2003-05-31 Bud Davis <bdavis9659@comcast.net>
[official-gcc.git] / gcc / ada / freeze.adb
blob579c5ff509022702c6c8e1695cb05a580c8e36eb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Pakd; use Exp_Pakd;
35 with Exp_Util; use Exp_Util;
36 with Layout; use Layout;
37 with Lib.Xref; use Lib.Xref;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Sem; use Sem;
43 with Sem_Cat; use Sem_Cat;
44 with Sem_Ch6; use Sem_Ch6;
45 with Sem_Ch7; use Sem_Ch7;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Ch13; use Sem_Ch13;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Mech; use Sem_Mech;
50 with Sem_Prag; use Sem_Prag;
51 with Sem_Res; use Sem_Res;
52 with Sem_Util; use Sem_Util;
53 with Sinfo; use Sinfo;
54 with Snames; use Snames;
55 with Stand; use Stand;
56 with Targparm; use Targparm;
57 with Tbuild; use Tbuild;
58 with Ttypes; use Ttypes;
59 with Uintp; use Uintp;
60 with Urealp; use Urealp;
62 package body Freeze is
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
68 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
69 -- Typ is a type that is being frozen. If no size clause is given,
70 -- but a default Esize has been computed, then this default Esize is
71 -- adjusted up if necessary to be consistent with a given alignment,
72 -- but never to a value greater than Long_Long_Integer'Size. This
73 -- is used for all discrete types and for fixed-point types.
75 procedure Build_And_Analyze_Renamed_Body
76 (Decl : Node_Id;
77 New_S : Entity_Id;
78 After : in out Node_Id);
79 -- Build body for a renaming declaration, insert in tree and analyze.
81 procedure Check_Strict_Alignment (E : Entity_Id);
82 -- E is a base type. If E is tagged or has a component that is aliased
83 -- or tagged or contains something this is aliased or tagged, set
84 -- Strict_Alignment.
86 procedure Check_Unsigned_Type (E : Entity_Id);
87 pragma Inline (Check_Unsigned_Type);
88 -- If E is a fixed-point or discrete type, then all the necessary work
89 -- to freeze it is completed except for possible setting of the flag
90 -- Is_Unsigned_Type, which is done by this procedure. The call has no
91 -- effect if the entity E is not a discrete or fixed-point type.
93 procedure Freeze_And_Append
94 (Ent : Entity_Id;
95 Loc : Source_Ptr;
96 Result : in out List_Id);
97 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
98 -- nodes to Result, modifying Result from No_List if necessary.
100 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
101 -- Freeze enumeration type. The Esize field is set as processing
102 -- proceeds (i.e. set by default when the type is declared and then
103 -- adjusted by rep clauses. What this procedure does is to make sure
104 -- that if a foreign convention is specified, and no specific size
105 -- is given, then the size must be at least Integer'Size.
107 procedure Freeze_Static_Object (E : Entity_Id);
108 -- If an object is frozen which has Is_Statically_Allocated set, then
109 -- all referenced types must also be marked with this flag. This routine
110 -- is in charge of meeting this requirement for the object entity E.
112 procedure Freeze_Subprogram (E : Entity_Id);
113 -- Perform freezing actions for a subprogram (create extra formals,
114 -- and set proper default mechanism values). Note that this routine
115 -- is not called for internal subprograms, for which neither of these
116 -- actions is needed (or desirable, we do not want for example to have
117 -- these extra formals present in initialization procedures, where they
118 -- would serve no purpose). In this call E is either a subprogram or
119 -- a subprogram type (i.e. an access to a subprogram).
121 function Is_Fully_Defined (T : Entity_Id) return Boolean;
122 -- true if T is not private, or has a full view.
124 procedure Process_Default_Expressions
125 (E : Entity_Id;
126 After : in out Node_Id);
127 -- This procedure is called for each subprogram to complete processing
128 -- of default expressions at the point where all types are known to be
129 -- frozen. The expressions must be analyzed in full, to make sure that
130 -- all error processing is done (they have only been pre-analyzed). If
131 -- the expression is not an entity or literal, its analysis may generate
132 -- code which must not be executed. In that case we build a function
133 -- body to hold that code. This wrapper function serves no other purpose
134 -- (it used to be called to evaluate the default, but now the default is
135 -- inlined at each point of call).
137 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
138 -- Typ is a record or array type that is being frozen. This routine
139 -- sets the default component alignment from the scope stack values
140 -- if the alignment is otherwise not specified.
142 procedure Check_Debug_Info_Needed (T : Entity_Id);
143 -- As each entity is frozen, this routine is called to deal with the
144 -- setting of Debug_Info_Needed for the entity. This flag is set if
145 -- the entity comes from source, or if we are in Debug_Generated_Code
146 -- mode or if the -gnatdV debug flag is set. However, it never sets
147 -- the flag if Debug_Info_Off is set.
149 procedure Set_Debug_Info_Needed (T : Entity_Id);
150 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
151 -- also on any entities that are needed by T (for an object, the type
152 -- of the object is needed, and for a type, the subsidiary types are
153 -- needed -- see body for details). Never has any effect on T if the
154 -- Debug_Info_Off flag is set.
156 -------------------------------
157 -- Adjust_Esize_For_Alignment --
158 -------------------------------
160 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
161 Align : Uint;
163 begin
164 if Known_Esize (Typ) and then Known_Alignment (Typ) then
165 Align := Alignment_In_Bits (Typ);
167 if Align > Esize (Typ)
168 and then Align <= Standard_Long_Long_Integer_Size
169 then
170 Set_Esize (Typ, Align);
171 end if;
172 end if;
173 end Adjust_Esize_For_Alignment;
175 ------------------------------------
176 -- Build_And_Analyze_Renamed_Body --
177 ------------------------------------
179 procedure Build_And_Analyze_Renamed_Body
180 (Decl : Node_Id;
181 New_S : Entity_Id;
182 After : in out Node_Id)
184 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
186 begin
187 Insert_After (After, Body_Node);
188 Mark_Rewrite_Insertion (Body_Node);
189 Analyze (Body_Node);
190 After := Body_Node;
191 end Build_And_Analyze_Renamed_Body;
193 ------------------------
194 -- Build_Renamed_Body --
195 ------------------------
197 function Build_Renamed_Body
198 (Decl : Node_Id;
199 New_S : Entity_Id)
200 return Node_Id
202 Loc : constant Source_Ptr := Sloc (New_S);
203 -- We use for the source location of the renamed body, the location
204 -- of the spec entity. It might seem more natural to use the location
205 -- of the renaming declaration itself, but that would be wrong, since
206 -- then the body we create would look as though it was created far
207 -- too late, and this could cause problems with elaboration order
208 -- analysis, particularly in connection with instantiations.
210 N : constant Node_Id := Unit_Declaration_Node (New_S);
211 Nam : constant Node_Id := Name (N);
212 Old_S : Entity_Id;
213 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
214 Actuals : List_Id := No_List;
215 Call_Node : Node_Id;
216 Call_Name : Node_Id;
217 Body_Node : Node_Id;
218 Formal : Entity_Id;
219 O_Formal : Entity_Id;
220 Param_Spec : Node_Id;
222 begin
223 -- Determine the entity being renamed, which is the target of the
224 -- call statement. If the name is an explicit dereference, this is
225 -- a renaming of a subprogram type rather than a subprogram. The
226 -- name itself is fully analyzed.
228 if Nkind (Nam) = N_Selected_Component then
229 Old_S := Entity (Selector_Name (Nam));
231 elsif Nkind (Nam) = N_Explicit_Dereference then
232 Old_S := Etype (Nam);
234 elsif Nkind (Nam) = N_Indexed_Component then
236 if Is_Entity_Name (Prefix (Nam)) then
237 Old_S := Entity (Prefix (Nam));
238 else
239 Old_S := Entity (Selector_Name (Prefix (Nam)));
240 end if;
242 elsif Nkind (Nam) = N_Character_Literal then
243 Old_S := Etype (New_S);
245 else
246 Old_S := Entity (Nam);
247 end if;
249 if Is_Entity_Name (Nam) then
251 -- If the renamed entity is a predefined operator, retain full
252 -- name to ensure its visibility.
254 if Ekind (Old_S) = E_Operator
255 and then Nkind (Nam) = N_Expanded_Name
256 then
257 Call_Name := New_Copy (Name (N));
258 else
259 Call_Name := New_Reference_To (Old_S, Loc);
260 end if;
262 else
263 Call_Name := New_Copy (Name (N));
265 -- The original name may have been overloaded, but
266 -- is fully resolved now.
268 Set_Is_Overloaded (Call_Name, False);
269 end if;
271 -- For simple renamings, subsequent calls can be expanded directly
272 -- as called to the renamed entity. The body must be generated in
273 -- any case for calls they may appear elsewhere.
275 if (Ekind (Old_S) = E_Function
276 or else Ekind (Old_S) = E_Procedure)
277 and then Nkind (Decl) = N_Subprogram_Declaration
278 then
279 Set_Body_To_Inline (Decl, Old_S);
280 end if;
282 -- The body generated for this renaming is an internal artifact, and
283 -- does not constitute a freeze point for the called entity.
285 Set_Must_Not_Freeze (Call_Name);
287 Formal := First_Formal (Defining_Entity (Decl));
289 if Present (Formal) then
290 Actuals := New_List;
292 while Present (Formal) loop
293 Append (New_Reference_To (Formal, Loc), Actuals);
294 Next_Formal (Formal);
295 end loop;
296 end if;
298 -- If the renamed entity is an entry, inherit its profile. For
299 -- other renamings as bodies, both profiles must be subtype
300 -- conformant, so it is not necessary to replace the profile given
301 -- in the declaration. However, default values that are aggregates
302 -- are rewritten when partially analyzed, so we recover the original
303 -- aggregate to insure that subsequent conformity checking works.
304 -- Similarly, if the default expression was constant-folded, recover
305 -- the original expression.
307 Formal := First_Formal (Defining_Entity (Decl));
309 if Present (Formal) then
310 O_Formal := First_Formal (Old_S);
311 Param_Spec := First (Parameter_Specifications (Spec));
313 while Present (Formal) loop
314 if Is_Entry (Old_S) then
316 if Nkind (Parameter_Type (Param_Spec)) /=
317 N_Access_Definition
318 then
319 Set_Etype (Formal, Etype (O_Formal));
320 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
321 end if;
323 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
324 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
325 Nkind (Default_Value (O_Formal))
326 then
327 Set_Expression (Param_Spec,
328 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
329 end if;
331 Next_Formal (Formal);
332 Next_Formal (O_Formal);
333 Next (Param_Spec);
334 end loop;
335 end if;
337 -- If the renamed entity is a function, the generated body contains a
338 -- return statement. Otherwise, build a procedure call. If the entity is
339 -- an entry, subsequent analysis of the call will transform it into the
340 -- proper entry or protected operation call. If the renamed entity is
341 -- a character literal, return it directly.
343 if Ekind (Old_S) = E_Function
344 or else Ekind (Old_S) = E_Operator
345 or else (Ekind (Old_S) = E_Subprogram_Type
346 and then Etype (Old_S) /= Standard_Void_Type)
347 then
348 Call_Node :=
349 Make_Return_Statement (Loc,
350 Expression =>
351 Make_Function_Call (Loc,
352 Name => Call_Name,
353 Parameter_Associations => Actuals));
355 elsif Ekind (Old_S) = E_Enumeration_Literal then
356 Call_Node :=
357 Make_Return_Statement (Loc,
358 Expression => New_Occurrence_Of (Old_S, Loc));
360 elsif Nkind (Nam) = N_Character_Literal then
361 Call_Node :=
362 Make_Return_Statement (Loc,
363 Expression => Call_Name);
365 else
366 Call_Node :=
367 Make_Procedure_Call_Statement (Loc,
368 Name => Call_Name,
369 Parameter_Associations => Actuals);
370 end if;
372 -- Create entities for subprogram body and formals.
374 Set_Defining_Unit_Name (Spec,
375 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
377 Param_Spec := First (Parameter_Specifications (Spec));
379 while Present (Param_Spec) loop
380 Set_Defining_Identifier (Param_Spec,
381 Make_Defining_Identifier (Loc,
382 Chars => Chars (Defining_Identifier (Param_Spec))));
383 Next (Param_Spec);
384 end loop;
386 Body_Node :=
387 Make_Subprogram_Body (Loc,
388 Specification => Spec,
389 Declarations => New_List,
390 Handled_Statement_Sequence =>
391 Make_Handled_Sequence_Of_Statements (Loc,
392 Statements => New_List (Call_Node)));
394 if Nkind (Decl) /= N_Subprogram_Declaration then
395 Rewrite (N,
396 Make_Subprogram_Declaration (Loc,
397 Specification => Specification (N)));
398 end if;
400 -- Link the body to the entity whose declaration it completes. If
401 -- the body is analyzed when the renamed entity is frozen, it may be
402 -- necessary to restore the proper scope (see package Exp_Ch13).
404 if Nkind (N) = N_Subprogram_Renaming_Declaration
405 and then Present (Corresponding_Spec (N))
406 then
407 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
408 else
409 Set_Corresponding_Spec (Body_Node, New_S);
410 end if;
412 return Body_Node;
413 end Build_Renamed_Body;
415 -----------------------------
416 -- Check_Compile_Time_Size --
417 -----------------------------
419 procedure Check_Compile_Time_Size (T : Entity_Id) is
421 procedure Set_Small_Size (S : Uint);
422 -- Sets the compile time known size (32 bits or less) in the Esize
423 -- field, checking for a size clause that was given which attempts
424 -- to give a smaller size.
426 function Size_Known (T : Entity_Id) return Boolean;
427 -- Recursive function that does all the work
429 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
430 -- If T is a constrained subtype, its size is not known if any of its
431 -- discriminant constraints is not static and it is not a null record.
432 -- The test is conservative and doesn't check that the components are
433 -- in fact constrained by non-static discriminant values. Could be made
434 -- more precise ???
436 --------------------
437 -- Set_Small_Size --
438 --------------------
440 procedure Set_Small_Size (S : Uint) is
441 begin
442 if S > 32 then
443 return;
445 elsif Has_Size_Clause (T) then
446 if RM_Size (T) < S then
447 Error_Msg_Uint_1 := S;
448 Error_Msg_NE
449 ("size for & is too small, minimum is ^",
450 Size_Clause (T), T);
452 elsif Unknown_Esize (T) then
453 Set_Esize (T, S);
454 end if;
456 -- Set sizes if not set already
458 else
459 if Unknown_Esize (T) then
460 Set_Esize (T, S);
461 end if;
463 if Unknown_RM_Size (T) then
464 Set_RM_Size (T, S);
465 end if;
466 end if;
467 end Set_Small_Size;
469 ----------------
470 -- Size_Known --
471 ----------------
473 function Size_Known (T : Entity_Id) return Boolean is
474 Index : Entity_Id;
475 Comp : Entity_Id;
476 Ctyp : Entity_Id;
477 Low : Node_Id;
478 High : Node_Id;
480 begin
481 if Size_Known_At_Compile_Time (T) then
482 return True;
484 elsif Is_Scalar_Type (T)
485 or else Is_Task_Type (T)
486 then
487 return not Is_Generic_Type (T);
489 elsif Is_Array_Type (T) then
491 if Ekind (T) = E_String_Literal_Subtype then
492 Set_Small_Size (Component_Size (T) * String_Literal_Length (T));
493 return True;
495 elsif not Is_Constrained (T) then
496 return False;
498 -- Don't do any recursion on type with error posted, since
499 -- we may have a malformed type that leads us into a loop
501 elsif Error_Posted (T) then
502 return False;
504 elsif not Size_Known (Component_Type (T)) then
505 return False;
506 end if;
508 -- Check for all indexes static, and also compute possible
509 -- size (in case it is less than 32 and may be packable).
