pr88074.c: Require c99_runtime.
[official-gcc.git] / gcc / ada / freeze.adb
blob8e55fb8ab362d81620a214b9c85ea8875c478a9c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 package body Freeze is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
86 (Decl : Node_Id;
87 New_S : Entity_Id;
88 After : in out Node_Id);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause (E : Entity_Id);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type : Entity_Id;
98 Comp : Entity_Id;
99 ADC : Node_Id;
100 Comp_ADC_Present : out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Debug_Info_Needed (T : Entity_Id);
112 -- As each entity is frozen, this routine is called to deal with the
113 -- setting of Debug_Info_Needed for the entity. This flag is set if
114 -- the entity comes from source, or if we are in Debug_Generated_Code
115 -- mode or if the -gnatdV debug flag is set. However, it never sets
116 -- the flag if Debug_Info_Off is set. This procedure also ensures that
117 -- subsidiary entities have the flag set as required.
119 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
120 -- When an expression function is frozen by a use of it, the expression
121 -- itself is frozen. Check that the expression does not include references
122 -- to deferred constants without completion. We report this at the freeze
123 -- point of the function, to provide a better error message.
125 -- In most cases the expression itself is frozen by the time the function
126 -- itself is frozen, because the formals will be frozen by then. However,
127 -- Attribute references to outer types are freeze points for those types;
128 -- this routine generates the required freeze nodes for them.
130 procedure Check_Inherited_Conditions (R : Entity_Id);
131 -- For a tagged derived type, create wrappers for inherited operations
132 -- that have a class-wide condition, so it can be properly rewritten if
133 -- it involves calls to other overriding primitives.
135 procedure Check_Strict_Alignment (E : Entity_Id);
136 -- E is a base type. If E is tagged or has a component that is aliased
137 -- or tagged or contains something this is aliased or tagged, set
138 -- Strict_Alignment.
140 procedure Check_Unsigned_Type (E : Entity_Id);
141 pragma Inline (Check_Unsigned_Type);
142 -- If E is a fixed-point or discrete type, then all the necessary work
143 -- to freeze it is completed except for possible setting of the flag
144 -- Is_Unsigned_Type, which is done by this procedure. The call has no
145 -- effect if the entity E is not a discrete or fixed-point type.
147 procedure Freeze_And_Append
148 (Ent : Entity_Id;
149 N : Node_Id;
150 Result : in out List_Id);
151 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
152 -- nodes to Result, modifying Result from No_List if necessary. N has
153 -- the same usage as in Freeze_Entity.
155 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
156 -- Freeze enumeration type. The Esize field is set as processing
157 -- proceeds (i.e. set by default when the type is declared and then
158 -- adjusted by rep clauses. What this procedure does is to make sure
159 -- that if a foreign convention is specified, and no specific size
160 -- is given, then the size must be at least Integer'Size.
162 procedure Freeze_Static_Object (E : Entity_Id);
163 -- If an object is frozen which has Is_Statically_Allocated set, then
164 -- all referenced types must also be marked with this flag. This routine
165 -- is in charge of meeting this requirement for the object entity E.
167 procedure Freeze_Subprogram (E : Entity_Id);
168 -- Perform freezing actions for a subprogram (create extra formals,
169 -- and set proper default mechanism values). Note that this routine
170 -- is not called for internal subprograms, for which neither of these
171 -- actions is needed (or desirable, we do not want for example to have
172 -- these extra formals present in initialization procedures, where they
173 -- would serve no purpose). In this call E is either a subprogram or
174 -- a subprogram type (i.e. an access to a subprogram).
176 function Is_Fully_Defined (T : Entity_Id) return Boolean;
177 -- True if T is not private and has no private components, or has a full
178 -- view. Used to determine whether the designated type of an access type
179 -- should be frozen when the access type is frozen. This is done when an
180 -- allocator is frozen, or an expression that may involve attributes of
181 -- the designated type. Otherwise freezing the access type does not freeze
182 -- the designated type.
184 procedure Process_Default_Expressions
185 (E : Entity_Id;
186 After : in out Node_Id);
187 -- This procedure is called for each subprogram to complete processing of
188 -- default expressions at the point where all types are known to be frozen.
189 -- The expressions must be analyzed in full, to make sure that all error
190 -- processing is done (they have only been preanalyzed). If the expression
191 -- is not an entity or literal, its analysis may generate code which must
192 -- not be executed. In that case we build a function body to hold that
193 -- code. This wrapper function serves no other purpose (it used to be
194 -- called to evaluate the default, but now the default is inlined at each
195 -- point of call).
197 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
198 -- Typ is a record or array type that is being frozen. This routine sets
199 -- the default component alignment from the scope stack values if the
200 -- alignment is otherwise not specified.
202 procedure Set_SSO_From_Default (T : Entity_Id);
203 -- T is a record or array type that is being frozen. If it is a base type,
204 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
205 -- will be set appropriately. Note that an explicit occurrence of aspect
206 -- Scalar_Storage_Order or an explicit setting of this aspect with an
207 -- attribute definition clause occurs, then these two flags are reset in
208 -- any case, so call will have no effect.
210 procedure Undelay_Type (T : Entity_Id);
211 -- T is a type of a component that we know to be an Itype. We don't want
212 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
213 -- Full_View or Corresponding_Record_Type.
215 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
216 -- Expr is the expression for an address clause for entity Nam whose type
217 -- is Typ. If Typ has a default initialization, and there is no explicit
218 -- initialization in the source declaration, check whether the address
219 -- clause might cause overlaying of an entity, and emit a warning on the
220 -- side effect that the initialization will cause.
222 -------------------------------
223 -- Adjust_Esize_For_Alignment --
224 -------------------------------
226 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
227 Align : Uint;
229 begin
230 if Known_Esize (Typ) and then Known_Alignment (Typ) then
231 Align := Alignment_In_Bits (Typ);
233 if Align > Esize (Typ)
234 and then Align <= Standard_Long_Long_Integer_Size
235 then
236 Set_Esize (Typ, Align);
237 end if;
238 end if;
239 end Adjust_Esize_For_Alignment;
241 ------------------------------------
242 -- Build_And_Analyze_Renamed_Body --
243 ------------------------------------
245 procedure Build_And_Analyze_Renamed_Body
246 (Decl : Node_Id;
247 New_S : Entity_Id;
248 After : in out Node_Id)
250 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
251 Ent : constant Entity_Id := Defining_Entity (Decl);
252 Body_Node : Node_Id;
253 Renamed_Subp : Entity_Id;
255 begin
256 -- If the renamed subprogram is intrinsic, there is no need for a
257 -- wrapper body: we set the alias that will be called and expanded which
258 -- completes the declaration. This transformation is only legal if the
259 -- renamed entity has already been elaborated.
261 -- Note that it is legal for a renaming_as_body to rename an intrinsic
262 -- subprogram, as long as the renaming occurs before the new entity
263 -- is frozen (RM 8.5.4 (5)).
265 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
266 and then Is_Entity_Name (Name (Body_Decl))
267 then
268 Renamed_Subp := Entity (Name (Body_Decl));
269 else
270 Renamed_Subp := Empty;
271 end if;
273 if Present (Renamed_Subp)
274 and then Is_Intrinsic_Subprogram (Renamed_Subp)
275 and then
276 (not In_Same_Source_Unit (Renamed_Subp, Ent)
277 or else Sloc (Renamed_Subp) < Sloc (Ent))
279 -- We can make the renaming entity intrinsic if the renamed function
280 -- has an interface name, or if it is one of the shift/rotate
281 -- operations known to the compiler.
283 and then
284 (Present (Interface_Name (Renamed_Subp))
285 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
286 Name_Rotate_Right,
287 Name_Shift_Left,
288 Name_Shift_Right,
289 Name_Shift_Right_Arithmetic))
290 then
291 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
293 if Present (Alias (Renamed_Subp)) then
294 Set_Alias (Ent, Alias (Renamed_Subp));
295 else
296 Set_Alias (Ent, Renamed_Subp);
297 end if;
299 Set_Is_Intrinsic_Subprogram (Ent);
300 Set_Has_Completion (Ent);
302 else
303 Body_Node := Build_Renamed_Body (Decl, New_S);
304 Insert_After (After, Body_Node);
305 Mark_Rewrite_Insertion (Body_Node);
306 Analyze (Body_Node);
307 After := Body_Node;
308 end if;
309 end Build_And_Analyze_Renamed_Body;
311 ------------------------
312 -- Build_Renamed_Body --
313 ------------------------
315 function Build_Renamed_Body
316 (Decl : Node_Id;
317 New_S : Entity_Id) return Node_Id
319 Loc : constant Source_Ptr := Sloc (New_S);
320 -- We use for the source location of the renamed body, the location of
321 -- the spec entity. It might seem more natural to use the location of
322 -- the renaming declaration itself, but that would be wrong, since then
323 -- the body we create would look as though it was created far too late,
324 -- and this could cause problems with elaboration order analysis,
325 -- particularly in connection with instantiations.
327 N : constant Node_Id := Unit_Declaration_Node (New_S);
328 Nam : constant Node_Id := Name (N);
329 Old_S : Entity_Id;
330 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
331 Actuals : List_Id := No_List;
332 Call_Node : Node_Id;
333 Call_Name : Node_Id;
334 Body_Node : Node_Id;
335 Formal : Entity_Id;
336 O_Formal : Entity_Id;
337 Param_Spec : Node_Id;
339 Pref : Node_Id := Empty;
340 -- If the renamed entity is a primitive operation given in prefix form,
341 -- the prefix is the target object and it has to be added as the first
342 -- actual in the generated call.
344 begin
345 -- Determine the entity being renamed, which is the target of the call
346 -- statement. If the name is an explicit dereference, this is a renaming
347 -- of a subprogram type rather than a subprogram. The name itself is
348 -- fully analyzed.
350 if Nkind (Nam) = N_Selected_Component then
351 Old_S := Entity (Selector_Name (Nam));
353 elsif Nkind (Nam) = N_Explicit_Dereference then
354 Old_S := Etype (Nam);
356 elsif Nkind (Nam) = N_Indexed_Component then
357 if Is_Entity_Name (Prefix (Nam)) then
358 Old_S := Entity (Prefix (Nam));
359 else
360 Old_S := Entity (Selector_Name (Prefix (Nam)));
361 end if;
363 elsif Nkind (Nam) = N_Character_Literal then
364 Old_S := Etype (New_S);
366 else
367 Old_S := Entity (Nam);
368 end if;
370 if Is_Entity_Name (Nam) then
372 -- If the renamed entity is a predefined operator, retain full name
373 -- to ensure its visibility.
375 if Ekind (Old_S) = E_Operator
376 and then Nkind (Nam) = N_Expanded_Name
377 then
378 Call_Name := New_Copy (Name (N));
379 else
380 Call_Name := New_Occurrence_Of (Old_S, Loc);
381 end if;
383 else
384 if Nkind (Nam) = N_Selected_Component
385 and then Present (First_Formal (Old_S))
386 and then
387 (Is_Controlling_Formal (First_Formal (Old_S))
388 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
389 then
391 -- Retrieve the target object, to be added as a first actual
392 -- in the call.
394 Call_Name := New_Occurrence_Of (Old_S, Loc);
395 Pref := Prefix (Nam);
397 else
398 Call_Name := New_Copy (Name (N));
399 end if;
401 -- Original name may have been overloaded, but is fully resolved now
403 Set_Is_Overloaded (Call_Name, False);
404 end if;
406 -- For simple renamings, subsequent calls can be expanded directly as
407 -- calls to the renamed entity. The body must be generated in any case
408 -- for calls that may appear elsewhere. This is not done in the case
409 -- where the subprogram is an instantiation because the actual proper
410 -- body has not been built yet.
412 if Ekind_In (Old_S, E_Function, E_Procedure)
413 and then Nkind (Decl) = N_Subprogram_Declaration
414 and then not Is_Generic_Instance (Old_S)
415 then
416 Set_Body_To_Inline (Decl, Old_S);
417 end if;
419 -- Check whether the return type is a limited view. If the subprogram
420 -- is already frozen the generated body may have a non-limited view
421 -- of the type, that must be used, because it is the one in the spec
422 -- of the renaming declaration.
424 if Ekind (Old_S) = E_Function
425 and then Is_Entity_Name (Result_Definition (Spec))
426 then
427 declare
428 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
429 begin
430 if Has_Non_Limited_View (Ret_Type) then
431 Set_Result_Definition
432 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
433 end if;
434 end;
435 end if;
437 -- The body generated for this renaming is an internal artifact, and
438 -- does not constitute a freeze point for the called entity.
440 Set_Must_Not_Freeze (Call_Name);
442 Formal := First_Formal (Defining_Entity (Decl));
444 if Present (Pref) then
445 declare
446 Pref_Type : constant Entity_Id := Etype (Pref);
447 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
449 begin
450 -- The controlling formal may be an access parameter, or the
451 -- actual may be an access value, so adjust accordingly.
453 if Is_Access_Type (Pref_Type)
454 and then not Is_Access_Type (Form_Type)
455 then
456 Actuals := New_List
457 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
459 elsif Is_Access_Type (Form_Type)
460 and then not Is_Access_Type (Pref)
461 then
462 Actuals :=
463 New_List (
464 Make_Attribute_Reference (Loc,
465 Attribute_Name => Name_Access,
466 Prefix => Relocate_Node (Pref)));
467 else
468 Actuals := New_List (Pref);
469 end if;
470 end;
472 elsif Present (Formal) then
473 Actuals := New_List;
475 else
476 Actuals := No_List;
477 end if;
479 if Present (Formal) then
480 while Present (Formal) loop
481 Append (New_Occurrence_Of (Formal, Loc), Actuals);
482 Next_Formal (Formal);
483 end loop;
484 end if;
486 -- If the renamed entity is an entry, inherit its profile. For other
487 -- renamings as bodies, both profiles must be subtype conformant, so it
488 -- is not necessary to replace the profile given in the declaration.
489 -- However, default values that are aggregates are rewritten when
490 -- partially analyzed, so we recover the original aggregate to insure
491 -- that subsequent conformity checking works. Similarly, if the default
492 -- expression was constant-folded, recover the original expression.
494 Formal := First_Formal (Defining_Entity (Decl));
496 if Present (Formal) then
497 O_Formal := First_Formal (Old_S);
498 Param_Spec := First (Parameter_Specifications (Spec));
499 while Present (Formal) loop
500 if Is_Entry (Old_S) then
501 if Nkind (Parameter_Type (Param_Spec)) /=
502 N_Access_Definition
503 then
504 Set_Etype (Formal, Etype (O_Formal));
505 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
506 end if;
508 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
509 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
510 Nkind (Default_Value (O_Formal))
511 then
512 Set_Expression (Param_Spec,
513 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
514 end if;
516 Next_Formal (Formal);
517 Next_Formal (O_Formal);
518 Next (Param_Spec);
519 end loop;
520 end if;
522 -- If the renamed entity is a function, the generated body contains a
523 -- return statement. Otherwise, build a procedure call. If the entity is
524 -- an entry, subsequent analysis of the call will transform it into the
525 -- proper entry or protected operation call. If the renamed entity is
526 -- a character literal, return it directly.
528 if Ekind (Old_S) = E_Function
529 or else Ekind (Old_S) = E_Operator
530 or else (Ekind (Old_S) = E_Subprogram_Type
531 and then Etype (Old_S) /= Standard_Void_Type)
532 then
533 Call_Node :=
534 Make_Simple_Return_Statement (Loc,
535 Expression =>
536 Make_Function_Call (Loc,
537 Name => Call_Name,
538 Parameter_Associations => Actuals));
540 elsif Ekind (Old_S) = E_Enumeration_Literal then
541 Call_Node :=
542 Make_Simple_Return_Statement (Loc,
543 Expression => New_Occurrence_Of (Old_S, Loc));
545 elsif Nkind (Nam) = N_Character_Literal then
546 Call_Node :=
547 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
549 else
550 Call_Node :=
551 Make_Procedure_Call_Statement (Loc,
552 Name => Call_Name,
553 Parameter_Associations => Actuals);
554 end if;
556 -- Create entities for subprogram body and formals
558 Set_Defining_Unit_Name (Spec,
559 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
561 Param_Spec := First (Parameter_Specifications (Spec));
562 while Present (Param_Spec) loop
563 Set_Defining_Identifier (Param_Spec,
564 Make_Defining_Identifier (Loc,
565 Chars => Chars (Defining_Identifier (Param_Spec))));
566 Next (Param_Spec);
567 end loop;
569 Body_Node :=
570 Make_Subprogram_Body (Loc,
571 Specification => Spec,
572 Declarations => New_List,
573 Handled_Statement_Sequence =>
574 Make_Handled_Sequence_Of_Statements (Loc,
575 Statements => New_List (Call_Node)));
577 if Nkind (Decl) /= N_Subprogram_Declaration then
578 Rewrite (N,
579 Make_Subprogram_Declaration (Loc,
580 Specification => Specification (N)));
581 end if;
583 -- Link the body to the entity whose declaration it completes. If
584 -- the body is analyzed when the renamed entity is frozen, it may
585 -- be necessary to restore the proper scope (see package Exp_Ch13).
587 if Nkind (N) = N_Subprogram_Renaming_Declaration
588 and then Present (Corresponding_Spec (N))
589 then
590 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
591 else
592 Set_Corresponding_Spec (Body_Node, New_S);
593 end if;
595 return Body_Node;
596 end Build_Renamed_Body;
598 --------------------------
599 -- Check_Address_Clause --
600 --------------------------
602 procedure Check_Address_Clause (E : Entity_Id) is
603 Addr : constant Node_Id := Address_Clause (E);
604 Typ : constant Entity_Id := Etype (E);
605 Decl : Node_Id;
606 Expr : Node_Id;
607 Init : Node_Id;
608 Lhs : Node_Id;
609 Tag_Assign : Node_Id;
611 begin
612 if Present (Addr) then
614 -- For a deferred constant, the initialization value is on full view
616 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
617 Decl := Declaration_Node (Full_View (E));
618 else
619 Decl := Declaration_Node (E);
620 end if;
622 Expr := Expression (Addr);
624 if Needs_Constant_Address (Decl, Typ) then
625 Check_Constant_Address_Clause (Expr, E);
627 -- Has_Delayed_Freeze was set on E when the address clause was
628 -- analyzed, and must remain set because we want the address
629 -- clause to be elaborated only after any entity it references
630 -- has been elaborated.
631 end if;
633 -- If Rep_Clauses are to be ignored, remove address clause from
634 -- list attached to entity, because it may be illegal for gigi,
635 -- for example by breaking order of elaboration..
637 if Ignore_Rep_Clauses then
638 declare
639 Rep : Node_Id;
641 begin
642 Rep := First_Rep_Item (E);
644 if Rep = Addr then
645 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
647 else
648 while Present (Rep)
649 and then Next_Rep_Item (Rep) /= Addr
650 loop
651 Rep := Next_Rep_Item (Rep);
652 end loop;
653 end if;
655 if Present (Rep) then
656 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
657 end if;
658 end;
660 -- And now remove the address clause
662 Kill_Rep_Clause (Addr);
664 elsif not Error_Posted (Expr)
665 and then not Needs_Finalization (Typ)
666 then
667 Warn_Overlay (Expr, Typ, Name (Addr));
668 end if;
670 Init := Expression (Decl);
672 -- If a variable, or a non-imported constant, overlays a constant
673 -- object and has an initialization value, then the initialization
674 -- may end up writing into read-only memory. Detect the cases of
675 -- statically identical values and remove the initialization. In
676 -- the other cases, give a warning. We will give other warnings
677 -- later for the variable if it is assigned.
679 if (Ekind (E) = E_Variable
680 or else (Ekind (E) = E_Constant
681 and then not Is_Imported (E)))
682 and then Overlays_Constant (E)
683 and then Present (Init)
684 then
685 declare
686 O_Ent : Entity_Id;
687 Off : Boolean;
689 begin
690 Find_Overlaid_Entity (Addr, O_Ent, Off);
692 if Ekind (O_Ent) = E_Constant
693 and then Etype (O_Ent) = Typ
694 and then Present (Constant_Value (O_Ent))
695 and then Compile_Time_Compare
696 (Init,
697 Constant_Value (O_Ent),
698 Assume_Valid => True) = EQ
699 then
700 Set_No_Initialization (Decl);
701 return;
703 elsif Comes_From_Source (Init)
704 and then Address_Clause_Overlay_Warnings
705 then
706 Error_Msg_Sloc := Sloc (Addr);
707 Error_Msg_NE
708 ("??constant& may be modified via address clause#",
709 Decl, O_Ent);
710 end if;
711 end;
712 end if;
714 -- Remove side effects from initial expression, except in the case of
715 -- limited build-in-place calls and aggregates, which have their own
716 -- expansion elsewhere. This exception is necessary to avoid copying
717 -- limited objects.
719 if Present (Init) and then not Is_Limited_View (Typ) then
721 -- Capture initialization value at point of declaration, and make
722 -- explicit assignment legal, because object may be a constant.
724 Remove_Side_Effects (Init);
725 Lhs := New_Occurrence_Of (E, Sloc (Decl));
726 Set_Assignment_OK (Lhs);
728 -- Move initialization to freeze actions, once the object has
729 -- been frozen and the address clause alignment check has been
730 -- performed.
732 Append_Freeze_Action (E,
733 Make_Assignment_Statement (Sloc (Decl),
734 Name => Lhs,
735 Expression => Expression (Decl)));
737 Set_No_Initialization (Decl);
739 -- If the object is tagged, check whether the tag must be
740 -- reassigned explicitly.
742 Tag_Assign := Make_Tag_Assignment (Decl);
743 if Present (Tag_Assign) then
744 Append_Freeze_Action (E, Tag_Assign);
745 end if;
746 end if;
747 end if;
748 end Check_Address_Clause;
750 -----------------------------
751 -- Check_Compile_Time_Size --
752 -----------------------------
754 procedure Check_Compile_Time_Size (T : Entity_Id) is
756 procedure Set_Small_Size (T : Entity_Id; S : Uint);
757 -- Sets the compile time known size (64 bits or less) in the RM_Size
758 -- field of T, checking for a size clause that was given which attempts
759 -- to give a smaller size.
761 function Size_Known (T : Entity_Id) return Boolean;
762 -- Recursive function that does all the work
764 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
765 -- If T is a constrained subtype, its size is not known if any of its
766 -- discriminant constraints is not static and it is not a null record.
767 -- The test is conservative and doesn't check that the components are
768 -- in fact constrained by non-static discriminant values. Could be made
769 -- more precise ???
771 --------------------
772 -- Set_Small_Size --
773 --------------------
775 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
776 begin
777 if S > 64 then
778 return;
780 -- Check for bad size clause given
782 elsif Has_Size_Clause (T) then
783 if RM_Size (T) < S then
784 Error_Msg_Uint_1 := S;
785 Error_Msg_NE
786 ("size for& too small, minimum allowed is ^",
787 Size_Clause (T), T);
788 end if;
790 -- Set size if not set already
792 elsif Unknown_RM_Size (T) then
793 Set_RM_Size (T, S);
794 end if;
795 end Set_Small_Size;
797 ----------------
798 -- Size_Known --
799 ----------------
801 function Size_Known (T : Entity_Id) return Boolean is
802 Index : Entity_Id;
803 Comp : Entity_Id;
804 Ctyp : Entity_Id;
805 Low : Node_Id;
806 High : Node_Id;
808 begin
809 if Size_Known_At_Compile_Time (T) then
810 return True;
812 -- Always True for elementary types, even generic formal elementary
813 -- types. We used to return False in the latter case, but the size
814 -- is known at compile time, even in the template, we just do not
815 -- know the exact size but that's not the point of this routine.
817 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
818 return True;
820 -- Array types
822 elsif Is_Array_Type (T) then
824 -- String literals always have known size, and we can set it
826 if Ekind (T) = E_String_Literal_Subtype then
827 Set_Small_Size
828 (T, Component_Size (T) * String_Literal_Length (T));
829 return True;
831 -- Unconstrained types never have known at compile time size
833 elsif not Is_Constrained (T) then
834 return False;
836 -- Don't do any recursion on type with error posted, since we may
837 -- have a malformed type that leads us into a loop.
839 elsif Error_Posted (T) then
840 return False;
842 -- Otherwise if component size unknown, then array size unknown
844 elsif not Size_Known (Component_Type (T)) then
845 return False;
846 end if;
848 -- Check for all indexes static, and also compute possible size
849 -- (in case it is not greater than 64 and may be packable).
851 declare
852 Size : Uint := Component_Size (T);
853 Dim : Uint;
855 begin
856 Index := First_Index (T);
857 while Present (Index) loop
858 if Nkind (Index) = N_Range then
859 Get_Index_Bounds (Index, Low, High);
861 elsif Error_Posted (Scalar_Range (Etype (Index))) then
862 return False;
864 else
865 Low := Type_Low_Bound (Etype (Index));
866 High := Type_High_Bound (Etype (Index));
867 end if;
869 if not Compile_Time_Known_Value (Low)
870 or else not Compile_Time_Known_Value (High)
871 or else Etype (Index) = Any_Type
872 then
873 return False;
875 else
876 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
878 if Dim >= 0 then
879 Size := Size * Dim;
880 else
881 Size := Uint_0;
882 end if;
883 end if;
885 Next_Index (Index);
886 end loop;
888 Set_Small_Size (T, Size);
889 return True;
890 end;
892 -- For non-generic private types, go to underlying type if present
894 elsif Is_Private_Type (T)
895 and then not Is_Generic_Type (T)
896 and then Present (Underlying_Type (T))
897 then
898 -- Don't do any recursion on type with error posted, since we may
899 -- have a malformed type that leads us into a loop.
901 if Error_Posted (T) then
902 return False;
903 else
904 return Size_Known (Underlying_Type (T));
905 end if;
907 -- Record types
909 elsif Is_Record_Type (T) then
911 -- A class-wide type is never considered to have a known size
913 if Is_Class_Wide_Type (T) then
914 return False;
916 -- A subtype of a variant record must not have non-static
917 -- discriminated components.
919 elsif T /= Base_Type (T)
920 and then not Static_Discriminated_Components (T)
921 then
922 return False;
924 -- Don't do any recursion on type with error posted, since we may
925 -- have a malformed type that leads us into a loop.
927 elsif Error_Posted (T) then
928 return False;
929 end if;
931 -- Now look at the components of the record
933 declare
934 -- The following two variables are used to keep track of the
935 -- size of packed records if we can tell the size of the packed
936 -- record in the front end. Packed_Size_Known is True if so far
937 -- we can figure out the size. It is initialized to True for a
938 -- packed record, unless the record has discriminants or atomic
939 -- components or independent components.
941 -- The reason we eliminate the discriminated case is that
942 -- we don't know the way the back end lays out discriminated
943 -- packed records. If Packed_Size_Known is True, then
944 -- Packed_Size is the size in bits so far.
946 Packed_Size_Known : Boolean :=
947 Is_Packed (T)
948 and then not Has_Discriminants (T)
949 and then not Has_Atomic_Components (T)
950 and then not Has_Independent_Components (T);
952 Packed_Size : Uint := Uint_0;
953 -- Size in bits so far
955 begin
956 -- Test for variant part present
958 if Has_Discriminants (T)
959 and then Present (Parent (T))
960 and then Nkind (Parent (T)) = N_Full_Type_Declaration
961 and then Nkind (Type_Definition (Parent (T))) =
962 N_Record_Definition
963 and then not Null_Present (Type_Definition (Parent (T)))
964 and then
965 Present (Variant_Part
966 (Component_List (Type_Definition (Parent (T)))))
967 then
968 -- If variant part is present, and type is unconstrained,
969 -- then we must have defaulted discriminants, or a size
970 -- clause must be present for the type, or else the size
971 -- is definitely not known at compile time.
973 if not Is_Constrained (T)
974 and then
975 No (Discriminant_Default_Value (First_Discriminant (T)))
976 and then Unknown_RM_Size (T)
977 then
978 return False;
979 end if;
980 end if;
982 -- Loop through components
984 Comp := First_Component_Or_Discriminant (T);
985 while Present (Comp) loop
986 Ctyp := Etype (Comp);
988 -- We do not know the packed size if there is a component
989 -- clause present (we possibly could, but this would only
990 -- help in the case of a record with partial rep clauses.
991 -- That's because in the case of full rep clauses, the
992 -- size gets figured out anyway by a different circuit).
994 if Present (Component_Clause (Comp)) then
995 Packed_Size_Known := False;
996 end if;
998 -- We do not know the packed size for an atomic/VFA type
999 -- or component, or an independent type or component, or a
1000 -- by-reference type or aliased component (because packing
1001 -- does not touch these).
1003 if Is_Atomic_Or_VFA (Ctyp)
1004 or else Is_Atomic_Or_VFA (Comp)
1005 or else Is_Independent (Ctyp)
1006 or else Is_Independent (Comp)
1007 or else Is_By_Reference_Type (Ctyp)
1008 or else Is_Aliased (Comp)
1009 then
1010 Packed_Size_Known := False;
1011 end if;
1013 -- We need to identify a component that is an array where
1014 -- the index type is an enumeration type with non-standard
1015 -- representation, and some bound of the type depends on a
1016 -- discriminant.
1018 -- This is because gigi computes the size by doing a
1019 -- substitution of the appropriate discriminant value in
1020 -- the size expression for the base type, and gigi is not
1021 -- clever enough to evaluate the resulting expression (which
1022 -- involves a call to rep_to_pos) at compile time.
1024 -- It would be nice if gigi would either recognize that
1025 -- this expression can be computed at compile time, or
1026 -- alternatively figured out the size from the subtype
1027 -- directly, where all the information is at hand ???
1029 if Is_Array_Type (Etype (Comp))
1030 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1031 then
1032 declare
1033 Ocomp : constant Entity_Id :=
1034 Original_Record_Component (Comp);
1035 OCtyp : constant Entity_Id := Etype (Ocomp);
1036 Ind : Node_Id;
1037 Indtyp : Entity_Id;
1038 Lo, Hi : Node_Id;
1040 begin
1041 Ind := First_Index (OCtyp);
1042 while Present (Ind) loop
1043 Indtyp := Etype (Ind);
1045 if Is_Enumeration_Type (Indtyp)
1046 and then Has_Non_Standard_Rep (Indtyp)
1047 then
1048 Lo := Type_Low_Bound (Indtyp);
1049 Hi := Type_High_Bound (Indtyp);
1051 if Is_Entity_Name (Lo)
1052 and then Ekind (Entity (Lo)) = E_Discriminant
1053 then
1054 return False;
1056 elsif Is_Entity_Name (Hi)
1057 and then Ekind (Entity (Hi)) = E_Discriminant
1058 then
1059 return False;
1060 end if;
1061 end if;
1063 Next_Index (Ind);
1064 end loop;
1065 end;
1066 end if;
1068 -- Clearly size of record is not known if the size of one of
1069 -- the components is not known.
1071 if not Size_Known (Ctyp) then
1072 return False;
1073 end if;
1075 -- Accumulate packed size if possible
1077 if Packed_Size_Known then
1079 -- We can deal with elementary types, small packed arrays
1080 -- if the representation is a modular type and also small
1081 -- record types (if the size is not greater than 64, but
1082 -- the condition is checked by Set_Small_Size).
1084 if Is_Elementary_Type (Ctyp)
1085 or else (Is_Array_Type (Ctyp)
1086 and then Present
1087 (Packed_Array_Impl_Type (Ctyp))
1088 and then Is_Modular_Integer_Type
1089 (Packed_Array_Impl_Type (Ctyp)))
1090 or else Is_Record_Type (Ctyp)
1091 then
1092 -- If RM_Size is known and static, then we can keep
1093 -- accumulating the packed size.
1095 if Known_Static_RM_Size (Ctyp) then
1097 Packed_Size := Packed_Size + RM_Size (Ctyp);
1099 -- If we have a field whose RM_Size is not known then
1100 -- we can't figure out the packed size here.
1102 else
1103 Packed_Size_Known := False;
1104 end if;
1106 -- For other types we can't figure out the packed size
1108 else
1109 Packed_Size_Known := False;
1110 end if;
1111 end if;
1113 Next_Component_Or_Discriminant (Comp);
1114 end loop;
1116 if Packed_Size_Known then
1117 Set_Small_Size (T, Packed_Size);
1118 end if;
1120 return True;
1121 end;
1123 -- All other cases, size not known at compile time
1125 else
1126 return False;
1127 end if;
1128 end Size_Known;
1130 -------------------------------------
1131 -- Static_Discriminated_Components --
1132 -------------------------------------
1134 function Static_Discriminated_Components
1135 (T : Entity_Id) return Boolean
1137 Constraint : Elmt_Id;
1139 begin
1140 if Has_Discriminants (T)
1141 and then Present (Discriminant_Constraint (T))
1142 and then Present (First_Component (T))
1143 then
1144 Constraint := First_Elmt (Discriminant_Constraint (T));
1145 while Present (Constraint) loop
1146 if not Compile_Time_Known_Value (Node (Constraint)) then
1147 return False;
1148 end if;
1150 Next_Elmt (Constraint);
1151 end loop;
1152 end if;
1154 return True;
1155 end Static_Discriminated_Components;
1157 -- Start of processing for Check_Compile_Time_Size
1159 begin
1160 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1161 end Check_Compile_Time_Size;
1163 -----------------------------------
1164 -- Check_Component_Storage_Order --
1165 -----------------------------------
1167 procedure Check_Component_Storage_Order
1168 (Encl_Type : Entity_Id;
1169 Comp : Entity_Id;
1170 ADC : Node_Id;
1171 Comp_ADC_Present : out Boolean)
1173 Comp_Base : Entity_Id;
1174 Comp_ADC : Node_Id;
1175 Encl_Base : Entity_Id;
1176 Err_Node : Node_Id;
1178 Component_Aliased : Boolean;
1180 Comp_Byte_Aligned : Boolean := False;
1181 -- Set for the record case, True if Comp is aligned on byte boundaries
1182 -- (in which case it is allowed to have different storage order).
1184 Comp_SSO_Differs : Boolean;
1185 -- Set True when the component is a nested composite, and it does not
1186 -- have the same scalar storage order as Encl_Type.
1188 begin
1189 -- Record case
1191 if Present (Comp) then
1192 Err_Node := Comp;
1193 Comp_Base := Etype (Comp);
1195 if Is_Tag (Comp) then
1196 Comp_Byte_Aligned := True;
1197 Component_Aliased := False;
1199 else
1200 -- If a component clause is present, check if the component starts
1201 -- and ends on byte boundaries. Otherwise conservatively assume it
1202 -- does so only in the case where the record is not packed.
1204 if Present (Component_Clause (Comp)) then
1205 Comp_Byte_Aligned :=
1206 (Normalized_First_Bit (Comp) mod System_Storage_Unit = 0)
1207 and then
1208 (Esize (Comp) mod System_Storage_Unit = 0);
1209 else
1210 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1211 end if;
1213 Component_Aliased := Is_Aliased (Comp);
1214 end if;
1216 -- Array case
1218 else
1219 Err_Node := Encl_Type;
1220 Comp_Base := Component_Type (Encl_Type);
1222 Component_Aliased := Has_Aliased_Components (Encl_Type);
1223 end if;
1225 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1226 -- the attribute definition clause is attached to the first subtype.
1227 -- Also, if the base type is incomplete or private, go to full view
1228 -- if known
1230 Encl_Base := Base_Type (Encl_Type);
1231 if Present (Underlying_Type (Encl_Base)) then
1232 Encl_Base := Underlying_Type (Encl_Base);
1233 end if;
1235 Comp_Base := Base_Type (Comp_Base);
1236 if Present (Underlying_Type (Comp_Base)) then
1237 Comp_Base := Underlying_Type (Comp_Base);
1238 end if;
1240 Comp_ADC :=
1241 Get_Attribute_Definition_Clause
1242 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1243 Comp_ADC_Present := Present (Comp_ADC);
1245 -- Case of record or array component: check storage order compatibility.
1246 -- But, if the record has Complex_Representation, then it is treated as
1247 -- a scalar in the back end so the storage order is irrelevant.
1249 if (Is_Record_Type (Comp_Base)
1250 and then not Has_Complex_Representation (Comp_Base))
1251 or else Is_Array_Type (Comp_Base)
1252 then
1253 Comp_SSO_Differs :=
1254 Reverse_Storage_Order (Encl_Base) /=
1255 Reverse_Storage_Order (Comp_Base);
1257 -- Parent and extension must have same storage order
1259 if Present (Comp) and then Chars (Comp) = Name_uParent then
1260 if Comp_SSO_Differs then
1261 Error_Msg_N
1262 ("record extension must have same scalar storage order as "
1263 & "parent", Err_Node);
1264 end if;
1266 -- If component and composite SSO differs, check that component
1267 -- falls on byte boundaries and isn't bit packed.
1269 elsif Comp_SSO_Differs then
1271 -- Component SSO differs from enclosing composite:
1273 -- Reject if composite is a bit-packed array, as it is rewritten
1274 -- into an array of scalars.
