OK)
4989 -- and no excess formals are present, then this
4990 -- operation has been validated, so record it.
4992 if not Present (Formal) and then Is_OK then
4993 Found_Op := Op;
4994 end if;
4995 end if;
4997 Op := Homonym (Op);
4998 end loop;
5000 -- There must be a valid Allocate operation for the type,
5001 -- so issue an error if none was found.
5003 if Op_Name = Name_Allocate
5004 and then not Present (Found_Op)
5005 then
5006 Error_Msg_N ("missing % operation for simple " &
5007 "storage pool type", Pool_Type);
5009 elsif Present (Found_Op) then
5011 -- Simple pool operations can't be abstract
5013 if Is_Abstract_Subprogram (Found_Op) then
5014 Error_Msg_N
5015 ("simple storage pool operation must not be " &
5016 "abstract", Found_Op);
5017 end if;
5019 -- The Storage_Size operation must be a function with
5020 -- Storage_Count as its result type.
5022 if Op_Name = Name_Storage_Size then
5023 if Ekind (Found_Op) = E_Procedure then
5024 Error_Msg_N
5025 ("% operation must be a function", Found_Op);
5027 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5028 Error_Msg_NE
5029 ("wrong result type for%, expected type&",
5030 Found_Op, Stg_Cnt_Type);
5031 end if;
5033 -- Allocate and Deallocate must be procedures
5035 elsif Ekind (Found_Op) = E_Function then
5036 Error_Msg_N
5037 ("% operation must be a procedure", Found_Op);
5038 end if;
5039 end if;
5040 end Validate_Simple_Pool_Operation;
5042 -- Start of processing for Validate_Simple_Pool_Ops
5044 begin
5045 Validate_Simple_Pool_Operation (Name_Allocate);
5046 Validate_Simple_Pool_Operation (Name_Deallocate);
5047 Validate_Simple_Pool_Operation (Name_Storage_Size);
5048 end Validate_Simple_Pool_Ops;
5049 end if;
5050 end if;
5052 -- Now that all types from which E may depend are frozen, see if the
5053 -- size is known at compile time, if it must be unsigned, or if
5054 -- strict alignment is required
5056 Check_Compile_Time_Size (E);
5057 Check_Unsigned_Type (E);
5059 if Base_Type (E) = E then
5060 Check_Strict_Alignment (E);
5061 end if;
5063 -- Do not allow a size clause for a type which does not have a size
5064 -- that is known at compile time
5066 if Has_Size_Clause (E)
5067 and then not Size_Known_At_Compile_Time (E)
5068 then
5069 -- Suppress this message if errors posted on E, even if we are
5070 -- in all errors mode, since this is often a junk message
5072 if not Error_Posted (E) then
5073 Error_Msg_N
5074 ("size clause not allowed for variable length type",
5075 Size_Clause (E));
5076 end if;
5077 end if;
5079 -- Now we set/verify the representation information, in particular
5080 -- the size and alignment values. This processing is not required for
5081 -- generic types, since generic types do not play any part in code
5082 -- generation, and so the size and alignment values for such types
5083 -- are irrelevant. Ditto for types declared within a generic unit,
5084 -- which may have components that depend on generic parameters, and
5085 -- that will be recreated in an instance.
5087 if Inside_A_Generic then
5088 null;
5090 -- Otherwise we call the layout procedure
5092 else
5093 Layout_Type (E);
5094 end if;
5096 -- If this is an access to subprogram whose designated type is itself
5097 -- a subprogram type, the return type of this anonymous subprogram
5098 -- type must be decorated as well.
5100 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5101 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5102 then
5103 Layout_Type (Etype (Designated_Type (E)));
5104 end if;
5106 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5107 -- this is where we analye the expression (after the type is frozen,
5108 -- since in the case of Default_Value, we are analyzing with the
5109 -- type itself, and we treat Default_Component_Value similarly for
5110 -- the sake of uniformity).
5112 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5113 declare
5114 Nam : Name_Id;
5115 Exp : Node_Id;
5116 Typ : Entity_Id;
5118 begin
5119 if Is_Scalar_Type (E) then
5120 Nam := Name_Default_Value;
5121 Typ := E;
5122 Exp := Default_Aspect_Value (Typ);
5123 else
5124 Nam := Name_Default_Component_Value;
5125 Typ := Component_Type (E);
5126 Exp := Default_Aspect_Component_Value (E);
5127 end if;
5129 Analyze_And_Resolve (Exp, Typ);
5131 if Etype (Exp) /= Any_Type then
5132 if not Is_Static_Expression (Exp) then
5133 Error_Msg_Name_1 := Nam;
5134 Flag_Non_Static_Expr
5135 ("aspect% requires static expression", Exp);
5136 end if;
5137 end if;
5138 end;
5139 end if;
5141 -- End of freeze processing for type entities
5142 end if;
5144 -- Here is where we logically freeze the current entity. If it has a
5145 -- freeze node, then this is the point at which the freeze node is
5146 -- linked into the result list.
5148 if Has_Delayed_Freeze (E) then
5150 -- If a freeze node is already allocated, use it, otherwise allocate
5151 -- a new one. The preallocation happens in the case of anonymous base
5152 -- types, where we preallocate so that we can set First_Subtype_Link.
5153 -- Note that we reset the Sloc to the current freeze location.
5155 if Present (Freeze_Node (E)) then
5156 F_Node := Freeze_Node (E);
5157 Set_Sloc (F_Node, Loc);
5159 else
5160 F_Node := New_Node (N_Freeze_Entity, Loc);
5161 Set_Freeze_Node (E, F_Node);
5162 Set_Access_Types_To_Process (F_Node, No_Elist);
5163 Set_TSS_Elist (F_Node, No_Elist);
5164 Set_Actions (F_Node, No_List);
5165 end if;
5167 Set_Entity (F_Node, E);
5168 Add_To_Result (F_Node);
5170 -- A final pass over record types with discriminants. If the type
5171 -- has an incomplete declaration, there may be constrained access
5172 -- subtypes declared elsewhere, which do not depend on the discrimi-
5173 -- nants of the type, and which are used as component types (i.e.
5174 -- the full view is a recursive type). The designated types of these
5175 -- subtypes can only be elaborated after the type itself, and they
5176 -- need an itype reference.
5178 if Ekind (E) = E_Record_Type
5179 and then Has_Discriminants (E)
5180 then
5181 declare
5182 Comp : Entity_Id;
5183 IR : Node_Id;
5184 Typ : Entity_Id;
5186 begin
5187 Comp := First_Component (E);
5188 while Present (Comp) loop
5189 Typ := Etype (Comp);
5191 if Ekind (Comp) = E_Component
5192 and then Is_Access_Type (Typ)
5193 and then Scope (Typ) /= E
5194 and then Base_Type (Designated_Type (Typ)) = E
5195 and then Is_Itype (Designated_Type (Typ))
5196 then
5197 IR := Make_Itype_Reference (Sloc (Comp));
5198 Set_Itype (IR, Designated_Type (Typ));
5199 Append (IR, Result);
5200 end if;
5202 Next_Component (Comp);
5203 end loop;
5204 end;
5205 end if;
5206 end if;
5208 -- When a type is frozen, the first subtype of the type is frozen as
5209 -- well (RM 13.14(15)). This has to be done after freezing the type,
5210 -- since obviously the first subtype depends on its own base type.
5212 if Is_Type (E) then
5213 Freeze_And_Append (First_Subtype (E), N, Result);
5215 -- If we just froze a tagged non-class wide record, then freeze the
5216 -- corresponding class-wide type. This must be done after the tagged
5217 -- type itself is frozen, because the class-wide type refers to the
5218 -- tagged type which generates the class.
5220 if Is_Tagged_Type (E)
5221 and then not Is_Class_Wide_Type (E)
5222 and then Present (Class_Wide_Type (E))
5223 then
5224 Freeze_And_Append (Class_Wide_Type (E), N, Result);
5225 end if;
5226 end if;
5228 Check_Debug_Info_Needed (E);
5230 -- Special handling for subprograms
5232 if Is_Subprogram (E) then
5234 -- If subprogram has address clause then reset Is_Public flag, since
5235 -- we do not want the backend to generate external references.
5237 if Present (Address_Clause (E))
5238 and then not Is_Library_Level_Entity (E)
5239 then
5240 Set_Is_Public (E, False);
5241 end if;
5242 end if;
5244 return Result;
5245 end Freeze_Entity;
5247 -----------------------------
5248 -- Freeze_Enumeration_Type --
5249 -----------------------------
5251 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
5252 begin
5253 -- By default, if no size clause is present, an enumeration type with
5254 -- Convention C is assumed to interface to a C enum, and has integer
5255 -- size. This applies to types. For subtypes, verify that its base
5256 -- type has no size clause either. Treat other foreign conventions
5257 -- in the same way, and also make sure alignment is set right.