511 declare
512 Esiz : Uint := Component_Size (T);
513 Dim : Uint;
515 begin
516 Index := First_Index (T);
518 while Present (Index) loop
519 if Nkind (Index) = N_Range then
520 Get_Index_Bounds (Index, Low, High);
522 elsif Error_Posted (Scalar_Range (Etype (Index))) then
523 return False;
525 else
526 Low := Type_Low_Bound (Etype (Index));
527 High := Type_High_Bound (Etype (Index));
528 end if;
530 if not Compile_Time_Known_Value (Low)
531 or else not Compile_Time_Known_Value (High)
532 or else Etype (Index) = Any_Type
533 then
534 return False;
536 else
537 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
539 if Dim >= 0 then
540 Esiz := Esiz * Dim;
541 else
542 Esiz := Uint_0;
543 end if;
544 end if;
546 Next_Index (Index);
547 end loop;
549 Set_Small_Size (Esiz);
550 return True;
551 end;
553 elsif Is_Access_Type (T) then
554 return True;
556 elsif Is_Private_Type (T)
557 and then not Is_Generic_Type (T)
558 and then Present (Underlying_Type (T))
559 then
560 -- Don't do any recursion on type with error posted, since
561 -- we may have a malformed type that leads us into a loop
563 if Error_Posted (T) then
564 return False;
565 else
566 return Size_Known (Underlying_Type (T));
567 end if;
569 elsif Is_Record_Type (T) then
570 if Is_Class_Wide_Type (T) then
571 return False;
573 elsif T /= Base_Type (T) then
574 return Size_Known_At_Compile_Time (Base_Type (T))
575 and then Static_Discriminated_Components (T);
577 -- Don't do any recursion on type with error posted, since
578 -- we may have a malformed type that leads us into a loop
580 elsif Error_Posted (T) then
581 return False;
583 else
584 declare
585 Packed_Size_Known : Boolean := Is_Packed (T);
586 Packed_Size : Uint := Uint_0;
588 begin
589 -- Test for variant part present
591 if Has_Discriminants (T)
592 and then Present (Parent (T))
593 and then Nkind (Parent (T)) = N_Full_Type_Declaration
594 and then Nkind (Type_Definition (Parent (T))) =
595 N_Record_Definition
596 and then not Null_Present (Type_Definition (Parent (T)))
597 and then Present (Variant_Part
598 (Component_List (Type_Definition (Parent (T)))))
599 then
600 -- If variant part is present, and type is unconstrained,
601 -- then we must have defaulted discriminants, or a size
602 -- clause must be present for the type, or else the size
603 -- is definitely not known at compile time.
605 if not Is_Constrained (T)
606 and then
607 No (Discriminant_Default_Value
608 (First_Discriminant (T)))
609 and then Unknown_Esize (T)
610 then
611 return False;
612 else
613 -- We do not know the packed size, it is too much
614 -- trouble to figure it out.
616 Packed_Size_Known := False;
617 end if;
618 end if;
620 Comp := First_Entity (T);
622 while Present (Comp) loop
623 if Ekind (Comp) = E_Component
624 or else
625 Ekind (Comp) = E_Discriminant
626 then
627 Ctyp := Etype (Comp);
629 if Present (Component_Clause (Comp)) then
630 Packed_Size_Known := False;
631 end if;
633 if not Size_Known (Ctyp) then
634 return False;
636 elsif Packed_Size_Known then
638 -- If RM_Size is known and static, then we can
639 -- keep accumulating the packed size.
641 if Known_Static_RM_Size (Ctyp) then
643 -- A little glitch, to be removed sometime ???
644 -- gigi does not understand zero sizes yet.
646 if RM_Size (Ctyp) = Uint_0 then
647 Packed_Size_Known := False;
648 end if;
650 Packed_Size :=
651 Packed_Size + RM_Size (Ctyp);
653 -- If we have a field whose RM_Size is not known
654 -- then we can't figure out the packed size here.
656 else
657 Packed_Size_Known := False;
658 end if;
659 end if;
660 end if;
662 Next_Entity (Comp);
663 end loop;
665 if Packed_Size_Known then
666 Set_Small_Size (Packed_Size);
667 end if;
669 return True;
670 end;
671 end if;
673 else
674 return False;
675 end if;
676 end Size_Known;
678 -------------------------------------
679 -- Static_Discriminated_Components --
680 -------------------------------------
682 function Static_Discriminated_Components
683 (T : Entity_Id)
684 return Boolean
686 Constraint : Elmt_Id;
688 begin
689 if Has_Discriminants (T)
690 and then Present (Discriminant_Constraint (T))
691 and then Present (First_Component (T))
692 then
693 Constraint := First_Elmt (Discriminant_Constraint (T));
695 while Present (Constraint) loop
696 if not Compile_Time_Known_Value (Node (Constraint)) then
697 return False;
698 end if;
700 Next_Elmt (Constraint);
701 end loop;
702 end if;
704 return True;
705 end Static_Discriminated_Components;
707 -- Start of processing for Check_Compile_Time_Size
709 begin
710 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
711 end Check_Compile_Time_Size;
713 -----------------------------
714 -- Check_Debug_Info_Needed --
715 -----------------------------
717 procedure Check_Debug_Info_Needed (T : Entity_Id) is
718 begin
719 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
720 return;
722 elsif Comes_From_Source (T)
723 or else Debug_Generated_Code
724 or else Debug_Flag_VV
725 then
726 Set_Debug_Info_Needed (T);
727 end if;
728 end Check_Debug_Info_Needed;
730 ----------------------------
731 -- Check_Strict_Alignment --
732 ----------------------------
734 procedure Check_Strict_Alignment (E : Entity_Id) is
735 Comp : Entity_Id;
737 begin
738 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
739 Set_Strict_Alignment (E);
741 elsif Is_Array_Type (E) then
742 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
744 elsif Is_Record_Type (E) then
745 if Is_Limited_Record (E) then
746 Set_Strict_Alignment (E);
747 return;
748 end if;
750 Comp := First_Component (E);
752 while Present (Comp) loop
753 if not Is_Type (Comp)
754 and then (Strict_Alignment (Etype (Comp))
755 or else Is_Aliased (Comp))
756 then
757 Set_Strict_Alignment (E);
758 return;
759 end if;
761 Next_Component (Comp);
762 end loop;
763 end if;
764 end Check_Strict_Alignment;
766 -------------------------
767 -- Check_Unsigned_Type --
768 -------------------------
770 procedure Check_Unsigned_Type (E : Entity_Id) is
771 Ancestor : Entity_Id;
772 Lo_Bound : Node_Id;
773 Btyp : Entity_Id;
775 begin
776 if not Is_Discrete_Or_Fixed_Point_Type (E) then
777 return;
778 end if;
780 -- Do not attempt to analyze case where range was in error
782 if Error_Posted (Scalar_Range (E)) then
783 return;
784 end if;
786 -- The situation that is non trivial is something like
788 -- subtype x1 is integer range -10 .. +10;
789 -- subtype x2 is x1 range 0 .. V1;
790 -- subtype x3 is x2 range V2 .. V3;
791 -- subtype x4 is x3 range V4 .. V5;
793 -- where Vn are variables. Here the base type is signed, but we still
794 -- know that x4 is unsigned because of the lower bound of x2.
796 -- The only way to deal with this is to look up the ancestor chain
798 Ancestor := E;
799 loop
800 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
801 return;
802 end if;
804 Lo_Bound := Type_Low_Bound (Ancestor);
806 if Compile_Time_Known_Value (Lo_Bound) then
808 if Expr_Rep_Value (Lo_Bound) >= 0 then
809 Set_Is_Unsigned_Type (E, True);
810 end if;
812 return;
814 else
815 Ancestor := Ancestor_Subtype (Ancestor);
817 -- If no ancestor had a static lower bound, go to base type
819 if No (Ancestor) then
821 -- Note: the reason we still check for a compile time known
822 -- value for the base type is that at least in the case of
823 -- generic formals, we can have bounds that fail this test,
824 -- and there may be other cases in error situations.
826 Btyp := Base_Type (E);
828 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
829 return;
830 end if;
832 Lo_Bound := Type_Low_Bound (Base_Type (E));
834 if Compile_Time_Known_Value (Lo_Bound)
835 and then Expr_Rep_Value (Lo_Bound) >= 0
836 then
837 Set_Is_Unsigned_Type (E, True);
838 end if;
840 return;
842 end if;
843 end if;
844 end loop;
845 end Check_Unsigned_Type;
847 ----------------
848 -- Freeze_All --
849 ----------------
851 -- Note: the easy coding for this procedure would be to just build a
852 -- single list of freeze nodes and then insert them and analyze them
853 -- all at once. This won't work, because the analysis of earlier freeze
854 -- nodes may recursively freeze types which would otherwise appear later
855 -- on in the freeze list. So we must analyze and expand the freeze nodes
856 -- as they are generated.
858 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
859 Loc : constant Source_Ptr := Sloc (After);
860 E : Entity_Id;
861 Decl : Node_Id;
863 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
864 -- This is the internal recursive routine that does freezing of
865 -- entities (but NOT the analysis of default expressions, which
866 -- should not be recursive, we don't want to analyze those till
867 -- we are sure that ALL the types are frozen).
869 procedure Freeze_All_Ent
870 (From : Entity_Id;
871 After : in out Node_Id)
873 E : Entity_Id;
874 Flist : List_Id;
875 Lastn : Node_Id;
877 procedure Process_Flist;
878 -- If freeze nodes are present, insert and analyze, and reset
879 -- cursor for next insertion.
881 procedure Process_Flist is
882 begin
883 if Is_Non_Empty_List (Flist) then
884 Lastn := Next (After);
885 Insert_List_After_And_Analyze (After, Flist);
887 if Present (Lastn) then
888 After := Prev (Lastn);
889 else
890 After := Last (List_Containing (After));
891 end if;
892 end if;
893 end Process_Flist;
895 begin
896 E := From;
897 while Present (E) loop
899 -- If the entity is an inner package which is not a package
900 -- renaming, then its entities must be frozen at this point.
901 -- Note that such entities do NOT get frozen at the end of
902 -- the nested package itself (only library packages freeze).
904 -- Same is true for task declarations, where anonymous records
905 -- created for entry parameters must be frozen.
907 if Ekind (E) = E_Package
908 and then No (Renamed_Object (E))
909 and then not Is_Child_Unit (E)
910 and then not Is_Frozen (E)
911 then
912 New_Scope (E);
913 Install_Visible_Declarations (E);
914 Install_Private_Declarations (E);
916 Freeze_All (First_Entity (E), After);
918 End_Package_Scope (E);
920 elsif Ekind (E) in Task_Kind
921 and then
922 (Nkind (Parent (E)) = N_Task_Type_Declaration
923 or else
924 Nkind (Parent (E)) = N_Single_Task_Declaration)
925 then
926 New_Scope (E);
927 Freeze_All (First_Entity (E), After);
928 End_Scope;
930 -- For a derived tagged type, we must ensure that all the
931 -- primitive operations of the parent have been frozen, so
932 -- that their addresses will be in the parent's dispatch table
933 -- at the point it is inherited.
935 elsif Ekind (E) = E_Record_Type
936 and then Is_Tagged_Type (E)
937 and then Is_Tagged_Type (Etype (E))
938 and then Is_Derived_Type (E)
939 then
940 declare
941 Prim_List : constant Elist_Id :=
942 Primitive_Operations (Etype (E));
943 Prim : Elmt_Id;
944 Subp : Entity_Id;
946 begin
947 Prim := First_Elmt (Prim_List);
949 while Present (Prim) loop
950 Subp := Node (Prim);
952 if Comes_From_Source (Subp)
953 and then not Is_Frozen (Subp)
954 then
955 Flist := Freeze_Entity (Subp, Loc);
956 Process_Flist;
957 end if;
959 Next_Elmt (Prim);
960 end loop;
961 end;
962 end if;
964 if not Is_Frozen (E) then
965 Flist := Freeze_Entity (E, Loc);
966 Process_Flist;
967 end if;
969 Next_Entity (E);
970 end loop;
971 end Freeze_All_Ent;
973 -- Start of processing for Freeze_All
975 begin
976 Freeze_All_Ent (From, After);
978 -- Now that all types are frozen, we can deal with default expressions
979 -- that require us to build a default expression functions. This is the
980 -- point at which such functions are constructed (after all types that
981 -- might be used in such expressions have been frozen).
982 -- We also add finalization chains to access types whose designated
983 -- types are controlled. This is normally done when freezing the type,
984 -- but this misses recursive type definitions where the later members
985 -- of the recursion introduce controlled components (e.g. 5624-001).
987 -- Loop through entities
989 E := From;
990 while Present (E) loop
992 if Is_Subprogram (E) then
994 if not Default_Expressions_Processed (E) then
995 Process_Default_Expressions (E, After);
996 end if;
998 if not Has_Completion (E) then
999 Decl := Unit_Declaration_Node (E);
1001 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1002 Build_And_Analyze_Renamed_Body (Decl, E, After);
1004 elsif Nkind (Decl) = N_Subprogram_Declaration
1005 and then Present (Corresponding_Body (Decl))
1006 and then
1007 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1008 = N_Subprogram_Renaming_Declaration
1009 then
1010 Build_And_Analyze_Renamed_Body
1011 (Decl, Corresponding_Body (Decl), After);
1012 end if;
1013 end if;
1015 elsif Ekind (E) in Task_Kind
1016 and then
1017 (Nkind (Parent (E)) = N_Task_Type_Declaration
1018 or else
1019 Nkind (Parent (E)) = N_Single_Task_Declaration)
1020 then
1021 declare
1022 Ent : Entity_Id;
1024 begin
1025 Ent := First_Entity (E);
1027 while Present (Ent) loop
1029 if Is_Entry (Ent)
1030 and then not Default_Expressions_Processed (Ent)
1031 then
1032 Process_Default_Expressions (Ent, After);
1033 end if;
1035 Next_Entity (Ent);
1036 end loop;
1037 end;
1039 elsif Is_Access_Type (E)
1040 and then Comes_From_Source (E)
1041 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1042 and then Controlled_Type (Designated_Type (E))
1043 and then No (Associated_Final_Chain (E))
1044 then
1045 Build_Final_List (Parent (E), E);
1046 end if;
1048 Next_Entity (E);
1049 end loop;
1051 end Freeze_All;
1053 -----------------------
1054 -- Freeze_And_Append --
1055 -----------------------
1057 procedure Freeze_And_Append
1058 (Ent : Entity_Id;
1059 Loc : Source_Ptr;
1060 Result : in out List_Id)
1062 L : constant List_Id := Freeze_Entity (Ent, Loc);
1064 begin
1065 if Is_Non_Empty_List (L) then
1066 if Result = No_List then
1067 Result := L;
1068 else
1069 Append_List (L, Result);
1070 end if;
1071 end if;
1072 end Freeze_And_Append;
1074 -------------------
1075 -- Freeze_Before --
1076 -------------------
1078 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1079 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1080 F : Node_Id;
1082 begin
1083 if Is_Non_Empty_List (Freeze_Nodes) then
1084 F := First (Freeze_Nodes);
1086 if Present (F) then
1087 Insert_Actions (N, Freeze_Nodes);
1088 end if;
1089 end if;
1090 end Freeze_Before;
1092 -------------------
1093 -- Freeze_Entity --
1094 -------------------
1096 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1097 Comp : Entity_Id;
1098 F_Node : Node_Id;
1099 Result : List_Id;
1100 Indx : Node_Id;
1101 Formal : Entity_Id;
1102 Atype : Entity_Id;
1104 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1105 -- Check that an Access or Unchecked_Access attribute with
1106 -- a prefix which is the current instance type can only be
1107 -- applied when the type is limited.