1276 if Is_Bit_Packed_Array (Encl_Base) then
1277 Error_Msg_N
1278 ("type of packed array must have same scalar storage order "
1279 & "as component", Err_Node);
1281 -- Reject if not byte aligned
1283 elsif Is_Record_Type (Encl_Base)
1284 and then not Comp_Byte_Aligned
1285 then
1286 Error_Msg_N
1287 ("type of non-byte-aligned component must have same scalar "
1288 & "storage order as enclosing composite", Err_Node);
1290 -- Warn if specified only for the outer composite
1292 elsif Present (ADC) and then No (Comp_ADC) then
1293 Error_Msg_NE
1294 ("scalar storage order specified for & does not apply to "
1295 & "component?", Err_Node, Encl_Base);
1296 end if;
1297 end if;
1299 -- Enclosing type has explicit SSO: non-composite component must not
1300 -- be aliased.
1302 elsif Present (ADC) and then Component_Aliased then
1303 Error_Msg_N
1304 ("aliased component not permitted for type with explicit "
1305 & "Scalar_Storage_Order", Err_Node);
1306 end if;
1307 end Check_Component_Storage_Order;
1309 -----------------------------
1310 -- Check_Debug_Info_Needed --
1311 -----------------------------
1313 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1314 begin
1315 if Debug_Info_Off (T) then
1316 return;
1318 elsif Comes_From_Source (T)
1319 or else Debug_Generated_Code
1320 or else Debug_Flag_VV
1321 or else Needs_Debug_Info (T)
1322 then
1323 Set_Debug_Info_Needed (T);
1324 end if;
1325 end Check_Debug_Info_Needed;
1327 -------------------------------
1328 -- Check_Expression_Function --
1329 -------------------------------
1331 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1332 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1333 -- Function to search for deferred constant
1335 -------------------
1336 -- Find_Constant --
1337 -------------------
1339 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1340 begin
1341 -- When a constant is initialized with the result of a dispatching
1342 -- call, the constant declaration is rewritten as a renaming of the
1343 -- displaced function result. This scenario is not a premature use of
1344 -- a constant even though the Has_Completion flag is not set.
1346 if Is_Entity_Name (Nod)
1347 and then Present (Entity (Nod))
1348 and then Ekind (Entity (Nod)) = E_Constant
1349 and then Scope (Entity (Nod)) = Current_Scope
1350 and then Nkind (Declaration_Node (Entity (Nod))) =
1351 N_Object_Declaration
1352 and then not Is_Imported (Entity (Nod))
1353 and then not Has_Completion (Entity (Nod))
1354 and then not Is_Frozen (Entity (Nod))
1355 then
1356 Error_Msg_NE
1357 ("premature use of& in call or instance", N, Entity (Nod));
1359 elsif Nkind (Nod) = N_Attribute_Reference then
1360 Analyze (Prefix (Nod));
1362 if Is_Entity_Name (Prefix (Nod))
1363 and then Is_Type (Entity (Prefix (Nod)))
1364 then
1365 Freeze_Before (N, Entity (Prefix (Nod)));
1366 end if;
1367 end if;
1369 return OK;
1370 end Find_Constant;
1372 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1374 -- Local variables
1376 Decl : Node_Id;
1378 -- Start of processing for Check_Expression_Function
1380 begin
1381 Decl := Original_Node (Unit_Declaration_Node (Nam));
1383 -- The subprogram body created for the expression function is not
1384 -- itself a freeze point.
1386 if Scope (Nam) = Current_Scope
1387 and then Nkind (Decl) = N_Expression_Function
1388 and then Nkind (N) /= N_Subprogram_Body
1389 then
1390 Check_Deferred (Expression (Decl));
1391 end if;
1392 end Check_Expression_Function;
1394 --------------------------------
1395 -- Check_Inherited_Conditions --
1396 --------------------------------
1398 procedure Check_Inherited_Conditions (R : Entity_Id) is
1399 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1400 Decls : List_Id;
1401 Needs_Wrapper : Boolean;
1402 Op_Node : Elmt_Id;
1403 Par_Prim : Entity_Id;
1404 Prim : Entity_Id;
1406 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id);
1407 -- Build corresponding pragmas for an operation whose ancestor has
1408 -- class-wide pre/postconditions. If the operation is inherited, the
1409 -- pragmas force the creation of a wrapper for the inherited operation.
1410 -- If the ancestor is being overridden, the pragmas are constructed only
1411 -- to verify their legality, in case they contain calls to other
1412 -- primitives that may haven been overridden.
1414 ---------------------------------------
1415 -- Build_Inherited_Condition_Pragmas --
1416 ---------------------------------------
1418 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id) is
1419 A_Post : Node_Id;
1420 A_Pre : Node_Id;
1421 New_Prag : Node_Id;
1423 begin
1424 A_Pre := Get_Class_Wide_Pragma (Par_Prim, Pragma_Precondition);
1426 if Present (A_Pre) then
1427 New_Prag := New_Copy_Tree (A_Pre);
1428 Build_Class_Wide_Expression
1429 (Prag => New_Prag,
1430 Subp => Prim,
1431 Par_Subp => Par_Prim,
1432 Adjust_Sloc => False,
1433 Needs_Wrapper => Needs_Wrapper);
1435 if Needs_Wrapper
1436 and then not Comes_From_Source (Subp)
1437 and then Expander_Active
1438 then
1439 Append (New_Prag, Decls);
1440 end if;
1441 end if;
1443 A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition);
1445 if Present (A_Post) then
1446 New_Prag := New_Copy_Tree (A_Post);
1447 Build_Class_Wide_Expression
1448 (Prag => New_Prag,
1449 Subp => Prim,
1450 Par_Subp => Par_Prim,
1451 Adjust_Sloc => False,
1452 Needs_Wrapper => Needs_Wrapper);
1454 if Needs_Wrapper
1455 and then not Comes_From_Source (Subp)
1456 and then Expander_Active
1457 then
1458 Append (New_Prag, Decls);
1459 end if;
1460 end if;
1461 end Build_Inherited_Condition_Pragmas;
1463 -- Start of processing for Check_Inherited_Conditions
1465 begin
1466 Op_Node := First_Elmt (Prim_Ops);
1467 while Present (Op_Node) loop
1468 Prim := Node (Op_Node);
1470 -- Map the overridden primitive to the overriding one. This takes
1471 -- care of all overridings and is done only once.
1473 if Present (Overridden_Operation (Prim))
1474 and then Comes_From_Source (Prim)
1475 then
1476 Par_Prim := Overridden_Operation (Prim);
1477 Update_Primitives_Mapping (Par_Prim, Prim);
1478 end if;
1480 Next_Elmt (Op_Node);
1481 end loop;
1483 -- Perform validity checks on the inherited conditions of overriding
1484 -- operations, for conformance with LSP, and apply SPARK-specific
1485 -- restrictions on inherited conditions.
1487 Op_Node := First_Elmt (Prim_Ops);
1488 while Present (Op_Node) loop
1489 Prim := Node (Op_Node);
1491 if Present (Overridden_Operation (Prim))
1492 and then Comes_From_Source (Prim)
1493 then
1494 Par_Prim := Overridden_Operation (Prim);
1496 -- Analyze the contract items of the overridden operation, before
1497 -- they are rewritten as pragmas.
1499 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1501 -- In GNATprove mode this is where we can collect the inherited
1502 -- conditions, because we do not create the Check pragmas that
1503 -- normally convey the the modified class-wide conditions on
1504 -- overriding operations.
1506 if GNATprove_Mode then
1507 Collect_Inherited_Class_Wide_Conditions (Prim);
1509 -- Otherwise build the corresponding pragmas to check for legality
1510 -- of the inherited condition.
1512 else
1513 Build_Inherited_Condition_Pragmas (Prim);
1514 end if;
1515 end if;
1517 Next_Elmt (Op_Node);
1518 end loop;
1520 -- Now examine the inherited operations to check whether they require
1521 -- a wrapper to handle inherited conditions that call other primitives,
1522 -- so that LSP can be verified/enforced.
1524 Op_Node := First_Elmt (Prim_Ops);
1525 Needs_Wrapper := False;
1527 while Present (Op_Node) loop
1528 Decls := Empty_List;
1529 Prim := Node (Op_Node);
1531 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1532 Par_Prim := Alias (Prim);
1534 -- Analyze the contract items of the parent operation, and
1535 -- determine whether a wrapper is needed. This is determined
1536 -- when the condition is rewritten in sem_prag, using the
1537 -- mapping between overridden and overriding operations built
1538 -- in the loop above.
1540 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1541 Build_Inherited_Condition_Pragmas (Prim);
1542 end if;
1544 if Needs_Wrapper
1545 and then not Is_Abstract_Subprogram (Par_Prim)
1546 and then Expander_Active
1547 then
1548 -- We need to build a new primitive that overrides the inherited
1549 -- one, and whose inherited expression has been updated above.
1550 -- These expressions are the arguments of pragmas that are part
1551 -- of the declarations of the wrapper. The wrapper holds a single
1552 -- statement that is a call to the class-wide clone, where the
1553 -- controlling actuals are conversions to the corresponding type
1554 -- in the parent primitive:
1556 -- procedure New_Prim (F1 : T1; ...);
1557 -- procedure New_Prim (F1 : T1; ...) is
1558 -- pragma Check (Precondition, Expr);
1559 -- begin
1560 -- Par_Prim_Clone (Par_Type (F1), ...);
1561 -- end;
1563 -- If the primitive is a function the statement is a return
1564 -- statement with a call.
1566 declare
1567 Loc : constant Source_Ptr := Sloc (R);
1568 Par_R : constant Node_Id := Parent (R);
1569 New_Body : Node_Id;
1570 New_Decl : Node_Id;
1571 New_Spec : Node_Id;
1573 begin
1574 New_Spec := Build_Overriding_Spec (Par_Prim, R);
1575 New_Decl :=
1576 Make_Subprogram_Declaration (Loc,
1577 Specification => New_Spec);
1579 -- Insert the declaration and the body of the wrapper after
1580 -- type declaration that generates inherited operation. For
1581 -- a null procedure, the declaration implies a null body.
1583 if Nkind (New_Spec) = N_Procedure_Specification
1584 and then Null_Present (New_Spec)
1585 then
1586 Insert_After_And_Analyze (Par_R, New_Decl);
1588 else
1589 -- Build body as wrapper to a call to the already built
1590 -- class-wide clone.
1592 New_Body :=
1593 Build_Class_Wide_Clone_Call
1594 (Loc, Decls, Par_Prim, New_Spec);
1596 Insert_List_After_And_Analyze
1597 (Par_R, New_List (New_Decl, New_Body));
1598 end if;
1599 end;
1601 Needs_Wrapper := False;
1602 end if;
1604 Next_Elmt (Op_Node);
1605 end loop;
1606 end Check_Inherited_Conditions;
1608 ----------------------------
1609 -- Check_Strict_Alignment --
1610 ----------------------------
1612 procedure Check_Strict_Alignment (E : Entity_Id) is
1613 Comp : Entity_Id;
1615 begin
1616 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1617 Set_Strict_Alignment (E);
1619 elsif Is_Array_Type (E) then
1620 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1622 elsif Is_Record_Type (E) then
1623 if Is_Limited_Record (E) then
1624 Set_Strict_Alignment (E);
1625 return;
1626 end if;
1628 Comp := First_Component (E);
1629 while Present (Comp) loop
1630 if not Is_Type (Comp)
1631 and then (Strict_Alignment (Etype (Comp))
1632 or else Is_Aliased (Comp))
1633 then
1634 Set_Strict_Alignment (E);
1635 return;
1636 end if;
1638 Next_Component (Comp);
1639 end loop;
1640 end if;
1641 end Check_Strict_Alignment;
1643 -------------------------
1644 -- Check_Unsigned_Type --
1645 -------------------------
1647 procedure Check_Unsigned_Type (E : Entity_Id) is
1648 Ancestor : Entity_Id;
1649 Lo_Bound : Node_Id;
1650 Btyp : Entity_Id;
1652 begin
1653 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1654 return;
1655 end if;
1657 -- Do not attempt to analyze case where range was in error
1659 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1660 return;
1661 end if;
1663 -- The situation that is nontrivial is something like:
1665 -- subtype x1 is integer range -10 .. +10;
1666 -- subtype x2 is x1 range 0 .. V1;
1667 -- subtype x3 is x2 range V2 .. V3;
1668 -- subtype x4 is x3 range V4 .. V5;
1670 -- where Vn are variables. Here the base type is signed, but we still
1671 -- know that x4 is unsigned because of the lower bound of x2.
1673 -- The only way to deal with this is to look up the ancestor chain
1675 Ancestor := E;
1676 loop
1677 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1678 return;
1679 end if;
1681 Lo_Bound := Type_Low_Bound (Ancestor);
1683 if Compile_Time_Known_Value (Lo_Bound) then
1684 if Expr_Rep_Value (Lo_Bound) >= 0 then
1685 Set_Is_Unsigned_Type (E, True);
1686 end if;
1688 return;
1690 else
1691 Ancestor := Ancestor_Subtype (Ancestor);
1693 -- If no ancestor had a static lower bound, go to base type
1695 if No (Ancestor) then
1697 -- Note: the reason we still check for a compile time known
1698 -- value for the base type is that at least in the case of
1699 -- generic formals, we can have bounds that fail this test,
1700 -- and there may be other cases in error situations.
1702 Btyp := Base_Type (E);
1704 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1705 return;
1706 end if;
1708 Lo_Bound := Type_Low_Bound (Base_Type (E));
1710 if Compile_Time_Known_Value (Lo_Bound)
1711 and then Expr_Rep_Value (Lo_Bound) >= 0
1712 then
1713 Set_Is_Unsigned_Type (E, True);
1714 end if;
1716 return;
1717 end if;
1718 end if;
1719 end loop;
1720 end Check_Unsigned_Type;
1722 -----------------------------
1723 -- Is_Atomic_VFA_Aggregate --
1724 -----------------------------
1726 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1727 Loc : constant Source_Ptr := Sloc (N);
1728 New_N : Node_Id;
1729 Par : Node_Id;
1730 Temp : Entity_Id;
1731 Typ : Entity_Id;
1733 begin
1734 Par := Parent (N);
1736 -- Array may be qualified, so find outer context
1738 if Nkind (Par) = N_Qualified_Expression then
1739 Par := Parent (Par);
1740 end if;
1742 if not Comes_From_Source (Par) then
1743 return False;
1744 end if;
1746 case Nkind (Par) is
1747 when N_Assignment_Statement =>
1748 Typ := Etype (Name (Par));
1750 if not Is_Atomic_Or_VFA (Typ)
1751 and then not (Is_Entity_Name (Name (Par))
1752 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1753 then
1754 return False;
1755 end if;
1757 when N_Object_Declaration =>
1758 Typ := Etype (Defining_Identifier (Par));
1760 if not Is_Atomic_Or_VFA (Typ)
1761 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1762 then
1763 return False;
1764 end if;
1766 when others =>
1767 return False;
1768 end case;
1770 Temp := Make_Temporary (Loc, 'T', N);
1771 New_N :=
1772 Make_Object_Declaration (Loc,
1773 Defining_Identifier => Temp,
1774 Object_Definition => New_Occurrence_Of (Typ, Loc),
1775 Expression => Relocate_Node (N));
1776 Insert_Before (Par, New_N);
1777 Analyze (New_N);
1779 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1780 return True;
1781 end Is_Atomic_VFA_Aggregate;
1783 -----------------------------------------------
1784 -- Explode_Initialization_Compound_Statement --
1785 -----------------------------------------------
1787 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1788 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1790 begin
1791 if Present (Init_Stmts)
1792 and then Nkind (Init_Stmts) = N_Compound_Statement
1793 then
1794 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1796 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1797 -- just removing it, because Freeze_All may rely on this particular
1798 -- Node_Id still being present in the enclosing list to know where to
1799 -- stop freezing.
1801 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1803 Set_Initialization_Statements (E, Empty);
1804 end if;
1805 end Explode_Initialization_Compound_Statement;
1807 ----------------
1808 -- Freeze_All --
1809 ----------------
1811 -- Note: the easy coding for this procedure would be to just build a
1812 -- single list of freeze nodes and then insert them and analyze them
1813 -- all at once. This won't work, because the analysis of earlier freeze
1814 -- nodes may recursively freeze types which would otherwise appear later
1815 -- on in the freeze list. So we must analyze and expand the freeze nodes
1816 -- as they are generated.
1818 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1819 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1820 -- This is the internal recursive routine that does freezing of entities
1821 -- (but NOT the analysis of default expressions, which should not be
1822 -- recursive, we don't want to analyze those till we are sure that ALL
1823 -- the types are frozen).
1825 --------------------
1826 -- Freeze_All_Ent --
1827 --------------------
1829 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1830 E : Entity_Id;
1831 Flist : List_Id;
1832 Lastn : Node_Id;
1834 procedure Process_Flist;
1835 -- If freeze nodes are present, insert and analyze, and reset cursor
1836 -- for next insertion.
1838 -------------------
1839 -- Process_Flist --
1840 -------------------
1842 procedure Process_Flist is
1843 begin
1844 if Is_Non_Empty_List (Flist) then
1845 Lastn := Next (After);
1846 Insert_List_After_And_Analyze (After, Flist);
1848 if Present (Lastn) then
1849 After := Prev (Lastn);
1850 else
1851 After := Last (List_Containing (After));
1852 end if;
1853 end if;
1854 end Process_Flist;
1856 -- Start of processing for Freeze_All_Ent
1858 begin
1859 E := From;
1860 while Present (E) loop
1862 -- If the entity is an inner package which is not a package
1863 -- renaming, then its entities must be frozen at this point. Note
1864 -- that such entities do NOT get frozen at the end of the nested
1865 -- package itself (only library packages freeze).
1867 -- Same is true for task declarations, where anonymous records
1868 -- created for entry parameters must be frozen.
1870 if Ekind (E) = E_Package
1871 and then No (Renamed_Object (E))
1872 and then not Is_Child_Unit (E)
1873 and then not Is_Frozen (E)
1874 then
1875 Push_Scope (E);
1877 Install_Visible_Declarations (E);
1878 Install_Private_Declarations (E);
1879 Freeze_All (First_Entity (E), After);
1881 End_Package_Scope (E);
1883 if Is_Generic_Instance (E)
1884 and then Has_Delayed_Freeze (E)
1885 then
1886 Set_Has_Delayed_Freeze (E, False);
1887 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1888 end if;
1890 elsif Ekind (E) in Task_Kind
1891 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1892 N_Task_Type_Declaration)
1893 then
1894 Push_Scope (E);
1895 Freeze_All (First_Entity (E), After);
1896 End_Scope;
1898 -- For a derived tagged type, we must ensure that all the
1899 -- primitive operations of the parent have been frozen, so that
1900 -- their addresses will be in the parent's dispatch table at the
1901 -- point it is inherited.
1903 elsif Ekind (E) = E_Record_Type
1904 and then Is_Tagged_Type (E)
1905 and then Is_Tagged_Type (Etype (E))
1906 and then Is_Derived_Type (E)
1907 then
1908 declare
1909 Prim_List : constant Elist_Id :=
1910 Primitive_Operations (Etype (E));
1912 Prim : Elmt_Id;
1913 Subp : Entity_Id;
1915 begin
1916 Prim := First_Elmt (Prim_List);
1917 while Present (Prim) loop
1918 Subp := Node (Prim);
1920 if Comes_From_Source (Subp)
1921 and then not Is_Frozen (Subp)
1922 then
1923 Flist := Freeze_Entity (Subp, After);
1924 Process_Flist;
1925 end if;
1927 Next_Elmt (Prim);
1928 end loop;
1929 end;
1930 end if;
1932 if not Is_Frozen (E) then
1933 Flist := Freeze_Entity (E, After);
1934 Process_Flist;
1936 -- If already frozen, and there are delayed aspects, this is where
1937 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1938 -- for a description of how we handle aspect visibility).
1940 elsif Has_Delayed_Aspects (E) then
1941 declare
1942 Ritem : Node_Id;
1944 begin
1945 Ritem := First_Rep_Item (E);
1946 while Present (Ritem) loop
1947 if Nkind (Ritem) = N_Aspect_Specification
1948 and then Entity (Ritem) = E
1949 and then Is_Delayed_Aspect (Ritem)
1950 then
1951 Check_Aspect_At_End_Of_Declarations (Ritem);
1952 end if;
1954 Ritem := Next_Rep_Item (Ritem);
1955 end loop;
1956 end;
1957 end if;
1959 -- If an incomplete type is still not frozen, this may be a
1960 -- premature freezing because of a body declaration that follows.
1961 -- Indicate where the freezing took place. Freezing will happen
1962 -- if the body comes from source, but not if it is internally
1963 -- generated, for example as the body of a type invariant.
1965 -- If the freezing is caused by the end of the current declarative
1966 -- part, it is a Taft Amendment type, and there is no error.
1968 if not Is_Frozen (E)
1969 and then Ekind (E) = E_Incomplete_Type
1970 then
1971 declare
1972 Bod : constant Node_Id := Next (After);
1974 begin
1975 -- The presence of a body freezes all entities previously
1976 -- declared in the current list of declarations, but this
1977 -- does not apply if the body does not come from source.
1978 -- A type invariant is transformed into a subprogram body
1979 -- which is placed at the end of the private part of the
1980 -- current package, but this body does not freeze incomplete
1981 -- types that may be declared in this private part.
1983 if (Nkind_In (Bod, N_Entry_Body,
1984 N_Package_Body,
1985 N_Protected_Body,
1986 N_Subprogram_Body,
1987 N_Task_Body)
1988 or else Nkind (Bod) in N_Body_Stub)
1989 and then
1990 List_Containing (After) = List_Containing (Parent (E))
1991 and then Comes_From_Source (Bod)
1992 then
1993 Error_Msg_Sloc := Sloc (Next (After));
1994 Error_Msg_NE
1995 ("type& is frozen# before its full declaration",
1996 Parent (E), E);
1997 end if;
1998 end;
1999 end if;
2001 Next_Entity (E);
2002 end loop;
2003 end Freeze_All_Ent;
2005 -- Local variables
2007 Decl : Node_Id;
2008 E : Entity_Id;
2009 Item : Entity_Id;
2011 -- Start of processing for Freeze_All
2013 begin
2014 Freeze_All_Ent (From, After);
2016 -- Now that all types are frozen, we can deal with default expressions
2017 -- that require us to build a default expression functions. This is the
2018 -- point at which such functions are constructed (after all types that
2019 -- might be used in such expressions have been frozen).
2021 -- For subprograms that are renaming_as_body, we create the wrapper
2022 -- bodies as needed.
2024 -- We also add finalization chains to access types whose designated
2025 -- types are controlled. This is normally done when freezing the type,
2026 -- but this misses recursive type definitions where the later members
2027 -- of the recursion introduce controlled components.
2029 -- Loop through entities
2031 E := From;
2032 while Present (E) loop
2033 if Is_Subprogram (E) then
2034 if not Default_Expressions_Processed (E) then
2035 Process_Default_Expressions (E, After);
2036 end if;
2038 if not Has_Completion (E) then
2039 Decl := Unit_Declaration_Node (E);
2041 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
2042 if Error_Posted (Decl) then
2043 Set_Has_Completion (E);
2044 else
2045 Build_And_Analyze_Renamed_Body (Decl, E, After);
2046 end if;
2048 elsif Nkind (Decl) = N_Subprogram_Declaration
2049 and then Present (Corresponding_Body (Decl))
2050 and then
2051 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2052 N_Subprogram_Renaming_Declaration
2053 then
2054 Build_And_Analyze_Renamed_Body
2055 (Decl, Corresponding_Body (Decl), After);
2056 end if;
2057 end if;
2059 -- Freeze the default expressions of entries, entry families, and
2060 -- protected subprograms.
2062 elsif Is_Concurrent_Type (E) then
2063 Item := First_Entity (E);
2064 while Present (Item) loop
2065 if (Is_Entry (Item) or else Is_Subprogram (Item))
2066 and then not Default_Expressions_Processed (Item)
2067 then
2068 Process_Default_Expressions (Item, After);
2069 end if;
2071 Next_Entity (Item);
2072 end loop;
2073 end if;
2075 -- Historical note: We used to create a finalization master for an
2076 -- access type whose designated type is not controlled, but contains
2077 -- private controlled compoments. This form of postprocessing is no
2078 -- longer needed because the finalization master is now created when
2079 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2081 Next_Entity (E);
2082 end loop;
2083 end Freeze_All;
2085 -----------------------
2086 -- Freeze_And_Append --
2087 -----------------------
2089 procedure Freeze_And_Append
2090 (Ent : Entity_Id;
2091 N : Node_Id;
2092 Result : in out List_Id)
2094 L : constant List_Id := Freeze_Entity (Ent, N);
2095 begin
2096 if Is_Non_Empty_List (L) then
2097 if Result = No_List then
2098 Result := L;
2099 else
2100 Append_List (L, Result);
2101 end if;
2102 end if;
2103 end Freeze_And_Append;
2105 -------------------
2106 -- Freeze_Before --
2107 -------------------
2109 procedure Freeze_Before
2110 (N : Node_Id;
2111 T : Entity_Id;
2112 Do_Freeze_Profile : Boolean := True)
2114 -- Freeze T, then insert the generated Freeze nodes before the node N.
2115 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2116 -- indicates whether its profile should be frozen at the same time.
2118 Freeze_Nodes : constant List_Id :=
2119 Freeze_Entity (T, N, Do_Freeze_Profile);
2120 Pack : constant Entity_Id := Scope (T);
2122 begin
2123 if Ekind (T) = E_Function then
2124 Check_Expression_Function (N, T);
2125 end if;
2127 if Is_Non_Empty_List (Freeze_Nodes) then
2129 -- If the entity is a type declared in an inner package, it may be
2130 -- frozen by an outer declaration before the package itself is
2131 -- frozen. Install the package scope to analyze the freeze nodes,
2132 -- which may include generated subprograms such as predicate
2133 -- functions, etc.
2135 if Is_Type (T) and then From_Nested_Package (T) then
2136 Push_Scope (Pack);
2137 Install_Visible_Declarations (Pack);
2138 Install_Private_Declarations (Pack);
2139 Insert_Actions (N, Freeze_Nodes);
2140 End_Package_Scope (Pack);
2142 else
2143 Insert_Actions (N, Freeze_Nodes);
2144 end if;
2145 end if;
2146 end Freeze_Before;
2148 -------------------
2149 -- Freeze_Entity --
2150 -------------------
2152 -- WARNING: This routine manages Ghost regions. Return statements must be
2153 -- replaced by gotos which jump to the end of the routine and restore the
2154 -- Ghost mode.
2156 function Freeze_Entity
2157 (E : Entity_Id;
2158 N : Node_Id;
2159 Do_Freeze_Profile : Boolean := True) return List_Id
2161 Loc : constant Source_Ptr := Sloc (N);
2163 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2164 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
2165 -- Save the Ghost-related attributes to restore on exit
2167 Atype : Entity_Id;
2168 Comp : Entity_Id;
2169 F_Node : Node_Id;
2170 Formal : Entity_Id;
2171 Indx : Node_Id;
2173 Result : List_Id := No_List;
2174 -- List of freezing actions, left at No_List if none
2176 Test_E : Entity_Id := E;
2177 -- This could use a comment ???
2179 procedure Add_To_Result (Fnod : Node_Id);
2180 -- Add freeze action Fnod to list Result
2182 function After_Last_Declaration return Boolean;
2183 -- If Loc is a freeze_entity that appears after the last declaration
2184 -- in the scope, inhibit error messages on late completion.
2186 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2187 -- Check that an Access or Unchecked_Access attribute with a prefix
2188 -- which is the current instance type can only be applied when the type
2189 -- is limited.
2191 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2192 -- Give a warning for pragma Convention with language C or C++ applied
2193 -- to a discriminated record type. This is suppressed for the unchecked
2194 -- union case, since the whole point in this case is interface C. We
2195 -- also do not generate this within instantiations, since we will have
2196 -- generated a message on the template.
2198 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2199 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2200 -- integer literal without an explicit corresponding size clause. The
2201 -- caller has checked that Utype is a modular integer type.
2203 procedure Freeze_Array_Type (Arr : Entity_Id);
2204 -- Freeze array type, including freezing index and component types
2206 procedure Freeze_Object_Declaration (E : Entity_Id);
2207 -- Perform checks and generate freeze node if needed for a constant or
2208 -- variable declared by an object declaration.
2210 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2211 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2212 -- package. Recurse on inner generic packages.
2214 function Freeze_Profile (E : Entity_Id) return Boolean;
2215 -- Freeze formals and return type of subprogram. If some type in the
2216 -- profile is incomplete and we are in an instance, freezing of the
2217 -- entity will take place elsewhere, and the function returns False.
2219 procedure Freeze_Record_Type (Rec : Entity_Id);
2220 -- Freeze record type, including freezing component types, and freezing
2221 -- primitive operations if this is a tagged type.
2223 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2224 -- Determine whether an arbitrary entity is subject to Boolean aspect
2225 -- Import and its value is specified as True.
2227 procedure Inherit_Freeze_Node
2228 (Fnod : Node_Id;
2229 Typ : Entity_Id);
2230 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2231 -- that any attributes attached to Typ's original node are preserved.
2233 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2234 -- If E is an entity for an imported subprogram with pre/post-conditions
2235 -- then this procedure will create a wrapper to ensure that proper run-
2236 -- time checking of the pre/postconditions. See body for details.
2238 -------------------
2239 -- Add_To_Result --
2240 -------------------
2242 procedure Add_To_Result (Fnod : Node_Id) is
2243 begin
2244 Append_New_To (Result, Fnod);
2245 end Add_To_Result;
2247 ----------------------------
2248 -- After_Last_Declaration --
2249 ----------------------------
2251 function After_Last_Declaration return Boolean is
2252 Spec : constant Node_Id := Parent (Current_Scope);
2254 begin
2255 if Nkind (Spec) = N_Package_Specification then
2256 if Present (Private_Declarations (Spec)) then
2257 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2258 elsif Present (Visible_Declarations (Spec)) then
2259 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2260 else
2261 return False;
2262 end if;
2264 else
2265 return False;
2266 end if;
2267 end After_Last_Declaration;
2269 ----------------------------
2270 -- Check_Current_Instance --
2271 ----------------------------
2273 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2275 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2276 -- Determine whether Typ is compatible with the rules for aliased
2277 -- views of types as defined in RM 3.10 in the various dialects.
2279 function Process (N : Node_Id) return Traverse_Result;
2280 -- Process routine to apply check to given node
2282 -----------------------------
2283 -- Is_Aliased_View_Of_Type --
2284 -----------------------------
2286 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2287 Typ_Decl : constant Node_Id := Parent (Typ);
2289 begin
2290 -- Common case
2292 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2293 and then Limited_Present (Type_Definition (Typ_Decl))
2294 then
2295 return True;
2297 -- The following paragraphs describe what a legal aliased view of
2298 -- a type is in the various dialects of Ada.
2300 -- Ada 95
2302 -- The current instance of a limited type, and a formal parameter
2303 -- or generic formal object of a tagged type.
2305 -- Ada 95 limited type
2306 -- * Type with reserved word "limited"
2307 -- * A protected or task type
2308 -- * A composite type with limited component
2310 elsif Ada_Version <= Ada_95 then
2311 return Is_Limited_Type (Typ);
2313 -- Ada 2005
2315 -- The current instance of a limited tagged type, a protected
2316 -- type, a task type, or a type that has the reserved word
2317 -- "limited" in its full definition ... a formal parameter or
2318 -- generic formal object of a tagged type.
2320 -- Ada 2005 limited type
2321 -- * Type with reserved word "limited", "synchronized", "task"
2322 -- or "protected"
2323 -- * A composite type with limited component
2324 -- * A derived type whose parent is a non-interface limited type
2326 elsif Ada_Version = Ada_2005 then
2327 return
2328 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2329 or else
2330 (Is_Derived_Type (Typ)
2331 and then not Is_Interface (Etype (Typ))
2332 and then Is_Limited_Type (Etype (Typ)));
2334 -- Ada 2012 and beyond
2336 -- The current instance of an immutably limited type ... a formal
2337 -- parameter or generic formal object of a tagged type.
2339 -- Ada 2012 limited type
2340 -- * Type with reserved word "limited", "synchronized", "task"
2341 -- or "protected"
2342 -- * A composite type with limited component
2343 -- * A derived type whose parent is a non-interface limited type
2344 -- * An incomplete view
2346 -- Ada 2012 immutably limited type
2347 -- * Explicitly limited record type
2348 -- * Record extension with "limited" present
2349 -- * Non-formal limited private type that is either tagged
2350 -- or has at least one access discriminant with a default
2351 -- expression
2352 -- * Task type, protected type or synchronized interface
2353 -- * Type derived from immutably limited type
2355 else
2356 return
2357 Is_Immutably_Limited_Type (Typ)
2358 or else Is_Incomplete_Type (Typ);
2359 end if;
2360 end Is_Aliased_View_Of_Type;
2362 -------------
2363 -- Process --
2364 -------------
2366 function Process (N : Node_Id) return Traverse_Result is
2367 begin
2368 case Nkind (N) is
2369 when N_Attribute_Reference =>
2370 if Nam_In (Attribute_Name (N), Name_Access,
2371 Name_Unchecked_Access)
2372 and then Is_Entity_Name (Prefix (N))
2373 and then Is_Type (Entity (Prefix (N)))
2374 and then Entity (Prefix (N)) = E
2375 then
2376 if Ada_Version < Ada_2012 then
2377 Error_Msg_N
2378 ("current instance must be a limited type",
2379 Prefix (N));
2380 else
2381 Error_Msg_N
2382 ("current instance must be an immutably limited "
2383 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2384 end if;
2386 return Abandon;
2388 else
2389 return OK;
2390 end if;
2392 when others =>
2393 return OK;
2394 end case;
2395 end Process;
2397 procedure Traverse is new Traverse_Proc (Process);
2399 -- Local variables
2401 Rec_Type : constant Entity_Id :=
2402 Scope (Defining_Identifier (Comp_Decl));
2404 -- Start of processing for Check_Current_Instance
2406 begin
2407 if not Is_Aliased_View_Of_Type (Rec_Type) then
2408 Traverse (Comp_Decl);
2409 end if;
2410 end Check_Current_Instance;
2412 ---------------------------------
2413 -- Check_Suspicious_Convention --
2414 ---------------------------------
2416 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2417 begin
2418 if Has_Discriminants (Rec_Type)
2419 and then Is_Base_Type (Rec_Type)
2420 and then not Is_Unchecked_Union (Rec_Type)
2421 and then (Convention (Rec_Type) = Convention_C
2422 or else
2423 Convention (Rec_Type) = Convention_CPP)
2424 and then Comes_From_Source (Rec_Type)
2425 and then not In_Instance
2426 and then not Has_Warnings_Off (Rec_Type)
2427 then
2428 declare
2429 Cprag : constant Node_Id :=
2430 Get_Rep_Pragma (Rec_Type, Name_Convention);
2431 A2 : Node_Id;
2433 begin
2434 if Present (Cprag) then
2435 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2437 if Convention (Rec_Type) = Convention_C then
2438 Error_Msg_N
2439 ("?x?discriminated record has no direct equivalent in "
2440 & "C", A2);
2441 else
2442 Error_Msg_N
2443 ("?x?discriminated record has no direct equivalent in "
2444 & "C++", A2);
2445 end if;
2447 Error_Msg_NE
2448 ("\?x?use of convention for type& is dubious",
2449 A2, Rec_Type);
2450 end if;
2451 end;
2452 end if;
2453 end Check_Suspicious_Convention;
2455 ------------------------------
2456 -- Check_Suspicious_Modulus --
2457 ------------------------------
2459 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2460 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2462 begin
2463 if not Warn_On_Suspicious_Modulus_Value then
2464 return;
2465 end if;
2467 if Nkind (Decl) = N_Full_Type_Declaration then
2468 declare
2469 Tdef : constant Node_Id := Type_Definition (Decl);
2471 begin
2472 if Nkind (Tdef) = N_Modular_Type_Definition then
2473 declare
2474 Modulus : constant Node_Id :=
2475 Original_Node (Expression (Tdef));
2477 begin
2478 if Nkind (Modulus) = N_Integer_Literal then
2479 declare
2480 Modv : constant Uint := Intval (Modulus);
2481 Sizv : constant Uint := RM_Size (Utype);
2483 begin
2484 -- First case, modulus and size are the same. This
2485 -- happens if you have something like mod 32, with
2486 -- an explicit size of 32, this is for sure a case
2487 -- where the warning is given, since it is seems
2488 -- very unlikely that someone would want e.g. a
2489 -- five bit type stored in 32 bits. It is much
2490 -- more likely they wanted a 32-bit type.