5259 if Has_Foreign_Convention (Typ)
5260 and then not Has_Size_Clause (Typ)
5261 and then not Has_Size_Clause (Base_Type (Typ))
5262 and then Esize (Typ) < Standard_Integer_Size
5263 then
5264 Init_Esize (Typ, Standard_Integer_Size);
5265 Set_Alignment (Typ, Alignment (Standard_Integer));
5267 else
5268 -- If the enumeration type interfaces to C, and it has a size clause
5269 -- that specifies less than int size, it warrants a warning. The
5270 -- user may intend the C type to be an enum or a char, so this is
5271 -- not by itself an error that the Ada compiler can detect, but it
5272 -- it is a worth a heads-up. For Boolean and Character types we
5273 -- assume that the programmer has the proper C type in mind.
5275 if Convention (Typ) = Convention_C
5276 and then Has_Size_Clause (Typ)
5277 and then Esize (Typ) /= Esize (Standard_Integer)
5278 and then not Is_Boolean_Type (Typ)
5279 and then not Is_Character_Type (Typ)
5280 then
5281 Error_Msg_N
5282 ("C enum types have the size of a C int??", Size_Clause (Typ));
5283 end if;
5285 Adjust_Esize_For_Alignment (Typ);
5286 end if;
5287 end Freeze_Enumeration_Type;
5289 -----------------------
5290 -- Freeze_Expression --
5291 -----------------------
5293 procedure Freeze_Expression (N : Node_Id) is
5294 In_Spec_Exp : constant Boolean := In_Spec_Expression;
5295 Typ : Entity_Id;
5296 Nam : Entity_Id;
5297 Desig_Typ : Entity_Id;
5298 P : Node_Id;
5299 Parent_P : Node_Id;
5301 Freeze_Outside : Boolean := False;
5302 -- This flag is set true if the entity must be frozen outside the
5303 -- current subprogram. This happens in the case of expander generated
5304 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
5305 -- not freeze all entities like other bodies, but which nevertheless
5306 -- may reference entities that have to be frozen before the body and
5307 -- obviously cannot be frozen inside the body.
5309 function In_Exp_Body (N : Node_Id) return Boolean;
5310 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
5311 -- it is the handled statement sequence of an expander-generated
5312 -- subprogram (init proc, stream subprogram, or renaming as body).
5313 -- If so, this is not a freezing context.
5315 -----------------
5316 -- In_Exp_Body --
5317 -----------------
5319 function In_Exp_Body (N : Node_Id) return Boolean is
5320 P : Node_Id;
5321 Id : Entity_Id;
5323 begin
5324 if Nkind (N) = N_Subprogram_Body then
5325 P := N;
5326 else
5327 P := Parent (N);
5328 end if;
5330 if Nkind (P) /= N_Subprogram_Body then
5331 return False;
5333 else
5334 Id := Defining_Unit_Name (Specification (P));
5336 -- Following complex conditional could use comments ???
5338 if Nkind (Id) = N_Defining_Identifier
5339 and then (Is_Init_Proc (Id)
5340 or else Is_TSS (Id, TSS_Stream_Input)
5341 or else Is_TSS (Id, TSS_Stream_Output)
5342 or else Is_TSS (Id, TSS_Stream_Read)
5343 or else Is_TSS (Id, TSS_Stream_Write)
5344 or else Nkind_In (Original_Node (P),
5345 N_Subprogram_Renaming_Declaration,
5346 N_Expression_Function))
5347 then
5348 return True;
5349 else
5350 return False;
5351 end if;
5352 end if;
5353 end In_Exp_Body;
5355 -- Start of processing for Freeze_Expression
5357 begin
5358 -- Immediate return if freezing is inhibited. This flag is set by the
5359 -- analyzer to stop freezing on generated expressions that would cause
5360 -- freezing if they were in the source program, but which are not
5361 -- supposed to freeze, since they are created.
5363 if Must_Not_Freeze (N) then
5364 return;
5365 end if;
5367 -- If expression is non-static, then it does not freeze in a default
5368 -- expression, see section "Handling of Default Expressions" in the
5369 -- spec of package Sem for further details. Note that we have to make
5370 -- sure that we actually have a real expression (if we have a subtype
5371 -- indication, we can't test Is_Static_Expression!) However, we exclude
5372 -- the case of the prefix of an attribute of a static scalar subtype
5373 -- from this early return, because static subtype attributes should
5374 -- always cause freezing, even in default expressions, but the attribute
5375 -- may not have been marked as static yet (because in Resolve_Attribute,
5376 -- the call to Eval_Attribute follows the call of Freeze_Expression on
5377 -- the prefix).
5379 if In_Spec_Exp
5380 and then Nkind (N) in N_Subexpr
5381 and then not Is_Static_Expression (N)
5382 and then (Nkind (Parent (N)) /= N_Attribute_Reference
5383 or else not (Is_Entity_Name (N)
5384 and then Is_Type (Entity (N))
5385 and then Is_Static_Subtype (Entity (N))))
5386 then
5387 return;
5388 end if;
5390 -- Freeze type of expression if not frozen already
5392 Typ := Empty;
5394 if Nkind (N) in N_Has_Etype then
5395 if not Is_Frozen (Etype (N)) then
5396 Typ := Etype (N);
5398 -- Base type may be an derived numeric type that is frozen at
5399 -- the point of declaration, but first_subtype is still unfrozen.
5401 elsif not Is_Frozen (First_Subtype (Etype (N))) then
5402 Typ := First_Subtype (Etype (N));
5403 end if;
5404 end if;
5406 -- For entity name, freeze entity if not frozen already. A special
5407 -- exception occurs for an identifier that did not come from source.
5408 -- We don't let such identifiers freeze a non-internal entity, i.e.
5409 -- an entity that did come from source, since such an identifier was
5410 -- generated by the expander, and cannot have any semantic effect on
5411 -- the freezing semantics. For example, this stops the parameter of
5412 -- an initialization procedure from freezing the variable.
5414 if Is_Entity_Name (N)
5415 and then not Is_Frozen (Entity (N))
5416 and then (Nkind (N) /= N_Identifier
5417 or else Comes_From_Source (N)
5418 or else not Comes_From_Source (Entity (N)))
5419 then
5420 Nam := Entity (N);
5421 else
5422 Nam := Empty;
5423 end if;
5425 -- For an allocator freeze designated type if not frozen already
5427 -- For an aggregate whose component type is an access type, freeze the
5428 -- designated type now, so that its freeze does not appear within the
5429 -- loop that might be created in the expansion of the aggregate. If the
5430 -- designated type is a private type without full view, the expression
5431 -- cannot contain an allocator, so the type is not frozen.
5433 -- For a function, we freeze the entity when the subprogram declaration
5434 -- is frozen, but a function call may appear in an initialization proc.
5435 -- before the declaration is frozen. We need to generate the extra
5436 -- formals, if any, to ensure that the expansion of the call includes
5437 -- the proper actuals. This only applies to Ada subprograms, not to
5438 -- imported ones.
5440 Desig_Typ := Empty;
5442 case Nkind (N) is
5443 when N_Allocator =>
5444 Desig_Typ := Designated_Type (Etype (N));
5446 when N_Aggregate =>
5447 if Is_Array_Type (Etype (N))
5448 and then Is_Access_Type (Component_Type (Etype (N)))
5449 then
5450 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
5451 end if;
5453 when N_Selected_Component |
5454 N_Indexed_Component |
5455 N_Slice =>
5457 if Is_Access_Type (Etype (Prefix (N))) then
5458 Desig_Typ := Designated_Type (Etype (Prefix (N)));
5459 end if;
5461 when N_Identifier =>
5462 if Present (Nam)
5463 and then Ekind (Nam) = E_Function
5464 and then Nkind (Parent (N)) = N_Function_Call
5465 and then Convention (Nam) = Convention_Ada
5466 then
5467 Create_Extra_Formals (Nam);
5468 end if;
5470 when others =>
5471 null;
5472 end case;
5474 if Desig_Typ /= Empty
5475 and then (Is_Frozen (Desig_Typ)
5476 or else (not Is_Fully_Defined (Desig_Typ)))
5477 then
5478 Desig_Typ := Empty;
5479 end if;
5481 -- All done if nothing needs freezing
5483 if No (Typ)
5484 and then No (Nam)
5485 and then No (Desig_Typ)
5486 then
5487 return;
5488 end if;
5490 -- Loop for looking at the right place to insert the freeze nodes,
5491 -- exiting from the loop when it is appropriate to insert the freeze
5492 -- node before the current node P.
