RISC-V: Add -mpreferred-stack-boundary option.
[official-gcc.git] / gcc / config / riscv / riscv.h
bloba002bff4480b4e706a452b966c2646b00ea966b7
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
25 #include "config/riscv/riscv-opts.h"
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
30 /* Default target_flags if no switches are specified */
32 #ifndef TARGET_DEFAULT
33 #define TARGET_DEFAULT 0
34 #endif
36 #ifndef RISCV_TUNE_STRING_DEFAULT
37 #define RISCV_TUNE_STRING_DEFAULT "rocket"
38 #endif
40 /* Support for a compile-time default CPU, et cetera. The rules are:
41 --with-arch is ignored if -march is specified.
42 --with-abi is ignored if -mabi is specified.
43 --with-tune is ignored if -mtune is specified. */
44 #define OPTION_DEFAULT_SPECS \
45 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
46 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
47 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
49 #ifdef IN_LIBGCC2
50 #undef TARGET_64BIT
51 /* Make this compile time constant for libgcc2 */
52 #define TARGET_64BIT (__riscv_xlen == 64)
53 #endif /* IN_LIBGCC2 */
55 #undef ASM_SPEC
56 #define ASM_SPEC "\
57 %(subtarget_asm_debugging_spec) \
58 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
59 %{march=*} \
60 %{mabi=*} \
61 %(subtarget_asm_spec)"
63 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
65 #define LOCAL_LABEL_PREFIX "."
66 #define USER_LABEL_PREFIX ""
68 /* Offsets recorded in opcodes are a multiple of this alignment factor.
69 The default for this in 64-bit mode is 8, which causes problems with
70 SFmode register saves. */
71 #define DWARF_CIE_DATA_ALIGNMENT -4
73 /* The mapping from gcc register number to DWARF 2 CFA column number. */
74 #define DWARF_FRAME_REGNUM(REGNO) \
75 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
77 /* The DWARF 2 CFA column which tracks the return address. */
78 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
79 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
81 /* Describe how we implement __builtin_eh_return. */
82 #define EH_RETURN_DATA_REGNO(N) \
83 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
85 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
87 /* Target machine storage layout */
89 #define BITS_BIG_ENDIAN 0
90 #define BYTES_BIG_ENDIAN 0
91 #define WORDS_BIG_ENDIAN 0
93 #define MAX_BITS_PER_WORD 64
95 /* Width of a word, in units (bytes). */
96 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
97 #ifndef IN_LIBGCC2
98 #define MIN_UNITS_PER_WORD 4
99 #endif
101 /* The `Q' extension is not yet supported. */
102 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
104 /* The largest type that can be passed in floating-point registers. */
105 #define UNITS_PER_FP_ARG \
106 (riscv_abi == ABI_ILP32 || riscv_abi == ABI_LP64 ? 0 : \
107 riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F ? 4 : 8) \
109 /* Set the sizes of the core types. */
110 #define SHORT_TYPE_SIZE 16
111 #define INT_TYPE_SIZE 32
112 #define LONG_LONG_TYPE_SIZE 64
113 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
114 #define LONG_TYPE_SIZE POINTER_SIZE
116 #define FLOAT_TYPE_SIZE 32
117 #define DOUBLE_TYPE_SIZE 64
118 #define LONG_DOUBLE_TYPE_SIZE 128
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 #define PARM_BOUNDARY BITS_PER_WORD
123 /* Allocation boundary (in *bits*) for the code of a function. */
124 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
126 /* The smallest supported stack boundary the calling convention supports. */
127 #define MIN_STACK_BOUNDARY (2 * BITS_PER_WORD)
129 /* The ABI stack alignment. */
130 #define ABI_STACK_BOUNDARY 128
132 /* There is no point aligning anything to a rounder boundary than this. */
133 #define BIGGEST_ALIGNMENT STACK_BOUNDARY
135 /* The user-level ISA permits unaligned accesses, but they are not required
136 of the privileged architecture. */
137 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
139 /* Define this if you wish to imitate the way many other C compilers
140 handle alignment of bitfields and the structures that contain
141 them.
