* params.def (PARAM_MAX_SCHED_READY_INSNS): New parameter,
[official-gcc.git] / gcc / doc / invoke.texi
blob7080aacf8bbdcfe1025778955c44344cefe45ae1
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2 @c 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @ignore
7 @c man begin INCLUDE
8 @include gcc-vers.texi
9 @c man end
11 @c man begin COPYRIGHT
12 Copyright @copyright{} 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
13 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
15 Permission is granted to copy, distribute and/or modify this document
16 under the terms of the GNU Free Documentation License, Version 1.2 or
17 any later version published by the Free Software Foundation; with the
18 Invariant Sections being ``GNU General Public License'' and ``Funding
19 Free Software'', the Front-Cover texts being (a) (see below), and with
20 the Back-Cover Texts being (b) (see below).  A copy of the license is
21 included in the gfdl(7) man page.
23 (a) The FSF's Front-Cover Text is:
25      A GNU Manual
27 (b) The FSF's Back-Cover Text is:
29      You have freedom to copy and modify this GNU Manual, like GNU
30      software.  Copies published by the Free Software Foundation raise
31      funds for GNU development.
32 @c man end
33 @c Set file name and title for the man page.
34 @setfilename gcc
35 @settitle GNU project C and C++ compiler
36 @c man begin SYNOPSIS
37 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
38     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
39     [@option{-W}@var{warn}@dots{}] [@option{-pedantic}]
40     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
41     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
42     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
43     [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
45 Only the most useful options are listed here; see below for the
46 remainder.  @samp{g++} accepts mostly the same options as @samp{gcc}.
47 @c man end
48 @c man begin SEEALSO
49 gpl(7), gfdl(7), fsf-funding(7),
50 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
51 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
52 @file{ld}, @file{binutils} and @file{gdb}.
53 @c man end
54 @c man begin BUGS
55 For instructions on reporting bugs, see
56 @w{@uref{http://gcc.gnu.org/bugs.html}}.
57 @c man end
58 @c man begin AUTHOR
59 See the Info entry for @command{gcc}, or
60 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
61 for contributors to GCC@.
62 @c man end
63 @end ignore
65 @node Invoking GCC
66 @chapter GCC Command Options
67 @cindex GCC command options
68 @cindex command options
69 @cindex options, GCC command
71 @c man begin DESCRIPTION
72 When you invoke GCC, it normally does preprocessing, compilation,
73 assembly and linking.  The ``overall options'' allow you to stop this
74 process at an intermediate stage.  For example, the @option{-c} option
75 says not to run the linker.  Then the output consists of object files
76 output by the assembler.
78 Other options are passed on to one stage of processing.  Some options
79 control the preprocessor and others the compiler itself.  Yet other
80 options control the assembler and linker; most of these are not
81 documented here, since you rarely need to use any of them.
83 @cindex C compilation options
84 Most of the command line options that you can use with GCC are useful
85 for C programs; when an option is only useful with another language
86 (usually C++), the explanation says so explicitly.  If the description
87 for a particular option does not mention a source language, you can use
88 that option with all supported languages.
90 @cindex C++ compilation options
91 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
92 options for compiling C++ programs.
94 @cindex grouping options
95 @cindex options, grouping
96 The @command{gcc} program accepts options and file names as operands.  Many
97 options have multi-letter names; therefore multiple single-letter options
98 may @emph{not} be grouped: @option{-dr} is very different from @w{@samp{-d
99 -r}}.
101 @cindex order of options
102 @cindex options, order
103 You can mix options and other arguments.  For the most part, the order
104 you use doesn't matter.  Order does matter when you use several options
105 of the same kind; for example, if you specify @option{-L} more than once,
106 the directories are searched in the order specified.
108 Many options have long names starting with @samp{-f} or with
109 @samp{-W}---for example, 
110 @option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
111 these have both positive and negative forms; the negative form of
112 @option{-ffoo} would be @option{-fno-foo}.  This manual documents
113 only one of these two forms, whichever one is not the default.
115 @c man end
117 @xref{Option Index}, for an index to GCC's options.
119 @menu
120 * Option Summary::      Brief list of all options, without explanations.
121 * Overall Options::     Controlling the kind of output:
122                         an executable, object files, assembler files,
123                         or preprocessed source.
124 * Invoking G++::        Compiling C++ programs.
125 * C Dialect Options::   Controlling the variant of C language compiled.
126 * C++ Dialect Options:: Variations on C++.
127 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
128                         and Objective-C++.
129 * Language Independent Options:: Controlling how diagnostics should be
130                         formatted.
131 * Warning Options::     How picky should the compiler be?
132 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
133 * Optimize Options::    How much optimization?
134 * Preprocessor Options:: Controlling header files and macro definitions.
135                          Also, getting dependency information for Make.
136 * Assembler Options::   Passing options to the assembler.
137 * Link Options::        Specifying libraries and so on.
138 * Directory Options::   Where to find header files and libraries.
139                         Where to find the compiler executable files.
140 * Spec Files::          How to pass switches to sub-processes.
141 * Target Options::      Running a cross-compiler, or an old version of GCC.
142 * Submodel Options::    Specifying minor hardware or convention variations,
143                         such as 68010 vs 68020.
144 * Code Gen Options::    Specifying conventions for function calls, data layout
145                         and register usage.
146 * Environment Variables:: Env vars that affect GCC.
147 * Precompiled Headers:: Compiling a header once, and using it many times.
148 * Running Protoize::    Automatically adding or removing function prototypes.
149 @end menu
151 @c man begin OPTIONS
153 @node Option Summary
154 @section Option Summary
156 Here is a summary of all the options, grouped by type.  Explanations are
157 in the following sections.
159 @table @emph
160 @item Overall Options
161 @xref{Overall Options,,Options Controlling the Kind of Output}.
162 @gccoptlist{-c  -S  -E  -o @var{file}  -combine -pipe  -pass-exit-codes  @gol
163 -x @var{language}  -v  -###  --help  --target-help  --version @@@var{file}}
165 @item C Language Options
166 @xref{C Dialect Options,,Options Controlling C Dialect}.
167 @gccoptlist{-ansi  -std=@var{standard}  -aux-info @var{filename} @gol
168 -fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
169 -fhosted  -ffreestanding  -fms-extensions @gol
170 -trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp @gol
171 -fallow-single-precision  -fcond-mismatch @gol
172 -fsigned-bitfields  -fsigned-char @gol
173 -funsigned-bitfields  -funsigned-char}
175 @item C++ Language Options
176 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
177 @gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
178 -fconserve-space  -ffriend-injection @gol
179 -fno-elide-constructors @gol
180 -fno-enforce-eh-specs @gol
181 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
182 -fno-implicit-templates @gol
183 -fno-implicit-inline-templates @gol
184 -fno-implement-inlines  -fms-extensions @gol
185 -fno-nonansi-builtins  -fno-operator-names @gol
186 -fno-optional-diags  -fpermissive @gol
187 -frepo  -fno-rtti  -fstats  -ftemplate-depth-@var{n} @gol
188 -fno-threadsafe-statics -fuse-cxa-atexit  -fno-weak  -nostdinc++ @gol
189 -fno-default-inline  -fvisibility-inlines-hidden @gol
190 -Wabi  -Wctor-dtor-privacy @gol
191 -Wnon-virtual-dtor  -Wreorder @gol
192 -Weffc++  -Wno-deprecated  -Wstrict-null-sentinel @gol
193 -Wno-non-template-friend  -Wold-style-cast @gol
194 -Woverloaded-virtual  -Wno-pmf-conversions @gol
195 -Wsign-promo}
197 @item Objective-C and Objective-C++ Language Options
198 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
199 Objective-C and Objective-C++ Dialects}.
200 @gccoptlist{
201 -fconstant-string-class=@var{class-name} @gol
202 -fgnu-runtime  -fnext-runtime @gol
203 -fno-nil-receivers @gol
204 -fobjc-call-cxx-cdtors @gol
205 -fobjc-direct-dispatch @gol
206 -fobjc-exceptions @gol
207 -fobjc-gc @gol
208 -freplace-objc-classes @gol
209 -fzero-link @gol
210 -gen-decls @gol
211 -Wassign-intercept @gol
212 -Wno-protocol  -Wselector @gol
213 -Wstrict-selector-match @gol
214 -Wundeclared-selector}
216 @item Language Independent Options
217 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
218 @gccoptlist{-fmessage-length=@var{n}  @gol
219 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}} @gol
220 -fdiagnostics-show-options
222 @item Warning Options
223 @xref{Warning Options,,Options to Request or Suppress Warnings}.
224 @gccoptlist{-fsyntax-only  -pedantic  -pedantic-errors @gol
225 -w  -Wextra  -Wall  -Waggregate-return -Walways-true -Wno-attributes @gol
226 -Wc++-compat -Wcast-align  -Wcast-qual  -Wchar-subscripts  -Wcomment @gol
227 -Wconversion  -Wno-deprecated-declarations @gol
228 -Wdisabled-optimization  -Wno-div-by-zero  -Wno-endif-labels @gol
229 -Werror  -Werror-* -Werror-implicit-function-declaration @gol
230 -Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
231 -Wno-format-extra-args -Wformat-nonliteral @gol
232 -Wformat-security  -Wformat-y2k @gol
233 -Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
234 -Wimport  -Wno-import  -Winit-self  -Winline @gol
235 -Wno-int-to-pointer-cast @gol
236 -Wno-invalid-offsetof  -Winvalid-pch @gol
237 -Wlarger-than-@var{len}  -Wunsafe-loop-optimizations  -Wlong-long @gol
238 -Wmain  -Wmissing-braces  -Wmissing-field-initializers @gol
239 -Wmissing-format-attribute  -Wmissing-include-dirs @gol
240 -Wmissing-noreturn @gol
241 -Wno-multichar  -Wnonnull  -Woverlength-strings  -Wpacked  -Wpadded @gol
242 -Wparentheses  -Wpointer-arith  -Wno-pointer-to-int-cast @gol
243 -Wredundant-decls @gol
244 -Wreturn-type  -Wsequence-point  -Wshadow @gol
245 -Wsign-compare  -Wstack-protector @gol
246 -Wstrict-aliasing -Wstrict-aliasing=2 @gol
247 -Wstring-literal-comparison @gol
248 -Wswitch  -Wswitch-default  -Wswitch-enum @gol
249 -Wsystem-headers  -Wtrigraphs  -Wundef  -Wuninitialized @gol
250 -Wunknown-pragmas  -Wno-pragmas -Wunreachable-code @gol
251 -Wunused  -Wunused-function  -Wunused-label  -Wunused-parameter @gol
252 -Wunused-value  -Wunused-variable  -Wvariadic-macros @gol
253 -Wvolatile-register-var  -Wwrite-strings}
255 @item C-only Warning Options
256 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
257 -Wmissing-prototypes  -Wnested-externs  -Wold-style-definition @gol
258 -Wstrict-prototypes  -Wtraditional @gol
259 -Wdeclaration-after-statement -Wpointer-sign}
261 @item Debugging Options
262 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
263 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
264 -fdump-unnumbered  -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
265 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
266 -fdump-ipa-all -fdump-ipa-cgraph @gol
267 -fdump-tree-all @gol
268 -fdump-tree-original@r{[}-@var{n}@r{]}  @gol
269 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
270 -fdump-tree-inlined@r{[}-@var{n}@r{]} @gol
271 -fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias @gol
272 -fdump-tree-ch @gol
273 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
274 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
275 -fdump-tree-gimple@r{[}-raw@r{]} -fdump-tree-mudflap@r{[}-@var{n}@r{]} @gol
276 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
277 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
278 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
279 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
280 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
281 -fdump-tree-nrv -fdump-tree-vect @gol
282 -fdump-tree-sink @gol
283 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
284 -fdump-tree-salias @gol
285 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
286 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
287 -ftree-vectorizer-verbose=@var{n} @gol
288 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
289 -feliminate-dwarf2-dups -feliminate-unused-debug-types @gol
290 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
291 -fmem-report -fprofile-arcs @gol
292 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
293 -ftest-coverage  -ftime-report -fvar-tracking @gol
294 -g  -g@var{level}  -gcoff -gdwarf-2 @gol
295 -ggdb  -gstabs  -gstabs+  -gvms  -gxcoff  -gxcoff+ @gol
296 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
297 -print-multi-directory  -print-multi-lib @gol
298 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
299 -save-temps  -time}
301 @item Optimization Options
302 @xref{Optimize Options,,Options that Control Optimization}.
303 @gccoptlist{-falign-functions=@var{n}  -falign-jumps=@var{n} @gol
304 -falign-labels=@var{n}  -falign-loops=@var{n}  @gol
305 -fbounds-check -fmudflap -fmudflapth -fmudflapir @gol
306 -fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize @gol
307 -fbranch-target-load-optimize2 -fbtr-bb-exclusive @gol
308 -fcaller-saves  -fcprop-registers  -fcse-follow-jumps @gol
309 -fcse-skip-blocks  -fcx-limited-range  -fdata-sections @gol
310 -fdelayed-branch  -fdelete-null-pointer-checks -fearly-inlining @gol
311 -fexpensive-optimizations  -ffast-math  -ffloat-store @gol
312 -fforce-addr  -ffunction-sections @gol
313 -fgcse  -fgcse-lm  -fgcse-sm  -fgcse-las  -fgcse-after-reload @gol
314 -fcrossjumping  -fif-conversion  -fif-conversion2 @gol
315 -finline-functions  -finline-functions-called-once @gol
316 -finline-limit=@var{n}  -fkeep-inline-functions @gol
317 -fkeep-static-consts  -fmerge-constants  -fmerge-all-constants @gol
318 -fmodulo-sched -fno-branch-count-reg @gol
319 -fno-default-inline  -fno-defer-pop -fmove-loop-invariants @gol
320 -fno-function-cse  -fno-guess-branch-probability @gol
321 -fno-inline  -fno-math-errno  -fno-peephole  -fno-peephole2 @gol
322 -funsafe-math-optimizations  -funsafe-loop-optimizations  -ffinite-math-only @gol
323 -fno-toplevel-reorder -fno-trapping-math  -fno-zero-initialized-in-bss @gol
324 -fomit-frame-pointer  -foptimize-register-move @gol
325 -foptimize-sibling-calls  -fprefetch-loop-arrays @gol
326 -fprofile-generate -fprofile-use @gol
327 -fregmove  -frename-registers @gol
328 -freorder-blocks  -freorder-blocks-and-partition -freorder-functions @gol
329 -frerun-cse-after-loop @gol
330 -frounding-math -frtl-abstract-sequences @gol
331 -fschedule-insns  -fschedule-insns2 @gol
332 -fno-sched-interblock  -fno-sched-spec  -fsched-spec-load @gol
333 -fsched-spec-load-dangerous  @gol
334 -fsched-stalled-insns=@var{n} -fsched-stalled-insns-dep=@var{n} @gol
335 -fsched2-use-superblocks @gol
336 -fsched2-use-traces -freschedule-modulo-scheduled-loops @gol
337 -fsection-anchors  -fsignaling-nans  -fsingle-precision-constant @gol
338 -fstack-protector  -fstack-protector-all @gol
339 -fstrict-aliasing  -ftracer  -fthread-jumps @gol
340 -funroll-all-loops  -funroll-loops  -fpeel-loops @gol
341 -fsplit-ivs-in-unroller -funswitch-loops @gol
342 -fvariable-expansion-in-unroller @gol
343 -ftree-pre  -ftree-ccp  -ftree-dce -ftree-loop-optimize @gol
344 -ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts @gol
345 -ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink @gol
346 -ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize @gol
347 -ftree-vect-loop-version -ftree-salias -fipa-pta -fweb @gol
348 -ftree-copy-prop -ftree-store-ccp -ftree-store-copy-prop -fwhole-program @gol
349 --param @var{name}=@var{value}
350 -O  -O0  -O1  -O2  -O3  -Os}
352 @item Preprocessor Options
353 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
354 @gccoptlist{-A@var{question}=@var{answer} @gol
355 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
356 -C  -dD  -dI  -dM  -dN @gol
357 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
358 -idirafter @var{dir} @gol
359 -include @var{file}  -imacros @var{file} @gol
360 -iprefix @var{file}  -iwithprefix @var{dir} @gol
361 -iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
362 -imultilib @var{dir} -isysroot @var{dir} @gol
363 -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
364 -P  -fworking-directory  -remap @gol
365 -trigraphs  -undef  -U@var{macro}  -Wp,@var{option} @gol
366 -Xpreprocessor @var{option}}
368 @item Assembler Option
369 @xref{Assembler Options,,Passing Options to the Assembler}.
370 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
372 @item Linker Options
373 @xref{Link Options,,Options for Linking}.
374 @gccoptlist{@var{object-file-name}  -l@var{library} @gol
375 -nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
376 -s  -static  -static-libgcc  -shared  -shared-libgcc  -symbolic @gol
377 -Wl,@var{option}  -Xlinker @var{option} @gol
378 -u @var{symbol}}
380 @item Directory Options
381 @xref{Directory Options,,Options for Directory Search}.
382 @gccoptlist{-B@var{prefix}  -I@var{dir}  -iquote@var{dir}  -L@var{dir}
383 -specs=@var{file}  -I- --sysroot=@var{dir}}
385 @item Target Options
386 @c I wrote this xref this way to avoid overfull hbox. -- rms
387 @xref{Target Options}.
388 @gccoptlist{-V @var{version}  -b @var{machine}}
390 @item Machine Dependent Options
391 @xref{Submodel Options,,Hardware Models and Configurations}.
392 @c This list is ordered alphanumerically by subsection name.
393 @c Try and put the significant identifier (CPU or system) first,
394 @c so users have a clue at guessing where the ones they want will be.
396 @emph{ARC Options}
397 @gccoptlist{-EB  -EL @gol
398 -mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text-section} @gol
399 -mdata=@var{data-section}  -mrodata=@var{readonly-data-section}}
401 @emph{ARM Options}
402 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
403 -mabi=@var{name} @gol
404 -mapcs-stack-check  -mno-apcs-stack-check @gol
405 -mapcs-float  -mno-apcs-float @gol
406 -mapcs-reentrant  -mno-apcs-reentrant @gol
407 -msched-prolog  -mno-sched-prolog @gol
408 -mlittle-endian  -mbig-endian  -mwords-little-endian @gol
409 -mfloat-abi=@var{name}  -msoft-float  -mhard-float  -mfpe @gol
410 -mthumb-interwork  -mno-thumb-interwork @gol
411 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
412 -mstructure-size-boundary=@var{n} @gol
413 -mabort-on-noreturn @gol
414 -mlong-calls  -mno-long-calls @gol
415 -msingle-pic-base  -mno-single-pic-base @gol
416 -mpic-register=@var{reg} @gol
417 -mnop-fun-dllimport @gol
418 -mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns @gol
419 -mpoke-function-name @gol
420 -mthumb  -marm @gol
421 -mtpcs-frame  -mtpcs-leaf-frame @gol
422 -mcaller-super-interworking  -mcallee-super-interworking @gol
423 -mtp=@var{name}}
425 @emph{AVR Options}
426 @gccoptlist{-mmcu=@var{mcu}  -msize  -minit-stack=@var{n}  -mno-interrupts @gol
427 -mcall-prologues  -mno-tablejump  -mtiny-stack  -mint8}
429 @emph{Blackfin Options}
430 @gccoptlist{-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
431 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
432 -mlow-64k -mno-low64k -mid-shared-library @gol
433 -mno-id-shared-library -mshared-library-id=@var{n} @gol
434 -mlong-calls  -mno-long-calls}
436 @emph{CRIS Options}
437 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
438 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
439 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
440 -mstack-align  -mdata-align  -mconst-align @gol
441 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
442 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
443 -mmul-bug-workaround  -mno-mul-bug-workaround}
445 @emph{CRX Options}
446 @gccoptlist{-mmac -mpush-args}
448 @emph{Darwin Options}
449 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
450 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
451 -client_name  -compatibility_version  -current_version @gol
452 -dead_strip @gol
453 -dependency-file  -dylib_file  -dylinker_install_name @gol
454 -dynamic  -dynamiclib  -exported_symbols_list @gol
455 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
456 -force_flat_namespace  -headerpad_max_install_names @gol
457 -image_base  -init  -install_name  -keep_private_externs @gol
458 -multi_module  -multiply_defined  -multiply_defined_unused @gol
459 -noall_load   -no_dead_strip_inits_and_terms @gol
460 -nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
461 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
462 -private_bundle  -read_only_relocs  -sectalign @gol
463 -sectobjectsymbols  -whyload  -seg1addr @gol
464 -sectcreate  -sectobjectsymbols  -sectorder @gol
465 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
466 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
467 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
468 -single_module  -static  -sub_library  -sub_umbrella @gol
469 -twolevel_namespace  -umbrella  -undefined @gol
470 -unexported_symbols_list  -weak_reference_mismatches @gol
471 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
472 -mone-byte-bool}
474 @emph{DEC Alpha Options}
475 @gccoptlist{-mno-fp-regs  -msoft-float  -malpha-as  -mgas @gol
476 -mieee  -mieee-with-inexact  -mieee-conformant @gol
477 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
478 -mtrap-precision=@var{mode}  -mbuild-constants @gol
479 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
480 -mbwx  -mmax  -mfix  -mcix @gol
481 -mfloat-vax  -mfloat-ieee @gol
482 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
483 -msmall-text  -mlarge-text @gol
484 -mmemory-latency=@var{time}}
486 @emph{DEC Alpha/VMS Options}
487 @gccoptlist{-mvms-return-codes}
489 @emph{FRV Options}
490 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
491 -mhard-float  -msoft-float @gol
492 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
493 -mdouble  -mno-double @gol
494 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
495 -mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
496 -mlinked-fp  -mlong-calls  -malign-labels @gol
497 -mlibrary-pic  -macc-4  -macc-8 @gol
498 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
499 -moptimize-membar -mno-optimize-membar @gol
500 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
501 -mvliw-branch  -mno-vliw-branch @gol
502 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
503 -mno-nested-cond-exec  -mtomcat-stats @gol
504 -mTLS -mtls @gol
505 -mcpu=@var{cpu}}
507 @emph{GNU/Linux Options}
508 @gccoptlist{-muclibc}
510 @emph{H8/300 Options}
511 @gccoptlist{-mrelax  -mh  -ms  -mn  -mint32  -malign-300}
513 @emph{HPPA Options}
514 @gccoptlist{-march=@var{architecture-type} @gol
515 -mbig-switch  -mdisable-fpregs  -mdisable-indexing @gol
516 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
517 -mfixed-range=@var{register-range} @gol
518 -mjump-in-delay -mlinker-opt -mlong-calls @gol
519 -mlong-load-store  -mno-big-switch  -mno-disable-fpregs @gol
520 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
521 -mno-jump-in-delay  -mno-long-load-store @gol
522 -mno-portable-runtime  -mno-soft-float @gol
523 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
524 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
525 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
526 -munix=@var{unix-std}  -nolibdld  -static  -threads}
528 @emph{i386 and x86-64 Options}
529 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
530 -mfpmath=@var{unit} @gol
531 -masm=@var{dialect}  -mno-fancy-math-387 @gol
532 -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib @gol
533 -mno-wide-multiply  -mrtd  -malign-double @gol
534 -mpreferred-stack-boundary=@var{num} @gol
535 -mmmx  -msse  -msse2 -msse3 -m3dnow -msselibm @gol
536 -mthreads  -mno-align-stringops  -minline-all-stringops @gol
537 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
538 -m96bit-long-double  -mregparm=@var{num}  -msseregparm @gol
539 -momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
540 -mcmodel=@var{code-model} @gol
541 -m32  -m64 -mlarge-data-threshold=@var{num}}
543 @emph{IA-64 Options}
544 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
545 -mvolatile-asm-stop  -mregister-names  -mno-sdata @gol
546 -mconstant-gp  -mauto-pic  -minline-float-divide-min-latency @gol
547 -minline-float-divide-max-throughput @gol
548 -minline-int-divide-min-latency @gol
549 -minline-int-divide-max-throughput  @gol
550 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
551 -mno-dwarf2-asm -mearly-stop-bits @gol
552 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
553 -mtune=@var{cpu-type} -mt -pthread -milp32 -mlp64 @gol
554 -mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec @gol
555 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
556 -msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose @gol
557 -mno-sched-prefer-non-data-spec-insns @gol
558 -mno-sched-prefer-non-control-spec-insns @gol
559 -mno-sched-count-spec-in-critical-path}
561 @emph{M32R/D Options}
562 @gccoptlist{-m32r2 -m32rx -m32r @gol
563 -mdebug @gol
564 -malign-loops -mno-align-loops @gol
565 -missue-rate=@var{number} @gol
566 -mbranch-cost=@var{number} @gol
567 -mmodel=@var{code-size-model-type} @gol
568 -msdata=@var{sdata-type} @gol
569 -mno-flush-func -mflush-func=@var{name} @gol
570 -mno-flush-trap -mflush-trap=@var{number} @gol
571 -G @var{num}}
573 @emph{M32C Options}
574 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
576 @emph{M680x0 Options}
577 @gccoptlist{-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
578 -m68060  -mcpu32  -m5200  -mcfv4e -m68881  -mbitfield  @gol
579 -mc68000  -mc68020   @gol
580 -mnobitfield  -mrtd  -mshort  -msoft-float  -mpcrel @gol
581 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
582 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library}
584 @emph{M68hc1x Options}
585 @gccoptlist{-m6811  -m6812  -m68hc11  -m68hc12   -m68hcs12 @gol
586 -mauto-incdec  -minmax  -mlong-calls  -mshort @gol
587 -msoft-reg-count=@var{count}}
589 @emph{MCore Options}
590 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
591 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
592 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
593 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
594 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
596 @emph{MIPS Options}
597 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
598 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips64 @gol
599 -mips16  -mno-mips16  -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
600 -mshared  -mno-shared  -mxgot  -mno-xgot  -mgp32  -mgp64  @gol
601 -mfp32  -mfp64  -mhard-float  -msoft-float  @gol
602 -msingle-float  -mdouble-float  -mdsp  -mpaired-single  -mips3d @gol
603 -mlong64  -mlong32  -msym32  -mno-sym32 @gol
604 -G@var{num}  -membedded-data  -mno-embedded-data @gol
605 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
606 -msplit-addresses  -mno-split-addresses  @gol
607 -mexplicit-relocs  -mno-explicit-relocs  @gol
608 -mcheck-zero-division  -mno-check-zero-division @gol
609 -mdivide-traps  -mdivide-breaks @gol
610 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
611 -mmad  -mno-mad  -mfused-madd  -mno-fused-madd  -nocpp @gol
612 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
613 -mfix-vr4120  -mno-fix-vr4120  -mfix-vr4130 @gol
614 -mfix-sb1  -mno-fix-sb1 @gol
615 -mflush-func=@var{func}  -mno-flush-func @gol
616 -mbranch-likely  -mno-branch-likely @gol
617 -mfp-exceptions -mno-fp-exceptions @gol
618 -mvr4130-align -mno-vr4130-align}
620 @emph{MMIX Options}
621 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
622 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
623 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
624 -mno-base-addresses  -msingle-exit  -mno-single-exit}
626 @emph{MN10300 Options}
627 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
628 -mam33  -mno-am33 @gol
629 -mam33-2  -mno-am33-2 @gol
630 -mreturn-pointer-on-d0 @gol
631 -mno-crt0  -mrelax}
633 @emph{MT Options}
634 @gccoptlist{-mno-crt0 -mbacc -msim @gol
635 -march=@var{cpu-type} }
637 @emph{PDP-11 Options}
638 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
639 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
640 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
641 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
642 -mbranch-expensive  -mbranch-cheap @gol
643 -msplit  -mno-split  -munix-asm  -mdec-asm}
645 @emph{PowerPC Options}
646 See RS/6000 and PowerPC Options.
648 @emph{RS/6000 and PowerPC Options}
649 @gccoptlist{-mcpu=@var{cpu-type} @gol
650 -mtune=@var{cpu-type} @gol
651 -mpower  -mno-power  -mpower2  -mno-power2 @gol
652 -mpowerpc  -mpowerpc64  -mno-powerpc @gol
653 -maltivec  -mno-altivec @gol
654 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
655 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
656 -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mfprnd  -mno-fprnd @gol
657 -mnew-mnemonics  -mold-mnemonics @gol
658 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
659 -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
660 -malign-power  -malign-natural @gol
661 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
662 -mstring  -mno-string  -mupdate  -mno-update @gol
663 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
664 -mstrict-align  -mno-strict-align  -mrelocatable @gol
665 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
666 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
667 -mdynamic-no-pic  -maltivec  -mswdiv @gol
668 -mprioritize-restricted-insns=@var{priority} @gol
669 -msched-costly-dep=@var{dependence_type} @gol
670 -minsert-sched-nops=@var{scheme} @gol
671 -mcall-sysv  -mcall-netbsd @gol
672 -maix-struct-return  -msvr4-struct-return @gol
673 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
674 -misel -mno-isel @gol
675 -misel=yes  -misel=no @gol
676 -mspe -mno-spe @gol
677 -mspe=yes  -mspe=no @gol
678 -mvrsave -mno-vrsave @gol
679 -mmulhw -mno-mulhw @gol
680 -mdlmzb -mno-dlmzb @gol
681 -mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
682 -mprototype  -mno-prototype @gol
683 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
684 -msdata=@var{opt}  -mvxworks  -mwindiss  -G @var{num}  -pthread}
686 @emph{S/390 and zSeries Options}
687 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
688 -mhard-float  -msoft-float -mlong-double-64 -mlong-double-128 @gol
689 -mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
690 -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
691 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
692 -mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
693 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard}
695 @emph{SH Options}
696 @gccoptlist{-m1  -m2  -m2e  -m3  -m3e @gol
697 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
698 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
699 -m5-64media  -m5-64media-nofpu @gol
700 -m5-32media  -m5-32media-nofpu @gol
701 -m5-compact  -m5-compact-nofpu @gol
702 -mb  -ml  -mdalign  -mrelax @gol
703 -mbigtable  -mfmovd  -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
704 -mieee  -misize  -mpadstruct  -mspace @gol
705 -mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
706 -mdivsi3_libfunc=@var{name}  @gol
707 -madjust-unroll -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
708  -minvalid-symbols}
710 @emph{SPARC Options}
711 @gccoptlist{-mcpu=@var{cpu-type} @gol
712 -mtune=@var{cpu-type} @gol
713 -mcmodel=@var{code-model} @gol
714 -m32  -m64  -mapp-regs  -mno-app-regs @gol
715 -mfaster-structs  -mno-faster-structs @gol
716 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
717 -mhard-quad-float  -msoft-quad-float @gol
718 -mimpure-text  -mno-impure-text  -mlittle-endian @gol
719 -mstack-bias  -mno-stack-bias @gol
720 -munaligned-doubles  -mno-unaligned-doubles @gol
721 -mv8plus  -mno-v8plus  -mvis  -mno-vis
722 -threads -pthreads -pthread}
724 @emph{System V Options}
725 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
727 @emph{TMS320C3x/C4x Options}
728 @gccoptlist{-mcpu=@var{cpu}  -mbig  -msmall  -mregparm  -mmemparm @gol
729 -mfast-fix  -mmpyi  -mbk  -mti  -mdp-isr-reload @gol
730 -mrpts=@var{count}  -mrptb  -mdb  -mloop-unsigned @gol
731 -mparallel-insns  -mparallel-mpy  -mpreserve-float}
733 @emph{V850 Options}
734 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
735 -mprolog-function  -mno-prolog-function  -mspace @gol
736 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
737 -mapp-regs  -mno-app-regs @gol
738 -mdisable-callt  -mno-disable-callt @gol
739 -mv850e1 @gol
740 -mv850e @gol
741 -mv850  -mbig-switch}
743 @emph{VAX Options}
744 @gccoptlist{-mg  -mgnu  -munix}
746 @emph{x86-64 Options}
747 See i386 and x86-64 Options.
749 @emph{Xstormy16 Options}
750 @gccoptlist{-msim}
752 @emph{Xtensa Options}
753 @gccoptlist{-mconst16 -mno-const16 @gol
754 -mfused-madd  -mno-fused-madd @gol
755 -mtext-section-literals  -mno-text-section-literals @gol
756 -mtarget-align  -mno-target-align @gol
757 -mlongcalls  -mno-longcalls}
759 @emph{zSeries Options}
760 See S/390 and zSeries Options.
762 @item Code Generation Options
763 @xref{Code Gen Options,,Options for Code Generation Conventions}.