5494 -- Also checks some special exceptions to the freezing rules. These
5495 -- cases result in a direct return, bypassing the freeze action.
5497 P := N;
5498 loop
5499 Parent_P := Parent (P);
5501 -- If we don't have a parent, then we are not in a well-formed tree.
5502 -- This is an unusual case, but there are some legitimate situations
5503 -- in which this occurs, notably when the expressions in the range of
5504 -- a type declaration are resolved. We simply ignore the freeze
5505 -- request in this case. Is this right ???
5507 if No (Parent_P) then
5508 return;
5509 end if;
5511 -- See if we have got to an appropriate point in the tree
5513 case Nkind (Parent_P) is
5515 -- A special test for the exception of (RM 13.14(8)) for the case
5516 -- of per-object expressions (RM 3.8(18)) occurring in component
5517 -- definition or a discrete subtype definition. Note that we test
5518 -- for a component declaration which includes both cases we are
5519 -- interested in, and furthermore the tree does not have explicit
5520 -- nodes for either of these two constructs.
5522 when N_Component_Declaration =>
5524 -- The case we want to test for here is an identifier that is
5525 -- a per-object expression, this is either a discriminant that
5526 -- appears in a context other than the component declaration
5527 -- or it is a reference to the type of the enclosing construct.
5529 -- For either of these cases, we skip the freezing
5531 if not In_Spec_Expression
5532 and then Nkind (N) = N_Identifier
5533 and then (Present (Entity (N)))
5534 then
5535 -- We recognize the discriminant case by just looking for
5536 -- a reference to a discriminant. It can only be one for
5537 -- the enclosing construct. Skip freezing in this case.
5539 if Ekind (Entity (N)) = E_Discriminant then
5540 return;
5542 -- For the case of a reference to the enclosing record,
5543 -- (or task or protected type), we look for a type that
5544 -- matches the current scope.
5546 elsif Entity (N) = Current_Scope then
5547 return;
5548 end if;
5549 end if;
5551 -- If we have an enumeration literal that appears as the choice in
5552 -- the aggregate of an enumeration representation clause, then
5553 -- freezing does not occur (RM 13.14(10)).
5555 when N_Enumeration_Representation_Clause =>
5557 -- The case we are looking for is an enumeration literal
5559 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
5560 and then Is_Enumeration_Type (Etype (N))
5561 then
5562 -- If enumeration literal appears directly as the choice,
5563 -- do not freeze (this is the normal non-overloaded case)
5565 if Nkind (Parent (N)) = N_Component_Association
5566 and then First (Choices (Parent (N))) = N
5567 then
5568 return;
5570 -- If enumeration literal appears as the name of function
5571 -- which is the choice, then also do not freeze. This
5572 -- happens in the overloaded literal case, where the
5573 -- enumeration literal is temporarily changed to a function
5574 -- call for overloading analysis purposes.
5576 elsif Nkind (Parent (N)) = N_Function_Call
5577 and then
5578 Nkind (Parent (Parent (N))) = N_Component_Association
5579 and then
5580 First (Choices (Parent (Parent (N)))) = Parent (N)
5581 then
5582 return;
5583 end if;
5584 end if;
5586 -- Normally if the parent is a handled sequence of statements,
5587 -- then the current node must be a statement, and that is an
5588 -- appropriate place to insert a freeze node.
5590 when N_Handled_Sequence_Of_Statements =>
5592 -- An exception occurs when the sequence of statements is for
5593 -- an expander generated body that did not do the usual freeze
5594 -- all operation. In this case we usually want to freeze
5595 -- outside this body, not inside it, and we skip past the
5596 -- subprogram body that we are inside.
5598 if In_Exp_Body (Parent_P) then
5599 declare
5600 Subp : constant Node_Id := Parent (Parent_P);
5601 Spec : Entity_Id;
5603 begin
5604 -- Freeze the entity only when it is declared inside the
5605 -- body of the expander generated procedure. This case
5606 -- is recognized by the scope of the entity or its type,
5607 -- which is either the spec for some enclosing body, or
5608 -- (in the case of init_procs, for which there are no
5609 -- separate specs) the current scope.
5611 if Nkind (Subp) = N_Subprogram_Body then
5612 Spec := Corresponding_Spec (Subp);
5614 if (Present (Typ) and then Scope (Typ) = Spec)
5615 or else
5616 (Present (Nam) and then Scope (Nam) = Spec)
5617 then
5618 exit;
5620 elsif Present (Typ)
5621 and then Scope (Typ) = Current_Scope
5622 and then Defining_Entity (Subp) = Current_Scope
5623 then
5624 exit;
5625 end if;
5626 end if;
5628 -- An expression function may act as a completion of
5629 -- a function declaration. As such, it can reference
5630 -- entities declared between the two views:
5632 -- Hidden []; -- 1
5633 -- function F return ...;
5634 -- private
5635 -- function Hidden return ...;
5636 -- function F return ... is (Hidden); -- 2
5638 -- Refering to the example above, freezing the expression
5639 -- of F (2) would place Hidden's freeze node (1) in the
5640 -- wrong place. Avoid explicit freezing and let the usual
5641 -- scenarios do the job - for example, reaching the end
5642 -- of the private declarations.
5644 if Nkind (Original_Node (Subp)) =
5645 N_Expression_Function
5646 then
5647 null;
5649 -- Freeze outside the body
5651 else
5652 Parent_P := Parent (Parent_P);
5653 Freeze_Outside := True;
5654 end if;
5655 end;
5657 -- Here if normal case where we are in handled statement
5658 -- sequence and want to do the insertion right there.
5660 else
5661 exit;
5662 end if;
5664 -- If parent is a body or a spec or a block, then the current node
5665 -- is a statement or declaration and we can insert the freeze node
5666 -- before it.
5668 when N_Block_Statement |
5669 N_Entry_Body |
5670 N_Package_Body |
5671 N_Package_Specification |
5672 N_Protected_Body |
5673 N_Subprogram_Body |
5674 N_Task_Body => exit;
5676 -- The expander is allowed to define types in any statements list,
5677 -- so any of the following parent nodes also mark a freezing point
5678 -- if the actual node is in a list of statements or declarations.
5680 when N_Abortable_Part |
5681 N_Accept_Alternative |
5682 N_And_Then |
5683 N_Case_Statement_Alternative |
5684 N_Compilation_Unit_Aux |
5685 N_Conditional_Entry_Call |
5686 N_Delay_Alternative |
5687 N_Elsif_Part |
5688 N_Entry_Call_Alternative |
5689 N_Exception_Handler |
5690 N_Extended_Return_Statement |
5691 N_Freeze_Entity |
5692 N_If_Statement |
5693 N_Or_Else |
5694 N_Selective_Accept |
5695 N_Triggering_Alternative =>
5697 exit when Is_List_Member (P);
5699 -- Note: The N_Loop_Statement is a special case. A type that
5700 -- appears in the source can never be frozen in a loop (this
5701 -- occurs only because of a loop expanded by the expander), so we
5702 -- keep on going. Otherwise we terminate the search. Same is true
5703 -- of any entity which comes from source. (if they have predefined
5704 -- type, that type does not appear to come from source, but the
5705 -- entity should not be frozen here).
5707 when N_Loop_Statement =>
5708 exit when not Comes_From_Source (Etype (N))
5709 and then (No (Nam) or else not Comes_From_Source (Nam));
5711 -- For all other cases, keep looking at parents
5713 when others =>
5714 null;
5715 end case;
5717 -- We fall through the case if we did not yet find the proper
5718 -- place in the free for inserting the freeze node, so climb!
5720 P := Parent_P;
5721 end loop;
5723 -- If the expression appears in a record or an initialization procedure,
5724 -- the freeze nodes are collected and attached to the current scope, to
5725 -- be inserted and analyzed on exit from the scope, to insure that
5726 -- generated entities appear in the correct scope. If the expression is
5727 -- a default for a discriminant specification, the scope is still void.
5728 -- The expression can also appear in the discriminant part of a private
5729 -- or concurrent type.
5731 -- If the expression appears in a constrained subcomponent of an
5732 -- enclosing record declaration, the freeze nodes must be attached to
5733 -- the outer record type so they can eventually be placed in the
5734 -- enclosing declaration list.
5736 -- The other case requiring this special handling is if we are in a
5737 -- default expression, since in that case we are about to freeze a
5738 -- static type, and the freeze scope needs to be the outer scope, not
5739 -- the scope of the subprogram with the default parameter.
5741 -- For default expressions and other spec expressions in generic units,
5742 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
5743 -- placing them at the proper place, after the generic unit.