143 The behavior is that the type written for a bit-field (`int',
144 `short', or other integer type) imposes an alignment for the
145 entire structure, as if the structure really did contain an
146 ordinary field of that type. In addition, the bit-field is placed
147 within the structure so that it would fit within such a field,
148 not crossing a boundary for it.
150 Thus, on most machines, a bit-field whose type is written as `int'
151 would not cross a four-byte boundary, and would force four-byte
152 alignment for the whole structure. (The alignment used may not
153 be four bytes; it is controlled by the other alignment
154 parameters.)
156 If the macro is defined, its definition should be a C expression;
157 a nonzero value for the expression enables this behavior. */
159 #define PCC_BITFIELD_TYPE_MATTERS 1
161 /* If defined, a C expression to compute the alignment for a static
162 variable. TYPE is the data type, and ALIGN is the alignment that
163 the object would ordinarily have. The value of this macro is used
164 instead of that alignment to align the object.
166 If this macro is not defined, then ALIGN is used.
168 One use of this macro is to increase alignment of medium-size
169 data to make it all fit in fewer cache lines. Another is to
170 cause character arrays to be word-aligned so that `strcpy' calls
171 that copy constants to character arrays can be done inline. */
173 #define DATA_ALIGNMENT(TYPE, ALIGN) \
174 ((((ALIGN) < BITS_PER_WORD) \
175 && (TREE_CODE (TYPE) == ARRAY_TYPE \
176 || TREE_CODE (TYPE) == UNION_TYPE \
177 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
179 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
180 character arrays to be word-aligned so that `strcpy' calls that copy
181 constants to character arrays can be done inline, and 'strcmp' can be
182 optimised to use word loads. */
183 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
184 DATA_ALIGNMENT (TYPE, ALIGN)
186 /* Define if operations between registers always perform the operation
187 on the full register even if a narrower mode is specified. */
188 #define WORD_REGISTER_OPERATIONS 1
190 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
191 moves. All other references are zero extended. */
192 #define LOAD_EXTEND_OP(MODE) \
193 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
195 /* Define this macro if it is advisable to hold scalars in registers
196 in a wider mode than that declared by the program. In such cases,
197 the value is constrained to be within the bounds of the declared
198 type, but kept valid in the wider mode. The signedness of the
199 extension may differ from that of the type. */
201 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
202 if (GET_MODE_CLASS (MODE) == MODE_INT \
203 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
205 if ((MODE) == SImode) \
206 (UNSIGNEDP) = 0; \
207 (MODE) = word_mode; \
210 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
211 Extensions of pointers to word_mode must be signed. */
212 #define POINTERS_EXTEND_UNSIGNED false
214 /* Define if loading short immediate values into registers sign extends. */
215 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
217 /* Standard register usage. */
219 /* Number of hardware registers. We have:
221 - 32 integer registers
222 - 32 floating point registers
223 - 2 fake registers:
224 - ARG_POINTER_REGNUM
225 - FRAME_POINTER_REGNUM */
227 #define FIRST_PSEUDO_REGISTER 66
229 /* x0, sp, gp, and tp are fixed. */
231 #define FIXED_REGISTERS \
232 { /* General registers. */ \
233 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
234 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
235 /* Floating-point registers. */ \
236 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
237 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
238 /* Others. */ \
239 1, 1 \
242 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
243 The call RTLs themselves clobber ra. */
245 #define CALL_USED_REGISTERS \
246 { /* General registers. */ \
247 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
248 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
249 /* Floating-point registers. */ \
250 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
251 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
252 /* Others. */ \
253 1, 1 \
256 /* Internal macros to classify an ISA register's type. */
258 #define GP_REG_FIRST 0
259 #define GP_REG_LAST 31
260 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
262 #define FP_REG_FIRST 32
263 #define FP_REG_LAST 63
264 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
266 /* The DWARF 2 CFA column which tracks the return address from a
267 signal handler context. This means that to maintain backwards
268 compatibility, no hard register can be assigned this column if it
269 would need to be handled by the DWARF unwinder. */
270 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
272 #define GP_REG_P(REGNO) \
273 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
274 #define FP_REG_P(REGNO) \
275 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
277 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
279 /* Use s0 as the frame pointer if it is so requested. */
280 #define HARD_FRAME_POINTER_REGNUM 8
281 #define STACK_POINTER_REGNUM 2
282 #define THREAD_POINTER_REGNUM 4
284 /* These two registers don't really exist: they get eliminated to either
285 the stack or hard frame pointer. */
286 #define ARG_POINTER_REGNUM 64
287 #define FRAME_POINTER_REGNUM 65
289 /* Register in which static-chain is passed to a function. */
290 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
292 /* Registers used as temporaries in prologue/epilogue code.