1109 function After_Last_Declaration return Boolean;
1110 -- If Loc is a freeze_entity that appears after the last declaration
1111 -- in the scope, inhibit error messages on late completion.
1113 procedure Freeze_Record_Type (Rec : Entity_Id);
1114 -- Freeze each component, handle some representation clauses, and
1115 -- freeze primitive operations if this is a tagged type.
1117 ----------------------------
1118 -- After_Last_Declaration --
1119 ----------------------------
1121 function After_Last_Declaration return Boolean is
1122 Spec : Node_Id := Parent (Current_Scope);
1124 begin
1125 if Nkind (Spec) = N_Package_Specification then
1126 if Present (Private_Declarations (Spec)) then
1127 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1129 elsif Present (Visible_Declarations (Spec)) then
1130 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1131 else
1132 return False;
1133 end if;
1135 else
1136 return False;
1137 end if;
1138 end After_Last_Declaration;
1140 ----------------------------
1141 -- Check_Current_Instance --
1142 ----------------------------
1144 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1146 function Process (N : Node_Id) return Traverse_Result;
1147 -- Process routine to apply check to given node.
1149 function Process (N : Node_Id) return Traverse_Result is
1150 begin
1151 case Nkind (N) is
1152 when N_Attribute_Reference =>
1153 if (Attribute_Name (N) = Name_Access
1154 or else
1155 Attribute_Name (N) = Name_Unchecked_Access)
1156 and then Is_Entity_Name (Prefix (N))
1157 and then Is_Type (Entity (Prefix (N)))
1158 and then Entity (Prefix (N)) = E
1159 then
1160 Error_Msg_N
1161 ("current instance must be a limited type", Prefix (N));
1162 return Abandon;
1163 else
1164 return OK;
1165 end if;
1167 when others => return OK;
1168 end case;
1169 end Process;
1171 procedure Traverse is new Traverse_Proc (Process);
1173 -- Start of processing for Check_Current_Instance
1175 begin
1176 Traverse (Comp_Decl);
1177 end Check_Current_Instance;
1179 ------------------------
1180 -- Freeze_Record_Type --
1181 ------------------------
1183 procedure Freeze_Record_Type (Rec : Entity_Id) is
1184 Comp : Entity_Id;
1185 Junk : Boolean;
1186 ADC : Node_Id;
1188 Unplaced_Component : Boolean := False;
1189 -- Set True if we find at least one component with no component
1190 -- clause (used to warn about useless Pack pragmas).
1192 Placed_Component : Boolean := False;
1193 -- Set True if we find at least one component with a component
1194 -- clause (used to warn about useless Bit_Order pragmas).
1196 begin
1197 -- Freeze components and embedded subtypes
1199 Comp := First_Entity (Rec);
1201 while Present (Comp) loop
1203 if not Is_Type (Comp) then
1204 Freeze_And_Append (Etype (Comp), Loc, Result);
1205 end if;
1207 -- If the component is an access type with an allocator
1208 -- as default value, the designated type will be frozen
1209 -- by the corresponding expression in init_proc. In order
1210 -- to place the freeze node for the designated type before
1211 -- that for the current record type, freeze it now.
1213 -- Same process if the component is an array of access types,
1214 -- initialized with an aggregate. If the designated type is
1215 -- private, it cannot contain allocators, and it is premature
1216 -- to freeze the type, so we check for this as well.
1218 if Is_Access_Type (Etype (Comp))
1219 and then Present (Parent (Comp))
1220 and then Present (Expression (Parent (Comp)))
1221 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1222 then
1223 declare
1224 Alloc : constant Node_Id := Expression (Parent (Comp));
1226 begin
1227 -- If component is pointer to a classwide type, freeze
1228 -- the specific type in the expression being allocated.
1229 -- The expression may be a subtype indication, in which
1230 -- case freeze the subtype mark.
1232 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
1234 if Is_Entity_Name (Expression (Alloc)) then
1235 Freeze_And_Append
1236 (Entity (Expression (Alloc)), Loc, Result);
1237 elsif
1238 Nkind (Expression (Alloc)) = N_Subtype_Indication
1239 then
1240 Freeze_And_Append
1241 (Entity (Subtype_Mark (Expression (Alloc))),
1242 Loc, Result);
1243 end if;
1244 else
1245 Freeze_And_Append
1246 (Designated_Type (Etype (Comp)), Loc, Result);
1247 end if;
1248 end;
1250 -- If this is a constrained subtype of an already frozen type,
1251 -- make the subtype frozen as well. It might otherwise be frozen
1252 -- in the wrong scope, and a freeze node on subtype has no effect.
1254 elsif Is_Access_Type (Etype (Comp))
1255 and then not Is_Frozen (Designated_Type (Etype (Comp)))
1256 and then Is_Itype (Designated_Type (Etype (Comp)))
1257 and then Is_Frozen (Base_Type (Designated_Type (Etype (Comp))))
1258 then
1259 Set_Is_Frozen (Designated_Type (Etype (Comp)));
1261 elsif Is_Array_Type (Etype (Comp))
1262 and then Is_Access_Type (Component_Type (Etype (Comp)))
1263 and then Present (Parent (Comp))
1264 and then Nkind (Parent (Comp)) = N_Component_Declaration
1265 and then Present (Expression (Parent (Comp)))
1266 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1267 and then Is_Fully_Defined
1268 (Designated_Type (Component_Type (Etype (Comp))))
1269 then
1270 Freeze_And_Append
1271 (Designated_Type
1272 (Component_Type (Etype (Comp))), Loc, Result);
1273 end if;
1275 -- Processing for real components (exclude anonymous subtypes)
1277 if Ekind (Comp) = E_Component
1278 or else Ekind (Comp) = E_Discriminant
1279 then
1280 -- Check for error of component clause given for variable
1281 -- sized type. We have to delay this test till this point,
1282 -- since the component type has to be frozen for us to know
1283 -- if it is variable length. We omit this test in a generic
1284 -- context, it will be applied at instantiation time.
1286 declare
1287 CC : constant Node_Id := Component_Clause (Comp);
1289 begin
1290 if Present (CC) then
1291 Placed_Component := True;
1293 if Inside_A_Generic then
1294 null;
1296 elsif not Size_Known_At_Compile_Time
1297 (Underlying_Type (Etype (Comp)))
1298 then
1299 Error_Msg_N
1300 ("component clause not allowed for variable " &
1301 "length component", CC);
1302 end if;
1304 else
1305 Unplaced_Component := True;
1306 end if;
1307 end;
1309 -- If component clause is present, then deal with the
1310 -- non-default bit order case. We cannot do this before
1311 -- the freeze point, because there is no required order
1312 -- for the component clause and the bit_order clause.
1314 -- We only do this processing for the base type, and in
1315 -- fact that's important, since otherwise if there are
1316 -- record subtypes, we could reverse the bits once for
1317 -- each subtype, which would be incorrect.
1319 if Present (Component_Clause (Comp))
1320 and then Reverse_Bit_Order (Rec)
1321 and then Ekind (E) = E_Record_Type
1322 then
1323 declare
1324 CFB : constant Uint := Component_Bit_Offset (Comp);
1325 CSZ : constant Uint := Esize (Comp);
1326 CLC : constant Node_Id := Component_Clause (Comp);
1327 Pos : constant Node_Id := Position (CLC);
1328 FB : constant Node_Id := First_Bit (CLC);
1330 Storage_Unit_Offset : constant Uint :=
1331 CFB / System_Storage_Unit;
1333 Start_Bit : constant Uint :=
1334 CFB mod System_Storage_Unit;
1336 begin
1337 -- Cases where field goes over storage unit boundary
1339 if Start_Bit + CSZ > System_Storage_Unit then
1341 -- Allow multi-byte field but generate warning
1343 if Start_Bit mod System_Storage_Unit = 0
1344 and then CSZ mod System_Storage_Unit = 0
1345 then
1346 Error_Msg_N
1347 ("multi-byte field specified with non-standard"
1348 & " Bit_Order?", CLC);
1350 if Bytes_Big_Endian then
1351 Error_Msg_N
1352 ("bytes are not reversed "
1353 & "(component is big-endian)?", CLC);
1354 else
1355 Error_Msg_N
1356 ("bytes are not reversed "
1357 & "(component is little-endian)?", CLC);
1358 end if;
1360 -- Do not allow non-contiguous field
1362 else
1363 Error_Msg_N
1364 ("attempt to specify non-contiguous field"
1365 & " not permitted", CLC);
1366 Error_Msg_N
1367 ("\(caused by non-standard Bit_Order "
1368 & "specified)", CLC);
1369 end if;
1371 -- Case where field fits in one storage unit
1373 else
1374 -- Give warning if suspicious component clause
1376 if Intval (FB) >= System_Storage_Unit then
1377 Error_Msg_N
1378 ("?Bit_Order clause does not affect " &
1379 "byte ordering", Pos);
1380 Error_Msg_Uint_1 :=
1381 Intval (Pos) + Intval (FB) / System_Storage_Unit;
1382 Error_Msg_N
1383 ("?position normalized to ^ before bit " &
1384 "order interpreted", Pos);
1385 end if;
1387 -- Here is where we fix up the Component_Bit_Offset
1388 -- value to account for the reverse bit order.
1389 -- Some examples of what needs to be done are:
1391 -- First_Bit .. Last_Bit Component_Bit_Offset
1392 -- old new old new
1394 -- 0 .. 0 7 .. 7 0 7
1395 -- 0 .. 1 6 .. 7 0 6
1396 -- 0 .. 2 5 .. 7 0 5
1397 -- 0 .. 7 0 .. 7 0 4
1399 -- 1 .. 1 6 .. 6 1 6
1400 -- 1 .. 4 3 .. 6 1 3
1401 -- 4 .. 7 0 .. 3 4 0
1403 -- The general rule is that the first bit is
1404 -- is obtained by subtracting the old ending bit
1405 -- from storage_unit - 1.
1407 Set_Component_Bit_Offset (Comp,
1408 (Storage_Unit_Offset * System_Storage_Unit)
1409 + (System_Storage_Unit - 1)
1410 - (Start_Bit + CSZ - 1));
1412 Set_Normalized_First_Bit (Comp,
1413 Component_Bit_Offset (Comp) mod System_Storage_Unit);
1414 end if;
1415 end;
1416 end if;
1417 end if;
1419 Next_Entity (Comp);
1420 end loop;
1422 -- Check for useless pragma Bit_Order
1424 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1425 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1426 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1427 Error_Msg_N ("\?since no component clauses were specified", ADC);
1428 end if;
1430 -- Check for useless pragma Pack when all components placed
1432 if Is_Packed (Rec)
1433 and then not Unplaced_Component
1434 and then Warn_On_Redundant_Constructs
1435 then
1436 Error_Msg_N
1437 ("?pragma Pack has no effect, no unplaced components",
1438 Get_Rep_Pragma (Rec, Name_Pack));
1439 Set_Is_Packed (Rec, False);
1440 end if;
1442 -- If this is the record corresponding to a remote type,
1443 -- freeze the remote type here since that is what we are
1444 -- semantically freeing. This prevents having the freeze node
1445 -- for that type in an inner scope.
1447 -- Also, Check for controlled components and unchecked unions.
1448 -- Finally, enforce the restriction that access attributes with
1449 -- a current instance prefix can only apply to limited types.
1451 if Ekind (Rec) = E_Record_Type then
1453 if Present (Corresponding_Remote_Type (Rec)) then
1454 Freeze_And_Append
1455 (Corresponding_Remote_Type (Rec), Loc, Result);
1456 end if;
1458 Comp := First_Component (Rec);
1460 while Present (Comp) loop
1461 if Has_Controlled_Component (Etype (Comp))
1462 or else (Chars (Comp) /= Name_uParent
1463 and then Is_Controlled (Etype (Comp)))
1464 or else (Is_Protected_Type (Etype (Comp))
1465 and then Present
1466 (Corresponding_Record_Type (Etype (Comp)))
1467 and then Has_Controlled_Component
1468 (Corresponding_Record_Type (Etype (Comp))))
1469 then
1470 Set_Has_Controlled_Component (Rec);
1471 exit;
1472 end if;
1474 if Has_Unchecked_Union (Etype (Comp)) then
1475 Set_Has_Unchecked_Union (Rec);
1476 end if;
1478 if Has_Per_Object_Constraint (Comp)
1479 and then not Is_Limited_Type (Rec)
1480 then
1481 -- Scan component declaration for likely misuses of
1482 -- current instance, either in a constraint or in a
1483 -- default expression.
1485 Check_Current_Instance (Parent (Comp));
1486 end if;
1488 Next_Component (Comp);
1489 end loop;
1490 end if;
1492 Set_Component_Alignment_If_Not_Set (Rec);
1494 -- For first subtypes, check if there are any fixed-point
1495 -- fields with component clauses, where we must check the size.
1496 -- This is not done till the freeze point, since for fixed-point
1497 -- types, we do not know the size until the type is frozen.
1499 if Is_First_Subtype (Rec) then
1500 Comp := First_Component (Rec);
1502 while Present (Comp) loop
1503 if Present (Component_Clause (Comp))
1504 and then Is_Fixed_Point_Type (Etype (Comp))
1505 then
1506 Check_Size
1507 (Component_Clause (Comp),
1508 Etype (Comp),
1509 Esize (Comp),
1510 Junk);
1511 end if;
1513 Next_Component (Comp);
1514 end loop;
1515 end if;
1516 end Freeze_Record_Type;
1518 -- Start of processing for Freeze_Entity
1520 begin
1521 -- Do not freeze if already frozen since we only need one freeze node.
1523 if Is_Frozen (E) then
1524 return No_List;
1526 -- It is improper to freeze an external entity within a generic
1527 -- because its freeze node will appear in a non-valid context.
1528 -- ??? We should probably freeze the entity at that point and insert
1529 -- the freeze node in a proper place but this proper place is not
1530 -- easy to find, and the proper scope is not easy to restore. For
1531 -- now, just wait to get out of the generic to freeze ???
1533 elsif Inside_A_Generic and then External_Ref_In_Generic (E) then
1534 return No_List;
1536 -- Do not freeze a global entity within an inner scope created during
1537 -- expansion. A call to subprogram E within some internal procedure
1538 -- (a stream attribute for example) might require freezing E, but the
1539 -- freeze node must appear in the same declarative part as E itself.
1540 -- The two-pass elaboration mechanism in gigi guarantees that E will
1541 -- be frozen before the inner call is elaborated. We exclude constants
1542 -- from this test, because deferred constants may be frozen early, and
1543 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1544 -- comes from source, or is a generic instance, then the freeze point
1545 -- is the one mandated by the language. and we freze the entity.
1547 elsif In_Open_Scopes (Scope (E))
1548 and then Scope (E) /= Current_Scope
1549 and then Ekind (E) /= E_Constant
1550 then
1551 declare
1552 S : Entity_Id := Current_Scope;
1554 begin
1555 while Present (S) loop
1556 if Is_Overloadable (S) then
1557 if Comes_From_Source (S)
1558 or else Is_Generic_Instance (S)
1559 then
1560 exit;
1561 else
1562 return No_List;
1563 end if;
1564 end if;
1566 S := Scope (S);
1567 end loop;
1568 end;
1569 end if;
1571 -- Here to freeze the entity
1573 Result := No_List;
1574 Set_Is_Frozen (E);
1576 -- Case of entity being frozen is other than a type
1578 if not Is_Type (E) then
1580 -- If entity is exported or imported and does not have an external
1581 -- name, now is the time to provide the appropriate default name.
1582 -- Skip this if the entity is stubbed, since we don't need a name
1583 -- for any stubbed routine.
1585 if (Is_Imported (E) or else Is_Exported (E))
1586 and then No (Interface_Name (E))
1587 and then Convention (E) /= Convention_Stubbed
1588 then
1589 Set_Encoded_Interface_Name
1590 (E, Get_Default_External_Name (E));
1591 end if;
1593 -- For a subprogram, freeze all parameter types and also the return
1594 -- type (RM 13.14(13)). However skip this for internal subprograms.