2492 if Modv = Sizv then
2493 null;
2495 -- Second case, the modulus is 32 or 64 and no
2496 -- size clause is present. This is a less clear
2497 -- case for giving the warning, but in the case
2498 -- of 32/64 (5-bit or 6-bit types) these seem rare
2499 -- enough that it is a likely error (and in any
2500 -- case using 2**5 or 2**6 in these cases seems
2501 -- clearer. We don't include 8 or 16 here, simply
2502 -- because in practice 3-bit and 4-bit types are
2503 -- more common and too many false positives if
2504 -- we warn in these cases.
2506 elsif not Has_Size_Clause (Utype)
2507 and then (Modv = Uint_32 or else Modv = Uint_64)
2508 then
2509 null;
2511 -- No warning needed
2513 else
2514 return;
2515 end if;
2517 -- If we fall through, give warning
2519 Error_Msg_Uint_1 := Modv;
2520 Error_Msg_N
2521 ("?M?2 '*'*^' may have been intended here",
2522 Modulus);
2523 end;
2524 end if;
2525 end;
2526 end if;
2527 end;
2528 end if;
2529 end Check_Suspicious_Modulus;
2531 -----------------------
2532 -- Freeze_Array_Type --
2533 -----------------------
2535 procedure Freeze_Array_Type (Arr : Entity_Id) is
2536 FS : constant Entity_Id := First_Subtype (Arr);
2537 Ctyp : constant Entity_Id := Component_Type (Arr);
2538 Clause : Entity_Id;
2540 Non_Standard_Enum : Boolean := False;
2541 -- Set true if any of the index types is an enumeration type with a
2542 -- non-standard representation.
2544 begin
2545 Freeze_And_Append (Ctyp, N, Result);
2547 Indx := First_Index (Arr);
2548 while Present (Indx) loop
2549 Freeze_And_Append (Etype (Indx), N, Result);
2551 if Is_Enumeration_Type (Etype (Indx))
2552 and then Has_Non_Standard_Rep (Etype (Indx))
2553 then
2554 Non_Standard_Enum := True;
2555 end if;
2557 Next_Index (Indx);
2558 end loop;
2560 -- Processing that is done only for base types
2562 if Ekind (Arr) = E_Array_Type then
2564 -- Deal with default setting of reverse storage order
2566 Set_SSO_From_Default (Arr);
2568 -- Propagate flags for component type
2570 if Is_Controlled (Component_Type (Arr))
2571 or else Has_Controlled_Component (Ctyp)
2572 then
2573 Set_Has_Controlled_Component (Arr);
2574 end if;
2576 if Has_Unchecked_Union (Component_Type (Arr)) then
2577 Set_Has_Unchecked_Union (Arr);
2578 end if;
2580 -- The array type requires its own invariant procedure in order to
2581 -- verify the component invariant over all elements. In GNATprove
2582 -- mode, the component invariants are checked by other means. They
2583 -- should not be added to the array type invariant procedure, so
2584 -- that the procedure can be used to check the array type
2585 -- invariants if any.
2587 if Has_Invariants (Component_Type (Arr))
2588 and then not GNATprove_Mode
2589 then
2590 Set_Has_Own_Invariants (Arr);
2592 -- The array type is an implementation base type. Propagate the
2593 -- same property to the first subtype.
2595 if Is_Itype (Arr) then
2596 Set_Has_Own_Invariants (First_Subtype (Arr));
2597 end if;
2598 end if;
2600 -- Warn for pragma Pack overriding foreign convention
2602 if Has_Foreign_Convention (Ctyp)
2603 and then Has_Pragma_Pack (Arr)
2604 then
2605 declare
2606 CN : constant Name_Id :=
2607 Get_Convention_Name (Convention (Ctyp));
2608 PP : constant Node_Id :=
2609 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2610 begin
2611 if Present (PP) then
2612 Error_Msg_Name_1 := CN;
2613 Error_Msg_Sloc := Sloc (Arr);
2614 Error_Msg_N
2615 ("pragma Pack affects convention % components #??", PP);
2616 Error_Msg_Name_1 := CN;
2617 Error_Msg_N
2618 ("\array components may not have % compatible "
2619 & "representation??", PP);
2620 end if;
2621 end;
2622 end if;
2624 -- If packing was requested or if the component size was
2625 -- set explicitly, then see if bit packing is required. This
2626 -- processing is only done for base types, since all of the
2627 -- representation aspects involved are type-related.
2629 -- This is not just an optimization, if we start processing the
2630 -- subtypes, they interfere with the settings on the base type
2631 -- (this is because Is_Packed has a slightly different meaning
2632 -- before and after freezing).
2634 declare
2635 Csiz : Uint;
2636 Esiz : Uint;
2638 begin
2639 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2640 and then Known_Static_RM_Size (Ctyp)
2641 and then not Has_Component_Size_Clause (Arr)
2642 then
2643 Csiz := UI_Max (RM_Size (Ctyp), 1);
2645 elsif Known_Component_Size (Arr) then
2646 Csiz := Component_Size (Arr);
2648 elsif not Known_Static_Esize (Ctyp) then
2649 Csiz := Uint_0;
2651 else
2652 Esiz := Esize (Ctyp);
2654 -- We can set the component size if it is less than 16,
2655 -- rounding it up to the next storage unit size.
2657 if Esiz <= 8 then
2658 Csiz := Uint_8;
2659 elsif Esiz <= 16 then
2660 Csiz := Uint_16;
2661 else
2662 Csiz := Uint_0;
2663 end if;
2665 -- Set component size up to match alignment if it would
2666 -- otherwise be less than the alignment. This deals with
2667 -- cases of types whose alignment exceeds their size (the
2668 -- padded type cases).
2670 if Csiz /= 0 then
2671 declare
2672 A : constant Uint := Alignment_In_Bits (Ctyp);
2673 begin
2674 if Csiz < A then
2675 Csiz := A;
2676 end if;
2677 end;
2678 end if;
2679 end if;
2681 -- Case of component size that may result in bit packing
2683 if 1 <= Csiz and then Csiz <= 64 then
2684 declare
2685 Ent : constant Entity_Id :=
2686 First_Subtype (Arr);
2687 Pack_Pragma : constant Node_Id :=
2688 Get_Rep_Pragma (Ent, Name_Pack);
2689 Comp_Size_C : constant Node_Id :=
2690 Get_Attribute_Definition_Clause
2691 (Ent, Attribute_Component_Size);
2693 begin
2694 -- Warn if we have pack and component size so that the
2695 -- pack is ignored.
2697 -- Note: here we must check for the presence of a
2698 -- component size before checking for a Pack pragma to
2699 -- deal with the case where the array type is a derived
2700 -- type whose parent is currently private.
2702 if Present (Comp_Size_C)
2703 and then Has_Pragma_Pack (Ent)
2704 and then Warn_On_Redundant_Constructs
2705 then
2706 Error_Msg_Sloc := Sloc (Comp_Size_C);
2707 Error_Msg_NE
2708 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2709 Error_Msg_N
2710 ("\?r?explicit component size given#!", Pack_Pragma);
2711 Set_Is_Packed (Base_Type (Ent), False);
2712 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2713 end if;
2715 -- Set component size if not already set by a component
2716 -- size clause.
2718 if not Present (Comp_Size_C) then
2719 Set_Component_Size (Arr, Csiz);
2720 end if;
2722 -- Check for base type of 8, 16, 32 bits, where an
2723 -- unsigned subtype has a length one less than the
2724 -- base type (e.g. Natural subtype of Integer).
2726 -- In such cases, if a component size was not set
2727 -- explicitly, then generate a warning.
2729 if Has_Pragma_Pack (Arr)
2730 and then not Present (Comp_Size_C)
2731 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2732 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2733 then
2734 Error_Msg_Uint_1 := Csiz;
2736 if Present (Pack_Pragma) then
2737 Error_Msg_N
2738 ("??pragma Pack causes component size to be ^!",
2739 Pack_Pragma);
2740 Error_Msg_N
2741 ("\??use Component_Size to set desired value!",
2742 Pack_Pragma);
2743 end if;
2744 end if;
2746 -- Bit packing is never needed for 8, 16, 32, 64
2748 if Addressable (Csiz) then
2750 -- If the Esize of the component is known and equal to
2751 -- the component size then even packing is not needed.
2753 if Known_Static_Esize (Component_Type (Arr))
2754 and then Esize (Component_Type (Arr)) = Csiz
2755 then
2756 -- Here the array was requested to be packed, but
2757 -- the packing request had no effect whatsoever,
2758 -- so flag Is_Packed is reset.
2760 -- Note: semantically this means that we lose track
2761 -- of the fact that a derived type inherited pragma
2762 -- Pack that was non-effective, but that is fine.
2764 -- We regard a Pack pragma as a request to set a
2765 -- representation characteristic, and this request
2766 -- may be ignored.
2768 Set_Is_Packed (Base_Type (Arr), False);
2769 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2770 else
2771 Set_Is_Packed (Base_Type (Arr), True);
2772 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2773 end if;
2775 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2777 -- Bit packing is not needed for multiples of the storage
2778 -- unit if the type is composite because the back end can
2779 -- byte pack composite types.
2781 elsif Csiz mod System_Storage_Unit = 0
2782 and then Is_Composite_Type (Ctyp)
2783 then
2784 Set_Is_Packed (Base_Type (Arr), True);
2785 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2786 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2788 -- In all other cases, bit packing is needed
2790 else
2791 Set_Is_Packed (Base_Type (Arr), True);
2792 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2793 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2794 end if;
2795 end;
2796 end if;
2797 end;
2799 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2800 -- unsuitable packing or explicit component size clause given.
2802 if (Has_Aliased_Components (Arr)
2803 or else Has_Atomic_Components (Arr)
2804 or else Is_Atomic_Or_VFA (Ctyp))
2805 and then
2806 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2807 then
2808 Alias_Atomic_Check : declare
2810 procedure Complain_CS (T : String);
2811 -- Outputs error messages for incorrect CS clause or pragma
2812 -- Pack for aliased or atomic/VFA components (T is "aliased"
2813 -- or "atomic/vfa");
2815 -----------------
2816 -- Complain_CS --
2817 -----------------
2819 procedure Complain_CS (T : String) is
2820 begin
2821 if Has_Component_Size_Clause (Arr) then
2822 Clause :=
2823 Get_Attribute_Definition_Clause
2824 (FS, Attribute_Component_Size);
2826 Error_Msg_N
2827 ("incorrect component size for "
2828 & T & " components", Clause);
2829 Error_Msg_Uint_1 := Esize (Ctyp);
2830 Error_Msg_N
2831 ("\only allowed value is^", Clause);
2833 else
2834 Error_Msg_N
2835 ("cannot pack " & T & " components",
2836 Get_Rep_Pragma (FS, Name_Pack));
2837 end if;
2838 end Complain_CS;
2840 -- Start of processing for Alias_Atomic_Check
2842 begin
2843 -- If object size of component type isn't known, we cannot
2844 -- be sure so we defer to the back end.
2846 if not Known_Static_Esize (Ctyp) then
2847 null;
2849 -- Case where component size has no effect. First check for
2850 -- object size of component type multiple of the storage
2851 -- unit size.
2853 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2855 -- OK in both packing case and component size case if RM
2856 -- size is known and static and same as the object size.
2858 and then
2859 ((Known_Static_RM_Size (Ctyp)
2860 and then Esize (Ctyp) = RM_Size (Ctyp))
2862 -- Or if we have an explicit component size clause and
2863 -- the component size and object size are equal.
2865 or else
2866 (Has_Component_Size_Clause (Arr)
2867 and then Component_Size (Arr) = Esize (Ctyp)))
2868 then
2869 null;
2871 elsif Has_Aliased_Components (Arr) then
2872 Complain_CS ("aliased");
2874 elsif Has_Atomic_Components (Arr)
2875 or else Is_Atomic (Ctyp)
2876 then
2877 Complain_CS ("atomic");
2879 elsif Is_Volatile_Full_Access (Ctyp) then
2880 Complain_CS ("volatile full access");
2881 end if;
2882 end Alias_Atomic_Check;
2883 end if;
2885 -- Check for Independent_Components/Independent with unsuitable
2886 -- packing or explicit component size clause given.
2888 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2889 and then
2890 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2891 then
2892 begin
2893 -- If object size of component type isn't known, we cannot
2894 -- be sure so we defer to the back end.
2896 if not Known_Static_Esize (Ctyp) then
2897 null;
2899 -- Case where component size has no effect. First check for
2900 -- object size of component type multiple of the storage
2901 -- unit size.
2903 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2905 -- OK in both packing case and component size case if RM
2906 -- size is known and multiple of the storage unit size.
2908 and then
2909 ((Known_Static_RM_Size (Ctyp)
2910 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2912 -- Or if we have an explicit component size clause and
2913 -- the component size is larger than the object size.
2915 or else
2916 (Has_Component_Size_Clause (Arr)
2917 and then Component_Size (Arr) >= Esize (Ctyp)))
2918 then
2919 null;
2921 else
2922 if Has_Component_Size_Clause (Arr) then
2923 Clause :=
2924 Get_Attribute_Definition_Clause
2925 (FS, Attribute_Component_Size);
2927 Error_Msg_N
2928 ("incorrect component size for "
2929 & "independent components", Clause);
2930 Error_Msg_Uint_1 := Esize (Ctyp);
2931 Error_Msg_N
2932 ("\minimum allowed is^", Clause);
2934 else
2935 Error_Msg_N
2936 ("cannot pack independent components",
2937 Get_Rep_Pragma (FS, Name_Pack));
2938 end if;
2939 end if;
2940 end;
2941 end if;
2943 -- Warn for case of atomic type
2945 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2947 if Present (Clause)
2948 and then not Addressable (Component_Size (FS))
2949 then
2950 Error_Msg_NE
2951 ("non-atomic components of type& may not be "
2952 & "accessible by separate tasks??", Clause, Arr);
2954 if Has_Component_Size_Clause (Arr) then
2955 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2956 (FS, Attribute_Component_Size));
2957 Error_Msg_N ("\because of component size clause#??", Clause);
2959 elsif Has_Pragma_Pack (Arr) then
2960 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2961 Error_Msg_N ("\because of pragma Pack#??", Clause);
2962 end if;
2963 end if;
2965 -- Check for scalar storage order
2967 declare
2968 Dummy : Boolean;
2969 begin
2970 Check_Component_Storage_Order
2971 (Encl_Type => Arr,
2972 Comp => Empty,
2973 ADC => Get_Attribute_Definition_Clause
2974 (First_Subtype (Arr),
2975 Attribute_Scalar_Storage_Order),
2976 Comp_ADC_Present => Dummy);
2977 end;
2979 -- Processing that is done only for subtypes
2981 else
2982 -- Acquire alignment from base type
2984 if Unknown_Alignment (Arr) then
2985 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2986 Adjust_Esize_Alignment (Arr);
2987 end if;
2988 end if;
2990 -- Specific checks for bit-packed arrays
2992 if Is_Bit_Packed_Array (Arr) then
2994 -- Check number of elements for bit-packed arrays that come from
2995 -- source and have compile time known ranges. The bit-packed
2996 -- arrays circuitry does not support arrays with more than
2997 -- Integer'Last + 1 elements, and when this restriction is
2998 -- violated, causes incorrect data access.
3000 -- For the case where this is not compile time known, a run-time
3001 -- check should be generated???
3003 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
3004 declare
3005 Elmts : Uint;
3006 Index : Node_Id;
3007 Ilen : Node_Id;
3008 Ityp : Entity_Id;
3010 begin
3011 Elmts := Uint_1;
3012 Index := First_Index (Arr);
3013 while Present (Index) loop
3014 Ityp := Etype (Index);
3016 -- Never generate an error if any index is of a generic
3017 -- type. We will check this in instances.
3019 if Is_Generic_Type (Ityp) then
3020 Elmts := Uint_0;
3021 exit;
3022 end if;
3024 Ilen :=
3025 Make_Attribute_Reference (Loc,
3026 Prefix => New_Occurrence_Of (Ityp, Loc),
3027 Attribute_Name => Name_Range_Length);
3028 Analyze_And_Resolve (Ilen);
3030 -- No attempt is made to check number of elements if not
3031 -- compile time known.
3033 if Nkind (Ilen) /= N_Integer_Literal then
3034 Elmts := Uint_0;
3035 exit;
3036 end if;
3038 Elmts := Elmts * Intval (Ilen);
3039 Next_Index (Index);
3040 end loop;
3042 if Elmts > Intval (High_Bound
3043 (Scalar_Range (Standard_Integer))) + 1
3044 then
3045 Error_Msg_N
3046 ("bit packed array type may not have "
3047 & "more than Integer''Last+1 elements", Arr);
3048 end if;
3049 end;
3050 end if;
3052 -- Check size
3054 if Known_RM_Size (Arr) then
3055 declare
3056 SizC : constant Node_Id := Size_Clause (Arr);
3057 Discard : Boolean;
3059 begin
3060 -- It is not clear if it is possible to have no size clause
3061 -- at this stage, but it is not worth worrying about. Post
3062 -- error on the entity name in the size clause if present,
3063 -- else on the type entity itself.
3065 if Present (SizC) then
3066 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
3067 else
3068 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
3069 end if;
3070 end;
3071 end if;
3072 end if;
3074 -- If any of the index types was an enumeration type with a non-
3075 -- standard rep clause, then we indicate that the array type is
3076 -- always packed (even if it is not bit-packed).
3078 if Non_Standard_Enum then
3079 Set_Has_Non_Standard_Rep (Base_Type (Arr));
3080 Set_Is_Packed (Base_Type (Arr));
3081 end if;
3083 Set_Component_Alignment_If_Not_Set (Arr);
3085 -- If the array is packed and bit-packed or packed to eliminate holes
3086 -- in the non-contiguous enumeration index types, we must create the
3087 -- packed array type to be used to actually implement the type. This
3088 -- is only needed for real array types (not for string literal types,
3089 -- since they are present only for the front end).
3091 if Is_Packed (Arr)
3092 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
3093 and then Ekind (Arr) /= E_String_Literal_Subtype
3094 then
3095 Create_Packed_Array_Impl_Type (Arr);
3096 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
3098 -- Make sure that we have the necessary routines to implement the
3099 -- packing, and complain now if not. Note that we only test this
3100 -- for constrained array types.
3102 if Is_Constrained (Arr)
3103 and then Is_Bit_Packed_Array (Arr)
3104 and then Present (Packed_Array_Impl_Type (Arr))
3105 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
3106 then
3107 declare
3108 CS : constant Uint := Component_Size (Arr);
3109 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
3111 begin
3112 if RE /= RE_Null
3113 and then not RTE_Available (RE)
3114 then
3115 Error_Msg_CRT
3116 ("packing of " & UI_Image (CS) & "-bit components",
3117 First_Subtype (Etype (Arr)));
3119 -- Cancel the packing
3121 Set_Is_Packed (Base_Type (Arr), False);
3122 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3123 Set_Packed_Array_Impl_Type (Arr, Empty);
3124 goto Skip_Packed;
3125 end if;
3126 end;
3127 end if;
3129 -- Size information of packed array type is copied to the array
3130 -- type, since this is really the representation. But do not
3131 -- override explicit existing size values. If the ancestor subtype
3132 -- is constrained the Packed_Array_Impl_Type will be inherited
3133 -- from it, but the size may have been provided already, and
3134 -- must not be overridden either.
3136 if not Has_Size_Clause (Arr)
3137 and then
3138 (No (Ancestor_Subtype (Arr))
3139 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3140 then
3141 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3142 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
3143 end if;
3145 if not Has_Alignment_Clause (Arr) then
3146 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
3147 end if;
3148 end if;
3150 <<Skip_Packed>>
3152 -- For non-packed arrays set the alignment of the array to the
3153 -- alignment of the component type if it is unknown. Skip this
3154 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3156 if not Is_Packed (Arr)
3157 and then Unknown_Alignment (Arr)
3158 and then Known_Alignment (Ctyp)
3159 and then Known_Static_Component_Size (Arr)
3160 and then Known_Static_Esize (Ctyp)
3161 and then Esize (Ctyp) = Component_Size (Arr)
3162 and then not Is_Atomic_Or_VFA (Arr)
3163 then
3164 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
3165 end if;
3167 -- A Ghost type cannot have a component of protected or task type
3168 -- (SPARK RM 6.9(19)).
3170 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3171 Error_Msg_N
3172 ("ghost array type & cannot have concurrent component type",
3173 Arr);
3174 end if;
3175 end Freeze_Array_Type;
3177 -------------------------------
3178 -- Freeze_Object_Declaration --
3179 -------------------------------
3181 procedure Freeze_Object_Declaration (E : Entity_Id) is
3182 procedure Check_Large_Modular_Array (Typ : Entity_Id);
3183 -- Check that the size of array type Typ can be computed without
3184 -- overflow, and generates a Storage_Error otherwise. This is only
3185 -- relevant for array types whose index is a (mod 2**64) type, where
3186 -- wrap-around arithmetic might yield a meaningless value for the
3187 -- length of the array, or its corresponding attribute.
3189 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id);
3190 -- Ensure that the initialization state of variable Var_Id subject
3191 -- to pragma Thread_Local_Storage agrees with the semantics of the
3192 -- pragma.
3194 function Has_Default_Initialization
3195 (Obj_Id : Entity_Id) return Boolean;
3196 -- Determine whether object Obj_Id default initialized
3198 -------------------------------
3199 -- Check_Large_Modular_Array --
3200 -------------------------------
3202 procedure Check_Large_Modular_Array (Typ : Entity_Id) is
3203 Obj_Loc : constant Source_Ptr := Sloc (E);
3204 Idx_Typ : Entity_Id;
3206 begin
3207 -- Nothing to do when expansion is disabled because this routine
3208 -- generates a runtime check.
3210 if not Expander_Active then
3211 return;
3213 -- Nothing to do for String literal subtypes because their index
3214 -- cannot be a modular type.
3216 elsif Ekind (Typ) = E_String_Literal_Subtype then
3217 return;
3219 -- Nothing to do for an imported object because the object will
3220 -- be created on the exporting side.
3222 elsif Is_Imported (E) then
3223 return;
3225 -- Nothing to do for unconstrained array types. This case arises
3226 -- when the object declaration is illegal.
3228 elsif not Is_Constrained (Typ) then
3229 return;
3230 end if;
3232 Idx_Typ := Etype (First_Index (Typ));
3234 -- To prevent arithmetic overflow with large values, we raise
3235 -- Storage_Error under the following guard:
3237 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
3239 -- This takes care of the boundary case, but it is preferable to
3240 -- use a smaller limit, because even on 64-bit architectures an
3241 -- array of more than 2 ** 30 bytes is likely to raise
3242 -- Storage_Error.
3244 if Is_Modular_Integer_Type (Idx_Typ)
3245 and then RM_Size (Idx_Typ) = RM_Size (Standard_Long_Long_Integer)
3246 then
3247 Insert_Action (Declaration_Node (E),
3248 Make_Raise_Storage_Error (Obj_Loc,
3249 Condition =>
3250 Make_Op_Ge (Obj_Loc,
3251 Left_Opnd =>
3252 Make_Op_Subtract (Obj_Loc,
3253 Left_Opnd =>
3254 Make_Op_Divide (Obj_Loc,
3255 Left_Opnd =>
3256 Make_Attribute_Reference (Obj_Loc,
3257 Prefix =>
3258 New_Occurrence_Of (Typ, Obj_Loc),
3259 Attribute_Name => Name_Last),
3260 Right_Opnd =>
3261 Make_Integer_Literal (Obj_Loc, Uint_2)),
3262 Right_Opnd =>
3263 Make_Op_Divide (Obj_Loc,
3264 Left_Opnd =>
3265 Make_Attribute_Reference (Obj_Loc,
3266 Prefix =>
3267 New_Occurrence_Of (Typ, Obj_Loc),
3268 Attribute_Name => Name_First),
3269 Right_Opnd =>
3270 Make_Integer_Literal (Obj_Loc, Uint_2))),
3271 Right_Opnd =>
3272 Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
3273 Reason => SE_Object_Too_Large));
3274 end if;
3275 end Check_Large_Modular_Array;
3277 ---------------------------------------
3278 -- Check_Pragma_Thread_Local_Storage --
3279 ---------------------------------------
3281 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id) is
3282 function Has_Incompatible_Initialization
3283 (Var_Decl : Node_Id) return Boolean;
3284 -- Determine whether variable Var_Id with declaration Var_Decl is
3285 -- initialized with a value that violates the semantics of pragma
3286 -- Thread_Local_Storage.
3288 -------------------------------------
3289 -- Has_Incompatible_Initialization --
3290 -------------------------------------
3292 function Has_Incompatible_Initialization
3293 (Var_Decl : Node_Id) return Boolean
3295 Init_Expr : constant Node_Id := Expression (Var_Decl);
3297 begin
3298 -- The variable is default-initialized. This directly violates
3299 -- the semantics of the pragma.
3301 if Has_Default_Initialization (Var_Id) then
3302 return True;
3304 -- The variable has explicit initialization. In this case only
3305 -- a handful of values satisfy the semantics of the pragma.
3307 elsif Has_Init_Expression (Var_Decl)
3308 and then Present (Init_Expr)
3309 then
3310 -- "null" is a legal form of initialization
3312 if Nkind (Init_Expr) = N_Null then
3313 return False;
3315 -- A static expression is a legal form of initialization
3317 elsif Is_Static_Expression (Init_Expr) then
3318 return False;
3320 -- A static aggregate is a legal form of initialization
3322 elsif Nkind (Init_Expr) = N_Aggregate
3323 and then Compile_Time_Known_Aggregate (Init_Expr)
3324 then
3325 return False;
3327 -- All other initialization expressions violate the semantic
3328 -- of the pragma.
3330 else
3331 return True;
3332 end if;
3334 -- The variable lacks any kind of initialization, which agrees
3335 -- with the semantics of the pragma.
3337 else
3338 return False;
3339 end if;
3340 end Has_Incompatible_Initialization;
3342 -- Local declarations
3344 Var_Decl : constant Node_Id := Declaration_Node (Var_Id);
3346 -- Start of processing for Check_Pragma_Thread_Local_Storage
3348 begin
3349 -- A variable whose initialization is suppressed lacks any kind of
3350 -- initialization.
3352 if Suppress_Initialization (Var_Id) then
3353 null;
3355 -- The variable has default initialization, or is explicitly
3356 -- initialized to a value other than null, static expression,
3357 -- or a static aggregate.
3359 elsif Has_Incompatible_Initialization (Var_Decl) then
3360 Error_Msg_NE
3361 ("Thread_Local_Storage variable& is improperly initialized",
3362 Var_Decl, Var_Id);
3363 Error_Msg_NE
3364 ("\only allowed initialization is explicit NULL, static "
3365 & "expression or static aggregate", Var_Decl, Var_Id);
3366 end if;
3367 end Check_Pragma_Thread_Local_Storage;
3369 --------------------------------
3370 -- Has_Default_Initialization --
3371 --------------------------------
3373 function Has_Default_Initialization
3374 (Obj_Id : Entity_Id) return Boolean
3376 Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
3377 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3379 begin
3380 return
3381 Comes_From_Source (Obj_Id)
3382 and then not Is_Imported (Obj_Id)
3383 and then not Has_Init_Expression (Obj_Decl)
3384 and then
3385 ((Has_Non_Null_Base_Init_Proc (Obj_Typ)
3386 and then not No_Initialization (Obj_Decl)
3387 and then not Initialization_Suppressed (Obj_Typ))
3388 or else
3389 (Needs_Simple_Initialization (Obj_Typ)
3390 and then not Is_Internal (Obj_Id)));
3391 end Has_Default_Initialization;
3393 -- Local variables
3395 Typ : constant Entity_Id := Etype (E);
3396 Def : Node_Id;
3398 -- Start of processing for Freeze_Object_Declaration
3400 begin
3401 -- Abstract type allowed only for C++ imported variables or constants
3403 -- Note: we inhibit this check for objects that do not come from
3404 -- source because there is at least one case (the expansion of
3405 -- x'Class'Input where x is abstract) where we legitimately
3406 -- generate an abstract object.
3408 if Is_Abstract_Type (Typ)
3409 and then Comes_From_Source (Parent (E))
3410 and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
3411 then
3412 Def := Object_Definition (Parent (E));
3414 Error_Msg_N ("type of object cannot be abstract", Def);
3416 if Is_CPP_Class (Etype (E)) then
3417 Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
3419 elsif Present (Expression (Parent (E))) then
3420 Error_Msg_N -- CODEFIX
3421 ("\maybe a class-wide type was meant", Def);
3422 end if;
3423 end if;
3425 -- For object created by object declaration, perform required
3426 -- categorization (preelaborate and pure) checks. Defer these
3427 -- checks to freeze time since pragma Import inhibits default
3428 -- initialization and thus pragma Import affects these checks.
3430 Validate_Object_Declaration (Declaration_Node (E));
3432 -- If there is an address clause, check that it is valid and if need
3433 -- be move initialization to the freeze node.
3435 Check_Address_Clause (E);
3437 -- Similar processing is needed for aspects that may affect object
3438 -- layout, like Alignment, if there is an initialization expression.
3439 -- We don't do this if there is a pragma Linker_Section, because it
3440 -- would prevent the back end from statically initializing the
3441 -- object; we don't want elaboration code in that case.
3443 if Has_Delayed_Aspects (E)
3444 and then Expander_Active
3445 and then Is_Array_Type (Typ)
3446 and then Present (Expression (Parent (E)))
3447 and then No (Linker_Section_Pragma (E))
3448 then
3449 declare
3450 Decl : constant Node_Id := Parent (E);
3451 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3453 begin
3454 -- Capture initialization value at point of declaration, and
3455 -- make explicit assignment legal, because object may be a
3456 -- constant.
3458 Remove_Side_Effects (Expression (Decl));
3459 Set_Assignment_OK (Lhs);
3461 -- Move initialization to freeze actions
3463 Append_Freeze_Action (E,
3464 Make_Assignment_Statement (Loc,
3465 Name => Lhs,
3466 Expression => Expression (Decl)));
3468 Set_No_Initialization (Decl);
3469 -- Set_Is_Frozen (E, False);
3470 end;
3471 end if;
3473 -- Reset Is_True_Constant for non-constant aliased object. We
3474 -- consider that the fact that a non-constant object is aliased may
3475 -- indicate that some funny business is going on, e.g. an aliased
3476 -- object is passed by reference to a procedure which captures the
3477 -- address of the object, which is later used to assign a new value,
3478 -- even though the compiler thinks that it is not modified. Such
3479 -- code is highly dubious, but we choose to make it "work" for
3480 -- non-constant aliased objects.
3482 -- Note that we used to do this for all aliased objects, whether or
3483 -- not constant, but this caused anomalies down the line because we
3484 -- ended up with static objects that were not Is_True_Constant. Not
3485 -- resetting Is_True_Constant for (aliased) constant objects ensures
3486 -- that this anomaly never occurs.
3488 -- However, we don't do that for internal entities. We figure that if
3489 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3490 -- a dispatch table entry, then we mean it.
3492 if Ekind (E) /= E_Constant
3493 and then (Is_Aliased (E) or else Is_Aliased (Typ))
3494 and then not Is_Internal_Name (Chars (E))
3495 then
3496 Set_Is_True_Constant (E, False);
3497 end if;
3499 -- If the object needs any kind of default initialization, an error
3500 -- must be issued if No_Default_Initialization applies. The check
3501 -- doesn't apply to imported objects, which are not ever default
3502 -- initialized, and is why the check is deferred until freezing, at
3503 -- which point we know if Import applies. Deferred constants are also
3504 -- exempted from this test because their completion is explicit, or
3505 -- through an import pragma.
3507 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3508 null;
3510 elsif Has_Default_Initialization (E) then
3511 Check_Restriction
3512 (No_Default_Initialization, Declaration_Node (E));
3513 end if;
3515 -- Ensure that a variable subject to pragma Thread_Local_Storage
3517 -- * Lacks default initialization, or
3519 -- * The initialization expression is either "null", a static
3520 -- constant, or a compile-time known aggregate.
3522 if Has_Pragma_Thread_Local_Storage (E) then
3523 Check_Pragma_Thread_Local_Storage (E);
3524 end if;
3526 -- For imported objects, set Is_Public unless there is also an
3527 -- address clause, which means that there is no external symbol
3528 -- needed for the Import (Is_Public may still be set for other
3529 -- unrelated reasons). Note that we delayed this processing
3530 -- till freeze time so that we can be sure not to set the flag
3531 -- if there is an address clause. If there is such a clause,
3532 -- then the only purpose of the Import pragma is to suppress
3533 -- implicit initialization.
3535 if Is_Imported (E) and then No (Address_Clause (E)) then
3536 Set_Is_Public (E);
3537 end if;
3539 -- For source objects that are not Imported and are library level, if
3540 -- no linker section pragma was given inherit the appropriate linker
3541 -- section from the corresponding type.
3543 if Comes_From_Source (E)
3544 and then not Is_Imported (E)
3545 and then Is_Library_Level_Entity (E)
3546 and then No (Linker_Section_Pragma (E))
3547 then
3548 Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
3549 end if;
3551 -- For convention C objects of an enumeration type, warn if the size
3552 -- is not integer size and no explicit size given. Skip warning for
3553 -- Boolean and Character, and assume programmer expects 8-bit sizes
3554 -- for these cases.
3556 if (Convention (E) = Convention_C
3557 or else
3558 Convention (E) = Convention_CPP)
3559 and then Is_Enumeration_Type (Typ)
3560 and then not Is_Character_Type (Typ)
3561 and then not Is_Boolean_Type (Typ)
3562 and then Esize (Typ) < Standard_Integer_Size
3563 and then not Has_Size_Clause (E)
3564 then
3565 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3566 Error_Msg_N
3567 ("??convention C enumeration object has size less than ^", E);
3568 Error_Msg_N ("\??use explicit size clause to set size", E);
3569 end if;
3571 if Is_Array_Type (Typ) then
3572 Check_Large_Modular_Array (Typ);
3573 end if;
3574 end Freeze_Object_Declaration;
3576 -----------------------------
3577 -- Freeze_Generic_Entities --
3578 -----------------------------
3580 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3581 E : Entity_Id;
3582 F : Node_Id;
3583 Flist : List_Id;
3585 begin
3586 Flist := New_List;
3587 E := First_Entity (Pack);
3588 while Present (E) loop
3589 if Is_Type (E) and then not Is_Generic_Type (E) then
3590 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3591 Set_Entity (F, E);
3592 Append_To (Flist, F);
3594 elsif Ekind (E) = E_Generic_Package then
3595 Append_List_To (Flist, Freeze_Generic_Entities (E));
3596 end if;
3598 Next_Entity (E);
3599 end loop;
3601 return Flist;
3602 end Freeze_Generic_Entities;
3604 --------------------
3605 -- Freeze_Profile --
3606 --------------------
3608 function Freeze_Profile (E : Entity_Id) return Boolean is
3609 F_Type : Entity_Id;
3610 R_Type : Entity_Id;
3611 Warn_Node : Node_Id;
3613 begin
3614 -- Loop through formals
3616 Formal := First_Formal (E);
3617 while Present (Formal) loop
3618 F_Type := Etype (Formal);
3620 -- AI05-0151: incomplete types can appear in a profile. By the
3621 -- time the entity is frozen, the full view must be available,
3622 -- unless it is a limited view.
3624 if Is_Incomplete_Type (F_Type)
3625 and then Present (Full_View (F_Type))
3626 and then not From_Limited_With (F_Type)
3627 then
3628 F_Type := Full_View (F_Type);
3629 Set_Etype (Formal, F_Type);
3630 end if;
3632 if not From_Limited_With (F_Type) then
3633 Freeze_And_Append (F_Type, N, Result);
3634 end if;
3636 if Is_Private_Type (F_Type)
3637 and then Is_Private_Type (Base_Type (F_Type))
3638 and then No (Full_View (Base_Type (F_Type)))
3639 and then not Is_Generic_Type (F_Type)
3640 and then not Is_Derived_Type (F_Type)
3641 then
3642 -- If the type of a formal is incomplete, subprogram is being
3643 -- frozen prematurely. Within an instance (but not within a
3644 -- wrapper package) this is an artifact of our need to regard
3645 -- the end of an instantiation as a freeze point. Otherwise it
3646 -- is a definite error.
3648 if In_Instance then
3649 Set_Is_Frozen (E, False);
3650 Result := No_List;
3651 return False;
3653 elsif not After_Last_Declaration
3654 and then not Freezing_Library_Level_Tagged_Type
3655 then
3656 Error_Msg_Node_1 := F_Type;
3657 Error_Msg
3658 ("type & must be fully defined before this point", Loc);
3659 end if;
3660 end if;
3662 -- Check suspicious parameter for C function. These tests apply
3663 -- only to exported/imported subprograms.