294 The prologue registers mustn't conflict with any
295 incoming arguments, the static chain pointer, or the frame pointer.
296 The epilogue temporary mustn't conflict with the return registers,
297 the frame pointer, the EH stack adjustment, or the EH data registers. */
299 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
300 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
302 #define MCOUNT_NAME "_mcount"
304 #define NO_PROFILE_COUNTERS 1
306 /* Emit rtl for profiling. Output assembler code to FILE
307 to call "_mcount" for profiling a function entry. */
308 #define PROFILE_HOOK(LABEL) \
310 rtx fun, ra; \
311 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
312 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
313 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
316 /* All the work done in PROFILE_HOOK, but still required. */
317 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
319 /* Define this macro if it is as good or better to call a constant
320 function address than to call an address kept in a register. */
321 #define NO_FUNCTION_CSE 1
323 /* Define the classes of registers for register constraints in the
324 machine description. Also define ranges of constants.
326 One of the classes must always be named ALL_REGS and include all hard regs.
327 If there is more than one class, another class must be named NO_REGS
328 and contain no registers.
330 The name GENERAL_REGS must be the name of a class (or an alias for
331 another name such as ALL_REGS). This is the class of registers
332 that is allowed by "g" or "r" in a register constraint.
333 Also, registers outside this class are allocated only when
334 instructions express preferences for them.
336 The classes must be numbered in nondecreasing order; that is,
337 a larger-numbered class must never be contained completely
338 in a smaller-numbered class.
340 For any two classes, it is very desirable that there be another
341 class that represents their union. */
343 enum reg_class
345 NO_REGS, /* no registers in set */
346 SIBCALL_REGS, /* registers used by indirect sibcalls */
347 JALR_REGS, /* registers used by indirect calls */
348 GR_REGS, /* integer registers */
349 FP_REGS, /* floating-point registers */
350 FRAME_REGS, /* arg pointer and frame pointer */
351 ALL_REGS, /* all registers */
352 LIM_REG_CLASSES /* max value + 1 */
355 #define N_REG_CLASSES (int) LIM_REG_CLASSES
357 #define GENERAL_REGS GR_REGS
359 /* An initializer containing the names of the register classes as C
360 string constants. These names are used in writing some of the
361 debugging dumps. */
363 #define REG_CLASS_NAMES \
365 "NO_REGS", \
366 "SIBCALL_REGS", \
367 "JALR_REGS", \
368 "GR_REGS", \
369 "FP_REGS", \
370 "FRAME_REGS", \
371 "ALL_REGS" \
374 /* An initializer containing the contents of the register classes,
375 as integers which are bit masks. The Nth integer specifies the
376 contents of class N. The way the integer MASK is interpreted is
377 that register R is in the class if `MASK & (1 << R)' is 1.