1595 -- This is also the point where any extra formal parameters are
1596 -- created since we now know whether the subprogram will use
1597 -- a foreign convention.
1599 if Is_Subprogram (E) then
1601 if not Is_Internal (E) then
1603 declare
1604 F_Type : Entity_Id;
1606 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
1607 -- Determines if given type entity is a fat pointer type
1608 -- used as an argument type or return type to a subprogram
1609 -- with C or C++ convention set.
1611 --------------------------
1612 -- Is_Fat_C_Access_Type --
1613 --------------------------
1615 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
1616 begin
1617 return (Convention (E) = Convention_C
1618 or else
1619 Convention (E) = Convention_CPP)
1620 and then Is_Access_Type (T)
1621 and then Esize (T) > Ttypes.System_Address_Size;
1622 end Is_Fat_C_Ptr_Type;
1624 begin
1625 -- Loop through formals
1627 Formal := First_Formal (E);
1629 while Present (Formal) loop
1631 F_Type := Etype (Formal);
1632 Freeze_And_Append (F_Type, Loc, Result);
1634 if Is_Private_Type (F_Type)
1635 and then Is_Private_Type (Base_Type (F_Type))
1636 and then No (Full_View (Base_Type (F_Type)))
1637 and then not Is_Generic_Type (F_Type)
1638 and then not Is_Derived_Type (F_Type)
1639 then
1640 -- If the type of a formal is incomplete, subprogram
1641 -- is being frozen prematurely. Within an instance
1642 -- (but not within a wrapper package) this is an
1643 -- an artifact of our need to regard the end of an
1644 -- instantiation as a freeze point. Otherwise it is
1645 -- a definite error.
1646 -- and then not Is_Wrapper_Package (Current_Scope) ???
1648 if In_Instance then
1649 Set_Is_Frozen (E, False);
1650 return No_List;
1652 elsif not After_Last_Declaration then
1653 Error_Msg_Node_1 := F_Type;
1654 Error_Msg
1655 ("type& must be fully defined before this point",
1656 Loc);
1657 end if;
1658 end if;
1660 -- Check bad use of fat C pointer
1662 if Is_Fat_C_Ptr_Type (F_Type) then
1663 Error_Msg_Qual_Level := 1;
1664 Error_Msg_N
1665 ("?type of & does not correspond to C pointer",
1666 Formal);
1667 Error_Msg_Qual_Level := 0;
1668 end if;
1670 -- Check for unconstrained array in exported foreign
1671 -- convention case.
1673 if Convention (E) in Foreign_Convention
1674 and then not Is_Imported (E)
1675 and then Is_Array_Type (F_Type)
1676 and then not Is_Constrained (F_Type)
1677 then
1678 Error_Msg_Qual_Level := 1;
1679 Error_Msg_N
1680 ("?type of argument& is unconstrained array",
1681 Formal);
1682 Error_Msg_N
1683 ("?foreign caller must pass bounds explicitly",
1684 Formal);
1685 Error_Msg_Qual_Level := 0;
1686 end if;
1688 Next_Formal (Formal);
1689 end loop;
1691 -- Check return type
1693 if Ekind (E) = E_Function then
1694 Freeze_And_Append (Etype (E), Loc, Result);
1696 if Is_Fat_C_Ptr_Type (Etype (E)) then
1697 Error_Msg_N
1698 ("?return type of& does not correspond to C pointer",
1701 elsif Is_Array_Type (Etype (E))
1702 and then not Is_Constrained (Etype (E))
1703 and then not Is_Imported (E)
1704 and then Convention (E) in Foreign_Convention
1705 then
1706 Error_Msg_N
1707 ("foreign convention function may not " &
1708 "return unconstrained array", E);
1709 end if;
1710 end if;
1711 end;
1712 end if;
1714 -- Must freeze its parent first if it is a derived subprogram
1716 if Present (Alias (E)) then
1717 Freeze_And_Append (Alias (E), Loc, Result);
1718 end if;
1720 -- If the return type requires a transient scope, and we are on
1721 -- a target allowing functions to return with a depressed stack
1722 -- pointer, then we mark the function as requiring this treatment.
1724 if Ekind (E) = E_Function
1725 and then Functions_Return_By_DSP_On_Target
1726 and then Requires_Transient_Scope (Etype (E))
1727 then
1728 Set_Function_Returns_With_DSP (E);
1729 end if;
1731 if not Is_Internal (E) then
1732 Freeze_Subprogram (E);
1733 end if;
1735 -- Here for other than a subprogram or type
1737 else
1738 -- If entity has a type, and it is not a generic unit, then
1739 -- freeze it first (RM 13.14(10))
1741 if Present (Etype (E))
1742 and then Ekind (E) /= E_Generic_Function
1743 then
1744 Freeze_And_Append (Etype (E), Loc, Result);
1745 end if;
1747 -- For object created by object declaration, perform required
1748 -- categorization (preelaborate and pure) checks. Defer these
1749 -- checks to freeze time since pragma Import inhibits default
1750 -- initialization and thus pragma Import affects these checks.
1752 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
1753 Validate_Object_Declaration (Declaration_Node (E));
1754 end if;
1756 -- Check that a constant which has a pragma Volatile[_Components]
1757 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
1759 -- Note: Atomic[_Components] also sets Volatile[_Components]
1761 if Ekind (E) = E_Constant
1762 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
1763 and then not Is_Imported (E)
1764 then
1765 -- Make sure we actually have a pragma, and have not merely
1766 -- inherited the indication from elsewhere (e.g. an address
1767 -- clause, which is not good enough in RM terms!)
1769 if Present (Get_Rep_Pragma (E, Name_Atomic)) or else
1770 Present (Get_Rep_Pragma (E, Name_Atomic_Components)) or else
1771 Present (Get_Rep_Pragma (E, Name_Volatile)) or else
1772 Present (Get_Rep_Pragma (E, Name_Volatile_Components))
1773 then
1774 Error_Msg_N
1775 ("stand alone atomic/volatile constant must be imported",
1777 end if;
1778 end if;
1780 -- Static objects require special handling
1782 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
1783 and then Is_Statically_Allocated (E)
1784 then
1785 Freeze_Static_Object (E);
1786 end if;
1788 -- Remaining step is to layout objects
1790 if Ekind (E) = E_Variable
1791 or else
1792 Ekind (E) = E_Constant
1793 or else
1794 Ekind (E) = E_Loop_Parameter
1795 or else
1796 Is_Formal (E)
1797 then
1798 Layout_Object (E);
1799 end if;
1800 end if;
1802 -- Case of a type or subtype being frozen
1804 else
1805 -- The type may be defined in a generic unit. This can occur when
1806 -- freezing a generic function that returns the type (which is
1807 -- defined in a parent unit). It is clearly meaningless to freeze
1808 -- this type. However, if it is a subtype, its size may be determi-
1809 -- nable and used in subsequent checks, so might as well try to
1810 -- compute it.
1812 if Present (Scope (E))
1813 and then Is_Generic_Unit (Scope (E))
1814 then
1815 Check_Compile_Time_Size (E);
1816 return No_List;
1817 end if;
1819 -- Deal with special cases of freezing for subtype
1821 if E /= Base_Type (E) then
1823 -- If ancestor subtype present, freeze that first.
1824 -- Note that this will also get the base type frozen.
1826 Atype := Ancestor_Subtype (E);
1828 if Present (Atype) then
1829 Freeze_And_Append (Atype, Loc, Result);
1831 -- Otherwise freeze the base type of the entity before
1832 -- freezing the entity itself, (RM 13.14(14)).
1834 elsif E /= Base_Type (E) then
1835 Freeze_And_Append (Base_Type (E), Loc, Result);
1836 end if;
1838 -- For a derived type, freeze its parent type first (RM 13.14(14))
1840 elsif Is_Derived_Type (E) then
1841 Freeze_And_Append (Etype (E), Loc, Result);
1842 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
1843 end if;
1845 -- For array type, freeze index types and component type first
1846 -- before freezing the array (RM 13.14(14)).
1848 if Is_Array_Type (E) then
1849 declare
1850 Ctyp : constant Entity_Id := Component_Type (E);
1852 Non_Standard_Enum : Boolean := False;
1853 -- Set true if any of the index types is an enumeration
1854 -- type with a non-standard representation.
1856 begin
1857 Freeze_And_Append (Ctyp, Loc, Result);
1859 Indx := First_Index (E);
1860 while Present (Indx) loop
1861 Freeze_And_Append (Etype (Indx), Loc, Result);
1863 if Is_Enumeration_Type (Etype (Indx))
1864 and then Has_Non_Standard_Rep (Etype (Indx))
1865 then
1866 Non_Standard_Enum := True;
1867 end if;
1869 Next_Index (Indx);
1870 end loop;
1872 -- Processing that is done only for base types
1874 if Ekind (E) = E_Array_Type then
1876 -- Propagate flags for component type
1878 if Is_Controlled (Component_Type (E))
1879 or else Has_Controlled_Component (Ctyp)
1880 then
1881 Set_Has_Controlled_Component (E);
1882 end if;
1884 if Has_Unchecked_Union (Component_Type (E)) then
1885 Set_Has_Unchecked_Union (E);
1886 end if;
1888 -- If packing was requested or if the component size was set
1889 -- explicitly, then see if bit packing is required. This
1890 -- processing is only done for base types, since all the
1891 -- representation aspects involved are type-related. This
1892 -- is not just an optimization, if we start processing the
1893 -- subtypes, they intefere with the settings on the base
1894 -- type (this is because Is_Packed has a slightly different
1895 -- meaning before and after freezing).
1897 declare
1898 Csiz : Uint;
1899 Esiz : Uint;
1901 begin
1902 if (Is_Packed (E) or else Has_Pragma_Pack (E))
1903 and then not Has_Atomic_Components (E)
1904 and then Known_Static_RM_Size (Ctyp)
1905 then
1906 Csiz := UI_Max (RM_Size (Ctyp), 1);
1908 elsif Known_Component_Size (E) then
1909 Csiz := Component_Size (E);
1911 elsif not Known_Static_Esize (Ctyp) then
1912 Csiz := Uint_0;
1914 else
1915 Esiz := Esize (Ctyp);
1917 -- We can set the component size if it is less than
1918 -- 16, rounding it up to the next storage unit size.
1920 if Esiz <= 8 then
1921 Csiz := Uint_8;
1922 elsif Esiz <= 16 then
1923 Csiz := Uint_16;
1924 else
1925 Csiz := Uint_0;
1926 end if;
1928 -- Set component size up to match alignment if
1929 -- it would otherwise be less than the alignment.
1930 -- This deals with cases of types whose alignment
1931 -- exceeds their sizes (padded types).
1933 if Csiz /= 0 then
1934 declare
1935 A : constant Uint := Alignment_In_Bits (Ctyp);
1937 begin
1938 if Csiz < A then
1939 Csiz := A;
1940 end if;
1941 end;
1942 end if;
1944 end if;
1946 if 1 <= Csiz and then Csiz <= 64 then
1948 -- We set the component size for all cases 1-64
1950 Set_Component_Size (Base_Type (E), Csiz);
1952 -- Actual packing is not needed for 8,16,32,64
1953 -- Also not needed for 24 if alignment is 1
1955 if Csiz = 8
1956 or else Csiz = 16
1957 or else Csiz = 32
1958 or else Csiz = 64
1959 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
1960 then
1961 -- Here the array was requested to be packed, but
1962 -- the packing request had no effect, so Is_Packed
1963 -- is reset.
1965 -- Note: semantically this means that we lose
1966 -- track of the fact that a derived type inherited
1967 -- a pack pragma that was non-effective, but that
1968 -- seems fine.
1970 -- We regard a Pack pragma as a request to set a
1971 -- representation characteristic, and this request
1972 -- may be ignored.
1974 Set_Is_Packed (Base_Type (E), False);
1976 -- In all other cases, packing is indeed needed
1978 else
1979 Set_Has_Non_Standard_Rep (Base_Type (E));
1980 Set_Is_Bit_Packed_Array (Base_Type (E));
1981 Set_Is_Packed (Base_Type (E));
1982 end if;
1983 end if;
1984 end;
1986 -- Processing that is done only for subtypes
1988 else
1989 -- Acquire alignment from base type
1991 if Unknown_Alignment (E) then
1992 Set_Alignment (E, Alignment (Base_Type (E)));
1993 end if;
1994 end if;
1996 -- Check one common case of a size given where the array
1997 -- needs to be packed, but was not so the size cannot be
1998 -- honored. This would of course be caught by the backend,
1999 -- and indeed we don't catch all cases. The point is that
2000 -- we can give a better error message in those cases that
2001 -- we do catch with the circuitry here.
2003 if Present (Size_Clause (E))
2004 and then Known_Static_Esize (E)
2005 and then not Has_Pragma_Pack (E)
2006 and then Number_Dimensions (E) = 1
2007 and then not Has_Component_Size_Clause (E)
2008 and then Known_Static_Component_Size (E)
2009 then
2010 declare
2011 Lo, Hi : Node_Id;
2012 Ctyp : constant Entity_Id := Component_Type (E);
2014 begin
2015 Get_Index_Bounds (First_Index (E), Lo, Hi);
2017 if Compile_Time_Known_Value (Lo)
2018 and then Compile_Time_Known_Value (Hi)
2019 and then Known_Static_RM_Size (Ctyp)
2020 and then RM_Size (Ctyp) < 64
2021 then
2022 declare
2023 Lov : constant Uint := Expr_Value (Lo);
2024 Hiv : constant Uint := Expr_Value (Hi);
2025 Len : constant Uint :=
2026 UI_Max (Uint_0, Hiv - Lov + 1);
2028 begin
2029 if Esize (E) < Len * Component_Size (E)
2030 and then Esize (E) = Len * RM_Size (Ctyp)
2031 then
2032 Error_Msg_NE
2033 ("size given for& too small",
2034 Size_Clause (E), E);
2035 Error_Msg_N
2036 ("\explicit pragma Pack is required",
2037 Size_Clause (E));
2038 end if;
2039 end;
2040 end if;
2041 end;
2042 end if;
2044 -- If any of the index types was an enumeration type with
2045 -- a non-standard rep clause, then we indicate that the
2046 -- array type is always packed (even if it is not bit packed).
2048 if Non_Standard_Enum then
2049 Set_Has_Non_Standard_Rep (Base_Type (E));
2050 Set_Is_Packed (Base_Type (E));
2051 end if;
2052 end;
2054 Set_Component_Alignment_If_Not_Set (E);
2056 -- If the array is packed, we must create the packed array
2057 -- type to be used to actually implement the type. This is
2058 -- only needed for real array types (not for string literal
2059 -- types, since they are present only for the front end).
2061 if Is_Packed (E)
2062 and then Ekind (E) /= E_String_Literal_Subtype
2063 then
2064 Create_Packed_Array_Type (E);
2065 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
2067 -- Size information of packed array type is copied to the
2068 -- array type, since this is really the representation.
2070 Set_Size_Info (E, Packed_Array_Type (E));
2071 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2072 end if;
2074 -- For a class wide type, the corresponding specific type is
2075 -- frozen as well (RM 13.14(14))
2077 elsif Is_Class_Wide_Type (E) then
2078 Freeze_And_Append (Root_Type (E), Loc, Result);
2080 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2081 -- parent of a derived type) and it is a library-level entity,
2082 -- generate an itype reference for it. Otherwise, its first
2083 -- explicit reference may be in an inner scope, which will be
2084 -- rejected by the back-end.