3665 if Warn_On_Export_Import
3666 and then Comes_From_Source (E)
3667 and then (Convention (E) = Convention_C
3668 or else
3669 Convention (E) = Convention_CPP)
3670 and then (Is_Imported (E) or else Is_Exported (E))
3671 and then Convention (E) /= Convention (Formal)
3672 and then not Has_Warnings_Off (E)
3673 and then not Has_Warnings_Off (F_Type)
3674 and then not Has_Warnings_Off (Formal)
3675 then
3676 -- Qualify mention of formals with subprogram name
3678 Error_Msg_Qual_Level := 1;
3680 -- Check suspicious use of fat C pointer, but do not emit
3681 -- a warning on an access to subprogram when unnesting is
3682 -- active.
3684 if Is_Access_Type (F_Type)
3685 and then Esize (F_Type) > Ttypes.System_Address_Size
3686 and then (not Unnest_Subprogram_Mode
3687 or else not Is_Access_Subprogram_Type (F_Type))
3688 then
3689 Error_Msg_N
3690 ("?x?type of & does not correspond to C pointer!", Formal);
3692 -- Check suspicious return of boolean
3694 elsif Root_Type (F_Type) = Standard_Boolean
3695 and then Convention (F_Type) = Convention_Ada
3696 and then not Has_Warnings_Off (F_Type)
3697 and then not Has_Size_Clause (F_Type)
3698 then
3699 Error_Msg_N
3700 ("& is an 8-bit Ada Boolean?x?", Formal);
3701 Error_Msg_N
3702 ("\use appropriate corresponding type in C "
3703 & "(e.g. char)?x?", Formal);
3705 -- Check suspicious tagged type
3707 elsif (Is_Tagged_Type (F_Type)
3708 or else
3709 (Is_Access_Type (F_Type)
3710 and then Is_Tagged_Type (Designated_Type (F_Type))))
3711 and then Convention (E) = Convention_C
3712 then
3713 Error_Msg_N
3714 ("?x?& involves a tagged type which does not "
3715 & "correspond to any C type!", Formal);
3717 -- Check wrong convention subprogram pointer
3719 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3720 and then not Has_Foreign_Convention (F_Type)
3721 then
3722 Error_Msg_N
3723 ("?x?subprogram pointer & should "
3724 & "have foreign convention!", Formal);
3725 Error_Msg_Sloc := Sloc (F_Type);
3726 Error_Msg_NE
3727 ("\?x?add Convention pragma to declaration of &#",
3728 Formal, F_Type);
3729 end if;
3731 -- Turn off name qualification after message output
3733 Error_Msg_Qual_Level := 0;
3734 end if;
3736 -- Check for unconstrained array in exported foreign convention
3737 -- case.
3739 if Has_Foreign_Convention (E)
3740 and then not Is_Imported (E)
3741 and then Is_Array_Type (F_Type)
3742 and then not Is_Constrained (F_Type)
3743 and then Warn_On_Export_Import
3744 then
3745 Error_Msg_Qual_Level := 1;
3747 -- If this is an inherited operation, place the warning on
3748 -- the derived type declaration, rather than on the original
3749 -- subprogram.
3751 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3752 then
3753 Warn_Node := Parent (E);
3755 if Formal = First_Formal (E) then
3756 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3757 end if;
3758 else
3759 Warn_Node := Formal;
3760 end if;
3762 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3763 Warn_Node, Formal);
3764 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3765 Warn_Node, Formal);
3766 Error_Msg_Qual_Level := 0;
3767 end if;
3769 if not From_Limited_With (F_Type) then
3770 if Is_Access_Type (F_Type) then
3771 F_Type := Designated_Type (F_Type);
3772 end if;
3774 -- If the formal is an anonymous_access_to_subprogram
3775 -- freeze the subprogram type as well, to prevent
3776 -- scope anomalies in gigi, because there is no other
3777 -- clear point at which it could be frozen.
3779 if Is_Itype (Etype (Formal))
3780 and then Ekind (F_Type) = E_Subprogram_Type
3781 then
3782 Freeze_And_Append (F_Type, N, Result);
3783 end if;
3784 end if;
3786 Next_Formal (Formal);
3787 end loop;
3789 -- Case of function: similar checks on return type
3791 if Ekind (E) = E_Function then
3793 -- Freeze return type
3795 R_Type := Etype (E);
3797 -- AI05-0151: the return type may have been incomplete at the
3798 -- point of declaration. Replace it with the full view, unless the
3799 -- current type is a limited view. In that case the full view is
3800 -- in a different unit, and gigi finds the non-limited view after
3801 -- the other unit is elaborated.
3803 if Ekind (R_Type) = E_Incomplete_Type
3804 and then Present (Full_View (R_Type))
3805 and then not From_Limited_With (R_Type)
3806 then
3807 R_Type := Full_View (R_Type);
3808 Set_Etype (E, R_Type);
3809 end if;
3811 Freeze_And_Append (R_Type, N, Result);
3813 -- Check suspicious return type for C function
3815 if Warn_On_Export_Import
3816 and then (Convention (E) = Convention_C
3817 or else
3818 Convention (E) = Convention_CPP)
3819 and then (Is_Imported (E) or else Is_Exported (E))
3820 then
3821 -- Check suspicious return of fat C pointer
3823 if Is_Access_Type (R_Type)
3824 and then Esize (R_Type) > Ttypes.System_Address_Size
3825 and then not Has_Warnings_Off (E)
3826 and then not Has_Warnings_Off (R_Type)
3827 then
3828 Error_Msg_N
3829 ("?x?return type of& does not correspond to C pointer!",
3832 -- Check suspicious return of boolean
3834 elsif Root_Type (R_Type) = Standard_Boolean
3835 and then Convention (R_Type) = Convention_Ada
3836 and then not Has_Warnings_Off (E)
3837 and then not Has_Warnings_Off (R_Type)
3838 and then not Has_Size_Clause (R_Type)
3839 then
3840 declare
3841 N : constant Node_Id :=
3842 Result_Definition (Declaration_Node (E));
3843 begin
3844 Error_Msg_NE
3845 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3846 Error_Msg_NE
3847 ("\use appropriate corresponding type in C "
3848 & "(e.g. char)?x?", N, E);
3849 end;
3851 -- Check suspicious return tagged type
3853 elsif (Is_Tagged_Type (R_Type)
3854 or else (Is_Access_Type (R_Type)
3855 and then
3856 Is_Tagged_Type
3857 (Designated_Type (R_Type))))
3858 and then Convention (E) = Convention_C
3859 and then not Has_Warnings_Off (E)
3860 and then not Has_Warnings_Off (R_Type)
3861 then
3862 Error_Msg_N ("?x?return type of & does not "
3863 & "correspond to C type!", E);
3865 -- Check return of wrong convention subprogram pointer
3867 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3868 and then not Has_Foreign_Convention (R_Type)
3869 and then not Has_Warnings_Off (E)
3870 and then not Has_Warnings_Off (R_Type)
3871 then
3872 Error_Msg_N ("?x?& should return a foreign "
3873 & "convention subprogram pointer", E);
3874 Error_Msg_Sloc := Sloc (R_Type);
3875 Error_Msg_NE
3876 ("\?x?add Convention pragma to declaration of& #",
3877 E, R_Type);
3878 end if;
3879 end if;
3881 -- Give warning for suspicious return of a result of an
3882 -- unconstrained array type in a foreign convention function.
3884 if Has_Foreign_Convention (E)
3886 -- We are looking for a return of unconstrained array
3888 and then Is_Array_Type (R_Type)
3889 and then not Is_Constrained (R_Type)
3891 -- Exclude imported routines, the warning does not belong on
3892 -- the import, but rather on the routine definition.
3894 and then not Is_Imported (E)
3896 -- Check that general warning is enabled, and that it is not
3897 -- suppressed for this particular case.
3899 and then Warn_On_Export_Import
3900 and then not Has_Warnings_Off (E)
3901 and then not Has_Warnings_Off (R_Type)
3902 then
3903 Error_Msg_N
3904 ("?x?foreign convention function& should not return "
3905 & "unconstrained array!", E);
3906 end if;
3907 end if;
3909 -- Check suspicious use of Import in pure unit (cases where the RM
3910 -- allows calls to be omitted).
3912 if Is_Imported (E)
3914 -- It might be suspicious if the compilation unit has the Pure
3915 -- aspect/pragma.
3917 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3919 -- The RM allows omission of calls only in the case of
3920 -- library-level subprograms (see RM-10.2.1(18)).
3922 and then Is_Library_Level_Entity (E)
3924 -- Ignore internally generated entity. This happens in some cases
3925 -- of subprograms in specs, where we generate an implied body.
3927 and then Comes_From_Source (Import_Pragma (E))
3929 -- Assume run-time knows what it is doing
3931 and then not GNAT_Mode
3933 -- Assume explicit Pure_Function means import is pure
3935 and then not Has_Pragma_Pure_Function (E)
3937 -- Don't need warning in relaxed semantics mode
3939 and then not Relaxed_RM_Semantics
3941 -- Assume convention Intrinsic is OK, since this is specialized.
3942 -- This deals with the DEC unit current_exception.ads
3944 and then Convention (E) /= Convention_Intrinsic
3946 -- Assume that ASM interface knows what it is doing. This deals
3947 -- with e.g. unsigned.ads in the AAMP back end.
3949 and then Convention (E) /= Convention_Assembler
3950 then
3951 Error_Msg_N
3952 ("pragma Import in Pure unit??", Import_Pragma (E));
3953 Error_Msg_NE
3954 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3955 Import_Pragma (E), E);
3956 end if;
3958 return True;
3959 end Freeze_Profile;
3961 ------------------------
3962 -- Freeze_Record_Type --
3963 ------------------------
3965 procedure Freeze_Record_Type (Rec : Entity_Id) is
3966 ADC : Node_Id;
3967 Comp : Entity_Id;
3968 IR : Node_Id;
3969 Prev : Entity_Id;
3971 Junk : Boolean;
3972 pragma Warnings (Off, Junk);
3974 Aliased_Component : Boolean := False;
3975 -- Set True if we find at least one component which is aliased. This
3976 -- is used to prevent Implicit_Packing of the record, since packing
3977 -- cannot modify the size of alignment of an aliased component.
3979 All_Elem_Components : Boolean := True;
3980 -- True if all components are of a type whose underlying type is
3981 -- elementary.
3983 All_Sized_Components : Boolean := True;
3984 -- True if all components have a known RM_Size
3986 All_Storage_Unit_Components : Boolean := True;
3987 -- True if all components have an RM_Size that is a multiple of the
3988 -- storage unit.
3990 Elem_Component_Total_Esize : Uint := Uint_0;
3991 -- Accumulates total Esize values of all elementary components. Used
3992 -- for processing of Implicit_Packing.
3994 Placed_Component : Boolean := False;
3995 -- Set True if we find at least one component with a component
3996 -- clause (used to warn about useless Bit_Order pragmas, and also
3997 -- to detect cases where Implicit_Packing may have an effect).
3999 Rec_Pushed : Boolean := False;
4000 -- Set True if the record type scope Rec has been pushed on the scope
4001 -- stack. Needed for the analysis of delayed aspects specified to the
4002 -- components of Rec.
4004 Sized_Component_Total_RM_Size : Uint := Uint_0;
4005 -- Accumulates total RM_Size values of all sized components. Used
4006 -- for processing of Implicit_Packing.
4008 Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
4009 -- Accumulates total RM_Size values of all sized components, rounded
4010 -- individually to a multiple of the storage unit.
4012 SSO_ADC : Node_Id;
4013 -- Scalar_Storage_Order attribute definition clause for the record
4015 SSO_ADC_Component : Boolean := False;
4016 -- Set True if we find at least one component whose type has a
4017 -- Scalar_Storage_Order attribute definition clause.
4019 Unplaced_Component : Boolean := False;
4020 -- Set True if we find at least one component with no component
4021 -- clause (used to warn about useless Pack pragmas).
4023 function Check_Allocator (N : Node_Id) return Node_Id;
4024 -- If N is an allocator, possibly wrapped in one or more level of
4025 -- qualified expression(s), return the inner allocator node, else
4026 -- return Empty.
4028 procedure Check_Itype (Typ : Entity_Id);
4029 -- If the component subtype is an access to a constrained subtype of
4030 -- an already frozen type, make the subtype frozen as well. It might
4031 -- otherwise be frozen in the wrong scope, and a freeze node on
4032 -- subtype has no effect. Similarly, if the component subtype is a
4033 -- regular (not protected) access to subprogram, set the anonymous
4034 -- subprogram type to frozen as well, to prevent an out-of-scope
4035 -- freeze node at some eventual point of call. Protected operations
4036 -- are handled elsewhere.
4038 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
4039 -- Make sure that all types mentioned in Discrete_Choices of the
4040 -- variants referenceed by the Variant_Part VP are frozen. This is
4041 -- a recursive routine to deal with nested variants.
4043 ---------------------
4044 -- Check_Allocator --
4045 ---------------------
4047 function Check_Allocator (N : Node_Id) return Node_Id is
4048 Inner : Node_Id;
4049 begin
4050 Inner := N;
4051 loop
4052 if Nkind (Inner) = N_Allocator then
4053 return Inner;
4054 elsif Nkind (Inner) = N_Qualified_Expression then
4055 Inner := Expression (Inner);
4056 else
4057 return Empty;
4058 end if;
4059 end loop;
4060 end Check_Allocator;
4062 -----------------
4063 -- Check_Itype --
4064 -----------------
4066 procedure Check_Itype (Typ : Entity_Id) is
4067 Desig : constant Entity_Id := Designated_Type (Typ);
4069 begin
4070 if not Is_Frozen (Desig)
4071 and then Is_Frozen (Base_Type (Desig))
4072 then
4073 Set_Is_Frozen (Desig);
4075 -- In addition, add an Itype_Reference to ensure that the
4076 -- access subtype is elaborated early enough. This cannot be
4077 -- done if the subtype may depend on discriminants.
4079 if Ekind (Comp) = E_Component
4080 and then Is_Itype (Etype (Comp))
4081 and then not Has_Discriminants (Rec)
4082 then
4083 IR := Make_Itype_Reference (Sloc (Comp));
4084 Set_Itype (IR, Desig);
4085 Add_To_Result (IR);
4086 end if;
4088 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
4089 and then Convention (Desig) /= Convention_Protected
4090 then
4091 Set_Is_Frozen (Desig);
4092 end if;
4093 end Check_Itype;
4095 ------------------------------------
4096 -- Freeze_Choices_In_Variant_Part --
4097 ------------------------------------
4099 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
4100 pragma Assert (Nkind (VP) = N_Variant_Part);
4102 Variant : Node_Id;
4103 Choice : Node_Id;
4104 CL : Node_Id;
4106 begin
4107 -- Loop through variants
4109 Variant := First_Non_Pragma (Variants (VP));
4110 while Present (Variant) loop
4112 -- Loop through choices, checking that all types are frozen
4114 Choice := First_Non_Pragma (Discrete_Choices (Variant));
4115 while Present (Choice) loop
4116 if Nkind (Choice) in N_Has_Etype
4117 and then Present (Etype (Choice))
4118 then
4119 Freeze_And_Append (Etype (Choice), N, Result);
4120 end if;
4122 Next_Non_Pragma (Choice);
4123 end loop;
4125 -- Check for nested variant part to process
4127 CL := Component_List (Variant);
4129 if not Null_Present (CL) then
4130 if Present (Variant_Part (CL)) then
4131 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
4132 end if;
4133 end if;
4135 Next_Non_Pragma (Variant);
4136 end loop;
4137 end Freeze_Choices_In_Variant_Part;
4139 -- Start of processing for Freeze_Record_Type
4141 begin
4142 -- Deal with delayed aspect specifications for components. The
4143 -- analysis of the aspect is required to be delayed to the freeze
4144 -- point, thus we analyze the pragma or attribute definition
4145 -- clause in the tree at this point. We also analyze the aspect
4146 -- specification node at the freeze point when the aspect doesn't
4147 -- correspond to pragma/attribute definition clause.
4149 Comp := First_Entity (Rec);
4150 while Present (Comp) loop
4151 if Ekind (Comp) = E_Component
4152 and then Has_Delayed_Aspects (Comp)
4153 then
4154 if not Rec_Pushed then
4155 Push_Scope (Rec);
4156 Rec_Pushed := True;
4158 -- The visibility to the discriminants must be restored in
4159 -- order to properly analyze the aspects.
4161 if Has_Discriminants (Rec) then
4162 Install_Discriminants (Rec);
4163 end if;
4164 end if;
4166 Analyze_Aspects_At_Freeze_Point (Comp);
4167 end if;
4169 Next_Entity (Comp);
4170 end loop;
4172 -- Pop the scope if Rec scope has been pushed on the scope stack
4173 -- during the delayed aspect analysis process.
4175 if Rec_Pushed then
4176 if Has_Discriminants (Rec) then
4177 Uninstall_Discriminants (Rec);
4178 end if;
4180 Pop_Scope;
4181 end if;
4183 -- Freeze components and embedded subtypes
4185 Comp := First_Entity (Rec);
4186 Prev := Empty;
4187 while Present (Comp) loop
4188 if Is_Aliased (Comp) then
4189 Aliased_Component := True;
4190 end if;
4192 -- Handle the component and discriminant case
4194 if Ekind_In (Comp, E_Component, E_Discriminant) then
4195 declare
4196 CC : constant Node_Id := Component_Clause (Comp);
4198 begin
4199 -- Freezing a record type freezes the type of each of its
4200 -- components. However, if the type of the component is
4201 -- part of this record, we do not want or need a separate
4202 -- Freeze_Node. Note that Is_Itype is wrong because that's
4203 -- also set in private type cases. We also can't check for
4204 -- the Scope being exactly Rec because of private types and
4205 -- record extensions.
4207 if Is_Itype (Etype (Comp))
4208 and then Is_Record_Type (Underlying_Type
4209 (Scope (Etype (Comp))))
4210 then
4211 Undelay_Type (Etype (Comp));
4212 end if;
4214 Freeze_And_Append (Etype (Comp), N, Result);
4216 -- Warn for pragma Pack overriding foreign convention
4218 if Has_Foreign_Convention (Etype (Comp))
4219 and then Has_Pragma_Pack (Rec)
4221 -- Don't warn for aliased components, since override
4222 -- cannot happen in that case.
4224 and then not Is_Aliased (Comp)
4225 then
4226 declare
4227 CN : constant Name_Id :=
4228 Get_Convention_Name (Convention (Etype (Comp)));
4229 PP : constant Node_Id :=
4230 Get_Pragma (Rec, Pragma_Pack);
4231 begin
4232 if Present (PP) then
4233 Error_Msg_Name_1 := CN;
4234 Error_Msg_Sloc := Sloc (Comp);
4235 Error_Msg_N
4236 ("pragma Pack affects convention % component#??",
4237 PP);
4238 Error_Msg_Name_1 := CN;
4239 Error_Msg_NE
4240 ("\component & may not have % compatible "
4241 & "representation??", PP, Comp);
4242 end if;
4243 end;
4244 end if;
4246 -- Check for error of component clause given for variable
4247 -- sized type. We have to delay this test till this point,
4248 -- since the component type has to be frozen for us to know
4249 -- if it is variable length.
4251 if Present (CC) then
4252 Placed_Component := True;
4254 -- We omit this test in a generic context, it will be
4255 -- applied at instantiation time.
4257 if Inside_A_Generic then
4258 null;
4260 -- Also omit this test in CodePeer mode, since we do not
4261 -- have sufficient info on size and rep clauses.
4263 elsif CodePeer_Mode then
4264 null;
4266 -- Omit check if component has a generic type. This can
4267 -- happen in an instantiation within a generic in ASIS
4268 -- mode, where we force freeze actions without full
4269 -- expansion.
4271 elsif Is_Generic_Type (Etype (Comp)) then
4272 null;
4274 -- Do the check
4276 elsif not
4277 Size_Known_At_Compile_Time
4278 (Underlying_Type (Etype (Comp)))
4279 then
4280 Error_Msg_N
4281 ("component clause not allowed for variable " &
4282 "length component", CC);
4283 end if;
4285 else
4286 Unplaced_Component := True;
4287 end if;
4289 -- Case of component requires byte alignment
4291 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
4293 -- Set the enclosing record to also require byte align
4295 Set_Must_Be_On_Byte_Boundary (Rec);
4297 -- Check for component clause that is inconsistent with
4298 -- the required byte boundary alignment.
4300 if Present (CC)
4301 and then Normalized_First_Bit (Comp) mod
4302 System_Storage_Unit /= 0
4303 then
4304 Error_Msg_N
4305 ("component & must be byte aligned",
4306 Component_Name (Component_Clause (Comp)));
4307 end if;
4308 end if;
4309 end;
4310 end if;
4312 -- Gather data for possible Implicit_Packing later. Note that at
4313 -- this stage we might be dealing with a real component, or with
4314 -- an implicit subtype declaration.
4316 if Known_Static_RM_Size (Etype (Comp)) then
4317 declare
4318 Comp_Type : constant Entity_Id := Etype (Comp);
4319 Comp_Size : constant Uint := RM_Size (Comp_Type);
4320 SSU : constant Int := Ttypes.System_Storage_Unit;
4322 begin
4323 Sized_Component_Total_RM_Size :=
4324 Sized_Component_Total_RM_Size + Comp_Size;
4326 Sized_Component_Total_Round_RM_Size :=
4327 Sized_Component_Total_Round_RM_Size +
4328 (Comp_Size + SSU - 1) / SSU * SSU;
4330 if Present (Underlying_Type (Comp_Type))
4331 and then Is_Elementary_Type (Underlying_Type (Comp_Type))
4332 then
4333 Elem_Component_Total_Esize :=
4334 Elem_Component_Total_Esize + Esize (Comp_Type);
4335 else
4336 All_Elem_Components := False;
4338 if Comp_Size mod SSU /= 0 then
4339 All_Storage_Unit_Components := False;
4340 end if;
4341 end if;
4342 end;
4343 else
4344 All_Sized_Components := False;
4345 end if;
4347 -- If the component is an Itype with Delayed_Freeze and is either
4348 -- a record or array subtype and its base type has not yet been
4349 -- frozen, we must remove this from the entity list of this record
4350 -- and put it on the entity list of the scope of its base type.
4351 -- Note that we know that this is not the type of a component
4352 -- since we cleared Has_Delayed_Freeze for it in the previous
4353 -- loop. Thus this must be the Designated_Type of an access type,
4354 -- which is the type of a component.
4356 if Is_Itype (Comp)
4357 and then Is_Type (Scope (Comp))
4358 and then Is_Composite_Type (Comp)
4359 and then Base_Type (Comp) /= Comp
4360 and then Has_Delayed_Freeze (Comp)
4361 and then not Is_Frozen (Base_Type (Comp))
4362 then
4363 declare
4364 Will_Be_Frozen : Boolean := False;
4365 S : Entity_Id;
4367 begin
4368 -- We have a difficult case to handle here. Suppose Rec is
4369 -- subtype being defined in a subprogram that's created as
4370 -- part of the freezing of Rec'Base. In that case, we know
4371 -- that Comp'Base must have already been frozen by the time
4372 -- we get to elaborate this because Gigi doesn't elaborate
4373 -- any bodies until it has elaborated all of the declarative
4374 -- part. But Is_Frozen will not be set at this point because
4375 -- we are processing code in lexical order.
4377 -- We detect this case by going up the Scope chain of Rec
4378 -- and seeing if we have a subprogram scope before reaching
4379 -- the top of the scope chain or that of Comp'Base. If we
4380 -- do, then mark that Comp'Base will actually be frozen. If
4381 -- so, we merely undelay it.
4383 S := Scope (Rec);
4384 while Present (S) loop
4385 if Is_Subprogram (S) then
4386 Will_Be_Frozen := True;
4387 exit;
4388 elsif S = Scope (Base_Type (Comp)) then
4389 exit;
4390 end if;
4392 S := Scope (S);
4393 end loop;
4395 if Will_Be_Frozen then
4396 Undelay_Type (Comp);
4398 else
4399 if Present (Prev) then
4400 Link_Entities (Prev, Next_Entity (Comp));
4401 else
4402 Set_First_Entity (Rec, Next_Entity (Comp));
4403 end if;
4405 -- Insert in entity list of scope of base type (which
4406 -- must be an enclosing scope, because still unfrozen).
4408 Append_Entity (Comp, Scope (Base_Type (Comp)));
4409 end if;
4410 end;
4412 -- If the component is an access type with an allocator as default
4413 -- value, the designated type will be frozen by the corresponding
4414 -- expression in init_proc. In order to place the freeze node for
4415 -- the designated type before that for the current record type,
4416 -- freeze it now.
4418 -- Same process if the component is an array of access types,
4419 -- initialized with an aggregate. If the designated type is
4420 -- private, it cannot contain allocators, and it is premature
4421 -- to freeze the type, so we check for this as well.
4423 elsif Is_Access_Type (Etype (Comp))
4424 and then Present (Parent (Comp))
4425 and then Present (Expression (Parent (Comp)))
4426 then
4427 declare
4428 Alloc : constant Node_Id :=
4429 Check_Allocator (Expression (Parent (Comp)));
4431 begin
4432 if Present (Alloc) then
4434 -- If component is pointer to a class-wide type, freeze
4435 -- the specific type in the expression being allocated.
4436 -- The expression may be a subtype indication, in which
4437 -- case freeze the subtype mark.
4439 if Is_Class_Wide_Type
4440 (Designated_Type (Etype (Comp)))
4441 then
4442 if Is_Entity_Name (Expression (Alloc)) then
4443 Freeze_And_Append
4444 (Entity (Expression (Alloc)), N, Result);
4446 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4447 then
4448 Freeze_And_Append
4449 (Entity (Subtype_Mark (Expression (Alloc))),
4450 N, Result);
4451 end if;
4453 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4454 Check_Itype (Etype (Comp));
4456 else
4457 Freeze_And_Append
4458 (Designated_Type (Etype (Comp)), N, Result);
4459 end if;
4460 end if;
4461 end;
4463 elsif Is_Access_Type (Etype (Comp))
4464 and then Is_Itype (Designated_Type (Etype (Comp)))
4465 then
4466 Check_Itype (Etype (Comp));
4468 -- Freeze the designated type when initializing a component with
4469 -- an aggregate in case the aggregate contains allocators.
4471 -- type T is ...;
4472 -- type T_Ptr is access all T;
4473 -- type T_Array is array ... of T_Ptr;
4475 -- type Rec is record
4476 -- Comp : T_Array := (others => ...);
4477 -- end record;
4479 elsif Is_Array_Type (Etype (Comp))
4480 and then Is_Access_Type (Component_Type (Etype (Comp)))
4481 then
4482 declare
4483 Comp_Par : constant Node_Id := Parent (Comp);
4484 Desig_Typ : constant Entity_Id :=
4485 Designated_Type
4486 (Component_Type (Etype (Comp)));
4488 begin
4489 -- The only case when this sort of freezing is not done is
4490 -- when the designated type is class-wide and the root type
4491 -- is the record owning the component. This scenario results
4492 -- in a circularity because the class-wide type requires
4493 -- primitives that have not been created yet as the root
4494 -- type is in the process of being frozen.
4496 -- type Rec is tagged;
4497 -- type Rec_Ptr is access all Rec'Class;
4498 -- type Rec_Array is array ... of Rec_Ptr;
4500 -- type Rec is record
4501 -- Comp : Rec_Array := (others => ...);
4502 -- end record;
4504 if Is_Class_Wide_Type (Desig_Typ)
4505 and then Root_Type (Desig_Typ) = Rec
4506 then
4507 null;
4509 elsif Is_Fully_Defined (Desig_Typ)
4510 and then Present (Comp_Par)
4511 and then Nkind (Comp_Par) = N_Component_Declaration
4512 and then Present (Expression (Comp_Par))
4513 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4514 then
4515 Freeze_And_Append (Desig_Typ, N, Result);
4516 end if;
4517 end;
4518 end if;
4520 Prev := Comp;
4521 Next_Entity (Comp);
4522 end loop;
4524 SSO_ADC :=
4525 Get_Attribute_Definition_Clause
4526 (Rec, Attribute_Scalar_Storage_Order);
4528 -- If the record type has Complex_Representation, then it is treated
4529 -- as a scalar in the back end so the storage order is irrelevant.
4531 if Has_Complex_Representation (Rec) then
4532 if Present (SSO_ADC) then
4533 Error_Msg_N
4534 ("??storage order has no effect with Complex_Representation",
4535 SSO_ADC);
4536 end if;
4538 else
4539 -- Deal with default setting of reverse storage order
4541 Set_SSO_From_Default (Rec);
4543 -- Check consistent attribute setting on component types
4545 declare
4546 Comp_ADC_Present : Boolean;
4547 begin
4548 Comp := First_Component (Rec);
4549 while Present (Comp) loop
4550 Check_Component_Storage_Order
4551 (Encl_Type => Rec,
4552 Comp => Comp,
4553 ADC => SSO_ADC,
4554 Comp_ADC_Present => Comp_ADC_Present);
4555 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4556 Next_Component (Comp);
4557 end loop;
4558 end;
4560 -- Now deal with reverse storage order/bit order issues
4562 if Present (SSO_ADC) then
4564 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4565 -- if the former is specified.
4567 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4569 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4570 -- apply to some ancestor type.
4572 Error_Msg_Sloc := Sloc (SSO_ADC);
4573 Error_Msg_N
4574 ("scalar storage order for& specified# inconsistent with "
4575 & "bit order", Rec);
4576 end if;
4578 -- Warn if there is a Scalar_Storage_Order attribute definition
4579 -- clause but no component clause, no component that itself has
4580 -- such an attribute definition, and no pragma Pack.
4582 if not (Placed_Component
4583 or else
4584 SSO_ADC_Component
4585 or else
4586 Is_Packed (Rec))
4587 then
4588 Error_Msg_N
4589 ("??scalar storage order specified but no component "
4590 & "clause", SSO_ADC);
4591 end if;
4592 end if;
4593 end if;
4595 -- Deal with Bit_Order aspect
4597 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4599 if Present (ADC) and then Base_Type (Rec) = Rec then
4600 if not (Placed_Component
4601 or else Present (SSO_ADC)
4602 or else Is_Packed (Rec))
4603 then
4604 -- Warn if clause has no effect when no component clause is
4605 -- present, but suppress warning if the Bit_Order is required
4606 -- due to the presence of a Scalar_Storage_Order attribute.
4608 Error_Msg_N
4609 ("??bit order specification has no effect", ADC);
4610 Error_Msg_N
4611 ("\??since no component clauses were specified", ADC);
4613 -- Here is where we do the processing to adjust component clauses
4614 -- for reversed bit order, when not using reverse SSO. If an error
4615 -- has been reported on Rec already (such as SSO incompatible with
4616 -- bit order), don't bother adjusting as this may generate extra
4617 -- noise.
4619 elsif Reverse_Bit_Order (Rec)
4620 and then not Reverse_Storage_Order (Rec)
4621 and then not Error_Posted (Rec)
4622 then
4623 Adjust_Record_For_Reverse_Bit_Order (Rec);
4625 -- Case where we have both an explicit Bit_Order and the same
4626 -- Scalar_Storage_Order: leave record untouched, the back-end
4627 -- will take care of required layout conversions.
4629 else
4630 null;
4632 end if;
4633 end if;
4635 -- Complete error checking on record representation clause (e.g.
4636 -- overlap of components). This is called after adjusting the
4637 -- record for reverse bit order.
4639 declare
4640 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4641 begin
4642 if Present (RRC) then
4643 Check_Record_Representation_Clause (RRC);
4644 end if;
4645 end;
4647 -- Check for useless pragma Pack when all components placed. We only
4648 -- do this check for record types, not subtypes, since a subtype may
4649 -- have all its components placed, and it still makes perfectly good
4650 -- sense to pack other subtypes or the parent type. We do not give
4651 -- this warning if Optimize_Alignment is set to Space, since the
4652 -- pragma Pack does have an effect in this case (it always resets
4653 -- the alignment to one).
4655 if Ekind (Rec) = E_Record_Type
4656 and then Is_Packed (Rec)
4657 and then not Unplaced_Component
4658 and then Optimize_Alignment /= 'S'
4659 then
4660 -- Reset packed status. Probably not necessary, but we do it so
4661 -- that there is no chance of the back end doing something strange
4662 -- with this redundant indication of packing.
4664 Set_Is_Packed (Rec, False);
4666 -- Give warning if redundant constructs warnings on
4668 if Warn_On_Redundant_Constructs then
4669 Error_Msg_N -- CODEFIX
4670 ("??pragma Pack has no effect, no unplaced components",
4671 Get_Rep_Pragma (Rec, Name_Pack));
4672 end if;
4673 end if;
4675 -- If this is the record corresponding to a remote type, freeze the
4676 -- remote type here since that is what we are semantically freezing.
4677 -- This prevents the freeze node for that type in an inner scope.
4679 if Ekind (Rec) = E_Record_Type then
4680 if Present (Corresponding_Remote_Type (Rec)) then
4681 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4682 end if;
4684 -- Check for controlled components, unchecked unions, and type
4685 -- invariants.
4687 Comp := First_Component (Rec);
4688 while Present (Comp) loop
4690 -- Do not set Has_Controlled_Component on a class-wide
4691 -- equivalent type. See Make_CW_Equivalent_Type.
4693 if not Is_Class_Wide_Equivalent_Type (Rec)
4694 and then
4695 (Has_Controlled_Component (Etype (Comp))
4696 or else
4697 (Chars (Comp) /= Name_uParent
4698 and then Is_Controlled (Etype (Comp)))
4699 or else
4700 (Is_Protected_Type (Etype (Comp))
4701 and then
4702 Present (Corresponding_Record_Type (Etype (Comp)))
4703 and then
4704 Has_Controlled_Component
4705 (Corresponding_Record_Type (Etype (Comp)))))
4706 then
4707 Set_Has_Controlled_Component (Rec);
4708 end if;
4710 if Has_Unchecked_Union (Etype (Comp)) then
4711 Set_Has_Unchecked_Union (Rec);
4712 end if;
4714 -- The record type requires its own invariant procedure in
4715 -- order to verify the invariant of each individual component.
4716 -- Do not consider internal components such as _parent because
4717 -- parent class-wide invariants are always inherited.
4718 -- In GNATprove mode, the component invariants are checked by
4719 -- other means. They should not be added to the record type
4720 -- invariant procedure, so that the procedure can be used to
4721 -- check the recordy type invariants if any.
4723 if Comes_From_Source (Comp)
4724 and then Has_Invariants (Etype (Comp))
4725 and then not GNATprove_Mode
4726 then
4727 Set_Has_Own_Invariants (Rec);
4728 end if;
4730 -- Scan component declaration for likely misuses of current
4731 -- instance, either in a constraint or a default expression.
4733 if Has_Per_Object_Constraint (Comp) then
4734 Check_Current_Instance (Parent (Comp));
4735 end if;
4737 Next_Component (Comp);
4738 end loop;
4739 end if;
4741 -- Enforce the restriction that access attributes with a current
4742 -- instance prefix can only apply to limited types. This comment
4743 -- is floating here, but does not seem to belong here???
4745 -- Set component alignment if not otherwise already set
4747 Set_Component_Alignment_If_Not_Set (Rec);
4749 -- For first subtypes, check if there are any fixed-point fields with
4750 -- component clauses, where we must check the size. This is not done
4751 -- till the freeze point since for fixed-point types, we do not know
4752 -- the size until the type is frozen. Similar processing applies to
4753 -- bit-packed arrays.
4755 if Is_First_Subtype (Rec) then
4756 Comp := First_Component (Rec);
4757 while Present (Comp) loop
4758 if Present (Component_Clause (Comp))
4759 and then (Is_Fixed_Point_Type (Etype (Comp))
4760 or else Is_Bit_Packed_Array (Etype (Comp)))
4761 then
4762 Check_Size
4763 (Component_Name (Component_Clause (Comp)),
4764 Etype (Comp),
4765 Esize (Comp),
4766 Junk);
4767 end if;
4769 Next_Component (Comp);
4770 end loop;
4771 end if;
4773 -- See if Size is too small as is (and implicit packing might help)
4775 if not Is_Packed (Rec)
4777 -- No implicit packing if even one component is explicitly placed
4779 and then not Placed_Component
4781 -- Or even one component is aliased
4783 and then not Aliased_Component
4785 -- Must have size clause and all sized components
4787 and then Has_Size_Clause (Rec)
4788 and then All_Sized_Components
4790 -- Do not try implicit packing on records with discriminants, too
4791 -- complicated, especially in the variant record case.
4793 and then not Has_Discriminants (Rec)
4795 -- We want to implicitly pack if the specified size of the record
4796 -- is less than the sum of the object sizes (no point in packing
4797 -- if this is not the case), if we can compute it, i.e. if we have
4798 -- only elementary components. Otherwise, we have at least one
4799 -- composite component and we want to implicitly pack only if bit
4800 -- packing is required for it, as we are sure in this case that
4801 -- the back end cannot do the expected layout without packing.