764 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
765 -ffixed-@var{reg}  -fexceptions @gol
766 -fnon-call-exceptions  -funwind-tables @gol
767 -fasynchronous-unwind-tables @gol
768 -finhibit-size-directive  -finstrument-functions @gol
769 -fno-common  -fno-ident @gol
770 -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
771 -fno-jump-tables @gol
772 -freg-struct-return  -fshort-enums @gol
773 -fshort-double  -fshort-wchar @gol
774 -fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
775 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
776 -fargument-alias  -fargument-noalias @gol
777 -fargument-noalias-global  -fargument-noalias-anything
778 -fleading-underscore  -ftls-model=@var{model} @gol
779 -ftrapv  -fwrapv  -fbounds-check @gol
780 -fvisibility  -fopenmp}
781 @end table
783 @menu
784 * Overall Options::     Controlling the kind of output:
785                         an executable, object files, assembler files,
786                         or preprocessed source.
787 * C Dialect Options::   Controlling the variant of C language compiled.
788 * C++ Dialect Options:: Variations on C++.
789 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
790                         and Objective-C++.
791 * Language Independent Options:: Controlling how diagnostics should be
792                         formatted.
793 * Warning Options::     How picky should the compiler be?
794 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
795 * Optimize Options::    How much optimization?
796 * Preprocessor Options:: Controlling header files and macro definitions.
797                          Also, getting dependency information for Make.
798 * Assembler Options::   Passing options to the assembler.
799 * Link Options::        Specifying libraries and so on.
800 * Directory Options::   Where to find header files and libraries.
801                         Where to find the compiler executable files.
802 * Spec Files::          How to pass switches to sub-processes.
803 * Target Options::      Running a cross-compiler, or an old version of GCC.
804 @end menu
806 @node Overall Options
807 @section Options Controlling the Kind of Output
809 Compilation can involve up to four stages: preprocessing, compilation
810 proper, assembly and linking, always in that order.  GCC is capable of
811 preprocessing and compiling several files either into several
812 assembler input files, or into one assembler input file; then each
813 assembler input file produces an object file, and linking combines all
814 the object files (those newly compiled, and those specified as input)
815 into an executable file.
817 @cindex file name suffix
818 For any given input file, the file name suffix determines what kind of
819 compilation is done:
821 @table @gcctabopt
822 @item @var{file}.c
823 C source code which must be preprocessed.
825 @item @var{file}.i
826 C source code which should not be preprocessed.
828 @item @var{file}.ii
829 C++ source code which should not be preprocessed.
831 @item @var{file}.m
832 Objective-C source code.  Note that you must link with the @file{libobjc}
833 library to make an Objective-C program work.
835 @item @var{file}.mi
836 Objective-C source code which should not be preprocessed.
838 @item @var{file}.mm
839 @itemx @var{file}.M
840 Objective-C++ source code.  Note that you must link with the @file{libobjc}
841 library to make an Objective-C++ program work.  Note that @samp{.M} refers
842 to a literal capital M@.
844 @item @var{file}.mii
845 Objective-C++ source code which should not be preprocessed.
847 @item @var{file}.h
848 C, C++, Objective-C or Objective-C++ header file to be turned into a
849 precompiled header.
851 @item @var{file}.cc
852 @itemx @var{file}.cp
853 @itemx @var{file}.cxx
854 @itemx @var{file}.cpp
855 @itemx @var{file}.CPP
856 @itemx @var{file}.c++
857 @itemx @var{file}.C
858 C++ source code which must be preprocessed.  Note that in @samp{.cxx},
859 the last two letters must both be literally @samp{x}.  Likewise,
860 @samp{.C} refers to a literal capital C@.
862 @item @var{file}.mm
863 @itemx @var{file}.M
864 Objective-C++ source code which must be preprocessed.
866 @item @var{file}.mii
867 Objective-C++ source code which should not be preprocessed.
869 @item @var{file}.hh
870 @itemx @var{file}.H
871 C++ header file to be turned into a precompiled header.
873 @item @var{file}.f
874 @itemx @var{file}.for
875 @itemx @var{file}.FOR
876 Fixed form Fortran source code which should not be preprocessed.
878 @item @var{file}.F
879 @itemx @var{file}.fpp
880 @itemx @var{file}.FPP
881 Fixed form Fortran source code which must be preprocessed (with the traditional
882 preprocessor).
884 @item @var{file}.f90
885 @itemx @var{file}.f95
886 Free form Fortran source code which should not be preprocessed.
888 @item @var{file}.F90
889 @itemx @var{file}.F95
890 Free form Fortran source code which must be preprocessed (with the
891 traditional preprocessor).
893 @c FIXME: Descriptions of Java file types.
894 @c @var{file}.java
895 @c @var{file}.class
896 @c @var{file}.zip
897 @c @var{file}.jar
899 @item @var{file}.ads
900 Ada source code file which contains a library unit declaration (a
901 declaration of a package, subprogram, or generic, or a generic
902 instantiation), or a library unit renaming declaration (a package,
903 generic, or subprogram renaming declaration).  Such files are also
904 called @dfn{specs}.
906 @itemx @var{file}.adb
907 Ada source code file containing a library unit body (a subprogram or
908 package body).  Such files are also called @dfn{bodies}.
910 @c GCC also knows about some suffixes for languages not yet included:
911 @c Pascal:
912 @c @var{file}.p
913 @c @var{file}.pas
914 @c Ratfor:
915 @c @var{file}.r
917 @item @var{file}.s
918 Assembler code.
920 @item @var{file}.S
921 Assembler code which must be preprocessed.
923 @item @var{other}
924 An object file to be fed straight into linking.
925 Any file name with no recognized suffix is treated this way.
926 @end table
928 @opindex x
929 You can specify the input language explicitly with the @option{-x} option:
931 @table @gcctabopt
932 @item -x @var{language}
933 Specify explicitly the @var{language} for the following input files
934 (rather than letting the compiler choose a default based on the file
935 name suffix).  This option applies to all following input files until
936 the next @option{-x} option.  Possible values for @var{language} are:
937 @smallexample
938 c  c-header  c-cpp-output
939 c++  c++-header  c++-cpp-output
940 objective-c  objective-c-header  objective-c-cpp-output
941 objective-c++ objective-c++-header objective-c++-cpp-output
942 assembler  assembler-with-cpp
944 f77  f77-cpp-input
945 f95  f95-cpp-input
946 java
947 treelang
948 @end smallexample
950 @item -x none
951 Turn off any specification of a language, so that subsequent files are
952 handled according to their file name suffixes (as they are if @option{-x}
953 has not been used at all).
955 @item -pass-exit-codes
956 @opindex pass-exit-codes
957 Normally the @command{gcc} program will exit with the code of 1 if any
958 phase of the compiler returns a non-success return code.  If you specify
959 @option{-pass-exit-codes}, the @command{gcc} program will instead return with
960 numerically highest error produced by any phase that returned an error
961 indication.  The C, C++, and Fortran frontends return 4, if an internal
962 compiler error is encountered.
963 @end table
965 If you only want some of the stages of compilation, you can use
966 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
967 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
968 @command{gcc} is to stop.  Note that some combinations (for example,
969 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
971 @table @gcctabopt
972 @item -c
973 @opindex c
974 Compile or assemble the source files, but do not link.  The linking
975 stage simply is not done.  The ultimate output is in the form of an
976 object file for each source file.
978 By default, the object file name for a source file is made by replacing
979 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
981 Unrecognized input files, not requiring compilation or assembly, are
982 ignored.
984 @item -S
985 @opindex S
986 Stop after the stage of compilation proper; do not assemble.  The output
987 is in the form of an assembler code file for each non-assembler input
988 file specified.
990 By default, the assembler file name for a source file is made by
991 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
993 Input files that don't require compilation are ignored.
995 @item -E
996 @opindex E
997 Stop after the preprocessing stage; do not run the compiler proper.  The
998 output is in the form of preprocessed source code, which is sent to the
999 standard output.
1001 Input files which don't require preprocessing are ignored.
1003 @cindex output file option
1004 @item -o @var{file}
1005 @opindex o
1006 Place output in file @var{file}.  This applies regardless to whatever
1007 sort of output is being produced, whether it be an executable file,
1008 an object file, an assembler file or preprocessed C code.
1010 If @option{-o} is not specified, the default is to put an executable
1011 file in @file{a.out}, the object file for
1012 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1013 assembler file in @file{@var{source}.s}, a precompiled header file in
1014 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1015 standard output.
1017 @item -v
1018 @opindex v
1019 Print (on standard error output) the commands executed to run the stages
1020 of compilation.  Also print the version number of the compiler driver
1021 program and of the preprocessor and the compiler proper.
1023 @item -###
1024 @opindex ###
1025 Like @option{-v} except the commands are not executed and all command
1026 arguments are quoted.  This is useful for shell scripts to capture the
1027 driver-generated command lines.
1029 @item -pipe
1030 @opindex pipe
1031 Use pipes rather than temporary files for communication between the
1032 various stages of compilation.  This fails to work on some systems where
1033 the assembler is unable to read from a pipe; but the GNU assembler has
1034 no trouble.
1036 @item -combine
1037 @opindex combine
1038 If you are compiling multiple source files, this option tells the driver
1039 to pass all the source files to the compiler at once (for those
1040 languages for which the compiler can handle this).  This will allow
1041 intermodule analysis (IMA) to be performed by the compiler.  Currently the only
1042 language for which this is supported is C@.  If you pass source files for
1043 multiple languages to the driver, using this option, the driver will invoke
1044 the compiler(s) that support IMA once each, passing each compiler all the
1045 source files appropriate for it.  For those languages that do not support
1046 IMA this option will be ignored, and the compiler will be invoked once for
1047 each source file in that language.  If you use this option in conjunction
1048 with @option{-save-temps}, the compiler will generate multiple
1049 pre-processed files
1050 (one for each source file), but only one (combined) @file{.o} or
1051 @file{.s} file.
1053 @item --help
1054 @opindex help
1055 Print (on the standard output) a description of the command line options
1056 understood by @command{gcc}.  If the @option{-v} option is also specified
1057 then @option{--help} will also be passed on to the various processes
1058 invoked by @command{gcc}, so that they can display the command line options
1059 they accept.  If the @option{-Wextra} option is also specified then command
1060 line options which have no documentation associated with them will also
1061 be displayed.
1063 @item --target-help
1064 @opindex target-help
1065 Print (on the standard output) a description of target specific command
1066 line options for each tool.
1068 @item --version
1069 @opindex version
1070 Display the version number and copyrights of the invoked GCC@.
1072 @include @value{srcdir}/../libiberty/at-file.texi
1073 @end table
1075 @node Invoking G++
1076 @section Compiling C++ Programs
1078 @cindex suffixes for C++ source
1079 @cindex C++ source file suffixes
1080 C++ source files conventionally use one of the suffixes @samp{.C},
1081 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1082 @samp{.cxx}; C++ header files often use @samp{.hh} or @samp{.H}; and
1083 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1084 files with these names and compiles them as C++ programs even if you
1085 call the compiler the same way as for compiling C programs (usually
1086 with the name @command{gcc}).
1088 @findex g++
1089 @findex c++
1090 However, C++ programs often require class libraries as well as a
1091 compiler that understands the C++ language---and under some
1092 circumstances, you might want to compile programs or header files from
1093 standard input, or otherwise without a suffix that flags them as C++
1094 programs.  You might also like to precompile a C header file with a
1095 @samp{.h} extension to be used in C++ compilations.  @command{g++} is a
1096 program that calls GCC with the default language set to C++, and
1097 automatically specifies linking against the C++ library.  On many
1098 systems, @command{g++} is also installed with the name @command{c++}.
1100 @cindex invoking @command{g++}
1101 When you compile C++ programs, you may specify many of the same
1102 command-line options that you use for compiling programs in any
1103 language; or command-line options meaningful for C and related
1104 languages; or options that are meaningful only for C++ programs.
1105 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1106 explanations of options for languages related to C@.
1107 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1108 explanations of options that are meaningful only for C++ programs.
1110 @node C Dialect Options
1111 @section Options Controlling C Dialect
1112 @cindex dialect options
1113 @cindex language dialect options
1114 @cindex options, dialect
1116 The following options control the dialect of C (or languages derived
1117 from C, such as C++, Objective-C and Objective-C++) that the compiler
1118 accepts:
1120 @table @gcctabopt
1121 @cindex ANSI support
1122 @cindex ISO support
1123 @item -ansi
1124 @opindex ansi
1125 In C mode, support all ISO C90 programs.  In C++ mode,
1126 remove GNU extensions that conflict with ISO C++.
1128 This turns off certain features of GCC that are incompatible with ISO
1129 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1130 such as the @code{asm} and @code{typeof} keywords, and
1131 predefined macros such as @code{unix} and @code{vax} that identify the
1132 type of system you are using.  It also enables the undesirable and
1133 rarely used ISO trigraph feature.  For the C compiler,
1134 it disables recognition of C++ style @samp{//} comments as well as
1135 the @code{inline} keyword.
1137 The alternate keywords @code{__asm__}, @code{__extension__},
1138 @code{__inline__} and @code{__typeof__} continue to work despite
1139 @option{-ansi}.  You would not want to use them in an ISO C program, of
1140 course, but it is useful to put them in header files that might be included
1141 in compilations done with @option{-ansi}.  Alternate predefined macros
1142 such as @code{__unix__} and @code{__vax__} are also available, with or
1143 without @option{-ansi}.
1145 The @option{-ansi} option does not cause non-ISO programs to be
1146 rejected gratuitously.  For that, @option{-pedantic} is required in
1147 addition to @option{-ansi}.  @xref{Warning Options}.
1149 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1150 option is used.  Some header files may notice this macro and refrain
1151 from declaring certain functions or defining certain macros that the
1152 ISO standard doesn't call for; this is to avoid interfering with any
1153 programs that might use these names for other things.
1155 Functions which would normally be built in but do not have semantics
1156 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1157 functions with @option{-ansi} is used.  @xref{Other Builtins,,Other
1158 built-in functions provided by GCC}, for details of the functions
1159 affected.
1161 @item -std=
1162 @opindex std
1163 Determine the language standard.  This option is currently only
1164 supported when compiling C or C++.  A value for this option must be
1165 provided; possible values are
1167 @table @samp
1168 @item c89
1169 @itemx iso9899:1990
1170 ISO C90 (same as @option{-ansi}).
1172 @item iso9899:199409
1173 ISO C90 as modified in amendment 1.
1175 @item c99
1176 @itemx c9x
1177 @itemx iso9899:1999
1178 @itemx iso9899:199x
1179 ISO C99.  Note that this standard is not yet fully supported; see
1180 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1181 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1183 @item gnu89
1184 Default, ISO C90 plus GNU extensions (including some C99 features).
1186 @item gnu99
1187 @itemx gnu9x
1188 ISO C99 plus GNU extensions.  When ISO C99 is fully implemented in GCC,
1189 this will become the default.  The name @samp{gnu9x} is deprecated.
1191 @item c++98
1192 The 1998 ISO C++ standard plus amendments.
1194 @item gnu++98
1195 The same as @option{-std=c++98} plus GNU extensions.  This is the
1196 default for C++ code.
1197 @end table
1199 Even when this option is not specified, you can still use some of the
1200 features of newer standards in so far as they do not conflict with
1201 previous C standards.  For example, you may use @code{__restrict__} even
1202 when @option{-std=c99} is not specified.
1204 The @option{-std} options specifying some version of ISO C have the same
1205 effects as @option{-ansi}, except that features that were not in ISO C90
1206 but are in the specified version (for example, @samp{//} comments and
1207 the @code{inline} keyword in ISO C99) are not disabled.
1209 @xref{Standards,,Language Standards Supported by GCC}, for details of
1210 these standard versions.
1212 @item -aux-info @var{filename}
1213 @opindex aux-info
1214 Output to the given filename prototyped declarations for all functions
1215 declared and/or defined in a translation unit, including those in header
1216 files.  This option is silently ignored in any language other than C@.
1218 Besides declarations, the file indicates, in comments, the origin of
1219 each declaration (source file and line), whether the declaration was
1220 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1221 @samp{O} for old, respectively, in the first character after the line
1222 number and the colon), and whether it came from a declaration or a
1223 definition (@samp{C} or @samp{F}, respectively, in the following
1224 character).  In the case of function definitions, a K&R-style list of
1225 arguments followed by their declarations is also provided, inside
1226 comments, after the declaration.
1228 @item -fno-asm
1229 @opindex fno-asm
1230 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1231 keyword, so that code can use these words as identifiers.  You can use
1232 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1233 instead.  @option{-ansi} implies @option{-fno-asm}.
1235 In C++, this switch only affects the @code{typeof} keyword, since
1236 @code{asm} and @code{inline} are standard keywords.  You may want to
1237 use the @option{-fno-gnu-keywords} flag instead, which has the same
1238 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1239 switch only affects the @code{asm} and @code{typeof} keywords, since
1240 @code{inline} is a standard keyword in ISO C99.
1242 @item -fno-builtin
1243 @itemx -fno-builtin-@var{function}
1244 @opindex fno-builtin
1245 @cindex built-in functions
1246 Don't recognize built-in functions that do not begin with
1247 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1248 functions provided by GCC}, for details of the functions affected,
1249 including those which are not built-in functions when @option{-ansi} or
1250 @option{-std} options for strict ISO C conformance are used because they
1251 do not have an ISO standard meaning.
1253 GCC normally generates special code to handle certain built-in functions
1254 more efficiently; for instance, calls to @code{alloca} may become single
1255 instructions that adjust the stack directly, and calls to @code{memcpy}
1256 may become inline copy loops.  The resulting code is often both smaller
1257 and faster, but since the function calls no longer appear as such, you
1258 cannot set a breakpoint on those calls, nor can you change the behavior
1259 of the functions by linking with a different library.  In addition,
1260 when a function is recognized as a built-in function, GCC may use
1261 information about that function to warn about problems with calls to
1262 that function, or to generate more efficient code, even if the
1263 resulting code still contains calls to that function.  For example,
1264 warnings are given with @option{-Wformat} for bad calls to
1265 @code{printf}, when @code{printf} is built in, and @code{strlen} is
1266 known not to modify global memory.
1268 With the @option{-fno-builtin-@var{function}} option
1269 only the built-in function @var{function} is
1270 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1271 function is named this is not built-in in this version of GCC, this
1272 option is ignored.  There is no corresponding
1273 @option{-fbuiltin-@var{function}} option; if you wish to enable
1274 built-in functions selectively when using @option{-fno-builtin} or
1275 @option{-ffreestanding}, you may define macros such as:
1277 @smallexample
1278 #define abs(n)          __builtin_abs ((n))
1279 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
1280 @end smallexample
1282 @item -fhosted
1283 @opindex fhosted
1284 @cindex hosted environment
1286 Assert that compilation takes place in a hosted environment.  This implies
1287 @option{-fbuiltin}.  A hosted environment is one in which the
1288 entire standard library is available, and in which @code{main} has a return
1289 type of @code{int}.  Examples are nearly everything except a kernel.
1290 This is equivalent to @option{-fno-freestanding}.
1292 @item -ffreestanding
1293 @opindex ffreestanding
1294 @cindex hosted environment
1296 Assert that compilation takes place in a freestanding environment.  This
1297 implies @option{-fno-builtin}.  A freestanding environment
1298 is one in which the standard library may not exist, and program startup may
1299 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1300 This is equivalent to @option{-fno-hosted}.
1302 @xref{Standards,,Language Standards Supported by GCC}, for details of
1303 freestanding and hosted environments.
1305 @item -fms-extensions
1306 @opindex fms-extensions
1307 Accept some non-standard constructs used in Microsoft header files.
1309 Some cases of unnamed fields in structures and unions are only
1310 accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
1311 fields within structs/unions}, for details.
1313 @item -trigraphs
1314 @opindex trigraphs
1315 Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
1316 options for strict ISO C conformance) implies @option{-trigraphs}.
1318 @item -no-integrated-cpp
1319 @opindex no-integrated-cpp
1320 Performs a compilation in two passes: preprocessing and compiling.  This
1321 option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
1322 @option{-B} option.  The user supplied compilation step can then add in
1323 an additional preprocessing step after normal preprocessing but before
1324 compiling.  The default is to use the integrated cpp (internal cpp)
1326 The semantics of this option will change if "cc1", "cc1plus", and
1327 "cc1obj" are merged.
1329 @cindex traditional C language
1330 @cindex C language, traditional
1331 @item -traditional
1332 @itemx -traditional-cpp
1333 @opindex traditional-cpp
1334 @opindex traditional
1335 Formerly, these options caused GCC to attempt to emulate a pre-standard
1336 C compiler.  They are now only supported with the @option{-E} switch.
1337 The preprocessor continues to support a pre-standard mode.  See the GNU
1338 CPP manual for details.
1340 @item -fcond-mismatch
1341 @opindex fcond-mismatch
1342 Allow conditional expressions with mismatched types in the second and
1343 third arguments.  The value of such an expression is void.  This option
1344 is not supported for C++.
1346 @item -funsigned-char
1347 @opindex funsigned-char
1348 Let the type @code{char} be unsigned, like @code{unsigned char}.
1350 Each kind of machine has a default for what @code{char} should
1351 be.  It is either like @code{unsigned char} by default or like
1352 @code{signed char} by default.
1354 Ideally, a portable program should always use @code{signed char} or
1355 @code{unsigned char} when it depends on the signedness of an object.
1356 But many programs have been written to use plain @code{char} and
1357 expect it to be signed, or expect it to be unsigned, depending on the
1358 machines they were written for.  This option, and its inverse, let you
1359 make such a program work with the opposite default.
1361 The type @code{char} is always a distinct type from each of
1362 @code{signed char} or @code{unsigned char}, even though its behavior
1363 is always just like one of those two.
1365 @item -fsigned-char
1366 @opindex fsigned-char
1367 Let the type @code{char} be signed, like @code{signed char}.
1369 Note that this is equivalent to @option{-fno-unsigned-char}, which is
1370 the negative form of @option{-funsigned-char}.  Likewise, the option
1371 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
1373 @item -fsigned-bitfields
1374 @itemx -funsigned-bitfields
1375 @itemx -fno-signed-bitfields
1376 @itemx -fno-unsigned-bitfields
1377 @opindex fsigned-bitfields
1378 @opindex funsigned-bitfields
1379 @opindex fno-signed-bitfields
1380 @opindex fno-unsigned-bitfields
1381 These options control whether a bit-field is signed or unsigned, when the
1382 declaration does not use either @code{signed} or @code{unsigned}.  By
1383 default, such a bit-field is signed, because this is consistent: the
1384 basic integer types such as @code{int} are signed types.
1385 @end table
1387 @node C++ Dialect Options
1388 @section Options Controlling C++ Dialect
1390 @cindex compiler options, C++
1391 @cindex C++ options, command line
1392 @cindex options, C++
1393 This section describes the command-line options that are only meaningful
1394 for C++ programs; but you can also use most of the GNU compiler options
1395 regardless of what language your program is in.  For example, you
1396 might compile a file @code{firstClass.C} like this:
1398 @smallexample
1399 g++ -g -frepo -O -c firstClass.C
1400 @end smallexample
1402 @noindent
1403 In this example, only @option{-frepo} is an option meant
1404 only for C++ programs; you can use the other options with any
1405 language supported by GCC@.
1407 Here is a list of options that are @emph{only} for compiling C++ programs:
1409 @table @gcctabopt
1411 @item -fabi-version=@var{n}
1412 @opindex fabi-version
1413 Use version @var{n} of the C++ ABI@.  Version 2 is the version of the
1414 C++ ABI that first appeared in G++ 3.4.  Version 1 is the version of
1415 the C++ ABI that first appeared in G++ 3.2.  Version 0 will always be
1416 the version that conforms most closely to the C++ ABI specification.
1417 Therefore, the ABI obtained using version 0 will change as ABI bugs
1418 are fixed.
1420 The default is version 2.
1422 @item -fno-access-control
1423 @opindex fno-access-control
1424 Turn off all access checking.  This switch is mainly useful for working
1425 around bugs in the access control code.
1427 @item -fcheck-new
1428 @opindex fcheck-new
1429 Check that the pointer returned by @code{operator new} is non-null
1430 before attempting to modify the storage allocated.  This check is
1431 normally unnecessary because the C++ standard specifies that
1432 @code{operator new} will only return @code{0} if it is declared
1433 @samp{throw()}, in which case the compiler will always check the
1434 return value even without this option.  In all other cases, when
1435 @code{operator new} has a non-empty exception specification, memory
1436 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
1437 @samp{new (nothrow)}.