2086 if Is_Itype (E)
2087 and then Is_Compilation_Unit (Scope (E))
2088 then
2090 declare
2091 Ref : Node_Id := Make_Itype_Reference (Loc);
2093 begin
2094 Set_Itype (Ref, E);
2095 if No (Result) then
2096 Result := New_List (Ref);
2097 else
2098 Append (Ref, Result);
2099 end if;
2100 end;
2101 end if;
2103 -- For record (sub)type, freeze all the component types (RM
2104 -- 13.14(14). We test for E_Record_(sub)Type here, rather than
2105 -- using Is_Record_Type, because we don't want to attempt the
2106 -- freeze for the case of a private type with record extension
2107 -- (we will do that later when the full type is frozen).
2109 elsif Ekind (E) = E_Record_Type
2110 or else Ekind (E) = E_Record_Subtype
2111 then
2112 Freeze_Record_Type (E);
2114 -- For a concurrent type, freeze corresponding record type. This
2115 -- does not correpond to any specific rule in the RM, but the
2116 -- record type is essentially part of the concurrent type.
2117 -- Freeze as well all local entities. This includes record types
2118 -- created for entry parameter blocks, and whatever local entities
2119 -- may appear in the private part.
2121 elsif Is_Concurrent_Type (E) then
2122 if Present (Corresponding_Record_Type (E)) then
2123 Freeze_And_Append
2124 (Corresponding_Record_Type (E), Loc, Result);
2125 end if;
2127 Comp := First_Entity (E);
2129 while Present (Comp) loop
2130 if Is_Type (Comp) then
2131 Freeze_And_Append (Comp, Loc, Result);
2133 elsif (Ekind (Comp)) /= E_Function then
2134 Freeze_And_Append (Etype (Comp), Loc, Result);
2135 end if;
2137 Next_Entity (Comp);
2138 end loop;
2140 -- Private types are required to point to the same freeze node
2141 -- as their corresponding full views. The freeze node itself
2142 -- has to point to the partial view of the entity (because
2143 -- from the partial view, we can retrieve the full view, but
2144 -- not the reverse). However, in order to freeze correctly,
2145 -- we need to freeze the full view. If we are freezing at the
2146 -- end of a scope (or within the scope of the private type),
2147 -- the partial and full views will have been swapped, the
2148 -- full view appears first in the entity chain and the swapping
2149 -- mechanism enusres that the pointers are properly set (on
2150 -- scope exit).
2152 -- If we encounter the partial view before the full view
2153 -- (e.g. when freezing from another scope), we freeze the
2154 -- full view, and then set the pointers appropriately since
2155 -- we cannot rely on swapping to fix things up (subtypes in an
2156 -- outer scope might not get swapped).
2158 elsif Is_Incomplete_Or_Private_Type (E)
2159 and then not Is_Generic_Type (E)
2160 then
2161 -- Case of full view present
2163 if Present (Full_View (E)) then
2165 -- If full view has already been frozen, then no
2166 -- further processing is required
2168 if Is_Frozen (Full_View (E)) then
2170 Set_Has_Delayed_Freeze (E, False);
2171 Set_Freeze_Node (E, Empty);
2172 Check_Debug_Info_Needed (E);
2174 -- Otherwise freeze full view and patch the pointers
2176 else
2177 if Is_Private_Type (Full_View (E))
2178 and then Present (Underlying_Full_View (Full_View (E)))
2179 then
2180 Freeze_And_Append
2181 (Underlying_Full_View (Full_View (E)), Loc, Result);
2182 end if;
2184 Freeze_And_Append (Full_View (E), Loc, Result);
2186 if Has_Delayed_Freeze (E) then
2187 F_Node := Freeze_Node (Full_View (E));
2189 if Present (F_Node) then
2190 Set_Freeze_Node (E, F_Node);
2191 Set_Entity (F_Node, E);
2192 else
2193 -- {Incomplete,Private}_Subtypes
2194 -- with Full_Views constrained by discriminants
2196 Set_Has_Delayed_Freeze (E, False);
2197 Set_Freeze_Node (E, Empty);
2198 end if;
2199 end if;
2201 Check_Debug_Info_Needed (E);
2202 end if;
2204 -- AI-117 requires that the convention of a partial view
2205 -- be the same as the convention of the full view. Note
2206 -- that this is a recognized breach of privacy, but it's
2207 -- essential for logical consistency of representation,
2208 -- and the lack of a rule in RM95 was an oversight.
2210 Set_Convention (E, Convention (Full_View (E)));
2212 Set_Size_Known_At_Compile_Time (E,
2213 Size_Known_At_Compile_Time (Full_View (E)));
2215 -- Size information is copied from the full view to the
2216 -- incomplete or private view for consistency
2218 -- We skip this is the full view is not a type. This is
2219 -- very strange of course, and can only happen as a result
2220 -- of certain illegalities, such as a premature attempt to
2221 -- derive from an incomplete type.
2223 if Is_Type (Full_View (E)) then
2224 Set_Size_Info (E, Full_View (E));
2225 Set_RM_Size (E, RM_Size (Full_View (E)));
2226 end if;
2228 return Result;
2230 -- Case of no full view present. If entity is derived or subtype,
2231 -- it is safe to freeze, correctness depends on the frozen status
2232 -- of parent. Otherwise it is either premature usage, or a Taft
2233 -- amendment type, so diagnosis is at the point of use and the
2234 -- type might be frozen later.
2236 elsif E /= Base_Type (E)
2237 or else Is_Derived_Type (E)
2238 then
2239 null;
2241 else
2242 Set_Is_Frozen (E, False);
2243 return No_List;
2244 end if;
2246 -- For access subprogram, freeze types of all formals, the return
2247 -- type was already frozen, since it is the Etype of the function.
2249 elsif Ekind (E) = E_Subprogram_Type then
2250 Formal := First_Formal (E);
2251 while Present (Formal) loop
2252 Freeze_And_Append (Etype (Formal), Loc, Result);
2253 Next_Formal (Formal);
2254 end loop;
2256 -- If the return type requires a transient scope, and we are on
2257 -- a target allowing functions to return with a depressed stack
2258 -- pointer, then we mark the function as requiring this treatment.
2260 if Functions_Return_By_DSP_On_Target
2261 and then Requires_Transient_Scope (Etype (E))
2262 then
2263 Set_Function_Returns_With_DSP (E);
2264 end if;
2266 Freeze_Subprogram (E);
2268 -- For access to a protected subprogram, freeze the equivalent
2269 -- type (however this is not set if we are not generating code)
2270 -- or if this is an anonymous type used just for resolution).
2272 elsif Ekind (E) = E_Access_Protected_Subprogram_Type
2273 and then Operating_Mode = Generate_Code
2274 and then Present (Equivalent_Type (E))
2275 then
2276 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2277 end if;
2279 -- Generic types are never seen by the back-end, and are also not
2280 -- processed by the expander (since the expander is turned off for
2281 -- generic processing), so we never need freeze nodes for them.
2283 if Is_Generic_Type (E) then
2284 return Result;
2285 end if;
2287 -- Some special processing for non-generic types to complete
2288 -- representation details not known till the freeze point.
2290 if Is_Fixed_Point_Type (E) then
2291 Freeze_Fixed_Point_Type (E);
2293 elsif Is_Enumeration_Type (E) then
2294 Freeze_Enumeration_Type (E);
2296 elsif Is_Integer_Type (E) then
2297 Adjust_Esize_For_Alignment (E);
2299 elsif Is_Access_Type (E)
2300 and then No (Associated_Storage_Pool (E))
2301 then
2302 Check_Restriction (No_Standard_Storage_Pools, E);
2303 end if;
2305 -- If the current entity is an array or record subtype and has
2306 -- discriminants used to constrain it, it must not freeze, because
2307 -- Freeze_Entity nodes force Gigi to process the frozen type.
2309 if Is_Composite_Type (E) then
2311 if Is_Array_Type (E) then
2313 declare
2314 Index : Node_Id := First_Index (E);
2315 Expr1 : Node_Id;
2316 Expr2 : Node_Id;
2318 begin
2319 while Present (Index) loop
2320 if Etype (Index) /= Any_Type then
2321 Get_Index_Bounds (Index, Expr1, Expr2);
2323 for J in 1 .. 2 loop
2324 if Nkind (Expr1) = N_Identifier
2325 and then Ekind (Entity (Expr1)) = E_Discriminant
2326 then
2327 Set_Has_Delayed_Freeze (E, False);
2328 Set_Freeze_Node (E, Empty);
2329 Check_Debug_Info_Needed (E);
2330 return Result;
2331 end if;
2333 Expr1 := Expr2;
2334 end loop;
2335 end if;
2337 Next_Index (Index);
2338 end loop;
2339 end;
2341 elsif Has_Discriminants (E)
2342 and Is_Constrained (E)
2343 then
2344 declare
2345 Constraint : Elmt_Id;
2346 Expr : Node_Id;
2348 begin
2349 Constraint := First_Elmt (Discriminant_Constraint (E));
2351 while Present (Constraint) loop
2353 Expr := Node (Constraint);
2354 if Nkind (Expr) = N_Identifier
2355 and then Ekind (Entity (Expr)) = E_Discriminant
2356 then
2357 Set_Has_Delayed_Freeze (E, False);
2358 Set_Freeze_Node (E, Empty);
2359 Check_Debug_Info_Needed (E);
2360 return Result;
2361 end if;
2363 Next_Elmt (Constraint);
2364 end loop;
2365 end;
2367 end if;
2369 -- AI-117 requires that all new primitives of a tagged type
2370 -- must inherit the convention of the full view of the type.
2371 -- Inherited and overriding operations are defined to inherit
2372 -- the convention of their parent or overridden subprogram
2373 -- (also specified in AI-117), and that will have occurred
2374 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2375 -- Here we set the convention of primitives that are still
2376 -- convention Ada, which will ensure that any new primitives
2377 -- inherit the type's convention. Class-wide types can have
2378 -- a foreign convention inherited from their specific type,
2379 -- but are excluded from this since they don't have any
2380 -- associated primitives.
2382 if Is_Tagged_Type (E)
2383 and then not Is_Class_Wide_Type (E)
2384 and then Convention (E) /= Convention_Ada
2385 then
2386 declare
2387 Prim_List : constant Elist_Id := Primitive_Operations (E);
2388 Prim : Elmt_Id;
2390 begin
2391 Prim := First_Elmt (Prim_List);
2392 while Present (Prim) loop
2393 if Convention (Node (Prim)) = Convention_Ada then
2394 Set_Convention (Node (Prim), Convention (E));
2395 end if;
2397 Next_Elmt (Prim);
2398 end loop;
2399 end;
2400 end if;
2401 end if;
2403 -- Generate primitive operation references for a tagged type
2405 if Is_Tagged_Type (E)
2406 and then not Is_Class_Wide_Type (E)
2407 then
2408 declare
2409 Prim_List : constant Elist_Id := Primitive_Operations (E);
2410 Prim : Elmt_Id;
2411 Ent : Entity_Id;
2413 begin
2414 Prim := First_Elmt (Prim_List);
2415 while Present (Prim) loop
2416 Ent := Node (Prim);
2418 -- If the operation is derived, get the original for
2419 -- cross-reference purposes (it is the original for
2420 -- which we want the xref, and for which the comes
2421 -- from source test needs to be performed).
2423 while Present (Alias (Ent)) loop
2424 Ent := Alias (Ent);
2425 end loop;
2427 Generate_Reference (E, Ent, 'p', Set_Ref => False);
2428 Next_Elmt (Prim);
2429 end loop;
2431 -- If we get an exception, then something peculiar has happened
2432 -- probably as a result of a previous error. Since this is only
2433 -- for non-critical cross-references, ignore the error.
2435 exception
2436 when others => null;
2437 end;
2438 end if;
2440 -- Now that all types from which E may depend are frozen, see
2441 -- if the size is known at compile time, if it must be unsigned,
2442 -- or if strict alignent is required
2444 Check_Compile_Time_Size (E);
2445 Check_Unsigned_Type (E);
2447 if Base_Type (E) = E then
2448 Check_Strict_Alignment (E);
2449 end if;
2451 -- Do not allow a size clause for a type which does not have a size
2452 -- that is known at compile time
2454 if Has_Size_Clause (E)
2455 and then not Size_Known_At_Compile_Time (E)
2456 then
2457 -- Supress this message if errors posted on E, even if we are
2458 -- in all errors mode, since this is often a junk message
2460 if not Error_Posted (E) then
2461 Error_Msg_N
2462 ("size clause not allowed for variable length type",
2463 Size_Clause (E));
2464 end if;
2465 end if;
2467 -- Remaining process is to set/verify the representation information,
2468 -- in particular the size and alignment values. This processing is
2469 -- not required for generic types, since generic types do not play
2470 -- any part in code generation, and so the size and alignment values
2471 -- for suhc types are irrelevant.
2473 if Is_Generic_Type (E) then
2474 return Result;
2476 -- Otherwise we call the layout procedure
2478 else
2479 Layout_Type (E);
2480 end if;
2482 -- End of freeze processing for type entities
2483 end if;
2485 -- Here is where we logically freeze the current entity. If it has a
2486 -- freeze node, then this is the point at which the freeze node is
2487 -- linked into the result list.
2489 if Has_Delayed_Freeze (E) then
2491 -- If a freeze node is already allocated, use it, otherwise allocate
2492 -- a new one. The preallocation happens in the case of anonymous base
2493 -- types, where we preallocate so that we can set First_Subtype_Link.
2494 -- Note that we reset the Sloc to the current freeze location.
2496 if Present (Freeze_Node (E)) then
2497 F_Node := Freeze_Node (E);
2498 Set_Sloc (F_Node, Loc);
2500 else
2501 F_Node := New_Node (N_Freeze_Entity, Loc);
2502 Set_Freeze_Node (E, F_Node);
2503 Set_Access_Types_To_Process (F_Node, No_Elist);
2504 Set_TSS_Elist (F_Node, No_Elist);
2505 Set_Actions (F_Node, No_List);
2506 end if;
2508 Set_Entity (F_Node, E);
2510 if Result = No_List then
2511 Result := New_List (F_Node);
2512 else
2513 Append (F_Node, Result);
2514 end if;
2516 end if;
2518 -- When a type is frozen, the first subtype of the type is frozen as
2519 -- well (RM 13.14(15)). This has to be done after freezing the type,
2520 -- since obviously the first subtype depends on its own base type.
2522 if Is_Type (E) then
2523 Freeze_And_Append (First_Subtype (E), Loc, Result);
2525 -- If we just froze a tagged non-class wide record, then freeze the
2526 -- corresponding class-wide type. This must be done after the tagged
2527 -- type itself is frozen, because the class-wide type refers to the
2528 -- tagged type which generates the class.
2530 if Is_Tagged_Type (E)
2531 and then not Is_Class_Wide_Type (E)
2532 and then Present (Class_Wide_Type (E))
2533 then
2534 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
2535 end if;
2536 end if;
2538 Check_Debug_Info_Needed (E);
2540 -- Special handling for subprograms
2542 if Is_Subprogram (E) then
2544 -- If subprogram has address clause then reset Is_Public flag, since
2545 -- we do not want the backend to generate external references.
2547 if Present (Address_Clause (E))
2548 and then not Is_Library_Level_Entity (E)
2549 then
2550 Set_Is_Public (E, False);
2552 -- If no address clause and not intrinsic, then for imported
2553 -- subprogram in main unit, generate descriptor if we are in
2554 -- Propagate_Exceptions mode.