5745 if (In_Spec_Exp and not Inside_A_Generic)
5746 or else Freeze_Outside
5747 or else (Is_Type (Current_Scope)
5748 and then (not Is_Concurrent_Type (Current_Scope)
5749 or else not Has_Completion (Current_Scope)))
5750 or else Ekind (Current_Scope) = E_Void
5751 then
5752 declare
5753 N : constant Node_Id := Current_Scope;
5754 Freeze_Nodes : List_Id := No_List;
5755 Pos : Int := Scope_Stack.Last;
5757 begin
5758 if Present (Desig_Typ) then
5759 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
5760 end if;
5762 if Present (Typ) then
5763 Freeze_And_Append (Typ, N, Freeze_Nodes);
5764 end if;
5766 if Present (Nam) then
5767 Freeze_And_Append (Nam, N, Freeze_Nodes);
5768 end if;
5770 -- The current scope may be that of a constrained component of
5771 -- an enclosing record declaration, or of a loop of an enclosing
5772 -- quantified expression, which is above the current scope in the
5773 -- scope stack. Indeed in the context of a quantified expression,
5774 -- a scope is created and pushed above the current scope in order
5775 -- to emulate the loop-like behavior of the quantified expression.
5776 -- If the expression is within a top-level pragma, as for a pre-
5777 -- condition on a library-level subprogram, nothing to do.
5779 if not Is_Compilation_Unit (Current_Scope)
5780 and then (Is_Record_Type (Scope (Current_Scope))
5781 or else Nkind (Parent (Current_Scope)) =
5782 N_Quantified_Expression)
5783 then
5784 Pos := Pos - 1;
5785 end if;
5787 if Is_Non_Empty_List (Freeze_Nodes) then
5788 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
5789 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
5790 Freeze_Nodes;
5791 else
5792 Append_List (Freeze_Nodes,
5793 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
5794 end if;
5795 end if;
5796 end;
5798 return;
5799 end if;
5801 -- Now we have the right place to do the freezing. First, a special
5802 -- adjustment, if we are in spec-expression analysis mode, these freeze
5803 -- actions must not be thrown away (normally all inserted actions are
5804 -- thrown away in this mode. However, the freeze actions are from static
5805 -- expressions and one of the important reasons we are doing this
5806 -- special analysis is to get these freeze actions. Therefore we turn
5807 -- off the In_Spec_Expression mode to propagate these freeze actions.
5808 -- This also means they get properly analyzed and expanded.
5810 In_Spec_Expression := False;
5812 -- Freeze the designated type of an allocator (RM 13.14(13))
5814 if Present (Desig_Typ) then
5815 Freeze_Before (P, Desig_Typ);
5816 end if;
5818 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
5819 -- the enumeration representation clause exception in the loop above.
5821 if Present (Typ) then
5822 Freeze_Before (P, Typ);
5823 end if;
5825 -- Freeze name if one is present (RM 13.14(11))
5827 if Present (Nam) then
5828 Freeze_Before (P, Nam);
5829 end if;
5831 -- Restore In_Spec_Expression flag
5833 In_Spec_Expression := In_Spec_Exp;
5834 end Freeze_Expression;
5836 -----------------------------
5837 -- Freeze_Fixed_Point_Type --
5838 -----------------------------
5840 -- Certain fixed-point types and subtypes, including implicit base types
5841 -- and declared first subtypes, have not yet set up a range. This is
5842 -- because the range cannot be set until the Small and Size values are
5843 -- known, and these are not known till the type is frozen.
5845 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
5846 -- whose bounds are unanalyzed real literals. This routine will recognize
5847 -- this case, and transform this range node into a properly typed range
5848 -- with properly analyzed and resolved values.
5850 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
5851 Rng : constant Node_Id := Scalar_Range (Typ);
5852 Lo : constant Node_Id := Low_Bound (Rng);
5853 Hi : constant Node_Id := High_Bound (Rng);
5854 Btyp : constant Entity_Id := Base_Type (Typ);
5855 Brng : constant Node_Id := Scalar_Range (Btyp);
5856 BLo : constant Node_Id := Low_Bound (Brng);
5857 BHi : constant Node_Id := High_Bound (Brng);
5858 Small : constant Ureal := Small_Value (Typ);
5859 Loval : Ureal;
5860 Hival : Ureal;
5861 Atype : Entity_Id;
5863 Actual_Size : Nat;
5865 function Fsize (Lov, Hiv : Ureal) return Nat;
5866 -- Returns size of type with given bounds. Also leaves these
5867 -- bounds set as the current bounds of the Typ.
5869 -----------
5870 -- Fsize --
5871 -----------
5873 function Fsize (Lov, Hiv : Ureal) return Nat is
5874 begin
5875 Set_Realval (Lo, Lov);
5876 Set_Realval (Hi, Hiv);
5877 return Minimum_Size (Typ);
5878 end Fsize;
5880 -- Start of processing for Freeze_Fixed_Point_Type
5882 begin
5883 -- If Esize of a subtype has not previously been set, set it now
5885 if Unknown_Esize (Typ) then
5886 Atype := Ancestor_Subtype (Typ);
5888 if Present (Atype) then
5889 Set_Esize (Typ, Esize (Atype));
5890 else
5891 Set_Esize (Typ, Esize (Base_Type (Typ)));
5892 end if;
5893 end if;
5895 -- Immediate return if the range is already analyzed. This means that
5896 -- the range is already set, and does not need to be computed by this
5897 -- routine.
5899 if Analyzed (Rng) then
5900 return;
5901 end if;
5903 -- Immediate return if either of the bounds raises Constraint_Error
5905 if Raises_Constraint_Error (Lo)
5906 or else Raises_Constraint_Error (Hi)
5907 then
5908 return;
5909 end if;
5911 Loval := Realval (Lo);
5912 Hival := Realval (Hi);
5914 -- Ordinary fixed-point case
5916 if Is_Ordinary_Fixed_Point_Type (Typ) then
5918 -- For the ordinary fixed-point case, we are allowed to fudge the
5919 -- end-points up or down by small. Generally we prefer to fudge up,
5920 -- i.e. widen the bounds for non-model numbers so that the end points
5921 -- are included. However there are cases in which this cannot be
5922 -- done, and indeed cases in which we may need to narrow the bounds.
5923 -- The following circuit makes the decision.
5925 -- Note: our terminology here is that Incl_EP means that the bounds
5926 -- are widened by Small if necessary to include the end points, and
5927 -- Excl_EP means that the bounds are narrowed by Small to exclude the
5928 -- end-points if this reduces the size.
5930 -- Note that in the Incl case, all we care about is including the
5931 -- end-points. In the Excl case, we want to narrow the bounds as
5932 -- much as permitted by the RM, to give the smallest possible size.
5934 Fudge : declare
5935 Loval_Incl_EP : Ureal;
5936 Hival_Incl_EP : Ureal;
5938 Loval_Excl_EP : Ureal;
5939 Hival_Excl_EP : Ureal;
5941 Size_Incl_EP : Nat;
5942 Size_Excl_EP : Nat;
5944 Model_Num : Ureal;
5945 First_Subt : Entity_Id;
5946 Actual_Lo : Ureal;
5947 Actual_Hi : Ureal;
5949 begin
5950 -- First step. Base types are required to be symmetrical. Right
5951 -- now, the base type range is a copy of the first subtype range.
5952 -- This will be corrected before we are done, but right away we
5953 -- need to deal with the case where both bounds are non-negative.
5954 -- In this case, we set the low bound to the negative of the high
5955 -- bound, to make sure that the size is computed to include the
5956 -- required sign. Note that we do not need to worry about the
5957 -- case of both bounds negative, because the sign will be dealt
5958 -- with anyway. Furthermore we can't just go making such a bound
5959 -- symmetrical, since in a twos-complement system, there is an
5960 -- extra negative value which could not be accommodated on the
5961 -- positive side.
5963 if Typ = Btyp
5964 and then not UR_Is_Negative (Loval)
5965 and then Hival > Loval
5966 then
5967 Loval := -Hival;
5968 Set_Realval (Lo, Loval);
5969 end if;
5971 -- Compute the fudged bounds. If the number is a model number,
5972 -- then we do nothing to include it, but we are allowed to backoff
5973 -- to the next adjacent model number when we exclude it. If it is
5974 -- not a model number then we straddle the two values with the
5975 -- model numbers on either side.
5977 Model_Num := UR_Trunc (Loval / Small) * Small;
5979 if Loval = Model_Num then
5980 Loval_Incl_EP := Model_Num;
5981 else
5982 Loval_Incl_EP := Model_Num - Small;
5983 end if;
5985 -- The low value excluding the end point is Small greater, but
5986 -- we do not do this exclusion if the low value is positive,
5987 -- since it can't help the size and could actually hurt by
5988 -- crossing the high bound.