4803 and then
4804 ((All_Elem_Components
4805 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4806 or else
4807 (not All_Elem_Components
4808 and then not All_Storage_Unit_Components
4809 and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
4811 -- And the total RM size cannot be greater than the specified size
4812 -- since otherwise packing will not get us where we have to be.
4814 and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
4816 -- Never do implicit packing in CodePeer or SPARK modes since
4817 -- we don't do any packing in these modes, since this generates
4818 -- over-complex code that confuses static analysis, and in
4819 -- general, neither CodePeer not GNATprove care about the
4820 -- internal representation of objects.
4822 and then not (CodePeer_Mode or GNATprove_Mode)
4823 then
4824 -- If implicit packing enabled, do it
4826 if Implicit_Packing then
4827 Set_Is_Packed (Rec);
4829 -- Otherwise flag the size clause
4831 else
4832 declare
4833 Sz : constant Node_Id := Size_Clause (Rec);
4834 begin
4835 Error_Msg_NE -- CODEFIX
4836 ("size given for& too small", Sz, Rec);
4837 Error_Msg_N -- CODEFIX
4838 ("\use explicit pragma Pack "
4839 & "or use pragma Implicit_Packing", Sz);
4840 end;
4841 end if;
4842 end if;
4844 -- The following checks are relevant only when SPARK_Mode is on as
4845 -- they are not standard Ada legality rules.
4847 if SPARK_Mode = On then
4849 -- A discriminated type cannot be effectively volatile
4850 -- (SPARK RM 7.1.3(5)).
4852 if Is_Effectively_Volatile (Rec) then
4853 if Has_Discriminants (Rec) then
4854 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4855 end if;
4857 -- A non-effectively volatile record type cannot contain
4858 -- effectively volatile components (SPARK RM 7.1.3(6)).
4860 else
4861 Comp := First_Component (Rec);
4862 while Present (Comp) loop
4863 if Comes_From_Source (Comp)
4864 and then Is_Effectively_Volatile (Etype (Comp))
4865 then
4866 Error_Msg_Name_1 := Chars (Rec);
4867 Error_Msg_N
4868 ("component & of non-volatile type % cannot be "
4869 & "volatile", Comp);
4870 end if;
4872 Next_Component (Comp);
4873 end loop;
4874 end if;
4876 -- A type which does not yield a synchronized object cannot have
4877 -- a component that yields a synchronized object (SPARK RM 9.5).
4879 if not Yields_Synchronized_Object (Rec) then
4880 Comp := First_Component (Rec);
4881 while Present (Comp) loop
4882 if Comes_From_Source (Comp)
4883 and then Yields_Synchronized_Object (Etype (Comp))
4884 then
4885 Error_Msg_Name_1 := Chars (Rec);
4886 Error_Msg_N
4887 ("component & of non-synchronized type % cannot be "
4888 & "synchronized", Comp);
4889 end if;
4891 Next_Component (Comp);
4892 end loop;
4893 end if;
4895 -- A Ghost type cannot have a component of protected or task type
4896 -- (SPARK RM 6.9(19)).
4898 if Is_Ghost_Entity (Rec) then
4899 Comp := First_Component (Rec);
4900 while Present (Comp) loop
4901 if Comes_From_Source (Comp)
4902 and then Is_Concurrent_Type (Etype (Comp))
4903 then
4904 Error_Msg_Name_1 := Chars (Rec);
4905 Error_Msg_N
4906 ("component & of ghost type % cannot be concurrent",
4907 Comp);
4908 end if;
4910 Next_Component (Comp);
4911 end loop;
4912 end if;
4913 end if;
4915 -- Make sure that if we have an iterator aspect, then we have
4916 -- either Constant_Indexing or Variable_Indexing.
4918 declare
4919 Iterator_Aspect : Node_Id;
4921 begin
4922 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4924 if No (Iterator_Aspect) then
4925 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4926 end if;
4928 if Present (Iterator_Aspect) then
4929 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4930 or else
4931 Has_Aspect (Rec, Aspect_Variable_Indexing)
4932 then
4933 null;
4934 else
4935 Error_Msg_N
4936 ("Iterator_Element requires indexing aspect",
4937 Iterator_Aspect);
4938 end if;
4939 end if;
4940 end;
4942 -- All done if not a full record definition
4944 if Ekind (Rec) /= E_Record_Type then
4945 return;
4946 end if;
4948 -- Finally we need to check the variant part to make sure that
4949 -- all types within choices are properly frozen as part of the
4950 -- freezing of the record type.
4952 Check_Variant_Part : declare
4953 D : constant Node_Id := Declaration_Node (Rec);
4954 T : Node_Id;
4955 C : Node_Id;
4957 begin
4958 -- Find component list
4960 C := Empty;
4962 if Nkind (D) = N_Full_Type_Declaration then
4963 T := Type_Definition (D);
4965 if Nkind (T) = N_Record_Definition then
4966 C := Component_List (T);
4968 elsif Nkind (T) = N_Derived_Type_Definition
4969 and then Present (Record_Extension_Part (T))
4970 then
4971 C := Component_List (Record_Extension_Part (T));
4972 end if;
4973 end if;
4975 -- Case of variant part present
4977 if Present (C) and then Present (Variant_Part (C)) then
4978 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4979 end if;
4981 -- Note: we used to call Check_Choices here, but it is too early,
4982 -- since predicated subtypes are frozen here, but their freezing
4983 -- actions are in Analyze_Freeze_Entity, which has not been called
4984 -- yet for entities frozen within this procedure, so we moved that
4985 -- call to the Analyze_Freeze_Entity for the record type.
4987 end Check_Variant_Part;
4989 -- Check that all the primitives of an interface type are abstract
4990 -- or null procedures.
4992 if Is_Interface (Rec)
4993 and then not Error_Posted (Parent (Rec))
4994 then
4995 declare
4996 Elmt : Elmt_Id;
4997 Subp : Entity_Id;
4999 begin
5000 Elmt := First_Elmt (Primitive_Operations (Rec));
5001 while Present (Elmt) loop
5002 Subp := Node (Elmt);
5004 if not Is_Abstract_Subprogram (Subp)
5006 -- Avoid reporting the error on inherited primitives
5008 and then Comes_From_Source (Subp)
5009 then
5010 Error_Msg_Name_1 := Chars (Subp);
5012 if Ekind (Subp) = E_Procedure then
5013 if not Null_Present (Parent (Subp)) then
5014 Error_Msg_N
5015 ("interface procedure % must be abstract or null",
5016 Parent (Subp));
5017 end if;
5018 else
5019 Error_Msg_N
5020 ("interface function % must be abstract",
5021 Parent (Subp));
5022 end if;
5023 end if;
5025 Next_Elmt (Elmt);
5026 end loop;
5027 end;
5028 end if;
5030 -- For a derived tagged type, check whether inherited primitives
5031 -- might require a wrapper to handle class-wide conditions.
5033 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
5034 Check_Inherited_Conditions (Rec);
5035 end if;
5036 end Freeze_Record_Type;
5038 -------------------------------
5039 -- Has_Boolean_Aspect_Import --
5040 -------------------------------
5042 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
5043 Decl : constant Node_Id := Declaration_Node (E);
5044 Asp : Node_Id;
5045 Expr : Node_Id;
5047 begin
5048 if Has_Aspects (Decl) then
5049 Asp := First (Aspect_Specifications (Decl));
5050 while Present (Asp) loop
5051 Expr := Expression (Asp);
5053 -- The value of aspect Import is True when the expression is
5054 -- either missing or it is explicitly set to True.
5056 if Get_Aspect_Id (Asp) = Aspect_Import
5057 and then (No (Expr)
5058 or else (Compile_Time_Known_Value (Expr)
5059 and then Is_True (Expr_Value (Expr))))
5060 then
5061 return True;
5062 end if;
5064 Next (Asp);
5065 end loop;
5066 end if;
5068 return False;
5069 end Has_Boolean_Aspect_Import;
5071 -------------------------
5072 -- Inherit_Freeze_Node --
5073 -------------------------
5075 procedure Inherit_Freeze_Node
5076 (Fnod : Node_Id;
5077 Typ : Entity_Id)
5079 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
5081 begin
5082 Set_Freeze_Node (Typ, Fnod);
5083 Set_Entity (Fnod, Typ);
5085 -- The input type had an existing node. Propagate relevant attributes
5086 -- from the old freeze node to the inherited freeze node.
5088 -- ??? if both freeze nodes have attributes, would they differ?
5090 if Present (Typ_Fnod) then
5092 -- Attribute Access_Types_To_Process
5094 if Present (Access_Types_To_Process (Typ_Fnod))
5095 and then No (Access_Types_To_Process (Fnod))
5096 then
5097 Set_Access_Types_To_Process (Fnod,
5098 Access_Types_To_Process (Typ_Fnod));
5099 end if;
5101 -- Attribute Actions
5103 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
5104 Set_Actions (Fnod, Actions (Typ_Fnod));
5105 end if;
5107 -- Attribute First_Subtype_Link
5109 if Present (First_Subtype_Link (Typ_Fnod))
5110 and then No (First_Subtype_Link (Fnod))
5111 then
5112 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
5113 end if;
5115 -- Attribute TSS_Elist
5117 if Present (TSS_Elist (Typ_Fnod))
5118 and then No (TSS_Elist (Fnod))
5119 then
5120 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
5121 end if;
5122 end if;
5123 end Inherit_Freeze_Node;
5125 ------------------------------
5126 -- Wrap_Imported_Subprogram --
5127 ------------------------------
5129 -- The issue here is that our normal approach of checking preconditions
5130 -- and postconditions does not work for imported procedures, since we
5131 -- are not generating code for the body. To get around this we create
5132 -- a wrapper, as shown by the following example:
5134 -- procedure K (A : Integer);
5135 -- pragma Import (C, K);
5137 -- The spec is rewritten by removing the effects of pragma Import, but
5138 -- leaving the convention unchanged, as though the source had said:
5140 -- procedure K (A : Integer);
5141 -- pragma Convention (C, K);
5143 -- and we create a body, added to the entity K freeze actions, which
5144 -- looks like:
5146 -- procedure K (A : Integer) is
5147 -- procedure K (A : Integer);
5148 -- pragma Import (C, K);
5149 -- begin
5150 -- K (A);
5151 -- end K;
5153 -- Now the contract applies in the normal way to the outer procedure,
5154 -- and the inner procedure has no contracts, so there is no problem
5155 -- in just calling it to get the original effect.
5157 -- In the case of a function, we create an appropriate return statement
5158 -- for the subprogram body that calls the inner procedure.
5160 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
5161 function Copy_Import_Pragma return Node_Id;
5162 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
5164 ------------------------
5165 -- Copy_Import_Pragma --
5166 ------------------------
5168 function Copy_Import_Pragma return Node_Id is
5170 -- The subprogram should have an import pragma, otherwise it does
5171 -- need a wrapper.
5173 Prag : constant Node_Id := Import_Pragma (E);
5174 pragma Assert (Present (Prag));
5176 -- Save all semantic fields of the pragma
5178 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
5179 Save_From : constant Boolean := From_Aspect_Specification (Prag);
5180 Save_Prag : constant Node_Id := Next_Pragma (Prag);
5181 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
5183 Result : Node_Id;
5185 begin
5186 -- Reset all semantic fields. This avoids a potential infinite
5187 -- loop when the pragma comes from an aspect as the duplication
5188 -- will copy the aspect, then copy the corresponding pragma and
5189 -- so on.
5191 Set_Corresponding_Aspect (Prag, Empty);
5192 Set_From_Aspect_Specification (Prag, False);
5193 Set_Next_Pragma (Prag, Empty);
5194 Set_Next_Rep_Item (Prag, Empty);
5196 Result := Copy_Separate_Tree (Prag);
5198 -- Restore the original semantic fields
5200 Set_Corresponding_Aspect (Prag, Save_Asp);
5201 Set_From_Aspect_Specification (Prag, Save_From);
5202 Set_Next_Pragma (Prag, Save_Prag);
5203 Set_Next_Rep_Item (Prag, Save_Rep);
5205 return Result;
5206 end Copy_Import_Pragma;
5208 -- Local variables
5210 Loc : constant Source_Ptr := Sloc (E);
5211 CE : constant Name_Id := Chars (E);
5212 Bod : Node_Id;
5213 Forml : Entity_Id;
5214 Parms : List_Id;
5215 Prag : Node_Id;
5216 Spec : Node_Id;
5217 Stmt : Node_Id;
5219 -- Start of processing for Wrap_Imported_Subprogram
5221 begin
5222 -- Nothing to do if not imported
5224 if not Is_Imported (E) then
5225 return;
5227 -- Test enabling conditions for wrapping
5229 elsif Is_Subprogram (E)
5230 and then Present (Contract (E))
5231 and then Present (Pre_Post_Conditions (Contract (E)))
5232 and then not GNATprove_Mode
5233 then
5234 -- Here we do the wrap
5236 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5237 -- here are fully analyzed, but we definitely want fully syntactic
5238 -- unanalyzed trees in the body we construct, so that the analysis
5239 -- generates the right visibility, and that is exactly what the
5240 -- calls to Copy_Separate_Tree give us.
5242 Prag := Copy_Import_Pragma;
5244 -- Fix up spec so it is no longer imported and has convention Ada
5246 Set_Has_Completion (E, False);
5247 Set_Import_Pragma (E, Empty);
5248 Set_Interface_Name (E, Empty);
5249 Set_Is_Imported (E, False);
5250 Set_Convention (E, Convention_Ada);
5252 -- Grab the subprogram declaration and specification
5254 Spec := Declaration_Node (E);
5256 -- Build parameter list that we need
5258 Parms := New_List;
5259 Forml := First_Formal (E);
5260 while Present (Forml) loop
5261 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
5262 Next_Formal (Forml);
5263 end loop;
5265 -- Build the call
5267 -- An imported function whose result type is anonymous access
5268 -- creates a new anonymous access type when it is relocated into
5269 -- the declarations of the body generated below. As a result, the
5270 -- accessibility level of these two anonymous access types may not
5271 -- be compatible even though they are essentially the same type.
5272 -- Use an unchecked type conversion to reconcile this case. Note
5273 -- that the conversion is safe because in the named access type
5274 -- case, both the body and imported function utilize the same
5275 -- type.
5277 if Ekind_In (E, E_Function, E_Generic_Function) then
5278 Stmt :=
5279 Make_Simple_Return_Statement (Loc,
5280 Expression =>
5281 Unchecked_Convert_To (Etype (E),
5282 Make_Function_Call (Loc,
5283 Name => Make_Identifier (Loc, CE),
5284 Parameter_Associations => Parms)));
5286 else
5287 Stmt :=
5288 Make_Procedure_Call_Statement (Loc,
5289 Name => Make_Identifier (Loc, CE),
5290 Parameter_Associations => Parms);
5291 end if;
5293 -- Now build the body
5295 Bod :=
5296 Make_Subprogram_Body (Loc,
5297 Specification =>
5298 Copy_Separate_Tree (Spec),
5299 Declarations => New_List (
5300 Make_Subprogram_Declaration (Loc,
5301 Specification => Copy_Separate_Tree (Spec)),
5302 Prag),
5303 Handled_Statement_Sequence =>
5304 Make_Handled_Sequence_Of_Statements (Loc,
5305 Statements => New_List (Stmt),
5306 End_Label => Make_Identifier (Loc, CE)));
5308 -- Append the body to freeze result
5310 Add_To_Result (Bod);
5311 return;
5313 -- Case of imported subprogram that does not get wrapped
5315 else
5316 -- Set Is_Public. All imported entities need an external symbol
5317 -- created for them since they are always referenced from another
5318 -- object file. Note this used to be set when we set Is_Imported
5319 -- back in Sem_Prag, but now we delay it to this point, since we
5320 -- don't want to set this flag if we wrap an imported subprogram.
5322 Set_Is_Public (E);
5323 end if;
5324 end Wrap_Imported_Subprogram;
5326 -- Start of processing for Freeze_Entity
5328 begin
5329 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5330 -- now to ensure that any nodes generated during freezing are properly
5331 -- flagged as Ghost.
5333 Set_Ghost_Mode (E);
5335 -- We are going to test for various reasons why this entity need not be
5336 -- frozen here, but in the case of an Itype that's defined within a
5337 -- record, that test actually applies to the record.
5339 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5340 Test_E := Scope (E);
5342 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5343 and then Is_Record_Type (Underlying_Type (Scope (E)))
5344 then
5345 Test_E := Underlying_Type (Scope (E));
5346 end if;
5348 -- Do not freeze if already frozen since we only need one freeze node
5350 if Is_Frozen (E) then
5351 Result := No_List;
5352 goto Leave;
5354 -- Do not freeze if we are preanalyzing without freezing
5356 elsif Inside_Preanalysis_Without_Freezing > 0 then
5357 Result := No_List;
5358 goto Leave;
5360 elsif Ekind (E) = E_Generic_Package then
5361 Result := Freeze_Generic_Entities (E);
5362 goto Leave;
5364 -- It is improper to freeze an external entity within a generic because
5365 -- its freeze node will appear in a non-valid context. The entity will
5366 -- be frozen in the proper scope after the current generic is analyzed.
5367 -- However, aspects must be analyzed because they may be queried later
5368 -- within the generic itself, and the corresponding pragma or attribute
5369 -- definition has not been analyzed yet. After this, indicate that the
5370 -- entity has no further delayed aspects, to prevent a later aspect
5371 -- analysis out of the scope of the generic.
5373 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
5374 if Has_Delayed_Aspects (E) then
5375 Analyze_Aspects_At_Freeze_Point (E);
5376 Set_Has_Delayed_Aspects (E, False);
5377 end if;
5379 Result := No_List;
5380 goto Leave;
5382 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5383 -- the instance, the same applies to the subtype renaming the actual.
5385 elsif Is_Private_Type (E)
5386 and then Is_Generic_Actual_Type (E)
5387 and then No (Full_View (Base_Type (E)))
5388 and then Ada_Version >= Ada_2012
5389 then
5390 Result := No_List;
5391 goto Leave;
5393 -- Formal subprograms are never frozen
5395 elsif Is_Formal_Subprogram (E) then
5396 Result := No_List;
5397 goto Leave;
5399 -- Generic types are never frozen as they lack delayed semantic checks
5401 elsif Is_Generic_Type (E) then
5402 Result := No_List;
5403 goto Leave;
5405 -- Do not freeze a global entity within an inner scope created during
5406 -- expansion. A call to subprogram E within some internal procedure
5407 -- (a stream attribute for example) might require freezing E, but the
5408 -- freeze node must appear in the same declarative part as E itself.
5409 -- The two-pass elaboration mechanism in gigi guarantees that E will
5410 -- be frozen before the inner call is elaborated. We exclude constants
5411 -- from this test, because deferred constants may be frozen early, and
5412 -- must be diagnosed (e.g. in the case of a deferred constant being used
5413 -- in a default expression). If the enclosing subprogram comes from
5414 -- source, or is a generic instance, then the freeze point is the one
5415 -- mandated by the language, and we freeze the entity. A subprogram that
5416 -- is a child unit body that acts as a spec does not have a spec that
5417 -- comes from source, but can only come from source.
5419 elsif In_Open_Scopes (Scope (Test_E))
5420 and then Scope (Test_E) /= Current_Scope
5421 and then Ekind (Test_E) /= E_Constant
5422 then
5423 declare
5424 S : Entity_Id;
5426 begin
5427 S := Current_Scope;
5428 while Present (S) loop
5429 if Is_Overloadable (S) then
5430 if Comes_From_Source (S)
5431 or else Is_Generic_Instance (S)
5432 or else Is_Child_Unit (S)
5433 then
5434 exit;
5435 else
5436 Result := No_List;
5437 goto Leave;
5438 end if;
5439 end if;
5441 S := Scope (S);
5442 end loop;
5443 end;
5445 -- Similarly, an inlined instance body may make reference to global
5446 -- entities, but these references cannot be the proper freezing point
5447 -- for them, and in the absence of inlining freezing will take place in
5448 -- their own scope. Normally instance bodies are analyzed after the
5449 -- enclosing compilation, and everything has been frozen at the proper
5450 -- place, but with front-end inlining an instance body is compiled
5451 -- before the end of the enclosing scope, and as a result out-of-order
5452 -- freezing must be prevented.
5454 elsif Front_End_Inlining
5455 and then In_Instance_Body
5456 and then Present (Scope (Test_E))
5457 then
5458 declare
5459 S : Entity_Id;
5461 begin
5462 S := Scope (Test_E);
5463 while Present (S) loop
5464 if Is_Generic_Instance (S) then
5465 exit;
5466 else
5467 S := Scope (S);
5468 end if;
5469 end loop;
5471 if No (S) then
5472 Result := No_List;
5473 goto Leave;
5474 end if;
5475 end;
5476 end if;
5478 -- Add checks to detect proper initialization of scalars that may appear
5479 -- as subprogram parameters.
5481 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5482 Apply_Parameter_Validity_Checks (E);
5483 end if;
5485 -- Deal with delayed aspect specifications. The analysis of the aspect
5486 -- is required to be delayed to the freeze point, thus we analyze the
5487 -- pragma or attribute definition clause in the tree at this point. We
5488 -- also analyze the aspect specification node at the freeze point when
5489 -- the aspect doesn't correspond to pragma/attribute definition clause.
5490 -- In addition, a derived type may have inherited aspects that were
5491 -- delayed in the parent, so these must also be captured now.
5493 if Has_Delayed_Aspects (E)
5494 or else May_Inherit_Delayed_Rep_Aspects (E)
5495 then
5496 Analyze_Aspects_At_Freeze_Point (E);
5497 end if;
5499 -- Here to freeze the entity
5501 Set_Is_Frozen (E);
5503 -- Case of entity being frozen is other than a type
5505 if not Is_Type (E) then
5507 -- If entity is exported or imported and does not have an external
5508 -- name, now is the time to provide the appropriate default name.
5509 -- Skip this if the entity is stubbed, since we don't need a name
5510 -- for any stubbed routine. For the case on intrinsics, if no
5511 -- external name is specified, then calls will be handled in
5512 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5513 -- external name is provided, then Expand_Intrinsic_Call leaves
5514 -- calls in place for expansion by GIGI.
5516 if (Is_Imported (E) or else Is_Exported (E))
5517 and then No (Interface_Name (E))
5518 and then Convention (E) /= Convention_Stubbed
5519 and then Convention (E) /= Convention_Intrinsic
5520 then
5521 Set_Encoded_Interface_Name
5522 (E, Get_Default_External_Name (E));
5524 -- If entity is an atomic object appearing in a declaration and
5525 -- the expression is an aggregate, assign it to a temporary to
5526 -- ensure that the actual assignment is done atomically rather
5527 -- than component-wise (the assignment to the temp may be done
5528 -- component-wise, but that is harmless).
5530 elsif Is_Atomic_Or_VFA (E)
5531 and then Nkind (Parent (E)) = N_Object_Declaration
5532 and then Present (Expression (Parent (E)))
5533 and then Nkind (Expression (Parent (E))) = N_Aggregate
5534 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
5535 then
5536 null;
5537 end if;
5539 -- Subprogram case
5541 if Is_Subprogram (E) then
5543 -- Check for needing to wrap imported subprogram
5545 Wrap_Imported_Subprogram (E);
5547 -- Freeze all parameter types and the return type (RM 13.14(14)).
5548 -- However skip this for internal subprograms. This is also where
5549 -- any extra formal parameters are created since we now know
5550 -- whether the subprogram will use a foreign convention.
5552 -- In Ada 2012, freezing a subprogram does not always freeze the
5553 -- corresponding profile (see AI05-019). An attribute reference
5554 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5555 -- indicates whether the profile should be frozen now.
5556 -- Other constructs that should not freeze ???
5558 -- This processing doesn't apply to internal entities (see below)
5560 if not Is_Internal (E) and then Do_Freeze_Profile then
5561 if not Freeze_Profile (E) then
5562 goto Leave;
5563 end if;
5564 end if;
5566 -- Must freeze its parent first if it is a derived subprogram
5568 if Present (Alias (E)) then
5569 Freeze_And_Append (Alias (E), N, Result);
5570 end if;
5572 -- We don't freeze internal subprograms, because we don't normally
5573 -- want addition of extra formals or mechanism setting to happen
5574 -- for those. However we do pass through predefined dispatching
5575 -- cases, since extra formals may be needed in some cases, such as
5576 -- for the stream 'Input function (build-in-place formals).
5578 if not Is_Internal (E)
5579 or else Is_Predefined_Dispatching_Operation (E)
5580 then
5581 Freeze_Subprogram (E);
5582 end if;
5584 -- If warning on suspicious contracts then check for the case of
5585 -- a postcondition other than False for a No_Return subprogram.
5587 if No_Return (E)
5588 and then Warn_On_Suspicious_Contract
5589 and then Present (Contract (E))
5590 then
5591 declare
5592 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5593 Exp : Node_Id;
5595 begin
5596 while Present (Prag) loop
5597 if Nam_In (Pragma_Name_Unmapped (Prag),
5598 Name_Post,
5599 Name_Postcondition,
5600 Name_Refined_Post)
5601 then
5602 Exp :=
5603 Expression
5604 (First (Pragma_Argument_Associations (Prag)));
5606 if Nkind (Exp) /= N_Identifier
5607 or else Chars (Exp) /= Name_False
5608 then
5609 Error_Msg_NE
5610 ("useless postcondition, & is marked "
5611 & "No_Return?T?", Exp, E);
5612 end if;
5613 end if;
5615 Prag := Next_Pragma (Prag);
5616 end loop;
5617 end;
5618 end if;
5620 -- Here for other than a subprogram or type
5622 else
5623 -- If entity has a type, and it is not a generic unit, then freeze
5624 -- it first (RM 13.14(10)).
5626 if Present (Etype (E))
5627 and then Ekind (E) /= E_Generic_Function
5628 then
5629 Freeze_And_Append (Etype (E), N, Result);
5631 -- For an object of an anonymous array type, aspects on the
5632 -- object declaration apply to the type itself. This is the
5633 -- case for Atomic_Components, Volatile_Components, and
5634 -- Independent_Components. In these cases analysis of the
5635 -- generated pragma will mark the anonymous types accordingly,
5636 -- and the object itself does not require a freeze node.
5638 if Ekind (E) = E_Variable
5639 and then Is_Itype (Etype (E))
5640 and then Is_Array_Type (Etype (E))
5641 and then Has_Delayed_Aspects (E)
5642 then
5643 Set_Has_Delayed_Aspects (E, False);
5644 Set_Has_Delayed_Freeze (E, False);
5645 Set_Freeze_Node (E, Empty);
5646 end if;
5647 end if;
5649 -- Special processing for objects created by object declaration
5651 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5652 Freeze_Object_Declaration (E);
5653 end if;
5655 -- Check that a constant which has a pragma Volatile[_Components]
5656 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5658 -- Note: Atomic[_Components] also sets Volatile[_Components]
5660 if Ekind (E) = E_Constant
5661 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5662 and then not Is_Imported (E)
5663 and then not Has_Boolean_Aspect_Import (E)
5664 then
5665 -- Make sure we actually have a pragma, and have not merely
5666 -- inherited the indication from elsewhere (e.g. an address
5667 -- clause, which is not good enough in RM terms).
5669 if Has_Rep_Pragma (E, Name_Atomic)
5670 or else
5671 Has_Rep_Pragma (E, Name_Atomic_Components)
5672 then
5673 Error_Msg_N
5674 ("stand alone atomic constant must be " &
5675 "imported (RM C.6(13))", E);
5677 elsif Has_Rep_Pragma (E, Name_Volatile)
5678 or else
5679 Has_Rep_Pragma (E, Name_Volatile_Components)
5680 then
5681 Error_Msg_N
5682 ("stand alone volatile constant must be " &
5683 "imported (RM C.6(13))", E);
5684 end if;
5685 end if;
5687 -- Static objects require special handling
5689 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5690 and then Is_Statically_Allocated (E)
5691 then
5692 Freeze_Static_Object (E);
5693 end if;
5695 -- Remaining step is to layout objects
5697 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5698 or else Is_Formal (E)
5699 then
5700 Layout_Object (E);
5701 end if;
5703 -- For an object that does not have delayed freezing, and whose
5704 -- initialization actions have been captured in a compound
5705 -- statement, move them back now directly within the enclosing
5706 -- statement sequence.
5708 if Ekind_In (E, E_Constant, E_Variable)
5709 and then not Has_Delayed_Freeze (E)
5710 then
5711 Explode_Initialization_Compound_Statement (E);
5712 end if;
5714 -- Do not generate a freeze node for a generic unit
5716 if Is_Generic_Unit (E) then
5717 Result := No_List;
5718 goto Leave;
5719 end if;
5720 end if;
5722 -- Case of a type or subtype being frozen
5724 else
5725 -- Verify several SPARK legality rules related to Ghost types now
5726 -- that the type is frozen.
5728 Check_Ghost_Type (E);
5730 -- We used to check here that a full type must have preelaborable
5731 -- initialization if it completes a private type specified with
5732 -- pragma Preelaborable_Initialization, but that missed cases where
5733 -- the types occur within a generic package, since the freezing
5734 -- that occurs within a containing scope generally skips traversal
5735 -- of a generic unit's declarations (those will be frozen within
5736 -- instances). This check was moved to Analyze_Package_Specification.
5738 -- The type may be defined in a generic unit. This can occur when
5739 -- freezing a generic function that returns the type (which is
5740 -- defined in a parent unit). It is clearly meaningless to freeze
5741 -- this type. However, if it is a subtype, its size may be determi-
5742 -- nable and used in subsequent checks, so might as well try to
5743 -- compute it.
5745 -- In Ada 2012, Freeze_Entities is also used in the front end to
5746 -- trigger the analysis of aspect expressions, so in this case we
5747 -- want to continue the freezing process.
5749 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5750 -- In_Generic_Scope (E)???
5752 if Present (Scope (E))
5753 and then Is_Generic_Unit (Scope (E))
5754 and then
5755 (not Has_Predicates (E)
5756 and then not Has_Delayed_Freeze (E))
5757 then
5758 Check_Compile_Time_Size (E);
5759 Result := No_List;
5760 goto Leave;
5761 end if;
5763 -- Check for error of Type_Invariant'Class applied to an untagged
5764 -- type (check delayed to freeze time when full type is available).
5766 declare
5767 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5768 begin
5769 if Present (Prag)
5770 and then Class_Present (Prag)
5771 and then not Is_Tagged_Type (E)
5772 then
5773 Error_Msg_NE
5774 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5775 Error_Msg_N
5776 ("\can only be specified for a tagged type", Prag);
5777 end if;
5778 end;
5780 -- Deal with special cases of freezing for subtype
5782 if E /= Base_Type (E) then
5784 -- Before we do anything else, a specific test for the case of a
5785 -- size given for an array where the array would need to be packed
5786 -- in order for the size to be honored, but is not. This is the
5787 -- case where implicit packing may apply. The reason we do this so
5788 -- early is that, if we have implicit packing, the layout of the
5789 -- base type is affected, so we must do this before we freeze the
5790 -- base type.
5792 -- We could do this processing only if implicit packing is enabled
5793 -- since in all other cases, the error would be caught by the back
5794 -- end. However, we choose to do the check even if we do not have
5795 -- implicit packing enabled, since this allows us to give a more
5796 -- useful error message (advising use of pragma Implicit_Packing
5797 -- or pragma Pack).
5799 if Is_Array_Type (E) then
5800 declare
5801 Ctyp : constant Entity_Id := Component_Type (E);
5802 Rsiz : constant Uint := RM_Size (Ctyp);
5803 SZ : constant Node_Id := Size_Clause (E);
5804 Btyp : constant Entity_Id := Base_Type (E);
5806 Lo : Node_Id;
5807 Hi : Node_Id;
5808 Indx : Node_Id;
5810 Dim : Uint;
5811 Num_Elmts : Uint := Uint_1;
5812 -- Number of elements in array
5814 begin
5815 -- Check enabling conditions. These are straightforward
5816 -- except for the test for a limited composite type. This
5817 -- eliminates the rare case of a array of limited components
5818 -- where there are issues of whether or not we can go ahead
5819 -- and pack the array (since we can't freely pack and unpack
5820 -- arrays if they are limited).
5822 -- Note that we check the root type explicitly because the
5823 -- whole point is we are doing this test before we have had
5824 -- a chance to freeze the base type (and it is that freeze
5825 -- action that causes stuff to be inherited).
5827 -- The conditions on the size are identical to those used in
5828 -- Freeze_Array_Type to set the Is_Packed flag.
5830 if Has_Size_Clause (E)
5831 and then Known_Static_RM_Size (E)
5832 and then not Is_Packed (E)
5833 and then not Has_Pragma_Pack (E)
5834 and then not Has_Component_Size_Clause (E)
5835 and then Known_Static_RM_Size (Ctyp)
5836 and then Rsiz <= 64
5837 and then not (Addressable (Rsiz)
5838 and then Known_Static_Esize (Ctyp)
5839 and then Esize (Ctyp) = Rsiz)
5840 and then not (Rsiz mod System_Storage_Unit = 0
5841 and then Is_Composite_Type (Ctyp))
5842 and then not Is_Limited_Composite (E)
5843 and then not Is_Packed (Root_Type (E))
5844 and then not Has_Component_Size_Clause (Root_Type (E))
5845 and then not (CodePeer_Mode or GNATprove_Mode)
5846 then
5847 -- Compute number of elements in array
5849 Indx := First_Index (E);
5850 while Present (Indx) loop
5851 Get_Index_Bounds (Indx, Lo, Hi);
5853 if not (Compile_Time_Known_Value (Lo)
5854 and then
5855 Compile_Time_Known_Value (Hi))
5856 then
5857 goto No_Implicit_Packing;
5858 end if;
5860 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5862 if Dim >= 0 then
5863 Num_Elmts := Num_Elmts * Dim;
5864 else
5865 Num_Elmts := Uint_0;
5866 end if;
5868 Next_Index (Indx);
5869 end loop;
5871 -- What we are looking for here is the situation where
5872 -- the RM_Size given would be exactly right if there was
5873 -- a pragma Pack, resulting in the component size being
5874 -- the RM_Size of the component type.
5876 if RM_Size (E) = Num_Elmts * Rsiz then
5878 -- For implicit packing mode, just set the component
5879 -- size and Freeze_Array_Type will do the rest.
5881 if Implicit_Packing then
5882 Set_Component_Size (Btyp, Rsiz);
5884 -- Otherwise give an error message
5886 else
5887 Error_Msg_NE
5888 ("size given for& too small", SZ, E);
5889 Error_Msg_N -- CODEFIX
5890 ("\use explicit pragma Pack or use pragma "
5891 & "Implicit_Packing", SZ);
5892 end if;
5893 end if;
5894 end if;
5895 end;
5896 end if;
5898 <<No_Implicit_Packing>>
5900 -- If ancestor subtype present, freeze that first. Note that this
5901 -- will also get the base type frozen. Need RM reference ???
5903 Atype := Ancestor_Subtype (E);
5905 if Present (Atype) then
5906 Freeze_And_Append (Atype, N, Result);
5908 -- No ancestor subtype present
5910 else
5911 -- See if we have a nearest ancestor that has a predicate.
5912 -- That catches the case of derived type with a predicate.
5913 -- Need RM reference here ???
5915 Atype := Nearest_Ancestor (E);
5917 if Present (Atype) and then Has_Predicates (Atype) then
5918 Freeze_And_Append (Atype, N, Result);
5919 end if;
5921 -- Freeze base type before freezing the entity (RM 13.14(15))
5923 if E /= Base_Type (E) then
5924 Freeze_And_Append (Base_Type (E), N, Result);
5925 end if;
5926 end if;
5928 -- A subtype inherits all the type-related representation aspects
5929 -- from its parents (RM 13.1(8)).
5931 Inherit_Aspects_At_Freeze_Point (E);
5933 -- For a derived type, freeze its parent type first (RM 13.14(15))
5935 elsif Is_Derived_Type (E) then
5936 Freeze_And_Append (Etype (E), N, Result);
5937 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5939 -- A derived type inherits each type-related representation aspect
5940 -- of its parent type that was directly specified before the
5941 -- declaration of the derived type (RM 13.1(15)).
5943 Inherit_Aspects_At_Freeze_Point (E);
5944 end if;
5946 -- Check for incompatible size and alignment for record type
5948 if Warn_On_Size_Alignment
5949 and then Is_Record_Type (E)
5950 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5952 -- If explicit Object_Size clause given assume that the programmer
5953 -- knows what he is doing, and expects the compiler behavior.
