* config/rs6000/rs6000.h (SPU_CONST_OFFSET_OK): Change to 0xff.
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob86e0917198ab12ffdca91abc45ad0e95d27fe0eb
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions. */
27 /* Definitions for the object file format. These are set at
28 compile-time. */
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
44 /* Default string to use for cpu if not specified. */
45 #ifndef TARGET_CPU_DEFAULT
46 #define TARGET_CPU_DEFAULT ((char *)0)
47 #endif
49 /* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51 #define ASM_CPU_SPEC \
52 "%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -m604} \
62 %{mcpu=power4: -m604} \
63 %{mcpu=powerpc: -mppc} \
64 %{mcpu=rios: -mpwr} \
65 %{mcpu=rios1: -mpwr} \
66 %{mcpu=rios2: -mpwrx} \
67 %{mcpu=rsc: -mpwr} \
68 %{mcpu=rsc1: -mpwr} \
69 %{mcpu=401: -mppc} \
70 %{mcpu=403: -m403} \
71 %{mcpu=405: -m405} \
72 %{mcpu=505: -mppc} \
73 %{mcpu=601: -m601} \
74 %{mcpu=602: -mppc} \
75 %{mcpu=603: -mppc} \
76 %{mcpu=603e: -mppc} \
77 %{mcpu=ec603e: -mppc} \
78 %{mcpu=604: -mppc} \
79 %{mcpu=604e: -mppc} \
80 %{mcpu=620: -mppc} \
81 %{mcpu=630: -m604} \
82 %{mcpu=740: -mppc} \
83 %{mcpu=7400: -mppc} \
84 %{mcpu=7450: -mppc} \
85 %{mcpu=750: -mppc} \
86 %{mcpu=801: -mppc} \
87 %{mcpu=821: -mppc} \
88 %{mcpu=823: -mppc} \
89 %{mcpu=860: -mppc} \
90 %{mcpu=8540: -me500} \
91 %{maltivec: -maltivec}"
93 #define CPP_DEFAULT_SPEC ""
95 #define ASM_DEFAULT_SPEC ""
97 /* This macro defines names of additional specifications to put in the specs
98 that can be used in various specifications like CC1_SPEC. Its definition
99 is an initializer with a subgrouping for each command option.
101 Each subgrouping contains a string constant, that defines the
102 specification name, and a string constant that used by the GNU CC driver
103 program.
105 Do not define this macro if it does not need to do anything. */
107 #define SUBTARGET_EXTRA_SPECS
109 #define EXTRA_SPECS \
110 { "cpp_default", CPP_DEFAULT_SPEC }, \
111 { "asm_cpu", ASM_CPU_SPEC }, \
112 { "asm_default", ASM_DEFAULT_SPEC }, \
113 SUBTARGET_EXTRA_SPECS
115 /* Architecture type. */
117 extern int target_flags;
119 /* Use POWER architecture instructions and MQ register. */
120 #define MASK_POWER 0x00000001
122 /* Use POWER2 extensions to POWER architecture. */
123 #define MASK_POWER2 0x00000002
125 /* Use PowerPC architecture instructions. */
126 #define MASK_POWERPC 0x00000004
128 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
129 #define MASK_PPC_GPOPT 0x00000008
131 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
132 #define MASK_PPC_GFXOPT 0x00000010
134 /* Use PowerPC-64 architecture instructions. */
135 #define MASK_POWERPC64 0x00000020
137 /* Use revised mnemonic names defined for PowerPC architecture. */
138 #define MASK_NEW_MNEMONICS 0x00000040
140 /* Disable placing fp constants in the TOC; can be turned on when the
141 TOC overflows. */
142 #define MASK_NO_FP_IN_TOC 0x00000080
144 /* Disable placing symbol+offset constants in the TOC; can be turned on when
145 the TOC overflows. */
146 #define MASK_NO_SUM_IN_TOC 0x00000100
148 /* Output only one TOC entry per module. Normally linking fails if
149 there are more than 16K unique variables/constants in an executable. With
150 this option, linking fails only if there are more than 16K modules, or
151 if there are more than 16K unique variables/constant in a single module.
153 This is at the cost of having 2 extra loads and one extra store per
154 function, and one less allocable register. */
155 #define MASK_MINIMAL_TOC 0x00000200
157 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
158 #define MASK_64BIT 0x00000400
160 /* Disable use of FPRs. */
161 #define MASK_SOFT_FLOAT 0x00000800
163 /* Enable load/store multiple, even on powerpc */
164 #define MASK_MULTIPLE 0x00001000
165 #define MASK_MULTIPLE_SET 0x00002000
167 /* Use string instructions for block moves */
168 #define MASK_STRING 0x00004000
169 #define MASK_STRING_SET 0x00008000
171 /* Disable update form of load/store */
172 #define MASK_NO_UPDATE 0x00010000
174 /* Disable fused multiply/add operations */
175 #define MASK_NO_FUSED_MADD 0x00020000
177 /* Nonzero if we need to schedule the prolog and epilog. */
178 #define MASK_SCHED_PROLOG 0x00040000
180 /* Use AltiVec instructions. */
181 #define MASK_ALTIVEC 0x00080000
183 /* Return small structures in memory (as the AIX ABI requires). */
184 #define MASK_AIX_STRUCT_RET 0x00100000
185 #define MASK_AIX_STRUCT_RET_SET 0x00200000
187 /* The only remaining free bit is 0x00400000. sysv4.h uses
188 0x00800000 -> 0x40000000, and 0x80000000 is not available
189 because target_flags is signed. */
191 #define TARGET_POWER (target_flags & MASK_POWER)
192 #define TARGET_POWER2 (target_flags & MASK_POWER2)
193 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
194 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
195 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
196 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
197 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
198 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
199 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
202 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
203 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
204 #define TARGET_STRING (target_flags & MASK_STRING)
205 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
206 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
207 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
208 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
209 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
210 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
212 #define TARGET_32BIT (! TARGET_64BIT)
213 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
214 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
215 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
217 #ifdef IN_LIBGCC2
218 /* For libgcc2 we make sure this is a compile time constant */
219 #if defined (__64BIT__) || defined (__powerpc64__)
220 #define TARGET_POWERPC64 1
221 #else
222 #define TARGET_POWERPC64 0
223 #endif
224 #else
225 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
226 #endif
228 #define TARGET_XL_CALL 0
230 /* Run-time compilation parameters selecting different hardware subsets.
232 Macro to define tables used to set the flags.
233 This is a list in braces of pairs in braces,
234 each pair being { "NAME", VALUE }
235 where VALUE is the bits to set or minus the bits to clear.
236 An empty string NAME is used to identify the default VALUE. */
238 #define TARGET_SWITCHES \
239 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
240 N_("Use POWER instruction set")}, \
241 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
242 | MASK_POWER2), \
243 N_("Use POWER2 instruction set")}, \
244 {"no-power2", - MASK_POWER2, \
245 N_("Do not use POWER2 instruction set")}, \
246 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
247 | MASK_STRING), \
248 N_("Do not use POWER instruction set")}, \
249 {"powerpc", MASK_POWERPC, \
250 N_("Use PowerPC instruction set")}, \
251 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
252 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
253 N_("Do not use PowerPC instruction set")}, \
254 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
255 N_("Use PowerPC General Purpose group optional instructions")},\
256 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
257 N_("Don't use PowerPC General Purpose group optional instructions")},\
258 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
259 N_("Use PowerPC Graphics group optional instructions")},\
260 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
261 N_("Don't use PowerPC Graphics group optional instructions")},\
262 {"powerpc64", MASK_POWERPC64, \
263 N_("Use PowerPC-64 instruction set")}, \
264 {"no-powerpc64", - MASK_POWERPC64, \
265 N_("Don't use PowerPC-64 instruction set")}, \
266 {"altivec", MASK_ALTIVEC , \
267 N_("Use AltiVec instructions")}, \
268 {"no-altivec", - MASK_ALTIVEC , \
269 N_("Don't use AltiVec instructions")}, \
270 {"new-mnemonics", MASK_NEW_MNEMONICS, \
271 N_("Use new mnemonics for PowerPC architecture")},\
272 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
273 N_("Use old mnemonics for PowerPC architecture")},\
274 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
275 | MASK_MINIMAL_TOC), \
276 N_("Put everything in the regular TOC")}, \
277 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
278 N_("Place floating point constants in TOC")}, \
279 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
280 N_("Don't place floating point constants in TOC")},\
281 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
282 N_("Place symbol+offset constants in TOC")}, \
283 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
284 N_("Don't place symbol+offset constants in TOC")},\
285 {"minimal-toc", MASK_MINIMAL_TOC, \
286 "Use only one TOC entry per procedure"}, \
287 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
288 ""}, \
289 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
290 N_("Place variable addresses in the regular TOC")},\
291 {"hard-float", - MASK_SOFT_FLOAT, \
292 N_("Use hardware fp")}, \
293 {"soft-float", MASK_SOFT_FLOAT, \
294 N_("Do not use hardware fp")}, \
295 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
296 N_("Generate load/store multiple instructions")}, \
297 {"no-multiple", - MASK_MULTIPLE, \
298 N_("Do not generate load/store multiple instructions")},\
299 {"no-multiple", MASK_MULTIPLE_SET, \
300 ""}, \
301 {"string", MASK_STRING | MASK_STRING_SET, \
302 N_("Generate string instructions for block moves")},\
303 {"no-string", - MASK_STRING, \
304 N_("Do not generate string instructions for block moves")},\
305 {"no-string", MASK_STRING_SET, \
306 ""}, \
307 {"update", - MASK_NO_UPDATE, \
308 N_("Generate load/store with update instructions")},\
309 {"no-update", MASK_NO_UPDATE, \
310 N_("Do not generate load/store with update instructions")},\
311 {"fused-madd", - MASK_NO_FUSED_MADD, \
312 N_("Generate fused multiply/add instructions")},\
313 {"no-fused-madd", MASK_NO_FUSED_MADD, \
314 N_("Don't generate fused multiply/add instructions")},\
315 {"sched-prolog", MASK_SCHED_PROLOG, \
316 ""}, \
317 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
318 N_("Don't schedule the start and end of the procedure")},\
319 {"sched-epilog", MASK_SCHED_PROLOG, \
320 ""}, \
321 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
322 ""}, \
323 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
324 N_("Return all structures in memory (AIX default)")},\
325 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 N_("Return small structures in registers (SVR4 default)")},\
327 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 ""},\
329 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 ""},\
331 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 ""},\
333 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 ""},\
335 SUBTARGET_SWITCHES \
336 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
337 ""}}
339 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
341 /* This is meant to be redefined in the host dependent files */
342 #define SUBTARGET_SWITCHES
344 /* Processor type. Order must match cpu attribute in MD file. */
345 enum processor_type
347 PROCESSOR_RIOS1,
348 PROCESSOR_RIOS2,
349 PROCESSOR_RS64A,
350 PROCESSOR_MPCCORE,
351 PROCESSOR_PPC403,
352 PROCESSOR_PPC405,
353 PROCESSOR_PPC601,
354 PROCESSOR_PPC603,
355 PROCESSOR_PPC604,
356 PROCESSOR_PPC604e,
357 PROCESSOR_PPC620,
358 PROCESSOR_PPC630,
359 PROCESSOR_PPC750,
360 PROCESSOR_PPC7400,
361 PROCESSOR_PPC7450,
362 PROCESSOR_PPC8540,
363 PROCESSOR_POWER4
366 extern enum processor_type rs6000_cpu;
368 /* Recast the processor type to the cpu attribute. */
369 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
371 /* Define generic processor types based upon current deployment. */
372 #define PROCESSOR_COMMON PROCESSOR_PPC601
373 #define PROCESSOR_POWER PROCESSOR_RIOS1
374 #define PROCESSOR_POWERPC PROCESSOR_PPC604
375 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
377 /* Define the default processor. This is overridden by other tm.h files. */
378 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
379 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
381 /* Specify the dialect of assembler to use. New mnemonics is dialect one
382 and the old mnemonics are dialect zero. */
383 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
385 /* This is meant to be overridden in target specific files. */
386 #define SUBTARGET_OPTIONS
388 #define TARGET_OPTIONS \
390 {"cpu=", &rs6000_select[1].string, \
391 N_("Use features of and schedule code for given CPU") }, \
392 {"tune=", &rs6000_select[2].string, \
393 N_("Schedule code for given CPU") }, \
394 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
395 {"traceback=", &rs6000_traceback_name, \
396 N_("Select full, part, or no traceback table") }, \
397 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
398 {"long-double-", &rs6000_long_double_size_string, \
399 N_("Specify size of long double (64 or 128 bits)") }, \
400 {"isel=", &rs6000_isel_string, \
401 N_("Specify yes/no if isel instructions should be generated") }, \
402 {"vrsave=", &rs6000_altivec_vrsave_string, \
403 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
404 {"longcall", &rs6000_longcall_switch, \
405 N_("Avoid all range limits on call instructions") }, \
406 {"no-longcall", &rs6000_longcall_switch, "" }, \
407 SUBTARGET_OPTIONS \
410 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
411 struct rs6000_cpu_select
413 const char *string;
414 const char *name;
415 int set_tune_p;
416 int set_arch_p;
419 extern struct rs6000_cpu_select rs6000_select[];
421 /* Debug support */
422 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
423 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
424 extern int rs6000_debug_stack; /* debug stack applications */
425 extern int rs6000_debug_arg; /* debug argument handling */
427 #define TARGET_DEBUG_STACK rs6000_debug_stack
428 #define TARGET_DEBUG_ARG rs6000_debug_arg
430 extern const char *rs6000_traceback_name; /* Type of traceback table. */
432 /* These are separate from target_flags because we've run out of bits
433 there. */
434 extern const char *rs6000_long_double_size_string;
435 extern int rs6000_long_double_type_size;
436 extern int rs6000_altivec_abi;
437 extern int rs6000_spe_abi;
438 extern int rs6000_isel;
439 extern int rs6000_fprs;
440 extern const char *rs6000_isel_string;
441 extern const char *rs6000_altivec_vrsave_string;
442 extern int rs6000_altivec_vrsave;
443 extern const char *rs6000_longcall_switch;
444 extern int rs6000_default_long_calls;
446 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
450 #define TARGET_SPE_ABI 0
451 #define TARGET_SPE 0
452 #define TARGET_ISEL 0
453 #define TARGET_FPRS 1
455 /* Sometimes certain combinations of command options do not make sense
456 on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
464 On the RS/6000 this is used to define the target cpu type. */
466 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
468 /* Define this to change the optimizations performed by default. */
469 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
471 /* Show we can debug even without a frame pointer. */
472 #define CAN_DEBUG_WITHOUT_FP
474 /* Target pragma. */
475 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477 } while (0)
479 /* Target #defines. */
480 #define TARGET_CPU_CPP_BUILTINS() \
481 rs6000_cpu_cpp_builtins (pfile)
483 /* Target machine storage layout. */
485 /* Define this macro if it is advisable to hold scalars in registers
486 in a wider mode than that declared by the program. In such cases,
487 the value is constrained to be within the bounds of the declared
488 type, but kept valid in the wider mode. The signedness of the
489 extension may differ from that of the type. */
491 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
494 (MODE) = word_mode;
496 /* Define this if function arguments should also be promoted using the above
497 procedure. */
499 #define PROMOTE_FUNCTION_ARGS
501 /* Likewise, if the function return value is promoted. */
503 #define PROMOTE_FUNCTION_RETURN
505 /* Define this if most significant bit is lowest numbered
506 in instructions that operate on numbered bit-fields. */
507 /* That is true on RS/6000. */
508 #define BITS_BIG_ENDIAN 1
510 /* Define this if most significant byte of a word is the lowest numbered. */
511 /* That is true on RS/6000. */
512 #define BYTES_BIG_ENDIAN 1
514 /* Define this if most significant word of a multiword number is lowest
515 numbered.