5990 if UR_Is_Negative (Loval_Incl_EP) then
5991 Loval_Excl_EP := Loval_Incl_EP + Small;
5993 -- If the value went from negative to zero, then we have the
5994 -- case where Loval_Incl_EP is the model number just below
5995 -- zero, so we want to stick to the negative value for the
5996 -- base type to maintain the condition that the size will
5997 -- include signed values.
5999 if Typ = Btyp
6000 and then UR_Is_Zero (Loval_Excl_EP)
6001 then
6002 Loval_Excl_EP := Loval_Incl_EP;
6003 end if;
6005 else
6006 Loval_Excl_EP := Loval_Incl_EP;
6007 end if;
6009 -- Similar processing for upper bound and high value
6011 Model_Num := UR_Trunc (Hival / Small) * Small;
6013 if Hival = Model_Num then
6014 Hival_Incl_EP := Model_Num;
6015 else
6016 Hival_Incl_EP := Model_Num + Small;
6017 end if;
6019 if UR_Is_Positive (Hival_Incl_EP) then
6020 Hival_Excl_EP := Hival_Incl_EP - Small;
6021 else
6022 Hival_Excl_EP := Hival_Incl_EP;
6023 end if;
6025 -- One further adjustment is needed. In the case of subtypes, we
6026 -- cannot go outside the range of the base type, or we get
6027 -- peculiarities, and the base type range is already set. This
6028 -- only applies to the Incl values, since clearly the Excl values
6029 -- are already as restricted as they are allowed to be.
6031 if Typ /= Btyp then
6032 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6033 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6034 end if;
6036 -- Get size including and excluding end points
6038 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6039 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6041 -- No need to exclude end-points if it does not reduce size
6043 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6044 Loval_Excl_EP := Loval_Incl_EP;
6045 end if;
6047 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6048 Hival_Excl_EP := Hival_Incl_EP;
6049 end if;
6051 -- Now we set the actual size to be used. We want to use the
6052 -- bounds fudged up to include the end-points but only if this
6053 -- can be done without violating a specifically given size
6054 -- size clause or causing an unacceptable increase in size.
6056 -- Case of size clause given
6058 if Has_Size_Clause (Typ) then
6060 -- Use the inclusive size only if it is consistent with
6061 -- the explicitly specified size.
6063 if Size_Incl_EP <= RM_Size (Typ) then
6064 Actual_Lo := Loval_Incl_EP;
6065 Actual_Hi := Hival_Incl_EP;
6066 Actual_Size := Size_Incl_EP;
6068 -- If the inclusive size is too large, we try excluding
6069 -- the end-points (will be caught later if does not work).
6071 else
6072 Actual_Lo := Loval_Excl_EP;
6073 Actual_Hi := Hival_Excl_EP;
6074 Actual_Size := Size_Excl_EP;
6075 end if;
6077 -- Case of size clause not given
6079 else
6080 -- If we have a base type whose corresponding first subtype
6081 -- has an explicit size that is large enough to include our
6082 -- end-points, then do so. There is no point in working hard
6083 -- to get a base type whose size is smaller than the specified
6084 -- size of the first subtype.
6086 First_Subt := First_Subtype (Typ);
6088 if Has_Size_Clause (First_Subt)
6089 and then Size_Incl_EP <= Esize (First_Subt)
6090 then
6091 Actual_Size := Size_Incl_EP;
6092 Actual_Lo := Loval_Incl_EP;
6093 Actual_Hi := Hival_Incl_EP;
6095 -- If excluding the end-points makes the size smaller and
6096 -- results in a size of 8,16,32,64, then we take the smaller
6097 -- size. For the 64 case, this is compulsory. For the other
6098 -- cases, it seems reasonable. We like to include end points
6099 -- if we can, but not at the expense of moving to the next
6100 -- natural boundary of size.
6102 elsif Size_Incl_EP /= Size_Excl_EP
6103 and then Addressable (Size_Excl_EP)
6104 then
6105 Actual_Size := Size_Excl_EP;
6106 Actual_Lo := Loval_Excl_EP;
6107 Actual_Hi := Hival_Excl_EP;
6109 -- Otherwise we can definitely include the end points
6111 else
6112 Actual_Size := Size_Incl_EP;
6113 Actual_Lo := Loval_Incl_EP;
6114 Actual_Hi := Hival_Incl_EP;
6115 end if;
6117 -- One pathological case: normally we never fudge a low bound
6118 -- down, since it would seem to increase the size (if it has
6119 -- any effect), but for ranges containing single value, or no
6120 -- values, the high bound can be small too large. Consider:
6122 -- type t is delta 2.0**(-14)
6123 -- range 131072.0 .. 0;
6125 -- That lower bound is *just* outside the range of 32 bits, and
6126 -- does need fudging down in this case. Note that the bounds
6127 -- will always have crossed here, since the high bound will be
6128 -- fudged down if necessary, as in the case of:
6130 -- type t is delta 2.0**(-14)
6131 -- range 131072.0 .. 131072.0;
6133 -- So we detect the situation by looking for crossed bounds,
6134 -- and if the bounds are crossed, and the low bound is greater
6135 -- than zero, we will always back it off by small, since this
6136 -- is completely harmless.
6138 if Actual_Lo > Actual_Hi then
6139 if UR_Is_Positive (Actual_Lo) then
6140 Actual_Lo := Loval_Incl_EP - Small;
6141 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6143 -- And of course, we need to do exactly the same parallel
6144 -- fudge for flat ranges in the negative region.
6146 elsif UR_Is_Negative (Actual_Hi) then
6147 Actual_Hi := Hival_Incl_EP + Small;
6148 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6149 end if;
6150 end if;
6151 end if;
6153 Set_Realval (Lo, Actual_Lo);
6154 Set_Realval (Hi, Actual_Hi);
6155 end Fudge;
6157 -- For the decimal case, none of this fudging is required, since there
6158 -- are no end-point problems in the decimal case (the end-points are
6159 -- always included).
6161 else
6162 Actual_Size := Fsize (Loval, Hival);
6163 end if;
6165 -- At this stage, the actual size has been calculated and the proper
6166 -- required bounds are stored in the low and high bounds.
6168 if Actual_Size > 64 then
6169 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
6170 Error_Msg_N
6171 ("size required (^) for type& too large, maximum allowed is 64",
6172 Typ);
6173 Actual_Size := 64;
6174 end if;
6176 -- Check size against explicit given size
6178 if Has_Size_Clause (Typ) then
6179 if Actual_Size > RM_Size (Typ) then
6180 Error_Msg_Uint_1 := RM_Size (Typ);
6181 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
6182 Error_Msg_NE
6183 ("size given (^) for type& too small, minimum allowed is ^",
6184 Size_Clause (Typ), Typ);
6186 else
6187 Actual_Size := UI_To_Int (Esize (Typ));
6188 end if;
6190 -- Increase size to next natural boundary if no size clause given
6192 else
6193 if Actual_Size <= 8 then
6194 Actual_Size := 8;
6195 elsif Actual_Size <= 16 then
6196 Actual_Size := 16;
6197 elsif Actual_Size <= 32 then
6198 Actual_Size := 32;
6199 else
6200 Actual_Size := 64;
6201 end if;
6203 Init_Esize (Typ, Actual_Size);
6204 Adjust_Esize_For_Alignment (Typ);
6205 end if;
6207 -- If we have a base type, then expand the bounds so that they extend to
6208 -- the full width of the allocated size in bits, to avoid junk range
6209 -- checks on intermediate computations.
6211 if Base_Type (Typ) = Typ then
6212 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
6213 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
6214 end if;
6216 -- Final step is to reanalyze the bounds using the proper type
6217 -- and set the Corresponding_Integer_Value fields of the literals.
6219 Set_Etype (Lo, Empty);
6220 Set_Analyzed (Lo, False);
6221 Analyze (Lo);
6223 -- Resolve with universal fixed if the base type, and the base type if
6224 -- it is a subtype. Note we can't resolve the base type with itself,
6225 -- that would be a reference before definition.