5955 and then not Has_Object_Size_Clause (E)
5957 -- Check for size not a multiple of alignment
5959 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5960 then
5961 declare
5962 SC : constant Node_Id := Size_Clause (E);
5963 AC : constant Node_Id := Alignment_Clause (E);
5964 Loc : Node_Id;
5965 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5967 begin
5968 if Present (SC) and then Present (AC) then
5970 -- Give a warning
5972 if Sloc (SC) > Sloc (AC) then
5973 Loc := SC;
5974 Error_Msg_NE
5975 ("?Z?size is not a multiple of alignment for &",
5976 Loc, E);
5977 Error_Msg_Sloc := Sloc (AC);
5978 Error_Msg_Uint_1 := Alignment (E);
5979 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5981 else
5982 Loc := AC;
5983 Error_Msg_NE
5984 ("?Z?size is not a multiple of alignment for &",
5985 Loc, E);
5986 Error_Msg_Sloc := Sloc (SC);
5987 Error_Msg_Uint_1 := RM_Size (E);
5988 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5989 end if;
5991 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5992 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5993 end if;
5994 end;
5995 end if;
5997 -- Array type
5999 if Is_Array_Type (E) then
6000 Freeze_Array_Type (E);
6002 -- For a class-wide type, the corresponding specific type is
6003 -- frozen as well (RM 13.14(15))
6005 elsif Is_Class_Wide_Type (E) then
6006 Freeze_And_Append (Root_Type (E), N, Result);
6008 -- If the base type of the class-wide type is still incomplete,
6009 -- the class-wide remains unfrozen as well. This is legal when
6010 -- E is the formal of a primitive operation of some other type
6011 -- which is being frozen.
6013 if not Is_Frozen (Root_Type (E)) then
6014 Set_Is_Frozen (E, False);
6015 goto Leave;
6016 end if;
6018 -- The equivalent type associated with a class-wide subtype needs
6019 -- to be frozen to ensure that its layout is done.
6021 if Ekind (E) = E_Class_Wide_Subtype
6022 and then Present (Equivalent_Type (E))
6023 then
6024 Freeze_And_Append (Equivalent_Type (E), N, Result);
6025 end if;
6027 -- Generate an itype reference for a library-level class-wide type
6028 -- at the freeze point. Otherwise the first explicit reference to
6029 -- the type may appear in an inner scope which will be rejected by
6030 -- the back-end.
6032 if Is_Itype (E)
6033 and then Is_Compilation_Unit (Scope (E))
6034 then
6035 declare
6036 Ref : constant Node_Id := Make_Itype_Reference (Loc);
6038 begin
6039 Set_Itype (Ref, E);
6041 -- From a gigi point of view, a class-wide subtype derives
6042 -- from its record equivalent type. As a result, the itype
6043 -- reference must appear after the freeze node of the
6044 -- equivalent type or gigi will reject the reference.
6046 if Ekind (E) = E_Class_Wide_Subtype
6047 and then Present (Equivalent_Type (E))
6048 then
6049 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
6050 else
6051 Add_To_Result (Ref);
6052 end if;
6053 end;
6054 end if;
6056 -- For a record type or record subtype, freeze all component types
6057 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
6058 -- using Is_Record_Type, because we don't want to attempt the freeze
6059 -- for the case of a private type with record extension (we will do
6060 -- that later when the full type is frozen).
6062 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
6063 if not In_Generic_Scope (E) then
6064 Freeze_Record_Type (E);
6065 end if;
6067 -- Report a warning if a discriminated record base type has a
6068 -- convention with language C or C++ applied to it. This check is
6069 -- done even within generic scopes (but not in instantiations),
6070 -- which is why we don't do it as part of Freeze_Record_Type.
6072 Check_Suspicious_Convention (E);
6074 -- For a concurrent type, freeze corresponding record type. This does
6075 -- not correspond to any specific rule in the RM, but the record type
6076 -- is essentially part of the concurrent type. Also freeze all local
6077 -- entities. This includes record types created for entry parameter
6078 -- blocks and whatever local entities may appear in the private part.
6080 elsif Is_Concurrent_Type (E) then
6081 if Present (Corresponding_Record_Type (E)) then
6082 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
6083 end if;
6085 Comp := First_Entity (E);
6086 while Present (Comp) loop
6087 if Is_Type (Comp) then
6088 Freeze_And_Append (Comp, N, Result);
6090 elsif (Ekind (Comp)) /= E_Function then
6092 -- The guard on the presence of the Etype seems to be needed
6093 -- for some CodePeer (-gnatcC) cases, but not clear why???
6095 if Present (Etype (Comp)) then
6096 if Is_Itype (Etype (Comp))
6097 and then Underlying_Type (Scope (Etype (Comp))) = E
6098 then
6099 Undelay_Type (Etype (Comp));
6100 end if;
6102 Freeze_And_Append (Etype (Comp), N, Result);
6103 end if;
6104 end if;
6106 Next_Entity (Comp);
6107 end loop;
6109 -- Private types are required to point to the same freeze node as
6110 -- their corresponding full views. The freeze node itself has to
6111 -- point to the partial view of the entity (because from the partial
6112 -- view, we can retrieve the full view, but not the reverse).
6113 -- However, in order to freeze correctly, we need to freeze the full
6114 -- view. If we are freezing at the end of a scope (or within the
6115 -- scope) of the private type, the partial and full views will have
6116 -- been swapped, the full view appears first in the entity chain and
6117 -- the swapping mechanism ensures that the pointers are properly set
6118 -- (on scope exit).
6120 -- If we encounter the partial view before the full view (e.g. when
6121 -- freezing from another scope), we freeze the full view, and then
6122 -- set the pointers appropriately since we cannot rely on swapping to
6123 -- fix things up (subtypes in an outer scope might not get swapped).
6125 -- If the full view is itself private, the above requirements apply
6126 -- to the underlying full view instead of the full view. But there is
6127 -- no swapping mechanism for the underlying full view so we need to
6128 -- set the pointers appropriately in both cases.
6130 elsif Is_Incomplete_Or_Private_Type (E)
6131 and then not Is_Generic_Type (E)
6132 then
6133 -- The construction of the dispatch table associated with library
6134 -- level tagged types forces freezing of all the primitives of the
6135 -- type, which may cause premature freezing of the partial view.
6136 -- For example:
6138 -- package Pkg is
6139 -- type T is tagged private;
6140 -- type DT is new T with private;
6141 -- procedure Prim (X : in out T; Y : in out DT'Class);
6142 -- private
6143 -- type T is tagged null record;
6144 -- Obj : T;
6145 -- type DT is new T with null record;
6146 -- end;
6148 -- In this case the type will be frozen later by the usual
6149 -- mechanism: an object declaration, an instantiation, or the
6150 -- end of a declarative part.
6152 if Is_Library_Level_Tagged_Type (E)
6153 and then not Present (Full_View (E))
6154 then
6155 Set_Is_Frozen (E, False);
6156 goto Leave;
6158 -- Case of full view present
6160 elsif Present (Full_View (E)) then
6162 -- If full view has already been frozen, then no further
6163 -- processing is required
6165 if Is_Frozen (Full_View (E)) then
6166 Set_Has_Delayed_Freeze (E, False);
6167 Set_Freeze_Node (E, Empty);
6169 -- Otherwise freeze full view and patch the pointers so that
6170 -- the freeze node will elaborate both views in the back end.
6171 -- However, if full view is itself private, freeze underlying
6172 -- full view instead and patch the pointers so that the freeze
6173 -- node will elaborate the three views in the back end.
6175 else
6176 declare
6177 Full : Entity_Id := Full_View (E);
6179 begin
6180 if Is_Private_Type (Full)
6181 and then Present (Underlying_Full_View (Full))
6182 then
6183 Full := Underlying_Full_View (Full);
6184 end if;
6186 Freeze_And_Append (Full, N, Result);
6188 if Full /= Full_View (E)
6189 and then Has_Delayed_Freeze (Full_View (E))
6190 then
6191 F_Node := Freeze_Node (Full);
6193 if Present (F_Node) then
6194 Inherit_Freeze_Node
6195 (Fnod => F_Node,
6196 Typ => Full_View (E));
6197 else
6198 Set_Has_Delayed_Freeze (Full_View (E), False);
6199 Set_Freeze_Node (Full_View (E), Empty);
6200 end if;
6201 end if;
6203 if Has_Delayed_Freeze (E) then
6204 F_Node := Freeze_Node (Full_View (E));
6206 if Present (F_Node) then
6207 Inherit_Freeze_Node
6208 (Fnod => F_Node,
6209 Typ => E);
6210 else
6211 -- {Incomplete,Private}_Subtypes with Full_Views
6212 -- constrained by discriminants.
6214 Set_Has_Delayed_Freeze (E, False);
6215 Set_Freeze_Node (E, Empty);
6216 end if;
6217 end if;
6218 end;
6219 end if;
6221 Check_Debug_Info_Needed (E);
6223 -- AI-117 requires that the convention of a partial view be the
6224 -- same as the convention of the full view. Note that this is a
6225 -- recognized breach of privacy, but it's essential for logical
6226 -- consistency of representation, and the lack of a rule in
6227 -- RM95 was an oversight.
6229 Set_Convention (E, Convention (Full_View (E)));
6231 Set_Size_Known_At_Compile_Time (E,
6232 Size_Known_At_Compile_Time (Full_View (E)));
6234 -- Size information is copied from the full view to the
6235 -- incomplete or private view for consistency.
6237 -- We skip this is the full view is not a type. This is very
6238 -- strange of course, and can only happen as a result of
6239 -- certain illegalities, such as a premature attempt to derive
6240 -- from an incomplete type.
6242 if Is_Type (Full_View (E)) then
6243 Set_Size_Info (E, Full_View (E));
6244 Set_RM_Size (E, RM_Size (Full_View (E)));
6245 end if;
6247 goto Leave;
6249 -- Case of underlying full view present
6251 elsif Is_Private_Type (E)
6252 and then Present (Underlying_Full_View (E))
6253 then
6254 if not Is_Frozen (Underlying_Full_View (E)) then
6255 Freeze_And_Append (Underlying_Full_View (E), N, Result);
6256 end if;
6258 -- Patch the pointers so that the freeze node will elaborate
6259 -- both views in the back end.
6261 if Has_Delayed_Freeze (E) then
6262 F_Node := Freeze_Node (Underlying_Full_View (E));
6264 if Present (F_Node) then
6265 Inherit_Freeze_Node
6266 (Fnod => F_Node,
6267 Typ => E);
6268 else
6269 Set_Has_Delayed_Freeze (E, False);
6270 Set_Freeze_Node (E, Empty);
6271 end if;
6272 end if;
6274 Check_Debug_Info_Needed (E);
6276 goto Leave;
6278 -- Case of no full view present. If entity is subtype or derived,
6279 -- it is safe to freeze, correctness depends on the frozen status
6280 -- of parent. Otherwise it is either premature usage, or a Taft
6281 -- amendment type, so diagnosis is at the point of use and the
6282 -- type might be frozen later.
6284 elsif E /= Base_Type (E) then
6285 declare
6286 Btyp : constant Entity_Id := Base_Type (E);
6288 begin
6289 -- However, if the base type is itself private and has no
6290 -- (underlying) full view either, wait until the full type
6291 -- declaration is seen and all the full views are created.
6293 if Is_Private_Type (Btyp)
6294 and then No (Full_View (Btyp))
6295 and then No (Underlying_Full_View (Btyp))
6296 and then Has_Delayed_Freeze (Btyp)
6297 and then No (Freeze_Node (Btyp))
6298 then
6299 Set_Is_Frozen (E, False);
6300 Result := No_List;
6301 goto Leave;
6302 end if;
6303 end;
6305 elsif Is_Derived_Type (E) then
6306 null;
6308 else
6309 Set_Is_Frozen (E, False);
6310 Result := No_List;
6311 goto Leave;
6312 end if;
6314 -- For access subprogram, freeze types of all formals, the return
6315 -- type was already frozen, since it is the Etype of the function.
6316 -- Formal types can be tagged Taft amendment types, but otherwise
6317 -- they cannot be incomplete.
6319 elsif Ekind (E) = E_Subprogram_Type then
6320 Formal := First_Formal (E);
6321 while Present (Formal) loop
6322 if Ekind (Etype (Formal)) = E_Incomplete_Type
6323 and then No (Full_View (Etype (Formal)))
6324 then
6325 if Is_Tagged_Type (Etype (Formal)) then
6326 null;
6328 -- AI05-151: Incomplete types are allowed in access to
6329 -- subprogram specifications.
6331 elsif Ada_Version < Ada_2012 then
6332 Error_Msg_NE
6333 ("invalid use of incomplete type&", E, Etype (Formal));
6334 end if;
6335 end if;
6337 Freeze_And_Append (Etype (Formal), N, Result);
6338 Next_Formal (Formal);
6339 end loop;
6341 Freeze_Subprogram (E);
6343 -- For access to a protected subprogram, freeze the equivalent type
6344 -- (however this is not set if we are not generating code or if this
6345 -- is an anonymous type used just for resolution).
6347 elsif Is_Access_Protected_Subprogram_Type (E) then
6348 if Present (Equivalent_Type (E)) then
6349 Freeze_And_Append (Equivalent_Type (E), N, Result);
6350 end if;
6351 end if;
6353 -- Generic types are never seen by the back-end, and are also not
6354 -- processed by the expander (since the expander is turned off for
6355 -- generic processing), so we never need freeze nodes for them.
6357 if Is_Generic_Type (E) then
6358 goto Leave;
6359 end if;
6361 -- Some special processing for non-generic types to complete
6362 -- representation details not known till the freeze point.
6364 if Is_Fixed_Point_Type (E) then
6365 Freeze_Fixed_Point_Type (E);
6367 -- Some error checks required for ordinary fixed-point type. Defer
6368 -- these till the freeze-point since we need the small and range
6369 -- values. We only do these checks for base types
6371 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
6372 if Small_Value (E) < Ureal_2_M_80 then
6373 Error_Msg_Name_1 := Name_Small;
6374 Error_Msg_N
6375 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
6377 elsif Small_Value (E) > Ureal_2_80 then
6378 Error_Msg_Name_1 := Name_Small;
6379 Error_Msg_N
6380 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
6381 end if;
6383 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
6384 Error_Msg_Name_1 := Name_First;
6385 Error_Msg_N
6386 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
6387 end if;
6389 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
6390 Error_Msg_Name_1 := Name_Last;
6391 Error_Msg_N
6392 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
6393 end if;
6394 end if;
6396 elsif Is_Enumeration_Type (E) then
6397 Freeze_Enumeration_Type (E);
6399 elsif Is_Integer_Type (E) then
6400 Adjust_Esize_For_Alignment (E);
6402 if Is_Modular_Integer_Type (E)
6403 and then Warn_On_Suspicious_Modulus_Value
6404 then
6405 Check_Suspicious_Modulus (E);
6406 end if;
6408 -- The pool applies to named and anonymous access types, but not
6409 -- to subprogram and to internal types generated for 'Access
6410 -- references.
6412 elsif Is_Access_Type (E)
6413 and then not Is_Access_Subprogram_Type (E)
6414 and then Ekind (E) /= E_Access_Attribute_Type
6415 then
6416 -- If a pragma Default_Storage_Pool applies, and this type has no
6417 -- Storage_Pool or Storage_Size clause (which must have occurred
6418 -- before the freezing point), then use the default. This applies
6419 -- only to base types.
6421 -- None of this applies to access to subprograms, for which there
6422 -- are clearly no pools.
6424 if Present (Default_Pool)
6425 and then Is_Base_Type (E)
6426 and then not Has_Storage_Size_Clause (E)
6427 and then No (Associated_Storage_Pool (E))
6428 then
6429 -- Case of pragma Default_Storage_Pool (null)
6431 if Nkind (Default_Pool) = N_Null then
6432 Set_No_Pool_Assigned (E);
6434 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6436 else
6437 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6438 end if;
6439 end if;
6441 -- Check restriction for standard storage pool
6443 if No (Associated_Storage_Pool (E)) then
6444 Check_Restriction (No_Standard_Storage_Pools, E);
6445 end if;
6447 -- Deal with error message for pure access type. This is not an
6448 -- error in Ada 2005 if there is no pool (see AI-366).
6450 if Is_Pure_Unit_Access_Type (E)
6451 and then (Ada_Version < Ada_2005
6452 or else not No_Pool_Assigned (E))
6453 and then not Is_Generic_Unit (Scope (E))
6454 then
6455 Error_Msg_N ("named access type not allowed in pure unit", E);
6457 if Ada_Version >= Ada_2005 then
6458 Error_Msg_N
6459 ("\would be legal if Storage_Size of 0 given??", E);
6461 elsif No_Pool_Assigned (E) then
6462 Error_Msg_N
6463 ("\would be legal in Ada 2005??", E);
6465 else
6466 Error_Msg_N
6467 ("\would be legal in Ada 2005 if "
6468 & "Storage_Size of 0 given??", E);
6469 end if;
6470 end if;
6471 end if;
6473 -- Case of composite types
6475 if Is_Composite_Type (E) then
6477 -- AI-117 requires that all new primitives of a tagged type must
6478 -- inherit the convention of the full view of the type. Inherited
6479 -- and overriding operations are defined to inherit the convention
6480 -- of their parent or overridden subprogram (also specified in
6481 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6482 -- and New_Overloaded_Entity). Here we set the convention of
6483 -- primitives that are still convention Ada, which will ensure
6484 -- that any new primitives inherit the type's convention. Class-
6485 -- wide types can have a foreign convention inherited from their
6486 -- specific type, but are excluded from this since they don't have
6487 -- any associated primitives.
6489 if Is_Tagged_Type (E)
6490 and then not Is_Class_Wide_Type (E)
6491 and then Convention (E) /= Convention_Ada
6492 then
6493 declare
6494 Prim_List : constant Elist_Id := Primitive_Operations (E);
6495 Prim : Elmt_Id;
6497 begin
6498 Prim := First_Elmt (Prim_List);
6499 while Present (Prim) loop
6500 if Convention (Node (Prim)) = Convention_Ada then
6501 Set_Convention (Node (Prim), Convention (E));
6502 end if;
6504 Next_Elmt (Prim);
6505 end loop;
6506 end;
6507 end if;
6509 -- If the type is a simple storage pool type, then this is where
6510 -- we attempt to locate and validate its Allocate, Deallocate, and
6511 -- Storage_Size operations (the first is required, and the latter
6512 -- two are optional). We also verify that the full type for a
6513 -- private type is allowed to be a simple storage pool type.
6515 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6516 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6517 then
6518 -- If the type is marked Has_Private_Declaration, then this is
6519 -- a full type for a private type that was specified with the
6520 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6521 -- pragma is allowed for the full type (for example, it can't
6522 -- be an array type, or a nonlimited record type).
6524 if Has_Private_Declaration (E) then
6525 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6526 and then not Is_Private_Type (E)
6527 then
6528 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6529 Error_Msg_N
6530 ("pragma% can only apply to full type that is an " &
6531 "explicitly limited type", E);
6532 end if;
6533 end if;
6535 Validate_Simple_Pool_Ops : declare
6536 Pool_Type : Entity_Id renames E;
6537 Address_Type : constant Entity_Id := RTE (RE_Address);
6538 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6540 procedure Validate_Simple_Pool_Op_Formal
6541 (Pool_Op : Entity_Id;
6542 Pool_Op_Formal : in out Entity_Id;
6543 Expected_Mode : Formal_Kind;
6544 Expected_Type : Entity_Id;
6545 Formal_Name : String;
6546 OK_Formal : in out Boolean);
6547 -- Validate one formal Pool_Op_Formal of the candidate pool
6548 -- operation Pool_Op. The formal must be of Expected_Type
6549 -- and have mode Expected_Mode. OK_Formal will be set to
6550 -- False if the formal doesn't match. If OK_Formal is False
6551 -- on entry, then the formal will effectively be ignored
6552 -- (because validation of the pool op has already failed).
6553 -- Upon return, Pool_Op_Formal will be updated to the next
6554 -- formal, if any.
6556 procedure Validate_Simple_Pool_Operation
6557 (Op_Name : Name_Id);
6558 -- Search for and validate a simple pool operation with the
6559 -- name Op_Name. If the name is Allocate, then there must be
6560 -- exactly one such primitive operation for the simple pool
6561 -- type. If the name is Deallocate or Storage_Size, then
6562 -- there can be at most one such primitive operation. The
6563 -- profile of the located primitive must conform to what
6564 -- is expected for each operation.
6566 ------------------------------------
6567 -- Validate_Simple_Pool_Op_Formal --
6568 ------------------------------------
6570 procedure Validate_Simple_Pool_Op_Formal
6571 (Pool_Op : Entity_Id;
6572 Pool_Op_Formal : in out Entity_Id;
6573 Expected_Mode : Formal_Kind;
6574 Expected_Type : Entity_Id;
6575 Formal_Name : String;
6576 OK_Formal : in out Boolean)
6578 begin
6579 -- If OK_Formal is False on entry, then simply ignore
6580 -- the formal, because an earlier formal has already
6581 -- been flagged.
6583 if not OK_Formal then
6584 return;
6586 -- If no formal is passed in, then issue an error for a
6587 -- missing formal.
6589 elsif not Present (Pool_Op_Formal) then
6590 Error_Msg_NE
6591 ("simple storage pool op missing formal " &
6592 Formal_Name & " of type&", Pool_Op, Expected_Type);
6593 OK_Formal := False;
6595 return;
6596 end if;
6598 if Etype (Pool_Op_Formal) /= Expected_Type then
6600 -- If the pool type was expected for this formal, then
6601 -- this will not be considered a candidate operation
6602 -- for the simple pool, so we unset OK_Formal so that
6603 -- the op and any later formals will be ignored.
6605 if Expected_Type = Pool_Type then
6606 OK_Formal := False;
6608 return;
6610 else
6611 Error_Msg_NE
6612 ("wrong type for formal " & Formal_Name &
6613 " of simple storage pool op; expected type&",
6614 Pool_Op_Formal, Expected_Type);
6615 end if;
6616 end if;
6618 -- Issue error if formal's mode is not the expected one
6620 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6621 Error_Msg_N
6622 ("wrong mode for formal of simple storage pool op",
6623 Pool_Op_Formal);
6624 end if;
6626 -- Advance to the next formal
6628 Next_Formal (Pool_Op_Formal);
6629 end Validate_Simple_Pool_Op_Formal;
6631 ------------------------------------
6632 -- Validate_Simple_Pool_Operation --
6633 ------------------------------------
6635 procedure Validate_Simple_Pool_Operation
6636 (Op_Name : Name_Id)
6638 Op : Entity_Id;
6639 Found_Op : Entity_Id := Empty;
6640 Formal : Entity_Id;
6641 Is_OK : Boolean;
6643 begin
6644 pragma Assert
6645 (Nam_In (Op_Name, Name_Allocate,
6646 Name_Deallocate,
6647 Name_Storage_Size));
6649 Error_Msg_Name_1 := Op_Name;
6651 -- For each homonym declared immediately in the scope
6652 -- of the simple storage pool type, determine whether
6653 -- the homonym is an operation of the pool type, and,
6654 -- if so, check that its profile is as expected for
6655 -- a simple pool operation of that name.
6657 Op := Get_Name_Entity_Id (Op_Name);
6658 while Present (Op) loop
6659 if Ekind_In (Op, E_Function, E_Procedure)
6660 and then Scope (Op) = Current_Scope
6661 then
6662 Formal := First_Entity (Op);
6664 Is_OK := True;
6666 -- The first parameter must be of the pool type
6667 -- in order for the operation to qualify.
6669 if Op_Name = Name_Storage_Size then
6670 Validate_Simple_Pool_Op_Formal
6671 (Op, Formal, E_In_Parameter, Pool_Type,
6672 "Pool", Is_OK);
6673 else
6674 Validate_Simple_Pool_Op_Formal
6675 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6676 "Pool", Is_OK);
6677 end if;
6679 -- If another operation with this name has already
6680 -- been located for the type, then flag an error,
6681 -- since we only allow the type to have a single
6682 -- such primitive.
6684 if Present (Found_Op) and then Is_OK then
6685 Error_Msg_NE
6686 ("only one % operation allowed for " &
6687 "simple storage pool type&", Op, Pool_Type);
6688 end if;
6690 -- In the case of Allocate and Deallocate, a formal
6691 -- of type System.Address is required.
6693 if Op_Name = Name_Allocate then
6694 Validate_Simple_Pool_Op_Formal
6695 (Op, Formal, E_Out_Parameter,
6696 Address_Type, "Storage_Address", Is_OK);
6698 elsif Op_Name = Name_Deallocate then
6699 Validate_Simple_Pool_Op_Formal
6700 (Op, Formal, E_In_Parameter,
6701 Address_Type, "Storage_Address", Is_OK);
6702 end if;
6704 -- In the case of Allocate and Deallocate, formals
6705 -- of type Storage_Count are required as the third
6706 -- and fourth parameters.
6708 if Op_Name /= Name_Storage_Size then
6709 Validate_Simple_Pool_Op_Formal
6710 (Op, Formal, E_In_Parameter,
6711 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6712 Validate_Simple_Pool_Op_Formal
6713 (Op, Formal, E_In_Parameter,
6714 Stg_Cnt_Type, "Alignment", Is_OK);
6715 end if;
6717 -- If no mismatched formals have been found (Is_OK)
6718 -- and no excess formals are present, then this
6719 -- operation has been validated, so record it.
6721 if not Present (Formal) and then Is_OK then
6722 Found_Op := Op;
6723 end if;
6724 end if;
6726 Op := Homonym (Op);
6727 end loop;
6729 -- There must be a valid Allocate operation for the type,
6730 -- so issue an error if none was found.
6732 if Op_Name = Name_Allocate
6733 and then not Present (Found_Op)
6734 then
6735 Error_Msg_N ("missing % operation for simple " &
6736 "storage pool type", Pool_Type);
6738 elsif Present (Found_Op) then
6740 -- Simple pool operations can't be abstract
6742 if Is_Abstract_Subprogram (Found_Op) then
6743 Error_Msg_N
6744 ("simple storage pool operation must not be " &
6745 "abstract", Found_Op);
6746 end if;
6748 -- The Storage_Size operation must be a function with
6749 -- Storage_Count as its result type.
6751 if Op_Name = Name_Storage_Size then
6752 if Ekind (Found_Op) = E_Procedure then
6753 Error_Msg_N
6754 ("% operation must be a function", Found_Op);
6756 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6757 Error_Msg_NE
6758 ("wrong result type for%, expected type&",
6759 Found_Op, Stg_Cnt_Type);
6760 end if;
6762 -- Allocate and Deallocate must be procedures
6764 elsif Ekind (Found_Op) = E_Function then
6765 Error_Msg_N
6766 ("% operation must be a procedure", Found_Op);
6767 end if;
6768 end if;
6769 end Validate_Simple_Pool_Operation;
6771 -- Start of processing for Validate_Simple_Pool_Ops
6773 begin
6774 Validate_Simple_Pool_Operation (Name_Allocate);
6775 Validate_Simple_Pool_Operation (Name_Deallocate);
6776 Validate_Simple_Pool_Operation (Name_Storage_Size);
6777 end Validate_Simple_Pool_Ops;
6778 end if;
6779 end if;
6781 -- Now that all types from which E may depend are frozen, see if the
6782 -- size is known at compile time, if it must be unsigned, or if
6783 -- strict alignment is required
6785 Check_Compile_Time_Size (E);
6786 Check_Unsigned_Type (E);
6788 if Base_Type (E) = E then
6789 Check_Strict_Alignment (E);
6790 end if;
6792 -- Do not allow a size clause for a type which does not have a size
6793 -- that is known at compile time
6795 if Has_Size_Clause (E)
6796 and then not Size_Known_At_Compile_Time (E)
6797 then
6798 -- Suppress this message if errors posted on E, even if we are
6799 -- in all errors mode, since this is often a junk message
6801 if not Error_Posted (E) then
6802 Error_Msg_N
6803 ("size clause not allowed for variable length type",
6804 Size_Clause (E));
6805 end if;
6806 end if;
6808 -- Now we set/verify the representation information, in particular
6809 -- the size and alignment values. This processing is not required for
6810 -- generic types, since generic types do not play any part in code
6811 -- generation, and so the size and alignment values for such types
6812 -- are irrelevant. Ditto for types declared within a generic unit,
6813 -- which may have components that depend on generic parameters, and
6814 -- that will be recreated in an instance.
6816 if Inside_A_Generic then
6817 null;
6819 -- Otherwise we call the layout procedure
6821 else
6822 Layout_Type (E);
6823 end if;
6825 -- If this is an access to subprogram whose designated type is itself
6826 -- a subprogram type, the return type of this anonymous subprogram
6827 -- type must be decorated as well.
6829 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6830 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6831 then
6832 Layout_Type (Etype (Designated_Type (E)));
6833 end if;
6835 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6836 -- this is where we analye the expression (after the type is frozen,
6837 -- since in the case of Default_Value, we are analyzing with the
6838 -- type itself, and we treat Default_Component_Value similarly for
6839 -- the sake of uniformity).
6841 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6842 declare
6843 Nam : Name_Id;
6844 Exp : Node_Id;
6845 Typ : Entity_Id;
6847 begin
6848 if Is_Scalar_Type (E) then
6849 Nam := Name_Default_Value;
6850 Typ := E;
6851 Exp := Default_Aspect_Value (Typ);
6852 else
6853 Nam := Name_Default_Component_Value;
6854 Typ := Component_Type (E);
6855 Exp := Default_Aspect_Component_Value (E);
6856 end if;
6858 Analyze_And_Resolve (Exp, Typ);
6860 if Etype (Exp) /= Any_Type then
6861 if not Is_OK_Static_Expression (Exp) then
6862 Error_Msg_Name_1 := Nam;
6863 Flag_Non_Static_Expr
6864 ("aspect% requires static expression", Exp);
6865 end if;
6866 end if;
6867 end;
6868 end if;
6870 -- End of freeze processing for type entities
6871 end if;
6873 -- Here is where we logically freeze the current entity. If it has a
6874 -- freeze node, then this is the point at which the freeze node is
6875 -- linked into the result list.
6877 if Has_Delayed_Freeze (E) then
6879 -- If a freeze node is already allocated, use it, otherwise allocate
6880 -- a new one. The preallocation happens in the case of anonymous base
6881 -- types, where we preallocate so that we can set First_Subtype_Link.
6882 -- Note that we reset the Sloc to the current freeze location.
6884 if Present (Freeze_Node (E)) then
6885 F_Node := Freeze_Node (E);
6886 Set_Sloc (F_Node, Loc);
6888 else
6889 F_Node := New_Node (N_Freeze_Entity, Loc);
6890 Set_Freeze_Node (E, F_Node);
6891 Set_Access_Types_To_Process (F_Node, No_Elist);
6892 Set_TSS_Elist (F_Node, No_Elist);
6893 Set_Actions (F_Node, No_List);
6894 end if;
6896 Set_Entity (F_Node, E);
6897 Add_To_Result (F_Node);
6899 -- A final pass over record types with discriminants. If the type
6900 -- has an incomplete declaration, there may be constrained access
6901 -- subtypes declared elsewhere, which do not depend on the discrimi-
6902 -- nants of the type, and which are used as component types (i.e.
6903 -- the full view is a recursive type). The designated types of these
6904 -- subtypes can only be elaborated after the type itself, and they
6905 -- need an itype reference.
6907 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6908 declare
6909 Comp : Entity_Id;
6910 IR : Node_Id;
6911 Typ : Entity_Id;
6913 begin
6914 Comp := First_Component (E);
6915 while Present (Comp) loop
6916 Typ := Etype (Comp);
6918 if Ekind (Comp) = E_Component
6919 and then Is_Access_Type (Typ)
6920 and then Scope (Typ) /= E
6921 and then Base_Type (Designated_Type (Typ)) = E
6922 and then Is_Itype (Designated_Type (Typ))
6923 then
6924 IR := Make_Itype_Reference (Sloc (Comp));
6925 Set_Itype (IR, Designated_Type (Typ));
6926 Append (IR, Result);
6927 end if;
6929 Next_Component (Comp);
6930 end loop;
6931 end;
6932 end if;
6933 end if;
6935 -- When a type is frozen, the first subtype of the type is frozen as
6936 -- well (RM 13.14(15)). This has to be done after freezing the type,
6937 -- since obviously the first subtype depends on its own base type.
6939 if Is_Type (E) then
6940 Freeze_And_Append (First_Subtype (E), N, Result);
6942 -- If we just froze a tagged non-class wide record, then freeze the
6943 -- corresponding class-wide type. This must be done after the tagged
6944 -- type itself is frozen, because the class-wide type refers to the
6945 -- tagged type which generates the class.
6947 if Is_Tagged_Type (E)
6948 and then not Is_Class_Wide_Type (E)
6949 and then Present (Class_Wide_Type (E))
6950 then
6951 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6952 end if;
6953 end if;
6955 Check_Debug_Info_Needed (E);
6957 -- If subprogram has address clause then reset Is_Public flag, since we
6958 -- do not want the backend to generate external references.
6960 if Is_Subprogram (E)
6961 and then Present (Address_Clause (E))
6962 and then not Is_Library_Level_Entity (E)
6963 then
6964 Set_Is_Public (E, False);
6965 end if;
6967 -- The Ghost mode of the enclosing context is ignored, while the
6968 -- entity being frozen is living. Insert the freezing action prior
6969 -- to the start of the enclosing ignored Ghost region. As a result
6970 -- the freezeing action will be preserved when the ignored Ghost
6971 -- context is eliminated. The insertion must take place even when
6972 -- the context is a spec expression, otherwise "Handling of Default
6973 -- and Per-Object Expressions" will suppress the insertion, and the
6974 -- freeze node will be dropped on the floor.
6976 if Saved_GM = Ignore
6977 and then Ghost_Mode /= Ignore
6978 and then Present (Ignored_Ghost_Region)
6979 then
6980 Insert_Actions
6981 (Assoc_Node => Ignored_Ghost_Region,
6982 Ins_Actions => Result,
6983 Spec_Expr_OK => True);
6985 Result := No_List;
6986 end if;
6988 <<Leave>>
6989 Restore_Ghost_Region (Saved_GM, Saved_IGR);
6991 return Result;
6992 end Freeze_Entity;
6994 -----------------------------
6995 -- Freeze_Enumeration_Type --
6996 -----------------------------
6998 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6999 begin
7000 -- By default, if no size clause is present, an enumeration type with
7001 -- Convention C is assumed to interface to a C enum and has integer
7002 -- size, except for a boolean type because it is assumed to interface
7003 -- to _Bool introduced in C99. This applies to types. For subtypes,
7004 -- verify that its base type has no size clause either. Treat other
7005 -- foreign conventions in the same way, and also make sure alignment
7006 -- is set right.
7008 if Has_Foreign_Convention (Typ)
7009 and then not Is_Boolean_Type (Typ)
7010 and then not Has_Size_Clause (Typ)
7011 and then not Has_Size_Clause (Base_Type (Typ))
7012 and then Esize (Typ) < Standard_Integer_Size
7014 -- Don't do this if Short_Enums on target
7016 and then not Target_Short_Enums
7017 then
7018 Init_Esize (Typ, Standard_Integer_Size);
7019 Set_Alignment (Typ, Alignment (Standard_Integer));
7021 -- Normal Ada case or size clause present or not Long_C_Enums on target
7023 else
7024 -- If the enumeration type interfaces to C, and it has a size clause
7025 -- that specifies less than int size, it warrants a warning. The
7026 -- user may intend the C type to be an enum or a char, so this is
7027 -- not by itself an error that the Ada compiler can detect, but it
7028 -- it is a worth a heads-up. For Boolean and Character types we
7029 -- assume that the programmer has the proper C type in mind.
7031 if Convention (Typ) = Convention_C
7032 and then Has_Size_Clause (Typ)
7033 and then Esize (Typ) /= Esize (Standard_Integer)
7034 and then not Is_Boolean_Type (Typ)
7035 and then not Is_Character_Type (Typ)
7037 -- Don't do this if Short_Enums on target
7039 and then not Target_Short_Enums
7040 then
7041 Error_Msg_N
7042 ("C enum types have the size of a C int??", Size_Clause (Typ));
7043 end if;
7045 Adjust_Esize_For_Alignment (Typ);
7046 end if;
7047 end Freeze_Enumeration_Type;
7049 -----------------------
7050 -- Freeze_Expression --
7051 -----------------------
7053 procedure Freeze_Expression (N : Node_Id) is
7055 function Find_Aggregate_Component_Desig_Type return Entity_Id;
7056 -- If the expression is an array aggregate, the type of the component
7057 -- expressions is also frozen. If the component type is an access type
7058 -- and the expressions include allocators, the designed type is frozen
7059 -- as well.
7061 function In_Expanded_Body (N : Node_Id) return Boolean;
7062 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
7063 -- it is the handled statement sequence of an expander-generated
7064 -- subprogram (init proc, stream subprogram, or renaming as body).
7065 -- If so, this is not a freezing context.