517 For RS/6000 we can decide arbitrarily since there are no machine
518 instructions for them. Might as well be consistent with bits and bytes. */
519 #define WORDS_BIG_ENDIAN 1
521 #define MAX_BITS_PER_WORD 64
523 /* Width of a word, in units (bytes). */
524 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
525 #define MIN_UNITS_PER_WORD 4
526 #define UNITS_PER_FP_WORD 8
527 #define UNITS_PER_ALTIVEC_WORD 16
528 #define UNITS_PER_SPE_WORD 8
530 /* Type used for ptrdiff_t, as a string used in a declaration. */
531 #define PTRDIFF_TYPE "int"
533 /* Type used for size_t, as a string used in a declaration. */
534 #define SIZE_TYPE "long unsigned int"
536 /* Type used for wchar_t, as a string used in a declaration. */
537 #define WCHAR_TYPE "short unsigned int"
539 /* Width of wchar_t in bits. */
540 #define WCHAR_TYPE_SIZE 16
542 /* A C expression for the size in bits of the type `short' on the
543 target machine. If you don't define this, the default is half a
544 word. (If this would be less than one storage unit, it is
545 rounded up to one unit.) */
546 #define SHORT_TYPE_SIZE 16
548 /* A C expression for the size in bits of the type `int' on the
549 target machine. If you don't define this, the default is one
550 word. */
551 #define INT_TYPE_SIZE 32
553 /* A C expression for the size in bits of the type `long' on the
554 target machine. If you don't define this, the default is one
555 word. */
556 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
557 #define MAX_LONG_TYPE_SIZE 64
559 /* A C expression for the size in bits of the type `long long' on the
560 target machine. If you don't define this, the default is two
561 words. */
562 #define LONG_LONG_TYPE_SIZE 64
564 /* A C expression for the size in bits of the type `float' on the
565 target machine. If you don't define this, the default is one
566 word. */
567 #define FLOAT_TYPE_SIZE 32
569 /* A C expression for the size in bits of the type `double' on the
570 target machine. If you don't define this, the default is two
571 words. */
572 #define DOUBLE_TYPE_SIZE 64
574 /* A C expression for the size in bits of the type `long double' on
575 the target machine. If you don't define this, the default is two
576 words. */
577 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
579 /* Constant which presents upper bound of the above value. */
580 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
582 /* Define this to set long double type size to use in libgcc2.c, which can
583 not depend on target_flags. */
584 #ifdef __LONG_DOUBLE_128__
585 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
586 #else
587 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
588 #endif
590 /* Width in bits of a pointer.
591 See also the macro `Pmode' defined below. */
592 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
594 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
595 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
597 /* Boundary (in *bits*) on which stack pointer should be aligned. */
598 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
600 /* Allocation boundary (in *bits*) for the code of a function. */
601 #define FUNCTION_BOUNDARY 32
603 /* No data type wants to be aligned rounder than this. */
604 #define BIGGEST_ALIGNMENT 128
606 /* A C expression to compute the alignment for a variables in the
607 local store. TYPE is the data type, and ALIGN is the alignment
608 that the object would ordinarily have. */
609 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
610 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
611 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
613 /* Alignment of field after `int : 0' in a structure. */
614 #define EMPTY_FIELD_BOUNDARY 32
616 /* Every structure's size must be a multiple of this. */
617 #define STRUCTURE_SIZE_BOUNDARY 8
619 /* Return 1 if a structure or array containing FIELD should be
620 accessed using `BLKMODE'.
622 For the SPE, simd types are V2SI, and gcc can be tempted to put the
623 entire thing in a DI and use subregs to access the internals.
624 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
625 back-end. Because a single GPR can hold a V2SI, but not a DI, the
626 best thing to do is set structs to BLKmode and avoid Severe Tire
627 Damage. */
628 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
629 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
631 /* A bitfield declared as `int' forces `int' alignment for the struct. */
632 #define PCC_BITFIELD_TYPE_MATTERS 1
634 /* Make strings word-aligned so strcpy from constants will be faster.
635 Make vector constants quadword aligned. */
636 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
637 (TREE_CODE (EXP) == STRING_CST \
638 && (ALIGN) < BITS_PER_WORD \
639 ? BITS_PER_WORD \
640 : (ALIGN))
642 /* Make arrays of chars word-aligned for the same reasons.
643 Align vectors to 128 bits. */
644 #define DATA_ALIGNMENT(TYPE, ALIGN) \
645 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
646 : TREE_CODE (TYPE) == ARRAY_TYPE \
647 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
648 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
650 /* Non-zero if move instructions will actually fail to work
651 when given unaligned data. */
652 #define STRICT_ALIGNMENT 0
654 /* Define this macro to be the value 1 if unaligned accesses have a cost
655 many times greater than aligned accesses, for example if they are
656 emulated in a trap handler. */
657 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
658 (STRICT_ALIGNMENT \
659 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
660 && (ALIGN) < 32))
662 /* Standard register usage. */
664 /* Number of actual hardware registers.
665 The hardware registers are assigned numbers for the compiler
666 from 0 to just below FIRST_PSEUDO_REGISTER.
667 All registers that the compiler knows about must be given numbers,
668 even those that are not normally considered general registers.
670 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
671 an MQ register, a count register, a link register, and 8 condition
672 register fields, which we view here as separate registers.
674 In addition, the difference between the frame and argument pointers is
675 a function of the number of registers saved, so we need to have a
676 register for AP that will later be eliminated in favor of SP or FP.
677 This is a normal register, but it is fixed.
679 We also create a pseudo register for float/int conversions, that will
680 really represent the memory location used. It is represented here as
681 a register, in order to work around problems in allocating stack storage
682 in inline functions. */
684 #define FIRST_PSEUDO_REGISTER 113
686 /* This must be included for pre gcc 3.0 glibc compatibility. */
687 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
689 /* 1 for registers that have pervasive standard uses
690 and are not available for the register allocator.
692 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
693 as a local register; for all other OS's r2 is the TOC pointer.
695 cr5 is not supposed to be used.
697 On System V implementations, r13 is fixed and not available for use. */
699 #define FIXED_REGISTERS \
700 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
701 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
702 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
703 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
704 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
705 /* AltiVec registers. */ \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
708 1, 1 \
709 , 1, 1 \
712 /* 1 for registers not available across function calls.
713 These must include the FIXED_REGISTERS and also any
714 registers that can be used without being saved.
715 The latter must include the registers where values are returned
716 and the register where structure-value addresses are passed.
717 Aside from that, you can include as many other registers as you like. */
719 #define CALL_USED_REGISTERS \
720 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
722 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
724 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
725 /* AltiVec registers. */ \
726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
728 1, 1 \
729 , 1, 1 \
732 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
733 the entire set of `FIXED_REGISTERS' be included.
734 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
735 This macro is optional. If not specified, it defaults to the value
736 of `CALL_USED_REGISTERS'. */
738 #define CALL_REALLY_USED_REGISTERS \
739 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
744 /* AltiVec registers. */ \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0, 0 \
748 , 0, 0 \
751 #define MQ_REGNO 64
752 #define CR0_REGNO 68
753 #define CR1_REGNO 69
754 #define CR2_REGNO 70
755 #define CR3_REGNO 71
756 #define CR4_REGNO 72
757 #define MAX_CR_REGNO 75
758 #define XER_REGNO 76
759 #define FIRST_ALTIVEC_REGNO 77
760 #define LAST_ALTIVEC_REGNO 108
761 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
762 #define VRSAVE_REGNO 109
763 #define VSCR_REGNO 110
764 #define SPE_ACC_REGNO 111
765 #define SPEFSCR_REGNO 112
767 /* List the order in which to allocate registers. Each register must be
768 listed once, even those in FIXED_REGISTERS.
770 We allocate in the following order:
771 fp0 (not saved or used for anything)
772 fp13 - fp2 (not saved; incoming fp arg registers)
773 fp1 (not saved; return value)
774 fp31 - fp14 (saved; order given to save least number)
775 cr7, cr6 (not saved or special)
776 cr1 (not saved, but used for FP operations)
777 cr0 (not saved, but used for arithmetic operations)
778 cr4, cr3, cr2 (saved)
779 r0 (not saved; cannot be base reg)
780 r9 (not saved; best for TImode)
781 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
782 r3 (not saved; return value register)
783 r31 - r13 (saved; order given to save least number)
784 r12 (not saved; if used for DImode or DFmode would use r13)
785 mq (not saved; best to use it if we can)
786 ctr (not saved; when we have the choice ctr is better)
787 lr (saved)
788 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
789 spe_acc, spefscr (fixed)
791 AltiVec registers:
792 v0 - v1 (not saved or used for anything)
793 v13 - v3 (not saved; incoming vector arg registers)
794 v2 (not saved; incoming vector arg reg; return value)
795 v19 - v14 (not saved or used for anything)
796 v31 - v20 (saved; order given to save least number)
800 #define REG_ALLOC_ORDER \
801 {32, \
802 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
803 33, \
804 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
805 50, 49, 48, 47, 46, \
806 75, 74, 69, 68, 72, 71, 70, \
807 0, \
808 9, 11, 10, 8, 7, 6, 5, 4, \
809 3, \
810 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
811 18, 17, 16, 15, 14, 13, 12, \
812 64, 66, 65, \
813 73, 1, 2, 67, 76, \
814 /* AltiVec registers. */ \
815 77, 78, \
816 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
817 79, \
818 96, 95, 94, 93, 92, 91, \
819 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
820 97, 109, 110 \
821 , 111, 112 \
824 /* True if register is floating-point. */
825 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
827 /* True if register is a condition register. */
828 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
830 /* True if register is a condition register, but not cr0. */
831 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
833 /* True if register is an integer register. */
834 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
836 /* SPE SIMD registers are just the GPRs. */
837 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
839 /* True if register is the XER register. */
840 #define XER_REGNO_P(N) ((N) == XER_REGNO)
842 /* True if register is an AltiVec register. */
843 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
845 /* Return number of consecutive hard regs needed starting at reg REGNO
846 to hold something of mode MODE.
847 This is ordinarily the length in words of a value of mode MODE
848 but can be less for certain modes in special long registers.
850 For the SPE, GPRs are 64 bits but only 32 bits are visible in
851 scalar instructions. The upper 32 bits are only available to the
852 SIMD instructions.
854 POWER and PowerPC GPRs hold 32 bits worth;
855 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
857 #define HARD_REGNO_NREGS(REGNO, MODE) \
858 (FP_REGNO_P (REGNO) \
859 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
860 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
861 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
862 : ALTIVEC_REGNO_P (REGNO) \
863 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
864 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
866 #define ALTIVEC_VECTOR_MODE(MODE) \
867 ((MODE) == V16QImode \
868 || (MODE) == V8HImode \
869 || (MODE) == V4SFmode \
870 || (MODE) == V4SImode)
872 #define SPE_VECTOR_MODE(MODE) \
873 ((MODE) == V4HImode \
874 || (MODE) == V2SFmode \
875 || (MODE) == V2SImode)
877 /* Define this macro to be nonzero if the port is prepared to handle
878 insns involving vector mode MODE. At the very least, it must have
879 move patterns for this mode. */
881 #define VECTOR_MODE_SUPPORTED_P(MODE) \
882 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
883 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
885 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
886 For POWER and PowerPC, the GPRs can hold any mode, but the float
887 registers only can hold floating modes and DImode, and CR register only
888 can hold CC modes. We cannot put TImode anywhere except general
889 register and it must be able to fit within the register set. */
891 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
892 (FP_REGNO_P (REGNO) ? \
893 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
894 || (GET_MODE_CLASS (MODE) == MODE_INT \
895 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
896 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
897 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
898 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
899 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
900 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
901 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
902 : 1)
904 /* Value is 1 if it is a good idea to tie two pseudo registers
905 when one has mode MODE1 and one has mode MODE2.
906 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
907 for any hard reg, then this must be 0 for correct output. */
908 #define MODES_TIEABLE_P(MODE1, MODE2) \
909 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
910 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
911 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
912 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
913 : GET_MODE_CLASS (MODE1) == MODE_CC \
914 ? GET_MODE_CLASS (MODE2) == MODE_CC \
915 : GET_MODE_CLASS (MODE2) == MODE_CC \
916 ? GET_MODE_CLASS (MODE1) == MODE_CC \
917 : ALTIVEC_VECTOR_MODE (MODE1) \
918 ? ALTIVEC_VECTOR_MODE (MODE2) \
919 : ALTIVEC_VECTOR_MODE (MODE2) \
920 ? ALTIVEC_VECTOR_MODE (MODE1) \
921 : 1)
923 /* A C expression returning the cost of moving data from a register of class
924 CLASS1 to one of CLASS2.
926 On the RS/6000, copying between floating-point and fixed-point
927 registers is expensive. */
929 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
930 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
931 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
932 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
933 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
934 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
935 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
936 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
937 || (CLASS1) == LINK_OR_CTR_REGS) \
938 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
939 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
940 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
941 : 2)
943 /* A C expressions returning the cost of moving data of MODE from a register to
944 or from memory.
946 On the RS/6000, bump this up a bit. */
948 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
949 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
950 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
951 ? 3 : 2) \
952 + 4)
954 /* Specify the cost of a branch insn; roughly the number of extra insns that
955 should be added to avoid a branch.
957 Set this to 3 on the RS/6000 since that is roughly the average cost of an
958 unscheduled conditional branch. */
960 #define BRANCH_COST 3
963 /* A fixed register used at prologue and epilogue generation to fix
964 addressing modes. The SPE needs heavy addressing fixes at the last
965 minute, and it's best to save a register for it.
967 AltiVec also needs fixes, but we've gotten around using r11, which
968 is actually wrong because when use_backchain_to_restore_sp is true,
969 we end up clobbering r11.
971 The AltiVec case needs to be fixed. Dunno if we should break ABI
972 compatability and reserve a register for it as well.. */
974 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
976 /* Define this macro to change register usage conditional on target flags.
977 Set MQ register fixed (already call_used) if not POWER architecture
978 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
979 64-bit AIX reserves GPR13 for thread-private data.
980 Conditionally disable FPRs. */
982 #define CONDITIONAL_REGISTER_USAGE \
984 int i; \
985 if (! TARGET_POWER) \
986 fixed_regs[64] = 1; \
987 if (TARGET_64BIT) \
988 fixed_regs[13] = call_used_regs[13] \
989 = call_really_used_regs[13] = 1; \
990 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
991 for (i = 32; i < 64; i++) \
992 fixed_regs[i] = call_used_regs[i] \
993 = call_really_used_regs[i] = 1; \
994 if (DEFAULT_ABI == ABI_V4 \
995 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
996 && flag_pic == 1) \
997 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
998 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
999 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1000 if (DEFAULT_ABI == ABI_DARWIN \
1001 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1002 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1003 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1004 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1005 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1006 if (TARGET_ALTIVEC) \
1007 global_regs[VSCR_REGNO] = 1; \
1008 if (TARGET_SPE) \
1010 global_regs[SPEFSCR_REGNO] = 1; \
1011 fixed_regs[FIXED_SCRATCH] \
1012 = call_used_regs[FIXED_SCRATCH] \
1013 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1015 if (! TARGET_ALTIVEC) \
1017 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1018 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1019 call_really_used_regs[VRSAVE_REGNO] = 1; \
1021 if (TARGET_ALTIVEC_ABI) \
1022 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1023 call_used_regs[i] = call_really_used_regs[i] = 1; \
1026 /* Specify the registers used for certain standard purposes.