6227 if Typ = Btyp then
6228 Resolve (Lo, Universal_Fixed);
6229 else
6230 Resolve (Lo, Btyp);
6231 end if;
6233 -- Set corresponding integer value for bound
6235 Set_Corresponding_Integer_Value
6236 (Lo, UR_To_Uint (Realval (Lo) / Small));
6238 -- Similar processing for high bound
6240 Set_Etype (Hi, Empty);
6241 Set_Analyzed (Hi, False);
6242 Analyze (Hi);
6244 if Typ = Btyp then
6245 Resolve (Hi, Universal_Fixed);
6246 else
6247 Resolve (Hi, Btyp);
6248 end if;
6250 Set_Corresponding_Integer_Value
6251 (Hi, UR_To_Uint (Realval (Hi) / Small));
6253 -- Set type of range to correspond to bounds
6255 Set_Etype (Rng, Etype (Lo));
6257 -- Set Esize to calculated size if not set already
6259 if Unknown_Esize (Typ) then
6260 Init_Esize (Typ, Actual_Size);
6261 end if;
6263 -- Set RM_Size if not already set. If already set, check value
6265 declare
6266 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
6268 begin
6269 if RM_Size (Typ) /= Uint_0 then
6270 if RM_Size (Typ) < Minsiz then
6271 Error_Msg_Uint_1 := RM_Size (Typ);
6272 Error_Msg_Uint_2 := Minsiz;
6273 Error_Msg_NE
6274 ("size given (^) for type& too small, minimum allowed is ^",
6275 Size_Clause (Typ), Typ);
6276 end if;
6278 else
6279 Set_RM_Size (Typ, Minsiz);
6280 end if;
6281 end;
6282 end Freeze_Fixed_Point_Type;
6284 ------------------
6285 -- Freeze_Itype --
6286 ------------------
6288 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
6289 L : List_Id;
6291 begin
6292 Set_Has_Delayed_Freeze (T);
6293 L := Freeze_Entity (T, N);
6295 if Is_Non_Empty_List (L) then
6296 Insert_Actions (N, L);
6297 end if;
6298 end Freeze_Itype;
6300 --------------------------
6301 -- Freeze_Static_Object --
6302 --------------------------
6304 procedure Freeze_Static_Object (E : Entity_Id) is
6306 Cannot_Be_Static : exception;
6307 -- Exception raised if the type of a static object cannot be made
6308 -- static. This happens if the type depends on non-global objects.
6310 procedure Ensure_Expression_Is_SA (N : Node_Id);
6311 -- Called to ensure that an expression used as part of a type definition
6312 -- is statically allocatable, which means that the expression type is
6313 -- statically allocatable, and the expression is either static, or a
6314 -- reference to a library level constant.
6316 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
6317 -- Called to mark a type as static, checking that it is possible
6318 -- to set the type as static. If it is not possible, then the
6319 -- exception Cannot_Be_Static is raised.
6321 -----------------------------
6322 -- Ensure_Expression_Is_SA --
6323 -----------------------------
6325 procedure Ensure_Expression_Is_SA (N : Node_Id) is
6326 Ent : Entity_Id;
6328 begin
6329 Ensure_Type_Is_SA (Etype (N));
6331 if Is_Static_Expression (N) then
6332 return;
6334 elsif Nkind (N) = N_Identifier then
6335 Ent := Entity (N);
6337 if Present (Ent)
6338 and then Ekind (Ent) = E_Constant
6339 and then Is_Library_Level_Entity (Ent)
6340 then
6341 return;
6342 end if;
6343 end if;
6345 raise Cannot_Be_Static;
6346 end Ensure_Expression_Is_SA;
6348 -----------------------
6349 -- Ensure_Type_Is_SA --
6350 -----------------------
6352 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
6353 N : Node_Id;
6354 C : Entity_Id;
6356 begin
6357 -- If type is library level, we are all set
6359 if Is_Library_Level_Entity (Typ) then
6360 return;
6361 end if;
6363 -- We are also OK if the type already marked as statically allocated,
6364 -- which means we processed it before.
6366 if Is_Statically_Allocated (Typ) then
6367 return;
6368 end if;
6370 -- Mark type as statically allocated
6372 Set_Is_Statically_Allocated (Typ);
6374 -- Check that it is safe to statically allocate this type
6376 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
6377 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
6378 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
6380 elsif Is_Array_Type (Typ) then
6381 N := First_Index (Typ);
6382 while Present (N) loop
6383 Ensure_Type_Is_SA (Etype (N));
6384 Next_Index (N);
6385 end loop;
6387 Ensure_Type_Is_SA (Component_Type (Typ));
6389 elsif Is_Access_Type (Typ) then
6390 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
6392 declare
6393 F : Entity_Id;
6394 T : constant Entity_Id := Etype (Designated_Type (Typ));
6396 begin
6397 if T /= Standard_Void_Type then
6398 Ensure_Type_Is_SA (T);
6399 end if;
6401 F := First_Formal (Designated_Type (Typ));
6402 while Present (F) loop
6403 Ensure_Type_Is_SA (Etype (F));
6404 Next_Formal (F);
6405 end loop;
6406 end;
6408 else
6409 Ensure_Type_Is_SA (Designated_Type (Typ));
6410 end if;
6412 elsif Is_Record_Type (Typ) then
6413 C := First_Entity (Typ);
6414 while Present (C) loop
6415 if Ekind (C) = E_Discriminant
6416 or else Ekind (C) = E_Component
6417 then
6418 Ensure_Type_Is_SA (Etype (C));
6420 elsif Is_Type (C) then
6421 Ensure_Type_Is_SA (C);
6422 end if;
6424 Next_Entity (C);
6425 end loop;
6427 elsif Ekind (Typ) = E_Subprogram_Type then
6428 Ensure_Type_Is_SA (Etype (Typ));
6430 C := First_Formal (Typ);
6431 while Present (C) loop
6432 Ensure_Type_Is_SA (Etype (C));
6433 Next_Formal (C);
6434 end loop;
6436 else
6437 raise Cannot_Be_Static;
6438 end if;
6439 end Ensure_Type_Is_SA;
6441 -- Start of processing for Freeze_Static_Object
6443 begin
6444 Ensure_Type_Is_SA (Etype (E));
6446 exception
6447 when Cannot_Be_Static =>
6449 -- If the object that cannot be static is imported or exported, then
6450 -- issue an error message saying that this object cannot be imported
6451 -- or exported. If it has an address clause it is an overlay in the
6452 -- current partition and the static requirement is not relevant.
6453 -- Do not issue any error message when ignoring rep clauses.
6455 if Ignore_Rep_Clauses then
6456 null;
6458 elsif Is_Imported (E) then
6459 if No (Address_Clause (E)) then
6460 Error_Msg_N
6461 ("& cannot be imported (local type is not constant)", E);
6462 end if;
6464 -- Otherwise must be exported, something is wrong if compiler
6465 -- is marking something as statically allocated which cannot be).
6467 else pragma Assert (Is_Exported (E));
6468 Error_Msg_N
6469 ("& cannot be exported (local type is not constant)", E);
6470 end if;
6471 end Freeze_Static_Object;
6473 -----------------------
6474 -- Freeze_Subprogram --
6475 -----------------------
6477 procedure Freeze_Subprogram (E : Entity_Id) is
6478 Retype : Entity_Id;
6479 F : Entity_Id;
6481 begin
6482 -- Subprogram may not have an address clause unless it is imported
6484 if Present (Address_Clause (E)) then
6485 if not Is_Imported (E) then
6486 Error_Msg_N
6487 ("address clause can only be given " &
6488 "for imported subprogram",
6489 Name (Address_Clause (E)));
6490 end if;
6491 end if;
6493 -- Reset the Pure indication on an imported subprogram unless an
6494 -- explicit Pure_Function pragma was present. We do this because
6495 -- otherwise it is an insidious error to call a non-pure function from
6496 -- pure unit and have calls mysteriously optimized away. What happens
6497 -- here is that the Import can bypass the normal check to ensure that
6498 -- pure units call only pure subprograms.
6500 if Is_Imported (E)
6501 and then Is_Pure (E)
6502 and then not Has_Pragma_Pure_Function (E)
6503 then
6504 Set_Is_Pure (E, False);
6505 end if;
6507 -- For non-foreign convention subprograms, this is where we create
6508 -- the extra formals (for accessibility level and constrained bit
6509 -- information). We delay this till the freeze point precisely so
6510 -- that we know the convention!
6512 if not Has_Foreign_Convention (E) then
6513 Create_Extra_Formals (E);
6514 Set_Mechanisms (E);
6516 -- If this is convention Ada and a Valued_Procedure, that's odd
6518 if Ekind (E) = E_Procedure
6519 and then Is_Valued_Procedure (E)
6520 and then Convention (E) = Convention_Ada
6521 and then Warn_On_Export_Import
6522 then
6523 Error_Msg_N
6524 ("??Valued_Procedure has no effect for convention Ada", E);
6525 Set_Is_Valued_Procedure (E, False);
6526 end if;
6528 -- Case of foreign convention
6530 else
6531 Set_Mechanisms (E);
6533 -- For foreign conventions, warn about return of an
6534 -- unconstrained array.
6536 -- Note: we *do* allow a return by descriptor for the VMS case,
6537 -- though here there is probably more to be done ???