7067 -----------------------------------------
7068 -- Find_Aggregate_Component_Desig_Type --
7069 -----------------------------------------
7071 function Find_Aggregate_Component_Desig_Type return Entity_Id is
7072 Assoc : Node_Id;
7073 Exp : Node_Id;
7075 begin
7076 if Present (Expressions (N)) then
7077 Exp := First (Expressions (N));
7078 while Present (Exp) loop
7079 if Nkind (Exp) = N_Allocator then
7080 return Designated_Type (Component_Type (Etype (N)));
7081 end if;
7083 Next (Exp);
7084 end loop;
7085 end if;
7087 if Present (Component_Associations (N)) then
7088 Assoc := First (Component_Associations (N));
7089 while Present (Assoc) loop
7090 if Nkind (Expression (Assoc)) = N_Allocator then
7091 return Designated_Type (Component_Type (Etype (N)));
7092 end if;
7094 Next (Assoc);
7095 end loop;
7096 end if;
7098 return Empty;
7099 end Find_Aggregate_Component_Desig_Type;
7101 ----------------------
7102 -- In_Expanded_Body --
7103 ----------------------
7105 function In_Expanded_Body (N : Node_Id) return Boolean is
7106 P : Node_Id;
7107 Id : Entity_Id;
7109 begin
7110 if Nkind (N) = N_Subprogram_Body then
7111 P := N;
7112 else
7113 P := Parent (N);
7114 end if;
7116 if Nkind (P) /= N_Subprogram_Body then
7117 return False;
7119 else
7120 Id := Defining_Unit_Name (Specification (P));
7122 -- The following are expander-created bodies, or bodies that
7123 -- are not freeze points.
7125 if Nkind (Id) = N_Defining_Identifier
7126 and then (Is_Init_Proc (Id)
7127 or else Is_TSS (Id, TSS_Stream_Input)
7128 or else Is_TSS (Id, TSS_Stream_Output)
7129 or else Is_TSS (Id, TSS_Stream_Read)
7130 or else Is_TSS (Id, TSS_Stream_Write)
7131 or else Nkind_In (Original_Node (P),
7132 N_Subprogram_Renaming_Declaration,
7133 N_Expression_Function))
7134 then
7135 return True;
7136 else
7137 return False;
7138 end if;
7139 end if;
7140 end In_Expanded_Body;
7142 -- Local variables
7144 In_Spec_Exp : constant Boolean := In_Spec_Expression;
7146 Desig_Typ : Entity_Id;
7147 Nam : Entity_Id;
7148 P : Node_Id;
7149 Parent_P : Node_Id;
7150 Typ : Entity_Id;
7152 Freeze_Outside : Boolean := False;
7153 -- This flag is set true if the entity must be frozen outside the
7154 -- current subprogram. This happens in the case of expander generated
7155 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
7156 -- not freeze all entities like other bodies, but which nevertheless
7157 -- may reference entities that have to be frozen before the body and
7158 -- obviously cannot be frozen inside the body.
7160 Freeze_Outside_Subp : Entity_Id := Empty;
7161 -- This entity is set if we are inside a subprogram body and the frozen
7162 -- entity is defined in the enclosing scope of this subprogram. In such
7163 -- case we must skip the subprogram body when climbing the parents chain
7164 -- to locate the correct placement for the freezing node.
7166 -- Start of processing for Freeze_Expression
7168 begin
7169 -- Immediate return if freezing is inhibited. This flag is set by the
7170 -- analyzer to stop freezing on generated expressions that would cause
7171 -- freezing if they were in the source program, but which are not
7172 -- supposed to freeze, since they are created.
7174 if Must_Not_Freeze (N) then
7175 return;
7176 end if;
7178 -- If expression is non-static, then it does not freeze in a default
7179 -- expression, see section "Handling of Default Expressions" in the
7180 -- spec of package Sem for further details. Note that we have to make
7181 -- sure that we actually have a real expression (if we have a subtype
7182 -- indication, we can't test Is_OK_Static_Expression). However, we
7183 -- exclude the case of the prefix of an attribute of a static scalar
7184 -- subtype from this early return, because static subtype attributes
7185 -- should always cause freezing, even in default expressions, but
7186 -- the attribute may not have been marked as static yet (because in
7187 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
7188 -- Freeze_Expression on the prefix).
7190 if In_Spec_Exp
7191 and then Nkind (N) in N_Subexpr
7192 and then not Is_OK_Static_Expression (N)
7193 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7194 or else not (Is_Entity_Name (N)
7195 and then Is_Type (Entity (N))
7196 and then Is_OK_Static_Subtype (Entity (N))))
7197 then
7198 return;
7199 end if;
7201 -- Freeze type of expression if not frozen already
7203 Typ := Empty;
7205 if Nkind (N) in N_Has_Etype then
7206 if not Is_Frozen (Etype (N)) then
7207 Typ := Etype (N);
7209 -- Base type may be an derived numeric type that is frozen at the
7210 -- point of declaration, but first_subtype is still unfrozen.
7212 elsif not Is_Frozen (First_Subtype (Etype (N))) then
7213 Typ := First_Subtype (Etype (N));
7214 end if;
7215 end if;
7217 -- For entity name, freeze entity if not frozen already. A special
7218 -- exception occurs for an identifier that did not come from source.
7219 -- We don't let such identifiers freeze a non-internal entity, i.e.
7220 -- an entity that did come from source, since such an identifier was
7221 -- generated by the expander, and cannot have any semantic effect on
7222 -- the freezing semantics. For example, this stops the parameter of
7223 -- an initialization procedure from freezing the variable.
7225 if Is_Entity_Name (N)
7226 and then not Is_Frozen (Entity (N))
7227 and then (Nkind (N) /= N_Identifier
7228 or else Comes_From_Source (N)
7229 or else not Comes_From_Source (Entity (N)))
7230 then
7231 Nam := Entity (N);
7233 if Present (Nam) and then Ekind (Nam) = E_Function then
7234 Check_Expression_Function (N, Nam);
7235 end if;
7237 else
7238 Nam := Empty;
7239 end if;
7241 -- For an allocator freeze designated type if not frozen already
7243 -- For an aggregate whose component type is an access type, freeze the
7244 -- designated type now, so that its freeze does not appear within the
7245 -- loop that might be created in the expansion of the aggregate. If the
7246 -- designated type is a private type without full view, the expression
7247 -- cannot contain an allocator, so the type is not frozen.
7249 -- For a function, we freeze the entity when the subprogram declaration
7250 -- is frozen, but a function call may appear in an initialization proc.
7251 -- before the declaration is frozen. We need to generate the extra
7252 -- formals, if any, to ensure that the expansion of the call includes
7253 -- the proper actuals. This only applies to Ada subprograms, not to
7254 -- imported ones.
7256 Desig_Typ := Empty;
7258 case Nkind (N) is
7259 when N_Allocator =>
7260 Desig_Typ := Designated_Type (Etype (N));
7262 when N_Aggregate =>
7263 if Is_Array_Type (Etype (N))
7264 and then Is_Access_Type (Component_Type (Etype (N)))
7265 then
7266 -- Check whether aggregate includes allocators
7268 Desig_Typ := Find_Aggregate_Component_Desig_Type;
7269 end if;
7271 when N_Indexed_Component
7272 | N_Selected_Component
7273 | N_Slice
7275 if Is_Access_Type (Etype (Prefix (N))) then
7276 Desig_Typ := Designated_Type (Etype (Prefix (N)));
7277 end if;
7279 when N_Identifier =>
7280 if Present (Nam)
7281 and then Ekind (Nam) = E_Function
7282 and then Nkind (Parent (N)) = N_Function_Call
7283 and then Convention (Nam) = Convention_Ada
7284 then
7285 Create_Extra_Formals (Nam);
7286 end if;
7288 when others =>
7289 null;
7290 end case;
7292 if Desig_Typ /= Empty
7293 and then (Is_Frozen (Desig_Typ)
7294 or else (not Is_Fully_Defined (Desig_Typ)))
7295 then
7296 Desig_Typ := Empty;
7297 end if;
7299 -- All done if nothing needs freezing
7301 if No (Typ)
7302 and then No (Nam)
7303 and then No (Desig_Typ)
7304 then
7305 return;
7306 end if;
7308 -- Check if we are inside a subprogram body and the frozen entity is
7309 -- defined in the enclosing scope of this subprogram. In such case we
7310 -- must skip the subprogram when climbing the parents chain to locate
7311 -- the correct placement for the freezing node.
7313 -- This is not needed for default expressions and other spec expressions
7314 -- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb)
7315 -- takes care of placing them at the proper place, after the generic
7316 -- unit.
7318 if Present (Nam)
7319 and then Scope (Nam) /= Current_Scope
7320 and then not (In_Spec_Exp and then Inside_A_Generic)
7321 then
7322 declare
7323 S : Entity_Id := Current_Scope;
7325 begin
7326 while Present (S)
7327 and then In_Same_Source_Unit (Nam, S)
7328 loop
7329 if Scope (S) = Scope (Nam) then
7330 if Is_Subprogram (S) and then Has_Completion (S) then
7331 Freeze_Outside_Subp := S;
7332 end if;
7334 exit;
7335 end if;
7337 S := Scope (S);
7338 end loop;
7339 end;
7340 end if;
7342 -- Examine the enclosing context by climbing the parent chain
7344 -- If we identified that we must freeze the entity outside of a given
7345 -- subprogram then we just climb up to that subprogram checking if some
7346 -- enclosing node is marked as Must_Not_Freeze (since in such case we
7347 -- must not freeze yet this entity).
7349 P := N;
7351 if Present (Freeze_Outside_Subp) then
7352 loop
7353 -- Do not freeze the current expression if another expression in
7354 -- the chain of parents must not be frozen.
7356 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7357 return;
7358 end if;
7360 Parent_P := Parent (P);
7362 -- If we don't have a parent, then we are not in a well-formed
7363 -- tree. This is an unusual case, but there are some legitimate
7364 -- situations in which this occurs, notably when the expressions
7365 -- in the range of a type declaration are resolved. We simply
7366 -- ignore the freeze request in this case.
7368 if No (Parent_P) then
7369 return;
7370 end if;
7372 exit when
7373 Nkind (Parent_P) = N_Subprogram_Body
7374 and then Unique_Defining_Entity (Parent_P) =
7375 Freeze_Outside_Subp;
7377 P := Parent_P;
7378 end loop;
7380 -- Otherwise the traversal serves two purposes - to detect scenarios
7381 -- where freezeing is not needed and to find the proper insertion point
7382 -- for the freeze nodes. Although somewhat similar to Insert_Actions,
7383 -- this traversal is freezing semantics-sensitive. Inserting freeze
7384 -- nodes blindly in the tree may result in types being frozen too early.
7386 else
7387 loop
7388 -- Do not freeze the current expression if another expression in
7389 -- the chain of parents must not be frozen.
7391 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7392 return;
7393 end if;
7395 Parent_P := Parent (P);
7397 -- If we don't have a parent, then we are not in a well-formed
7398 -- tree. This is an unusual case, but there are some legitimate
7399 -- situations in which this occurs, notably when the expressions
7400 -- in the range of a type declaration are resolved. We simply
7401 -- ignore the freeze request in this case. Is this right ???
7403 if No (Parent_P) then
7404 return;
7405 end if;
7407 -- See if we have got to an appropriate point in the tree
7409 case Nkind (Parent_P) is
7411 -- A special test for the exception of (RM 13.14(8)) for the
7412 -- case of per-object expressions (RM 3.8(18)) occurring in
7413 -- component definition or a discrete subtype definition. Note
7414 -- that we test for a component declaration which includes both
7415 -- cases we are interested in, and furthermore the tree does
7416 -- not have explicit nodes for either of these two constructs.
7418 when N_Component_Declaration =>
7420 -- The case we want to test for here is an identifier that
7421 -- is a per-object expression, this is either a discriminant
7422 -- that appears in a context other than the component
7423 -- declaration or it is a reference to the type of the
7424 -- enclosing construct.
7426 -- For either of these cases, we skip the freezing
7428 if not In_Spec_Expression
7429 and then Nkind (N) = N_Identifier
7430 and then (Present (Entity (N)))
7431 then
7432 -- We recognize the discriminant case by just looking for
7433 -- a reference to a discriminant. It can only be one for
7434 -- the enclosing construct. Skip freezing in this case.
7436 if Ekind (Entity (N)) = E_Discriminant then
7437 return;
7439 -- For the case of a reference to the enclosing record,
7440 -- (or task or protected type), we look for a type that
7441 -- matches the current scope.
7443 elsif Entity (N) = Current_Scope then
7444 return;
7445 end if;
7446 end if;
7448 -- If we have an enumeration literal that appears as the choice
7449 -- in the aggregate of an enumeration representation clause,
7450 -- then freezing does not occur (RM 13.14(10)).
7452 when N_Enumeration_Representation_Clause =>
7454 -- The case we are looking for is an enumeration literal
7456 if Nkind_In (N, N_Identifier, N_Character_Literal)
7457 and then Is_Enumeration_Type (Etype (N))
7458 then
7459 -- If enumeration literal appears directly as the choice,
7460 -- do not freeze (this is the normal non-overloaded case)
7462 if Nkind (Parent (N)) = N_Component_Association
7463 and then First (Choices (Parent (N))) = N
7464 then
7465 return;
7467 -- If enumeration literal appears as the name of function
7468 -- which is the choice, then also do not freeze. This
7469 -- happens in the overloaded literal case, where the
7470 -- enumeration literal is temporarily changed to a
7471 -- function call for overloading analysis purposes.
7473 elsif Nkind (Parent (N)) = N_Function_Call
7474 and then Nkind (Parent (Parent (N))) =
7475 N_Component_Association
7476 and then First (Choices (Parent (Parent (N)))) =
7477 Parent (N)
7478 then
7479 return;
7480 end if;
7481 end if;
7483 -- Normally if the parent is a handled sequence of statements,
7484 -- then the current node must be a statement, and that is an
7485 -- appropriate place to insert a freeze node.
7487 when N_Handled_Sequence_Of_Statements =>
7489 -- An exception occurs when the sequence of statements is
7490 -- for an expander generated body that did not do the usual
7491 -- freeze all operation. In this case we usually want to
7492 -- freeze outside this body, not inside it, and we skip
7493 -- past the subprogram body that we are inside.
7495 if In_Expanded_Body (Parent_P) then
7496 declare
7497 Subp : constant Node_Id := Parent (Parent_P);
7498 Spec : Entity_Id;
7500 begin
7501 -- Freeze the entity only when it is declared inside
7502 -- the body of the expander generated procedure.
7503 -- This case is recognized by the scope of the entity
7504 -- or its type, which is either the spec for some
7505 -- enclosing body, or (in the case of init_procs,
7506 -- for which there are no separate specs) the current
7507 -- scope.
7509 if Nkind (Subp) = N_Subprogram_Body then
7510 Spec := Corresponding_Spec (Subp);
7512 if (Present (Typ) and then Scope (Typ) = Spec)
7513 or else
7514 (Present (Nam) and then Scope (Nam) = Spec)
7515 then
7516 exit;
7518 elsif Present (Typ)
7519 and then Scope (Typ) = Current_Scope
7520 and then Defining_Entity (Subp) = Current_Scope
7521 then
7522 exit;
7523 end if;
7524 end if;
7526 -- An expression function may act as a completion of
7527 -- a function declaration. As such, it can reference
7528 -- entities declared between the two views:
7530 -- Hidden []; -- 1
7531 -- function F return ...;
7532 -- private
7533 -- function Hidden return ...;
7534 -- function F return ... is (Hidden); -- 2
7536 -- Refering to the example above, freezing the
7537 -- expression of F (2) would place Hidden's freeze
7538 -- node (1) in the wrong place. Avoid explicit
7539 -- freezing and let the usual scenarios do the job
7540 -- (for example, reaching the end of the private
7541 -- declarations, or a call to F.)
7543 if Nkind (Original_Node (Subp)) = N_Expression_Function
7544 then
7545 null;
7547 -- Freeze outside the body
7549 else
7550 Parent_P := Parent (Parent_P);
7551 Freeze_Outside := True;
7552 end if;
7553 end;
7555 -- Here if normal case where we are in handled statement
7556 -- sequence and want to do the insertion right there.
7558 else
7559 exit;
7560 end if;
7562 -- If parent is a body or a spec or a block, then the current
7563 -- node is a statement or declaration and we can insert the
7564 -- freeze node before it.
7566 when N_Block_Statement
7567 | N_Entry_Body
7568 | N_Package_Body
7569 | N_Package_Specification
7570 | N_Protected_Body
7571 | N_Subprogram_Body
7572 | N_Task_Body
7574 exit;
7576 -- The expander is allowed to define types in any statements
7577 -- list, so any of the following parent nodes also mark a
7578 -- freezing point if the actual node is in a list of
7579 -- statements or declarations.
7581 when N_Abortable_Part
7582 | N_Accept_Alternative
7583 | N_And_Then
7584 | N_Case_Statement_Alternative
7585 | N_Compilation_Unit_Aux
7586 | N_Conditional_Entry_Call
7587 | N_Delay_Alternative
7588 | N_Elsif_Part
7589 | N_Entry_Call_Alternative
7590 | N_Exception_Handler
7591 | N_Extended_Return_Statement
7592 | N_Freeze_Entity
7593 | N_If_Statement
7594 | N_Or_Else
7595 | N_Selective_Accept
7596 | N_Triggering_Alternative
7598 exit when Is_List_Member (P);
7600 -- Freeze nodes produced by an expression coming from the
7601 -- Actions list of a N_Expression_With_Actions node must remain
7602 -- within the Actions list. Inserting the freeze nodes further
7603 -- up the tree may lead to use before declaration issues in the
7604 -- case of array types.
7606 when N_Expression_With_Actions =>
7607 if Is_List_Member (P)
7608 and then List_Containing (P) = Actions (Parent_P)
7609 then
7610 exit;
7611 end if;
7613 -- Note: N_Loop_Statement is a special case. A type that
7614 -- appears in the source can never be frozen in a loop (this
7615 -- occurs only because of a loop expanded by the expander), so
7616 -- we keep on going. Otherwise we terminate the search. Same
7617 -- is true of any entity which comes from source. (if they
7618 -- have predefined type, that type does not appear to come
7619 -- from source, but the entity should not be frozen here).
7621 when N_Loop_Statement =>
7622 exit when not Comes_From_Source (Etype (N))
7623 and then (No (Nam) or else not Comes_From_Source (Nam));
7625 -- For all other cases, keep looking at parents
7627 when others =>
7628 null;
7629 end case;
7631 -- We fall through the case if we did not yet find the proper
7632 -- place in the free for inserting the freeze node, so climb.
7634 P := Parent_P;
7635 end loop;
7636 end if;
7638 -- If the expression appears in a record or an initialization procedure,
7639 -- the freeze nodes are collected and attached to the current scope, to
7640 -- be inserted and analyzed on exit from the scope, to insure that
7641 -- generated entities appear in the correct scope. If the expression is
7642 -- a default for a discriminant specification, the scope is still void.
7643 -- The expression can also appear in the discriminant part of a private
7644 -- or concurrent type.
7646 -- If the expression appears in a constrained subcomponent of an
7647 -- enclosing record declaration, the freeze nodes must be attached to
7648 -- the outer record type so they can eventually be placed in the
7649 -- enclosing declaration list.
7651 -- The other case requiring this special handling is if we are in a
7652 -- default expression, since in that case we are about to freeze a
7653 -- static type, and the freeze scope needs to be the outer scope, not
7654 -- the scope of the subprogram with the default parameter.
7656 -- For default expressions and other spec expressions in generic units,
7657 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7658 -- placing them at the proper place, after the generic unit.
7660 if (In_Spec_Exp and not Inside_A_Generic)
7661 or else Freeze_Outside
7662 or else (Is_Type (Current_Scope)
7663 and then (not Is_Concurrent_Type (Current_Scope)
7664 or else not Has_Completion (Current_Scope)))
7665 or else Ekind (Current_Scope) = E_Void
7666 then
7667 declare
7668 N : constant Node_Id := Current_Scope;
7669 Freeze_Nodes : List_Id := No_List;
7670 Pos : Int := Scope_Stack.Last;
7672 begin
7673 if Present (Desig_Typ) then
7674 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7675 end if;
7677 if Present (Typ) then
7678 Freeze_And_Append (Typ, N, Freeze_Nodes);
7679 end if;
7681 if Present (Nam) then
7682 Freeze_And_Append (Nam, N, Freeze_Nodes);
7683 end if;
7685 -- The current scope may be that of a constrained component of
7686 -- an enclosing record declaration, or of a loop of an enclosing
7687 -- quantified expression, which is above the current scope in the
7688 -- scope stack. Indeed in the context of a quantified expression,
7689 -- a scope is created and pushed above the current scope in order
7690 -- to emulate the loop-like behavior of the quantified expression.
7691 -- If the expression is within a top-level pragma, as for a pre-
7692 -- condition on a library-level subprogram, nothing to do.
7694 if not Is_Compilation_Unit (Current_Scope)
7695 and then (Is_Record_Type (Scope (Current_Scope))
7696 or else Nkind (Parent (Current_Scope)) =
7697 N_Quantified_Expression)
7698 then
7699 Pos := Pos - 1;
7700 end if;
7702 if Is_Non_Empty_List (Freeze_Nodes) then
7703 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7704 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7705 Freeze_Nodes;
7706 else
7707 Append_List (Freeze_Nodes,
7708 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7709 end if;
7710 end if;
7711 end;
7713 return;
7714 end if;
7716 -- Now we have the right place to do the freezing. First, a special
7717 -- adjustment, if we are in spec-expression analysis mode, these freeze
7718 -- actions must not be thrown away (normally all inserted actions are
7719 -- thrown away in this mode. However, the freeze actions are from static
7720 -- expressions and one of the important reasons we are doing this
7721 -- special analysis is to get these freeze actions. Therefore we turn
7722 -- off the In_Spec_Expression mode to propagate these freeze actions.
7723 -- This also means they get properly analyzed and expanded.
7725 In_Spec_Expression := False;
7727 -- Freeze the designated type of an allocator (RM 13.14(13))
7729 if Present (Desig_Typ) then
7730 Freeze_Before (P, Desig_Typ);
7731 end if;
7733 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7734 -- the enumeration representation clause exception in the loop above.
7736 if Present (Typ) then
7737 Freeze_Before (P, Typ);
7738 end if;
7740 -- Freeze name if one is present (RM 13.14(11))
7742 if Present (Nam) then
7743 Freeze_Before (P, Nam);
7744 end if;
7746 -- Restore In_Spec_Expression flag
7748 In_Spec_Expression := In_Spec_Exp;
7749 end Freeze_Expression;
7751 -----------------------
7752 -- Freeze_Expr_Types --
7753 -----------------------
7755 procedure Freeze_Expr_Types
7756 (Def_Id : Entity_Id;
7757 Typ : Entity_Id;
7758 Expr : Node_Id;
7759 N : Node_Id)
7761 function Cloned_Expression return Node_Id;
7762 -- Build a duplicate of the expression of the return statement that has
7763 -- no defining entities shared with the original expression.
7765 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
7766 -- Freeze all types referenced in the subtree rooted at Node
7768 -----------------------
7769 -- Cloned_Expression --
7770 -----------------------
7772 function Cloned_Expression return Node_Id is
7773 function Clone_Id (Node : Node_Id) return Traverse_Result;
7774 -- Tree traversal routine that clones the defining identifier of
7775 -- iterator and loop parameter specification nodes.
7777 --------------
7778 -- Clone_Id --
7779 --------------
7781 function Clone_Id (Node : Node_Id) return Traverse_Result is
7782 begin
7783 if Nkind_In (Node, N_Iterator_Specification,
7784 N_Loop_Parameter_Specification)
7785 then
7786 Set_Defining_Identifier
7787 (Node, New_Copy (Defining_Identifier (Node)));
7788 end if;
7790 return OK;
7791 end Clone_Id;
7793 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
7795 -- Local variable
7797 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
7799 -- Start of processing for Cloned_Expression
7801 begin
7802 -- We must duplicate the expression with semantic information to
7803 -- inherit the decoration of global entities in generic instances.
7804 -- Set the parent of the new node to be the parent of the original
7805 -- to get the proper context, which is needed for complete error
7806 -- reporting and for semantic analysis.
7808 Set_Parent (Dup_Expr, Parent (Expr));
7810 -- Replace the defining identifier of iterators and loop param
7811 -- specifications by a clone to ensure that the cloned expression
7812 -- and the original expression don't have shared identifiers;
7813 -- otherwise, as part of the preanalysis of the expression, these
7814 -- shared identifiers may be left decorated with itypes which
7815 -- will not be available in the tree passed to the backend.
7817 Clone_Def_Ids (Dup_Expr);
7819 return Dup_Expr;
7820 end Cloned_Expression;
7822 ----------------------
7823 -- Freeze_Type_Refs --
7824 ----------------------
7826 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
7827 procedure Check_And_Freeze_Type (Typ : Entity_Id);
7828 -- Check that Typ is fully declared and freeze it if so
7830 ---------------------------
7831 -- Check_And_Freeze_Type --
7832 ---------------------------
7834 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
7835 begin
7836 -- Skip Itypes created by the preanalysis, and itypes whose
7837 -- scope is another type (i.e. component subtypes that depend
7838 -- on a discriminant),
7840 if Is_Itype (Typ)
7841 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
7842 or else Is_Type (Scope (Typ)))
7843 then
7844 return;
7845 end if;
7847 -- This provides a better error message than generating primitives
7848 -- whose compilation fails much later. Refine the error message if
7849 -- possible.
7851 Check_Fully_Declared (Typ, Node);
7853 if Error_Posted (Node) then
7854 if Has_Private_Component (Typ)
7855 and then not Is_Private_Type (Typ)
7856 then
7857 Error_Msg_NE ("\type& has private component", Node, Typ);
7858 end if;
7860 else
7861 Freeze_Before (N, Typ);
7862 end if;
7863 end Check_And_Freeze_Type;
7865 -- Start of processing for Freeze_Type_Refs
7867 begin
7868 -- Check that a type referenced by an entity can be frozen
7870 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
7871 Check_And_Freeze_Type (Etype (Entity (Node)));
7873 -- Check that the enclosing record type can be frozen
7875 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
7876 Check_And_Freeze_Type (Scope (Entity (Node)));
7877 end if;
7879 -- Freezing an access type does not freeze the designated type, but
7880 -- freezing conversions between access to interfaces requires that
7881 -- the interface types themselves be frozen, so that dispatch table
7882 -- entities are properly created.
7884 -- Unclear whether a more general rule is needed ???
7886 elsif Nkind (Node) = N_Type_Conversion
7887 and then Is_Access_Type (Etype (Node))
7888 and then Is_Interface (Designated_Type (Etype (Node)))
7889 then
7890 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7891 end if;
7893 -- An implicit dereference freezes the designated type. In the case
7894 -- of a dispatching call whose controlling argument is an access
7895 -- type, the dereference is not made explicit, so we must check for
7896 -- such a call and freeze the designated type.
7898 if Nkind (Node) in N_Has_Etype
7899 and then Present (Etype (Node))
7900 and then Is_Access_Type (Etype (Node))
7901 and then Nkind (Parent (Node)) = N_Function_Call
7902 and then Node = Controlling_Argument (Parent (Node))
7903 then
7904 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7905 end if;
7907 -- No point in posting several errors on the same expression
7909 if Serious_Errors_Detected > 0 then
7910 return Abandon;
7911 else
7912 return OK;
7913 end if;
7914 end Freeze_Type_Refs;
7916 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
7918 -- Local variables
7920 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
7921 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
7922 Dup_Expr : constant Node_Id := Cloned_Expression;
7924 -- Start of processing for Freeze_Expr_Types
7926 begin
7927 -- Preanalyze a duplicate of the expression to have available the
7928 -- minimum decoration needed to locate referenced unfrozen types
7929 -- without adding any decoration to the function expression.
7931 -- This routine is also applied to expressions in the contract for
7932 -- the subprogram. If that happens when expanding the code for
7933 -- pre/postconditions during expansion of the subprogram body, the
7934 -- subprogram is already installed.
7936 if Def_Id /= Current_Scope then
7937 Push_Scope (Def_Id);
7938 Install_Formals (Def_Id);
7940 Preanalyze_Spec_Expression (Dup_Expr, Typ);
7941 End_Scope;
7942 else
7943 Preanalyze_Spec_Expression (Dup_Expr, Typ);
7944 end if;
7946 -- Restore certain attributes of Def_Id since the preanalysis may
7947 -- have introduced itypes to this scope, thus modifying attributes
7948 -- First_Entity and Last_Entity.
7950 Set_First_Entity (Def_Id, Saved_First_Entity);
7951 Set_Last_Entity (Def_Id, Saved_Last_Entity);
7953 if Present (Last_Entity (Def_Id)) then
7954 Set_Next_Entity (Last_Entity (Def_Id), Empty);
7955 end if;
7957 -- Freeze all types referenced in the expression
7959 Freeze_References (Dup_Expr);
7960 end Freeze_Expr_Types;
7962 -----------------------------
7963 -- Freeze_Fixed_Point_Type --
7964 -----------------------------
7966 -- Certain fixed-point types and subtypes, including implicit base types
7967 -- and declared first subtypes, have not yet set up a range. This is
7968 -- because the range cannot be set until the Small and Size values are
7969 -- known, and these are not known till the type is frozen.
7971 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7972 -- whose bounds are unanalyzed real literals. This routine will recognize
7973 -- this case, and transform this range node into a properly typed range
7974 -- with properly analyzed and resolved values.
7976 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7977 Rng : constant Node_Id := Scalar_Range (Typ);
7978 Lo : constant Node_Id := Low_Bound (Rng);
7979 Hi : constant Node_Id := High_Bound (Rng);
7980 Btyp : constant Entity_Id := Base_Type (Typ);
7981 Brng : constant Node_Id := Scalar_Range (Btyp);
7982 BLo : constant Node_Id := Low_Bound (Brng);
7983 BHi : constant Node_Id := High_Bound (Brng);
7984 Small : constant Ureal := Small_Value (Typ);
7985 Loval : Ureal;
7986 Hival : Ureal;
7987 Atype : Entity_Id;
7989 Orig_Lo : Ureal;
7990 Orig_Hi : Ureal;
7991 -- Save original bounds (for shaving tests)
7993 Actual_Size : Nat;
7994 -- Actual size chosen
7996 function Fsize (Lov, Hiv : Ureal) return Nat;
7997 -- Returns size of type with given bounds. Also leaves these
7998 -- bounds set as the current bounds of the Typ.
8000 -----------
8001 -- Fsize --
8002 -----------
8004 function Fsize (Lov, Hiv : Ureal) return Nat is
8005 begin
8006 Set_Realval (Lo, Lov);
8007 Set_Realval (Hi, Hiv);
8008 return Minimum_Size (Typ);
8009 end Fsize;
8011 -- Start of processing for Freeze_Fixed_Point_Type
8013 begin
8014 -- The type, or its first subtype if we are freezing the anonymous
8015 -- base, may have a delayed Small aspect. It must be analyzed now,
8016 -- so that all characteristics of the type (size, bounds) can be
8017 -- computed and validated in the call to Minimum_Size that follows.
8019 if Has_Delayed_Aspects (First_Subtype (Typ)) then
8020 Analyze_Aspects_At_Freeze_Point (First_Subtype (Typ));
8021 Set_Has_Delayed_Aspects (First_Subtype (Typ), False);
8022 end if;
8024 -- If Esize of a subtype has not previously been set, set it now
8026 if Unknown_Esize (Typ) then
8027 Atype := Ancestor_Subtype (Typ);
8029 if Present (Atype) then
8030 Set_Esize (Typ, Esize (Atype));
8031 else
8032 Set_Esize (Typ, Esize (Base_Type (Typ)));
8033 end if;
8034 end if;
8036 -- Immediate return if the range is already analyzed. This means that
8037 -- the range is already set, and does not need to be computed by this
8038 -- routine.
8040 if Analyzed (Rng) then
8041 return;
8042 end if;
8044 -- Immediate return if either of the bounds raises Constraint_Error
8046 if Raises_Constraint_Error (Lo)
8047 or else Raises_Constraint_Error (Hi)
8048 then
8049 return;
8050 end if;
8052 Loval := Realval (Lo);
8053 Hival := Realval (Hi);
8055 Orig_Lo := Loval;
8056 Orig_Hi := Hival;
8058 -- Ordinary fixed-point case
8060 if Is_Ordinary_Fixed_Point_Type (Typ) then
8062 -- For the ordinary fixed-point case, we are allowed to fudge the
8063 -- end-points up or down by small. Generally we prefer to fudge up,
8064 -- i.e. widen the bounds for non-model numbers so that the end points
8065 -- are included. However there are cases in which this cannot be
8066 -- done, and indeed cases in which we may need to narrow the bounds.
8067 -- The following circuit makes the decision.
8069 -- Note: our terminology here is that Incl_EP means that the bounds
8070 -- are widened by Small if necessary to include the end points, and
8071 -- Excl_EP means that the bounds are narrowed by Small to exclude the
8072 -- end-points if this reduces the size.
8074 -- Note that in the Incl case, all we care about is including the
8075 -- end-points. In the Excl case, we want to narrow the bounds as
8076 -- much as permitted by the RM, to give the smallest possible size.
8078 Fudge : declare
8079 Loval_Incl_EP : Ureal;
8080 Hival_Incl_EP : Ureal;
8082 Loval_Excl_EP : Ureal;
8083 Hival_Excl_EP : Ureal;
8085 Size_Incl_EP : Nat;
8086 Size_Excl_EP : Nat;
8088 Model_Num : Ureal;
8089 First_Subt : Entity_Id;
8090 Actual_Lo : Ureal;
8091 Actual_Hi : Ureal;
8093 begin
8094 -- First step. Base types are required to be symmetrical. Right
8095 -- now, the base type range is a copy of the first subtype range.
8096 -- This will be corrected before we are done, but right away we
8097 -- need to deal with the case where both bounds are non-negative.
8098 -- In this case, we set the low bound to the negative of the high
8099 -- bound, to make sure that the size is computed to include the
8100 -- required sign. Note that we do not need to worry about the
8101 -- case of both bounds negative, because the sign will be dealt
8102 -- with anyway. Furthermore we can't just go making such a bound
8103 -- symmetrical, since in a twos-complement system, there is an
8104 -- extra negative value which could not be accommodated on the
8105 -- positive side.
8107 if Typ = Btyp
8108 and then not UR_Is_Negative (Loval)
8109 and then Hival > Loval
8110 then
8111 Loval := -Hival;
8112 Set_Realval (Lo, Loval);
8113 end if;
8115 -- Compute the fudged bounds. If the bound is a model number, (or
8116 -- greater if given low bound, smaller if high bound) then we do
8117 -- nothing to include it, but we are allowed to backoff to the
8118 -- next adjacent model number when we exclude it. If it is not a
8119 -- model number then we straddle the two values with the model
8120 -- numbers on either side.
8122 Model_Num := UR_Trunc (Loval / Small) * Small;
8124 if UR_Ge (Loval, Model_Num) then
8125 Loval_Incl_EP := Model_Num;
8126 else
8127 Loval_Incl_EP := Model_Num - Small;
8128 end if;
8130 -- The low value excluding the end point is Small greater, but
8131 -- we do not do this exclusion if the low value is positive,
8132 -- since it can't help the size and could actually hurt by
8133 -- crossing the high bound.
8135 if UR_Is_Negative (Loval_Incl_EP) then
8136 Loval_Excl_EP := Loval_Incl_EP + Small;
8138 -- If the value went from negative to zero, then we have the
8139 -- case where Loval_Incl_EP is the model number just below
8140 -- zero, so we want to stick to the negative value for the
8141 -- base type to maintain the condition that the size will
8142 -- include signed values.
8144 if Typ = Btyp
8145 and then UR_Is_Zero (Loval_Excl_EP)
8146 then
8147 Loval_Excl_EP := Loval_Incl_EP;
8148 end if;
8150 else
8151 Loval_Excl_EP := Loval_Incl_EP;
8152 end if;
8154 -- Similar processing for upper bound and high value
8156 Model_Num := UR_Trunc (Hival / Small) * Small;
8158 if UR_Le (Hival, Model_Num) then
8159 Hival_Incl_EP := Model_Num;
8160 else
8161 Hival_Incl_EP := Model_Num + Small;
8162 end if;
8164 if UR_Is_Positive (Hival_Incl_EP) then
8165 Hival_Excl_EP := Hival_Incl_EP - Small;
8166 else
8167 Hival_Excl_EP := Hival_Incl_EP;
8168 end if;
8170 -- One further adjustment is needed. In the case of subtypes, we
8171 -- cannot go outside the range of the base type, or we get
8172 -- peculiarities, and the base type range is already set. This
8173 -- only applies to the Incl values, since clearly the Excl values
8174 -- are already as restricted as they are allowed to be.
8176 if Typ /= Btyp then
8177 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
8178 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
8179 end if;
8181 -- Get size including and excluding end points
8183 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
8184 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
8186 -- No need to exclude end-points if it does not reduce size
8188 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
8189 Loval_Excl_EP := Loval_Incl_EP;
8190 end if;
8192 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
8193 Hival_Excl_EP := Hival_Incl_EP;
8194 end if;
8196 -- Now we set the actual size to be used. We want to use the
8197 -- bounds fudged up to include the end-points but only if this
8198 -- can be done without violating a specifically given size
8199 -- size clause or causing an unacceptable increase in size.