1027 The values of these macros are register numbers. */
1029 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1030 /* #define PC_REGNUM */
1032 /* Register to use for pushing function arguments. */
1033 #define STACK_POINTER_REGNUM 1
1035 /* Base register for access to local variables of the function. */
1036 #define FRAME_POINTER_REGNUM 31
1038 /* Value should be nonzero if functions must have frame pointers.
1039 Zero means the frame pointer need not be set up (and parms
1040 may be accessed via the stack pointer) in functions that seem suitable.
1041 This is computed in `reload', in reload1.c. */
1042 #define FRAME_POINTER_REQUIRED 0
1044 /* Base register for access to arguments of the function. */
1045 #define ARG_POINTER_REGNUM 67
1047 /* Place to put static chain when calling a function that requires it. */
1048 #define STATIC_CHAIN_REGNUM 11
1050 /* Link register number. */
1051 #define LINK_REGISTER_REGNUM 65
1053 /* Count register number. */
1054 #define COUNT_REGISTER_REGNUM 66
1056 /* Place that structure value return address is placed.
1058 On the RS/6000, it is passed as an extra parameter. */
1059 #define STRUCT_VALUE 0
1061 /* Define the classes of registers for register constraints in the
1062 machine description. Also define ranges of constants.
1064 One of the classes must always be named ALL_REGS and include all hard regs.
1065 If there is more than one class, another class must be named NO_REGS
1066 and contain no registers.
1068 The name GENERAL_REGS must be the name of a class (or an alias for
1069 another name such as ALL_REGS). This is the class of registers
1070 that is allowed by "g" or "r" in a register constraint.
1071 Also, registers outside this class are allocated only when
1072 instructions express preferences for them.
1074 The classes must be numbered in nondecreasing order; that is,
1075 a larger-numbered class must never be contained completely
1076 in a smaller-numbered class.
1078 For any two classes, it is very desirable that there be another
1079 class that represents their union. */
1081 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1082 and condition registers, plus three special registers, MQ, CTR, and the
1083 link register.
1085 However, r0 is special in that it cannot be used as a base register.
1086 So make a class for registers valid as base registers.
1088 Also, cr0 is the only condition code register that can be used in
1089 arithmetic insns, so make a separate class for it. */
1091 enum reg_class
1093 NO_REGS,
1094 BASE_REGS,
1095 GENERAL_REGS,
1096 FLOAT_REGS,
1097 ALTIVEC_REGS,
1098 VRSAVE_REGS,
1099 VSCR_REGS,
1100 SPE_ACC_REGS,
1101 SPEFSCR_REGS,
1102 NON_SPECIAL_REGS,
1103 MQ_REGS,
1104 LINK_REGS,
1105 CTR_REGS,
1106 LINK_OR_CTR_REGS,
1107 SPECIAL_REGS,
1108 SPEC_OR_GEN_REGS,
1109 CR0_REGS,
1110 CR_REGS,
1111 NON_FLOAT_REGS,
1112 XER_REGS,
1113 ALL_REGS,
1114 LIM_REG_CLASSES
1117 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1119 /* Give names of register classes as strings for dump file. */
1121 #define REG_CLASS_NAMES \
1123 "NO_REGS", \
1124 "BASE_REGS", \
1125 "GENERAL_REGS", \
1126 "FLOAT_REGS", \
1127 "ALTIVEC_REGS", \
1128 "VRSAVE_REGS", \
1129 "VSCR_REGS", \
1130 "SPE_ACC_REGS", \
1131 "SPEFSCR_REGS", \
1132 "NON_SPECIAL_REGS", \
1133 "MQ_REGS", \
1134 "LINK_REGS", \
1135 "CTR_REGS", \
1136 "LINK_OR_CTR_REGS", \
1137 "SPECIAL_REGS", \
1138 "SPEC_OR_GEN_REGS", \
1139 "CR0_REGS", \
1140 "CR_REGS", \
1141 "NON_FLOAT_REGS", \
1142 "XER_REGS", \
1143 "ALL_REGS" \
1146 /* Define which registers fit in which classes.
1147 This is an initializer for a vector of HARD_REG_SET
1148 of length N_REG_CLASSES. */
1150 #define REG_CLASS_CONTENTS \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1153 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1154 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1155 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1156 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1157 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1159 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1160 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1161 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1162 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1163 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1164 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1165 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1166 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1167 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1168 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1169 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1170 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1171 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1172 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1175 /* The same information, inverted:
1176 Return the class number of the smallest class containing
1177 reg number REGNO. This could be a conditional expression
1178 or could index an array. */
1180 #define REGNO_REG_CLASS(REGNO) \
1181 ((REGNO) == 0 ? GENERAL_REGS \
1182 : (REGNO) < 32 ? BASE_REGS \
1183 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1184 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1185 : (REGNO) == CR0_REGNO ? CR0_REGS \
1186 : CR_REGNO_P (REGNO) ? CR_REGS \
1187 : (REGNO) == MQ_REGNO ? MQ_REGS \
1188 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1189 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1190 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1191 : (REGNO) == XER_REGNO ? XER_REGS \
1192 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1193 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1194 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1195 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1196 : NO_REGS)
1198 /* The class value for index registers, and the one for base regs. */
1199 #define INDEX_REG_CLASS GENERAL_REGS
1200 #define BASE_REG_CLASS BASE_REGS
1202 /* Get reg_class from a letter such as appears in the machine description. */
1204 #define REG_CLASS_FROM_LETTER(C) \
1205 ((C) == 'f' ? FLOAT_REGS \
1206 : (C) == 'b' ? BASE_REGS \
1207 : (C) == 'h' ? SPECIAL_REGS \
1208 : (C) == 'q' ? MQ_REGS \
1209 : (C) == 'c' ? CTR_REGS \
1210 : (C) == 'l' ? LINK_REGS \
1211 : (C) == 'v' ? ALTIVEC_REGS \
1212 : (C) == 'x' ? CR0_REGS \
1213 : (C) == 'y' ? CR_REGS \
1214 : (C) == 'z' ? XER_REGS \
1215 : NO_REGS)
1217 /* The letters I, J, K, L, M, N, and P in a register constraint string
1218 can be used to stand for particular ranges of immediate operands.
1219 This macro defines what the ranges are.
1220 C is the letter, and VALUE is a constant value.
1221 Return 1 if VALUE is in the range specified by C.
1223 `I' is a signed 16-bit constant
1224 `J' is a constant with only the high-order 16 bits non-zero
1225 `K' is a constant with only the low-order 16 bits non-zero
1226 `L' is a signed 16-bit constant shifted left 16 bits
1227 `M' is a constant that is greater than 31
1228 `N' is a positive constant that is an exact power of two
1229 `O' is the constant zero
1230 `P' is a constant whose negation is a signed 16-bit constant */
1232 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1233 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1234 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1235 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1236 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1237 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1238 : (C) == 'M' ? (VALUE) > 31 \
1239 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1240 : (C) == 'O' ? (VALUE) == 0 \
1241 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1242 : 0)
1244 /* Similar, but for floating constants, and defining letters G and H.
1245 Here VALUE is the CONST_DOUBLE rtx itself.
1247 We flag for special constants when we can copy the constant into
1248 a general register in two insns for DF/DI and one insn for SF.
1250 'H' is used for DI/DF constants that take 3 insns. */
1252 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1253 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1254 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1255 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1256 : 0)
1258 /* Optional extra constraints for this machine.
1260 'Q' means that is a memory operand that is just an offset from a reg.
1261 'R' is for AIX TOC entries.
1262 'S' is a constant that can be placed into a 64-bit mask operand
1263 'T' is a constant that can be placed into a 32-bit mask operand
1264 'U' is for V.4 small data references.
1265 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1267 #define EXTRA_CONSTRAINT(OP, C) \
1268 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1269 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1270 : (C) == 'S' ? mask64_operand (OP, DImode) \
1271 : (C) == 'T' ? mask_operand (OP, SImode) \
1272 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1273 && small_data_operand (OP, GET_MODE (OP))) \
1274 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1275 && (fixed_regs[CR0_REGNO] \
1276 || !logical_operand (OP, DImode)) \
1277 && !mask64_operand (OP, DImode)) \
1278 : 0)
1280 /* Given an rtx X being reloaded into a reg required to be
1281 in class CLASS, return the class of reg to actually use.
1282 In general this is just CLASS; but on some machines
1283 in some cases it is preferable to use a more restrictive class.
1285 On the RS/6000, we have to return NO_REGS when we want to reload a
1286 floating-point CONST_DOUBLE to force it to be copied to memory.
1288 We also don't want to reload integer values into floating-point
1289 registers if we can at all help it. In fact, this can
1290 cause reload to abort, if it tries to generate a reload of CTR
1291 into a FP register and discovers it doesn't have the memory location
1292 required.
1294 ??? Would it be a good idea to have reload do the converse, that is
1295 try to reload floating modes into FP registers if possible?
1298 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1299 (((GET_CODE (X) == CONST_DOUBLE \
1300 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1301 ? NO_REGS \
1302 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1303 && (CLASS) == NON_SPECIAL_REGS) \
1304 ? GENERAL_REGS \
1305 : (CLASS)))
1307 /* Return the register class of a scratch register needed to copy IN into
1308 or out of a register in CLASS in MODE. If it can be done directly,
1309 NO_REGS is returned. */
1311 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1312 secondary_reload_class (CLASS, MODE, IN)
1314 /* If we are copying between FP or AltiVec registers and anything
1315 else, we need a memory location. */
1317 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1318 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1319 || (CLASS2) == FLOAT_REGS \
1320 || (CLASS1) == ALTIVEC_REGS \
1321 || (CLASS2) == ALTIVEC_REGS))
1323 /* Return the maximum number of consecutive registers
1324 needed to represent mode MODE in a register of class CLASS.
1326 On RS/6000, this is the size of MODE in words,
1327 except in the FP regs, where a single reg is enough for two words. */
1328 #define CLASS_MAX_NREGS(CLASS, MODE) \
1329 (((CLASS) == FLOAT_REGS) \
1330 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1331 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1333 /* If defined, gives a class of registers that cannot be used as the
1334 operand of a SUBREG that changes the mode of the object illegally. */
1336 #define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1338 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1340 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1341 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1343 /* Stack layout; function entry, exit and calling. */
1345 /* Enumeration to give which calling sequence to use. */
1346 enum rs6000_abi {
1347 ABI_NONE,
1348 ABI_AIX, /* IBM's AIX */
1349 ABI_AIX_NODESC, /* AIX calling sequence minus
1350 function descriptors */
1351 ABI_V4, /* System V.4/eabi */
1352 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1355 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1357 /* Structure used to define the rs6000 stack */
1358 typedef struct rs6000_stack {
1359 int first_gp_reg_save; /* first callee saved GP register used */
1360 int first_fp_reg_save; /* first callee saved FP register used */
1361 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1362 int lr_save_p; /* true if the link reg needs to be saved */
1363 int cr_save_p; /* true if the CR reg needs to be saved */
1364 unsigned int vrsave_mask; /* mask of vec registers to save */
1365 int toc_save_p; /* true if the TOC needs to be saved */
1366 int push_p; /* true if we need to allocate stack space */
1367 int calls_p; /* true if the function makes any calls */
1368 enum rs6000_abi abi; /* which ABI to use */
1369 int gp_save_offset; /* offset to save GP regs from initial SP */
1370 int fp_save_offset; /* offset to save FP regs from initial SP */
1371 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
1372 int lr_save_offset; /* offset to save LR from initial SP */
1373 int cr_save_offset; /* offset to save CR from initial SP */
1374 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1375 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1376 int toc_save_offset; /* offset to save the TOC pointer */
1377 int varargs_save_offset; /* offset to save the varargs registers */
1378 int ehrd_offset; /* offset to EH return data */
1379 int reg_size; /* register size (4 or 8) */
1380 int varargs_size; /* size to hold V.4 args passed in regs */
1381 int vars_size; /* variable save area size */
1382 int parm_size; /* outgoing parameter size */
1383 int save_size; /* save area size */
1384 int fixed_size; /* fixed size of stack frame */
1385 int gp_size; /* size of saved GP registers */
1386 int fp_size; /* size of saved FP registers */
1387 int altivec_size; /* size of saved AltiVec registers */
1388 int cr_size; /* size to hold CR if not in save_size */
1389 int lr_size; /* size to hold LR if not in save_size */
1390 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1391 int altivec_padding_size; /* size of altivec alignment padding if
1392 not in save_size */
1393 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1394 int spe_padding_size;
1395 int toc_size; /* size to hold TOC if not in save_size */
1396 int total_size; /* total bytes allocated for stack */
1397 } rs6000_stack_t;
1399 /* Define this if pushing a word on the stack
1400 makes the stack pointer a smaller address. */
1401 #define STACK_GROWS_DOWNWARD
1403 /* Define this if the nominal address of the stack frame
1404 is at the high-address end of the local variables;
1405 that is, each additional local variable allocated
1406 goes at a more negative offset in the frame.
1408 On the RS/6000, we grow upwards, from the area after the outgoing
1409 arguments. */
1410 /* #define FRAME_GROWS_DOWNWARD */
1412 /* Size of the outgoing register save area */
1413 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1414 || DEFAULT_ABI == ABI_AIX_NODESC \
1415 || DEFAULT_ABI == ABI_DARWIN) \
1416 ? (TARGET_64BIT ? 64 : 32) \
1417 : 0)
1419 /* Size of the fixed area on the stack */
1420 #define RS6000_SAVE_AREA \
1421 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1422 << (TARGET_64BIT ? 1 : 0))
1424 /* MEM representing address to save the TOC register */
1425 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1426 plus_constant (stack_pointer_rtx, \
1427 (TARGET_32BIT ? 20 : 40)))
1429 /* Size of the V.4 varargs area if needed */
1430 #define RS6000_VARARGS_AREA 0
1432 /* Align an address */
1433 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1435 /* Size of V.4 varargs area in bytes */
1436 #define RS6000_VARARGS_SIZE \
1437 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1439 /* Offset within stack frame to start allocating local variables at.
1440 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1441 first local allocated. Otherwise, it is the offset to the BEGINNING
1442 of the first local allocated.
1444 On the RS/6000, the frame pointer is the same as the stack pointer,
1445 except for dynamic allocations. So we start after the fixed area and
1446 outgoing parameter area. */
1448 #define STARTING_FRAME_OFFSET \
1449 (RS6000_ALIGN (current_function_outgoing_args_size, \
1450 TARGET_ALTIVEC ? 16 : 8) \
1451 + RS6000_VARARGS_AREA \
1452 + RS6000_SAVE_AREA)
1454 /* Offset from the stack pointer register to an item dynamically
1455 allocated on the stack, e.g., by `alloca'.
1457 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1458 length of the outgoing arguments. The default is correct for most
1459 machines. See `function.c' for details. */
1460 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1461 (RS6000_ALIGN (current_function_outgoing_args_size, \
1462 TARGET_ALTIVEC ? 16 : 8) \
1463 + (STACK_POINTER_OFFSET))
1465 /* If we generate an insn to push BYTES bytes,
1466 this says how many the stack pointer really advances by.