379 When the machine has more than 32 registers, an integer does not
380 suffice. Then the integers are replaced by sub-initializers,
381 braced groupings containing several integers. Each
382 sub-initializer must be suitable as an initializer for the type
383 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
385 #define REG_CLASS_CONTENTS \
387 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
388 { 0xf00000c0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
389 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
390 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
391 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
392 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
393 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
396 /* A C expression whose value is a register class containing hard
397 register REGNO. In general there is more that one such class;
398 choose a class which is "minimal", meaning that no smaller class
399 also contains the register. */
401 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
403 /* A macro whose definition is the name of the class to which a
404 valid base register must belong. A base register is one used in
405 an address which is the register value plus a displacement. */
407 #define BASE_REG_CLASS GR_REGS
409 /* A macro whose definition is the name of the class to which a
410 valid index register must belong. An index register is one used
411 in an address where its value is either multiplied by a scale
412 factor or added to another register (as well as added to a
413 displacement). */
415 #define INDEX_REG_CLASS NO_REGS
417 /* We generally want to put call-clobbered registers ahead of
418 call-saved ones. (IRA expects this.) */
420 #define REG_ALLOC_ORDER \
422 /* Call-clobbered GPRs. */ \
423 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
424 /* Call-saved GPRs. */ \
425 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
426 /* GPRs that can never be exposed to the register allocator. */ \
427 0, 2, 3, 4, \
428 /* Call-clobbered FPRs. */ \
429 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
430 60, 61, 62, 63, \
431 /* Call-saved FPRs. */ \
432 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
433 /* None of the remaining classes have defined call-saved \
434 registers. */ \
435 64, 65 \
438 /* True if VALUE is a signed 12-bit number. */
440 #define SMALL_OPERAND(VALUE) \
441 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
443 /* True if VALUE can be loaded into a register using LUI. */
445 #define LUI_OPERAND(VALUE) \
446 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
447 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
449 /* Stack layout; function entry, exit and calling. */
451 #define STACK_GROWS_DOWNWARD 1
453 #define FRAME_GROWS_DOWNWARD 1
455 #define RETURN_ADDR_RTX riscv_return_addr
457 #define ELIMINABLE_REGS \
458 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
459 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
460 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
461 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
463 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
464 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
466 /* Allocate stack space for arguments at the beginning of each function. */
467 #define ACCUMULATE_OUTGOING_ARGS 1
469 /* The argument pointer always points to the first argument. */
470 #define FIRST_PARM_OFFSET(FNDECL) 0
472 #define REG_PARM_STACK_SPACE(FNDECL) 0
474 /* Define this if it is the responsibility of the caller to
475 allocate the area reserved for arguments passed in registers.
476 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
477 of this macro is to determine whether the space is included in
478 `crtl->outgoing_args_size'. */
479 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
481 #define STACK_BOUNDARY riscv_stack_boundary
483 /* Symbolic macros for the registers used to return integer and floating
484 point values. */
486 #define GP_RETURN GP_ARG_FIRST
487 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
489 #define MAX_ARGS_IN_REGISTERS 8
491 /* Symbolic macros for the first/last argument registers. */
493 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
494 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
495 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
496 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
497 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
499 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
500 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
501 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
503 #define LIBCALL_VALUE(MODE) \
504 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
506 #define FUNCTION_VALUE(VALTYPE, FUNC) \
507 riscv_function_value (VALTYPE, FUNC, VOIDmode)
509 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
511 /* 1 if N is a possible register number for function argument passing.
512 We have no FP argument registers when soft-float. When FP registers
513 are 32 bits, we can't directly reference the odd numbered ones. */
515 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
516 #define FUNCTION_ARG_REGNO_P(N) \
517 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
518 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
520 typedef struct {
521 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
522 unsigned int num_gprs;
524 /* Number of floating-point registers used so far, likewise. */
525 unsigned int num_fprs;
526 } CUMULATIVE_ARGS;
528 /* Initialize a variable CUM of type CUMULATIVE_ARGS
529 for a call to a function whose data type is FNTYPE.
530 For a library call, FNTYPE is 0. */
532 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
533 memset (&(CUM), 0, sizeof (CUM))
535 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_ADDR_REGNUM)
537 /* Align based on stack boundary, which might have been set by the user. */
538 #define RISCV_STACK_ALIGN(LOC) \
539 (((LOC) + ((STACK_BOUNDARY/8)-1)) & -(STACK_BOUNDARY/8))
541 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
542 the stack pointer does not matter. The value is tested only in
543 functions that have frame pointers.