1439 @item -fconserve-space
1440 @opindex fconserve-space
1441 Put uninitialized or runtime-initialized global variables into the
1442 common segment, as C does.  This saves space in the executable at the
1443 cost of not diagnosing duplicate definitions.  If you compile with this
1444 flag and your program mysteriously crashes after @code{main()} has
1445 completed, you may have an object that is being destroyed twice because
1446 two definitions were merged.
1448 This option is no longer useful on most targets, now that support has
1449 been added for putting variables into BSS without making them common.
1451 @item -ffriend-injection
1452 @opindex ffriend-injection
1453 Inject friend functions into the enclosing namespace, so that they are
1454 visible outside the scope of the class in which they are declared.
1455 Friend functions were documented to work this way in the old Annotated
1456 C++ Reference Manual, and versions of G++ before 4.1 always worked
1457 that way.  However, in ISO C++ a friend function which is not declared
1458 in an enclosing scope can only be found using argument dependent
1459 lookup.  This option causes friends to be injected as they were in
1460 earlier releases.
1462 This option is for compatibility, and may be removed in a future
1463 release of G++.
1465 @item -fno-elide-constructors
1466 @opindex fno-elide-constructors
1467 The C++ standard allows an implementation to omit creating a temporary
1468 which is only used to initialize another object of the same type.
1469 Specifying this option disables that optimization, and forces G++ to
1470 call the copy constructor in all cases.
1472 @item -fno-enforce-eh-specs
1473 @opindex fno-enforce-eh-specs
1474 Don't generate code to check for violation of exception specifications
1475 at runtime.  This option violates the C++ standard, but may be useful
1476 for reducing code size in production builds, much like defining
1477 @samp{NDEBUG}.  This does not give user code permission to throw
1478 exceptions in violation of the exception specifications; the compiler
1479 will still optimize based on the specifications, so throwing an
1480 unexpected exception will result in undefined behavior.
1482 @item -ffor-scope
1483 @itemx -fno-for-scope
1484 @opindex ffor-scope
1485 @opindex fno-for-scope
1486 If @option{-ffor-scope} is specified, the scope of variables declared in
1487 a @i{for-init-statement} is limited to the @samp{for} loop itself,
1488 as specified by the C++ standard.
1489 If @option{-fno-for-scope} is specified, the scope of variables declared in
1490 a @i{for-init-statement} extends to the end of the enclosing scope,
1491 as was the case in old versions of G++, and other (traditional)
1492 implementations of C++.
1494 The default if neither flag is given to follow the standard,
1495 but to allow and give a warning for old-style code that would
1496 otherwise be invalid, or have different behavior.
1498 @item -fno-gnu-keywords
1499 @opindex fno-gnu-keywords
1500 Do not recognize @code{typeof} as a keyword, so that code can use this
1501 word as an identifier.  You can use the keyword @code{__typeof__} instead.
1502 @option{-ansi} implies @option{-fno-gnu-keywords}.
1504 @item -fno-implicit-templates
1505 @opindex fno-implicit-templates
1506 Never emit code for non-inline templates which are instantiated
1507 implicitly (i.e.@: by use); only emit code for explicit instantiations.
1508 @xref{Template Instantiation}, for more information.
1510 @item -fno-implicit-inline-templates
1511 @opindex fno-implicit-inline-templates
1512 Don't emit code for implicit instantiations of inline templates, either.
1513 The default is to handle inlines differently so that compiles with and
1514 without optimization will need the same set of explicit instantiations.
1516 @item -fno-implement-inlines
1517 @opindex fno-implement-inlines
1518 To save space, do not emit out-of-line copies of inline functions
1519 controlled by @samp{#pragma implementation}.  This will cause linker
1520 errors if these functions are not inlined everywhere they are called.
1522 @item -fms-extensions
1523 @opindex fms-extensions
1524 Disable pedantic warnings about constructs used in MFC, such as implicit
1525 int and getting a pointer to member function via non-standard syntax.
1527 @item -fno-nonansi-builtins
1528 @opindex fno-nonansi-builtins
1529 Disable built-in declarations of functions that are not mandated by
1530 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
1531 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
1533 @item -fno-operator-names
1534 @opindex fno-operator-names
1535 Do not treat the operator name keywords @code{and}, @code{bitand},
1536 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
1537 synonyms as keywords.
1539 @item -fno-optional-diags
1540 @opindex fno-optional-diags
1541 Disable diagnostics that the standard says a compiler does not need to
1542 issue.  Currently, the only such diagnostic issued by G++ is the one for
1543 a name having multiple meanings within a class.
1545 @item -fpermissive
1546 @opindex fpermissive
1547 Downgrade some diagnostics about nonconformant code from errors to
1548 warnings.  Thus, using @option{-fpermissive} will allow some
1549 nonconforming code to compile.
1551 @item -frepo
1552 @opindex frepo
1553 Enable automatic template instantiation at link time.  This option also
1554 implies @option{-fno-implicit-templates}.  @xref{Template
1555 Instantiation}, for more information.
1557 @item -fno-rtti
1558 @opindex fno-rtti
1559 Disable generation of information about every class with virtual
1560 functions for use by the C++ runtime type identification features
1561 (@samp{dynamic_cast} and @samp{typeid}).  If you don't use those parts
1562 of the language, you can save some space by using this flag.  Note that
1563 exception handling uses the same information, but it will generate it as
1564 needed.
1566 @item -fstats
1567 @opindex fstats
1568 Emit statistics about front-end processing at the end of the compilation.
1569 This information is generally only useful to the G++ development team.
1571 @item -ftemplate-depth-@var{n}
1572 @opindex ftemplate-depth
1573 Set the maximum instantiation depth for template classes to @var{n}.
1574 A limit on the template instantiation depth is needed to detect
1575 endless recursions during template class instantiation.  ANSI/ISO C++
1576 conforming programs must not rely on a maximum depth greater than 17.
1578 @item -fno-threadsafe-statics
1579 @opindex fno-threadsafe-statics
1580 Do not emit the extra code to use the routines specified in the C++
1581 ABI for thread-safe initialization of local statics.  You can use this
1582 option to reduce code size slightly in code that doesn't need to be
1583 thread-safe.
1585 @item -fuse-cxa-atexit
1586 @opindex fuse-cxa-atexit
1587 Register destructors for objects with static storage duration with the
1588 @code{__cxa_atexit} function rather than the @code{atexit} function.
1589 This option is required for fully standards-compliant handling of static
1590 destructors, but will only work if your C library supports
1591 @code{__cxa_atexit}.
1593 @item -fno-use-cxa-get-exception-ptr
1594 @opindex fno-use-cxa-get-exception-ptr
1595 Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
1596 will cause @code{std::uncaught_exception} to be incorrect, but is necessary
1597 if the runtime routine is not available.
1599 @item -fvisibility-inlines-hidden
1600 @opindex fvisibility-inlines-hidden
1601 This switch declares that the user does not attempt to compare
1602 pointers to inline methods where the addresses of the two functions
1603 were taken in different shared objects.
1605 The effect of this is that GCC may, effectively, mark inline methods with
1606 @code{__attribute__ ((visibility ("hidden")))} so that they do not
1607 appear in the export table of a DSO and do not require a PLT indirection
1608 when used within the DSO@.  Enabling this option can have a dramatic effect
1609 on load and link times of a DSO as it massively reduces the size of the
1610 dynamic export table when the library makes heavy use of templates.
1612 The behaviour of this switch is not quite the same as marking the
1613 methods as hidden directly.  Normally if there is a class with default
1614 visibility which has a hidden method, the effect of this is that the
1615 method must be defined in only one shared object.  This switch does
1616 not have this restriction.
1618 You may mark a method as having a visibility explicitly to negate the
1619 effect of the switch for that method.  For example, if you do want to
1620 compare pointers to a particular inline method, you might mark it as
1621 having default visibility.
1623 @item -fno-weak
1624 @opindex fno-weak
1625 Do not use weak symbol support, even if it is provided by the linker.
1626 By default, G++ will use weak symbols if they are available.  This
1627 option exists only for testing, and should not be used by end-users;
1628 it will result in inferior code and has no benefits.  This option may
1629 be removed in a future release of G++.
1631 @item -nostdinc++
1632 @opindex nostdinc++
1633 Do not search for header files in the standard directories specific to
1634 C++, but do still search the other standard directories.  (This option
1635 is used when building the C++ library.)
1636 @end table
1638 In addition, these optimization, warning, and code generation options
1639 have meanings only for C++ programs:
1641 @table @gcctabopt
1642 @item -fno-default-inline
1643 @opindex fno-default-inline
1644 Do not assume @samp{inline} for functions defined inside a class scope.
1645 @xref{Optimize Options,,Options That Control Optimization}.  Note that these
1646 functions will have linkage like inline functions; they just won't be
1647 inlined by default.
1649 @item -Wabi @r{(C++ only)}
1650 @opindex Wabi
1651 Warn when G++ generates code that is probably not compatible with the
1652 vendor-neutral C++ ABI@.  Although an effort has been made to warn about
1653 all such cases, there are probably some cases that are not warned about,
1654 even though G++ is generating incompatible code.  There may also be
1655 cases where warnings are emitted even though the code that is generated
1656 will be compatible.
1658 You should rewrite your code to avoid these warnings if you are
1659 concerned about the fact that code generated by G++ may not be binary
1660 compatible with code generated by other compilers.
1662 The known incompatibilities at this point include:
1664 @itemize @bullet
1666 @item
1667 Incorrect handling of tail-padding for bit-fields.  G++ may attempt to
1668 pack data into the same byte as a base class.  For example:
1670 @smallexample
1671 struct A @{ virtual void f(); int f1 : 1; @};
1672 struct B : public A @{ int f2 : 1; @};
1673 @end smallexample
1675 @noindent
1676 In this case, G++ will place @code{B::f2} into the same byte
1677 as@code{A::f1}; other compilers will not.  You can avoid this problem
1678 by explicitly padding @code{A} so that its size is a multiple of the
1679 byte size on your platform; that will cause G++ and other compilers to
1680 layout @code{B} identically.
1682 @item
1683 Incorrect handling of tail-padding for virtual bases.  G++ does not use
1684 tail padding when laying out virtual bases.  For example:
1686 @smallexample
1687 struct A @{ virtual void f(); char c1; @};
1688 struct B @{ B(); char c2; @};
1689 struct C : public A, public virtual B @{@};
1690 @end smallexample
1692 @noindent
1693 In this case, G++ will not place @code{B} into the tail-padding for
1694 @code{A}; other compilers will.  You can avoid this problem by
1695 explicitly padding @code{A} so that its size is a multiple of its
1696 alignment (ignoring virtual base classes); that will cause G++ and other
1697 compilers to layout @code{C} identically.
1699 @item
1700 Incorrect handling of bit-fields with declared widths greater than that
1701 of their underlying types, when the bit-fields appear in a union.  For
1702 example:
1704 @smallexample
1705 union U @{ int i : 4096; @};
1706 @end smallexample
1708 @noindent
1709 Assuming that an @code{int} does not have 4096 bits, G++ will make the
1710 union too small by the number of bits in an @code{int}.
1712 @item
1713 Empty classes can be placed at incorrect offsets.  For example:
1715 @smallexample
1716 struct A @{@};
1718 struct B @{
1719   A a;
1720   virtual void f ();
1723 struct C : public B, public A @{@};
1724 @end smallexample
1726 @noindent
1727 G++ will place the @code{A} base class of @code{C} at a nonzero offset;
1728 it should be placed at offset zero.  G++ mistakenly believes that the
1729 @code{A} data member of @code{B} is already at offset zero.
1731 @item
1732 Names of template functions whose types involve @code{typename} or
1733 template template parameters can be mangled incorrectly.
1735 @smallexample
1736 template <typename Q>
1737 void f(typename Q::X) @{@}
1739 template <template <typename> class Q>
1740 void f(typename Q<int>::X) @{@}
1741 @end smallexample
1743 @noindent
1744 Instantiations of these templates may be mangled incorrectly.
1746 @end itemize
1748 @item -Wctor-dtor-privacy @r{(C++ only)}
1749 @opindex Wctor-dtor-privacy
1750 Warn when a class seems unusable because all the constructors or
1751 destructors in that class are private, and it has neither friends nor
1752 public static member functions.
1754 @item -Wnon-virtual-dtor @r{(C++ only)}
1755 @opindex Wnon-virtual-dtor
1756 Warn when a class appears to be polymorphic, thereby requiring a virtual
1757 destructor, yet it declares a non-virtual one.  This warning is also
1758 enabled if -Weffc++ is specified.
1760 @item -Wreorder @r{(C++ only)}
1761 @opindex Wreorder
1762 @cindex reordering, warning
1763 @cindex warning for reordering of member initializers
1764 Warn when the order of member initializers given in the code does not
1765 match the order in which they must be executed.  For instance:
1767 @smallexample
1768 struct A @{
1769   int i;
1770   int j;
1771   A(): j (0), i (1) @{ @}
1773 @end smallexample
1775 The compiler will rearrange the member initializers for @samp{i}
1776 and @samp{j} to match the declaration order of the members, emitting
1777 a warning to that effect.  This warning is enabled by @option{-Wall}.
1778 @end table
1780 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
1782 @table @gcctabopt
1783 @item -Weffc++ @r{(C++ only)}
1784 @opindex Weffc++
1785 Warn about violations of the following style guidelines from Scott Meyers'
1786 @cite{Effective C++} book:
1788 @itemize @bullet
1789 @item
1790 Item 11:  Define a copy constructor and an assignment operator for classes
1791 with dynamically allocated memory.
1793 @item
1794 Item 12:  Prefer initialization to assignment in constructors.
1796 @item
1797 Item 14:  Make destructors virtual in base classes.
1799 @item
1800 Item 15:  Have @code{operator=} return a reference to @code{*this}.
1802 @item
1803 Item 23:  Don't try to return a reference when you must return an object.
1805 @end itemize
1807 Also warn about violations of the following style guidelines from
1808 Scott Meyers' @cite{More Effective C++} book:
1810 @itemize @bullet
1811 @item
1812 Item 6:  Distinguish between prefix and postfix forms of increment and
1813 decrement operators.
1815 @item
1816 Item 7:  Never overload @code{&&}, @code{||}, or @code{,}.
1818 @end itemize
1820 When selecting this option, be aware that the standard library
1821 headers do not obey all of these guidelines; use @samp{grep -v}
1822 to filter out those warnings.
1824 @item -Wno-deprecated @r{(C++ only)}
1825 @opindex Wno-deprecated
1826 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
1828 @item -Wstrict-null-sentinel @r{(C++ only)}
1829 @opindex Wstrict-null-sentinel
1830 Warn also about the use of an uncasted @code{NULL} as sentinel.  When
1831 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
1832 to @code{__null}.  Although it is a null pointer constant not a null pointer,
1833 it is guaranteed to of the same size as a pointer.  But this use is
1834 not portable across different compilers.
1836 @item -Wno-non-template-friend @r{(C++ only)}
1837 @opindex Wno-non-template-friend
1838 Disable warnings when non-templatized friend functions are declared
1839 within a template.  Since the advent of explicit template specification
1840 support in G++, if the name of the friend is an unqualified-id (i.e.,
1841 @samp{friend foo(int)}), the C++ language specification demands that the
1842 friend declare or define an ordinary, nontemplate function.  (Section
1843 14.5.3).  Before G++ implemented explicit specification, unqualified-ids
1844 could be interpreted as a particular specialization of a templatized
1845 function.  Because this non-conforming behavior is no longer the default
1846 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
1847 check existing code for potential trouble spots and is on by default.
1848 This new compiler behavior can be turned off with
1849 @option{-Wno-non-template-friend} which keeps the conformant compiler code
1850 but disables the helpful warning.
1852 @item -Wold-style-cast @r{(C++ only)}
1853 @opindex Wold-style-cast
1854 Warn if an old-style (C-style) cast to a non-void type is used within
1855 a C++ program.  The new-style casts (@samp{dynamic_cast},
1856 @samp{static_cast}, @samp{reinterpret_cast}, and @samp{const_cast}) are
1857 less vulnerable to unintended effects and much easier to search for.
1859 @item -Woverloaded-virtual @r{(C++ only)}
1860 @opindex Woverloaded-virtual
1861 @cindex overloaded virtual fn, warning
1862 @cindex warning for overloaded virtual fn
1863 Warn when a function declaration hides virtual functions from a
1864 base class.  For example, in:
1866 @smallexample
1867 struct A @{
1868   virtual void f();
1871 struct B: public A @{
1872   void f(int);
1874 @end smallexample
1876 the @code{A} class version of @code{f} is hidden in @code{B}, and code
1877 like:
1879 @smallexample
1880 B* b;
1881 b->f();
1882 @end smallexample
1884 will fail to compile.
1886 @item -Wno-pmf-conversions @r{(C++ only)}
1887 @opindex Wno-pmf-conversions
1888 Disable the diagnostic for converting a bound pointer to member function
1889 to a plain pointer.
1891 @item -Wsign-promo @r{(C++ only)}
1892 @opindex Wsign-promo
1893 Warn when overload resolution chooses a promotion from unsigned or
1894 enumerated type to a signed type, over a conversion to an unsigned type of
1895 the same size.  Previous versions of G++ would try to preserve
1896 unsignedness, but the standard mandates the current behavior.
1898 @smallexample
1899 struct A @{
1900   operator int ();
1901   A& operator = (int);
1904 main ()
1906   A a,b;
1907   a = b;
1909 @end smallexample
1911 In this example, G++ will synthesize a default @samp{A& operator =
1912 (const A&);}, while cfront will use the user-defined @samp{operator =}.
1913 @end table
1915 @node Objective-C and Objective-C++ Dialect Options
1916 @section Options Controlling Objective-C and Objective-C++ Dialects
1918 @cindex compiler options, Objective-C and Objective-C++
1919 @cindex Objective-C and Objective-C++ options, command line
1920 @cindex options, Objective-C and Objective-C++
1921 (NOTE: This manual does not describe the Objective-C and Objective-C++
1922 languages themselves.  See @xref{Standards,,Language Standards
1923 Supported by GCC}, for references.)
1925 This section describes the command-line options that are only meaningful
1926 for Objective-C and Objective-C++ programs, but you can also use most of
1927 the language-independent GNU compiler options.
1928 For example, you might compile a file @code{some_class.m} like this:
1930 @smallexample
1931 gcc -g -fgnu-runtime -O -c some_class.m
1932 @end smallexample
1934 @noindent
1935 In this example, @option{-fgnu-runtime} is an option meant only for
1936 Objective-C and Objective-C++ programs; you can use the other options with
1937 any language supported by GCC@.
1939 Note that since Objective-C is an extension of the C language, Objective-C
1940 compilations may also use options specific to the C front-end (e.g.,
1941 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
1942 C++-specific options (e.g., @option{-Wabi}).
1944 Here is a list of options that are @emph{only} for compiling Objective-C
1945 and Objective-C++ programs:
1947 @table @gcctabopt
1948 @item -fconstant-string-class=@var{class-name}
1949 @opindex fconstant-string-class
1950 Use @var{class-name} as the name of the class to instantiate for each
1951 literal string specified with the syntax @code{@@"@dots{}"}.  The default
1952 class name is @code{NXConstantString} if the GNU runtime is being used, and
1953 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
1954 @option{-fconstant-cfstrings} option, if also present, will override the
1955 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
1956 to be laid out as constant CoreFoundation strings.
1958 @item -fgnu-runtime
1959 @opindex fgnu-runtime
1960 Generate object code compatible with the standard GNU Objective-C
1961 runtime.  This is the default for most types of systems.
1963 @item -fnext-runtime
1964 @opindex fnext-runtime
1965 Generate output compatible with the NeXT runtime.  This is the default
1966 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
1967 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
1968 used.
1970 @item -fno-nil-receivers
1971 @opindex fno-nil-receivers
1972 Assume that all Objective-C message dispatches (e.g.,
1973 @code{[receiver message:arg]}) in this translation unit ensure that the receiver
1974 is not @code{nil}.  This allows for more efficient entry points in the runtime
1975 to be used.  Currently, this option is only available in conjunction with
1976 the NeXT runtime on Mac OS X 10.3 and later.
1978 @item -fobjc-call-cxx-cdtors
1979 @opindex fobjc-call-cxx-cdtors
1980 For each Objective-C class, check if any of its instance variables is a
1981 C++ object with a non-trivial default constructor.  If so, synthesize a
1982 special @code{- (id) .cxx_construct} instance method that will run
1983 non-trivial default constructors on any such instance variables, in order,
1984 and then return @code{self}.  Similarly, check if any instance variable
1985 is a C++ object with a non-trivial destructor, and if so, synthesize a
1986 special @code{- (void) .cxx_destruct} method that will run
1987 all such default destructors, in reverse order.
1989 The @code{- (id) .cxx_construct} and/or @code{- (void) .cxx_destruct} methods
1990 thusly generated will only operate on instance variables declared in the
1991 current Objective-C class, and not those inherited from superclasses.  It
1992 is the responsibility of the Objective-C runtime to invoke all such methods
1993 in an object's inheritance hierarchy.  The @code{- (id) .cxx_construct} methods
1994 will be invoked by the runtime immediately after a new object
1995 instance is allocated; the @code{- (void) .cxx_destruct} methods will
1996 be invoked immediately before the runtime deallocates an object instance.
1998 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
1999 support for invoking the @code{- (id) .cxx_construct} and
2000 @code{- (void) .cxx_destruct} methods.
2002 @item -fobjc-direct-dispatch
2003 @opindex fobjc-direct-dispatch
2004 Allow fast jumps to the message dispatcher.  On Darwin this is
2005 accomplished via the comm page.
2007 @item -fobjc-exceptions
2008 @opindex fobjc-exceptions
2009 Enable syntactic support for structured exception handling in Objective-C,
2010 similar to what is offered by C++ and Java.  This option is
2011 unavailable in conjunction with the NeXT runtime on Mac OS X 10.2 and
2012 earlier.
2014 @smallexample
2015   @@try @{
2016     @dots{}
2017        @@throw expr;
2018     @dots{}
2019   @}
2020   @@catch (AnObjCClass *exc) @{
2021     @dots{}
2022       @@throw expr;
2023     @dots{}
2024       @@throw;
2025     @dots{}
2026   @}
2027   @@catch (AnotherClass *exc) @{
2028     @dots{}
2029   @}
2030   @@catch (id allOthers) @{
2031     @dots{}
2032   @}
2033   @@finally @{
2034     @dots{}
2035       @@throw expr;
2036     @dots{}
2037   @}
2038 @end smallexample
2040 The @code{@@throw} statement may appear anywhere in an Objective-C or
2041 Objective-C++ program; when used inside of a @code{@@catch} block, the
2042 @code{@@throw} may appear without an argument (as shown above), in which case
2043 the object caught by the @code{@@catch} will be rethrown.
2045 Note that only (pointers to) Objective-C objects may be thrown and
2046 caught using this scheme.  When an object is thrown, it will be caught
2047 by the nearest @code{@@catch} clause capable of handling objects of that type,
2048 analogously to how @code{catch} blocks work in C++ and Java.  A
2049 @code{@@catch(id @dots{})} clause (as shown above) may also be provided to catch
2050 any and all Objective-C exceptions not caught by previous @code{@@catch}
2051 clauses (if any).
2053 The @code{@@finally} clause, if present, will be executed upon exit from the
2054 immediately preceding @code{@@try @dots{} @@catch} section.  This will happen
2055 regardless of whether any exceptions are thrown, caught or rethrown
2056 inside the @code{@@try @dots{} @@catch} section, analogously to the behavior
2057 of the @code{finally} clause in Java.
2059 There are several caveats to using the new exception mechanism:
2061 @itemize @bullet
2062 @item
2063 Although currently designed to be binary compatible with @code{NS_HANDLER}-style
2064 idioms provided by the @code{NSException} class, the new
2065 exceptions can only be used on Mac OS X 10.3 (Panther) and later
2066 systems, due to additional functionality needed in the (NeXT) Objective-C
2067 runtime.
2069 @item
2070 As mentioned above, the new exceptions do not support handling
2071 types other than Objective-C objects.   Furthermore, when used from
2072 Objective-C++, the Objective-C exception model does not interoperate with C++
2073 exceptions at this time.  This means you cannot @code{@@throw} an exception
2074 from Objective-C and @code{catch} it in C++, or vice versa
2075 (i.e., @code{throw @dots{} @@catch}).
2076 @end itemize
2078 The @option{-fobjc-exceptions} switch also enables the use of synchronization
2079 blocks for thread-safe execution:
2081 @smallexample
2082   @@synchronized (ObjCClass *guard) @{
2083     @dots{}
2084   @}
2085 @end smallexample
2087 Upon entering the @code{@@synchronized} block, a thread of execution shall
2088 first check whether a lock has been placed on the corresponding @code{guard}
2089 object by another thread.  If it has, the current thread shall wait until
2090 the other thread relinquishes its lock.  Once @code{guard} becomes available,
2091 the current thread will place its own lock on it, execute the code contained in
2092 the @code{@@synchronized} block, and finally relinquish the lock (thereby
2093 making @code{guard} available to other threads).
2095 Unlike Java, Objective-C does not allow for entire methods to be marked
2096 @code{@@synchronized}.  Note that throwing exceptions out of
2097 @code{@@synchronized} blocks is allowed, and will cause the guarding object
2098 to be unlocked properly.
2100 @item -fobjc-gc
2101 @opindex fobjc-gc
2102 Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
2104 @item -freplace-objc-classes
2105 @opindex freplace-objc-classes
2106 Emit a special marker instructing @command{ld(1)} not to statically link in
2107 the resulting object file, and allow @command{dyld(1)} to load it in at
2108 run time instead.  This is used in conjunction with the Fix-and-Continue
2109 debugging mode, where the object file in question may be recompiled and
2110 dynamically reloaded in the course of program execution, without the need
2111 to restart the program itself.  Currently, Fix-and-Continue functionality
2112 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
2113 and later.
2115 @item -fzero-link
2116 @opindex fzero-link
2117 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
2118 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
2119 compile time) with static class references that get initialized at load time,
2120 which improves run-time performance.  Specifying the @option{-fzero-link} flag
2121 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
2122 to be retained.  This is useful in Zero-Link debugging mode, since it allows
2123 for individual class implementations to be modified during program execution.
2125 @item -gen-decls
2126 @opindex gen-decls
2127 Dump interface declarations for all classes seen in the source file to a
2128 file named @file{@var{sourcename}.decl}.
2130 @item -Wassign-intercept
2131 @opindex Wassign-intercept
2132 Warn whenever an Objective-C assignment is being intercepted by the
2133 garbage collector.
2135 @item -Wno-protocol
2136 @opindex Wno-protocol
2137 If a class is declared to implement a protocol, a warning is issued for
2138 every method in the protocol that is not implemented by the class.  The
2139 default behavior is to issue a warning for every method not explicitly
2140 implemented in the class, even if a method implementation is inherited
2141 from the superclass.  If you use the @option{-Wno-protocol} option, then
2142 methods inherited from the superclass are considered to be implemented,
2143 and no warning is issued for them.
2145 @item -Wselector
2146 @opindex Wselector
2147 Warn if multiple methods of different types for the same selector are
2148 found during compilation.  The check is performed on the list of methods
2149 in the final stage of compilation.  Additionally, a check is performed
2150 for each selector appearing in a @code{@@selector(@dots{})}
2151 expression, and a corresponding method for that selector has been found
2152 during compilation.  Because these checks scan the method table only at
2153 the end of compilation, these warnings are not produced if the final
2154 stage of compilation is not reached, for example because an error is
2155 found during compilation, or because the @option{-fsyntax-only} option is
2156 being used.
2158 @item -Wstrict-selector-match
2159 @opindex Wstrict-selector-match
2160 Warn if multiple methods with differing argument and/or return types are
2161 found for a given selector when attempting to send a message using this
2162 selector to a receiver of type @code{id} or @code{Class}.  When this flag
2163 is off (which is the default behavior), the compiler will omit such warnings
2164 if any differences found are confined to types which share the same size
2165 and alignment.