1467 On RS/6000, don't define this because there are no push insns. */
1468 /* #define PUSH_ROUNDING(BYTES) */
1470 /* Offset of first parameter from the argument pointer register value.
1471 On the RS/6000, we define the argument pointer to the start of the fixed
1472 area. */
1473 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1475 /* Offset from the argument pointer register value to the top of
1476 stack. This is different from FIRST_PARM_OFFSET because of the
1477 register save area. */
1478 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1480 /* Define this if stack space is still allocated for a parameter passed
1481 in a register. The value is the number of bytes allocated to this
1482 area. */
1483 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1485 /* Define this if the above stack space is to be considered part of the
1486 space allocated by the caller. */
1487 #define OUTGOING_REG_PARM_STACK_SPACE
1489 /* This is the difference between the logical top of stack and the actual sp.
1491 For the RS/6000, sp points past the fixed area. */
1492 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1494 /* Define this if the maximum size of all the outgoing args is to be
1495 accumulated and pushed during the prologue. The amount can be
1496 found in the variable current_function_outgoing_args_size. */
1497 #define ACCUMULATE_OUTGOING_ARGS 1
1499 /* Value is the number of bytes of arguments automatically
1500 popped when returning from a subroutine call.
1501 FUNDECL is the declaration node of the function (as a tree),
1502 FUNTYPE is the data type of the function (as a tree),
1503 or for a library call it is an identifier node for the subroutine name.
1504 SIZE is the number of bytes of arguments passed on the stack. */
1506 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1508 /* Define how to find the value returned by a function.
1509 VALTYPE is the data type of the value (as a tree).
1510 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1511 otherwise, FUNC is 0.
1513 On the SPE, both FPs and vectors are returned in r3.
1515 On RS/6000 an integer value is in r3 and a floating-point value is in
1516 fp1, unless -msoft-float. */
1518 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1519 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1520 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1521 || POINTER_TYPE_P (VALTYPE) \
1522 ? word_mode : TYPE_MODE (VALTYPE), \
1523 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1524 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
1525 : TREE_CODE (VALTYPE) == REAL_TYPE \
1526 && TARGET_SPE_ABI && !TARGET_FPRS \
1527 ? GP_ARG_RETURN \
1528 : TREE_CODE (VALTYPE) == REAL_TYPE \
1529 && TARGET_HARD_FLOAT && TARGET_FPRS \
1530 ? FP_ARG_RETURN : GP_ARG_RETURN)
1532 /* Define how to find the value returned by a library function
1533 assuming the value has mode MODE. */
1535 #define LIBCALL_VALUE(MODE) \
1536 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1537 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1538 && TARGET_HARD_FLOAT && TARGET_FPRS \
1539 ? FP_ARG_RETURN : GP_ARG_RETURN)
1541 /* The AIX ABI for the RS/6000 specifies that all structures are
1542 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1543 specifies that structures <= 8 bytes are returned in r3/r4, but a
1544 draft put them in memory, and GCC used to implement the draft
1545 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1546 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1547 compatibility can change DRAFT_V4_STRUCT_RET to override the
1548 default, and -m switches get the final word. See
1549 rs6000_override_options for more details.
1551 int_size_in_bytes returns -1 for variable size objects, which go in
1552 memory always. The cast to unsigned makes -1 > 8. */
1554 #define RETURN_IN_MEMORY(TYPE) \
1555 (AGGREGATE_TYPE_P (TYPE) && \
1556 (TARGET_AIX_STRUCT_RET || \
1557 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
1559 /* DRAFT_V4_STRUCT_RET defaults off. */
1560 #define DRAFT_V4_STRUCT_RET 0
1562 /* Let RETURN_IN_MEMORY control what happens. */
1563 #define DEFAULT_PCC_STRUCT_RETURN 0
1565 /* Mode of stack savearea.
1566 FUNCTION is VOIDmode because calling convention maintains SP.
1567 BLOCK needs Pmode for SP.
1568 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1569 #define STACK_SAVEAREA_MODE(LEVEL) \
1570 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1571 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1573 /* Minimum and maximum general purpose registers used to hold arguments. */
1574 #define GP_ARG_MIN_REG 3
1575 #define GP_ARG_MAX_REG 10
1576 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1578 /* Minimum and maximum floating point registers used to hold arguments. */
1579 #define FP_ARG_MIN_REG 33
1580 #define FP_ARG_AIX_MAX_REG 45
1581 #define FP_ARG_V4_MAX_REG 40
1582 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1583 || DEFAULT_ABI == ABI_AIX_NODESC \
1584 || DEFAULT_ABI == ABI_DARWIN) \
1585 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1586 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1588 /* Minimum and maximum AltiVec registers used to hold arguments. */
1589 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1590 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1591 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1593 /* Return registers */
1594 #define GP_ARG_RETURN GP_ARG_MIN_REG
1595 #define FP_ARG_RETURN FP_ARG_MIN_REG
1596 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1598 /* Flags for the call/call_value rtl operations set up by function_arg */
1599 #define CALL_NORMAL 0x00000000 /* no special processing */
1600 /* Bits in 0x00000001 are unused. */
1601 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1602 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1603 #define CALL_LONG 0x00000008 /* always call indirect */
1605 /* 1 if N is a possible register number for a function value
1606 as seen by the caller.
1608 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1609 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1610 || ((N) == FP_ARG_RETURN) \
1611 || (TARGET_ALTIVEC && \
1612 (N) == ALTIVEC_ARG_RETURN))
1614 /* 1 if N is a possible register number for function argument passing.
1615 On RS/6000, these are r3-r10 and fp1-fp13.
1616 On AltiVec, v2 - v13 are used for passing vectors. */
1617 #define FUNCTION_ARG_REGNO_P(N) \
1618 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1619 || (TARGET_ALTIVEC && \
1620 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
1621 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1624 /* A C structure for machine-specific, per-function data.
1625 This is added to the cfun structure. */
1626 typedef struct machine_function GTY(())
1628 /* Whether a System V.4 varargs area was created. */
1629 int sysv_varargs_p;
1630 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1631 int ra_needs_full_frame;
1632 } machine_function;
1634 /* Define a data type for recording info about an argument list
1635 during the scan of that argument list. This data type should
1636 hold all necessary information about the function itself
1637 and about the args processed so far, enough to enable macros
1638 such as FUNCTION_ARG to determine where the next arg should go.
1640 On the RS/6000, this is a structure. The first element is the number of
1641 total argument words, the second is used to store the next
1642 floating-point register number, and the third says how many more args we
1643 have prototype types for.
1645 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1646 the next availible GP register, `fregno' is the next available FP
1647 register, and `words' is the number of words used on the stack.
1649 The varargs/stdarg support requires that this structure's size
1650 be a multiple of sizeof(int). */
1652 typedef struct rs6000_args
1654 int words; /* # words used for passing GP registers */
1655 int fregno; /* next available FP register */
1656 int vregno; /* next available AltiVec register */
1657 int nargs_prototype; /* # args left in the current prototype */
1658 int orig_nargs; /* Original value of nargs_prototype */
1659 int prototype; /* Whether a prototype was defined */
1660 int call_cookie; /* Do special things for this call */
1661 int sysv_gregno; /* next available GP register */
1662 } CUMULATIVE_ARGS;
1664 /* Define intermediate macro to compute the size (in registers) of an argument
1665 for the RS/6000. */
1667 #define RS6000_ARG_SIZE(MODE, TYPE) \
1668 ((MODE) != BLKmode \
1669 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1670 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1672 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1673 for a call to a function whose data type is FNTYPE.
1674 For a library call, FNTYPE is 0. */
1676 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1677 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1679 /* Similar, but when scanning the definition of a procedure. We always
1680 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1682 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1683 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1685 /* Update the data in CUM to advance over an argument
1686 of mode MODE and data type TYPE.
1687 (TYPE is null for libcalls where that information may not be available.) */
1689 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1690 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1692 /* Non-zero if we can use a floating-point register to pass this arg. */
1693 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1694 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1695 && (CUM).fregno <= FP_ARG_MAX_REG \
1696 && TARGET_HARD_FLOAT && TARGET_FPRS)
1698 /* Non-zero if we can use an AltiVec register to pass this arg. */
1699 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1700 (ALTIVEC_VECTOR_MODE (MODE) \
1701 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1702 && TARGET_ALTIVEC_ABI)
1704 /* Determine where to put an argument to a function.
1705 Value is zero to push the argument on the stack,
1706 or a hard register in which to store the argument.
1708 MODE is the argument's machine mode.
1709 TYPE is the data type of the argument (as a tree).
1710 This is null for libcalls where that information may
1711 not be available.
1712 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1713 the preceding args and about the function being called.
1714 NAMED is nonzero if this argument is a named parameter
1715 (otherwise it is an extra parameter matching an ellipsis).
1717 On RS/6000 the first eight words of non-FP are normally in registers
1718 and the rest are pushed. The first 13 FP args are in registers.
1720 If this is floating-point and no prototype is specified, we use
1721 both an FP and integer register (or possibly FP reg and stack). Library
1722 functions (when TYPE is zero) always have the proper types for args,
1723 so we can pass the FP value just in one register. emit_library_function
1724 doesn't support EXPR_LIST anyway. */
1726 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1727 function_arg (&CUM, MODE, TYPE, NAMED)
1729 /* For an arg passed partly in registers and partly in memory,
1730 this is the number of registers used.
1731 For args passed entirely in registers or entirely in memory, zero. */
1733 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1734 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1736 /* A C expression that indicates when an argument must be passed by
1737 reference. If nonzero for an argument, a copy of that argument is
1738 made in memory and a pointer to the argument is passed instead of
1739 the argument itself. The pointer is passed in whatever way is
1740 appropriate for passing a pointer to that type. */
1742 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1743 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1745 /* If defined, a C expression which determines whether, and in which
1746 direction, to pad out an argument with extra space. The value
1747 should be of type `enum direction': either `upward' to pad above
1748 the argument, `downward' to pad below, or `none' to inhibit
1749 padding. */
1751 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1753 /* If defined, a C expression that gives the alignment boundary, in bits,
1754 of an argument with the specified mode and type. If it is not defined,
1755 PARM_BOUNDARY is used for all arguments. */
1757 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1758 function_arg_boundary (MODE, TYPE)
1760 /* Perform any needed actions needed for a function that is receiving a
1761 variable number of arguments.
1763 CUM is as above.
1765 MODE and TYPE are the mode and type of the current parameter.
1767 PRETEND_SIZE is a variable that should be set to the amount of stack
1768 that must be pushed by the prolog to pretend that our caller pushed
1771 Normally, this macro will push all remaining incoming registers on the
1772 stack and set PRETEND_SIZE to the length of the registers pushed. */
1774 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1775 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1777 /* Define the `__builtin_va_list' type for the ABI. */
1778 #define BUILD_VA_LIST_TYPE(VALIST) \
1779 (VALIST) = rs6000_build_va_list ()
1781 /* Implement `va_start' for varargs and stdarg. */
1782 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1783 rs6000_va_start (valist, nextarg)
1785 /* Implement `va_arg'. */
1786 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1787 rs6000_va_arg (valist, type)
1789 /* For AIX, the rule is that structures are passed left-aligned in
1790 their stack slot. However, GCC does not presently do this:
1791 structures which are the same size as integer types are passed
1792 right-aligned, as if they were in fact integers. This only
1793 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1794 ABI_V4 does not use std_expand_builtin_va_arg. */
1795 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1797 /* Define this macro to be a nonzero value if the location where a function
1798 argument is passed depends on whether or not it is a named argument. */
1799 #define STRICT_ARGUMENT_NAMING 1
1801 /* Output assembler code to FILE to increment profiler label # LABELNO
1802 for profiling a function entry. */
1804 #define FUNCTION_PROFILER(FILE, LABELNO) \
1805 output_function_profiler ((FILE), (LABELNO));
1807 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1808 the stack pointer does not matter. No definition is equivalent to
1809 always zero.
1811 On the RS/6000, this is non-zero because we can restore the stack from
1812 its backpointer, which we maintain. */
1813 #define EXIT_IGNORE_STACK 1
1815 /* Define this macro as a C expression that is nonzero for registers
1816 that are used by the epilogue or the return' pattern. The stack
1817 and frame pointer registers are already be assumed to be used as
1818 needed. */
1820 #define EPILOGUE_USES(REGNO) \
1821 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1822 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1823 || (current_function_calls_eh_return \
1824 && TARGET_AIX \
1825 && (REGNO) == TOC_REGISTER))
1828 /* TRAMPOLINE_TEMPLATE deleted */
1830 /* Length in units of the trampoline for entering a nested function. */
1832 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1834 /* Emit RTL insns to initialize the variable parts of a trampoline.
1835 FNADDR is an RTX for the address of the function's pure code.
1836 CXT is an RTX for the static chain value for the function. */
1838 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1839 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1841 /* Definitions for __builtin_return_address and __builtin_frame_address.
1842 __builtin_return_address (0) should give link register (65), enable
1843 this. */
1844 /* This should be uncommented, so that the link register is used, but
1845 currently this would result in unmatched insns and spilling fixed
1846 registers so we'll leave it for another day. When these problems are
1847 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1848 (mrs) */
1849 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1851 /* Number of bytes into the frame return addresses can be found. See
1852 rs6000_stack_info in rs6000.c for more information on how the different
1853 abi's store the return address. */
1854 #define RETURN_ADDRESS_OFFSET \
1855 ((DEFAULT_ABI == ABI_AIX \
1856 || DEFAULT_ABI == ABI_DARWIN \
1857 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
1858 (DEFAULT_ABI == ABI_V4) ? 4 : \
1859 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1861 /* The current return address is in link register (65). The return address
1862 of anything farther back is accessed normally at an offset of 8 from the
1863 frame pointer. */
1864 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1865 (rs6000_return_addr (COUNT, FRAME))
1868 /* Definitions for register eliminations.
1870 We have two registers that can be eliminated on the RS/6000. First, the
1871 frame pointer register can often be eliminated in favor of the stack
1872 pointer register. Secondly, the argument pointer register can always be
1873 eliminated; it is replaced with either the stack or frame pointer.
1875 In addition, we use the elimination mechanism to see if r30 is needed
1876 Initially we assume that it isn't. If it is, we spill it. This is done
1877 by making it an eliminable register. We replace it with itself so that
1878 if it isn't needed, then existing uses won't be modified. */
1880 /* This is an array of structures. Each structure initializes one pair
1881 of eliminable registers. The "from" register number is given first,
1882 followed by "to". Eliminations of the same "from" register are listed
1883 in order of preference. */
1884 #define ELIMINABLE_REGS \
1885 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1886 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1887 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1888 { 30, 30} }
1890 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1891 Frame pointer elimination is automatically handled.
1893 For the RS/6000, if frame pointer elimination is being done, we would like
1894 to convert ap into fp, not sp.
1896 We need r30 if -mminimal-toc was specified, and there are constant pool
1897 references. */
1899 #define CAN_ELIMINATE(FROM, TO) \
1900 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1901 ? ! frame_pointer_needed \
1902 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1903 : 1)
1905 /* Define the offset between two registers, one to be eliminated, and the other
1906 its replacement, at the start of a routine. */
1907 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1909 rs6000_stack_t *info = rs6000_stack_info (); \
1911 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1912 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1913 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1914 (OFFSET) = info->total_size; \
1915 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1916 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1917 else if ((FROM) == 30) \
1918 (OFFSET) = 0; \
1919 else \
1920 abort (); \
1923 /* Addressing modes, and classification of registers for them. */
1925 /* #define HAVE_POST_INCREMENT 0 */
1926 /* #define HAVE_POST_DECREMENT 0 */
1928 #define HAVE_PRE_DECREMENT 1
1929 #define HAVE_PRE_INCREMENT 1
1931 /* Macros to check register numbers against specific register classes. */
1933 /* These assume that REGNO is a hard or pseudo reg number.