544 No definition is equivalent to always zero. */
546 #define EXIT_IGNORE_STACK 1
549 /* Trampolines are a block of code followed by two pointers. */
551 #define TRAMPOLINE_CODE_SIZE 16
552 #define TRAMPOLINE_SIZE \
553 ((Pmode == SImode) \
554 ? TRAMPOLINE_CODE_SIZE \
555 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
556 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
558 /* Addressing modes, and classification of registers for them. */
560 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
561 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
562 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
564 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
565 and check its validity for a certain class.
566 We have two alternate definitions for each of them.
567 The usual definition accepts all pseudo regs; the other rejects them all.
568 The symbol REG_OK_STRICT causes the latter definition to be used.
570 Most source files want to accept pseudo regs in the hope that
571 they will get allocated to the class that the insn wants them to be in.
572 Some source files that are used after register allocation
573 need to be strict. */
575 #ifndef REG_OK_STRICT
576 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
577 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
578 #else
579 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
580 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
581 #endif
583 #define REG_OK_FOR_INDEX_P(X) 0
585 /* Maximum number of registers that can appear in a valid memory address. */
587 #define MAX_REGS_PER_ADDRESS 1
589 #define CONSTANT_ADDRESS_P(X) \
590 (CONSTANT_P (X) && memory_address_p (SImode, X))
592 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
593 'the start of the function that this code is output in'. */
595 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
596 do { \
597 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
598 asm_fprintf ((FILE), "%U%s", \
599 XSTR (XEXP (DECL_RTL (current_function_decl), \
600 0), 0)); \
601 else \
602 asm_fprintf ((FILE), "%U%s", (NAME)); \
603 } while (0)
605 #define JUMP_TABLES_IN_TEXT_SECTION 0
606 #define CASE_VECTOR_MODE SImode
607 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
609 /* The load-address macro is used for PC-relative addressing of symbols
610 that bind locally. Don't use it for symbols that should be addressed
611 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
612 currently results in more opportunities for linker relaxation. */
613 #define USE_LOAD_ADDRESS_MACRO(sym) \
614 (!TARGET_EXPLICIT_RELOCS && \
615 ((flag_pic \
616 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
617 || ((GET_CODE (sym) == CONST) \
618 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
619 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
620 || riscv_cmodel == CM_MEDANY))
622 /* Define this as 1 if `char' should by default be signed; else as 0. */
623 #define DEFAULT_SIGNED_CHAR 0
625 #define MOVE_MAX UNITS_PER_WORD
626 #define MAX_MOVE_MAX 8
628 /* The SPARC port says:
629 Nonzero if access to memory by bytes is slow and undesirable.
630 For RISC chips, it means that access to memory by bytes is no
631 better than access by words when possible, so grab a whole word
632 and maybe make use of that. */
633 #define SLOW_BYTE_ACCESS 1
635 #define SHIFT_COUNT_TRUNCATED 1
637 /* Specify the machine mode that pointers have.
638 After generation of rtl, the compiler makes no further distinction
639 between pointers and any other objects of this machine mode. */
641 #define Pmode word_mode
643 /* Give call MEMs SImode since it is the "most permissive" mode