6539 if Ekind (E) = E_Function then
6540 Retype := Underlying_Type (Etype (E));
6542 -- If no return type, probably some other error, e.g. a
6543 -- missing full declaration, so ignore.
6545 if No (Retype) then
6546 null;
6548 -- If the return type is generic, we have emitted a warning
6549 -- earlier on, and there is nothing else to check here. Specific
6550 -- instantiations may lead to erroneous behavior.
6552 elsif Is_Generic_Type (Etype (E)) then
6553 null;
6555 -- Display warning if returning unconstrained array
6557 elsif Is_Array_Type (Retype)
6558 and then not Is_Constrained (Retype)
6560 -- Exclude cases where descriptor mechanism is set, since the
6561 -- VMS descriptor mechanisms allow such unconstrained returns.
6563 and then Mechanism (E) not in Descriptor_Codes
6565 -- Check appropriate warning is enabled (should we check for
6566 -- Warnings (Off) on specific entities here, probably so???)
6568 and then Warn_On_Export_Import
6570 -- Exclude the VM case, since return of unconstrained arrays
6571 -- is properly handled in both the JVM and .NET cases.
6573 and then VM_Target = No_VM
6574 then
6575 Error_Msg_N
6576 ("?x?foreign convention function& should not return " &
6577 "unconstrained array", E);
6578 return;
6579 end if;
6580 end if;
6582 -- If any of the formals for an exported foreign convention
6583 -- subprogram have defaults, then emit an appropriate warning since
6584 -- this is odd (default cannot be used from non-Ada code)
6586 if Is_Exported (E) then
6587 F := First_Formal (E);
6588 while Present (F) loop
6589 if Warn_On_Export_Import
6590 and then Present (Default_Value (F))
6591 then
6592 Error_Msg_N
6593 ("?x?parameter cannot be defaulted in non-Ada call",
6594 Default_Value (F));
6595 end if;
6597 Next_Formal (F);
6598 end loop;
6599 end if;
6600 end if;
6602 -- For VMS, descriptor mechanisms for parameters are allowed only for
6603 -- imported/exported subprograms. Moreover, the NCA descriptor is not
6604 -- allowed for parameters of exported subprograms.
6606 if OpenVMS_On_Target then
6607 if Is_Exported (E) then
6608 F := First_Formal (E);
6609 while Present (F) loop
6610 if Mechanism (F) = By_Descriptor_NCA then
6611 Error_Msg_N
6612 ("'N'C'A' descriptor for parameter not permitted", F);
6613 Error_Msg_N
6614 ("\can only be used for imported subprogram", F);
6615 end if;
6617 Next_Formal (F);
6618 end loop;
6620 elsif not Is_Imported (E) then
6621 F := First_Formal (E);
6622 while Present (F) loop
6623 if Mechanism (F) in Descriptor_Codes then
6624 Error_Msg_N
6625 ("descriptor mechanism for parameter not permitted", F);
6626 Error_Msg_N
6627 ("\can only be used for imported/exported subprogram", F);
6628 end if;
6630 Next_Formal (F);
6631 end loop;
6632 end if;
6633 end if;
6635 -- Pragma Inline_Always is disallowed for dispatching subprograms
6636 -- because the address of such subprograms is saved in the dispatch
6637 -- table to support dispatching calls, and dispatching calls cannot
6638 -- be inlined. This is consistent with the restriction against using
6639 -- 'Access or 'Address on an Inline_Always subprogram.
6641 if Is_Dispatching_Operation (E)
6642 and then Has_Pragma_Inline_Always (E)
6643 then
6644 Error_Msg_N
6645 ("pragma Inline_Always not allowed for dispatching subprograms", E);
6646 end if;
6648 -- Because of the implicit representation of inherited predefined
6649 -- operators in the front-end, the overriding status of the operation
6650 -- may be affected when a full view of a type is analyzed, and this is
6651 -- not captured by the analysis of the corresponding type declaration.
6652 -- Therefore the correctness of a not-overriding indicator must be
6653 -- rechecked when the subprogram is frozen.
6655 if Nkind (E) = N_Defining_Operator_Symbol
6656 and then not Error_Posted (Parent (E))
6657 then
6658 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
6659 end if;
6660 end Freeze_Subprogram;
6662 ----------------------
6663 -- Is_Fully_Defined --
6664 ----------------------
6666 function Is_Fully_Defined (T : Entity_Id) return Boolean is
6667 begin
6668 if Ekind (T) = E_Class_Wide_Type then
6669 return Is_Fully_Defined (Etype (T));
6671 elsif Is_Array_Type (T) then
6672 return Is_Fully_Defined (Component_Type (T));
6674 elsif Is_Record_Type (T)
6675 and not Is_Private_Type (T)
6676 then
6677 -- Verify that the record type has no components with private types
6678 -- without completion.
6680 declare
6681 Comp : Entity_Id;
6683 begin
6684 Comp := First_Component (T);
6685 while Present (Comp) loop
6686 if not Is_Fully_Defined (Etype (Comp)) then
6687 return False;
6688 end if;
6690 Next_Component (Comp);
6691 end loop;
6692 return True;
6693 end;
6695 -- For the designated type of an access to subprogram, all types in
6696 -- the profile must be fully defined.
6698 elsif Ekind (T) = E_Subprogram_Type then
6699 declare
6700 F : Entity_Id;
6702 begin
6703 F := First_Formal (T);
6704 while Present (F) loop
6705 if not Is_Fully_Defined (Etype (F)) then
6706 return False;
6707 end if;
6709 Next_Formal (F);
6710 end loop;
6712 return Is_Fully_Defined (Etype (T));
6713 end;
6715 else
6716 return not Is_Private_Type (T)
6717 or else Present (Full_View (Base_Type (T)));
6718 end if;
6719 end Is_Fully_Defined;
6721 ---------------------------------
6722 -- Process_Default_Expressions --
6723 ---------------------------------
6725 procedure Process_Default_Expressions
6726 (E : Entity_Id;
6727 After : in out Node_Id)
6729 Loc : constant Source_Ptr := Sloc (E);
6730 Dbody : Node_Id;
6731 Formal : Node_Id;
6732 Dcopy : Node_Id;
6733 Dnam : Entity_Id;
6735 begin
6736 Set_Default_Expressions_Processed (E);
6738 -- A subprogram instance and its associated anonymous subprogram share
6739 -- their signature. The default expression functions are defined in the
6740 -- wrapper packages for the anonymous subprogram, and should not be
6741 -- generated again for the instance.
6743 if Is_Generic_Instance (E)
6744 and then Present (Alias (E))
6745 and then Default_Expressions_Processed (Alias (E))
6746 then
6747 return;
6748 end if;
6750 Formal := First_Formal (E);
6751 while Present (Formal) loop
6752 if Present (Default_Value (Formal)) then
6754 -- We work with a copy of the default expression because we
6755 -- do not want to disturb the original, since this would mess
6756 -- up the conformance checking.
6758 Dcopy := New_Copy_Tree (Default_Value (Formal));
6760 -- The analysis of the expression may generate insert actions,
6761 -- which of course must not be executed. We wrap those actions
6762 -- in a procedure that is not called, and later on eliminated.
6763 -- The following cases have no side-effects, and are analyzed
6764 -- directly.
6766 if Nkind (Dcopy) = N_Identifier
6767 or else Nkind (Dcopy) = N_Expanded_Name
6768 or else Nkind (Dcopy) = N_Integer_Literal
6769 or else (Nkind (Dcopy) = N_Real_Literal
6770 and then not Vax_Float (Etype (Dcopy)))
6771 or else Nkind (Dcopy) = N_Character_Literal
6772 or else Nkind (Dcopy) = N_String_Literal
6773 or else Known_Null (Dcopy)
6774 or else (Nkind (Dcopy) = N_Attribute_Reference
6775 and then
6776 Attribute_Name (Dcopy) = Name_Null_Parameter)
6777 then
6779 -- If there is no default function, we must still do a full
6780 -- analyze call on the default value, to ensure that all error
6781 -- checks are performed, e.g. those associated with static
6782 -- evaluation. Note: this branch will always be taken if the
6783 -- analyzer is turned off (but we still need the error checks).
6785 -- Note: the setting of parent here is to meet the requirement
6786 -- that we can only analyze the expression while attached to
6787 -- the tree. Really the requirement is that the parent chain
6788 -- be set, we don't actually need to be in the tree.
6790 Set_Parent (Dcopy, Declaration_Node (Formal));
6791 Analyze (Dcopy);
6793 -- Default expressions are resolved with their own type if the
6794 -- context is generic, to avoid anomalies with private types.