2167 @item -Wundeclared-selector
2168 @opindex Wundeclared-selector
2169 Warn if a @code{@@selector(@dots{})} expression referring to an
2170 undeclared selector is found.  A selector is considered undeclared if no
2171 method with that name has been declared before the
2172 @code{@@selector(@dots{})} expression, either explicitly in an
2173 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
2174 an @code{@@implementation} section.  This option always performs its
2175 checks as soon as a @code{@@selector(@dots{})} expression is found,
2176 while @option{-Wselector} only performs its checks in the final stage of
2177 compilation.  This also enforces the coding style convention
2178 that methods and selectors must be declared before being used.
2180 @item -print-objc-runtime-info
2181 @opindex print-objc-runtime-info
2182 Generate C header describing the largest structure that is passed by
2183 value, if any.
2185 @end table
2187 @node Language Independent Options
2188 @section Options to Control Diagnostic Messages Formatting
2189 @cindex options to control diagnostics formatting
2190 @cindex diagnostic messages
2191 @cindex message formatting
2193 Traditionally, diagnostic messages have been formatted irrespective of
2194 the output device's aspect (e.g.@: its width, @dots{}).  The options described
2195 below can be used to control the diagnostic messages formatting
2196 algorithm, e.g.@: how many characters per line, how often source location
2197 information should be reported.  Right now, only the C++ front end can
2198 honor these options.  However it is expected, in the near future, that
2199 the remaining front ends would be able to digest them correctly.
2201 @table @gcctabopt
2202 @item -fmessage-length=@var{n}
2203 @opindex fmessage-length
2204 Try to format error messages so that they fit on lines of about @var{n}
2205 characters.  The default is 72 characters for @command{g++} and 0 for the rest of
2206 the front ends supported by GCC@.  If @var{n} is zero, then no
2207 line-wrapping will be done; each error message will appear on a single
2208 line.
2210 @opindex fdiagnostics-show-location
2211 @item -fdiagnostics-show-location=once
2212 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
2213 reporter to emit @emph{once} source location information; that is, in
2214 case the message is too long to fit on a single physical line and has to
2215 be wrapped, the source location won't be emitted (as prefix) again,
2216 over and over, in subsequent continuation lines.  This is the default
2217 behavior.
2219 @item -fdiagnostics-show-location=every-line
2220 Only meaningful in line-wrapping mode.  Instructs the diagnostic
2221 messages reporter to emit the same source location information (as
2222 prefix) for physical lines that result from the process of breaking
2223 a message which is too long to fit on a single line.
2225 @item -fdiagnostics-show-options
2226 @opindex fdiagnostics-show-options
2227 This option instructs the diagnostic machinery to add text to each
2228 diagnostic emitted, which indicates which command line option directly
2229 controls that diagnostic, when such an option is known to the
2230 diagnostic machinery.
2232 @end table
2234 @node Warning Options
2235 @section Options to Request or Suppress Warnings
2236 @cindex options to control warnings
2237 @cindex warning messages
2238 @cindex messages, warning
2239 @cindex suppressing warnings
2241 Warnings are diagnostic messages that report constructions which
2242 are not inherently erroneous but which are risky or suggest there
2243 may have been an error.
2245 You can request many specific warnings with options beginning @samp{-W},
2246 for example @option{-Wimplicit} to request warnings on implicit
2247 declarations.  Each of these specific warning options also has a
2248 negative form beginning @samp{-Wno-} to turn off warnings;
2249 for example, @option{-Wno-implicit}.  This manual lists only one of the
2250 two forms, whichever is not the default.
2252 The following options control the amount and kinds of warnings produced
2253 by GCC; for further, language-specific options also refer to
2254 @ref{C++ Dialect Options} and @ref{Objective-C and Objective-C++ Dialect
2255 Options}.
2257 @table @gcctabopt
2258 @cindex syntax checking
2259 @item -fsyntax-only
2260 @opindex fsyntax-only
2261 Check the code for syntax errors, but don't do anything beyond that.
2263 @item -pedantic
2264 @opindex pedantic
2265 Issue all the warnings demanded by strict ISO C and ISO C++;
2266 reject all programs that use forbidden extensions, and some other
2267 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
2268 version of the ISO C standard specified by any @option{-std} option used.
2270 Valid ISO C and ISO C++ programs should compile properly with or without
2271 this option (though a rare few will require @option{-ansi} or a
2272 @option{-std} option specifying the required version of ISO C)@.  However,
2273 without this option, certain GNU extensions and traditional C and C++
2274 features are supported as well.  With this option, they are rejected.
2276 @option{-pedantic} does not cause warning messages for use of the
2277 alternate keywords whose names begin and end with @samp{__}.  Pedantic
2278 warnings are also disabled in the expression that follows
2279 @code{__extension__}.  However, only system header files should use
2280 these escape routes; application programs should avoid them.
2281 @xref{Alternate Keywords}.
2283 Some users try to use @option{-pedantic} to check programs for strict ISO
2284 C conformance.  They soon find that it does not do quite what they want:
2285 it finds some non-ISO practices, but not all---only those for which
2286 ISO C @emph{requires} a diagnostic, and some others for which
2287 diagnostics have been added.
2289 A feature to report any failure to conform to ISO C might be useful in
2290 some instances, but would require considerable additional work and would
2291 be quite different from @option{-pedantic}.  We don't have plans to
2292 support such a feature in the near future.
2294 Where the standard specified with @option{-std} represents a GNU
2295 extended dialect of C, such as @samp{gnu89} or @samp{gnu99}, there is a
2296 corresponding @dfn{base standard}, the version of ISO C on which the GNU
2297 extended dialect is based.  Warnings from @option{-pedantic} are given
2298 where they are required by the base standard.  (It would not make sense
2299 for such warnings to be given only for features not in the specified GNU
2300 C dialect, since by definition the GNU dialects of C include all
2301 features the compiler supports with the given option, and there would be
2302 nothing to warn about.)
2304 @item -pedantic-errors
2305 @opindex pedantic-errors
2306 Like @option{-pedantic}, except that errors are produced rather than
2307 warnings.
2309 @item -w
2310 @opindex w
2311 Inhibit all warning messages.
2313 @item -Wno-import
2314 @opindex Wno-import
2315 Inhibit warning messages about the use of @samp{#import}.
2317 @item -Wchar-subscripts
2318 @opindex Wchar-subscripts
2319 Warn if an array subscript has type @code{char}.  This is a common cause
2320 of error, as programmers often forget that this type is signed on some
2321 machines.
2322 This warning is enabled by @option{-Wall}.
2324 @item -Wcomment
2325 @opindex Wcomment
2326 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
2327 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
2328 This warning is enabled by @option{-Wall}.
2330 @item -Wfatal-errors
2331 @opindex Wfatal-errors
2332 This option causes the compiler to abort compilation on the first error
2333 occurred rather than trying to keep going and printing further error
2334 messages.
2336 @item -Wformat
2337 @opindex Wformat
2338 @opindex ffreestanding
2339 @opindex fno-builtin
2340 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
2341 the arguments supplied have types appropriate to the format string
2342 specified, and that the conversions specified in the format string make
2343 sense.  This includes standard functions, and others specified by format
2344 attributes (@pxref{Function Attributes}), in the @code{printf},
2345 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
2346 not in the C standard) families (or other target-specific families).
2347 Which functions are checked without format attributes having been
2348 specified depends on the standard version selected, and such checks of
2349 functions without the attribute specified are disabled by
2350 @option{-ffreestanding} or @option{-fno-builtin}.
2352 The formats are checked against the format features supported by GNU
2353 libc version 2.2.  These include all ISO C90 and C99 features, as well
2354 as features from the Single Unix Specification and some BSD and GNU
2355 extensions.  Other library implementations may not support all these
2356 features; GCC does not support warning about features that go beyond a
2357 particular library's limitations.  However, if @option{-pedantic} is used
2358 with @option{-Wformat}, warnings will be given about format features not
2359 in the selected standard version (but not for @code{strfmon} formats,
2360 since those are not in any version of the C standard).  @xref{C Dialect
2361 Options,,Options Controlling C Dialect}.
2363 Since @option{-Wformat} also checks for null format arguments for
2364 several functions, @option{-Wformat} also implies @option{-Wnonnull}.
2366 @option{-Wformat} is included in @option{-Wall}.  For more control over some
2367 aspects of format checking, the options @option{-Wformat-y2k},
2368 @option{-Wno-format-extra-args}, @option{-Wno-format-zero-length},
2369 @option{-Wformat-nonliteral}, @option{-Wformat-security}, and
2370 @option{-Wformat=2} are available, but are not included in @option{-Wall}.
2372 @item -Wformat-y2k
2373 @opindex Wformat-y2k
2374 If @option{-Wformat} is specified, also warn about @code{strftime}
2375 formats which may yield only a two-digit year.
2377 @item -Wno-format-extra-args
2378 @opindex Wno-format-extra-args
2379 If @option{-Wformat} is specified, do not warn about excess arguments to a
2380 @code{printf} or @code{scanf} format function.  The C standard specifies
2381 that such arguments are ignored.
2383 Where the unused arguments lie between used arguments that are
2384 specified with @samp{$} operand number specifications, normally
2385 warnings are still given, since the implementation could not know what
2386 type to pass to @code{va_arg} to skip the unused arguments.  However,
2387 in the case of @code{scanf} formats, this option will suppress the
2388 warning if the unused arguments are all pointers, since the Single
2389 Unix Specification says that such unused arguments are allowed.
2391 @item -Wno-format-zero-length
2392 @opindex Wno-format-zero-length
2393 If @option{-Wformat} is specified, do not warn about zero-length formats.
2394 The C standard specifies that zero-length formats are allowed.
2396 @item -Wformat-nonliteral
2397 @opindex Wformat-nonliteral
2398 If @option{-Wformat} is specified, also warn if the format string is not a
2399 string literal and so cannot be checked, unless the format function
2400 takes its format arguments as a @code{va_list}.
2402 @item -Wformat-security
2403 @opindex Wformat-security
2404 If @option{-Wformat} is specified, also warn about uses of format
2405 functions that represent possible security problems.  At present, this
2406 warns about calls to @code{printf} and @code{scanf} functions where the
2407 format string is not a string literal and there are no format arguments,
2408 as in @code{printf (foo);}.  This may be a security hole if the format
2409 string came from untrusted input and contains @samp{%n}.  (This is
2410 currently a subset of what @option{-Wformat-nonliteral} warns about, but
2411 in future warnings may be added to @option{-Wformat-security} that are not
2412 included in @option{-Wformat-nonliteral}.)
2414 @item -Wformat=2
2415 @opindex Wformat=2
2416 Enable @option{-Wformat} plus format checks not included in
2417 @option{-Wformat}.  Currently equivalent to @samp{-Wformat
2418 -Wformat-nonliteral -Wformat-security -Wformat-y2k}.
2420 @item -Wnonnull
2421 @opindex Wnonnull
2422 Warn about passing a null pointer for arguments marked as
2423 requiring a non-null value by the @code{nonnull} function attribute.
2425 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
2426 can be disabled with the @option{-Wno-nonnull} option.
2428 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
2429 @opindex Winit-self
2430 Warn about uninitialized variables which are initialized with themselves.
2431 Note this option can only be used with the @option{-Wuninitialized} option,
2432 which in turn only works with @option{-O1} and above.
2434 For example, GCC will warn about @code{i} being uninitialized in the
2435 following snippet only when @option{-Winit-self} has been specified:
2436 @smallexample
2437 @group
2438 int f()
2440   int i = i;
2441   return i;
2443 @end group
2444 @end smallexample
2446 @item -Wimplicit-int
2447 @opindex Wimplicit-int
2448 Warn when a declaration does not specify a type.
2449 This warning is enabled by @option{-Wall}.
2451 @item -Wimplicit-function-declaration
2452 @itemx -Werror-implicit-function-declaration
2453 @opindex Wimplicit-function-declaration
2454 @opindex Werror-implicit-function-declaration
2455 Give a warning (or error) whenever a function is used before being
2456 declared.  The form @option{-Wno-error-implicit-function-declaration}
2457 is not supported.
2458 This warning is enabled by @option{-Wall} (as a warning, not an error).
2460 @item -Wimplicit
2461 @opindex Wimplicit
2462 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
2463 This warning is enabled by @option{-Wall}.
2465 @item -Wmain
2466 @opindex Wmain
2467 Warn if the type of @samp{main} is suspicious.  @samp{main} should be a
2468 function with external linkage, returning int, taking either zero
2469 arguments, two, or three arguments of appropriate types.
2470 This warning is enabled by @option{-Wall}.
2472 @item -Wmissing-braces
2473 @opindex Wmissing-braces
2474 Warn if an aggregate or union initializer is not fully bracketed.  In
2475 the following example, the initializer for @samp{a} is not fully
2476 bracketed, but that for @samp{b} is fully bracketed.
2478 @smallexample
2479 int a[2][2] = @{ 0, 1, 2, 3 @};
2480 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
2481 @end smallexample
2483 This warning is enabled by @option{-Wall}.
2485 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
2486 @opindex Wmissing-include-dirs
2487 Warn if a user-supplied include directory does not exist.
2489 @item -Wparentheses
2490 @opindex Wparentheses
2491 Warn if parentheses are omitted in certain contexts, such
2492 as when there is an assignment in a context where a truth value
2493 is expected, or when operators are nested whose precedence people
2494 often get confused about.  Only the warning for an assignment used as
2495 a truth value is supported when compiling C++; the other warnings are
2496 only supported when compiling C@.
2498 Also warn if a comparison like @samp{x<=y<=z} appears; this is
2499 equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different
2500 interpretation from that of ordinary mathematical notation.
2502 Also warn about constructions where there may be confusion to which
2503 @code{if} statement an @code{else} branch belongs.  Here is an example of
2504 such a case:
2506 @smallexample
2507 @group
2509   if (a)
2510     if (b)
2511       foo ();
2512   else
2513     bar ();
2515 @end group
2516 @end smallexample
2518 In C, every @code{else} branch belongs to the innermost possible @code{if}
2519 statement, which in this example is @code{if (b)}.  This is often not
2520 what the programmer expected, as illustrated in the above example by
2521 indentation the programmer chose.  When there is the potential for this
2522 confusion, GCC will issue a warning when this flag is specified.
2523 To eliminate the warning, add explicit braces around the innermost
2524 @code{if} statement so there is no way the @code{else} could belong to
2525 the enclosing @code{if}.  The resulting code would look like this:
2527 @smallexample
2528 @group
2530   if (a)
2531     @{
2532       if (b)
2533         foo ();
2534       else
2535         bar ();
2536     @}
2538 @end group
2539 @end smallexample
2541 This warning is enabled by @option{-Wall}.
2543 @item -Wsequence-point
2544 @opindex Wsequence-point
2545 Warn about code that may have undefined semantics because of violations
2546 of sequence point rules in the C and C++ standards.
2548 The C and C++ standards defines the order in which expressions in a C/C++
2549 program are evaluated in terms of @dfn{sequence points}, which represent
2550 a partial ordering between the execution of parts of the program: those
2551 executed before the sequence point, and those executed after it.  These
2552 occur after the evaluation of a full expression (one which is not part
2553 of a larger expression), after the evaluation of the first operand of a
2554 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
2555 function is called (but after the evaluation of its arguments and the
2556 expression denoting the called function), and in certain other places.
2557 Other than as expressed by the sequence point rules, the order of
2558 evaluation of subexpressions of an expression is not specified.  All
2559 these rules describe only a partial order rather than a total order,
2560 since, for example, if two functions are called within one expression
2561 with no sequence point between them, the order in which the functions
2562 are called is not specified.  However, the standards committee have
2563 ruled that function calls do not overlap.
2565 It is not specified when between sequence points modifications to the
2566 values of objects take effect.  Programs whose behavior depends on this
2567 have undefined behavior; the C and C++ standards specify that ``Between
2568 the previous and next sequence point an object shall have its stored
2569 value modified at most once by the evaluation of an expression.  
2570 Furthermore, the prior value shall be read only to determine the value
2571 to be stored.''.  If a program breaks these rules, the results on any
2572 particular implementation are entirely unpredictable.
2574 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
2575 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
2576 diagnosed by this option, and it may give an occasional false positive
2577 result, but in general it has been found fairly effective at detecting
2578 this sort of problem in programs.
2580 The standard is worded confusingly, therefore there is some debate
2581 over the precise meaning of the sequence point rules in subtle cases.
2582 Links to discussions of the problem, including proposed formal
2583 definitions, may be found on the GCC readings page, at
2584 @w{@uref{http://gcc.gnu.org/readings.html}}.
2586 This warning is enabled by @option{-Wall} for C and C++.
2588 @item -Wreturn-type
2589 @opindex Wreturn-type
2590 Warn whenever a function is defined with a return-type that defaults to
2591 @code{int}.  Also warn about any @code{return} statement with no
2592 return-value in a function whose return-type is not @code{void}.
2594 For C, also warn if the return type of a function has a type qualifier
2595 such as @code{const}.  Such a type qualifier has no effect, since the
2596 value returned by a function is not an lvalue.  ISO C prohibits
2597 qualified @code{void} return types on function definitions, so such
2598 return types always receive a warning even without this option.
2600 For C++, a function without return type always produces a diagnostic
2601 message, even when @option{-Wno-return-type} is specified.  The only
2602 exceptions are @samp{main} and functions defined in system headers.
2604 This warning is enabled by @option{-Wall}.
2606 @item -Wswitch
2607 @opindex Wswitch
2608 Warn whenever a @code{switch} statement has an index of enumerated type
2609 and lacks a @code{case} for one or more of the named codes of that
2610 enumeration.  (The presence of a @code{default} label prevents this
2611 warning.)  @code{case} labels outside the enumeration range also
2612 provoke warnings when this option is used.
2613 This warning is enabled by @option{-Wall}.
2615 @item -Wswitch-default
2616 @opindex Wswitch-switch
2617 Warn whenever a @code{switch} statement does not have a @code{default}
2618 case.
2620 @item -Wswitch-enum
2621 @opindex Wswitch-enum
2622 Warn whenever a @code{switch} statement has an index of enumerated type
2623 and lacks a @code{case} for one or more of the named codes of that
2624 enumeration.  @code{case} labels outside the enumeration range also
2625 provoke warnings when this option is used.
2627 @item -Wtrigraphs
2628 @opindex Wtrigraphs
2629 Warn if any trigraphs are encountered that might change the meaning of
2630 the program (trigraphs within comments are not warned about).
2631 This warning is enabled by @option{-Wall}.
2633 @item -Wunused-function
2634 @opindex Wunused-function
2635 Warn whenever a static function is declared but not defined or a
2636 non-inline static function is unused.
2637 This warning is enabled by @option{-Wall}.
2639 @item -Wunused-label
2640 @opindex Wunused-label
2641 Warn whenever a label is declared but not used.
2642 This warning is enabled by @option{-Wall}.
2644 To suppress this warning use the @samp{unused} attribute
2645 (@pxref{Variable Attributes}).
2647 @item -Wunused-parameter
2648 @opindex Wunused-parameter
2649 Warn whenever a function parameter is unused aside from its declaration.
2651 To suppress this warning use the @samp{unused} attribute
2652 (@pxref{Variable Attributes}).
2654 @item -Wunused-variable
2655 @opindex Wunused-variable
2656 Warn whenever a local variable or non-constant static variable is unused
2657 aside from its declaration
2658 This warning is enabled by @option{-Wall}.
2660 To suppress this warning use the @samp{unused} attribute
2661 (@pxref{Variable Attributes}).
2663 @item -Wunused-value
2664 @opindex Wunused-value
2665 Warn whenever a statement computes a result that is explicitly not used.
2666 This warning is enabled by @option{-Wall}.
2668 To suppress this warning cast the expression to @samp{void}.
2670 @item -Wunused
2671 @opindex Wunused
2672 All the above @option{-Wunused} options combined.
2674 In order to get a warning about an unused function parameter, you must
2675 either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies
2676 @samp{-Wunused}), or separately specify @option{-Wunused-parameter}.
2678 @item -Wuninitialized
2679 @opindex Wuninitialized
2680 Warn if an automatic variable is used without first being initialized or
2681 if a variable may be clobbered by a @code{setjmp} call.
2683 These warnings are possible only in optimizing compilation,
2684 because they require data flow information that is computed only
2685 when optimizing.  If you don't specify @option{-O}, you simply won't
2686 get these warnings.
2688 If you want to warn about code which uses the uninitialized value of the
2689 variable in its own initializer, use the @option{-Winit-self} option.
2691 These warnings occur for individual uninitialized or clobbered
2692 elements of structure, union or array variables as well as for
2693 variables which are uninitialized or clobbered as a whole.  They do
2694 not occur for variables or elements declared @code{volatile}.  Because
2695 these warnings depend on optimization, the exact variables or elements
2696 for which there are warnings will depend on the precise optimization
2697 options and version of GCC used.
2699 Note that there may be no warning about a variable that is used only
2700 to compute a value that itself is never used, because such
2701 computations may be deleted by data flow analysis before the warnings
2702 are printed.
2704 These warnings are made optional because GCC is not smart
2705 enough to see all the reasons why the code might be correct
2706 despite appearing to have an error.  Here is one example of how
2707 this can happen:
2709 @smallexample
2710 @group
2712   int x;
2713   switch (y)
2714     @{
2715     case 1: x = 1;
2716       break;
2717     case 2: x = 4;
2718       break;
2719     case 3: x = 5;
2720     @}
2721   foo (x);
2723 @end group
2724 @end smallexample
2726 @noindent
2727 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
2728 always initialized, but GCC doesn't know this.  Here is
2729 another common case:
2731 @smallexample
2733   int save_y;
2734   if (change_y) save_y = y, y = new_y;
2735   @dots{}
2736   if (change_y) y = save_y;
2738 @end smallexample
2740 @noindent
2741 This has no bug because @code{save_y} is used only if it is set.
2743 @cindex @code{longjmp} warnings
2744 This option also warns when a non-volatile automatic variable might be
2745 changed by a call to @code{longjmp}.  These warnings as well are possible
2746 only in optimizing compilation.
2748 The compiler sees only the calls to @code{setjmp}.  It cannot know
2749 where @code{longjmp} will be called; in fact, a signal handler could
2750 call it at any point in the code.  As a result, you may get a warning
2751 even when there is in fact no problem because @code{longjmp} cannot
2752 in fact be called at the place which would cause a problem.
2754 Some spurious warnings can be avoided if you declare all the functions
2755 you use that never return as @code{noreturn}.  @xref{Function
2756 Attributes}.
2758 This warning is enabled by @option{-Wall}.
2760 @item -Wunknown-pragmas
2761 @opindex Wunknown-pragmas
2762 @cindex warning for unknown pragmas
2763 @cindex unknown pragmas, warning
2764 @cindex pragmas, warning of unknown
2765 Warn when a #pragma directive is encountered which is not understood by
2766 GCC@.  If this command line option is used, warnings will even be issued
2767 for unknown pragmas in system header files.  This is not the case if
2768 the warnings were only enabled by the @option{-Wall} command line option.
2770 @item -Wno-pragmas
2771 @opindex Wno-pragmas
2772 @opindex Wpragmas
2773 Do not warn about misuses of pragmas, such as incorrect parameters,
2774 invalid syntax, or conflicts between pragmas.  See also
2775 @samp{-Wunknown-pragmas}.
2777 @item -Wstrict-aliasing
2778 @opindex Wstrict-aliasing
2779 This option is only active when @option{-fstrict-aliasing} is active.
2780 It warns about code which might break the strict aliasing rules that the
2781 compiler is using for optimization.  The warning does not catch all
2782 cases, but does attempt to catch the more common pitfalls.  It is
2783 included in @option{-Wall}.
2785 @item -Wstrict-aliasing=2
2786 @opindex Wstrict-aliasing=2
2787 This option is only active when @option{-fstrict-aliasing} is active.
2788 It warns about code which might break the strict aliasing rules that the
2789 compiler is using for optimization.  This warning catches more cases than
2790 @option{-Wstrict-aliasing}, but it will also give a warning for some ambiguous
2791 cases that are safe.
2793 @item -Wall
2794 @opindex Wall
2795 All of the above @samp{-W} options combined.  This enables all the
2796 warnings about constructions that some users consider questionable, and
2797 that are easy to avoid (or modify to prevent the warning), even in
2798 conjunction with macros.  This also enables some language-specific
2799 warnings described in @ref{C++ Dialect Options} and
2800 @ref{Objective-C and Objective-C++ Dialect Options}.
2801 @end table
2803 The following @option{-W@dots{}} options are not implied by @option{-Wall}.
2804 Some of them warn about constructions that users generally do not
2805 consider questionable, but which occasionally you might wish to check
2806 for; others warn about constructions that are necessary or hard to avoid
2807 in some cases, and there is no simple way to modify the code to suppress
2808 the warning.
2810 @table @gcctabopt
2811 @item -Wextra
2812 @opindex W
2813 @opindex Wextra
2814 (This option used to be called @option{-W}.  The older name is still
2815 supported, but the newer name is more descriptive.)  Print extra warning
2816 messages for these events:
2818 @itemize @bullet
2819 @item
2820 A function can return either with or without a value.  (Falling
2821 off the end of the function body is considered returning without
2822 a value.)  For example, this function would evoke such a
2823 warning:
2825 @smallexample
2826 @group
2827 foo (a)
2829   if (a > 0)
2830     return a;
2832 @end group
2833 @end smallexample
2835 @item
2836 An expression-statement or the left-hand side of a comma expression
2837 contains no side effects.
2838 To suppress the warning, cast the unused expression to void.
2839 For example, an expression such as @samp{x[i,j]} will cause a warning,
2840 but @samp{x[(void)i,j]} will not.
2842 @item
2843 An unsigned value is compared against zero with @samp{<} or @samp{>=}.
2845 @item
2846 Storage-class specifiers like @code{static} are not the first things in
2847 a declaration.  According to the C Standard, this usage is obsolescent.
2849 @item
2850 If @option{-Wall} or @option{-Wunused} is also specified, warn about unused
2851 arguments.
2853 @item
2854 A comparison between signed and unsigned values could produce an
2855 incorrect result when the signed value is converted to unsigned.
2856 (But don't warn if @option{-Wno-sign-compare} is also specified.)
2858 @item
2859 An aggregate has an initializer which does not initialize all members.
2860 This warning can be independently controlled by
2861 @option{-Wmissing-field-initializers}.
2863 @item
2864 A function parameter is declared without a type specifier in K&R-style
2865 functions:
2867 @smallexample
2868 void foo(bar) @{ @}
2869 @end smallexample
2871 @item
2872 An empty body occurs in an @samp{if} or @samp{else} statement.
2874 @item
2875 A pointer is compared against integer zero with @samp{<}, @samp{<=},
2876 @samp{>}, or @samp{>=}.
2878 @item
2879 A variable might be changed by @samp{longjmp} or @samp{vfork}.
2881 @item
2882 Any of several floating-point events that often indicate errors, such as
2883 overflow, underflow, loss of precision, etc.
2885 @item @r{(C++ only)}
2886 An enumerator and a non-enumerator both appear in a conditional expression.
2888 @item @r{(C++ only)}
2889 A non-static reference or non-static @samp{const} member appears in a
2890 class without constructors.
2892 @item @r{(C++ only)}
2893 Ambiguous virtual bases.
2895 @item @r{(C++ only)}
2896 Subscripting an array which has been declared @samp{register}.
2898 @item @r{(C++ only)}
2899 Taking the address of a variable which has been declared @samp{register}.
2901 @item @r{(C++ only)}
2902 A base class is not initialized in a derived class' copy constructor.
2903 @end itemize
2905 @item -Wno-div-by-zero
2906 @opindex Wno-div-by-zero
2907 @opindex Wdiv-by-zero
2908 Do not warn about compile-time integer division by zero.  Floating point
2909 division by zero is not warned about, as it can be a legitimate way of
2910 obtaining infinities and NaNs.
2912 @item -Wsystem-headers
2913 @opindex Wsystem-headers
2914 @cindex warnings from system headers
2915 @cindex system headers, warnings from
2916 Print warning messages for constructs found in system header files.
2917 Warnings from system headers are normally suppressed, on the assumption
2918 that they usually do not indicate real problems and would only make the
2919 compiler output harder to read.  Using this command line option tells
2920 GCC to emit warnings from system headers as if they occurred in user
2921 code.  However, note that using @option{-Wall} in conjunction with this
2922 option will @emph{not} warn about unknown pragmas in system
2923 headers---for that, @option{-Wunknown-pragmas} must also be used.