1934 They give nonzero only if REGNO is a hard reg of the suitable class
1935 or a pseudo reg currently allocated to a suitable hard reg.
1936 Since they use reg_renumber, they are safe only once reg_renumber
1937 has been allocated, which happens in local-alloc.c. */
1939 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1940 ((REGNO) < FIRST_PSEUDO_REGISTER \
1941 ? (REGNO) <= 31 || (REGNO) == 67 \
1942 : (reg_renumber[REGNO] >= 0 \
1943 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1945 #define REGNO_OK_FOR_BASE_P(REGNO) \
1946 ((REGNO) < FIRST_PSEUDO_REGISTER \
1947 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1948 : (reg_renumber[REGNO] > 0 \
1949 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1951 /* Maximum number of registers that can appear in a valid memory address. */
1953 #define MAX_REGS_PER_ADDRESS 2
1955 /* Recognize any constant value that is a valid address. */
1957 #define CONSTANT_ADDRESS_P(X) \
1958 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1959 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1960 || GET_CODE (X) == HIGH)
1962 /* Nonzero if the constant value X is a legitimate general operand.
1963 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1965 On the RS/6000, all integer constants are acceptable, most won't be valid
1966 for particular insns, though. Only easy FP constants are
1967 acceptable. */
1969 #define LEGITIMATE_CONSTANT_P(X) \
1970 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1971 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1972 || easy_fp_constant (X, GET_MODE (X)))
1974 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1975 and check its validity for a certain class.
1976 We have two alternate definitions for each of them.
1977 The usual definition accepts all pseudo regs; the other rejects
1978 them unless they have been allocated suitable hard regs.
1979 The symbol REG_OK_STRICT causes the latter definition to be used.
1981 Most source files want to accept pseudo regs in the hope that
1982 they will get allocated to the class that the insn wants them to be in.
1983 Source files for reload pass need to be strict.
1984 After reload, it makes no difference, since pseudo regs have
1985 been eliminated by then. */
1987 #ifdef REG_OK_STRICT
1988 # define REG_OK_STRICT_FLAG 1
1989 #else
1990 # define REG_OK_STRICT_FLAG 0
1991 #endif
1993 /* Nonzero if X is a hard reg that can be used as an index
1994 or if it is a pseudo reg in the non-strict case. */
1995 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1996 ((! (STRICT) \
1997 && (REGNO (X) <= 31 \
1998 || REGNO (X) == ARG_POINTER_REGNUM \
1999 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2000 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2002 /* Nonzero if X is a hard reg that can be used as a base reg
2003 or if it is a pseudo reg in the non-strict case. */
2004 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2005 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2007 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2008 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2010 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2011 that is a valid memory address for an instruction.
2012 The MODE argument is the machine mode for the MEM expression
2013 that wants to use this address.
2015 On the RS/6000, there are four valid address: a SYMBOL_REF that
2016 refers to a constant pool entry of an address (or the sum of it
2017 plus a constant), a short (16-bit signed) constant plus a register,
2018 the sum of two registers, or a register indirect, possibly with an
2019 auto-increment. For DFmode and DImode with an constant plus register,
2020 we must ensure that both words are addressable or PowerPC64 with offset
2021 word aligned.
2023 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2024 32-bit DImode, TImode), indexed addressing cannot be used because
2025 adjacent memory cells are accessed by adding word-sized offsets
2026 during assembly output. */
2028 #define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2030 #define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2032 /* SPE offset addressing is limited to 5-bits worth of double words. */
2033 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xff) == 0)
2035 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
2036 (TARGET_TOC \
2037 && GET_CODE (X) == PLUS \
2038 && GET_CODE (XEXP (X, 0)) == REG \
2039 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2040 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2042 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
2043 (DEFAULT_ABI == ABI_V4 \
2044 && !flag_pic && !TARGET_TOC \
2045 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2046 && small_data_operand (X, MODE))
2048 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
2049 (GET_CODE (X) == CONST_INT \
2050 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2052 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2053 (GET_CODE (X) == PLUS \
2054 && GET_CODE (XEXP (X, 0)) == REG \
2055 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2056 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
2057 && (! ALTIVEC_VECTOR_MODE (MODE) \
2058 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2059 && (! SPE_VECTOR_MODE (MODE) \
2060 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2061 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
2062 && (((MODE) != DFmode && (MODE) != DImode) \
2063 || (TARGET_32BIT \
2064 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2065 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2066 && ((MODE) != TImode \
2067 || (TARGET_32BIT \
2068 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2069 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
2070 && ! (INTVAL (XEXP (X, 1)) & 3)))))
2072 #define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2073 (GET_CODE (X) == PLUS \
2074 && GET_CODE (XEXP (X, 0)) == REG \
2075 && GET_CODE (XEXP (X, 1)) == REG \
2076 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2077 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2078 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2079 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2081 #define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2082 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2084 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2085 (TARGET_ELF \
2086 && ! flag_pic && ! TARGET_TOC \
2087 && GET_MODE_NUNITS (MODE) == 1 \
2088 && (GET_MODE_BITSIZE (MODE) <= 32 \
2089 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
2090 && GET_CODE (X) == LO_SUM \
2091 && GET_CODE (XEXP (X, 0)) == REG \
2092 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2093 && CONSTANT_P (XEXP (X, 1)))
2095 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2096 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2097 goto ADDR; \
2100 /* Try machine-dependent ways of modifying an illegitimate address
2101 to be legitimate. If we find one, return the new, valid address.
2102 This macro is used in only one place: `memory_address' in explow.c.
2104 OLDX is the address as it was before break_out_memory_refs was called.
2105 In some cases it is useful to look at this to decide what needs to be done.
2107 MODE and WIN are passed so that this macro can use
2108 GO_IF_LEGITIMATE_ADDRESS.
2110 It is always safe for this macro to do nothing. It exists to recognize
2111 opportunities to optimize the output.
2113 On RS/6000, first check for the sum of a register with a constant
2114 integer that is out of range. If so, generate code to add the
2115 constant with the low-order 16 bits masked to the register and force
2116 this result into another register (this can be done with `cau').
2117 Then generate an address of REG+(CONST&0xffff), allowing for the
2118 possibility of bit 16 being a one.
2120 Then check for the sum of a register and something not constant, try to
2121 load the other things into a register and return the sum. */
2123 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2124 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2125 if (result != NULL_RTX) \
2127 (X) = result; \
2128 goto WIN; \
2132 /* Try a machine-dependent way of reloading an illegitimate address
2133 operand. If we find one, push the reload and jump to WIN. This
2134 macro is used in only one place: `find_reloads_address' in reload.c.
2136 Implemented on rs6000 by rs6000_legitimize_reload_address.
2137 Note that (X) is evaluated twice; this is safe in current usage. */
2139 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2140 do { \
2141 int win; \
2142 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2143 (int)(TYPE), (IND_LEVELS), &win); \
2144 if ( win ) \
2145 goto WIN; \
2146 } while (0)
2148 /* Go to LABEL if ADDR (a legitimate address expression)
2149 has an effect that depends on the machine mode it is used for.
2151 On the RS/6000 this is true if the address is valid with a zero offset
2152 but not with an offset of four (this means it cannot be used as an
2153 address for DImode or DFmode) or is a pre-increment or decrement. Since
2154 we know it is valid, we just check for an address that is not valid with
2155 an offset of four. */
2157 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2158 { if (GET_CODE (ADDR) == PLUS \
2159 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2160 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2161 (TARGET_32BIT ? 4 : 8))) \
2162 goto LABEL; \
2163 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2164 goto LABEL; \
2165 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2166 goto LABEL; \
2167 if (GET_CODE (ADDR) == LO_SUM) \
2168 goto LABEL; \
2171 /* The register number of the register used to address a table of
2172 static data addresses in memory. In some cases this register is
2173 defined by a processor's "application binary interface" (ABI).
2174 When this macro is defined, RTL is generated for this register
2175 once, as with the stack pointer and frame pointer registers. If
2176 this macro is not defined, it is up to the machine-dependent files
2177 to allocate such a register (if necessary). */
2179 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2180 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2182 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2184 /* Define this macro if the register defined by
2185 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2186 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2188 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2190 /* By generating position-independent code, when two different
2191 programs (A and B) share a common library (libC.a), the text of
2192 the library can be shared whether or not the library is linked at
2193 the same address for both programs. In some of these
2194 environments, position-independent code requires not only the use
2195 of different addressing modes, but also special code to enable the
2196 use of these addressing modes.
2198 The `FINALIZE_PIC' macro serves as a hook to emit these special
2199 codes once the function is being compiled into assembly code, but
2200 not before. (It is not done before, because in the case of
2201 compiling an inline function, it would lead to multiple PIC
2202 prologues being included in functions which used inline functions
2203 and were compiled to assembly language.) */
2205 /* #define FINALIZE_PIC */
2207 /* A C expression that is nonzero if X is a legitimate immediate
2208 operand on the target machine when generating position independent
2209 code. You can assume that X satisfies `CONSTANT_P', so you need
2210 not check this. You can also assume FLAG_PIC is true, so you need
2211 not check it either. You need not define this macro if all
2212 constants (including `SYMBOL_REF') can be immediate operands when
2213 generating position independent code. */
2215 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2217 /* In rare cases, correct code generation requires extra machine
2218 dependent processing between the second jump optimization pass and
2219 delayed branch scheduling. On those machines, define this macro
2220 as a C statement to act on the code starting at INSN. */
2222 /* #define MACHINE_DEPENDENT_REORG(INSN) */
2225 /* Define this if some processing needs to be done immediately before
2226 emitting code for an insn. */
2228 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2230 /* Specify the machine mode that this machine uses
2231 for the index in the tablejump instruction. */
2232 #define CASE_VECTOR_MODE SImode
2234 /* Define as C expression which evaluates to nonzero if the tablejump
2235 instruction expects the table to contain offsets from the address of the
2236 table.
2237 Do not define this if the table should contain absolute addresses. */
2238 #define CASE_VECTOR_PC_RELATIVE 1
2240 /* Define this as 1 if `char' should by default be signed; else as 0. */
2241 #define DEFAULT_SIGNED_CHAR 0
2243 /* This flag, if defined, says the same insns that convert to a signed fixnum
2244 also convert validly to an unsigned one. */
2246 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2248 /* Max number of bytes we can move from memory to memory
2249 in one reasonably fast instruction. */
2250 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2251 #define MAX_MOVE_MAX 8
2253 /* Nonzero if access to memory by bytes is no faster than for words.
2254 Also non-zero if doing byte operations (specifically shifts) in registers
2255 is undesirable. */
2256 #define SLOW_BYTE_ACCESS 1
2258 /* Define if operations between registers always perform the operation
2259 on the full register even if a narrower mode is specified. */
2260 #define WORD_REGISTER_OPERATIONS
2262 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2263 will either zero-extend or sign-extend. The value of this macro should
2264 be the code that says which one of the two operations is implicitly
2265 done, NIL if none. */
2266 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2268 /* Define if loading short immediate values into registers sign extends. */
2269 #define SHORT_IMMEDIATES_SIGN_EXTEND
2271 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2272 is done just by pretending it is already truncated. */
2273 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2275 /* Specify the machine mode that pointers have.
2276 After generation of rtl, the compiler makes no further distinction
2277 between pointers and any other objects of this machine mode. */
2278 #define Pmode (TARGET_32BIT ? SImode : DImode)
2280 /* Mode of a function address in a call instruction (for indexing purposes).
2281 Doesn't matter on RS/6000. */
2282 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2284 /* Define this if addresses of constant functions
2285 shouldn't be put through pseudo regs where they can be cse'd.
2286 Desirable on machines where ordinary constants are expensive
2287 but a CALL with constant address is cheap. */
2288 #define NO_FUNCTION_CSE
2290 /* Define this to be nonzero if shift instructions ignore all but the low-order
2291 few bits.
2293 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2294 have been dropped from the PowerPC architecture. */
2296 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2298 /* Compute the cost of computing a constant rtl expression RTX
2299 whose rtx-code is CODE. The body of this macro is a portion
2300 of a switch statement. If the code is computed here,
2301 return it with a return statement. Otherwise, break from the switch.
2303 On the RS/6000, if it is valid in the insn, it is free. So this
2304 always returns 0. */
2306 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2307 case CONST_INT: \
2308 case CONST: \
2309 case LABEL_REF: \
2310 case SYMBOL_REF: \
2311 case CONST_DOUBLE: \
2312 case HIGH: \
2313 return 0;
2315 /* Provide the costs of a rtl expression. This is in the body of a
2316 switch on CODE. */
2318 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2319 case PLUS: \
2320 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2321 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2322 + 0x8000) >= 0x10000) \
2323 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2324 ? COSTS_N_INSNS (2) \
2325 : COSTS_N_INSNS (1)); \
2326 case AND: \
2327 case IOR: \
2328 case XOR: \
2329 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2330 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2331 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2332 ? COSTS_N_INSNS (2) \
2333 : COSTS_N_INSNS (1)); \
2334 case MULT: \
2335 switch (rs6000_cpu) \
2337 case PROCESSOR_RIOS1: \
2338 case PROCESSOR_PPC405: \
2339 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2340 ? COSTS_N_INSNS (5) \
2341 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2342 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2343 case PROCESSOR_RS64A: \
2344 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2345 ? GET_MODE (XEXP (X, 1)) != DImode \
2346 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2347 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2348 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
2349 case PROCESSOR_RIOS2: \
2350 case PROCESSOR_MPCCORE: \
2351 case PROCESSOR_PPC604e: \
2352 return COSTS_N_INSNS (2); \
2353 case PROCESSOR_PPC601: \
2354 return COSTS_N_INSNS (5); \
2355 case PROCESSOR_PPC603: \
2356 case PROCESSOR_PPC7400: \
2357 case PROCESSOR_PPC750: \
2358 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2359 ? COSTS_N_INSNS (5) \
2360 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2361 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2362 case PROCESSOR_PPC7450: \
2363 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2364 ? COSTS_N_INSNS (4) \
2365 : COSTS_N_INSNS (3)); \
2366 case PROCESSOR_PPC403: \
2367 case PROCESSOR_PPC604: \
2368 case PROCESSOR_PPC8540: \
2369 return COSTS_N_INSNS (4); \
2370 case PROCESSOR_PPC620: \
2371 case PROCESSOR_PPC630: \
2372 case PROCESSOR_POWER4: \
2373 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2374 ? GET_MODE (XEXP (X, 1)) != DImode \
2375 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
2376 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2377 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2379 case DIV: \
2380 case MOD: \
2381 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2382 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2383 return COSTS_N_INSNS (2); \
2384 /* otherwise fall through to normal divide. */ \
2385 case UDIV: \
2386 case UMOD: \
2387 switch (rs6000_cpu) \
2389 case PROCESSOR_RIOS1: \
2390 return COSTS_N_INSNS (19); \
2391 case PROCESSOR_RIOS2: \
2392 return COSTS_N_INSNS (13); \
2393 case PROCESSOR_RS64A: \
2394 return (GET_MODE (XEXP (X, 1)) != DImode \
2395 ? COSTS_N_INSNS (65) \
2396 : COSTS_N_INSNS (67)); \
2397 case PROCESSOR_MPCCORE: \
2398 return COSTS_N_INSNS (6); \
2399 case PROCESSOR_PPC403: \
2400 return COSTS_N_INSNS (33); \
2401 case PROCESSOR_PPC405: \
2402 return COSTS_N_INSNS (35); \
2403 case PROCESSOR_PPC601: \
2404 return COSTS_N_INSNS (36); \
2405 case PROCESSOR_PPC603: \
2406 return COSTS_N_INSNS (37); \
2407 case PROCESSOR_PPC604: \
2408 case PROCESSOR_PPC604e: \
2409 return COSTS_N_INSNS (20); \
2410 case PROCESSOR_PPC620: \
2411 case PROCESSOR_PPC630: \
2412 case PROCESSOR_POWER4: \
2413 return (GET_MODE (XEXP (X, 1)) != DImode \
2414 ? COSTS_N_INSNS (21) \
2415 : COSTS_N_INSNS (37)); \
2416 case PROCESSOR_PPC750: \
2417 case PROCESSOR_PPC8540: \
2418 case PROCESSOR_PPC7400: \
2419 return COSTS_N_INSNS (19); \
2420 case PROCESSOR_PPC7450: \
2421 return COSTS_N_INSNS (23); \
2423 case FFS: \
2424 return COSTS_N_INSNS (4); \
2425 case MEM: \
2426 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2427 return 5;
2429 /* Compute the cost of an address. This is meant to approximate the size
2430 and/or execution delay of an insn using that address. If the cost is
2431 approximated by the RTL complexity, including CONST_COSTS above, as
2432 is usually the case for CISC machines, this macro should not be defined.