6796 if Ekind (Scope (E)) = E_Generic_Package then
6797 Resolve (Dcopy);
6798 else
6799 Resolve (Dcopy, Etype (Formal));
6800 end if;
6802 -- If that resolved expression will raise constraint error,
6803 -- then flag the default value as raising constraint error.
6804 -- This allows a proper error message on the calls.
6806 if Raises_Constraint_Error (Dcopy) then
6807 Set_Raises_Constraint_Error (Default_Value (Formal));
6808 end if;
6810 -- If the default is a parameterless call, we use the name of
6811 -- the called function directly, and there is no body to build.
6813 elsif Nkind (Dcopy) = N_Function_Call
6814 and then No (Parameter_Associations (Dcopy))
6815 then
6816 null;
6818 -- Else construct and analyze the body of a wrapper procedure
6819 -- that contains an object declaration to hold the expression.
6820 -- Given that this is done only to complete the analysis, it
6821 -- simpler to build a procedure than a function which might
6822 -- involve secondary stack expansion.
6824 else
6825 Dnam := Make_Temporary (Loc, 'D');
6827 Dbody :=
6828 Make_Subprogram_Body (Loc,
6829 Specification =>
6830 Make_Procedure_Specification (Loc,
6831 Defining_Unit_Name => Dnam),
6833 Declarations => New_List (
6834 Make_Object_Declaration (Loc,
6835 Defining_Identifier => Make_Temporary (Loc, 'T'),
6836 Object_Definition =>
6837 New_Occurrence_Of (Etype (Formal), Loc),
6838 Expression => New_Copy_Tree (Dcopy))),
6840 Handled_Statement_Sequence =>
6841 Make_Handled_Sequence_Of_Statements (Loc,
6842 Statements => Empty_List));
6844 Set_Scope (Dnam, Scope (E));
6845 Set_Assignment_OK (First (Declarations (Dbody)));
6846 Set_Is_Eliminated (Dnam);
6847 Insert_After (After, Dbody);
6848 Analyze (Dbody);
6849 After := Dbody;
6850 end if;
6851 end if;
6853 Next_Formal (Formal);
6854 end loop;
6855 end Process_Default_Expressions;
6857 ----------------------------------------
6858 -- Set_Component_Alignment_If_Not_Set --
6859 ----------------------------------------
6861 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
6862 begin
6863 -- Ignore if not base type, subtypes don't need anything
6865 if Typ /= Base_Type (Typ) then
6866 return;
6867 end if;
6869 -- Do not override existing representation
6871 if Is_Packed (Typ) then
6872 return;
6874 elsif Has_Specified_Layout (Typ) then
6875 return;
6877 elsif Component_Alignment (Typ) /= Calign_Default then
6878 return;
6880 else
6881 Set_Component_Alignment
6882 (Typ, Scope_Stack.Table
6883 (Scope_Stack.Last).Component_Alignment_Default);
6884 end if;
6885 end Set_Component_Alignment_If_Not_Set;
6887 ------------------
6888 -- Undelay_Type --
6889 ------------------
6891 procedure Undelay_Type (T : Entity_Id) is
6892 begin
6893 Set_Has_Delayed_Freeze (T, False);
6894 Set_Freeze_Node (T, Empty);
6896 -- Since we don't want T to have a Freeze_Node, we don't want its
6897 -- Full_View or Corresponding_Record_Type to have one either.
6899 -- ??? Fundamentally, this whole handling is a kludge. What we really
6900 -- want is to be sure that for an Itype that's part of record R and is a
6901 -- subtype of type T, that it's frozen after the later of the freeze
6902 -- points of R and T. We have no way of doing that directly, so what we
6903 -- do is force most such Itypes to be frozen as part of freezing R via
6904 -- this procedure and only delay the ones that need to be delayed
6905 -- (mostly the designated types of access types that are defined as part
6906 -- of the record).
6908 if Is_Private_Type (T)
6909 and then Present (Full_View (T))
6910 and then Is_Itype (Full_View (T))
6911 and then Is_Record_Type (Scope (Full_View (T)))
6912 then
6913 Undelay_Type (Full_View (T));
6914 end if;
6916 if Is_Concurrent_Type (T)
6917 and then Present (Corresponding_Record_Type (T))
6918 and then Is_Itype (Corresponding_Record_Type (T))
6919 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
6920 then
6921 Undelay_Type (Corresponding_Record_Type (T));
6922 end if;
6923 end Undelay_Type;
6925 ------------------
6926 -- Warn_Overlay --
6927 ------------------
6929 procedure Warn_Overlay
6930 (Expr : Node_Id;
6931 Typ : Entity_Id;
6932 Nam : Entity_Id)
6934 Ent : constant Entity_Id := Entity (Nam);
6935 -- The object to which the address clause applies
6937 Init : Node_Id;
6938 Old : Entity_Id := Empty;
6939 Decl : Node_Id;
6941 begin
6942 -- No warning if address clause overlay warnings are off
6944 if not Address_Clause_Overlay_Warnings then
6945 return;
6946 end if;
6948 -- No warning if there is an explicit initialization
6950 Init := Original_Node (Expression (Declaration_Node (Ent)));
6952 if Present (Init) and then Comes_From_Source (Init) then
6953 return;
6954 end if;
6956 -- We only give the warning for non-imported entities of a type for
6957 -- which a non-null base init proc is defined, or for objects of access
6958 -- types with implicit null initialization, or when Normalize_Scalars
6959 -- applies and the type is scalar or a string type (the latter being
6960 -- tested for because predefined String types are initialized by inline
6961 -- code rather than by an init_proc). Note that we do not give the
6962 -- warning for Initialize_Scalars, since we suppressed initialization
6963 -- in this case. Also, do not warn if Suppress_Initialization is set.
6965 if Present (Expr)
6966 and then not Is_Imported (Ent)
6967 and then not Initialization_Suppressed (Typ)
6968 and then (Has_Non_Null_Base_Init_Proc (Typ)
6969 or else Is_Access_Type (Typ)
6970 or else (Normalize_Scalars
6971 and then (Is_Scalar_Type (Typ)
6972 or else Is_String_Type (Typ))))
6973 then
6974 if Nkind (Expr) = N_Attribute_Reference
6975 and then Is_Entity_Name (Prefix (Expr))
6976 then
6977 Old := Entity (Prefix (Expr));
6979 elsif Is_Entity_Name (Expr)
6980 and then Ekind (Entity (Expr)) = E_Constant
6981 then
6982 Decl := Declaration_Node (Entity (Expr));
6984 if Nkind (Decl) = N_Object_Declaration
6985 and then Present (Expression (Decl))
6986 and then Nkind (Expression (Decl)) = N_Attribute_Reference
6987 and then Is_Entity_Name (Prefix (Expression (Decl)))
6988 then
6989 Old := Entity (Prefix (Expression (Decl)));
6991 elsif Nkind (Expr) = N_Function_Call then
6992 return;
6993 end if;
6995 -- A function call (most likely to To_Address) is probably not an
6996 -- overlay, so skip warning. Ditto if the function call was inlined
6997 -- and transformed into an entity.
6999 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7000 return;
7001 end if;
7003 Decl := Next (Parent (Expr));
7005 -- If a pragma Import follows, we assume that it is for the current
7006 -- target of the address clause, and skip the warning.
7008 if Present (Decl)
7009 and then Nkind (Decl) = N_Pragma
7010 and then Pragma_Name (Decl) = Name_Import
7011 then
7012 return;
7013 end if;
7015 if Present (Old) then
7016 Error_Msg_Node_2 := Old;
7017 Error_Msg_N
7018 ("default initialization of & may modify &??",
7019 Nam);
7020 else
7021 Error_Msg_N
7022 ("default initialization of & may modify overlaid storage??",
7023 Nam);
7024 end if;
7026 -- Add friendly warning if initialization comes from a packed array
7027 -- component.
7029 if Is_Record_Type (Typ) then
7030 declare
7031 Comp : Entity_Id;
7033 begin
7034 Comp := First_Component (Typ);
7035 while Present (Comp) loop
7036 if Nkind (Parent (Comp)) = N_Component_Declaration
7037 and then Present (Expression (Parent (Comp)))
7038 then
7039 exit;
7040 elsif Is_Array_Type (Etype (Comp))
7041 and then Present (Packed_Array_Type (Etype (Comp)))
7042 then
7043 Error_Msg_NE
7044 ("\packed array component& " &
7045 "will be initialized to zero??",
7046 Nam, Comp);
7047 exit;
7048 else
7049 Next_Component (Comp);
7050 end if;
7051 end loop;
7052 end;
7053 end if;
7055 Error_Msg_N
7056 ("\use pragma Import for & to " &
7057 "suppress initialization (RM B.1(24))??",
7058 Nam);
7059 end if;
7060 end Warn_Overlay;
7062 end Freeze;