2925 @item -Wfloat-equal
2926 @opindex Wfloat-equal
2927 Warn if floating point values are used in equality comparisons.
2929 The idea behind this is that sometimes it is convenient (for the
2930 programmer) to consider floating-point values as approximations to
2931 infinitely precise real numbers.  If you are doing this, then you need
2932 to compute (by analyzing the code, or in some other way) the maximum or
2933 likely maximum error that the computation introduces, and allow for it
2934 when performing comparisons (and when producing output, but that's a
2935 different problem).  In particular, instead of testing for equality, you
2936 would check to see whether the two values have ranges that overlap; and
2937 this is done with the relational operators, so equality comparisons are
2938 probably mistaken.
2940 @item -Wtraditional @r{(C only)}
2941 @opindex Wtraditional
2942 Warn about certain constructs that behave differently in traditional and
2943 ISO C@.  Also warn about ISO C constructs that have no traditional C
2944 equivalent, and/or problematic constructs which should be avoided.
2946 @itemize @bullet
2947 @item
2948 Macro parameters that appear within string literals in the macro body.
2949 In traditional C macro replacement takes place within string literals,
2950 but does not in ISO C@.
2952 @item
2953 In traditional C, some preprocessor directives did not exist.
2954 Traditional preprocessors would only consider a line to be a directive
2955 if the @samp{#} appeared in column 1 on the line.  Therefore
2956 @option{-Wtraditional} warns about directives that traditional C
2957 understands but would ignore because the @samp{#} does not appear as the
2958 first character on the line.  It also suggests you hide directives like
2959 @samp{#pragma} not understood by traditional C by indenting them.  Some
2960 traditional implementations would not recognize @samp{#elif}, so it
2961 suggests avoiding it altogether.
2963 @item
2964 A function-like macro that appears without arguments.
2966 @item
2967 The unary plus operator.
2969 @item
2970 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point
2971 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
2972 constants.)  Note, these suffixes appear in macros defined in the system
2973 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
2974 Use of these macros in user code might normally lead to spurious
2975 warnings, however GCC's integrated preprocessor has enough context to
2976 avoid warning in these cases.
2978 @item
2979 A function declared external in one block and then used after the end of
2980 the block.
2982 @item
2983 A @code{switch} statement has an operand of type @code{long}.
2985 @item
2986 A non-@code{static} function declaration follows a @code{static} one.
2987 This construct is not accepted by some traditional C compilers.
2989 @item
2990 The ISO type of an integer constant has a different width or
2991 signedness from its traditional type.  This warning is only issued if
2992 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
2993 typically represent bit patterns, are not warned about.
2995 @item
2996 Usage of ISO string concatenation is detected.
2998 @item
2999 Initialization of automatic aggregates.
3001 @item
3002 Identifier conflicts with labels.  Traditional C lacks a separate
3003 namespace for labels.
3005 @item
3006 Initialization of unions.  If the initializer is zero, the warning is
3007 omitted.  This is done under the assumption that the zero initializer in
3008 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
3009 initializer warnings and relies on default initialization to zero in the
3010 traditional C case.
3012 @item
3013 Conversions by prototypes between fixed/floating point values and vice
3014 versa.  The absence of these prototypes when compiling with traditional
3015 C would cause serious problems.  This is a subset of the possible
3016 conversion warnings, for the full set use @option{-Wconversion}.
3018 @item
3019 Use of ISO C style function definitions.  This warning intentionally is
3020 @emph{not} issued for prototype declarations or variadic functions
3021 because these ISO C features will appear in your code when using
3022 libiberty's traditional C compatibility macros, @code{PARAMS} and
3023 @code{VPARAMS}.  This warning is also bypassed for nested functions
3024 because that feature is already a GCC extension and thus not relevant to
3025 traditional C compatibility.
3026 @end itemize
3028 @item -Wdeclaration-after-statement @r{(C only)}
3029 @opindex Wdeclaration-after-statement
3030 Warn when a declaration is found after a statement in a block.  This
3031 construct, known from C++, was introduced with ISO C99 and is by default
3032 allowed in GCC@.  It is not supported by ISO C90 and was not supported by
3033 GCC versions before GCC 3.0.  @xref{Mixed Declarations}.
3035 @item -Wundef
3036 @opindex Wundef
3037 Warn if an undefined identifier is evaluated in an @samp{#if} directive.
3039 @item -Wno-endif-labels
3040 @opindex Wno-endif-labels
3041 @opindex Wendif-labels
3042 Do not warn whenever an @samp{#else} or an @samp{#endif} are followed by text.
3044 @item -Wshadow
3045 @opindex Wshadow
3046 Warn whenever a local variable shadows another local variable, parameter or
3047 global variable or whenever a built-in function is shadowed.
3049 @item -Wlarger-than-@var{len}
3050 @opindex Wlarger-than
3051 Warn whenever an object of larger than @var{len} bytes is defined.
3053 @item -Wunsafe-loop-optimizations
3054 @opindex Wunsafe-loop-optimizations
3055 Warn if the loop cannot be optimized because the compiler could not
3056 assume anything on the bounds of the loop indices.  With
3057 @option{-funsafe-loop-optimizations} warn if the compiler made
3058 such assumptions.
3060 @item -Wpointer-arith
3061 @opindex Wpointer-arith
3062 Warn about anything that depends on the ``size of'' a function type or
3063 of @code{void}.  GNU C assigns these types a size of 1, for
3064 convenience in calculations with @code{void *} pointers and pointers
3065 to functions.
3067 @item -Wbad-function-cast @r{(C only)}
3068 @opindex Wbad-function-cast
3069 Warn whenever a function call is cast to a non-matching type.
3070 For example, warn if @code{int malloc()} is cast to @code{anything *}.
3072 @item -Wc++-compat
3073 Warn about ISO C constructs that are outside of the common subset of
3074 ISO C and ISO C++, e.g.@: request for implicit conversion from
3075 @code{void *} to a pointer to non-@code{void} type.
3077 @item -Wcast-qual
3078 @opindex Wcast-qual
3079 Warn whenever a pointer is cast so as to remove a type qualifier from
3080 the target type.  For example, warn if a @code{const char *} is cast
3081 to an ordinary @code{char *}.
3083 @item -Wcast-align
3084 @opindex Wcast-align
3085 Warn whenever a pointer is cast such that the required alignment of the
3086 target is increased.  For example, warn if a @code{char *} is cast to
3087 an @code{int *} on machines where integers can only be accessed at
3088 two- or four-byte boundaries.
3090 @item -Wwrite-strings
3091 @opindex Wwrite-strings
3092 When compiling C, give string constants the type @code{const
3093 char[@var{length}]} so that
3094 copying the address of one into a non-@code{const} @code{char *}
3095 pointer will get a warning; when compiling C++, warn about the
3096 deprecated conversion from string literals to @code{char *}.  This
3097 warning, by default, is enabled for C++ programs.
3098 These warnings will help you find at
3099 compile time code that can try to write into a string constant, but
3100 only if you have been very careful about using @code{const} in
3101 declarations and prototypes.  Otherwise, it will just be a nuisance;
3102 this is why we did not make @option{-Wall} request these warnings.
3104 @item -Wconversion
3105 @opindex Wconversion
3106 Warn if a prototype causes a type conversion that is different from what
3107 would happen to the same argument in the absence of a prototype.  This
3108 includes conversions of fixed point to floating and vice versa, and
3109 conversions changing the width or signedness of a fixed point argument
3110 except when the same as the default promotion.
3112 Also, warn if a negative integer constant expression is implicitly
3113 converted to an unsigned type.  For example, warn about the assignment
3114 @code{x = -1} if @code{x} is unsigned.  But do not warn about explicit
3115 casts like @code{(unsigned) -1}.
3117 @item -Wsign-compare
3118 @opindex Wsign-compare
3119 @cindex warning for comparison of signed and unsigned values
3120 @cindex comparison of signed and unsigned values, warning
3121 @cindex signed and unsigned values, comparison warning
3122 Warn when a comparison between signed and unsigned values could produce
3123 an incorrect result when the signed value is converted to unsigned.
3124 This warning is also enabled by @option{-Wextra}; to get the other warnings
3125 of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}.
3127 @item -Waggregate-return
3128 @opindex Waggregate-return
3129 Warn if any functions that return structures or unions are defined or
3130 called.  (In languages where you can return an array, this also elicits
3131 a warning.)
3133 @item -Walways-true
3134 @opindex Walways-true
3135 Warn about comparisons which are always true such as testing if
3136 unsigned values are greater than or equal to zero.  This warning is
3137 enabled by @option{-Wall}.
3139 @item -Wno-attributes
3140 @opindex Wno-attributes
3141 @opindex Wattributes
3142 Do not warn if an unexpected @code{__attribute__} is used, such as
3143 unrecognized attributes, function attributes applied to variables,
3144 etc.  This will not stop errors for incorrect use of supported
3145 attributes.
3147 @item -Wstrict-prototypes @r{(C only)}
3148 @opindex Wstrict-prototypes
3149 Warn if a function is declared or defined without specifying the
3150 argument types.  (An old-style function definition is permitted without
3151 a warning if preceded by a declaration which specifies the argument
3152 types.)
3154 @item -Wold-style-definition @r{(C only)}
3155 @opindex Wold-style-definition
3156 Warn if an old-style function definition is used.  A warning is given
3157 even if there is a previous prototype.
3159 @item -Wmissing-prototypes @r{(C only)}
3160 @opindex Wmissing-prototypes
3161 Warn if a global function is defined without a previous prototype
3162 declaration.  This warning is issued even if the definition itself
3163 provides a prototype.  The aim is to detect global functions that fail
3164 to be declared in header files.
3166 @item -Wmissing-declarations @r{(C only)}
3167 @opindex Wmissing-declarations
3168 Warn if a global function is defined without a previous declaration.
3169 Do so even if the definition itself provides a prototype.
3170 Use this option to detect global functions that are not declared in
3171 header files.
3173 @item -Wmissing-field-initializers
3174 @opindex Wmissing-field-initializers
3175 @opindex W
3176 @opindex Wextra
3177 Warn if a structure's initializer has some fields missing.  For
3178 example, the following code would cause such a warning, because
3179 @code{x.h} is implicitly zero:
3181 @smallexample
3182 struct s @{ int f, g, h; @};
3183 struct s x = @{ 3, 4 @};
3184 @end smallexample
3186 This option does not warn about designated initializers, so the following
3187 modification would not trigger a warning:
3189 @smallexample
3190 struct s @{ int f, g, h; @};
3191 struct s x = @{ .f = 3, .g = 4 @};
3192 @end smallexample
3194 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
3195 warnings without this one, use @samp{-Wextra -Wno-missing-field-initializers}.
3197 @item -Wmissing-noreturn
3198 @opindex Wmissing-noreturn
3199 Warn about functions which might be candidates for attribute @code{noreturn}.
3200 Note these are only possible candidates, not absolute ones.  Care should
3201 be taken to manually verify functions actually do not ever return before
3202 adding the @code{noreturn} attribute, otherwise subtle code generation
3203 bugs could be introduced.  You will not get a warning for @code{main} in
3204 hosted C environments.
3206 @item -Wmissing-format-attribute
3207 @opindex Wmissing-format-attribute
3208 @opindex Wformat
3209 Warn about function pointers which might be candidates for @code{format}
3210 attributes.  Note these are only possible candidates, not absolute ones.
3211 GCC will guess that function pointers with @code{format} attributes that
3212 are used in assignment, initialization, parameter passing or return
3213 statements should have a corresponding @code{format} attribute in the
3214 resulting type.  I.e.@: the left-hand side of the assignment or
3215 initialization, the type of the parameter variable, or the return type
3216 of the containing function respectively should also have a @code{format}
3217 attribute to avoid the warning.
3219 GCC will also warn about function definitions which might be
3220 candidates for @code{format} attributes.  Again, these are only
3221 possible candidates.  GCC will guess that @code{format} attributes
3222 might be appropriate for any function that calls a function like
3223 @code{vprintf} or @code{vscanf}, but this might not always be the
3224 case, and some functions for which @code{format} attributes are
3225 appropriate may not be detected.
3227 @item -Wno-multichar
3228 @opindex Wno-multichar
3229 @opindex Wmultichar
3230 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
3231 Usually they indicate a typo in the user's code, as they have
3232 implementation-defined values, and should not be used in portable code.
3234 @item -Wnormalized=<none|id|nfc|nfkc>
3235 @opindex Wnormalized
3236 @cindex NFC
3237 @cindex NFKC
3238 @cindex character set, input normalization
3239 In ISO C and ISO C++, two identifiers are different if they are
3240 different sequences of characters.  However, sometimes when characters
3241 outside the basic ASCII character set are used, you can have two
3242 different character sequences that look the same.  To avoid confusion,
3243 the ISO 10646 standard sets out some @dfn{normalization rules} which
3244 when applied ensure that two sequences that look the same are turned into
3245 the same sequence.  GCC can warn you if you are using identifiers which
3246 have not been normalized; this option controls that warning.
3248 There are four levels of warning that GCC supports.  The default is
3249 @option{-Wnormalized=nfc}, which warns about any identifier which is
3250 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
3251 recommended form for most uses.
3253 Unfortunately, there are some characters which ISO C and ISO C++ allow
3254 in identifiers that when turned into NFC aren't allowable as
3255 identifiers.  That is, there's no way to use these symbols in portable
3256 ISO C or C++ and have all your identifiers in NFC.
3257 @option{-Wnormalized=id} suppresses the warning for these characters.
3258 It is hoped that future versions of the standards involved will correct
3259 this, which is why this option is not the default.
3261 You can switch the warning off for all characters by writing
3262 @option{-Wnormalized=none}.  You would only want to do this if you
3263 were using some other normalization scheme (like ``D''), because
3264 otherwise you can easily create bugs that are literally impossible to see.
3266 Some characters in ISO 10646 have distinct meanings but look identical
3267 in some fonts or display methodologies, especially once formatting has
3268 been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
3269 LETTER N'', will display just like a regular @code{n} which has been
3270 placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
3271 normalisation scheme to convert all these into a standard form as
3272 well, and GCC will warn if your code is not in NFKC if you use
3273 @option{-Wnormalized=nfkc}.  This warning is comparable to warning
3274 about every identifier that contains the letter O because it might be
3275 confused with the digit 0, and so is not the default, but may be
3276 useful as a local coding convention if the programming environment is
3277 unable to be fixed to display these characters distinctly.
3279 @item -Wno-deprecated-declarations
3280 @opindex Wno-deprecated-declarations
3281 Do not warn about uses of functions, variables, and types marked as
3282 deprecated by using the @code{deprecated} attribute.
3283 (@pxref{Function Attributes}, @pxref{Variable Attributes},
3284 @pxref{Type Attributes}.)
3286 @item -Wpacked
3287 @opindex Wpacked
3288 Warn if a structure is given the packed attribute, but the packed
3289 attribute has no effect on the layout or size of the structure.
3290 Such structures may be mis-aligned for little benefit.  For
3291 instance, in this code, the variable @code{f.x} in @code{struct bar}
3292 will be misaligned even though @code{struct bar} does not itself
3293 have the packed attribute:
3295 @smallexample
3296 @group
3297 struct foo @{
3298   int x;
3299   char a, b, c, d;
3300 @} __attribute__((packed));
3301 struct bar @{
3302   char z;
3303   struct foo f;
3305 @end group
3306 @end smallexample
3308 @item -Wpadded
3309 @opindex Wpadded
3310 Warn if padding is included in a structure, either to align an element
3311 of the structure or to align the whole structure.  Sometimes when this
3312 happens it is possible to rearrange the fields of the structure to
3313 reduce the padding and so make the structure smaller.
3315 @item -Wredundant-decls
3316 @opindex Wredundant-decls
3317 Warn if anything is declared more than once in the same scope, even in
3318 cases where multiple declaration is valid and changes nothing.
3320 @item -Wnested-externs @r{(C only)}
3321 @opindex Wnested-externs
3322 Warn if an @code{extern} declaration is encountered within a function.
3324 @item -Wunreachable-code
3325 @opindex Wunreachable-code
3326 Warn if the compiler detects that code will never be executed.
3328 This option is intended to warn when the compiler detects that at
3329 least a whole line of source code will never be executed, because
3330 some condition is never satisfied or because it is after a
3331 procedure that never returns.
3333 It is possible for this option to produce a warning even though there
3334 are circumstances under which part of the affected line can be executed,
3335 so care should be taken when removing apparently-unreachable code.
3337 For instance, when a function is inlined, a warning may mean that the
3338 line is unreachable in only one inlined copy of the function.
3340 This option is not made part of @option{-Wall} because in a debugging
3341 version of a program there is often substantial code which checks
3342 correct functioning of the program and is, hopefully, unreachable
3343 because the program does work.  Another common use of unreachable
3344 code is to provide behavior which is selectable at compile-time.
3346 @item -Winline
3347 @opindex Winline
3348 Warn if a function can not be inlined and it was declared as inline.
3349 Even with this option, the compiler will not warn about failures to
3350 inline functions declared in system headers.
3352 The compiler uses a variety of heuristics to determine whether or not
3353 to inline a function.  For example, the compiler takes into account
3354 the size of the function being inlined and the amount of inlining
3355 that has already been done in the current function.  Therefore,
3356 seemingly insignificant changes in the source program can cause the
3357 warnings produced by @option{-Winline} to appear or disappear.
3359 @item -Wno-invalid-offsetof @r{(C++ only)}
3360 @opindex Wno-invalid-offsetof
3361 Suppress warnings from applying the @samp{offsetof} macro to a non-POD
3362 type.  According to the 1998 ISO C++ standard, applying @samp{offsetof}
3363 to a non-POD type is undefined.  In existing C++ implementations,
3364 however, @samp{offsetof} typically gives meaningful results even when
3365 applied to certain kinds of non-POD types. (Such as a simple
3366 @samp{struct} that fails to be a POD type only by virtue of having a
3367 constructor.)  This flag is for users who are aware that they are
3368 writing nonportable code and who have deliberately chosen to ignore the
3369 warning about it.
3371 The restrictions on @samp{offsetof} may be relaxed in a future version
3372 of the C++ standard.
3374 @item -Wno-int-to-pointer-cast @r{(C only)}
3375 @opindex Wno-int-to-pointer-cast
3376 Suppress warnings from casts to pointer type of an integer of a
3377 different size.
3379 @item -Wno-pointer-to-int-cast @r{(C only)}
3380 @opindex Wno-pointer-to-int-cast
3381 Suppress warnings from casts from a pointer to an integer type of a
3382 different size.
3384 @item -Winvalid-pch
3385 @opindex Winvalid-pch
3386 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
3387 the search path but can't be used.
3389 @item -Wlong-long
3390 @opindex Wlong-long
3391 @opindex Wno-long-long
3392 Warn if @samp{long long} type is used.  This is default.  To inhibit
3393 the warning messages, use @option{-Wno-long-long}.  Flags
3394 @option{-Wlong-long} and @option{-Wno-long-long} are taken into account
3395 only when @option{-pedantic} flag is used.
3397 @item -Wvariadic-macros
3398 @opindex Wvariadic-macros
3399 @opindex Wno-variadic-macros
3400 Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
3401 alternate syntax when in pedantic ISO C99 mode.  This is default.
3402 To inhibit the warning messages, use @option{-Wno-variadic-macros}.
3404 @item -Wvolatile-register-var
3405 @opindex Wvolatile-register-var
3406 @opindex Wno-volatile-register-var
3407 Warn if a register variable is declared volatile.  The volatile
3408 modifier does not inhibit all optimizations that may eliminate reads
3409 and/or writes to register variables.
3411 @item -Wdisabled-optimization
3412 @opindex Wdisabled-optimization
3413 Warn if a requested optimization pass is disabled.  This warning does
3414 not generally indicate that there is anything wrong with your code; it
3415 merely indicates that GCC's optimizers were unable to handle the code
3416 effectively.  Often, the problem is that your code is too big or too
3417 complex; GCC will refuse to optimize programs when the optimization
3418 itself is likely to take inordinate amounts of time.
3420 @item -Wpointer-sign
3421 @opindex Wpointer-sign
3422 @opindex Wno-pointer-sign
3423 Warn for pointer argument passing or assignment with different signedness.
3424 This option is only supported for C and Objective-C@.  It is implied by
3425 @option{-Wall} and by @option{-pedantic}, which can be disabled with
3426 @option{-Wno-pointer-sign}.
3428 @item -Werror
3429 @opindex Werror
3430 Make all warnings into errors.
3432 @item -Werror=
3433 @opindex Werror=
3434 Make the specified warning into an errors.  The specifier for a
3435 warning is appended, for example @option{-Werror=switch} turns the
3436 warnings controlled by @option{-Wswitch} into errors.  This switch
3437 takes a negative form, to be used to negate @option{-Werror} for
3438 specific warnings, for example @option{-Wno-error=switch} makes
3439 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3440 is in effect.  You can use the @option{-fdiagnostics-show-option}
3441 option to have each controllable warning amended with the option which
3442 controls it, to determine what to use with this option.
3444 Note that specifying @option{-Werror=}@var{foo} automatically implies
3445 @option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3446 imply anything.
3448 @item -Wstack-protector
3449 @opindex Wstack-protector
3450 This option is only active when @option{-fstack-protector} is active.  It
3451 warns about functions that will not be protected against stack smashing.
3453 @item -Wstring-literal-comparison
3454 @opindex Wstring-literal-comparison
3455 Warn about suspicious comparisons to string literal constants.  In C,
3456 direct comparisons against the memory address of a string literal, such
3457 as @code{if (x == "abc")}, typically indicate a programmer error, and
3458 even when intentional, result in unspecified behavior and are not portable.
3459 Usually these warnings alert that the programmer intended to use
3460 @code{strcmp}.  This warning is enabled by @option{-Wall}.
3462 @item -Woverlength-strings
3463 @opindex Woverlength-strings
3464 Warn about string constants which are longer than the ``minimum
3465 maximum'' length specified in the C standard.  Modern compilers
3466 generally allow string constants which are much longer than the
3467 standard's minimum limit, but very portable programs should avoid
3468 using longer strings.
3470 The limit applies @emph{after} string constant concatenation, and does
3471 not count the trailing NUL@.  In C89, the limit was 509 characters; in
3472 C99, it was raised to 4095.  C++98 does not specify a normative
3473 minimum maximum, so we do not diagnose overlength strings in C++@.
3475 This option is implied by @option{-pedantic}, and can be disabled with
3476 @option{-Wno-overlength-strings}.
3477 @end table
3479 @node Debugging Options
3480 @section Options for Debugging Your Program or GCC
3481 @cindex options, debugging
3482 @cindex debugging information options
3484 GCC has various special options that are used for debugging
3485 either your program or GCC:
3487 @table @gcctabopt
3488 @item -g
3489 @opindex g
3490 Produce debugging information in the operating system's native format
3491 (stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
3492 information.
3494 On most systems that use stabs format, @option{-g} enables use of extra
3495 debugging information that only GDB can use; this extra information
3496 makes debugging work better in GDB but will probably make other debuggers
3497 crash or
3498 refuse to read the program.  If you want to control for certain whether
3499 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
3500 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
3502 GCC allows you to use @option{-g} with
3503 @option{-O}.  The shortcuts taken by optimized code may occasionally
3504 produce surprising results: some variables you declared may not exist
3505 at all; flow of control may briefly move where you did not expect it;
3506 some statements may not be executed because they compute constant
3507 results or their values were already at hand; some statements may
3508 execute in different places because they were moved out of loops.
3510 Nevertheless it proves possible to debug optimized output.  This makes
3511 it reasonable to use the optimizer for programs that might have bugs.
3513 The following options are useful when GCC is generated with the
3514 capability for more than one debugging format.
3516 @item -ggdb
3517 @opindex ggdb
3518 Produce debugging information for use by GDB@.  This means to use the
3519 most expressive format available (DWARF 2, stabs, or the native format
3520 if neither of those are supported), including GDB extensions if at all
3521 possible.
3523 @item -gstabs
3524 @opindex gstabs
3525 Produce debugging information in stabs format (if that is supported),
3526 without GDB extensions.  This is the format used by DBX on most BSD
3527 systems.  On MIPS, Alpha and System V Release 4 systems this option
3528 produces stabs debugging output which is not understood by DBX or SDB@.
3529 On System V Release 4 systems this option requires the GNU assembler.
3531 @item -feliminate-unused-debug-symbols
3532 @opindex feliminate-unused-debug-symbols
3533 Produce debugging information in stabs format (if that is supported),
3534 for only symbols that are actually used.
3536 @item -femit-class-debug-always
3537 Instead of emitting debugging information for a C++ class in only one
3538 object file, emit it in all object files using the class.  This option
3539 should be used only with debuggers that are unable to handle the way GCC
3540 normally emits debugging information for classes because using this
3541 option will increase the size of debugging information by as much as a
3542 factor of two.
3544 @item -gstabs+
3545 @opindex gstabs+
3546 Produce debugging information in stabs format (if that is supported),
3547 using GNU extensions understood only by the GNU debugger (GDB)@.  The
3548 use of these extensions is likely to make other debuggers crash or
3549 refuse to read the program.
3551 @item -gcoff
3552 @opindex gcoff
3553 Produce debugging information in COFF format (if that is supported).
3554 This is the format used by SDB on most System V systems prior to
3555 System V Release 4.
3557 @item -gxcoff
3558 @opindex gxcoff
3559 Produce debugging information in XCOFF format (if that is supported).
3560 This is the format used by the DBX debugger on IBM RS/6000 systems.
3562 @item -gxcoff+
3563 @opindex gxcoff+
3564 Produce debugging information in XCOFF format (if that is supported),
3565 using GNU extensions understood only by the GNU debugger (GDB)@.  The
3566 use of these extensions is likely to make other debuggers crash or
3567 refuse to read the program, and may cause assemblers other than the GNU
3568 assembler (GAS) to fail with an error.
3570 @item -gdwarf-2
3571 @opindex gdwarf-2
3572 Produce debugging information in DWARF version 2 format (if that is
3573 supported).  This is the format used by DBX on IRIX 6.  With this
3574 option, GCC uses features of DWARF version 3 when they are useful;
3575 version 3 is upward compatible with version 2, but may still cause
3576 problems for older debuggers.
3578 @item -gvms
3579 @opindex gvms
3580 Produce debugging information in VMS debug format (if that is
3581 supported).  This is the format used by DEBUG on VMS systems.
3583 @item -g@var{level}
3584 @itemx -ggdb@var{level}
3585 @itemx -gstabs@var{level}
3586 @itemx -gcoff@var{level}
3587 @itemx -gxcoff@var{level}
3588 @itemx -gvms@var{level}
3589 Request debugging information and also use @var{level} to specify how
3590 much information.  The default level is 2.
3592 Level 1 produces minimal information, enough for making backtraces in
3593 parts of the program that you don't plan to debug.  This includes
3594 descriptions of functions and external variables, but no information
3595 about local variables and no line numbers.
3597 Level 3 includes extra information, such as all the macro definitions
3598 present in the program.  Some debuggers support macro expansion when
3599 you use @option{-g3}.
3601 @option{-gdwarf-2} does not accept a concatenated debug level, because
3602 GCC used to support an option @option{-gdwarf} that meant to generate
3603 debug information in version 1 of the DWARF format (which is very
3604 different from version 2), and it would have been too confusing.  That
3605 debug format is long obsolete, but the option cannot be changed now.
3606 Instead use an additional @option{-g@var{level}} option to change the
3607 debug level for DWARF2.
3609 @item -feliminate-dwarf2-dups
3610 @opindex feliminate-dwarf2-dups
3611 Compress DWARF2 debugging information by eliminating duplicated
3612 information about each symbol.  This option only makes sense when
3613 generating DWARF2 debugging information with @option{-gdwarf-2}.
3615 @cindex @command{prof}
3616 @item -p
3617 @opindex p
3618 Generate extra code to write profile information suitable for the
3619 analysis program @command{prof}.  You must use this option when compiling
3620 the source files you want data about, and you must also use it when
3621 linking.
3623 @cindex @command{gprof}
3624 @item -pg
3625 @opindex pg
3626 Generate extra code to write profile information suitable for the
3627 analysis program @command{gprof}.  You must use this option when compiling
3628 the source files you want data about, and you must also use it when
3629 linking.
3631 @item -Q
3632 @opindex Q
3633 Makes the compiler print out each function name as it is compiled, and
3634 print some statistics about each pass when it finishes.
3636 @item -ftime-report
3637 @opindex ftime-report
3638 Makes the compiler print some statistics about the time consumed by each
3639 pass when it finishes.
3641 @item -fmem-report
3642 @opindex fmem-report
3643 Makes the compiler print some statistics about permanent memory
3644 allocation when it finishes.