2433 For aggressively RISCy machines, only one insn format is allowed, so
2434 this macro should be a constant. The value of this macro only matters
2435 for valid addresses.
2437 For the RS/6000, everything is cost 0. */
2439 #define ADDRESS_COST(RTX) 0
2441 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2442 should be adjusted to reflect any required changes. This macro is used when
2443 there is some systematic length adjustment required that would be difficult
2444 to express in the length attribute. */
2446 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2448 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2449 COMPARE, return the mode to be used for the comparison. For
2450 floating-point, CCFPmode should be used. CCUNSmode should be used
2451 for unsigned comparisons. CCEQmode should be used when we are
2452 doing an inequality comparison on the result of a
2453 comparison. CCmode should be used in all other cases. */
2455 #define SELECT_CC_MODE(OP,X,Y) \
2456 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2457 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2458 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2459 ? CCEQmode : CCmode))
2461 /* Define the information needed to generate branch and scc insns. This is
2462 stored from the compare operation. Note that we can't use "rtx" here
2463 since it hasn't been defined! */
2465 extern GTY(()) rtx rs6000_compare_op0;
2466 extern GTY(()) rtx rs6000_compare_op1;
2467 extern int rs6000_compare_fp_p;
2469 /* Control the assembler format that we output. */
2471 /* A C string constant describing how to begin a comment in the target
2472 assembler language. The compiler assumes that the comment will end at
2473 the end of the line. */
2474 #define ASM_COMMENT_START " #"
2476 /* Implicit library calls should use memcpy, not bcopy, etc. */
2478 #define TARGET_MEM_FUNCTIONS
2480 /* Flag to say the TOC is initialized */
2481 extern int toc_initialized;
2483 /* Macro to output a special constant pool entry. Go to WIN if we output
2484 it. Otherwise, it is written the usual way.
2486 On the RS/6000, toc entries are handled this way. */
2488 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2489 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2491 output_toc (FILE, X, LABELNO, MODE); \
2492 goto WIN; \
2496 #ifdef HAVE_GAS_WEAK
2497 #define RS6000_WEAK 1
2498 #else
2499 #define RS6000_WEAK 0
2500 #endif
2502 #if RS6000_WEAK
2503 /* Used in lieu of ASM_WEAKEN_LABEL. */
2504 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2505 do \
2507 fputs ("\t.weak\t", (FILE)); \
2508 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2509 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2510 && DEFAULT_ABI == ABI_AIX) \
2512 if (TARGET_XCOFF) \
2513 fputs ("[DS]", (FILE)); \
2514 fputs ("\n\t.weak\t.", (FILE)); \
2515 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2517 fputc ('\n', (FILE)); \
2518 if (VAL) \
2520 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2521 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2522 && DEFAULT_ABI == ABI_AIX) \
2524 fputs ("\t.set\t.", (FILE)); \
2525 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2526 fputs (",.", (FILE)); \
2527 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2528 fputc ('\n', (FILE)); \
2532 while (0)
2533 #endif
2535 /* This implements the `alias' attribute. */
2536 #undef ASM_OUTPUT_DEF_FROM_DECLS
2537 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2538 do \
2540 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2541 const char *name = IDENTIFIER_POINTER (TARGET); \
2542 if (TREE_CODE (DECL) == FUNCTION_DECL \
2543 && DEFAULT_ABI == ABI_AIX) \
2545 if (TREE_PUBLIC (DECL)) \
2547 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2549 fputs ("\t.globl\t.", FILE); \
2550 RS6000_OUTPUT_BASENAME (FILE, alias); \
2551 putc ('\n', FILE); \
2554 else if (TARGET_XCOFF) \
2556 fputs ("\t.lglobl\t.", FILE); \
2557 RS6000_OUTPUT_BASENAME (FILE, alias); \
2558 putc ('\n', FILE); \
2560 fputs ("\t.set\t.", FILE); \
2561 RS6000_OUTPUT_BASENAME (FILE, alias); \
2562 fputs (",.", FILE); \
2563 RS6000_OUTPUT_BASENAME (FILE, name); \
2564 fputc ('\n', FILE); \
2566 ASM_OUTPUT_DEF (FILE, alias, name); \
2568 while (0)
2570 /* Output to assembler file text saying following lines
2571 may contain character constants, extra white space, comments, etc. */
2573 #define ASM_APP_ON ""
2575 /* Output to assembler file text saying following lines
2576 no longer contain unusual constructs. */
2578 #define ASM_APP_OFF ""
2580 /* How to refer to registers in assembler output.
2581 This sequence is indexed by compiler's hard-register-number (see above). */
2583 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2585 #define REGISTER_NAMES \
2587 &rs6000_reg_names[ 0][0], /* r0 */ \
2588 &rs6000_reg_names[ 1][0], /* r1 */ \
2589 &rs6000_reg_names[ 2][0], /* r2 */ \
2590 &rs6000_reg_names[ 3][0], /* r3 */ \
2591 &rs6000_reg_names[ 4][0], /* r4 */ \
2592 &rs6000_reg_names[ 5][0], /* r5 */ \
2593 &rs6000_reg_names[ 6][0], /* r6 */ \
2594 &rs6000_reg_names[ 7][0], /* r7 */ \
2595 &rs6000_reg_names[ 8][0], /* r8 */ \
2596 &rs6000_reg_names[ 9][0], /* r9 */ \
2597 &rs6000_reg_names[10][0], /* r10 */ \
2598 &rs6000_reg_names[11][0], /* r11 */ \
2599 &rs6000_reg_names[12][0], /* r12 */ \
2600 &rs6000_reg_names[13][0], /* r13 */ \
2601 &rs6000_reg_names[14][0], /* r14 */ \
2602 &rs6000_reg_names[15][0], /* r15 */ \
2603 &rs6000_reg_names[16][0], /* r16 */ \
2604 &rs6000_reg_names[17][0], /* r17 */ \
2605 &rs6000_reg_names[18][0], /* r18 */ \
2606 &rs6000_reg_names[19][0], /* r19 */ \
2607 &rs6000_reg_names[20][0], /* r20 */ \
2608 &rs6000_reg_names[21][0], /* r21 */ \
2609 &rs6000_reg_names[22][0], /* r22 */ \
2610 &rs6000_reg_names[23][0], /* r23 */ \
2611 &rs6000_reg_names[24][0], /* r24 */ \
2612 &rs6000_reg_names[25][0], /* r25 */ \
2613 &rs6000_reg_names[26][0], /* r26 */ \
2614 &rs6000_reg_names[27][0], /* r27 */ \
2615 &rs6000_reg_names[28][0], /* r28 */ \
2616 &rs6000_reg_names[29][0], /* r29 */ \
2617 &rs6000_reg_names[30][0], /* r30 */ \
2618 &rs6000_reg_names[31][0], /* r31 */ \
2620 &rs6000_reg_names[32][0], /* fr0 */ \
2621 &rs6000_reg_names[33][0], /* fr1 */ \
2622 &rs6000_reg_names[34][0], /* fr2 */ \
2623 &rs6000_reg_names[35][0], /* fr3 */ \
2624 &rs6000_reg_names[36][0], /* fr4 */ \
2625 &rs6000_reg_names[37][0], /* fr5 */ \
2626 &rs6000_reg_names[38][0], /* fr6 */ \
2627 &rs6000_reg_names[39][0], /* fr7 */ \
2628 &rs6000_reg_names[40][0], /* fr8 */ \
2629 &rs6000_reg_names[41][0], /* fr9 */ \
2630 &rs6000_reg_names[42][0], /* fr10 */ \
2631 &rs6000_reg_names[43][0], /* fr11 */ \
2632 &rs6000_reg_names[44][0], /* fr12 */ \
2633 &rs6000_reg_names[45][0], /* fr13 */ \
2634 &rs6000_reg_names[46][0], /* fr14 */ \
2635 &rs6000_reg_names[47][0], /* fr15 */ \
2636 &rs6000_reg_names[48][0], /* fr16 */ \
2637 &rs6000_reg_names[49][0], /* fr17 */ \
2638 &rs6000_reg_names[50][0], /* fr18 */ \
2639 &rs6000_reg_names[51][0], /* fr19 */ \
2640 &rs6000_reg_names[52][0], /* fr20 */ \
2641 &rs6000_reg_names[53][0], /* fr21 */ \
2642 &rs6000_reg_names[54][0], /* fr22 */ \
2643 &rs6000_reg_names[55][0], /* fr23 */ \
2644 &rs6000_reg_names[56][0], /* fr24 */ \
2645 &rs6000_reg_names[57][0], /* fr25 */ \
2646 &rs6000_reg_names[58][0], /* fr26 */ \
2647 &rs6000_reg_names[59][0], /* fr27 */ \
2648 &rs6000_reg_names[60][0], /* fr28 */ \
2649 &rs6000_reg_names[61][0], /* fr29 */ \
2650 &rs6000_reg_names[62][0], /* fr30 */ \
2651 &rs6000_reg_names[63][0], /* fr31 */ \
2653 &rs6000_reg_names[64][0], /* mq */ \
2654 &rs6000_reg_names[65][0], /* lr */ \
2655 &rs6000_reg_names[66][0], /* ctr */ \
2656 &rs6000_reg_names[67][0], /* ap */ \
2658 &rs6000_reg_names[68][0], /* cr0 */ \
2659 &rs6000_reg_names[69][0], /* cr1 */ \
2660 &rs6000_reg_names[70][0], /* cr2 */ \
2661 &rs6000_reg_names[71][0], /* cr3 */ \
2662 &rs6000_reg_names[72][0], /* cr4 */ \
2663 &rs6000_reg_names[73][0], /* cr5 */ \
2664 &rs6000_reg_names[74][0], /* cr6 */ \
2665 &rs6000_reg_names[75][0], /* cr7 */ \
2667 &rs6000_reg_names[76][0], /* xer */ \
2669 &rs6000_reg_names[77][0], /* v0 */ \
2670 &rs6000_reg_names[78][0], /* v1 */ \
2671 &rs6000_reg_names[79][0], /* v2 */ \
2672 &rs6000_reg_names[80][0], /* v3 */ \
2673 &rs6000_reg_names[81][0], /* v4 */ \
2674 &rs6000_reg_names[82][0], /* v5 */ \
2675 &rs6000_reg_names[83][0], /* v6 */ \
2676 &rs6000_reg_names[84][0], /* v7 */ \
2677 &rs6000_reg_names[85][0], /* v8 */ \
2678 &rs6000_reg_names[86][0], /* v9 */ \
2679 &rs6000_reg_names[87][0], /* v10 */ \
2680 &rs6000_reg_names[88][0], /* v11 */ \
2681 &rs6000_reg_names[89][0], /* v12 */ \
2682 &rs6000_reg_names[90][0], /* v13 */ \
2683 &rs6000_reg_names[91][0], /* v14 */ \
2684 &rs6000_reg_names[92][0], /* v15 */ \
2685 &rs6000_reg_names[93][0], /* v16 */ \
2686 &rs6000_reg_names[94][0], /* v17 */ \
2687 &rs6000_reg_names[95][0], /* v18 */ \
2688 &rs6000_reg_names[96][0], /* v19 */ \
2689 &rs6000_reg_names[97][0], /* v20 */ \
2690 &rs6000_reg_names[98][0], /* v21 */ \
2691 &rs6000_reg_names[99][0], /* v22 */ \
2692 &rs6000_reg_names[100][0], /* v23 */ \
2693 &rs6000_reg_names[101][0], /* v24 */ \
2694 &rs6000_reg_names[102][0], /* v25 */ \
2695 &rs6000_reg_names[103][0], /* v26 */ \
2696 &rs6000_reg_names[104][0], /* v27 */ \
2697 &rs6000_reg_names[105][0], /* v28 */ \
2698 &rs6000_reg_names[106][0], /* v29 */ \
2699 &rs6000_reg_names[107][0], /* v30 */ \
2700 &rs6000_reg_names[108][0], /* v31 */ \
2701 &rs6000_reg_names[109][0], /* vrsave */ \
2702 &rs6000_reg_names[110][0], /* vscr */ \
2703 &rs6000_reg_names[111][0], /* spe_acc */ \
2704 &rs6000_reg_names[112][0], /* spefscr */ \
2707 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2708 following for it. Switch to use the alternate names since
2709 they are more mnemonic. */
2711 #define DEBUG_REGISTER_NAMES \
2713 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2714 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2715 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2716 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2717 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2718 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2719 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2720 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2721 "mq", "lr", "ctr", "ap", \
2722 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2723 "xer", \
2724 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2725 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2726 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2727 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2728 "vrsave", "vscr" \
2729 , "spe_acc", "spefscr" \
2732 /* Table of additional register names to use in user input. */
2734 #define ADDITIONAL_REGISTER_NAMES \
2735 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2736 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2737 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2738 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2739 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2740 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2741 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2742 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2743 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2744 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2745 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2746 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2747 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2748 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2749 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2750 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2751 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2752 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2753 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2754 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2755 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2756 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2757 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2758 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2759 {"vrsave", 109}, {"vscr", 110}, \
2760 {"spe_acc", 111}, {"spefscr", 112}, \
2761 /* no additional names for: mq, lr, ctr, ap */ \
2762 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2763 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2764 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2766 /* Text to write out after a CALL that may be replaced by glue code by
2767 the loader. This depends on the AIX version. */
2768 #define RS6000_CALL_GLUE "cror 31,31,31"
2770 /* This is how to output an element of a case-vector that is relative. */
2772 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2773 do { char buf[100]; \
2774 fputs ("\t.long ", FILE); \
2775 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2776 assemble_name (FILE, buf); \
2777 putc ('-', FILE); \
2778 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2779 assemble_name (FILE, buf); \
2780 putc ('\n', FILE); \
2781 } while (0)
2783 /* This is how to output an assembler line
2784 that says to advance the location counter
2785 to a multiple of 2**LOG bytes. */
2787 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2788 if ((LOG) != 0) \
2789 fprintf (FILE, "\t.align %d\n", (LOG))
2791 /* Store in OUTPUT a string (made with alloca) containing
2792 an assembler-name for a local static variable named NAME.