8201 -- Case of size clause given
8203 if Has_Size_Clause (Typ) then
8205 -- Use the inclusive size only if it is consistent with
8206 -- the explicitly specified size.
8208 if Size_Incl_EP <= RM_Size (Typ) then
8209 Actual_Lo := Loval_Incl_EP;
8210 Actual_Hi := Hival_Incl_EP;
8211 Actual_Size := Size_Incl_EP;
8213 -- If the inclusive size is too large, we try excluding
8214 -- the end-points (will be caught later if does not work).
8216 else
8217 Actual_Lo := Loval_Excl_EP;
8218 Actual_Hi := Hival_Excl_EP;
8219 Actual_Size := Size_Excl_EP;
8220 end if;
8222 -- Case of size clause not given
8224 else
8225 -- If we have a base type whose corresponding first subtype
8226 -- has an explicit size that is large enough to include our
8227 -- end-points, then do so. There is no point in working hard
8228 -- to get a base type whose size is smaller than the specified
8229 -- size of the first subtype.
8231 First_Subt := First_Subtype (Typ);
8233 if Has_Size_Clause (First_Subt)
8234 and then Size_Incl_EP <= Esize (First_Subt)
8235 then
8236 Actual_Size := Size_Incl_EP;
8237 Actual_Lo := Loval_Incl_EP;
8238 Actual_Hi := Hival_Incl_EP;
8240 -- If excluding the end-points makes the size smaller and
8241 -- results in a size of 8,16,32,64, then we take the smaller
8242 -- size. For the 64 case, this is compulsory. For the other
8243 -- cases, it seems reasonable. We like to include end points
8244 -- if we can, but not at the expense of moving to the next
8245 -- natural boundary of size.
8247 elsif Size_Incl_EP /= Size_Excl_EP
8248 and then Addressable (Size_Excl_EP)
8249 then
8250 Actual_Size := Size_Excl_EP;
8251 Actual_Lo := Loval_Excl_EP;
8252 Actual_Hi := Hival_Excl_EP;
8254 -- Otherwise we can definitely include the end points
8256 else
8257 Actual_Size := Size_Incl_EP;
8258 Actual_Lo := Loval_Incl_EP;
8259 Actual_Hi := Hival_Incl_EP;
8260 end if;
8262 -- One pathological case: normally we never fudge a low bound
8263 -- down, since it would seem to increase the size (if it has
8264 -- any effect), but for ranges containing single value, or no
8265 -- values, the high bound can be small too large. Consider:
8267 -- type t is delta 2.0**(-14)
8268 -- range 131072.0 .. 0;
8270 -- That lower bound is *just* outside the range of 32 bits, and
8271 -- does need fudging down in this case. Note that the bounds
8272 -- will always have crossed here, since the high bound will be
8273 -- fudged down if necessary, as in the case of:
8275 -- type t is delta 2.0**(-14)
8276 -- range 131072.0 .. 131072.0;
8278 -- So we detect the situation by looking for crossed bounds,
8279 -- and if the bounds are crossed, and the low bound is greater
8280 -- than zero, we will always back it off by small, since this
8281 -- is completely harmless.
8283 if Actual_Lo > Actual_Hi then
8284 if UR_Is_Positive (Actual_Lo) then
8285 Actual_Lo := Loval_Incl_EP - Small;
8286 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8288 -- And of course, we need to do exactly the same parallel
8289 -- fudge for flat ranges in the negative region.
8291 elsif UR_Is_Negative (Actual_Hi) then
8292 Actual_Hi := Hival_Incl_EP + Small;
8293 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8294 end if;
8295 end if;
8296 end if;
8298 Set_Realval (Lo, Actual_Lo);
8299 Set_Realval (Hi, Actual_Hi);
8300 end Fudge;
8302 -- For the decimal case, none of this fudging is required, since there
8303 -- are no end-point problems in the decimal case (the end-points are
8304 -- always included).
8306 else
8307 Actual_Size := Fsize (Loval, Hival);
8308 end if;
8310 -- At this stage, the actual size has been calculated and the proper
8311 -- required bounds are stored in the low and high bounds.
8313 if Actual_Size > 64 then
8314 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
8315 Error_Msg_N
8316 ("size required (^) for type& too large, maximum allowed is 64",
8317 Typ);
8318 Actual_Size := 64;
8319 end if;
8321 -- Check size against explicit given size
8323 if Has_Size_Clause (Typ) then
8324 if Actual_Size > RM_Size (Typ) then
8325 Error_Msg_Uint_1 := RM_Size (Typ);
8326 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
8327 Error_Msg_NE
8328 ("size given (^) for type& too small, minimum allowed is ^",
8329 Size_Clause (Typ), Typ);
8331 else
8332 Actual_Size := UI_To_Int (Esize (Typ));
8333 end if;
8335 -- Increase size to next natural boundary if no size clause given
8337 else
8338 if Actual_Size <= 8 then
8339 Actual_Size := 8;
8340 elsif Actual_Size <= 16 then
8341 Actual_Size := 16;
8342 elsif Actual_Size <= 32 then
8343 Actual_Size := 32;
8344 else
8345 Actual_Size := 64;
8346 end if;
8348 Init_Esize (Typ, Actual_Size);
8349 Adjust_Esize_For_Alignment (Typ);
8350 end if;
8352 -- If we have a base type, then expand the bounds so that they extend to
8353 -- the full width of the allocated size in bits, to avoid junk range
8354 -- checks on intermediate computations.
8356 if Base_Type (Typ) = Typ then
8357 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
8358 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
8359 end if;
8361 -- Final step is to reanalyze the bounds using the proper type
8362 -- and set the Corresponding_Integer_Value fields of the literals.
8364 Set_Etype (Lo, Empty);
8365 Set_Analyzed (Lo, False);
8366 Analyze (Lo);
8368 -- Resolve with universal fixed if the base type, and the base type if
8369 -- it is a subtype. Note we can't resolve the base type with itself,
8370 -- that would be a reference before definition.
8372 if Typ = Btyp then
8373 Resolve (Lo, Universal_Fixed);
8374 else
8375 Resolve (Lo, Btyp);
8376 end if;
8378 -- Set corresponding integer value for bound
8380 Set_Corresponding_Integer_Value
8381 (Lo, UR_To_Uint (Realval (Lo) / Small));
8383 -- Similar processing for high bound
8385 Set_Etype (Hi, Empty);
8386 Set_Analyzed (Hi, False);
8387 Analyze (Hi);
8389 if Typ = Btyp then
8390 Resolve (Hi, Universal_Fixed);
8391 else
8392 Resolve (Hi, Btyp);
8393 end if;
8395 Set_Corresponding_Integer_Value
8396 (Hi, UR_To_Uint (Realval (Hi) / Small));
8398 -- Set type of range to correspond to bounds
8400 Set_Etype (Rng, Etype (Lo));
8402 -- Set Esize to calculated size if not set already
8404 if Unknown_Esize (Typ) then
8405 Init_Esize (Typ, Actual_Size);
8406 end if;
8408 -- Set RM_Size if not already set. If already set, check value
8410 declare
8411 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
8413 begin
8414 if RM_Size (Typ) /= Uint_0 then
8415 if RM_Size (Typ) < Minsiz then
8416 Error_Msg_Uint_1 := RM_Size (Typ);
8417 Error_Msg_Uint_2 := Minsiz;
8418 Error_Msg_NE
8419 ("size given (^) for type& too small, minimum allowed is ^",
8420 Size_Clause (Typ), Typ);
8421 end if;
8423 else
8424 Set_RM_Size (Typ, Minsiz);
8425 end if;
8426 end;
8428 -- Check for shaving
8430 if Comes_From_Source (Typ) then
8432 -- In SPARK mode the given bounds must be strictly representable
8434 if SPARK_Mode = On then
8435 if Orig_Lo < Expr_Value_R (Lo) then
8436 Error_Msg_NE
8437 ("declared low bound of type & is outside type range",
8438 Lo, Typ);
8439 end if;
8441 if Orig_Hi > Expr_Value_R (Hi) then
8442 Error_Msg_NE
8443 ("declared high bound of type & is outside type range",
8444 Hi, Typ);
8445 end if;
8447 else
8448 if Orig_Lo < Expr_Value_R (Lo) then
8449 Error_Msg_N
8450 ("declared low bound of type & is outside type range??", Typ);
8451 Error_Msg_N
8452 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
8453 end if;
8455 if Orig_Hi > Expr_Value_R (Hi) then
8456 Error_Msg_N
8457 ("declared high bound of type & is outside type range??",
8458 Typ);
8459 Error_Msg_N
8460 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
8461 end if;
8462 end if;
8463 end if;
8464 end Freeze_Fixed_Point_Type;
8466 ------------------
8467 -- Freeze_Itype --
8468 ------------------
8470 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
8471 L : List_Id;
8473 begin
8474 Set_Has_Delayed_Freeze (T);
8475 L := Freeze_Entity (T, N);
8477 if Is_Non_Empty_List (L) then
8478 Insert_Actions (N, L);
8479 end if;
8480 end Freeze_Itype;
8482 --------------------------
8483 -- Freeze_Static_Object --
8484 --------------------------
8486 procedure Freeze_Static_Object (E : Entity_Id) is
8488 Cannot_Be_Static : exception;
8489 -- Exception raised if the type of a static object cannot be made
8490 -- static. This happens if the type depends on non-global objects.
8492 procedure Ensure_Expression_Is_SA (N : Node_Id);
8493 -- Called to ensure that an expression used as part of a type definition
8494 -- is statically allocatable, which means that the expression type is
8495 -- statically allocatable, and the expression is either static, or a
8496 -- reference to a library level constant.
8498 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
8499 -- Called to mark a type as static, checking that it is possible
8500 -- to set the type as static. If it is not possible, then the
8501 -- exception Cannot_Be_Static is raised.
8503 -----------------------------
8504 -- Ensure_Expression_Is_SA --
8505 -----------------------------
8507 procedure Ensure_Expression_Is_SA (N : Node_Id) is
8508 Ent : Entity_Id;
8510 begin
8511 Ensure_Type_Is_SA (Etype (N));
8513 if Is_OK_Static_Expression (N) then
8514 return;
8516 elsif Nkind (N) = N_Identifier then
8517 Ent := Entity (N);
8519 if Present (Ent)
8520 and then Ekind (Ent) = E_Constant
8521 and then Is_Library_Level_Entity (Ent)
8522 then
8523 return;
8524 end if;
8525 end if;
8527 raise Cannot_Be_Static;
8528 end Ensure_Expression_Is_SA;
8530 -----------------------
8531 -- Ensure_Type_Is_SA --
8532 -----------------------
8534 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
8535 N : Node_Id;
8536 C : Entity_Id;
8538 begin
8539 -- If type is library level, we are all set
8541 if Is_Library_Level_Entity (Typ) then
8542 return;
8543 end if;
8545 -- We are also OK if the type already marked as statically allocated,
8546 -- which means we processed it before.
8548 if Is_Statically_Allocated (Typ) then
8549 return;
8550 end if;
8552 -- Mark type as statically allocated
8554 Set_Is_Statically_Allocated (Typ);
8556 -- Check that it is safe to statically allocate this type
8558 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
8559 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
8560 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
8562 elsif Is_Array_Type (Typ) then
8563 N := First_Index (Typ);
8564 while Present (N) loop
8565 Ensure_Type_Is_SA (Etype (N));
8566 Next_Index (N);
8567 end loop;
8569 Ensure_Type_Is_SA (Component_Type (Typ));
8571 elsif Is_Access_Type (Typ) then
8572 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
8574 declare
8575 F : Entity_Id;
8576 T : constant Entity_Id := Etype (Designated_Type (Typ));
8578 begin
8579 if T /= Standard_Void_Type then
8580 Ensure_Type_Is_SA (T);
8581 end if;
8583 F := First_Formal (Designated_Type (Typ));
8584 while Present (F) loop
8585 Ensure_Type_Is_SA (Etype (F));
8586 Next_Formal (F);
8587 end loop;
8588 end;
8590 else
8591 Ensure_Type_Is_SA (Designated_Type (Typ));
8592 end if;
8594 elsif Is_Record_Type (Typ) then
8595 C := First_Entity (Typ);
8596 while Present (C) loop
8597 if Ekind (C) = E_Discriminant
8598 or else Ekind (C) = E_Component
8599 then
8600 Ensure_Type_Is_SA (Etype (C));
8602 elsif Is_Type (C) then
8603 Ensure_Type_Is_SA (C);
8604 end if;
8606 Next_Entity (C);
8607 end loop;
8609 elsif Ekind (Typ) = E_Subprogram_Type then
8610 Ensure_Type_Is_SA (Etype (Typ));
8612 C := First_Formal (Typ);
8613 while Present (C) loop
8614 Ensure_Type_Is_SA (Etype (C));
8615 Next_Formal (C);
8616 end loop;
8618 else
8619 raise Cannot_Be_Static;
8620 end if;
8621 end Ensure_Type_Is_SA;
8623 -- Start of processing for Freeze_Static_Object
8625 begin
8626 Ensure_Type_Is_SA (Etype (E));
8628 exception
8629 when Cannot_Be_Static =>
8631 -- If the object that cannot be static is imported or exported, then
8632 -- issue an error message saying that this object cannot be imported
8633 -- or exported. If it has an address clause it is an overlay in the
8634 -- current partition and the static requirement is not relevant.
8635 -- Do not issue any error message when ignoring rep clauses.
8637 if Ignore_Rep_Clauses then
8638 null;
8640 elsif Is_Imported (E) then
8641 if No (Address_Clause (E)) then
8642 Error_Msg_N
8643 ("& cannot be imported (local type is not constant)", E);
8644 end if;
8646 -- Otherwise must be exported, something is wrong if compiler
8647 -- is marking something as statically allocated which cannot be).
8649 else pragma Assert (Is_Exported (E));
8650 Error_Msg_N
8651 ("& cannot be exported (local type is not constant)", E);
8652 end if;
8653 end Freeze_Static_Object;
8655 -----------------------
8656 -- Freeze_Subprogram --
8657 -----------------------
8659 procedure Freeze_Subprogram (E : Entity_Id) is
8660 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
8661 -- Set the conventions of all anonymous access-to-subprogram formals and
8662 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8664 ----------------------------
8665 -- Set_Profile_Convention --
8666 ----------------------------
8668 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
8669 Conv : constant Convention_Id := Convention (Subp_Id);
8671 procedure Set_Type_Convention (Typ : Entity_Id);
8672 -- Set the convention of anonymous access-to-subprogram type Typ and
8673 -- its designated type to Conv.
8675 -------------------------
8676 -- Set_Type_Convention --
8677 -------------------------
8679 procedure Set_Type_Convention (Typ : Entity_Id) is
8680 begin
8681 -- Set the convention on both the anonymous access-to-subprogram
8682 -- type and the subprogram type it points to because both types
8683 -- participate in conformance-related checks.
8685 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
8686 Set_Convention (Typ, Conv);
8687 Set_Convention (Designated_Type (Typ), Conv);
8688 end if;
8689 end Set_Type_Convention;
8691 -- Local variables
8693 Formal : Entity_Id;
8695 -- Start of processing for Set_Profile_Convention
8697 begin
8698 Formal := First_Formal (Subp_Id);
8699 while Present (Formal) loop
8700 Set_Type_Convention (Etype (Formal));
8701 Next_Formal (Formal);
8702 end loop;
8704 if Ekind (Subp_Id) = E_Function then
8705 Set_Type_Convention (Etype (Subp_Id));
8706 end if;
8707 end Set_Profile_Convention;
8709 -- Local variables
8711 F : Entity_Id;
8712 Retype : Entity_Id;
8714 -- Start of processing for Freeze_Subprogram
8716 begin
8717 -- Subprogram may not have an address clause unless it is imported
8719 if Present (Address_Clause (E)) then
8720 if not Is_Imported (E) then
8721 Error_Msg_N
8722 ("address clause can only be given for imported subprogram",
8723 Name (Address_Clause (E)));
8724 end if;
8725 end if;
8727 -- Reset the Pure indication on an imported subprogram unless an
8728 -- explicit Pure_Function pragma was present or the subprogram is an
8729 -- intrinsic. We do this because otherwise it is an insidious error
8730 -- to call a non-pure function from pure unit and have calls
8731 -- mysteriously optimized away. What happens here is that the Import
8732 -- can bypass the normal check to ensure that pure units call only pure
8733 -- subprograms.
8735 -- The reason for the intrinsic exception is that in general, intrinsic
8736 -- functions (such as shifts) are pure anyway. The only exceptions are
8737 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8738 -- in any case, so no problem arises.
8740 if Is_Imported (E)
8741 and then Is_Pure (E)
8742 and then not Has_Pragma_Pure_Function (E)
8743 and then not Is_Intrinsic_Subprogram (E)
8744 then
8745 Set_Is_Pure (E, False);
8746 end if;
8748 -- We also reset the Pure indication on a subprogram with an Address
8749 -- parameter, because the parameter may be used as a pointer and the
8750 -- referenced data may change even if the address value does not.
8752 -- Note that if the programmer gave an explicit Pure_Function pragma,
8753 -- then we believe the programmer, and leave the subprogram Pure. We
8754 -- also suppress this check on run-time files.
8756 if Is_Pure (E)
8757 and then Is_Subprogram (E)
8758 and then not Has_Pragma_Pure_Function (E)
8759 and then not Is_Internal_Unit (Current_Sem_Unit)
8760 then
8761 Check_Function_With_Address_Parameter (E);
8762 end if;
8764 -- Ensure that all anonymous access-to-subprogram types inherit the
8765 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8766 -- not done for a defaulted convention Ada because those types also
8767 -- default to Ada. Convention Protected must not be propagated when
8768 -- the subprogram is an entry because this would be illegal. The only
8769 -- way to force convention Protected on these kinds of types is to
8770 -- include keyword "protected" in the access definition.
8772 if Convention (E) /= Convention_Ada
8773 and then Convention (E) /= Convention_Protected
8774 then
8775 Set_Profile_Convention (E);
8776 end if;
8778 -- For non-foreign convention subprograms, this is where we create
8779 -- the extra formals (for accessibility level and constrained bit
8780 -- information). We delay this till the freeze point precisely so
8781 -- that we know the convention.
8783 if not Has_Foreign_Convention (E) then
8784 if No (Extra_Formals (E)) then
8785 Create_Extra_Formals (E);
8786 end if;
8788 Set_Mechanisms (E);
8790 -- If this is convention Ada and a Valued_Procedure, that's odd
8792 if Ekind (E) = E_Procedure
8793 and then Is_Valued_Procedure (E)
8794 and then Convention (E) = Convention_Ada
8795 and then Warn_On_Export_Import
8796 then
8797 Error_Msg_N
8798 ("??Valued_Procedure has no effect for convention Ada", E);
8799 Set_Is_Valued_Procedure (E, False);
8800 end if;
8802 -- Case of foreign convention
8804 else
8805 Set_Mechanisms (E);
8807 -- For foreign conventions, warn about return of unconstrained array
8809 if Ekind (E) = E_Function then
8810 Retype := Underlying_Type (Etype (E));
8812 -- If no return type, probably some other error, e.g. a
8813 -- missing full declaration, so ignore.
8815 if No (Retype) then
8816 null;
8818 -- If the return type is generic, we have emitted a warning
8819 -- earlier on, and there is nothing else to check here. Specific
8820 -- instantiations may lead to erroneous behavior.
8822 elsif Is_Generic_Type (Etype (E)) then
8823 null;
8825 -- Display warning if returning unconstrained array
8827 elsif Is_Array_Type (Retype)
8828 and then not Is_Constrained (Retype)
8830 -- Check appropriate warning is enabled (should we check for
8831 -- Warnings (Off) on specific entities here, probably so???)
8833 and then Warn_On_Export_Import
8834 then
8835 Error_Msg_N
8836 ("?x?foreign convention function& should not return " &
8837 "unconstrained array", E);
8838 return;
8839 end if;
8840 end if;
8842 -- If any of the formals for an exported foreign convention
8843 -- subprogram have defaults, then emit an appropriate warning since
8844 -- this is odd (default cannot be used from non-Ada code)
8846 if Is_Exported (E) then
8847 F := First_Formal (E);
8848 while Present (F) loop
8849 if Warn_On_Export_Import
8850 and then Present (Default_Value (F))
8851 then
8852 Error_Msg_N
8853 ("?x?parameter cannot be defaulted in non-Ada call",
8854 Default_Value (F));
8855 end if;
8857 Next_Formal (F);
8858 end loop;
8859 end if;
8860 end if;
8862 -- Pragma Inline_Always is disallowed for dispatching subprograms
8863 -- because the address of such subprograms is saved in the dispatch
8864 -- table to support dispatching calls, and dispatching calls cannot
8865 -- be inlined. This is consistent with the restriction against using
8866 -- 'Access or 'Address on an Inline_Always subprogram.
8868 if Is_Dispatching_Operation (E)
8869 and then Has_Pragma_Inline_Always (E)
8870 then
8871 Error_Msg_N
8872 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8873 end if;
8875 -- Because of the implicit representation of inherited predefined
8876 -- operators in the front-end, the overriding status of the operation
8877 -- may be affected when a full view of a type is analyzed, and this is
8878 -- not captured by the analysis of the corresponding type declaration.
8879 -- Therefore the correctness of a not-overriding indicator must be
8880 -- rechecked when the subprogram is frozen.
8882 if Nkind (E) = N_Defining_Operator_Symbol
8883 and then not Error_Posted (Parent (E))
8884 then
8885 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8886 end if;
8888 if Modify_Tree_For_C
8889 and then Nkind (Parent (E)) = N_Function_Specification
8890 and then Is_Array_Type (Etype (E))
8891 and then Is_Constrained (Etype (E))
8892 and then not Is_Unchecked_Conversion_Instance (E)
8893 and then not Rewritten_For_C (E)
8894 then
8895 Build_Procedure_Form (Unit_Declaration_Node (E));
8896 end if;
8897 end Freeze_Subprogram;
8899 ----------------------
8900 -- Is_Fully_Defined --
8901 ----------------------
8903 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8904 begin
8905 if Ekind (T) = E_Class_Wide_Type then
8906 return Is_Fully_Defined (Etype (T));
8908 elsif Is_Array_Type (T) then
8909 return Is_Fully_Defined (Component_Type (T));
8911 elsif Is_Record_Type (T)
8912 and not Is_Private_Type (T)
8913 then
8914 -- Verify that the record type has no components with private types
8915 -- without completion.
8917 declare
8918 Comp : Entity_Id;
8920 begin
8921 Comp := First_Component (T);
8922 while Present (Comp) loop
8923 if not Is_Fully_Defined (Etype (Comp)) then
8924 return False;
8925 end if;
8927 Next_Component (Comp);
8928 end loop;
8929 return True;
8930 end;
8932 -- For the designated type of an access to subprogram, all types in
8933 -- the profile must be fully defined.
8935 elsif Ekind (T) = E_Subprogram_Type then
8936 declare
8937 F : Entity_Id;
8939 begin
8940 F := First_Formal (T);
8941 while Present (F) loop
8942 if not Is_Fully_Defined (Etype (F)) then
8943 return False;
8944 end if;
8946 Next_Formal (F);
8947 end loop;
8949 return Is_Fully_Defined (Etype (T));
8950 end;
8952 else
8953 return not Is_Private_Type (T)
8954 or else Present (Full_View (Base_Type (T)));
8955 end if;
8956 end Is_Fully_Defined;
8958 ---------------------------------
8959 -- Process_Default_Expressions --
8960 ---------------------------------
8962 procedure Process_Default_Expressions
8963 (E : Entity_Id;
8964 After : in out Node_Id)
8966 Loc : constant Source_Ptr := Sloc (E);
8967 Dbody : Node_Id;
8968 Formal : Node_Id;
8969 Dcopy : Node_Id;
8970 Dnam : Entity_Id;
8972 begin
8973 Set_Default_Expressions_Processed (E);
8975 -- A subprogram instance and its associated anonymous subprogram share
8976 -- their signature. The default expression functions are defined in the
8977 -- wrapper packages for the anonymous subprogram, and should not be
8978 -- generated again for the instance.
8980 if Is_Generic_Instance (E)
8981 and then Present (Alias (E))
8982 and then Default_Expressions_Processed (Alias (E))
8983 then
8984 return;
8985 end if;
8987 Formal := First_Formal (E);
8988 while Present (Formal) loop
8989 if Present (Default_Value (Formal)) then
8991 -- We work with a copy of the default expression because we
8992 -- do not want to disturb the original, since this would mess
8993 -- up the conformance checking.
8995 Dcopy := New_Copy_Tree (Default_Value (Formal));
8997 -- The analysis of the expression may generate insert actions,
8998 -- which of course must not be executed. We wrap those actions
8999 -- in a procedure that is not called, and later on eliminated.
9000 -- The following cases have no side effects, and are analyzed
9001 -- directly.
9003 if Nkind (Dcopy) = N_Identifier
9004 or else Nkind_In (Dcopy, N_Expanded_Name,
9005 N_Integer_Literal,
9006 N_Character_Literal,
9007 N_String_Literal,
9008 N_Real_Literal)
9009 or else (Nkind (Dcopy) = N_Attribute_Reference
9010 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
9011 or else Known_Null (Dcopy)
9012 then
9013 -- If there is no default function, we must still do a full
9014 -- analyze call on the default value, to ensure that all error
9015 -- checks are performed, e.g. those associated with static
9016 -- evaluation. Note: this branch will always be taken if the
9017 -- analyzer is turned off (but we still need the error checks).
9019 -- Note: the setting of parent here is to meet the requirement
9020 -- that we can only analyze the expression while attached to
9021 -- the tree. Really the requirement is that the parent chain
9022 -- be set, we don't actually need to be in the tree.
9024 Set_Parent (Dcopy, Declaration_Node (Formal));
9025 Analyze (Dcopy);
9027 -- Default expressions are resolved with their own type if the
9028 -- context is generic, to avoid anomalies with private types.
9030 if Ekind (Scope (E)) = E_Generic_Package then
9031 Resolve (Dcopy);
9032 else
9033 Resolve (Dcopy, Etype (Formal));
9034 end if;
9036 -- If that resolved expression will raise constraint error,
9037 -- then flag the default value as raising constraint error.
9038 -- This allows a proper error message on the calls.
9040 if Raises_Constraint_Error (Dcopy) then
9041 Set_Raises_Constraint_Error (Default_Value (Formal));
9042 end if;
9044 -- If the default is a parameterless call, we use the name of
9045 -- the called function directly, and there is no body to build.
9047 elsif Nkind (Dcopy) = N_Function_Call
9048 and then No (Parameter_Associations (Dcopy))
9049 then
9050 null;
9052 -- Else construct and analyze the body of a wrapper procedure
9053 -- that contains an object declaration to hold the expression.
9054 -- Given that this is done only to complete the analysis, it is
9055 -- simpler to build a procedure than a function which might
9056 -- involve secondary stack expansion.
9058 else
9059 Dnam := Make_Temporary (Loc, 'D');
9061 Dbody :=
9062 Make_Subprogram_Body (Loc,
9063 Specification =>
9064 Make_Procedure_Specification (Loc,
9065 Defining_Unit_Name => Dnam),
9067 Declarations => New_List (
9068 Make_Object_Declaration (Loc,
9069 Defining_Identifier => Make_Temporary (Loc, 'T'),
9070 Object_Definition =>
9071 New_Occurrence_Of (Etype (Formal), Loc),
9072 Expression => New_Copy_Tree (Dcopy))),
9074 Handled_Statement_Sequence =>
9075 Make_Handled_Sequence_Of_Statements (Loc,
9076 Statements => Empty_List));
9078 Set_Scope (Dnam, Scope (E));
9079 Set_Assignment_OK (First (Declarations (Dbody)));
9080 Set_Is_Eliminated (Dnam);
9081 Insert_After (After, Dbody);
9082 Analyze (Dbody);
9083 After := Dbody;
9084 end if;
9085 end if;
9087 Next_Formal (Formal);
9088 end loop;
9089 end Process_Default_Expressions;
9091 ----------------------------------------
9092 -- Set_Component_Alignment_If_Not_Set --
9093 ----------------------------------------
9095 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
9096 begin
9097 -- Ignore if not base type, subtypes don't need anything
9099 if Typ /= Base_Type (Typ) then
9100 return;
9101 end if;
9103 -- Do not override existing representation
9105 if Is_Packed (Typ) then
9106 return;
9108 elsif Has_Specified_Layout (Typ) then
9109 return;
9111 elsif Component_Alignment (Typ) /= Calign_Default then
9112 return;
9114 else
9115 Set_Component_Alignment
9116 (Typ, Scope_Stack.Table
9117 (Scope_Stack.Last).Component_Alignment_Default);
9118 end if;
9119 end Set_Component_Alignment_If_Not_Set;
9121 --------------------------
9122 -- Set_SSO_From_Default --
9123 --------------------------
9125 procedure Set_SSO_From_Default (T : Entity_Id) is
9126 Reversed : Boolean;
9128 begin
9129 -- Set default SSO for an array or record base type, except in case of
9130 -- a type extension (which always inherits the SSO of its parent type).
9132 if Is_Base_Type (T)
9133 and then (Is_Array_Type (T)
9134 or else (Is_Record_Type (T)
9135 and then not (Is_Tagged_Type (T)
9136 and then Is_Derived_Type (T))))
9137 then
9138 Reversed :=
9139 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
9140 or else
9141 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
9143 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
9145 -- For a record type, if bit order is specified explicitly,
9146 -- then do not set SSO from default if not consistent. Note that
9147 -- we do not want to look at a Bit_Order attribute definition
9148 -- for a parent: if we were to inherit Bit_Order, then both
9149 -- SSO_Set_*_By_Default flags would have been cleared already
9150 -- (by Inherit_Aspects_At_Freeze_Point).
9152 and then not
9153 (Is_Record_Type (T)
9154 and then
9155 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
9156 and then Reverse_Bit_Order (T) /= Reversed)
9157 then
9158 -- If flags cause reverse storage order, then set the result. Note
9159 -- that we would have ignored the pragma setting the non default
9160 -- storage order in any case, hence the assertion at this point.
9162 pragma Assert
9163 (not Reversed or else Support_Nondefault_SSO_On_Target);
9165 Set_Reverse_Storage_Order (T, Reversed);
9167 -- For a record type, also set reversed bit order. Note: if a bit
9168 -- order has been specified explicitly, then this is a no-op.
9170 if Is_Record_Type (T) then
9171 Set_Reverse_Bit_Order (T, Reversed);
9172 end if;
9173 end if;
9174 end if;
9175 end Set_SSO_From_Default;
9177 ------------------
9178 -- Undelay_Type --
9179 ------------------
9181 procedure Undelay_Type (T : Entity_Id) is
9182 begin
9183 Set_Has_Delayed_Freeze (T, False);
9184 Set_Freeze_Node (T, Empty);
9186 -- Since we don't want T to have a Freeze_Node, we don't want its
9187 -- Full_View or Corresponding_Record_Type to have one either.
9189 -- ??? Fundamentally, this whole handling is unpleasant. What we really
9190 -- want is to be sure that for an Itype that's part of record R and is a
9191 -- subtype of type T, that it's frozen after the later of the freeze
9192 -- points of R and T. We have no way of doing that directly, so what we
9193 -- do is force most such Itypes to be frozen as part of freezing R via
9194 -- this procedure and only delay the ones that need to be delayed
9195 -- (mostly the designated types of access types that are defined as part
9196 -- of the record).
9198 if Is_Private_Type (T)
9199 and then Present (Full_View (T))
9200 and then Is_Itype (Full_View (T))
9201 and then Is_Record_Type (Scope (Full_View (T)))
9202 then
9203 Undelay_Type (Full_View (T));
9204 end if;
9206 if Is_Concurrent_Type (T)
9207 and then Present (Corresponding_Record_Type (T))
9208 and then Is_Itype (Corresponding_Record_Type (T))
9209 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
9210 then
9211 Undelay_Type (Corresponding_Record_Type (T));
9212 end if;
9213 end Undelay_Type;
9215 ------------------
9216 -- Warn_Overlay --
9217 ------------------
9219 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
9220 Ent : constant Entity_Id := Entity (Nam);
9221 -- The object to which the address clause applies
9223 Init : Node_Id;
9224 Old : Entity_Id := Empty;
9225 Decl : Node_Id;
9227 begin
9228 -- No warning if address clause overlay warnings are off
9230 if not Address_Clause_Overlay_Warnings then
9231 return;
9232 end if;
9234 -- No warning if there is an explicit initialization
9236 Init := Original_Node (Expression (Declaration_Node (Ent)));
9238 if Present (Init) and then Comes_From_Source (Init) then
9239 return;
9240 end if;
9242 -- We only give the warning for non-imported entities of a type for
9243 -- which a non-null base init proc is defined, or for objects of access
9244 -- types with implicit null initialization, or when Normalize_Scalars
9245 -- applies and the type is scalar or a string type (the latter being
9246 -- tested for because predefined String types are initialized by inline
9247 -- code rather than by an init_proc). Note that we do not give the
9248 -- warning for Initialize_Scalars, since we suppressed initialization
9249 -- in this case. Also, do not warn if Suppress_Initialization is set
9250 -- either on the type, or on the object via pragma or aspect.
9252 if Present (Expr)
9253 and then not Is_Imported (Ent)
9254 and then not Initialization_Suppressed (Typ)
9255 and then not (Ekind (Ent) = E_Variable
9256 and then Initialization_Suppressed (Ent))
9257 and then (Has_Non_Null_Base_Init_Proc (Typ)
9258 or else Is_Access_Type (Typ)
9259 or else (Normalize_Scalars
9260 and then (Is_Scalar_Type (Typ)
9261 or else Is_String_Type (Typ))))
9262 then
9263 if Nkind (Expr) = N_Attribute_Reference
9264 and then Is_Entity_Name (Prefix (Expr))
9265 then
9266 Old := Entity (Prefix (Expr));
9268 elsif Is_Entity_Name (Expr)
9269 and then Ekind (Entity (Expr)) = E_Constant
9270 then
9271 Decl := Declaration_Node (Entity (Expr));
9273 if Nkind (Decl) = N_Object_Declaration
9274 and then Present (Expression (Decl))
9275 and then Nkind (Expression (Decl)) = N_Attribute_Reference
9276 and then Is_Entity_Name (Prefix (Expression (Decl)))
9277 then
9278 Old := Entity (Prefix (Expression (Decl)));
9280 elsif Nkind (Expr) = N_Function_Call then
9281 return;
9282 end if;
9284 -- A function call (most likely to To_Address) is probably not an
9285 -- overlay, so skip warning. Ditto if the function call was inlined
9286 -- and transformed into an entity.
9288 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
9289 return;
9290 end if;
9292 -- If a pragma Import follows, we assume that it is for the current
9293 -- target of the address clause, and skip the warning. There may be
9294 -- a source pragma or an aspect that specifies import and generates
9295 -- the corresponding pragma. These will indicate that the entity is
9296 -- imported and that is checked above so that the spurious warning
9297 -- (generated when the entity is frozen) will be suppressed. The
9298 -- pragma may be attached to the aspect, so it is not yet a list
9299 -- member.
9301 if Is_List_Member (Parent (Expr)) then
9302 Decl := Next (Parent (Expr));
9304 if Present (Decl)
9305 and then Nkind (Decl) = N_Pragma
9306 and then Pragma_Name (Decl) = Name_Import
9307 then
9308 return;
9309 end if;
9310 end if;
9312 -- Otherwise give warning message
9314 if Present (Old) then
9315 Error_Msg_Node_2 := Old;
9316 Error_Msg_N
9317 ("default initialization of & may modify &??",
9318 Nam);
9319 else
9320 Error_Msg_N
9321 ("default initialization of & may modify overlaid storage??",
9322 Nam);
9323 end if;
9325 -- Add friendly warning if initialization comes from a packed array
9326 -- component.
9328 if Is_Record_Type (Typ) then
9329 declare
9330 Comp : Entity_Id;
9332 begin
9333 Comp := First_Component (Typ);
9334 while Present (Comp) loop
9335 if Nkind (Parent (Comp)) = N_Component_Declaration
9336 and then Present (Expression (Parent (Comp)))
9337 then
9338 exit;
9339 elsif Is_Array_Type (Etype (Comp))
9340 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
9341 then
9342 Error_Msg_NE
9343 ("\packed array component& " &
9344 "will be initialized to zero??",
9345 Nam, Comp);
9346 exit;
9347 else
9348 Next_Component (Comp);
9349 end if;
9350 end loop;
9351 end;
9352 end if;
9354 Error_Msg_N
9355 ("\use pragma Import for & to " &
9356 "suppress initialization (RM B.1(24))??",
9357 Nam);
9358 end if;
9359 end Warn_Overlay;
9361 end Freeze;