644 for both 32-bit and 64-bit targets. */
646 #define FUNCTION_MODE SImode
648 /* A C expression for the cost of a branch instruction. A value of 2
649 seems to minimize code size. */
651 #define BRANCH_COST(speed_p, predictable_p) \
652 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
654 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
656 /* Control the assembler format that we output. */
658 /* Output to assembler file text saying following lines
659 may contain character constants, extra white space, comments, etc. */
661 #ifndef ASM_APP_ON
662 #define ASM_APP_ON " #APP\n"
663 #endif
665 /* Output to assembler file text saying following lines
666 no longer contain unusual constructs. */
668 #ifndef ASM_APP_OFF
669 #define ASM_APP_OFF " #NO_APP\n"
670 #endif
672 #define REGISTER_NAMES \
673 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
674 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
675 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
676 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
677 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
678 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
679 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
680 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
681 "arg", "frame", }
683 #define ADDITIONAL_REGISTER_NAMES \
685 { "x0", 0 + GP_REG_FIRST }, \
686 { "x1", 1 + GP_REG_FIRST }, \
687 { "x2", 2 + GP_REG_FIRST }, \
688 { "x3", 3 + GP_REG_FIRST }, \
689 { "x4", 4 + GP_REG_FIRST }, \
690 { "x5", 5 + GP_REG_FIRST }, \
691 { "x6", 6 + GP_REG_FIRST }, \
692 { "x7", 7 + GP_REG_FIRST }, \
693 { "x8", 8 + GP_REG_FIRST }, \
694 { "x9", 9 + GP_REG_FIRST }, \
695 { "x10", 10 + GP_REG_FIRST }, \
696 { "x11", 11 + GP_REG_FIRST }, \
697 { "x12", 12 + GP_REG_FIRST }, \
698 { "x13", 13 + GP_REG_FIRST }, \
699 { "x14", 14 + GP_REG_FIRST }, \
700 { "x15", 15 + GP_REG_FIRST }, \
701 { "x16", 16 + GP_REG_FIRST }, \
702 { "x17", 17 + GP_REG_FIRST }, \
703 { "x18", 18 + GP_REG_FIRST }, \
704 { "x19", 19 + GP_REG_FIRST }, \
705 { "x20", 20 + GP_REG_FIRST }, \
706 { "x21", 21 + GP_REG_FIRST }, \
707 { "x22", 22 + GP_REG_FIRST }, \
708 { "x23", 23 + GP_REG_FIRST }, \
709 { "x24", 24 + GP_REG_FIRST }, \
710 { "x25", 25 + GP_REG_FIRST }, \
711 { "x26", 26 + GP_REG_FIRST }, \
712 { "x27", 27 + GP_REG_FIRST }, \
713 { "x28", 28 + GP_REG_FIRST }, \
714 { "x29", 29 + GP_REG_FIRST }, \
715 { "x30", 30 + GP_REG_FIRST }, \
716 { "x31", 31 + GP_REG_FIRST }, \
717 { "f0", 0 + FP_REG_FIRST }, \
718 { "f1", 1 + FP_REG_FIRST }, \
719 { "f2", 2 + FP_REG_FIRST }, \
720 { "f3", 3 + FP_REG_FIRST }, \
721 { "f4", 4 + FP_REG_FIRST }, \
722 { "f5", 5 + FP_REG_FIRST }, \
723 { "f6", 6 + FP_REG_FIRST }, \
724 { "f7", 7 + FP_REG_FIRST }, \
725 { "f8", 8 + FP_REG_FIRST }, \
726 { "f9", 9 + FP_REG_FIRST }, \
727 { "f10", 10 + FP_REG_FIRST }, \
728 { "f11", 11 + FP_REG_FIRST }, \
729 { "f12", 12 + FP_REG_FIRST }, \
730 { "f13", 13 + FP_REG_FIRST }, \
731 { "f14", 14 + FP_REG_FIRST }, \
732 { "f15", 15 + FP_REG_FIRST }, \
733 { "f16", 16 + FP_REG_FIRST }, \
734 { "f17", 17 + FP_REG_FIRST }, \
735 { "f18", 18 + FP_REG_FIRST }, \
736 { "f19", 19 + FP_REG_FIRST }, \
737 { "f20", 20 + FP_REG_FIRST }, \
738 { "f21", 21 + FP_REG_FIRST }, \
739 { "f22", 22 + FP_REG_FIRST }, \
740 { "f23", 23 + FP_REG_FIRST }, \
741 { "f24", 24 + FP_REG_FIRST }, \
742 { "f25", 25 + FP_REG_FIRST }, \
743 { "f26", 26 + FP_REG_FIRST }, \
744 { "f27", 27 + FP_REG_FIRST }, \
745 { "f28", 28 + FP_REG_FIRST }, \
746 { "f29", 29 + FP_REG_FIRST }, \
747 { "f30", 30 + FP_REG_FIRST }, \
748 { "f31", 31 + FP_REG_FIRST }, \
751 /* Globalizing directive for a label. */
752 #define GLOBAL_ASM_OP "\t.globl\t"