2793 LABELNO is an integer which is different for each call. */
2795 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2796 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2797 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2799 /* Pick up the return address upon entry to a procedure. Used for
2800 dwarf2 unwind information. This also enables the table driven
2801 mechanism. */
2803 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2804 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2806 /* Describe how we implement __builtin_eh_return. */
2807 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2808 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2810 /* Print operand X (an rtx) in assembler syntax to file FILE.
2811 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2812 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2814 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2816 /* Define which CODE values are valid. */
2818 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2819 ((CODE) == '.')
2821 /* Print a memory address as an operand to reference that memory location. */
2823 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2825 /* Define the codes that are matched by predicates in rs6000.c. */
2827 #define PREDICATE_CODES \
2828 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2829 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2830 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2831 LABEL_REF, SUBREG, REG, MEM}}, \
2832 {"short_cint_operand", {CONST_INT}}, \
2833 {"u_short_cint_operand", {CONST_INT}}, \
2834 {"non_short_cint_operand", {CONST_INT}}, \
2835 {"exact_log2_cint_operand", {CONST_INT}}, \
2836 {"gpc_reg_operand", {SUBREG, REG}}, \
2837 {"cc_reg_operand", {SUBREG, REG}}, \
2838 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2839 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2840 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2841 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2842 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2843 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2844 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2845 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2846 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2847 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2848 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2849 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2850 {"easy_fp_constant", {CONST_DOUBLE}}, \
2851 {"zero_fp_constant", {CONST_DOUBLE}}, \
2852 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2853 {"lwa_operand", {SUBREG, MEM, REG}}, \
2854 {"volatile_mem_operand", {MEM}}, \
2855 {"offsettable_mem_operand", {MEM}}, \
2856 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2857 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2858 {"non_add_cint_operand", {CONST_INT}}, \
2859 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2860 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2861 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2862 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2863 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2864 {"mask_operand", {CONST_INT}}, \
2865 {"mask_operand_wrap", {CONST_INT}}, \
2866 {"mask64_operand", {CONST_INT}}, \
2867 {"mask64_2_operand", {CONST_INT}}, \
2868 {"count_register_operand", {REG}}, \
2869 {"xer_operand", {REG}}, \
2870 {"symbol_ref_operand", {SYMBOL_REF}}, \
2871 {"call_operand", {SYMBOL_REF, REG}}, \
2872 {"current_file_function_operand", {SYMBOL_REF}}, \
2873 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2874 CONST_DOUBLE, SYMBOL_REF}}, \
2875 {"load_multiple_operation", {PARALLEL}}, \
2876 {"store_multiple_operation", {PARALLEL}}, \
2877 {"vrsave_operation", {PARALLEL}}, \
2878 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2879 GT, LEU, LTU, GEU, GTU, \
2880 UNORDERED, ORDERED, \
2881 UNGE, UNLE }}, \
2882 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2883 UNORDERED }}, \
2884 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2885 GT, LEU, LTU, GEU, GTU, \
2886 UNORDERED, ORDERED, \
2887 UNGE, UNLE }}, \
2888 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2889 GT, LEU, LTU, GEU, GTU}}, \
2890 {"boolean_operator", {AND, IOR, XOR}}, \
2891 {"boolean_or_operator", {IOR, XOR}}, \
2892 {"altivec_register_operand", {REG}}, \
2893 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2895 /* uncomment for disabling the corresponding default options */
2896 /* #define MACHINE_no_sched_interblock */
2897 /* #define MACHINE_no_sched_speculative */
2898 /* #define MACHINE_no_sched_speculative_load */
2900 /* General flags. */
2901 extern int flag_pic;
2902 extern int optimize;
2903 extern int flag_expensive_optimizations;
2904 extern int frame_pointer_needed;
2906 enum rs6000_builtins
2908 /* AltiVec builtins. */
2909 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2910 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2911 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2912 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2913 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2914 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2915 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2916 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2917 ALTIVEC_BUILTIN_VADDUBM,
2918 ALTIVEC_BUILTIN_VADDUHM,
2919 ALTIVEC_BUILTIN_VADDUWM,
2920 ALTIVEC_BUILTIN_VADDFP,
2921 ALTIVEC_BUILTIN_VADDCUW,
2922 ALTIVEC_BUILTIN_VADDUBS,
2923 ALTIVEC_BUILTIN_VADDSBS,
2924 ALTIVEC_BUILTIN_VADDUHS,
2925 ALTIVEC_BUILTIN_VADDSHS,
2926 ALTIVEC_BUILTIN_VADDUWS,
2927 ALTIVEC_BUILTIN_VADDSWS,
2928 ALTIVEC_BUILTIN_VAND,
2929 ALTIVEC_BUILTIN_VANDC,
2930 ALTIVEC_BUILTIN_VAVGUB,
2931 ALTIVEC_BUILTIN_VAVGSB,
2932 ALTIVEC_BUILTIN_VAVGUH,
2933 ALTIVEC_BUILTIN_VAVGSH,
2934 ALTIVEC_BUILTIN_VAVGUW,
2935 ALTIVEC_BUILTIN_VAVGSW,
2936 ALTIVEC_BUILTIN_VCFUX,
2937 ALTIVEC_BUILTIN_VCFSX,
2938 ALTIVEC_BUILTIN_VCTSXS,
2939 ALTIVEC_BUILTIN_VCTUXS,
2940 ALTIVEC_BUILTIN_VCMPBFP,
2941 ALTIVEC_BUILTIN_VCMPEQUB,
2942 ALTIVEC_BUILTIN_VCMPEQUH,
2943 ALTIVEC_BUILTIN_VCMPEQUW,
2944 ALTIVEC_BUILTIN_VCMPEQFP,
2945 ALTIVEC_BUILTIN_VCMPGEFP,
2946 ALTIVEC_BUILTIN_VCMPGTUB,
2947 ALTIVEC_BUILTIN_VCMPGTSB,
2948 ALTIVEC_BUILTIN_VCMPGTUH,
2949 ALTIVEC_BUILTIN_VCMPGTSH,
2950 ALTIVEC_BUILTIN_VCMPGTUW,
2951 ALTIVEC_BUILTIN_VCMPGTSW,
2952 ALTIVEC_BUILTIN_VCMPGTFP,
2953 ALTIVEC_BUILTIN_VEXPTEFP,
2954 ALTIVEC_BUILTIN_VLOGEFP,
2955 ALTIVEC_BUILTIN_VMADDFP,
2956 ALTIVEC_BUILTIN_VMAXUB,
2957 ALTIVEC_BUILTIN_VMAXSB,
2958 ALTIVEC_BUILTIN_VMAXUH,
2959 ALTIVEC_BUILTIN_VMAXSH,
2960 ALTIVEC_BUILTIN_VMAXUW,
2961 ALTIVEC_BUILTIN_VMAXSW,
2962 ALTIVEC_BUILTIN_VMAXFP,
2963 ALTIVEC_BUILTIN_VMHADDSHS,
2964 ALTIVEC_BUILTIN_VMHRADDSHS,
2965 ALTIVEC_BUILTIN_VMLADDUHM,
2966 ALTIVEC_BUILTIN_VMRGHB,
2967 ALTIVEC_BUILTIN_VMRGHH,
2968 ALTIVEC_BUILTIN_VMRGHW,
2969 ALTIVEC_BUILTIN_VMRGLB,
2970 ALTIVEC_BUILTIN_VMRGLH,
2971 ALTIVEC_BUILTIN_VMRGLW,
2972 ALTIVEC_BUILTIN_VMSUMUBM,
2973 ALTIVEC_BUILTIN_VMSUMMBM,
2974 ALTIVEC_BUILTIN_VMSUMUHM,
2975 ALTIVEC_BUILTIN_VMSUMSHM,
2976 ALTIVEC_BUILTIN_VMSUMUHS,
2977 ALTIVEC_BUILTIN_VMSUMSHS,
2978 ALTIVEC_BUILTIN_VMINUB,
2979 ALTIVEC_BUILTIN_VMINSB,
2980 ALTIVEC_BUILTIN_VMINUH,
2981 ALTIVEC_BUILTIN_VMINSH,
2982 ALTIVEC_BUILTIN_VMINUW,
2983 ALTIVEC_BUILTIN_VMINSW,
2984 ALTIVEC_BUILTIN_VMINFP,
2985 ALTIVEC_BUILTIN_VMULEUB,
2986 ALTIVEC_BUILTIN_VMULESB,
2987 ALTIVEC_BUILTIN_VMULEUH,
2988 ALTIVEC_BUILTIN_VMULESH,
2989 ALTIVEC_BUILTIN_VMULOUB,
2990 ALTIVEC_BUILTIN_VMULOSB,
2991 ALTIVEC_BUILTIN_VMULOUH,
2992 ALTIVEC_BUILTIN_VMULOSH,
2993 ALTIVEC_BUILTIN_VNMSUBFP,
2994 ALTIVEC_BUILTIN_VNOR,
2995 ALTIVEC_BUILTIN_VOR,
2996 ALTIVEC_BUILTIN_VSEL_4SI,
2997 ALTIVEC_BUILTIN_VSEL_4SF,
2998 ALTIVEC_BUILTIN_VSEL_8HI,
2999 ALTIVEC_BUILTIN_VSEL_16QI,
3000 ALTIVEC_BUILTIN_VPERM_4SI,
3001 ALTIVEC_BUILTIN_VPERM_4SF,
3002 ALTIVEC_BUILTIN_VPERM_8HI,
3003 ALTIVEC_BUILTIN_VPERM_16QI,
3004 ALTIVEC_BUILTIN_VPKUHUM,
3005 ALTIVEC_BUILTIN_VPKUWUM,
3006 ALTIVEC_BUILTIN_VPKPX,
3007 ALTIVEC_BUILTIN_VPKUHSS,
3008 ALTIVEC_BUILTIN_VPKSHSS,
3009 ALTIVEC_BUILTIN_VPKUWSS,
3010 ALTIVEC_BUILTIN_VPKSWSS,
3011 ALTIVEC_BUILTIN_VPKUHUS,
3012 ALTIVEC_BUILTIN_VPKSHUS,
3013 ALTIVEC_BUILTIN_VPKUWUS,
3014 ALTIVEC_BUILTIN_VPKSWUS,
3015 ALTIVEC_BUILTIN_VREFP,
3016 ALTIVEC_BUILTIN_VRFIM,
3017 ALTIVEC_BUILTIN_VRFIN,
3018 ALTIVEC_BUILTIN_VRFIP,
3019 ALTIVEC_BUILTIN_VRFIZ,
3020 ALTIVEC_BUILTIN_VRLB,
3021 ALTIVEC_BUILTIN_VRLH,
3022 ALTIVEC_BUILTIN_VRLW,
3023 ALTIVEC_BUILTIN_VRSQRTEFP,
3024 ALTIVEC_BUILTIN_VSLB,
3025 ALTIVEC_BUILTIN_VSLH,
3026 ALTIVEC_BUILTIN_VSLW,
3027 ALTIVEC_BUILTIN_VSL,
3028 ALTIVEC_BUILTIN_VSLO,
3029 ALTIVEC_BUILTIN_VSPLTB,
3030 ALTIVEC_BUILTIN_VSPLTH,
3031 ALTIVEC_BUILTIN_VSPLTW,
3032 ALTIVEC_BUILTIN_VSPLTISB,
3033 ALTIVEC_BUILTIN_VSPLTISH,
3034 ALTIVEC_BUILTIN_VSPLTISW,
3035 ALTIVEC_BUILTIN_VSRB,