2556 elsif Propagate_Exceptions
2557 and then Is_Imported (E)
2558 and then not Is_Intrinsic_Subprogram (E)
2559 and then Convention (E) /= Convention_Stubbed
2560 then
2561 if Result = No_List then
2562 Result := Empty_List;
2563 end if;
2565 Generate_Subprogram_Descriptor_For_Imported_Subprogram
2566 (E, Result);
2567 end if;
2569 end if;
2571 return Result;
2572 end Freeze_Entity;
2574 -----------------------------
2575 -- Freeze_Enumeration_Type --
2576 -----------------------------
2578 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
2579 begin
2580 if Has_Foreign_Convention (Typ)
2581 and then not Has_Size_Clause (Typ)
2582 and then Esize (Typ) < Standard_Integer_Size
2583 then
2584 Init_Esize (Typ, Standard_Integer_Size);
2586 else
2587 Adjust_Esize_For_Alignment (Typ);
2588 end if;
2589 end Freeze_Enumeration_Type;
2591 -----------------------
2592 -- Freeze_Expression --
2593 -----------------------
2595 procedure Freeze_Expression (N : Node_Id) is
2596 In_Def_Exp : constant Boolean := In_Default_Expression;
2597 Typ : Entity_Id;
2598 Nam : Entity_Id;
2599 Desig_Typ : Entity_Id;
2600 P : Node_Id;
2601 Parent_P : Node_Id;
2603 Freeze_Outside : Boolean := False;
2604 -- This flag is set true if the entity must be frozen outside the
2605 -- current subprogram. This happens in the case of expander generated
2606 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
2607 -- not freeze all entities like other bodies, but which nevertheless
2608 -- may reference entities that have to be frozen before the body and
2609 -- obviously cannot be frozen inside the body.
2611 function In_Exp_Body (N : Node_Id) return Boolean;
2612 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
2613 -- it is the handled statement sequence of an expander generated
2614 -- subprogram (init proc, or stream subprogram). If so, it returns
2615 -- True, otherwise False.
2617 function In_Exp_Body (N : Node_Id) return Boolean is
2618 P : Node_Id;
2620 begin
2621 if Nkind (N) = N_Subprogram_Body then
2622 P := N;
2623 else
2624 P := Parent (N);
2625 end if;
2627 if Nkind (P) /= N_Subprogram_Body then
2628 return False;
2630 else
2631 P := Defining_Unit_Name (Specification (P));
2633 if Nkind (P) = N_Defining_Identifier
2634 and then (Chars (P) = Name_uInit_Proc or else
2635 Chars (P) = Name_uInput or else
2636 Chars (P) = Name_uOutput or else
2637 Chars (P) = Name_uRead or else
2638 Chars (P) = Name_uWrite)
2639 then
2640 return True;
2641 else
2642 return False;
2643 end if;
2644 end if;
2646 end In_Exp_Body;
2648 -- Start of processing for Freeze_Expression
2650 begin
2651 -- Immediate return if freezing is inhibited. This flag is set by
2652 -- the analyzer to stop freezing on generated expressions that would
2653 -- cause freezing if they were in the source program, but which are
2654 -- not supposed to freeze, since they are created.
2656 if Must_Not_Freeze (N) then
2657 return;
2658 end if;
2660 -- If expression is non-static, then it does not freeze in a default
2661 -- expression, see section "Handling of Default Expressions" in the
2662 -- spec of package Sem for further details. Note that we have to
2663 -- make sure that we actually have a real expression (if we have
2664 -- a subtype indication, we can't test Is_Static_Expression!)
2666 if In_Def_Exp
2667 and then Nkind (N) in N_Subexpr
2668 and then not Is_Static_Expression (N)
2669 then
2670 return;
2671 end if;
2673 -- Freeze type of expression if not frozen already
2675 if Nkind (N) in N_Has_Etype
2676 and then not Is_Frozen (Etype (N))
2677 then
2678 Typ := Etype (N);
2679 else
2680 Typ := Empty;
2681 end if;
2683 -- For entity name, freeze entity if not frozen already. A special
2684 -- exception occurs for an identifier that did not come from source.
2685 -- We don't let such identifiers freeze a non-internal entity, i.e.
2686 -- an entity that did come from source, since such an identifier was
2687 -- generated by the expander, and cannot have any semantic effect on
2688 -- the freezing semantics. For example, this stops the parameter of
2689 -- an initialization procedure from freezing the variable.
2691 if Is_Entity_Name (N)
2692 and then not Is_Frozen (Entity (N))
2693 and then (Nkind (N) /= N_Identifier
2694 or else Comes_From_Source (N)
2695 or else not Comes_From_Source (Entity (N)))
2696 then
2697 Nam := Entity (N);
2699 else
2700 Nam := Empty;
2701 end if;
2703 -- For an allocator freeze designated type if not frozen already.
2705 -- For an aggregate whose component type is an access type, freeze
2706 -- the designated type now, so that its freeze does not appear within
2707 -- the loop that might be created in the expansion of the aggregate.
2708 -- If the designated type is a private type without full view, the
2709 -- expression cannot contain an allocator, so the type is not frozen.
2711 Desig_Typ := Empty;
2712 case Nkind (N) is
2714 when N_Allocator =>
2715 Desig_Typ := Designated_Type (Etype (N));
2717 when N_Aggregate =>
2718 if Is_Array_Type (Etype (N))
2719 and then Is_Access_Type (Component_Type (Etype (N)))
2720 then
2721 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
2722 end if;
2724 when N_Selected_Component |
2725 N_Indexed_Component |
2726 N_Slice =>
2728 if Is_Access_Type (Etype (Prefix (N))) then
2729 Desig_Typ := Designated_Type (Etype (Prefix (N)));
2730 end if;
2732 when others =>
2733 null;
2735 end case;
2737 if Desig_Typ /= Empty
2738 and then (Is_Frozen (Desig_Typ)
2739 or else (not Is_Fully_Defined (Desig_Typ)))
2740 then
2741 Desig_Typ := Empty;
2742 end if;
2744 -- All done if nothing needs freezing
2746 if No (Typ)
2747 and then No (Nam)
2748 and then No (Desig_Typ)
2749 then
2750 return;
2751 end if;
2753 -- Loop for looking at the right place to insert the freeze nodes
2754 -- exiting from the loop when it is appropriate to insert the freeze
2755 -- node before the current node P.
2757 -- Also checks some special exceptions to the freezing rules. These
2758 -- cases result in a direct return, bypassing the freeze action.
2760 P := N;
2761 loop
2762 Parent_P := Parent (P);
2764 -- If we don't have a parent, then we are not in a well-formed
2765 -- tree. This is an unusual case, but there are some legitimate
2766 -- situations in which this occurs, notably when the expressions
2767 -- in the range of a type declaration are resolved. We simply
2768 -- ignore the freeze request in this case. Is this right ???
2770 if No (Parent_P) then
2771 return;
2772 end if;
2774 -- See if we have got to an appropriate point in the tree
2776 case Nkind (Parent_P) is
2778 -- A special test for the exception of (RM 13.14(8)) for the
2779 -- case of per-object expressions (RM 3.8(18)) occurring in a
2780 -- component definition or a discrete subtype definition. Note
2781 -- that we test for a component declaration which includes both
2782 -- cases we are interested in, and furthermore the tree does not
2783 -- have explicit nodes for either of these two constructs.
2785 when N_Component_Declaration =>
2787 -- The case we want to test for here is an identifier that is
2788 -- a per-object expression, this is either a discriminant that
2789 -- appears in a context other than the component declaration
2790 -- or it is a reference to the type of the enclosing construct.
2792 -- For either of these cases, we skip the freezing
2794 if not In_Default_Expression
2795 and then Nkind (N) = N_Identifier
2796 and then (Present (Entity (N)))
2797 then
2798 -- We recognize the discriminant case by just looking for
2799 -- a reference to a discriminant. It can only be one for
2800 -- the enclosing construct. Skip freezing in this case.
2802 if Ekind (Entity (N)) = E_Discriminant then
2803 return;
2805 -- For the case of a reference to the enclosing record,
2806 -- (or task or protected type), we look for a type that
2807 -- matches the current scope.
2809 elsif Entity (N) = Current_Scope then
2810 return;
2811 end if;
2812 end if;
2814 -- If we have an enumeration literal that appears as the
2815 -- choice in the aggregate of an enumeration representation
2816 -- clause, then freezing does not occur (RM 13.14(9)).
2818 when N_Enumeration_Representation_Clause =>
2820 -- The case we are looking for is an enumeration literal
2822 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
2823 and then Is_Enumeration_Type (Etype (N))
2824 then
2825 -- If enumeration literal appears directly as the choice,
2826 -- do not freeze (this is the normal non-overloade case)
2828 if Nkind (Parent (N)) = N_Component_Association
2829 and then First (Choices (Parent (N))) = N
2830 then
2831 return;
2833 -- If enumeration literal appears as the name of a
2834 -- function which is the choice, then also do not freeze.
2835 -- This happens in the overloaded literal case, where the
2836 -- enumeration literal is temporarily changed to a function
2837 -- call for overloading analysis purposes.
2839 elsif Nkind (Parent (N)) = N_Function_Call
2840 and then
2841 Nkind (Parent (Parent (N))) = N_Component_Association
2842 and then
2843 First (Choices (Parent (Parent (N)))) = Parent (N)
2844 then
2845 return;
2846 end if;
2847 end if;
2849 -- Normally if the parent is a handled sequence of statements,
2850 -- then the current node must be a statement, and that is an
2851 -- appropriate place to insert a freeze node.
2853 when N_Handled_Sequence_Of_Statements =>
2855 -- An exception occurs when the sequence of statements is
2856 -- for an expander generated body that did not do the usual
2857 -- freeze all operation. In this case we usually want to
2858 -- freeze outside this body, not inside it, and we skip
2859 -- past the subprogram body that we are inside.
2861 if In_Exp_Body (Parent_P) then
2863 -- However, we *do* want to freeze at this point if we have
2864 -- an entity to freeze, and that entity is declared *inside*
2865 -- the body of the expander generated procedure. This case
2866 -- is recognized by the scope of the type, which is either
2867 -- the spec for some enclosing body, or (in the case of
2868 -- init_procs, for which there are no separate specs) the
2869 -- current scope.
2871 declare
2872 Subp : constant Node_Id := Parent (Parent_P);
2873 Cspc : Entity_Id;
2875 begin
2876 if Nkind (Subp) = N_Subprogram_Body then
2877 Cspc := Corresponding_Spec (Subp);
2879 if (Present (Typ) and then Scope (Typ) = Cspc)
2880 or else
2881 (Present (Nam) and then Scope (Nam) = Cspc)
2882 then
2883 exit;
2885 elsif Present (Typ)
2886 and then Scope (Typ) = Current_Scope
2887 and then Current_Scope = Defining_Entity (Subp)
2888 then
2889 exit;
2890 end if;
2891 end if;
2892 end;
2894 -- If not that exception to the exception, then this is
2895 -- where we delay the freeze till outside the body.
2897 Parent_P := Parent (Parent_P);
2898 Freeze_Outside := True;
2900 -- Here if normal case where we are in handled statement
2901 -- sequence and want to do the insertion right there.
2903 else
2904 exit;
2905 end if;
2907 -- If parent is a body or a spec or a block, then the current
2908 -- node is a statement or declaration and we can insert the
2909 -- freeze node before it.
2911 when N_Package_Specification |
2912 N_Package_Body |
2913 N_Subprogram_Body |
2914 N_Task_Body |
2915 N_Protected_Body |
2916 N_Entry_Body |
2917 N_Block_Statement => exit;
2919 -- The expander is allowed to define types in any statements list,
2920 -- so any of the following parent nodes also mark a freezing point
2921 -- if the actual node is in a list of statements or declarations.
2923 when N_Exception_Handler |
2924 N_If_Statement |
2925 N_Elsif_Part |
2926 N_Case_Statement_Alternative |
2927 N_Compilation_Unit_Aux |
2928 N_Selective_Accept |
2929 N_Accept_Alternative |
2930 N_Delay_Alternative |
2931 N_Conditional_Entry_Call |
2932 N_Entry_Call_Alternative |
2933 N_Triggering_Alternative |
2934 N_Abortable_Part |
2935 N_Freeze_Entity =>
2937 exit when Is_List_Member (P);
2939 -- Note: The N_Loop_Statement is a special case. A type that
2940 -- appears in the source can never be frozen in a loop (this
2941 -- occurs only because of a loop expanded by the expander),
2942 -- so we keep on going. Otherwise we terminate the search.
2943 -- Same is true of any entity which comes from source. (if they
2944 -- have a predefined type, that type does not appear to come
2945 -- from source, but the entity should not be frozen here).
2947 when N_Loop_Statement =>
2948 exit when not Comes_From_Source (Etype (N))
2949 and then (No (Nam) or else not Comes_From_Source (Nam));
2951 -- For all other cases, keep looking at parents
2953 when others =>
2954 null;
2955 end case;
2957 -- We fall through the case if we did not yet find the proper
2958 -- place in the free for inserting the freeze node, so climb!
2960 P := Parent_P;
2961 end loop;
2963 -- If the expression appears in a record or an initialization
2964 -- procedure, the freeze nodes are collected and attached to
2965 -- the current scope, to be inserted and analyzed on exit from
2966 -- the scope, to insure that generated entities appear in the
2967 -- correct scope. If the expression is a default for a discriminant
2968 -- specification, the scope is still void. The expression can also
2969 -- appear in the discriminant part of a private or concurrent type.
2971 -- The other case requiring this special handling is if we are in
2972 -- a default expression, since in that case we are about to freeze
2973 -- a static type, and the freeze scope needs to be the outer scope,
2974 -- not the scope of the subprogram with the default parameter.
2976 -- For default expressions in generic units, the Move_Freeze_Nodes
2977 -- mechanism (see sem_ch12.adb) takes care of placing them at the
2978 -- proper place, after the generic unit.
2980 if (In_Def_Exp and not Inside_A_Generic)
2981 or else Freeze_Outside
2982 or else (Is_Type (Current_Scope)
2983 and then (not Is_Concurrent_Type (Current_Scope)
2984 or else not Has_Completion (Current_Scope)))
2985 or else Ekind (Current_Scope) = E_Void
2986 then
2987 declare
2988 Loc : constant Source_Ptr := Sloc (Current_Scope);
2989 Freeze_Nodes : List_Id := No_List;
2991 begin
2992 if Present (Desig_Typ) then
2993 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
2994 end if;
2996 if Present (Typ) then
2997 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
2998 end if;
3000 if Present (Nam) then
3001 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3002 end if;
3004 if Is_Non_Empty_List (Freeze_Nodes) then
3006 if No (Scope_Stack.Table
3007 (Scope_Stack.Last).Pending_Freeze_Actions)
3008 then
3009 Scope_Stack.Table
3010 (Scope_Stack.Last).Pending_Freeze_Actions :=
3011 Freeze_Nodes;
3012 else
3013 Append_List (Freeze_Nodes, Scope_Stack.Table
3014 (Scope_Stack.Last).Pending_Freeze_Actions);
3015 end if;
3016 end if;
3017 end;
3019 return;
3020 end if;
3022 -- Now we have the right place to do the freezing. First, a special
3023 -- adjustment, if we are in default expression analysis mode, these
3024 -- freeze actions must not be thrown away (normally all inserted
3025 -- actions are thrown away in this mode. However, the freeze actions
3026 -- are from static expressions and one of the important reasons we
3027 -- are doing this special analysis is to get these freeze actions.
3028 -- Therefore we turn off the In_Default_Expression mode to propagate
3029 -- these freeze actions. This also means they get properly analyzed
3030 -- and expanded.
3032 In_Default_Expression := False;
3034 -- Freeze the designated type of an allocator (RM 13.14(12))
3036 if Present (Desig_Typ) then
3037 Freeze_Before (P, Desig_Typ);
3038 end if;
3040 -- Freeze type of expression (RM 13.14(9)). Note that we took care of
3041 -- the enumeration representation clause exception in the loop above.