754 /* This is how to store into the string LABEL
755 the symbol_ref name of an internal numbered label where
756 PREFIX is the class of label and NUM is the number within the class.
757 This is suitable for output with `assemble_name'. */
759 #undef ASM_GENERATE_INTERNAL_LABEL
760 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
761 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
763 /* This is how to output an element of a case-vector that is absolute. */
765 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
766 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
768 /* This is how to output an element of a PIC case-vector. */
770 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
771 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
772 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
774 /* This is how to output an assembler line
775 that says to advance the location counter
776 to a multiple of 2**LOG bytes. */
778 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
779 fprintf (STREAM, "\t.align\t%d\n", (LOG))
781 /* Define the strings to put out for each section in the object file. */
782 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
783 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
784 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
785 #define BSS_SECTION_ASM_OP "\t.bss"
786 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
787 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
789 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
790 do \
792 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
793 reg_names[STACK_POINTER_REGNUM], \
794 reg_names[STACK_POINTER_REGNUM], \
795 TARGET_64BIT ? "sd" : "sw", \
796 reg_names[REGNO], \
797 reg_names[STACK_POINTER_REGNUM]); \
799 while (0)
801 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
802 do \
804 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
805 TARGET_64BIT ? "ld" : "lw", \
806 reg_names[REGNO], \
807 reg_names[STACK_POINTER_REGNUM], \
808 reg_names[STACK_POINTER_REGNUM], \
809 reg_names[STACK_POINTER_REGNUM]); \
811 while (0)
813 #define ASM_COMMENT_START "#"
815 #undef SIZE_TYPE
816 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
818 #undef PTRDIFF_TYPE
819 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
821 /* The maximum number of bytes copied by one iteration of a movmemsi loop. */
823 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
825 /* The maximum number of bytes that can be copied by a straight-line
826 movmemsi implementation. */
828 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
830 /* If a memory-to-memory move would take MOVE_RATIO or more simple
831 move-instruction pairs, we will do a movmem or libcall instead.
832 Do not use move_by_pieces at all when strict alignment is not
833 in effect but the target has slow unaligned accesses; in this
834 case, movmem or libcall is more efficient. */
836 #define MOVE_RATIO(speed) \
837 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
838 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
839 CLEAR_RATIO (speed) / 2)
841 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
842 of the length of a memset call, but use the default otherwise. */
844 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
846 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
847 optimizing for size adjust the ratio to account for the overhead of
848 loading the constant and replicating it across the word. */
850 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
852 #ifndef USED_FOR_TARGET
853 extern const enum reg_class riscv_regno_to_class[];
854 extern bool riscv_slow_unaligned_access_p;
855 extern unsigned riscv_stack_boundary;
856 #endif
858 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
859 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
861 #define XLEN_SPEC \
862 "%{march=rv32*:32}" \
863 "%{march=rv64*:64}" \
865 #define ABI_SPEC \
866 "%{mabi=ilp32:ilp32}" \
867 "%{mabi=ilp32f:ilp32f}" \
868 "%{mabi=ilp32d:ilp32d}" \
869 "%{mabi=lp64:lp64}" \
870 "%{mabi=lp64f:lp64f}" \
871 "%{mabi=lp64d:lp64d}" \
873 #define STARTFILE_PREFIX_SPEC \
874 "/lib" XLEN_SPEC "/" ABI_SPEC "/ " \
875 "/usr/lib" XLEN_SPEC "/" ABI_SPEC "/ " \
876 "/lib/ " \
877 "/usr/lib/ "
879 /* ISA constants needed for code generation. */
880 #define OPCODE_LW 0x2003
881 #define OPCODE_LD 0x3003
882 #define OPCODE_AUIPC 0x17
883 #define OPCODE_JALR 0x67
884 #define OPCODE_LUI 0x37
885 #define OPCODE_ADDI 0x13
886 #define SHIFT_RD 7
887 #define SHIFT_RS1 15
888 #define SHIFT_IMM 20
889 #define IMM_BITS 12
891 #define IMM_REACH (1LL << IMM_BITS)
892 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
893 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
895 #endif /* ! GCC_RISCV_H */