3036 ALTIVEC_BUILTIN_VSRH,
3037 ALTIVEC_BUILTIN_VSRW,
3038 ALTIVEC_BUILTIN_VSRAB,
3039 ALTIVEC_BUILTIN_VSRAH,
3040 ALTIVEC_BUILTIN_VSRAW,
3041 ALTIVEC_BUILTIN_VSR,
3042 ALTIVEC_BUILTIN_VSRO,
3043 ALTIVEC_BUILTIN_VSUBUBM,
3044 ALTIVEC_BUILTIN_VSUBUHM,
3045 ALTIVEC_BUILTIN_VSUBUWM,
3046 ALTIVEC_BUILTIN_VSUBFP,
3047 ALTIVEC_BUILTIN_VSUBCUW,
3048 ALTIVEC_BUILTIN_VSUBUBS,
3049 ALTIVEC_BUILTIN_VSUBSBS,
3050 ALTIVEC_BUILTIN_VSUBUHS,
3051 ALTIVEC_BUILTIN_VSUBSHS,
3052 ALTIVEC_BUILTIN_VSUBUWS,
3053 ALTIVEC_BUILTIN_VSUBSWS,
3054 ALTIVEC_BUILTIN_VSUM4UBS,
3055 ALTIVEC_BUILTIN_VSUM4SBS,
3056 ALTIVEC_BUILTIN_VSUM4SHS,
3057 ALTIVEC_BUILTIN_VSUM2SWS,
3058 ALTIVEC_BUILTIN_VSUMSWS,
3059 ALTIVEC_BUILTIN_VXOR,
3060 ALTIVEC_BUILTIN_VSLDOI_16QI,
3061 ALTIVEC_BUILTIN_VSLDOI_8HI,
3062 ALTIVEC_BUILTIN_VSLDOI_4SI,
3063 ALTIVEC_BUILTIN_VSLDOI_4SF,
3064 ALTIVEC_BUILTIN_VUPKHSB,
3065 ALTIVEC_BUILTIN_VUPKHPX,
3066 ALTIVEC_BUILTIN_VUPKHSH,
3067 ALTIVEC_BUILTIN_VUPKLSB,
3068 ALTIVEC_BUILTIN_VUPKLPX,
3069 ALTIVEC_BUILTIN_VUPKLSH,
3070 ALTIVEC_BUILTIN_MTVSCR,
3071 ALTIVEC_BUILTIN_MFVSCR,
3072 ALTIVEC_BUILTIN_DSSALL,
3073 ALTIVEC_BUILTIN_DSS,
3074 ALTIVEC_BUILTIN_LVSL,
3075 ALTIVEC_BUILTIN_LVSR,
3076 ALTIVEC_BUILTIN_DSTT,
3077 ALTIVEC_BUILTIN_DSTST,
3078 ALTIVEC_BUILTIN_DSTSTT,
3079 ALTIVEC_BUILTIN_DST,
3080 ALTIVEC_BUILTIN_LVEBX,
3081 ALTIVEC_BUILTIN_LVEHX,
3082 ALTIVEC_BUILTIN_LVEWX,
3083 ALTIVEC_BUILTIN_LVXL,
3084 ALTIVEC_BUILTIN_LVX,
3085 ALTIVEC_BUILTIN_STVX,
3086 ALTIVEC_BUILTIN_STVEBX,
3087 ALTIVEC_BUILTIN_STVEHX,
3088 ALTIVEC_BUILTIN_STVEWX,
3089 ALTIVEC_BUILTIN_STVXL,
3090 ALTIVEC_BUILTIN_VCMPBFP_P,
3091 ALTIVEC_BUILTIN_VCMPEQFP_P,
3092 ALTIVEC_BUILTIN_VCMPEQUB_P,
3093 ALTIVEC_BUILTIN_VCMPEQUH_P,
3094 ALTIVEC_BUILTIN_VCMPEQUW_P,
3095 ALTIVEC_BUILTIN_VCMPGEFP_P,
3096 ALTIVEC_BUILTIN_VCMPGTFP_P,
3097 ALTIVEC_BUILTIN_VCMPGTSB_P,
3098 ALTIVEC_BUILTIN_VCMPGTSH_P,
3099 ALTIVEC_BUILTIN_VCMPGTSW_P,
3100 ALTIVEC_BUILTIN_VCMPGTUB_P,
3101 ALTIVEC_BUILTIN_VCMPGTUH_P,
3102 ALTIVEC_BUILTIN_VCMPGTUW_P,
3103 ALTIVEC_BUILTIN_ABSS_V4SI,
3104 ALTIVEC_BUILTIN_ABSS_V8HI,
3105 ALTIVEC_BUILTIN_ABSS_V16QI,
3106 ALTIVEC_BUILTIN_ABS_V4SI,
3107 ALTIVEC_BUILTIN_ABS_V4SF,
3108 ALTIVEC_BUILTIN_ABS_V8HI,
3109 ALTIVEC_BUILTIN_ABS_V16QI
3110 /* SPE builtins. */
3111 , SPE_BUILTIN_EVADDW,
3112 SPE_BUILTIN_EVAND,
3113 SPE_BUILTIN_EVANDC,
3114 SPE_BUILTIN_EVDIVWS,
3115 SPE_BUILTIN_EVDIVWU,
3116 SPE_BUILTIN_EVEQV,
3117 SPE_BUILTIN_EVFSADD,
3118 SPE_BUILTIN_EVFSDIV,
3119 SPE_BUILTIN_EVFSMUL,
3120 SPE_BUILTIN_EVFSSUB,
3121 SPE_BUILTIN_EVLDDX,
3122 SPE_BUILTIN_EVLDHX,
3123 SPE_BUILTIN_EVLDWX,
3124 SPE_BUILTIN_EVLHHESPLATX,
3125 SPE_BUILTIN_EVLHHOSSPLATX,
3126 SPE_BUILTIN_EVLHHOUSPLATX,
3127 SPE_BUILTIN_EVLWHEX,
3128 SPE_BUILTIN_EVLWHOSX,
3129 SPE_BUILTIN_EVLWHOUX,
3130 SPE_BUILTIN_EVLWHSPLATX,
3131 SPE_BUILTIN_EVLWWSPLATX,
3132 SPE_BUILTIN_EVMERGEHI,
3133 SPE_BUILTIN_EVMERGEHILO,
3134 SPE_BUILTIN_EVMERGELO,
3135 SPE_BUILTIN_EVMERGELOHI,
3136 SPE_BUILTIN_EVMHEGSMFAA,
3137 SPE_BUILTIN_EVMHEGSMFAN,
3138 SPE_BUILTIN_EVMHEGSMIAA,
3139 SPE_BUILTIN_EVMHEGSMIAN,
3140 SPE_BUILTIN_EVMHEGUMIAA,
3141 SPE_BUILTIN_EVMHEGUMIAN,
3142 SPE_BUILTIN_EVMHESMF,
3143 SPE_BUILTIN_EVMHESMFA,
3144 SPE_BUILTIN_EVMHESMFAAW,
3145 SPE_BUILTIN_EVMHESMFANW,
3146 SPE_BUILTIN_EVMHESMI,
3147 SPE_BUILTIN_EVMHESMIA,
3148 SPE_BUILTIN_EVMHESMIAAW,
3149 SPE_BUILTIN_EVMHESMIANW,
3150 SPE_BUILTIN_EVMHESSF,
3151 SPE_BUILTIN_EVMHESSFA,
3152 SPE_BUILTIN_EVMHESSFAAW,
3153 SPE_BUILTIN_EVMHESSFANW,
3154 SPE_BUILTIN_EVMHESSIAAW,
3155 SPE_BUILTIN_EVMHESSIANW,
3156 SPE_BUILTIN_EVMHEUMI,
3157 SPE_BUILTIN_EVMHEUMIA,
3158 SPE_BUILTIN_EVMHEUMIAAW,
3159 SPE_BUILTIN_EVMHEUMIANW,
3160 SPE_BUILTIN_EVMHEUSIAAW,
3161 SPE_BUILTIN_EVMHEUSIANW,
3162 SPE_BUILTIN_EVMHOGSMFAA,
3163 SPE_BUILTIN_EVMHOGSMFAN,
3164 SPE_BUILTIN_EVMHOGSMIAA,
3165 SPE_BUILTIN_EVMHOGSMIAN,
3166 SPE_BUILTIN_EVMHOGUMIAA,
3167 SPE_BUILTIN_EVMHOGUMIAN,
3168 SPE_BUILTIN_EVMHOSMF,
3169 SPE_BUILTIN_EVMHOSMFA,
3170 SPE_BUILTIN_EVMHOSMFAAW,
3171 SPE_BUILTIN_EVMHOSMFANW,
3172 SPE_BUILTIN_EVMHOSMI,
3173 SPE_BUILTIN_EVMHOSMIA,
3174 SPE_BUILTIN_EVMHOSMIAAW,
3175 SPE_BUILTIN_EVMHOSMIANW,
3176 SPE_BUILTIN_EVMHOSSF,
3177 SPE_BUILTIN_EVMHOSSFA,
3178 SPE_BUILTIN_EVMHOSSFAAW,
3179 SPE_BUILTIN_EVMHOSSFANW,
3180 SPE_BUILTIN_EVMHOSSIAAW,
3181 SPE_BUILTIN_EVMHOSSIANW,
3182 SPE_BUILTIN_EVMHOUMI,
3183 SPE_BUILTIN_EVMHOUMIA,
3184 SPE_BUILTIN_EVMHOUMIAAW,
3185 SPE_BUILTIN_EVMHOUMIANW,
3186 SPE_BUILTIN_EVMHOUSIAAW,
3187 SPE_BUILTIN_EVMHOUSIANW,
3188 SPE_BUILTIN_EVMWHSMF,
3189 SPE_BUILTIN_EVMWHSMFA,
3190 SPE_BUILTIN_EVMWHSMI,
3191 SPE_BUILTIN_EVMWHSMIA,
3192 SPE_BUILTIN_EVMWHSSF,
3193 SPE_BUILTIN_EVMWHSSFA,
3194 SPE_BUILTIN_EVMWHUMI,
3195 SPE_BUILTIN_EVMWHUMIA,
3196 SPE_BUILTIN_EVMWLSMF,
3197 SPE_BUILTIN_EVMWLSMFA,
3198 SPE_BUILTIN_EVMWLSMFAAW,
3199 SPE_BUILTIN_EVMWLSMFANW,
3200 SPE_BUILTIN_EVMWLSMIAAW,
3201 SPE_BUILTIN_EVMWLSMIANW,
3202 SPE_BUILTIN_EVMWLSSF,
3203 SPE_BUILTIN_EVMWLSSFA,
3204 SPE_BUILTIN_EVMWLSSFAAW,
3205 SPE_BUILTIN_EVMWLSSFANW,
3206 SPE_BUILTIN_EVMWLSSIAAW,
3207 SPE_BUILTIN_EVMWLSSIANW,
3208 SPE_BUILTIN_EVMWLUMI,
3209 SPE_BUILTIN_EVMWLUMIA,
3210 SPE_BUILTIN_EVMWLUMIAAW,
3211 SPE_BUILTIN_EVMWLUMIANW,
3212 SPE_BUILTIN_EVMWLUSIAAW,
3213 SPE_BUILTIN_EVMWLUSIANW,
3214 SPE_BUILTIN_EVMWSMF,
3215 SPE_BUILTIN_EVMWSMFA,
3216 SPE_BUILTIN_EVMWSMFAA,
3217 SPE_BUILTIN_EVMWSMFAN,
3218 SPE_BUILTIN_EVMWSMI,
3219 SPE_BUILTIN_EVMWSMIA,
3220 SPE_BUILTIN_EVMWSMIAA,
3221 SPE_BUILTIN_EVMWSMIAN,
3222 SPE_BUILTIN_EVMWHSSFAA,
3223 SPE_BUILTIN_EVMWSSF,
3224 SPE_BUILTIN_EVMWSSFA,
3225 SPE_BUILTIN_EVMWSSFAA,
3226 SPE_BUILTIN_EVMWSSFAN,
3227 SPE_BUILTIN_EVMWUMI,
3228 SPE_BUILTIN_EVMWUMIA,
3229 SPE_BUILTIN_EVMWUMIAA,
3230 SPE_BUILTIN_EVMWUMIAN,
3231 SPE_BUILTIN_EVNAND,
3232 SPE_BUILTIN_EVNOR,
3233 SPE_BUILTIN_EVOR,
3234 SPE_BUILTIN_EVORC,
3235 SPE_BUILTIN_EVRLW,
3236 SPE_BUILTIN_EVSLW,
3237 SPE_BUILTIN_EVSRWS,
3238 SPE_BUILTIN_EVSRWU,
3239 SPE_BUILTIN_EVSTDDX,
3240 SPE_BUILTIN_EVSTDHX,
3241 SPE_BUILTIN_EVSTDWX,
3242 SPE_BUILTIN_EVSTWHEX,
3243 SPE_BUILTIN_EVSTWHOX,
3244 SPE_BUILTIN_EVSTWWEX,
3245 SPE_BUILTIN_EVSTWWOX,
3246 SPE_BUILTIN_EVSUBFW,
3247 SPE_BUILTIN_EVXOR,
3248 SPE_BUILTIN_EVABS,
3249 SPE_BUILTIN_EVADDSMIAAW,
3250 SPE_BUILTIN_EVADDSSIAAW,
3251 SPE_BUILTIN_EVADDUMIAAW,
3252 SPE_BUILTIN_EVADDUSIAAW,
3253 SPE_BUILTIN_EVCNTLSW,
3254 SPE_BUILTIN_EVCNTLZW,
3255 SPE_BUILTIN_EVEXTSB,
3256 SPE_BUILTIN_EVEXTSH,
3257 SPE_BUILTIN_EVFSABS,
3258 SPE_BUILTIN_EVFSCFSF,
3259 SPE_BUILTIN_EVFSCFSI,
3260 SPE_BUILTIN_EVFSCFUF,
3261 SPE_BUILTIN_EVFSCFUI,
3262 SPE_BUILTIN_EVFSCTSF,
3263 SPE_BUILTIN_EVFSCTSI,
3264 SPE_BUILTIN_EVFSCTSIZ,
3265 SPE_BUILTIN_EVFSCTUF,
3266 SPE_BUILTIN_EVFSCTUI,
3267 SPE_BUILTIN_EVFSCTUIZ,
3268 SPE_BUILTIN_EVFSNABS,
3269 SPE_BUILTIN_EVFSNEG,
3270 SPE_BUILTIN_EVMRA,
3271 SPE_BUILTIN_EVNEG,
3272 SPE_BUILTIN_EVRNDW,
3273 SPE_BUILTIN_EVSUBFSMIAAW,
3274 SPE_BUILTIN_EVSUBFSSIAAW,
3275 SPE_BUILTIN_EVSUBFUMIAAW,
3276 SPE_BUILTIN_EVSUBFUSIAAW,
3277 SPE_BUILTIN_EVADDIW,
3278 SPE_BUILTIN_EVLDD,
3279 SPE_BUILTIN_EVLDH,
3280 SPE_BUILTIN_EVLDW,
3281 SPE_BUILTIN_EVLHHESPLAT,
3282 SPE_BUILTIN_EVLHHOSSPLAT,
3283 SPE_BUILTIN_EVLHHOUSPLAT,
3284 SPE_BUILTIN_EVLWHE,
3285 SPE_BUILTIN_EVLWHOS,
3286 SPE_BUILTIN_EVLWHOU,
3287 SPE_BUILTIN_EVLWHSPLAT,
3288 SPE_BUILTIN_EVLWWSPLAT,
3289 SPE_BUILTIN_EVRLWI,
3290 SPE_BUILTIN_EVSLWI,
3291 SPE_BUILTIN_EVSRWIS,
3292 SPE_BUILTIN_EVSRWIU,
3293 SPE_BUILTIN_EVSTDD,
3294 SPE_BUILTIN_EVSTDH,
3295 SPE_BUILTIN_EVSTDW,
3296 SPE_BUILTIN_EVSTWHE,
3297 SPE_BUILTIN_EVSTWHO,
3298 SPE_BUILTIN_EVSTWWE,
3299 SPE_BUILTIN_EVSTWWO,
3300 SPE_BUILTIN_EVSUBIFW,
3302 /* Compares. */
3303 SPE_BUILTIN_EVCMPEQ,
3304 SPE_BUILTIN_EVCMPGTS,
3305 SPE_BUILTIN_EVCMPGTU,
3306 SPE_BUILTIN_EVCMPLTS,
3307 SPE_BUILTIN_EVCMPLTU,
3308 SPE_BUILTIN_EVFSCMPEQ,
3309 SPE_BUILTIN_EVFSCMPGT,
3310 SPE_BUILTIN_EVFSCMPLT,
3311 SPE_BUILTIN_EVFSTSTEQ,
3312 SPE_BUILTIN_EVFSTSTGT,
3313 SPE_BUILTIN_EVFSTSTLT,
3315 /* EVSEL compares. */
3316 SPE_BUILTIN_EVSEL_CMPEQ,
3317 SPE_BUILTIN_EVSEL_CMPGTS,
3318 SPE_BUILTIN_EVSEL_CMPGTU,
3319 SPE_BUILTIN_EVSEL_CMPLTS,
3320 SPE_BUILTIN_EVSEL_CMPLTU,
3321 SPE_BUILTIN_EVSEL_FSCMPEQ,
3322 SPE_BUILTIN_EVSEL_FSCMPGT,
3323 SPE_BUILTIN_EVSEL_FSCMPLT,
3324 SPE_BUILTIN_EVSEL_FSTSTEQ,
3325 SPE_BUILTIN_EVSEL_FSTSTGT,
3326 SPE_BUILTIN_EVSEL_FSTSTLT,
3328 SPE_BUILTIN_EVSPLATFI,
3329 SPE_BUILTIN_EVSPLATI,
3330 SPE_BUILTIN_EVMWHSSMAA,
3331 SPE_BUILTIN_EVMWHSMFAA,
3332 SPE_BUILTIN_EVMWHSMIAA,
3333 SPE_BUILTIN_EVMWHUSIAA,
3334 SPE_BUILTIN_EVMWHUMIAA,
3335 SPE_BUILTIN_EVMWHSSFAN,
3336 SPE_BUILTIN_EVMWHSSIAN,
3337 SPE_BUILTIN_EVMWHSMFAN,
3338 SPE_BUILTIN_EVMWHSMIAN,
3339 SPE_BUILTIN_EVMWHUSIAN,
3340 SPE_BUILTIN_EVMWHUMIAN,
3341 SPE_BUILTIN_EVMWHGSSFAA,
3342 SPE_BUILTIN_EVMWHGSMFAA,
3343 SPE_BUILTIN_EVMWHGSMIAA,
3344 SPE_BUILTIN_EVMWHGUMIAA,
3345 SPE_BUILTIN_EVMWHGSSFAN,
3346 SPE_BUILTIN_EVMWHGSMFAN,
3347 SPE_BUILTIN_EVMWHGSMIAN,
3348 SPE_BUILTIN_EVMWHGUMIAN,
3349 SPE_BUILTIN_MTSPEFSCR,
3350 SPE_BUILTIN_MFSPEFSCR,
3351 SPE_BUILTIN_BRINC