3043 if Present (Typ) then
3044 Freeze_Before (P, Typ);
3045 end if;
3047 -- Freeze name if one is present (RM 13.14(10))
3049 if Present (Nam) then
3050 Freeze_Before (P, Nam);
3051 end if;
3053 In_Default_Expression := In_Def_Exp;
3054 end Freeze_Expression;
3056 -----------------------------
3057 -- Freeze_Fixed_Point_Type --
3058 -----------------------------
3060 -- Certain fixed-point types and subtypes, including implicit base
3061 -- types and declared first subtypes, have not yet set up a range.
3062 -- This is because the range cannot be set until the Small and Size
3063 -- values are known, and these are not known till the type is frozen.
3065 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3066 -- range whose bounds are unanalyzed real literals. This routine will
3067 -- recognize this case, and transform this range node into a properly
3068 -- typed range with properly analyzed and resolved values.
3070 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3071 Rng : constant Node_Id := Scalar_Range (Typ);
3072 Lo : constant Node_Id := Low_Bound (Rng);
3073 Hi : constant Node_Id := High_Bound (Rng);
3074 Btyp : constant Entity_Id := Base_Type (Typ);
3075 Brng : constant Node_Id := Scalar_Range (Btyp);
3076 BLo : constant Node_Id := Low_Bound (Brng);
3077 BHi : constant Node_Id := High_Bound (Brng);
3078 Small : constant Ureal := Small_Value (Typ);
3079 Loval : Ureal;
3080 Hival : Ureal;
3081 Atype : Entity_Id;
3083 Actual_Size : Nat;
3085 function Fsize (Lov, Hiv : Ureal) return Nat;
3086 -- Returns size of type with given bounds. Also leaves these
3087 -- bounds set as the current bounds of the Typ.
3089 function Fsize (Lov, Hiv : Ureal) return Nat is
3090 begin
3091 Set_Realval (Lo, Lov);
3092 Set_Realval (Hi, Hiv);
3093 return Minimum_Size (Typ);
3094 end Fsize;
3096 -- Start of processing for Freeze_Fixed_Point_Type;
3098 begin
3099 -- If Esize of a subtype has not previously been set, set it now
3101 if Unknown_Esize (Typ) then
3102 Atype := Ancestor_Subtype (Typ);
3104 if Present (Atype) then
3105 Set_Size_Info (Typ, Atype);
3106 else
3107 Set_Size_Info (Typ, Base_Type (Typ));
3108 end if;
3109 end if;
3111 -- Immediate return if the range is already analyzed. This means
3112 -- that the range is already set, and does not need to be computed
3113 -- by this routine.
3115 if Analyzed (Rng) then
3116 return;
3117 end if;
3119 -- Immediate return if either of the bounds raises Constraint_Error
3121 if Raises_Constraint_Error (Lo)
3122 or else Raises_Constraint_Error (Hi)
3123 then
3124 return;
3125 end if;
3127 Loval := Realval (Lo);
3128 Hival := Realval (Hi);
3130 -- Ordinary fixed-point case
3132 if Is_Ordinary_Fixed_Point_Type (Typ) then
3134 -- For the ordinary fixed-point case, we are allowed to fudge the
3135 -- end-points up or down by small. Generally we prefer to fudge
3136 -- up, i.e. widen the bounds for non-model numbers so that the
3137 -- end points are included. However there are cases in which this
3138 -- cannot be done, and indeed cases in which we may need to narrow
3139 -- the bounds. The following circuit makes the decision.
3141 -- Note: our terminology here is that Incl_EP means that the
3142 -- bounds are widened by Small if necessary to include the end
3143 -- points, and Excl_EP means that the bounds are narrowed by
3144 -- Small to exclude the end-points if this reduces the size.
3146 -- Note that in the Incl case, all we care about is including the
3147 -- end-points. In the Excl case, we want to narrow the bounds as
3148 -- much as permitted by the RM, to give the smallest possible size.
3150 Fudge : declare
3151 Loval_Incl_EP : Ureal;
3152 Hival_Incl_EP : Ureal;
3154 Loval_Excl_EP : Ureal;
3155 Hival_Excl_EP : Ureal;
3157 Size_Incl_EP : Nat;
3158 Size_Excl_EP : Nat;
3160 Model_Num : Ureal;
3161 First_Subt : Entity_Id;
3162 Actual_Lo : Ureal;
3163 Actual_Hi : Ureal;
3165 begin
3166 -- First step. Base types are required to be symmetrical. Right
3167 -- now, the base type range is a copy of the first subtype range.
3168 -- This will be corrected before we are done, but right away we
3169 -- need to deal with the case where both bounds are non-negative.
3170 -- In this case, we set the low bound to the negative of the high
3171 -- bound, to make sure that the size is computed to include the
3172 -- required sign. Note that we do not need to worry about the
3173 -- case of both bounds negative, because the sign will be dealt
3174 -- with anyway. Furthermore we can't just go making such a bound
3175 -- symmetrical, since in a twos-complement system, there is an
3176 -- extra negative value which could not be accomodated on the
3177 -- positive side.
3179 if Typ = Btyp
3180 and then not UR_Is_Negative (Loval)
3181 and then Hival > Loval
3182 then
3183 Loval := -Hival;
3184 Set_Realval (Lo, Loval);
3185 end if;
3187 -- Compute the fudged bounds. If the number is a model number,
3188 -- then we do nothing to include it, but we are allowed to
3189 -- backoff to the next adjacent model number when we exclude
3190 -- it. If it is not a model number then we straddle the two
3191 -- values with the model numbers on either side.
3193 Model_Num := UR_Trunc (Loval / Small) * Small;
3195 if Loval = Model_Num then
3196 Loval_Incl_EP := Model_Num;
3197 else
3198 Loval_Incl_EP := Model_Num - Small;
3199 end if;
3201 -- The low value excluding the end point is Small greater, but
3202 -- we do not do this exclusion if the low value is positive,
3203 -- since it can't help the size and could actually hurt by
3204 -- crossing the high bound.
3206 if UR_Is_Negative (Loval_Incl_EP) then
3207 Loval_Excl_EP := Loval_Incl_EP + Small;
3208 else
3209 Loval_Excl_EP := Loval_Incl_EP;
3210 end if;
3212 -- Similar processing for upper bound and high value
3214 Model_Num := UR_Trunc (Hival / Small) * Small;
3216 if Hival = Model_Num then
3217 Hival_Incl_EP := Model_Num;
3218 else
3219 Hival_Incl_EP := Model_Num + Small;
3220 end if;
3222 if UR_Is_Positive (Hival_Incl_EP) then
3223 Hival_Excl_EP := Hival_Incl_EP - Small;
3224 else
3225 Hival_Excl_EP := Hival_Incl_EP;
3226 end if;
3228 -- One further adjustment is needed. In the case of subtypes,
3229 -- we cannot go outside the range of the base type, or we get
3230 -- peculiarities, and the base type range is already set. This
3231 -- only applies to the Incl values, since clearly the Excl
3232 -- values are already as restricted as they are allowed to be.
3234 if Typ /= Btyp then
3235 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
3236 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
3237 end if;
3239 -- Get size including and excluding end points
3241 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
3242 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
3244 -- No need to exclude end-points if it does not reduce size
3246 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
3247 Loval_Excl_EP := Loval_Incl_EP;
3248 end if;
3250 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
3251 Hival_Excl_EP := Hival_Incl_EP;
3252 end if;
3254 -- Now we set the actual size to be used. We want to use the
3255 -- bounds fudged up to include the end-points but only if this
3256 -- can be done without violating a specifically given size
3257 -- size clause or causing an unacceptable increase in size.
3259 -- Case of size clause given
3261 if Has_Size_Clause (Typ) then
3263 -- Use the inclusive size only if it is consistent with
3264 -- the explicitly specified size.
3266 if Size_Incl_EP <= RM_Size (Typ) then
3267 Actual_Lo := Loval_Incl_EP;
3268 Actual_Hi := Hival_Incl_EP;
3269 Actual_Size := Size_Incl_EP;
3271 -- If the inclusive size is too large, we try excluding
3272 -- the end-points (will be caught later if does not work).
3274 else
3275 Actual_Lo := Loval_Excl_EP;
3276 Actual_Hi := Hival_Excl_EP;
3277 Actual_Size := Size_Excl_EP;
3278 end if;
3280 -- Case of size clause not given
3282 else
3283 -- If we have a base type whose corresponding first subtype
3284 -- has an explicit size that is large enough to include our
3285 -- end-points, then do so. There is no point in working hard
3286 -- to get a base type whose size is smaller than the specified
3287 -- size of the first subtype.
3289 First_Subt := First_Subtype (Typ);
3291 if Has_Size_Clause (First_Subt)
3292 and then Size_Incl_EP <= Esize (First_Subt)
3293 then
3294 Actual_Size := Size_Incl_EP;
3295 Actual_Lo := Loval_Incl_EP;
3296 Actual_Hi := Hival_Incl_EP;
3298 -- If excluding the end-points makes the size smaller and
3299 -- results in a size of 8,16,32,64, then we take the smaller
3300 -- size. For the 64 case, this is compulsory. For the other
3301 -- cases, it seems reasonable. We like to include end points
3302 -- if we can, but not at the expense of moving to the next
3303 -- natural boundary of size.
3305 elsif Size_Incl_EP /= Size_Excl_EP
3306 and then
3307 (Size_Excl_EP = 8 or else
3308 Size_Excl_EP = 16 or else
3309 Size_Excl_EP = 32 or else
3310 Size_Excl_EP = 64)
3311 then
3312 Actual_Size := Size_Excl_EP;
3313 Actual_Lo := Loval_Excl_EP;
3314 Actual_Hi := Hival_Excl_EP;
3316 -- Otherwise we can definitely include the end points
3318 else
3319 Actual_Size := Size_Incl_EP;
3320 Actual_Lo := Loval_Incl_EP;
3321 Actual_Hi := Hival_Incl_EP;
3322 end if;
3324 -- One pathological case: normally we never fudge a low
3325 -- bound down, since it would seem to increase the size
3326 -- (if it has any effect), but for ranges containing a
3327 -- single value, or no values, the high bound can be
3328 -- small too large. Consider:
3330 -- type t is delta 2.0**(-14)
3331 -- range 131072.0 .. 0;
3333 -- That lower bound is *just* outside the range of 32
3334 -- bits, and does need fudging down in this case. Note
3335 -- that the bounds will always have crossed here, since
3336 -- the high bound will be fudged down if necessary, as
3337 -- in the case of:
3339 -- type t is delta 2.0**(-14)
3340 -- range 131072.0 .. 131072.0;
3342 -- So we can detect the situation by looking for crossed
3343 -- bounds, and if the bounds are crossed, and the low
3344 -- bound is greater than zero, we will always back it
3345 -- off by small, since this is completely harmless.
3347 if Actual_Lo > Actual_Hi then
3348 if UR_Is_Positive (Actual_Lo) then
3349 Actual_Lo := Loval_Incl_EP - Small;
3350 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3352 -- And of course, we need to do exactly the same parallel
3353 -- fudge for flat ranges in the negative region.
3355 elsif UR_Is_Negative (Actual_Hi) then
3356 Actual_Hi := Hival_Incl_EP + Small;
3357 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3358 end if;
3359 end if;
3360 end if;
3362 Set_Realval (Lo, Actual_Lo);
3363 Set_Realval (Hi, Actual_Hi);
3364 end Fudge;
3366 -- For the decimal case, none of this fudging is required, since there
3367 -- are no end-point problems in the decimal case (the end-points are
3368 -- always included).
3370 else
3371 Actual_Size := Fsize (Loval, Hival);
3372 end if;
3374 -- At this stage, the actual size has been calculated and the proper
3375 -- required bounds are stored in the low and high bounds.
3377 if Actual_Size > 64 then
3378 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
3379 Error_Msg_N
3380 ("size required (^) for type& too large, maximum is 64", Typ);
3381 Actual_Size := 64;
3382 end if;
3384 -- Check size against explicit given size
3386 if Has_Size_Clause (Typ) then
3387 if Actual_Size > RM_Size (Typ) then
3388 Error_Msg_Uint_1 := RM_Size (Typ);
3389 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
3390 Error_Msg_NE
3391 ("size given (^) for type& too small, minimum is ^",
3392 Size_Clause (Typ), Typ);
3394 else
3395 Actual_Size := UI_To_Int (Esize (Typ));
3396 end if;
3398 -- Increase size to next natural boundary if no size clause given
3400 else
3401 if Actual_Size <= 8 then
3402 Actual_Size := 8;
3403 elsif Actual_Size <= 16 then
3404 Actual_Size := 16;
3405 elsif Actual_Size <= 32 then
3406 Actual_Size := 32;
3407 else
3408 Actual_Size := 64;
3409 end if;
3411 Init_Esize (Typ, Actual_Size);
3412 Adjust_Esize_For_Alignment (Typ);
3413 end if;
3415 -- If we have a base type, then expand the bounds so that they
3416 -- extend to the full width of the allocated size in bits, to
3417 -- avoid junk range checks on intermediate computations.
3419 if Base_Type (Typ) = Typ then
3420 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
3421 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
3422 end if;
3424 -- Final step is to reanalyze the bounds using the proper type
3425 -- and set the Corresponding_Integer_Value fields of the literals.
3427 Set_Etype (Lo, Empty);
3428 Set_Analyzed (Lo, False);
3429 Analyze (Lo);
3431 -- Resolve with universal fixed if the base type, and the base
3432 -- type if it is a subtype. Note we can't resolve the base type
3433 -- with itself, that would be a reference before definition.
3435 if Typ = Btyp then
3436 Resolve (Lo, Universal_Fixed);
3437 else
3438 Resolve (Lo, Btyp);
3439 end if;
3441 -- Set corresponding integer value for bound
3443 Set_Corresponding_Integer_Value
3444 (Lo, UR_To_Uint (Realval (Lo) / Small));
3446 -- Similar processing for high bound
3448 Set_Etype (Hi, Empty);
3449 Set_Analyzed (Hi, False);
3450 Analyze (Hi);
3452 if Typ = Btyp then
3453 Resolve (Hi, Universal_Fixed);
3454 else
3455 Resolve (Hi, Btyp);
3456 end if;
3458 Set_Corresponding_Integer_Value
3459 (Hi, UR_To_Uint (Realval (Hi) / Small));
3461 -- Set type of range to correspond to bounds
3463 Set_Etype (Rng, Etype (Lo));
3465 -- Set Esize to calculated size and also set RM_Size
3467 Init_Esize (Typ, Actual_Size);
3469 -- Set RM_Size if not already set. If already set, check value
3471 declare
3472 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
3474 begin
3475 if RM_Size (Typ) /= Uint_0 then
3476 if RM_Size (Typ) < Minsiz then
3477 Error_Msg_Uint_1 := RM_Size (Typ);
3478 Error_Msg_Uint_2 := Minsiz;
3479 Error_Msg_NE
3480 ("size given (^) for type& too small, minimum is ^",
3481 Size_Clause (Typ), Typ);
3482 end if;
3484 else
3485 Set_RM_Size (Typ, Minsiz);
3486 end if;
3487 end;
3489 end Freeze_Fixed_Point_Type;
3491 ------------------
3492 -- Freeze_Itype --
3493 ------------------
3495 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
3496 L : List_Id;
3498 begin
3499 Set_Has_Delayed_Freeze (T);
3500 L := Freeze_Entity (T, Sloc (N));
3502 if Is_Non_Empty_List (L) then
3503 Insert_Actions (N, L);
3504 end if;
3505 end Freeze_Itype;
3507 --------------------------
3508 -- Freeze_Static_Object --
3509 --------------------------
3511 procedure Freeze_Static_Object (E : Entity_Id) is
3513 Cannot_Be_Static : exception;
3514 -- Exception raised if the type of a static object cannot be made
3515 -- static. This happens if the type depends on non-global objects.
3517 procedure Ensure_Expression_Is_SA (N : Node_Id);
3518 -- Called to ensure that an expression used as part of a type
3519 -- definition is statically allocatable, which means that the type
3520 -- of the expression is statically allocatable, and the expression
3521 -- is either static, or a reference to a library level constant.