3646 @item -fprofile-arcs
3647 @opindex fprofile-arcs
3648 Add code so that program flow @dfn{arcs} are instrumented.  During
3649 execution the program records how many times each branch and call is
3650 executed and how many times it is taken or returns.  When the compiled
3651 program exits it saves this data to a file called
3652 @file{@var{auxname}.gcda} for each source file.  The data may be used for
3653 profile-directed optimizations (@option{-fbranch-probabilities}), or for
3654 test coverage analysis (@option{-ftest-coverage}).  Each object file's
3655 @var{auxname} is generated from the name of the output file, if
3656 explicitly specified and it is not the final executable, otherwise it is
3657 the basename of the source file.  In both cases any suffix is removed
3658 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
3659 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
3660 @xref{Cross-profiling}.
3662 @cindex @command{gcov}
3663 @item --coverage
3664 @opindex coverage
3666 This option is used to compile and link code instrumented for coverage
3667 analysis.  The option is a synonym for @option{-fprofile-arcs}
3668 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
3669 linking).  See the documentation for those options for more details.
3671 @itemize
3673 @item
3674 Compile the source files with @option{-fprofile-arcs} plus optimization
3675 and code generation options.  For test coverage analysis, use the
3676 additional @option{-ftest-coverage} option.  You do not need to profile
3677 every source file in a program.
3679 @item
3680 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
3681 (the latter implies the former).
3683 @item
3684 Run the program on a representative workload to generate the arc profile
3685 information.  This may be repeated any number of times.  You can run
3686 concurrent instances of your program, and provided that the file system
3687 supports locking, the data files will be correctly updated.  Also
3688 @code{fork} calls are detected and correctly handled (double counting
3689 will not happen).
3691 @item
3692 For profile-directed optimizations, compile the source files again with
3693 the same optimization and code generation options plus
3694 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
3695 Control Optimization}).
3697 @item
3698 For test coverage analysis, use @command{gcov} to produce human readable
3699 information from the @file{.gcno} and @file{.gcda} files.  Refer to the
3700 @command{gcov} documentation for further information.
3702 @end itemize
3704 With @option{-fprofile-arcs}, for each function of your program GCC
3705 creates a program flow graph, then finds a spanning tree for the graph.
3706 Only arcs that are not on the spanning tree have to be instrumented: the
3707 compiler adds code to count the number of times that these arcs are
3708 executed.  When an arc is the only exit or only entrance to a block, the
3709 instrumentation code can be added to the block; otherwise, a new basic
3710 block must be created to hold the instrumentation code.
3712 @need 2000
3713 @item -ftest-coverage
3714 @opindex ftest-coverage
3715 Produce a notes file that the @command{gcov} code-coverage utility
3716 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
3717 show program coverage.  Each source file's note file is called
3718 @file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
3719 above for a description of @var{auxname} and instructions on how to
3720 generate test coverage data.  Coverage data will match the source files
3721 more closely, if you do not optimize.
3723 @item -d@var{letters}
3724 @item -fdump-rtl-@var{pass}
3725 @opindex d
3726 Says to make debugging dumps during compilation at times specified by
3727 @var{letters}.    This is used for debugging the RTL-based passes of the
3728 compiler.  The file names for most of the dumps are made by appending a
3729 pass number and a word to the @var{dumpname}.  @var{dumpname} is generated
3730 from the name of the output file, if explicitly specified and it is not
3731 an executable, otherwise it is the basename of the source file.
3733 Most debug dumps can be enabled either passing a letter to the @option{-d}
3734 option, or with a long @option{-fdump-rtl} switch; here are the possible
3735 letters for use in @var{letters} and @var{pass}, and their meanings:
3737 @table @gcctabopt
3738 @item -dA
3739 @opindex dA
3740 Annotate the assembler output with miscellaneous debugging information.
3742 @item -dB
3743 @itemx -fdump-rtl-bbro
3744 @opindex dB
3745 @opindex fdump-rtl-bbro
3746 Dump after block reordering, to @file{@var{file}.148r.bbro}.
3748 @item -dc
3749 @itemx -fdump-rtl-combine
3750 @opindex dc
3751 @opindex fdump-rtl-combine
3752 Dump after instruction combination, to the file @file{@var{file}.129r.combine}.
3754 @item -dC
3755 @itemx -fdump-rtl-ce1
3756 @itemx -fdump-rtl-ce2
3757 @opindex dC
3758 @opindex fdump-rtl-ce1
3759 @opindex fdump-rtl-ce2
3760 @option{-dC} and @option{-fdump-rtl-ce1} enable dumping after the
3761 first if conversion, to the file @file{@var{file}.117r.ce1}.  @option{-dC}
3762 and @option{-fdump-rtl-ce2} enable dumping after the second if
3763 conversion, to the file @file{@var{file}.130r.ce2}.
3765 @item -dd
3766 @itemx -fdump-rtl-btl
3767 @itemx -fdump-rtl-dbr
3768 @opindex dd
3769 @opindex fdump-rtl-btl
3770 @opindex fdump-rtl-dbr
3771 @option{-dd} and @option{-fdump-rtl-btl} enable dumping after branch
3772 target load optimization, to @file{@var{file}.31.btl}.  @option{-dd}
3773 and @option{-fdump-rtl-dbr} enable dumping after delayed branch
3774 scheduling, to @file{@var{file}.36.dbr}.
3776 @item -dD
3777 @opindex dD
3778 Dump all macro definitions, at the end of preprocessing, in addition to
3779 normal output.
3781 @item -dE
3782 @itemx -fdump-rtl-ce3
3783 @opindex dE
3784 @opindex fdump-rtl-ce3
3785 Dump after the third if conversion, to @file{@var{file}.146r.ce3}.
3787 @item -df
3788 @itemx -fdump-rtl-cfg
3789 @itemx -fdump-rtl-life
3790 @opindex df
3791 @opindex fdump-rtl-cfg
3792 @opindex fdump-rtl-life
3793 @option{-df} and @option{-fdump-rtl-cfg} enable dumping after control
3794 and data flow analysis, to @file{@var{file}.116r.cfg}.  @option{-df}
3795 and @option{-fdump-rtl-cfg} enable dumping dump after life analysis,
3796 to @file{@var{file}.128r.life1} and @file{@var{file}.135r.life2}.
3798 @item -dg
3799 @itemx -fdump-rtl-greg
3800 @opindex dg
3801 @opindex fdump-rtl-greg
3802 Dump after global register allocation, to @file{@var{file}.139r.greg}.
3804 @item -dG
3805 @itemx -fdump-rtl-gcse
3806 @itemx -fdump-rtl-bypass
3807 @opindex dG
3808 @opindex fdump-rtl-gcse
3809 @opindex fdump-rtl-bypass
3810 @option{-dG} and @option{-fdump-rtl-gcse} enable dumping after GCSE, to
3811 @file{@var{file}.114r.gcse}.  @option{-dG} and @option{-fdump-rtl-bypass}
3812 enable dumping after jump bypassing and control flow optimizations, to
3813 @file{@var{file}.115r.bypass}.
3815 @item -dh
3816 @itemx -fdump-rtl-eh
3817 @opindex dh
3818 @opindex fdump-rtl-eh
3819 Dump after finalization of EH handling code, to @file{@var{file}.02.eh}.
3821 @item -di
3822 @itemx -fdump-rtl-sibling
3823 @opindex di
3824 @opindex fdump-rtl-sibling
3825 Dump after sibling call optimizations, to @file{@var{file}.106r.sibling}.
3827 @item -dj
3828 @itemx -fdump-rtl-jump
3829 @opindex dj
3830 @opindex fdump-rtl-jump
3831 Dump after the first jump optimization, to @file{@var{file}.112r.jump}.
3833 @item -dk
3834 @itemx -fdump-rtl-stack
3835 @opindex dk
3836 @opindex fdump-rtl-stack
3837 Dump after conversion from registers to stack, to @file{@var{file}.152r.stack}.
3839 @item -dl
3840 @itemx -fdump-rtl-lreg
3841 @opindex dl
3842 @opindex fdump-rtl-lreg
3843 Dump after local register allocation, to @file{@var{file}.138r.lreg}.
3845 @item -dL
3846 @itemx -fdump-rtl-loop2
3847 @opindex dL
3848 @opindex fdump-rtl-loop2
3849 @option{-dL} and @option{-fdump-rtl-loop2} enable dumping after the
3850 loop optimization pass, to @file{@var{file}.119r.loop2},
3851 @file{@var{file}.120r.loop2_init},
3852 @file{@var{file}.121r.loop2_invariant}, and
3853 @file{@var{file}.125r.loop2_done}.
3855 @item -dm
3856 @itemx -fdump-rtl-sms
3857 @opindex dm
3858 @opindex fdump-rtl-sms
3859 Dump after modulo scheduling, to @file{@var{file}.136r.sms}.
3861 @item -dM
3862 @itemx -fdump-rtl-mach
3863 @opindex dM
3864 @opindex fdump-rtl-mach
3865 Dump after performing the machine dependent reorganization pass, to
3866 @file{@var{file}.155r.mach}.
3868 @item -dn
3869 @itemx -fdump-rtl-rnreg
3870 @opindex dn
3871 @opindex fdump-rtl-rnreg
3872 Dump after register renumbering, to @file{@var{file}.147r.rnreg}.
3874 @item -dN
3875 @itemx -fdump-rtl-regmove
3876 @opindex dN
3877 @opindex fdump-rtl-regmove
3878 Dump after the register move pass, to @file{@var{file}.132r.regmove}.
3880 @item -do
3881 @itemx -fdump-rtl-postreload
3882 @opindex do
3883 @opindex fdump-rtl-postreload
3884 Dump after post-reload optimizations, to @file{@var{file}.24.postreload}.
3886 @item -dr
3887 @itemx -fdump-rtl-expand
3888 @opindex dr
3889 @opindex fdump-rtl-expand
3890 Dump after RTL generation, to @file{@var{file}.104r.expand}.
3892 @item -dR
3893 @itemx -fdump-rtl-sched2
3894 @opindex dR
3895 @opindex fdump-rtl-sched2
3896 Dump after the second scheduling pass, to @file{@var{file}.150r.sched2}.
3898 @item -ds
3899 @itemx -fdump-rtl-cse
3900 @opindex ds
3901 @opindex fdump-rtl-cse
3902 Dump after CSE (including the jump optimization that sometimes follows
3903 CSE), to @file{@var{file}.113r.cse}.
3905 @item -dS
3906 @itemx -fdump-rtl-sched
3907 @opindex dS
3908 @opindex fdump-rtl-sched
3909 Dump after the first scheduling pass, to @file{@var{file}.21.sched}.
3911 @item -dt
3912 @itemx -fdump-rtl-cse2
3913 @opindex dt
3914 @opindex fdump-rtl-cse2
3915 Dump after the second CSE pass (including the jump optimization that
3916 sometimes follows CSE), to @file{@var{file}.127r.cse2}.
3918 @item -dT
3919 @itemx -fdump-rtl-tracer
3920 @opindex dT
3921 @opindex fdump-rtl-tracer
3922 Dump after running tracer, to @file{@var{file}.118r.tracer}.
3924 @item -dV
3925 @itemx -fdump-rtl-vpt
3926 @itemx -fdump-rtl-vartrack
3927 @opindex dV
3928 @opindex fdump-rtl-vpt
3929 @opindex fdump-rtl-vartrack
3930 @option{-dV} and @option{-fdump-rtl-vpt} enable dumping after the value
3931 profile transformations, to @file{@var{file}.10.vpt}.  @option{-dV}
3932 and @option{-fdump-rtl-vartrack} enable dumping after variable tracking,
3933 to @file{@var{file}.154r.vartrack}.
3935 @item -dw
3936 @itemx -fdump-rtl-flow2
3937 @opindex dw
3938 @opindex fdump-rtl-flow2
3939 Dump after the second flow pass, to @file{@var{file}.142r.flow2}.
3941 @item -dz
3942 @itemx -fdump-rtl-peephole2
3943 @opindex dz
3944 @opindex fdump-rtl-peephole2
3945 Dump after the peephole pass, to @file{@var{file}.145r.peephole2}.
3947 @item -dZ
3948 @itemx -fdump-rtl-web
3949 @opindex dZ
3950 @opindex fdump-rtl-web
3951 Dump after live range splitting, to @file{@var{file}.126r.web}.
3953 @item -da
3954 @itemx -fdump-rtl-all
3955 @opindex da
3956 @opindex fdump-rtl-all
3957 Produce all the dumps listed above.
3959 @item -dH
3960 @opindex dH
3961 Produce a core dump whenever an error occurs.
3963 @item -dm
3964 @opindex dm
3965 Print statistics on memory usage, at the end of the run, to
3966 standard error.
3968 @item -dp
3969 @opindex dp
3970 Annotate the assembler output with a comment indicating which
3971 pattern and alternative was used.  The length of each instruction is
3972 also printed.
3974 @item -dP
3975 @opindex dP
3976 Dump the RTL in the assembler output as a comment before each instruction.
3977 Also turns on @option{-dp} annotation.
3979 @item -dv
3980 @opindex dv
3981 For each of the other indicated dump files (either with @option{-d} or
3982 @option{-fdump-rtl-@var{pass}}), dump a representation of the control flow
3983 graph suitable for viewing with VCG to @file{@var{file}.@var{pass}.vcg}.
3985 @item -dx
3986 @opindex dx
3987 Just generate RTL for a function instead of compiling it.  Usually used
3988 with @samp{r} (@option{-fdump-rtl-expand}).
3990 @item -dy
3991 @opindex dy
3992 Dump debugging information during parsing, to standard error.
3993 @end table
3995 @item -fdump-unnumbered
3996 @opindex fdump-unnumbered
3997 When doing debugging dumps (see @option{-d} option above), suppress instruction
3998 numbers and line number note output.  This makes it more feasible to
3999 use diff on debugging dumps for compiler invocations with different
4000 options, in particular with and without @option{-g}.
4002 @item -fdump-translation-unit @r{(C++ only)}
4003 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
4004 @opindex fdump-translation-unit
4005 Dump a representation of the tree structure for the entire translation
4006 unit to a file.  The file name is made by appending @file{.tu} to the
4007 source file name.  If the @samp{-@var{options}} form is used, @var{options}
4008 controls the details of the dump as described for the
4009 @option{-fdump-tree} options.
4011 @item -fdump-class-hierarchy @r{(C++ only)}
4012 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
4013 @opindex fdump-class-hierarchy
4014 Dump a representation of each class's hierarchy and virtual function
4015 table layout to a file.  The file name is made by appending @file{.class}
4016 to the source file name.  If the @samp{-@var{options}} form is used,
4017 @var{options} controls the details of the dump as described for the
4018 @option{-fdump-tree} options.
4020 @item -fdump-ipa-@var{switch}
4021 @opindex fdump-ipa
4022 Control the dumping at various stages of inter-procedural analysis
4023 language tree to a file.  The file name is generated by appending a switch
4024 specific suffix to the source file name.  The following dumps are possible:
4026 @table @samp
4027 @item all
4028 Enables all inter-procedural analysis dumps; currently the only produced
4029 dump is the @samp{cgraph} dump.
4031 @item cgraph
4032 Dumps information about call-graph optimization, unused function removal,
4033 and inlining decisions.
4034 @end table
4036 @item -fdump-tree-@var{switch}
4037 @itemx -fdump-tree-@var{switch}-@var{options}
4038 @opindex fdump-tree
4039 Control the dumping at various stages of processing the intermediate
4040 language tree to a file.  The file name is generated by appending a switch
4041 specific suffix to the source file name.  If the @samp{-@var{options}}
4042 form is used, @var{options} is a list of @samp{-} separated options that
4043 control the details of the dump.  Not all options are applicable to all
4044 dumps, those which are not meaningful will be ignored.  The following
4045 options are available
4047 @table @samp
4048 @item address
4049 Print the address of each node.  Usually this is not meaningful as it
4050 changes according to the environment and source file.  Its primary use
4051 is for tying up a dump file with a debug environment.
4052 @item slim
4053 Inhibit dumping of members of a scope or body of a function merely
4054 because that scope has been reached.  Only dump such items when they
4055 are directly reachable by some other path.  When dumping pretty-printed
4056 trees, this option inhibits dumping the bodies of control structures.
4057 @item raw
4058 Print a raw representation of the tree.  By default, trees are
4059 pretty-printed into a C-like representation.
4060 @item details
4061 Enable more detailed dumps (not honored by every dump option).
4062 @item stats
4063 Enable dumping various statistics about the pass (not honored by every dump
4064 option).
4065 @item blocks
4066 Enable showing basic block boundaries (disabled in raw dumps).
4067 @item vops
4068 Enable showing virtual operands for every statement.
4069 @item lineno
4070 Enable showing line numbers for statements.
4071 @item uid
4072 Enable showing the unique ID (@code{DECL_UID}) for each variable.
4073 @item all
4074 Turn on all options, except @option{raw}, @option{slim} and @option{lineno}.
4075 @end table
4077 The following tree dumps are possible:
4078 @table @samp
4080 @item original
4081 Dump before any tree based optimization, to @file{@var{file}.original}.
4083 @item optimized
4084 Dump after all tree based optimization, to @file{@var{file}.optimized}.
4086 @item inlined
4087 Dump after function inlining, to @file{@var{file}.inlined}.
4089 @item gimple
4090 @opindex fdump-tree-gimple
4091 Dump each function before and after the gimplification pass to a file.  The
4092 file name is made by appending @file{.gimple} to the source file name.
4094 @item cfg
4095 @opindex fdump-tree-cfg
4096 Dump the control flow graph of each function to a file.  The file name is
4097 made by appending @file{.cfg} to the source file name.
4099 @item vcg
4100 @opindex fdump-tree-vcg
4101 Dump the control flow graph of each function to a file in VCG format.  The
4102 file name is made by appending @file{.vcg} to the source file name.  Note
4103 that if the file contains more than one function, the generated file cannot
4104 be used directly by VCG@.  You will need to cut and paste each function's
4105 graph into its own separate file first.
4107 @item ch
4108 @opindex fdump-tree-ch
4109 Dump each function after copying loop headers.  The file name is made by
4110 appending @file{.ch} to the source file name.
4112 @item ssa
4113 @opindex fdump-tree-ssa
4114 Dump SSA related information to a file.  The file name is made by appending
4115 @file{.ssa} to the source file name.
4117 @item salias
4118 @opindex fdump-tree-salias
4119 Dump structure aliasing variable information to a file.  This file name
4120 is made by appending @file{.salias} to the source file name.
4122 @item alias
4123 @opindex fdump-tree-alias
4124 Dump aliasing information for each function.  The file name is made by
4125 appending @file{.alias} to the source file name.
4127 @item ccp
4128 @opindex fdump-tree-ccp
4129 Dump each function after CCP@.  The file name is made by appending
4130 @file{.ccp} to the source file name.
4132 @item storeccp
4133 @opindex fdump-tree-storeccp
4134 Dump each function after STORE-CCP.  The file name is made by appending
4135 @file{.storeccp} to the source file name.
4137 @item pre
4138 @opindex fdump-tree-pre
4139 Dump trees after partial redundancy elimination.  The file name is made
4140 by appending @file{.pre} to the source file name.
4142 @item fre
4143 @opindex fdump-tree-fre
4144 Dump trees after full redundancy elimination.  The file name is made
4145 by appending @file{.fre} to the source file name.
4147 @item copyprop
4148 @opindex fdump-tree-copyprop
4149 Dump trees after copy propagation.  The file name is made
4150 by appending @file{.copyprop} to the source file name.
4152 @item store_copyprop
4153 @opindex fdump-tree-store_copyprop
4154 Dump trees after store copy-propagation.  The file name is made
4155 by appending @file{.store_copyprop} to the source file name.
4157 @item dce
4158 @opindex fdump-tree-dce
4159 Dump each function after dead code elimination.  The file name is made by
4160 appending @file{.dce} to the source file name.
4162 @item mudflap
4163 @opindex fdump-tree-mudflap
4164 Dump each function after adding mudflap instrumentation.  The file name is
4165 made by appending @file{.mudflap} to the source file name.
4167 @item sra
4168 @opindex fdump-tree-sra
4169 Dump each function after performing scalar replacement of aggregates.  The
4170 file name is made by appending @file{.sra} to the source file name.
4172 @item sink
4173 @opindex fdump-tree-sink
4174 Dump each function after performing code sinking.  The file name is made
4175 by appending @file{.sink} to the source file name. 
4177 @item dom
4178 @opindex fdump-tree-dom
4179 Dump each function after applying dominator tree optimizations.  The file
4180 name is made by appending @file{.dom} to the source file name.
4182 @item dse
4183 @opindex fdump-tree-dse
4184 Dump each function after applying dead store elimination.  The file
4185 name is made by appending @file{.dse} to the source file name.
4187 @item phiopt
4188 @opindex fdump-tree-phiopt
4189 Dump each function after optimizing PHI nodes into straightline code.  The file
4190 name is made by appending @file{.phiopt} to the source file name.
4192 @item forwprop
4193 @opindex fdump-tree-forwprop
4194 Dump each function after forward propagating single use variables.  The file
4195 name is made by appending @file{.forwprop} to the source file name.
4197 @item copyrename
4198 @opindex fdump-tree-copyrename
4199 Dump each function after applying the copy rename optimization.  The file
4200 name is made by appending @file{.copyrename} to the source file name.
4202 @item nrv
4203 @opindex fdump-tree-nrv
4204 Dump each function after applying the named return value optimization on
4205 generic trees.  The file name is made by appending @file{.nrv} to the source
4206 file name.
4208 @item vect
4209 @opindex fdump-tree-vect
4210 Dump each function after applying vectorization of loops.  The file name is
4211 made by appending @file{.vect} to the source file name.
4213 @item vrp
4214 @opindex fdump-tree-vrp
4215 Dump each function after Value Range Propagation (VRP).  The file name
4216 is made by appending @file{.vrp} to the source file name.
4218 @item all
4219 @opindex fdump-tree-all
4220 Enable all the available tree dumps with the flags provided in this option.
4221 @end table
4223 @item -ftree-vectorizer-verbose=@var{n}
4224 @opindex ftree-vectorizer-verbose
4225 This option controls the amount of debugging output the vectorizer prints.
4226 This information is written to standard error, unless 
4227 @option{-fdump-tree-all} or @option{-fdump-tree-vect} is specified, 
4228 in which case it is output to the usual dump listing file, @file{.vect}.
4229 For @var{n}=0 no diagnostic information is reported.
4230 If @var{n}=1 the vectorizer reports each loop that got vectorized, 
4231 and the total number of loops that got vectorized.
4232 If @var{n}=2 the vectorizer also reports non-vectorized loops that passed 
4233 the first analysis phase (vect_analyze_loop_form) - i.e. countable, 
4234 inner-most, single-bb, single-entry/exit loops.  This is the same verbosity 
4235 level that @option{-fdump-tree-vect-stats} uses.
4236 Higher verbosity levels mean either more information dumped for each 
4237 reported loop, or same amount of information reported for more loops:
4238 If @var{n}=3, alignment related information is added to the reports.
4239 If @var{n}=4, data-references related information (e.g. memory dependences, 
4240 memory access-patterns) is added to the reports.
4241 If @var{n}=5, the vectorizer reports also non-vectorized inner-most loops 
4242 that did not pass the first analysis phase (i.e. may not be countable, or 
4243 may have complicated control-flow).
4244 If @var{n}=6, the vectorizer reports also non-vectorized nested loops.
4245 For @var{n}=7, all the information the vectorizer generates during its 
4246 analysis and transformation is reported.  This is the same verbosity level
4247 that @option{-fdump-tree-vect-details} uses.
4249 @item -frandom-seed=@var{string}
4250 @opindex frandom-string
4251 This option provides a seed that GCC uses when it would otherwise use
4252 random numbers.  It is used to generate certain symbol names
4253 that have to be different in every compiled file.  It is also used to
4254 place unique stamps in coverage data files and the object files that
4255 produce them.  You can use the @option{-frandom-seed} option to produce
4256 reproducibly identical object files.
4258 The @var{string} should be different for every file you compile.
4260 @item -fsched-verbose=@var{n}
4261 @opindex fsched-verbose
4262 On targets that use instruction scheduling, this option controls the
4263 amount of debugging output the scheduler prints.  This information is
4264 written to standard error, unless @option{-dS} or @option{-dR} is
4265 specified, in which case it is output to the usual dump
4266 listing file, @file{.sched} or @file{.sched2} respectively.  However
4267 for @var{n} greater than nine, the output is always printed to standard
4268 error.
4270 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
4271 same information as @option{-dRS}.  For @var{n} greater than one, it
4272 also output basic block probabilities, detailed ready list information
4273 and unit/insn info.  For @var{n} greater than two, it includes RTL
4274 at abort point, control-flow and regions info.  And for @var{n} over
4275 four, @option{-fsched-verbose} also includes dependence info.
4277 @item -save-temps
4278 @opindex save-temps
4279 Store the usual ``temporary'' intermediate files permanently; place them
4280 in the current directory and name them based on the source file.  Thus,
4281 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
4282 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
4283 preprocessed @file{foo.i} output file even though the compiler now
4284 normally uses an integrated preprocessor.
4286 When used in combination with the @option{-x} command line option,
4287 @option{-save-temps} is sensible enough to avoid over writing an
4288 input source file with the same extension as an intermediate file.
4289 The corresponding intermediate file may be obtained by renaming the
4290 source file before using @option{-save-temps}.
4292 @item -time
4293 @opindex time
4294 Report the CPU time taken by each subprocess in the compilation
4295 sequence.  For C source files, this is the compiler proper and assembler
4296 (plus the linker if linking is done).  The output looks like this:
4298 @smallexample
4299 # cc1 0.12 0.01
4300 # as 0.00 0.01
4301 @end smallexample
4303 The first number on each line is the ``user time'', that is time spent
4304 executing the program itself.  The second number is ``system time'',
4305 time spent executing operating system routines on behalf of the program.
4306 Both numbers are in seconds.
4308 @item -fvar-tracking
4309 @opindex fvar-tracking
4310 Run variable tracking pass.  It computes where variables are stored at each
4311 position in code.  Better debugging information is then generated
4312 (if the debugging information format supports this information).
4314 It is enabled by default when compiling with optimization (@option{-Os},
4315 @option{-O}, @option{-O2}, ...), debugging information (@option{-g}) and
4316 the debug info format supports it.
4318 @item -print-file-name=@var{library}
4319 @opindex print-file-name
4320 Print the full absolute name of the library file @var{library} that
4321 would be used when linking---and don't do anything else.  With this
4322 option, GCC does not compile or link anything; it just prints the
4323 file name.
4325 @item -print-multi-directory
4326 @opindex print-multi-directory
4327 Print the directory name corresponding to the multilib selected by any
4328 other switches present in the command line.  This directory is supposed
4329 to exist in @env{GCC_EXEC_PREFIX}.
4331 @item -print-multi-lib
4332 @opindex print-multi-lib
4333 Print the mapping from multilib directory names to compiler switches
4334 that enable them.  The directory name is separated from the switches by
4335 @samp{;}, and each switch starts with an @samp{@@} instead of the
4336 @samp{-}, without spaces between multiple switches.  This is supposed to
4337 ease shell-processing.
4339 @item -print-prog-name=@var{program}
4340 @opindex print-prog-name
4341 Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.
4343 @item -print-libgcc-file-name
4344 @opindex print-libgcc-file-name
4345 Same as @option{-print-file-name=libgcc.a}.
4347 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
4348 but you do want to link with @file{libgcc.a}.  You can do
4350 @smallexample
4351 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
4352 @end smallexample
4354 @item -print-search-dirs
4355 @opindex print-search-dirs
4356 Print the name of the configured installation directory and a list of
4357 program and library directories @command{gcc} will search---and don't do anything else.
4359 This is useful when @command{gcc} prints the error message
4360 @samp{installation problem, cannot exec cpp0: No such file or directory}.
4361 To resolve this you either need to put @file{cpp0} and the other compiler
4362 components where @command{gcc} expects to find them, or you can set the environment
4363 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
4364 Don't forget the trailing @samp{/}.
4365 @xref{Environment Variables}.
4367 @item -dumpmachine
4368 @opindex dumpmachine
4369 Print the compiler's target machine (for example,
4370 @samp{i686-pc-linux-gnu})---and don't do anything else.
4372 @item -dumpversion
4373 @opindex dumpversion
4374 Print the compiler version (for example, @samp{3.0})---and don't do
4375 anything else.
4377 @item -dumpspecs
4378 @opindex dumpspecs
4379 Print the compiler's built-in specs---and don't do anything else.  (This
4380 is used when GCC itself is being built.)  @xref{Spec Files}.
4382 @item -feliminate-unused-debug-types
4383 @opindex feliminate-unused-debug-types
4384 Normally, when producing DWARF2 output, GCC will emit debugging
4385 information for all types declared in a compilation
4386 unit, regardless of whether or not they are actually used
4387 in that compilation unit.  Sometimes this is useful, such as
4388 if, in the debugger, you want to cast a value to a type that is
4389 not actually used in your program (but is declared).  More often,
4390 however, this results in a significant amount of wasted space.
4391 With this option, GCC will avoid producing debug symbol output
4392 for types that are nowhere used in the source file being compiled.
4393 @end table
4395 @node Optimize Options
4396 @section Options That Control Optimization
4397 @cindex optimize options
4398 @cindex options, optimization
4400 These options control various sorts of optimizations.
4402 Without any optimization option, the compiler's goal is to reduce the
4403 cost of compilation and to make debugging produce the expected
4404 results.  Statements are independent: if you stop the program with a
4405 breakpoint between statements, you can then assign a new value to any
4406 variable or change the program counter to any other statement in the
4407 function and get exactly the results you would expect from the source
4408 code.
4410 Turning on optimization flags makes the compiler attempt to improve
4411 the performance and/or code size at the expense of compilation time
4412 and possibly the ability to debug the program.
4414 The compiler performs optimization based on the knowledge it has of
4415 the program.  Optimization levels @option{-O2} and above, in
4416 particular, enable @emph{unit-at-a-time} mode, which allows the
4417 compiler to consider information gained from later functions in
4418 the file when compiling a function.  Compiling multiple files at
4419 once to a single output file in @emph{unit-at-a-time} mode allows
4420 the compiler to use information gained from all of the files when
4421 compiling each of them.
4423 Not all optimizations are controlled directly by a flag.  Only
4424 optimizations that have a flag are listed.
4426 @table @gcctabopt
4427 @item -O
4428 @itemx -O1
4429 @opindex O
4430 @opindex O1
4431 Optimize.  Optimizing compilation takes somewhat more time, and a lot
4432 more memory for a large function.
4434 With @option{-O}, the compiler tries to reduce code size and execution
4435 time, without performing any optimizations that take a great deal of
4436 compilation time.
4438 @option{-O} turns on the following optimization flags:
4439 @gccoptlist{-fdefer-pop @gol
4440 -fdelayed-branch @gol
4441 -fguess-branch-probability @gol
4442 -fcprop-registers @gol
4443 -fif-conversion @gol
4444 -fif-conversion2 @gol
4445 -ftree-ccp @gol
4446 -ftree-dce @gol
4447 -ftree-dominator-opts @gol
4448 -ftree-dse @gol
4449 -ftree-ter @gol
4450 -ftree-lrs @gol
4451 -ftree-sra @gol
4452 -ftree-copyrename @gol
4453 -ftree-fre @gol
4454 -ftree-ch @gol
4455 -fmerge-constants}
4457 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
4458 where doing so does not interfere with debugging.
4460 @item -O2
4461 @opindex O2
4462 Optimize even more.  GCC performs nearly all supported optimizations
4463 that do not involve a space-speed tradeoff.  The compiler does not
4464 perform loop unrolling or function inlining when you specify @option{-O2}.
4465 As compared to @option{-O}, this option increases both compilation time
4466 and the performance of the generated code.
4468 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
4469 also turns on the following optimization flags:
4470 @gccoptlist{-fthread-jumps @gol
4471 -fcrossjumping @gol
4472 -foptimize-sibling-calls @gol
4473 -fcse-follow-jumps  -fcse-skip-blocks @gol
4474 -fgcse  -fgcse-lm  @gol
4475 -fexpensive-optimizations @gol
4476 -frerun-cse-after-loop  @gol
4477 -fcaller-saves @gol
4478 -fpeephole2 @gol
4479 -fschedule-insns  -fschedule-insns2 @gol
4480 -fsched-interblock  -fsched-spec @gol
4481 -fregmove @gol
4482 -fstrict-aliasing @gol
4483 -fdelete-null-pointer-checks @gol
4484 -freorder-blocks  -freorder-functions @gol
4485 -funit-at-a-time @gol
4486 -falign-functions  -falign-jumps @gol
4487 -falign-loops  -falign-labels @gol
4488 -ftree-vrp @gol
4489 -ftree-pre}
4491 Please note the warning under @option{-fgcse} about
4492 invoking @option{-O2} on programs that use computed gotos.
4494 @item -O3
4495 @opindex O3
4496 Optimize yet more.  @option{-O3} turns on all optimizations specified by
4497 @option{-O2} and also turns on the @option{-finline-functions},
4498 @option{-funswitch-loops} and @option{-fgcse-after-reload} options.
4500 @item -O0
4501 @opindex O0
4502 Do not optimize.  This is the default.
4504 @item -Os
4505 @opindex Os
4506 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
4507 do not typically increase code size.  It also performs further
4508 optimizations designed to reduce code size.
4510 @option{-Os} disables the following optimization flags:
4511 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
4512 -falign-labels  -freorder-blocks  -freorder-blocks-and-partition @gol
4513 -fprefetch-loop-arrays  -ftree-vect-loop-version}
4515 If you use multiple @option{-O} options, with or without level numbers,
4516 the last such option is the one that is effective.
4517 @end table
4519 Options of the form @option{-f@var{flag}} specify machine-independent
4520 flags.  Most flags have both positive and negative forms; the negative
4521 form of @option{-ffoo} would be @option{-fno-foo}.  In the table
4522 below, only one of the forms is listed---the one you typically will
4523 use.  You can figure out the other form by either removing @samp{no-}
4524 or adding it.
4526 The following options control specific optimizations.  They are either
4527 activated by @option{-O} options or are related to ones that are.  You
4528 can use the following flags in the rare cases when ``fine-tuning'' of
4529 optimizations to be performed is desired.
4531 @table @gcctabopt
4532 @item -fno-default-inline
4533 @opindex fno-default-inline
4534 Do not make member functions inline by default merely because they are
4535 defined inside the class scope (C++ only).  Otherwise, when you specify
4536 @w{@option{-O}}, member functions defined inside class scope are compiled
4537 inline by default; i.e., you don't need to add @samp{inline} in front of
4538 the member function name.
4540 @item -fno-defer-pop
4541 @opindex fno-defer-pop
4542 Always pop the arguments to each function call as soon as that function
4543 returns.  For machines which must pop arguments after a function call,
4544 the compiler normally lets arguments accumulate on the stack for several
4545 function calls and pops them all at once.
4547 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4549 @item -fforce-mem
4550 @opindex fforce-mem
4551 Force memory operands to be copied into registers before doing
4552 arithmetic on them.  This produces better code by making all memory
4553 references potential common subexpressions.  When they are not common
4554 subexpressions, instruction combination should eliminate the separate
4555 register-load. This option is now a nop and will be removed in 4.2.
4557 @item -fforce-addr
4558 @opindex fforce-addr
4559 Force memory address constants to be copied into registers before
4560 doing arithmetic on them.
4562 @item -fomit-frame-pointer
4563 @opindex fomit-frame-pointer
4564 Don't keep the frame pointer in a register for functions that
4565 don't need one.  This avoids the instructions to save, set up and
4566 restore frame pointers; it also makes an extra register available
4567 in many functions.  @strong{It also makes debugging impossible on
4568 some machines.}
4570 On some machines, such as the VAX, this flag has no effect, because
4571 the standard calling sequence automatically handles the frame pointer
4572 and nothing is saved by pretending it doesn't exist.  The
4573 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
4574 whether a target machine supports this flag.  @xref{Registers,,Register
4575 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
4577 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4579 @item -foptimize-sibling-calls
4580 @opindex foptimize-sibling-calls
4581 Optimize sibling and tail recursive calls.
4583 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4585 @item -fno-inline
4586 @opindex fno-inline
4587 Don't pay attention to the @code{inline} keyword.  Normally this option
4588 is used to keep the compiler from expanding any functions inline.
4589 Note that if you are not optimizing, no functions can be expanded inline.
4591 @item -finline-functions
4592 @opindex finline-functions
4593 Integrate all simple functions into their callers.  The compiler
4594 heuristically decides which functions are simple enough to be worth
4595 integrating in this way.
4597 If all calls to a given function are integrated, and the function is
4598 declared @code{static}, then the function is normally not output as
4599 assembler code in its own right.
4601 Enabled at level @option{-O3}.
4603 @item -finline-functions-called-once
4604 @opindex finline-functions-called-once
4605 Consider all @code{static} functions called once for inlining into their
4606 caller even if they are not marked @code{inline}.  If a call to a given
4607 function is integrated, then the function is not output as assembler code
4608 in its own right.
4610 Enabled if @option{-funit-at-a-time} is enabled.
4612 @item -fearly-inlining
4613 @opindex fearly-inlining
4614 Inline functions marked by @code{always_inline} and functions whose body seems
4615 smaller than the function call overhead early before doing
4616 @option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
4617 makes profiling significantly cheaper and usually inlining faster on programs
4618 having large chains of nested wrapper functions.
4620 Enabled by default.
4622 @item -finline-limit=@var{n}
4623 @opindex finline-limit
4624 By default, GCC limits the size of functions that can be inlined.  This flag
4625 allows the control of this limit for functions that are explicitly marked as
4626 inline (i.e., marked with the inline keyword or defined within the class
4627 definition in c++).  @var{n} is the size of functions that can be inlined in
4628 number of pseudo instructions (not counting parameter handling).  The default
4629 value of @var{n} is 600.
4630 Increasing this value can result in more inlined code at
4631 the cost of compilation time and memory consumption.  Decreasing usually makes
4632 the compilation faster and less code will be inlined (which presumably
4633 means slower programs).  This option is particularly useful for programs that
4634 use inlining heavily such as those based on recursive templates with C++.
4636 Inlining is actually controlled by a number of parameters, which may be
4637 specified individually by using @option{--param @var{name}=@var{value}}.
4638 The @option{-finline-limit=@var{n}} option sets some of these parameters
4639 as follows:
4641 @table @gcctabopt
4642  @item max-inline-insns-single
4643   is set to @var{n}/2.
4644  @item max-inline-insns-auto
4645   is set to @var{n}/2.
4646  @item min-inline-insns
4647   is set to 130 or @var{n}/4, whichever is smaller.
4648  @item max-inline-insns-rtl
4649   is set to @var{n}.
4650 @end table
4652 See below for a documentation of the individual
4653 parameters controlling inlining.
4655 @emph{Note:} pseudo instruction represents, in this particular context, an
4656 abstract measurement of function's size.  In no way does it represent a count
4657 of assembly instructions and as such its exact meaning might change from one
4658 release to an another.
4660 @item -fkeep-inline-functions
4661 @opindex fkeep-inline-functions
4662 In C, emit @code{static} functions that are declared @code{inline}
4663 into the object file, even if the function has been inlined into all
4664 of its callers.  This switch does not affect functions using the
4665 @code{extern inline} extension in GNU C@.  In C++, emit any and all
4666 inline functions into the object file.
4668 @item -fkeep-static-consts
4669 @opindex fkeep-static-consts
4670 Emit variables declared @code{static const} when optimization isn't turned
4671 on, even if the variables aren't referenced.
4673 GCC enables this option by default.  If you want to force the compiler to
4674 check if the variable was referenced, regardless of whether or not
4675 optimization is turned on, use the @option{-fno-keep-static-consts} option.
4677 @item -fmerge-constants
4678 Attempt to merge identical constants (string constants and floating point
4679 constants) across compilation units.
4681 This option is the default for optimized compilation if the assembler and
4682 linker support it.  Use @option{-fno-merge-constants} to inhibit this
4683 behavior.
4685 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4687 @item -fmerge-all-constants
4688 Attempt to merge identical constants and identical variables.
4690 This option implies @option{-fmerge-constants}.  In addition to
4691 @option{-fmerge-constants} this considers e.g.@: even constant initialized
4692 arrays or initialized constant variables with integral or floating point
4693 types.  Languages like C or C++ require each non-automatic variable to
4694 have distinct location, so using this option will result in non-conforming
4695 behavior.
4697 @item -fmodulo-sched
4698 @opindex fmodulo-sched
4699 Perform swing modulo scheduling immediately before the first scheduling
4700 pass.  This pass looks at innermost loops and reorders their
4701 instructions by overlapping different iterations.
4703 @item -fno-branch-count-reg
4704 @opindex fno-branch-count-reg
4705 Do not use ``decrement and branch'' instructions on a count register,
4706 but instead generate a sequence of instructions that decrement a
4707 register, compare it against zero, then branch based upon the result.
4708 This option is only meaningful on architectures that support such
4709 instructions, which include x86, PowerPC, IA-64 and S/390.
4711 The default is @option{-fbranch-count-reg}.
4713 @item -fno-function-cse
4714 @opindex fno-function-cse
4715 Do not put function addresses in registers; make each instruction that
4716 calls a constant function contain the function's address explicitly.
4718 This option results in less efficient code, but some strange hacks
4719 that alter the assembler output may be confused by the optimizations
4720 performed when this option is not used.
4722 The default is @option{-ffunction-cse}
4724 @item -fno-zero-initialized-in-bss
4725 @opindex fno-zero-initialized-in-bss
4726 If the target supports a BSS section, GCC by default puts variables that
4727 are initialized to zero into BSS@.  This can save space in the resulting
4728 code.
4730 This option turns off this behavior because some programs explicitly
4731 rely on variables going to the data section.  E.g., so that the
4732 resulting executable can find the beginning of that section and/or make
4733 assumptions based on that.
4735 The default is @option{-fzero-initialized-in-bss}.
4737 @item -fbounds-check
4738 @opindex fbounds-check
4739 For front-ends that support it, generate additional code to check that
4740 indices used to access arrays are within the declared range.  This is
4741 currently only supported by the Java and Fortran front-ends, where
4742 this option defaults to true and false respectively.
4744 @item -fmudflap -fmudflapth -fmudflapir
4745 @opindex fmudflap
4746 @opindex fmudflapth
4747 @opindex fmudflapir
4748 @cindex bounds checking
4749 @cindex mudflap
4750 For front-ends that support it (C and C++), instrument all risky
4751 pointer/array dereferencing operations, some standard library
4752 string/heap functions, and some other associated constructs with
4753 range/validity tests.  Modules so instrumented should be immune to
4754 buffer overflows, invalid heap use, and some other classes of C/C++
4755 programming errors.  The instrumentation relies on a separate runtime
4756 library (@file{libmudflap}), which will be linked into a program if
4757 @option{-fmudflap} is given at link time.  Run-time behavior of the
4758 instrumented program is controlled by the @env{MUDFLAP_OPTIONS}
4759 environment variable.  See @code{env MUDFLAP_OPTIONS=-help a.out}
4760 for its options.
4762 Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to
4763 link if your program is multi-threaded.  Use @option{-fmudflapir}, in
4764 addition to @option{-fmudflap} or @option{-fmudflapth}, if
4765 instrumentation should ignore pointer reads.  This produces less
4766 instrumentation (and therefore faster execution) and still provides
4767 some protection against outright memory corrupting writes, but allows
4768 erroneously read data to propagate within a program.
4770 @item -fthread-jumps
4771 @opindex fthread-jumps
4772 Perform optimizations where we check to see if a jump branches to a
4773 location where another comparison subsumed by the first is found.  If
4774 so, the first branch is redirected to either the destination of the
4775 second branch or a point immediately following it, depending on whether
4776 the condition is known to be true or false.
4778 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4780 @item -fcse-follow-jumps
4781 @opindex fcse-follow-jumps
4782 In common subexpression elimination, scan through jump instructions
4783 when the target of the jump is not reached by any other path.  For
4784 example, when CSE encounters an @code{if} statement with an
4785 @code{else} clause, CSE will follow the jump when the condition
4786 tested is false.
4788 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4790 @item -fcse-skip-blocks
4791 @opindex fcse-skip-blocks
4792 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
4793 follow jumps which conditionally skip over blocks.  When CSE
4794 encounters a simple @code{if} statement with no else clause,
4795 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
4796 body of the @code{if}.
4798 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4800 @item -frerun-cse-after-loop
4801 @opindex frerun-cse-after-loop
4802 Re-run common subexpression elimination after loop optimizations has been
4803 performed.
4805 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4807 @item -fgcse
4808 @opindex fgcse
4809 Perform a global common subexpression elimination pass.
4810 This pass also performs global constant and copy propagation.
4812 @emph{Note:} When compiling a program using computed gotos, a GCC
4813 extension, you may get better runtime performance if you disable
4814 the global common subexpression elimination pass by adding
4815 @option{-fno-gcse} to the command line.
4817 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4819 @item -fgcse-lm
4820 @opindex fgcse-lm
4821 When @option{-fgcse-lm} is enabled, global common subexpression elimination will
4822 attempt to move loads which are only killed by stores into themselves.  This
4823 allows a loop containing a load/store sequence to be changed to a load outside
4824 the loop, and a copy/store within the loop.
4826 Enabled by default when gcse is enabled.
4828 @item -fgcse-sm
4829 @opindex fgcse-sm
4830 When @option{-fgcse-sm} is enabled, a store motion pass is run after
4831 global common subexpression elimination.  This pass will attempt to move
4832 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
4833 loops containing a load/store sequence can be changed to a load before
4834 the loop and a store after the loop.
4836 Not enabled at any optimization level.
4838 @item -fgcse-las
4839 @opindex fgcse-las
4840 When @option{-fgcse-las} is enabled, the global common subexpression
4841 elimination pass eliminates redundant loads that come after stores to the
4842 same memory location (both partial and full redundancies).
4844 Not enabled at any optimization level.
4846 @item -fgcse-after-reload
4847 @opindex fgcse-after-reload
4848 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
4849 pass is performed after reload.  The purpose of this pass is to cleanup
4850 redundant spilling.
4852 @item -funsafe-loop-optimizations
4853 @opindex funsafe-loop-optimizations
4854 If given, the loop optimizer will assume that loop indices do not
4855 overflow, and that the loops with nontrivial exit condition are not
4856 infinite.  This enables a wider range of loop optimizations even if
4857 the loop optimizer itself cannot prove that these assumptions are valid.
4858 Using @option{-Wunsafe-loop-optimizations}, the compiler will warn you
4859 if it finds this kind of loop.
4861 @item -fcrossjumping
4862 @opindex crossjumping
4863 Perform cross-jumping transformation.  This transformation unifies equivalent code and save code size.  The
4864 resulting code may or may not perform better than without cross-jumping.
4866 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4868 @item -fif-conversion
4869 @opindex if-conversion
4870 Attempt to transform conditional jumps into branch-less equivalents.  This
4871 include use of conditional moves, min, max, set flags and abs instructions, and
4872 some tricks doable by standard arithmetics.  The use of conditional execution
4873 on chips where it is available is controlled by @code{if-conversion2}.
4875 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4877 @item -fif-conversion2
4878 @opindex if-conversion2
4879 Use conditional execution (where available) to transform conditional jumps into
4880 branch-less equivalents.
4882 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4884 @item -fdelete-null-pointer-checks
4885 @opindex fdelete-null-pointer-checks
4886 Use global dataflow analysis to identify and eliminate useless checks
4887 for null pointers.  The compiler assumes that dereferencing a null
4888 pointer would have halted the program.  If a pointer is checked after
4889 it has already been dereferenced, it cannot be null.
4891 In some environments, this assumption is not true, and programs can
4892 safely dereference null pointers.  Use
4893 @option{-fno-delete-null-pointer-checks} to disable this optimization
4894 for programs which depend on that behavior.
4896 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4898 @item -fexpensive-optimizations
4899 @opindex fexpensive-optimizations
4900 Perform a number of minor optimizations that are relatively expensive.
4902 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4904 @item -foptimize-register-move
4905 @itemx -fregmove
4906 @opindex foptimize-register-move
4907 @opindex fregmove
4908 Attempt to reassign register numbers in move instructions and as
4909 operands of other simple instructions in order to maximize the amount of
4910 register tying.  This is especially helpful on machines with two-operand
4911 instructions.
4913 Note @option{-fregmove} and @option{-foptimize-register-move} are the same
4914 optimization.
4916 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4918 @item -fdelayed-branch
4919 @opindex fdelayed-branch
4920 If supported for the target machine, attempt to reorder instructions
4921 to exploit instruction slots available after delayed branch
4922 instructions.
4924 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4926 @item -fschedule-insns
4927 @opindex fschedule-insns
4928 If supported for the target machine, attempt to reorder instructions to
4929 eliminate execution stalls due to required data being unavailable.  This
4930 helps machines that have slow floating point or memory load instructions
4931 by allowing other instructions to be issued until the result of the load
4932 or floating point instruction is required.
4934 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4936 @item -fschedule-insns2
4937 @opindex fschedule-insns2
4938 Similar to @option{-fschedule-insns}, but requests an additional pass of
4939 instruction scheduling after register allocation has been done.  This is
4940 especially useful on machines with a relatively small number of
4941 registers and where memory load instructions take more than one cycle.
4943 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4945 @item -fno-sched-interblock
4946 @opindex fno-sched-interblock
4947 Don't schedule instructions across basic blocks.  This is normally
4948 enabled by default when scheduling before register allocation, i.e.@:
4949 with @option{-fschedule-insns} or at @option{-O2} or higher.
4951 @item -fno-sched-spec
4952 @opindex fno-sched-spec
4953 Don't allow speculative motion of non-load instructions.  This is normally
4954 enabled by default when scheduling before register allocation, i.e.@:
4955 with @option{-fschedule-insns} or at @option{-O2} or higher.
4957 @item -fsched-spec-load
4958 @opindex fsched-spec-load
4959 Allow speculative motion of some load instructions.  This only makes
4960 sense when scheduling before register allocation, i.e.@: with
4961 @option{-fschedule-insns} or at @option{-O2} or higher.
4963 @item -fsched-spec-load-dangerous
4964 @opindex fsched-spec-load-dangerous
4965 Allow speculative motion of more load instructions.  This only makes
4966 sense when scheduling before register allocation, i.e.@: with
4967 @option{-fschedule-insns} or at @option{-O2} or higher.
4969 @item -fsched-stalled-insns=@var{n}
4970 @opindex fsched-stalled-insns
4971 Define how many insns (if any) can be moved prematurely from the queue
4972 of stalled insns into the ready list, during the second scheduling pass.
4974 @item -fsched-stalled-insns-dep=@var{n}
4975 @opindex fsched-stalled-insns-dep
4976 Define how many insn groups (cycles) will be examined for a dependency
4977 on a stalled insn that is candidate for premature removal from the queue
4978 of stalled insns.  Has an effect only during the second scheduling pass,
4979 and only if @option{-fsched-stalled-insns} is used and its value is not zero.
4981 @item -fsched2-use-superblocks
4982 @opindex fsched2-use-superblocks
4983 When scheduling after register allocation, do use superblock scheduling
4984 algorithm.  Superblock scheduling allows motion across basic block boundaries
4985 resulting on faster schedules.  This option is experimental, as not all machine
4986 descriptions used by GCC model the CPU closely enough to avoid unreliable
4987 results from the algorithm.
4989 This only makes sense when scheduling after register allocation, i.e.@: with
4990 @option{-fschedule-insns2} or at @option{-O2} or higher.
4992 @item -fsched2-use-traces
4993 @opindex fsched2-use-traces
4994 Use @option{-fsched2-use-superblocks} algorithm when scheduling after register
4995 allocation and additionally perform code duplication in order to increase the
4996 size of superblocks using tracer pass.  See @option{-ftracer} for details on
4997 trace formation.
4999 This mode should produce faster but significantly longer programs.  Also
5000 without @option{-fbranch-probabilities} the traces constructed may not
5001 match the reality and hurt the performance.  This only makes
5002 sense when scheduling after register allocation, i.e.@: with
5003 @option{-fschedule-insns2} or at @option{-O2} or higher.
5005 @item -freschedule-modulo-scheduled-loops
5006 @opindex fscheduling-in-modulo-scheduled-loops
5007 The modulo scheduling comes before the traditional scheduling, if a loop was modulo scheduled
5008 we may want to prevent the later scheduling passes from changing its schedule, we use this
5009 option to control that.
5011 @item -fcaller-saves
5012 @opindex fcaller-saves
5013 Enable values to be allocated in registers that will be clobbered by
5014 function calls, by emitting extra instructions to save and restore the
5015 registers around such calls.  Such allocation is done only when it
5016 seems to result in better code than would otherwise be produced.
5018 This option is always enabled by default on certain machines, usually
5019 those which have no call-preserved registers to use instead.
5021 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
5023 @item -ftree-pre
5024 Perform Partial Redundancy Elimination (PRE) on trees.  This flag is
5025 enabled by default at @option{-O2} and @option{-O3}.
5027 @item -ftree-fre
5028 Perform Full Redundancy Elimination (FRE) on trees.  The difference
5029 between FRE and PRE is that FRE only considers expressions
5030 that are computed on all paths leading to the redundant computation.
5031 This analysis faster than PRE, though it exposes fewer redundancies.
5032 This flag is enabled by default at @option{-O} and higher.
5034 @item -ftree-copy-prop
5035 Perform copy propagation on trees.  This pass eliminates unnecessary
5036 copy operations.  This flag is enabled by default at @option{-O} and
5037 higher.
5039 @item -ftree-store-copy-prop
5040 Perform copy propagation of memory loads and stores.  This pass
5041 eliminates unnecessary copy operations in memory references
5042 (structures, global variables, arrays, etc).  This flag is enabled by
5043 default at @option{-O2} and higher.
5045 @item -ftree-salias
5046 Perform structural alias analysis on trees.  This flag
5047 is enabled by default at @option{-O} and higher.
5049 @item -fipa-pta
5050 Perform interprocedural pointer analysis.
5052 @item -ftree-sink
5053 Perform forward store motion  on trees.  This flag is
5054 enabled by default at @option{-O} and higher.
5056 @item -ftree-ccp
5057 Perform sparse conditional constant propagation (CCP) on trees.  This
5058 pass only operates on local scalar variables and is enabled by default
5059 at @option{-O} and higher.
5061 @item -ftree-store-ccp
5062 Perform sparse conditional constant propagation (CCP) on trees.  This
5063 pass operates on both local scalar variables and memory stores and
5064 loads (global variables, structures, arrays, etc).  This flag is
5065 enabled by default at @option{-O2} and higher.
5067 @item -ftree-dce
5068 Perform dead code elimination (DCE) on trees.  This flag is enabled by
5069 default at @option{-O} and higher.
5071 @item -ftree-dominator-opts
5072 Perform a variety of simple scalar cleanups (constant/copy
5073 propagation, redundancy elimination, range propagation and expression
5074 simplification) based on a dominator tree traversal.  This also
5075 performs jump threading (to reduce jumps to jumps). This flag is
5076 enabled by default at @option{-O} and higher.
5078 @item -ftree-ch
5079 Perform loop header copying on trees.  This is beneficial since it increases
5080 effectiveness of code motion optimizations.  It also saves one jump.  This flag
5081 is enabled by default at @option{-O} and higher.  It is not enabled
5082 for @option{-Os}, since it usually increases code size.
5084 @item -ftree-loop-optimize
5085 Perform loop optimizations on trees.  This flag is enabled by default
5086 at @option{-O} and higher.
5088 @item -ftree-loop-linear
5089 Perform linear loop transformations on tree.  This flag can improve cache
5090 performance and allow further loop optimizations to take place.
5092 @item -ftree-loop-im
5093 Perform loop invariant motion on trees.  This pass moves only invariants that
5094 would be hard to handle at RTL level (function calls, operations that expand to
5095 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
5096 operands of conditions that are invariant out of the loop, so that we can use
5097 just trivial invariantness analysis in loop unswitching.  The pass also includes
5098 store motion.
5100 @item -ftree-loop-ivcanon
5101 Create a canonical counter for number of iterations in the loop for that
5102 determining number of iterations requires complicated analysis.  Later
5103 optimizations then may determine the number easily.  Useful especially
5104 in connection with unrolling.
5106 @item -fivopts
5107 Perform induction variable optimizations (strength reduction, induction
5108 variable merging and induction variable elimination) on trees.
5110 @item -ftree-sra
5111 Perform scalar replacement of aggregates.  This pass replaces structure
5112 references with scalars to prevent committing structures to memory too
5113 early.  This flag is enabled by default at @option{-O} and higher.