3523 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
3524 -- Called to mark a type as static, checking that it is possible
3525 -- to set the type as static. If it is not possible, then the
3526 -- exception Cannot_Be_Static is raised.
3528 -----------------------------
3529 -- Ensure_Expression_Is_SA --
3530 -----------------------------
3532 procedure Ensure_Expression_Is_SA (N : Node_Id) is
3533 Ent : Entity_Id;
3535 begin
3536 Ensure_Type_Is_SA (Etype (N));
3538 if Is_Static_Expression (N) then
3539 return;
3541 elsif Nkind (N) = N_Identifier then
3542 Ent := Entity (N);
3544 if Present (Ent)
3545 and then Ekind (Ent) = E_Constant
3546 and then Is_Library_Level_Entity (Ent)
3547 then
3548 return;
3549 end if;
3550 end if;
3552 raise Cannot_Be_Static;
3553 end Ensure_Expression_Is_SA;
3555 -----------------------
3556 -- Ensure_Type_Is_SA --
3557 -----------------------
3559 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
3560 N : Node_Id;
3561 C : Entity_Id;
3563 begin
3564 -- If type is library level, we are all set
3566 if Is_Library_Level_Entity (Typ) then
3567 return;
3568 end if;
3570 -- We are also OK if the type is already marked as statically
3571 -- allocated, which means we processed it before.
3573 if Is_Statically_Allocated (Typ) then
3574 return;
3575 end if;
3577 -- Mark type as statically allocated
3579 Set_Is_Statically_Allocated (Typ);
3581 -- Check that it is safe to statically allocate this type
3583 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
3584 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
3585 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
3587 elsif Is_Array_Type (Typ) then
3588 N := First_Index (Typ);
3589 while Present (N) loop
3590 Ensure_Type_Is_SA (Etype (N));
3591 Next_Index (N);
3592 end loop;
3594 Ensure_Type_Is_SA (Component_Type (Typ));
3596 elsif Is_Access_Type (Typ) then
3597 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
3599 declare
3600 F : Entity_Id;
3601 T : constant Entity_Id := Etype (Designated_Type (Typ));
3603 begin
3604 if T /= Standard_Void_Type then
3605 Ensure_Type_Is_SA (T);
3606 end if;
3608 F := First_Formal (Designated_Type (Typ));
3610 while Present (F) loop
3611 Ensure_Type_Is_SA (Etype (F));
3612 Next_Formal (F);
3613 end loop;
3614 end;
3616 else
3617 Ensure_Type_Is_SA (Designated_Type (Typ));
3618 end if;
3620 elsif Is_Record_Type (Typ) then
3621 C := First_Entity (Typ);
3623 while Present (C) loop
3624 if Ekind (C) = E_Discriminant
3625 or else Ekind (C) = E_Component
3626 then
3627 Ensure_Type_Is_SA (Etype (C));
3629 elsif Is_Type (C) then
3630 Ensure_Type_Is_SA (C);
3631 end if;
3633 Next_Entity (C);
3634 end loop;
3636 elsif Ekind (Typ) = E_Subprogram_Type then
3637 Ensure_Type_Is_SA (Etype (Typ));
3639 C := First_Formal (Typ);
3640 while Present (C) loop
3641 Ensure_Type_Is_SA (Etype (C));
3642 Next_Formal (C);
3643 end loop;
3645 else
3646 raise Cannot_Be_Static;
3647 end if;
3648 end Ensure_Type_Is_SA;
3650 -- Start of processing for Freeze_Static_Object
3652 begin
3653 Ensure_Type_Is_SA (Etype (E));
3655 exception
3656 when Cannot_Be_Static =>
3658 -- If the object that cannot be static is imported or exported,
3659 -- then we give an error message saying that this object cannot
3660 -- be imported or exported.
3662 if Is_Imported (E) then
3663 Error_Msg_N
3664 ("& cannot be imported (local type is not constant)", E);
3666 -- Otherwise must be exported, something is wrong if compiler
3667 -- is marking something as statically allocated which cannot be).
3669 else pragma Assert (Is_Exported (E));
3670 Error_Msg_N
3671 ("& cannot be exported (local type is not constant)", E);
3672 end if;
3673 end Freeze_Static_Object;
3675 -----------------------
3676 -- Freeze_Subprogram --
3677 -----------------------
3679 procedure Freeze_Subprogram (E : Entity_Id) is
3680 Retype : Entity_Id;
3681 F : Entity_Id;
3683 begin
3684 -- Subprogram may not have an address clause unless it is imported
3686 if Present (Address_Clause (E)) then
3687 if not Is_Imported (E) then
3688 Error_Msg_N
3689 ("address clause can only be given " &
3690 "for imported subprogram",
3691 Name (Address_Clause (E)));
3692 end if;
3693 end if;
3695 -- For non-foreign convention subprograms, this is where we create
3696 -- the extra formals (for accessibility level and constrained bit
3697 -- information). We delay this till the freeze point precisely so
3698 -- that we know the convention!
3700 if not Has_Foreign_Convention (E) then
3701 Create_Extra_Formals (E);
3702 Set_Mechanisms (E);
3704 -- If this is convention Ada and a Valued_Procedure, that's odd
3706 if Ekind (E) = E_Procedure
3707 and then Is_Valued_Procedure (E)
3708 and then Convention (E) = Convention_Ada
3709 then
3710 Error_Msg_N
3711 ("?Valued_Procedure has no effect for convention Ada", E);
3712 Set_Is_Valued_Procedure (E, False);
3713 end if;
3715 -- Case of foreign convention
3717 else
3718 Set_Mechanisms (E);
3720 -- For foreign conventions, do not permit return of an
3721 -- unconstrained array.
3723 -- Note: we *do* allow a return by descriptor for the VMS case,
3724 -- though here there is probably more to be done ???
3726 if Ekind (E) = E_Function then
3727 Retype := Underlying_Type (Etype (E));
3729 -- If no return type, probably some other error, e.g. a
3730 -- missing full declaration, so ignore.
3732 if No (Retype) then
3733 null;
3735 -- If the return type is generic, we have emitted a warning
3736 -- earlier on, and there is nothing else to check here.
3737 -- Specific instantiations may lead to erroneous behavior.
3739 elsif Is_Generic_Type (Etype (E)) then
3740 null;
3742 elsif Is_Array_Type (Retype)
3743 and then not Is_Constrained (Retype)
3744 and then Mechanism (E) not in Descriptor_Codes
3745 then
3746 Error_Msg_NE
3747 ("convention for& does not permit returning " &
3748 "unconstrained array type", E, E);
3749 return;
3750 end if;
3751 end if;
3753 -- If any of the formals for an exported foreign convention
3754 -- subprogram have defaults, then emit an appropriate warning
3755 -- since this is odd (default cannot be used from non-Ada code)
3757 if Is_Exported (E) then
3758 F := First_Formal (E);
3759 while Present (F) loop
3760 if Present (Default_Value (F)) then
3761 Error_Msg_N
3762 ("?parameter cannot be defaulted in non-Ada call",
3763 Default_Value (F));
3764 end if;
3766 Next_Formal (F);
3767 end loop;
3768 end if;
3769 end if;
3771 -- For VMS, descriptor mechanisms for parameters are allowed only
3772 -- for imported subprograms.
3774 if OpenVMS_On_Target then
3775 if not Is_Imported (E) then
3776 F := First_Formal (E);
3777 while Present (F) loop
3778 if Mechanism (F) in Descriptor_Codes then
3779 Error_Msg_N
3780 ("descriptor mechanism for parameter not permitted", F);
3781 Error_Msg_N
3782 ("\can only be used for imported subprogram", F);
3783 end if;
3785 Next_Formal (F);
3786 end loop;
3787 end if;
3788 end if;
3790 end Freeze_Subprogram;
3792 -----------------------
3793 -- Is_Fully_Defined --
3794 -----------------------
3796 -- Should this be in Sem_Util ???
3798 function Is_Fully_Defined (T : Entity_Id) return Boolean is
3799 begin
3800 if Ekind (T) = E_Class_Wide_Type then
3801 return Is_Fully_Defined (Etype (T));
3802 else
3803 return not Is_Private_Type (T)
3804 or else Present (Full_View (Base_Type (T)));
3805 end if;
3806 end Is_Fully_Defined;
3808 ---------------------------------
3809 -- Process_Default_Expressions --
3810 ---------------------------------
3812 procedure Process_Default_Expressions
3813 (E : Entity_Id;
3814 After : in out Node_Id)
3816 Loc : constant Source_Ptr := Sloc (E);
3817 Dbody : Node_Id;
3818 Formal : Node_Id;
3819 Dcopy : Node_Id;
3820 Dnam : Entity_Id;
3822 begin
3823 Set_Default_Expressions_Processed (E);
3825 -- A subprogram instance and its associated anonymous subprogram
3826 -- share their signature. The default expression functions are defined
3827 -- in the wrapper packages for the anonymous subprogram, and should
3828 -- not be generated again for the instance.
3830 if Is_Generic_Instance (E)
3831 and then Present (Alias (E))
3832 and then Default_Expressions_Processed (Alias (E))
3833 then
3834 return;
3835 end if;
3837 Formal := First_Formal (E);
3839 while Present (Formal) loop
3840 if Present (Default_Value (Formal)) then
3842 -- We work with a copy of the default expression because we
3843 -- do not want to disturb the original, since this would mess
3844 -- up the conformance checking.
3846 Dcopy := New_Copy_Tree (Default_Value (Formal));
3848 -- The analysis of the expression may generate insert actions,
3849 -- which of course must not be executed. We wrap those actions
3850 -- in a procedure that is not called, and later on eliminated.
3851 -- The following cases have no side-effects, and are analyzed
3852 -- directly.
3854 if Nkind (Dcopy) = N_Identifier
3855 or else Nkind (Dcopy) = N_Expanded_Name
3856 or else Nkind (Dcopy) = N_Integer_Literal
3857 or else (Nkind (Dcopy) = N_Real_Literal
3858 and then not Vax_Float (Etype (Dcopy)))
3859 or else Nkind (Dcopy) = N_Character_Literal
3860 or else Nkind (Dcopy) = N_String_Literal
3861 or else Nkind (Dcopy) = N_Null
3862 or else (Nkind (Dcopy) = N_Attribute_Reference
3863 and then
3864 Attribute_Name (Dcopy) = Name_Null_Parameter)
3866 then
3868 -- If there is no default function, we must still do a full
3869 -- analyze call on the default value, to ensure that all
3870 -- error checks are performed, e.g. those associated with
3871 -- static evaluation. Note that this branch will always be
3872 -- taken if the analyzer is turned off (but we still need the
3873 -- error checks).
3875 -- Note: the setting of parent here is to meet the requirement
3876 -- that we can only analyze the expression while attached to
3877 -- the tree. Really the requirement is that the parent chain
3878 -- be set, we don't actually need to be in the tree.
3880 Set_Parent (Dcopy, Declaration_Node (Formal));
3881 Analyze (Dcopy);
3883 -- Default expressions are resolved with their own type if the
3884 -- context is generic, to avoid anomalies with private types.
3886 if Ekind (Scope (E)) = E_Generic_Package then
3887 Resolve (Dcopy, Etype (Dcopy));
3888 else
3889 Resolve (Dcopy, Etype (Formal));
3890 end if;
3892 -- If that resolved expression will raise constraint error,
3893 -- then flag the default value as raising constraint error.
3894 -- This allows a proper error message on the calls.
3896 if Raises_Constraint_Error (Dcopy) then
3897 Set_Raises_Constraint_Error (Default_Value (Formal));
3898 end if;
3900 -- If the default is a parameterless call, we use the name of
3901 -- the called function directly, and there is no body to build.
3903 elsif Nkind (Dcopy) = N_Function_Call
3904 and then No (Parameter_Associations (Dcopy))
3905 then
3906 null;
3908 -- Else construct and analyze the body of a wrapper procedure
3909 -- that contains an object declaration to hold the expression.
3910 -- Given that this is done only to complete the analysis, it
3911 -- simpler to build a procedure than a function which might
3912 -- involve secondary stack expansion.
3914 else
3915 Dnam :=
3916 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
3918 Dbody :=
3919 Make_Subprogram_Body (Loc,
3920 Specification =>
3921 Make_Procedure_Specification (Loc,
3922 Defining_Unit_Name => Dnam),
3924 Declarations => New_List (
3925 Make_Object_Declaration (Loc,
3926 Defining_Identifier =>
3927 Make_Defining_Identifier (Loc,
3928 New_Internal_Name ('T')),
3929 Object_Definition =>
3930 New_Occurrence_Of (Etype (Formal), Loc),
3931 Expression => New_Copy_Tree (Dcopy))),
3933 Handled_Statement_Sequence =>
3934 Make_Handled_Sequence_Of_Statements (Loc,
3935 Statements => New_List));
3937 Set_Scope (Dnam, Scope (E));
3938 Set_Assignment_OK (First (Declarations (Dbody)));
3939 Set_Is_Eliminated (Dnam);
3940 Insert_After (After, Dbody);
3941 Analyze (Dbody);
3942 After := Dbody;
3943 end if;
3944 end if;
3946 Next_Formal (Formal);
3947 end loop;
3949 end Process_Default_Expressions;
3951 ----------------------------------------
3952 -- Set_Component_Alignment_If_Not_Set --
3953 ----------------------------------------
3955 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
3956 begin
3957 -- Ignore if not base type, subtypes don't need anything
3959 if Typ /= Base_Type (Typ) then
3960 return;
3961 end if;
3963 -- Do not override existing representation
3965 if Is_Packed (Typ) then
3966 return;
3968 elsif Has_Specified_Layout (Typ) then
3969 return;
3971 elsif Component_Alignment (Typ) /= Calign_Default then
3972 return;
3974 else
3975 Set_Component_Alignment
3976 (Typ, Scope_Stack.Table
3977 (Scope_Stack.Last).Component_Alignment_Default);
3978 end if;
3979 end Set_Component_Alignment_If_Not_Set;
3981 ---------------------------
3982 -- Set_Debug_Info_Needed --
3983 ---------------------------
3985 procedure Set_Debug_Info_Needed (T : Entity_Id) is
3986 begin
3987 if No (T)
3988 or else Needs_Debug_Info (T)
3989 or else Debug_Info_Off (T)
3990 then
3991 return;
3992 else
3993 Set_Needs_Debug_Info (T);
3994 end if;
3996 if Is_Object (T) then
3997 Set_Debug_Info_Needed (Etype (T));
3999 elsif Is_Type (T) then
4000 Set_Debug_Info_Needed (Etype (T));
4002 if Is_Record_Type (T) then
4003 declare
4004 Ent : Entity_Id := First_Entity (T);
4005 begin
4006 while Present (Ent) loop
4007 Set_Debug_Info_Needed (Ent);
4008 Next_Entity (Ent);
4009 end loop;
4010 end;
4012 elsif Is_Array_Type (T) then
4013 Set_Debug_Info_Needed (Component_Type (T));
4015 declare
4016 Indx : Node_Id := First_Index (T);
4017 begin
4018 while Present (Indx) loop
4019 Set_Debug_Info_Needed (Etype (Indx));
4020 Indx := Next_Index (Indx);
4021 end loop;
4022 end;
4024 if Is_Packed (T) then
4025 Set_Debug_Info_Needed (Packed_Array_Type (T));
4026 end if;
4028 elsif Is_Access_Type (T) then
4029 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4031 elsif Is_Private_Type (T) then
4032 Set_Debug_Info_Needed (Full_View (T));
4034 elsif Is_Protected_Type (T) then
4035 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4036 end if;
4037 end if;
4039 end Set_Debug_Info_Needed;
4041 end Freeze;