5115 @item -ftree-copyrename
5116 Perform copy renaming on trees.  This pass attempts to rename compiler
5117 temporaries to other variables at copy locations, usually resulting in
5118 variable names which more closely resemble the original variables.  This flag
5119 is enabled by default at @option{-O} and higher.
5121 @item -ftree-ter
5122 Perform temporary expression replacement during the SSA->normal phase.  Single
5123 use/single def temporaries are replaced at their use location with their
5124 defining expression.  This results in non-GIMPLE code, but gives the expanders
5125 much more complex trees to work on resulting in better RTL generation.  This is
5126 enabled by default at @option{-O} and higher.
5128 @item -ftree-lrs
5129 Perform live range splitting during the SSA->normal phase.  Distinct live
5130 ranges of a variable are split into unique variables, allowing for better
5131 optimization later.  This is enabled by default at @option{-O} and higher.
5133 @item -ftree-vectorize
5134 Perform loop vectorization on trees.
5136 @item -ftree-vect-loop-version
5137 @opindex ftree-vect-loop-version
5138 Perform loop versioning when doing loop vectorization on trees.  When a loop
5139 appears to be vectorizable except that data alignment or data dependence cannot
5140 be determined at compile time then vectorized and non-vectorized versions of
5141 the loop are generated along with runtime checks for alignment or dependence
5142 to control which version is executed.  This option is enabled by default
5143 except at level @option{-Os} where it is disabled.
5145 @item -ftree-vrp
5146 Perform Value Range Propagation on trees.  This is similar to the
5147 constant propagation pass, but instead of values, ranges of values are
5148 propagated.  This allows the optimizers to remove unnecessary range
5149 checks like array bound checks and null pointer checks.  This is
5150 enabled by default at @option{-O2} and higher.  Null pointer check
5151 elimination is only done if @option{-fdelete-null-pointer-checks} is
5152 enabled.
5154 @item -ftracer
5155 @opindex ftracer
5156 Perform tail duplication to enlarge superblock size.  This transformation
5157 simplifies the control flow of the function allowing other optimizations to do
5158 better job.
5160 @item -funroll-loops
5161 @opindex funroll-loops
5162 Unroll loops whose number of iterations can be determined at compile
5163 time or upon entry to the loop.  @option{-funroll-loops} implies
5164 @option{-frerun-cse-after-loop}.  This option makes code larger,
5165 and may or may not make it run faster.
5167 @item -funroll-all-loops
5168 @opindex funroll-all-loops
5169 Unroll all loops, even if their number of iterations is uncertain when
5170 the loop is entered.  This usually makes programs run more slowly.
5171 @option{-funroll-all-loops} implies the same options as
5172 @option{-funroll-loops},
5174 @item -fsplit-ivs-in-unroller
5175 @opindex -fsplit-ivs-in-unroller
5176 Enables expressing of values of induction variables in later iterations
5177 of the unrolled loop using the value in the first iteration.  This breaks
5178 long dependency chains, thus improving efficiency of the scheduling passes.
5180 Combination of @option{-fweb} and CSE is often sufficient to obtain the
5181 same effect.  However in cases the loop body is more complicated than
5182 a single basic block, this is not reliable.  It also does not work at all
5183 on some of the architectures due to restrictions in the CSE pass.
5185 This optimization is enabled by default.
5187 @item -fvariable-expansion-in-unroller
5188 @opindex -fvariable-expansion-in-unroller
5189 With this option, the compiler will create multiple copies of some
5190 local variables when unrolling a loop which can result in superior code.
5192 @item -fprefetch-loop-arrays
5193 @opindex fprefetch-loop-arrays
5194 If supported by the target machine, generate instructions to prefetch
5195 memory to improve the performance of loops that access large arrays.
5197 This option may generate better or worse code; results are highly
5198 dependent on the structure of loops within the source code.
5200 Disabled at level @option{-Os}.
5202 @item -fno-peephole
5203 @itemx -fno-peephole2
5204 @opindex fno-peephole
5205 @opindex fno-peephole2
5206 Disable any machine-specific peephole optimizations.  The difference
5207 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
5208 are implemented in the compiler; some targets use one, some use the
5209 other, a few use both.
5211 @option{-fpeephole} is enabled by default.
5212 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
5214 @item -fno-guess-branch-probability
5215 @opindex fno-guess-branch-probability
5216 Do not guess branch probabilities using heuristics.
5218 GCC will use heuristics to guess branch probabilities if they are
5219 not provided by profiling feedback (@option{-fprofile-arcs}).  These
5220 heuristics are based on the control flow graph.  If some branch probabilities
5221 are specified by @samp{__builtin_expect}, then the heuristics will be
5222 used to guess branch probabilities for the rest of the control flow graph,
5223 taking the @samp{__builtin_expect} info into account.  The interactions
5224 between the heuristics and @samp{__builtin_expect} can be complex, and in
5225 some cases, it may be useful to disable the heuristics so that the effects
5226 of @samp{__builtin_expect} are easier to understand.
5228 The default is @option{-fguess-branch-probability} at levels
5229 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
5231 @item -freorder-blocks
5232 @opindex freorder-blocks
5233 Reorder basic blocks in the compiled function in order to reduce number of
5234 taken branches and improve code locality.
5236 Enabled at levels @option{-O2}, @option{-O3}.
5238 @item -freorder-blocks-and-partition
5239 @opindex freorder-blocks-and-partition
5240 In addition to reordering basic blocks in the compiled function, in order
5241 to reduce number of taken branches, partitions hot and cold basic blocks
5242 into separate sections of the assembly and .o files, to improve
5243 paging and cache locality performance.
5245 This optimization is automatically turned off in the presence of
5246 exception handling, for linkonce sections, for functions with a user-defined
5247 section attribute and on any architecture that does not support named
5248 sections.
5250 @item -freorder-functions
5251 @opindex freorder-functions
5252 Reorder functions in the object file in order to
5253 improve code locality.  This is implemented by using special
5254 subsections @code{.text.hot} for most frequently executed functions and
5255 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
5256 the linker so object file format must support named sections and linker must
5257 place them in a reasonable way.
5259 Also profile feedback must be available in to make this option effective.  See
5260 @option{-fprofile-arcs} for details.
5262 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
5264 @item -fstrict-aliasing
5265 @opindex fstrict-aliasing
5266 Allows the compiler to assume the strictest aliasing rules applicable to
5267 the language being compiled.  For C (and C++), this activates
5268 optimizations based on the type of expressions.  In particular, an
5269 object of one type is assumed never to reside at the same address as an
5270 object of a different type, unless the types are almost the same.  For
5271 example, an @code{unsigned int} can alias an @code{int}, but not a
5272 @code{void*} or a @code{double}.  A character type may alias any other
5273 type.
5275 Pay special attention to code like this:
5276 @smallexample
5277 union a_union @{
5278   int i;
5279   double d;
5282 int f() @{
5283   a_union t;
5284   t.d = 3.0;
5285   return t.i;
5287 @end smallexample
5288 The practice of reading from a different union member than the one most
5289 recently written to (called ``type-punning'') is common.  Even with
5290 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
5291 is accessed through the union type.  So, the code above will work as
5292 expected.  However, this code might not:
5293 @smallexample
5294 int f() @{
5295   a_union t;
5296   int* ip;
5297   t.d = 3.0;
5298   ip = &t.i;
5299   return *ip;
5301 @end smallexample
5303 Every language that wishes to perform language-specific alias analysis
5304 should define a function that computes, given an @code{tree}
5305 node, an alias set for the node.  Nodes in different alias sets are not
5306 allowed to alias.  For an example, see the C front-end function
5307 @code{c_get_alias_set}.
5309 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
5311 @item -falign-functions
5312 @itemx -falign-functions=@var{n}
5313 @opindex falign-functions
5314 Align the start of functions to the next power-of-two greater than
5315 @var{n}, skipping up to @var{n} bytes.  For instance,
5316 @option{-falign-functions=32} aligns functions to the next 32-byte
5317 boundary, but @option{-falign-functions=24} would align to the next
5318 32-byte boundary only if this can be done by skipping 23 bytes or less.
5320 @option{-fno-align-functions} and @option{-falign-functions=1} are
5321 equivalent and mean that functions will not be aligned.
5323 Some assemblers only support this flag when @var{n} is a power of two;
5324 in that case, it is rounded up.
5326 If @var{n} is not specified or is zero, use a machine-dependent default.
5328 Enabled at levels @option{-O2}, @option{-O3}.
5330 @item -falign-labels
5331 @itemx -falign-labels=@var{n}
5332 @opindex falign-labels
5333 Align all branch targets to a power-of-two boundary, skipping up to
5334 @var{n} bytes like @option{-falign-functions}.  This option can easily
5335 make code slower, because it must insert dummy operations for when the
5336 branch target is reached in the usual flow of the code.
5338 @option{-fno-align-labels} and @option{-falign-labels=1} are
5339 equivalent and mean that labels will not be aligned.
5341 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
5342 are greater than this value, then their values are used instead.
5344 If @var{n} is not specified or is zero, use a machine-dependent default
5345 which is very likely to be @samp{1}, meaning no alignment.
5347 Enabled at levels @option{-O2}, @option{-O3}.
5349 @item -falign-loops
5350 @itemx -falign-loops=@var{n}
5351 @opindex falign-loops
5352 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
5353 like @option{-falign-functions}.  The hope is that the loop will be
5354 executed many times, which will make up for any execution of the dummy
5355 operations.
5357 @option{-fno-align-loops} and @option{-falign-loops=1} are
5358 equivalent and mean that loops will not be aligned.
5360 If @var{n} is not specified or is zero, use a machine-dependent default.
5362 Enabled at levels @option{-O2}, @option{-O3}.
5364 @item -falign-jumps
5365 @itemx -falign-jumps=@var{n}
5366 @opindex falign-jumps
5367 Align branch targets to a power-of-two boundary, for branch targets
5368 where the targets can only be reached by jumping, skipping up to @var{n}
5369 bytes like @option{-falign-functions}.  In this case, no dummy operations
5370 need be executed.
5372 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
5373 equivalent and mean that loops will not be aligned.
5375 If @var{n} is not specified or is zero, use a machine-dependent default.
5377 Enabled at levels @option{-O2}, @option{-O3}.
5379 @item -funit-at-a-time
5380 @opindex funit-at-a-time
5381 Parse the whole compilation unit before starting to produce code.
5382 This allows some extra optimizations to take place but consumes
5383 more memory (in general).  There are some compatibility issues
5384 with @emph{unit-at-a-time} mode:
5385 @itemize @bullet
5386 @item
5387 enabling @emph{unit-at-a-time} mode may change the order
5388 in which functions, variables, and top-level @code{asm} statements
5389 are emitted, and will likely break code relying on some particular
5390 ordering.  The majority of such top-level @code{asm} statements,
5391 though, can be replaced by @code{section} attributes.  The
5392 @option{fno-toplevel-reorder} option may be used to keep the ordering
5393 used in the input file, at the cost of some optimizations.
5395 @item
5396 @emph{unit-at-a-time} mode removes unreferenced static variables
5397 and functions.  This may result in undefined references
5398 when an @code{asm} statement refers directly to variables or functions
5399 that are otherwise unused.  In that case either the variable/function
5400 shall be listed as an operand of the @code{asm} statement operand or,
5401 in the case of top-level @code{asm} statements the attribute @code{used}
5402 shall be used on the declaration.
5404 @item
5405 Static functions now can use non-standard passing conventions that
5406 may break @code{asm} statements calling functions directly.  Again,
5407 attribute @code{used} will prevent this behavior.
5408 @end itemize
5410 As a temporary workaround, @option{-fno-unit-at-a-time} can be used,
5411 but this scheme may not be supported by future releases of GCC@.
5413 Enabled at levels @option{-O2}, @option{-O3}.
5415 @item -fno-toplevel-reorder
5416 Do not reorder top-level functions, variables, and @code{asm}
5417 statements.  Output them in the same order that they appear in the
5418 input file.  When this option is used, unreferenced static variables
5419 will not be removed.  This option is intended to support existing code
5420 which relies on a particular ordering.  For new code, it is better to
5421 use attributes.
5423 @item -fweb
5424 @opindex fweb
5425 Constructs webs as commonly used for register allocation purposes and assign
5426 each web individual pseudo register.  This allows the register allocation pass
5427 to operate on pseudos directly, but also strengthens several other optimization
5428 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
5429 however, make debugging impossible, since variables will no longer stay in a
5430 ``home register''.
5432 Enabled by default with @option{-funroll-loops}.
5434 @item -fwhole-program
5435 @opindex fwhole-program
5436 Assume that the current compilation unit represents whole program being
5437 compiled.  All public functions and variables with the exception of @code{main}
5438 and those merged by attribute @code{externally_visible} become static functions
5439 and in a affect gets more aggressively optimized by interprocedural optimizers.
5440 While this option is equivalent to proper use of @code{static} keyword for
5441 programs consisting of single file, in combination with option
5442 @option{--combine} this flag can be used to compile most of smaller scale C
5443 programs since the functions and variables become local for the whole combined
5444 compilation unit, not for the single source file itself.
5447 @item -fno-cprop-registers
5448 @opindex fno-cprop-registers
5449 After register allocation and post-register allocation instruction splitting,
5450 we perform a copy-propagation pass to try to reduce scheduling dependencies
5451 and occasionally eliminate the copy.
5453 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
5455 @item -fprofile-generate
5456 @opindex fprofile-generate
5458 Enable options usually used for instrumenting application to produce
5459 profile useful for later recompilation with profile feedback based
5460 optimization.  You must use @option{-fprofile-generate} both when
5461 compiling and when linking your program.
5463 The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values}, @code{-fvpt}.
5465 @item -fprofile-use
5466 @opindex fprofile-use
5467 Enable profile feedback directed optimizations, and optimizations
5468 generally profitable only with profile feedback available.
5470 The following options are enabled: @code{-fbranch-probabilities}, @code{-fvpt},
5471 @code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer}
5473 @end table
5475 The following options control compiler behavior regarding floating
5476 point arithmetic.  These options trade off between speed and
5477 correctness.  All must be specifically enabled.
5479 @table @gcctabopt
5480 @item -ffloat-store
5481 @opindex ffloat-store
5482 Do not store floating point variables in registers, and inhibit other
5483 options that might change whether a floating point value is taken from a
5484 register or memory.
5486 @cindex floating point precision
5487 This option prevents undesirable excess precision on machines such as
5488 the 68000 where the floating registers (of the 68881) keep more
5489 precision than a @code{double} is supposed to have.  Similarly for the
5490 x86 architecture.  For most programs, the excess precision does only
5491 good, but a few programs rely on the precise definition of IEEE floating
5492 point.  Use @option{-ffloat-store} for such programs, after modifying
5493 them to store all pertinent intermediate computations into variables.
5495 @item -ffast-math
5496 @opindex ffast-math
5497 Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations}, @*
5498 @option{-fno-trapping-math}, @option{-ffinite-math-only},
5499 @option{-fno-rounding-math}, @option{-fno-signaling-nans}
5500 and @option{fcx-limited-range}.
5502 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
5504 This option should never be turned on by any @option{-O} option since
5505 it can result in incorrect output for programs which depend on
5506 an exact implementation of IEEE or ISO rules/specifications for
5507 math functions.
5509 @item -fno-math-errno
5510 @opindex fno-math-errno
5511 Do not set ERRNO after calling math functions that are executed
5512 with a single instruction, e.g., sqrt.  A program that relies on
5513 IEEE exceptions for math error handling may want to use this flag
5514 for speed while maintaining IEEE arithmetic compatibility.
5516 This option should never be turned on by any @option{-O} option since
5517 it can result in incorrect output for programs which depend on
5518 an exact implementation of IEEE or ISO rules/specifications for
5519 math functions.
5521 The default is @option{-fmath-errno}.
5523 On Darwin systems, the math library never sets @code{errno}.  There is therefore
5524 no reason for the compiler to consider the possibility that it might,
5525 and @option{-fno-math-errno} is the default.
5527 @item -funsafe-math-optimizations
5528 @opindex funsafe-math-optimizations
5529 Allow optimizations for floating-point arithmetic that (a) assume
5530 that arguments and results are valid and (b) may violate IEEE or
5531 ANSI standards.  When used at link-time, it may include libraries
5532 or startup files that change the default FPU control word or other
5533 similar optimizations.
5535 This option should never be turned on by any @option{-O} option since
5536 it can result in incorrect output for programs which depend on
5537 an exact implementation of IEEE or ISO rules/specifications for
5538 math functions.
5540 The default is @option{-fno-unsafe-math-optimizations}.
5542 @item -ffinite-math-only
5543 @opindex ffinite-math-only
5544 Allow optimizations for floating-point arithmetic that assume
5545 that arguments and results are not NaNs or +-Infs.
5547 This option should never be turned on by any @option{-O} option since
5548 it can result in incorrect output for programs which depend on
5549 an exact implementation of IEEE or ISO rules/specifications.
5551 The default is @option{-fno-finite-math-only}.
5553 @item -fno-trapping-math
5554 @opindex fno-trapping-math
5555 Compile code assuming that floating-point operations cannot generate
5556 user-visible traps.  These traps include division by zero, overflow,
5557 underflow, inexact result and invalid operation.  This option implies
5558 @option{-fno-signaling-nans}.  Setting this option may allow faster
5559 code if one relies on ``non-stop'' IEEE arithmetic, for example.
5561 This option should never be turned on by any @option{-O} option since
5562 it can result in incorrect output for programs which depend on
5563 an exact implementation of IEEE or ISO rules/specifications for
5564 math functions.
5566 The default is @option{-ftrapping-math}.
5568 @item -frounding-math
5569 @opindex frounding-math
5570 Disable transformations and optimizations that assume default floating
5571 point rounding behavior.  This is round-to-zero for all floating point
5572 to integer conversions, and round-to-nearest for all other arithmetic
5573 truncations.  This option should be specified for programs that change
5574 the FP rounding mode dynamically, or that may be executed with a
5575 non-default rounding mode.  This option disables constant folding of
5576 floating point expressions at compile-time (which may be affected by
5577 rounding mode) and arithmetic transformations that are unsafe in the
5578 presence of sign-dependent rounding modes.
5580 The default is @option{-fno-rounding-math}.
5582 This option is experimental and does not currently guarantee to
5583 disable all GCC optimizations that are affected by rounding mode.
5584 Future versions of GCC may provide finer control of this setting
5585 using C99's @code{FENV_ACCESS} pragma.  This command line option
5586 will be used to specify the default state for @code{FENV_ACCESS}.
5588 @item -frtl-abstract-sequences
5589 @opindex frtl-abstract-sequences
5590 It is a size optimization method. This option is to find identical
5591 sequences of code, which can be turned into pseudo-procedures  and
5592 then  replace  all  occurrences with  calls to  the  newly created
5593 subroutine. It is kind of an opposite of @option{-finline-functions}.
5594 This optimization runs at RTL level.
5596 @item -fsignaling-nans
5597 @opindex fsignaling-nans
5598 Compile code assuming that IEEE signaling NaNs may generate user-visible
5599 traps during floating-point operations.  Setting this option disables
5600 optimizations that may change the number of exceptions visible with
5601 signaling NaNs.  This option implies @option{-ftrapping-math}.
5603 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
5604 be defined.
5606 The default is @option{-fno-signaling-nans}.
5608 This option is experimental and does not currently guarantee to
5609 disable all GCC optimizations that affect signaling NaN behavior.
5611 @item -fsingle-precision-constant
5612 @opindex fsingle-precision-constant
5613 Treat floating point constant as single precision constant instead of
5614 implicitly converting it to double precision constant.
5616 @item -fcx-limited-range
5617 @itemx -fno-cx-limited-range
5618 @opindex fcx-limited-range
5619 @opindex fno-cx-limited-range
5620 When enabled, this option states that a range reduction step is not
5621 needed when performing complex division.  The default is
5622 @option{-fno-cx-limited-range}, but is enabled by @option{-ffast-math}.
5624 This option controls the default setting of the ISO C99 
5625 @code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
5626 all languages.
5628 @end table
5630 The following options control optimizations that may improve
5631 performance, but are not enabled by any @option{-O} options.  This
5632 section includes experimental options that may produce broken code.
5634 @table @gcctabopt
5635 @item -fbranch-probabilities
5636 @opindex fbranch-probabilities
5637 After running a program compiled with @option{-fprofile-arcs}
5638 (@pxref{Debugging Options,, Options for Debugging Your Program or
5639 @command{gcc}}), you can compile it a second time using
5640 @option{-fbranch-probabilities}, to improve optimizations based on
5641 the number of times each branch was taken.  When the program
5642 compiled with @option{-fprofile-arcs} exits it saves arc execution
5643 counts to a file called @file{@var{sourcename}.gcda} for each source
5644 file  The information in this data file is very dependent on the
5645 structure of the generated code, so you must use the same source code
5646 and the same optimization options for both compilations.
5648 With @option{-fbranch-probabilities}, GCC puts a
5649 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
5650 These can be used to improve optimization.  Currently, they are only
5651 used in one place: in @file{reorg.c}, instead of guessing which path a
5652 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
5653 exactly determine which path is taken more often.
5655 @item -fprofile-values
5656 @opindex fprofile-values
5657 If combined with @option{-fprofile-arcs}, it adds code so that some
5658 data about values of expressions in the program is gathered.
5660 With @option{-fbranch-probabilities}, it reads back the data gathered
5661 from profiling values of expressions and adds @samp{REG_VALUE_PROFILE}
5662 notes to instructions for their later usage in optimizations.
5664 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
5666 @item -fvpt
5667 @opindex fvpt
5668 If combined with @option{-fprofile-arcs}, it instructs the compiler to add
5669 a code to gather information about values of expressions.
5671 With @option{-fbranch-probabilities}, it reads back the data gathered
5672 and actually performs the optimizations based on them.
5673 Currently the optimizations include specialization of division operation
5674 using the knowledge about the value of the denominator.
5676 @item -frename-registers
5677 @opindex frename-registers
5678 Attempt to avoid false dependencies in scheduled code by making use
5679 of registers left over after register allocation.  This optimization
5680 will most benefit processors with lots of registers.  Depending on the
5681 debug information format adopted by the target, however, it can
5682 make debugging impossible, since variables will no longer stay in
5683 a ``home register''.
5685 Enabled by default with @option{-funroll-loops}.
5687 @item -ftracer
5688 @opindex ftracer
5689 Perform tail duplication to enlarge superblock size.  This transformation
5690 simplifies the control flow of the function allowing other optimizations to do
5691 better job.
5693 Enabled with @option{-fprofile-use}.
5695 @item -funroll-loops
5696 @opindex funroll-loops
5697 Unroll loops whose number of iterations can be determined at compile time or
5698 upon entry to the loop.  @option{-funroll-loops} implies
5699 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}. 
5700 It also turns on complete loop peeling (i.e.@: complete removal of loops with
5701 small constant number of iterations).  This option makes code larger, and may
5702 or may not make it run faster.
5704 Enabled with @option{-fprofile-use}.
5706 @item -funroll-all-loops
5707 @opindex funroll-all-loops
5708 Unroll all loops, even if their number of iterations is uncertain when
5709 the loop is entered.  This usually makes programs run more slowly.
5710 @option{-funroll-all-loops} implies the same options as
5711 @option{-funroll-loops}.
5713 @item -fpeel-loops
5714 @opindex fpeel-loops
5715 Peels the loops for that there is enough information that they do not
5716 roll much (from profile feedback).  It also turns on complete loop peeling
5717 (i.e.@: complete removal of loops with small constant number of iterations).
5719 Enabled with @option{-fprofile-use}.
5721 @item -fmove-loop-invariants
5722 @opindex fmove-loop-invariants
5723 Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
5724 at level @option{-O1}
5726 @item -funswitch-loops
5727 @opindex funswitch-loops
5728 Move branches with loop invariant conditions out of the loop, with duplicates
5729 of the loop on both branches (modified according to result of the condition).
5731 @item -ffunction-sections
5732 @itemx -fdata-sections
5733 @opindex ffunction-sections
5734 @opindex fdata-sections
5735 Place each function or data item into its own section in the output
5736 file if the target supports arbitrary sections.  The name of the
5737 function or the name of the data item determines the section's name
5738 in the output file.
5740 Use these options on systems where the linker can perform optimizations
5741 to improve locality of reference in the instruction space.  Most systems
5742 using the ELF object format and SPARC processors running Solaris 2 have
5743 linkers with such optimizations.  AIX may have these optimizations in
5744 the future.
5746 Only use these options when there are significant benefits from doing
5747 so.  When you specify these options, the assembler and linker will
5748 create larger object and executable files and will also be slower.
5749 You will not be able to use @code{gprof} on all systems if you
5750 specify this option and you may have problems with debugging if
5751 you specify both this option and @option{-g}.
5753 @item -fbranch-target-load-optimize
5754 @opindex fbranch-target-load-optimize
5755 Perform branch target register load optimization before prologue / epilogue
5756 threading.
5757 The use of target registers can typically be exposed only during reload,
5758 thus hoisting loads out of loops and doing inter-block scheduling needs
5759 a separate optimization pass.
5761 @item -fbranch-target-load-optimize2
5762 @opindex fbranch-target-load-optimize2
5763 Perform branch target register load optimization after prologue / epilogue
5764 threading.
5766 @item -fbtr-bb-exclusive
5767 @opindex fbtr-bb-exclusive
5768 When performing branch target register load optimization, don't reuse
5769 branch target registers in within any basic block.
5771 @item -fstack-protector
5772 Emit extra code to check for buffer overflows, such as stack smashing
5773 attacks.  This is done by adding a guard variable to functions with
5774 vulnerable objects.  This includes functions that call alloca, and
5775 functions with buffers larger than 8 bytes.  The guards are initialized
5776 when a function is entered and then checked when the function exits.
5777 If a guard check fails, an error message is printed and the program exits.
5779 @item -fstack-protector-all
5780 Like @option{-fstack-protector} except that all functions are protected.
5782 @item -fsection-anchors
5783 @opindex fsection-anchors
5784 Try to reduce the number of symbolic address calculations by using
5785 shared ``anchor'' symbols to address nearby objects.  This transformation
5786 can help to reduce the number of GOT entries and GOT accesses on some
5787 targets.
5789 For example, the implementation of the following function @code{foo}:
5791 @smallexample
5792 static int a, b, c;
5793 int foo (void) @{ return a + b + c; @}
5794 @end smallexample
5796 would usually calculate the addresses of all three variables, but if you
5797 compile it with @option{-fsection-anchors}, it will access the variables
5798 from a common anchor point instead.  The effect is similar to the
5799 following pseudocode (which isn't valid C):
5801 @smallexample
5802 int foo (void)
5804   register int *xr = &x;
5805   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
5807 @end smallexample
5809 Not all targets support this option.
5811 @item --param @var{name}=@var{value}
5812 @opindex param
5813 In some places, GCC uses various constants to control the amount of
5814 optimization that is done.  For example, GCC will not inline functions
5815 that contain more that a certain number of instructions.  You can
5816 control some of these constants on the command-line using the
5817 @option{--param} option.
5819 The names of specific parameters, and the meaning of the values, are
5820 tied to the internals of the compiler, and are subject to change
5821 without notice in future releases.
5823 In each case, the @var{value} is an integer.  The allowable choices for
5824 @var{name} are given in the following table:
5826 @table @gcctabopt
5827 @item salias-max-implicit-fields
5828 The maximum number of fields in a variable without direct
5829 structure accesses for which structure aliasing will consider trying 
5830 to track each field.  The default is 5
5832 @item salias-max-array-elements
5833 The maximum number of elements an array can have and its elements
5834 still be tracked individually by structure aliasing. The default is 4
5836 @item sra-max-structure-size
5837 The maximum structure size, in bytes, at which the scalar replacement
5838 of aggregates (SRA) optimization will perform block copies.  The
5839 default value, 0, implies that GCC will select the most appropriate
5840 size itself.
5842 @item sra-field-structure-ratio
5843 The threshold ratio (as a percentage) between instantiated fields and
5844 the complete structure size.  We say that if the ratio of the number
5845 of bytes in instantiated fields to the number of bytes in the complete
5846 structure exceeds this parameter, then block copies are not used.  The
5847 default is 75.
5849 @item max-crossjump-edges
5850 The maximum number of incoming edges to consider for crossjumping.
5851 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
5852 the number of edges incoming to each block.  Increasing values mean
5853 more aggressive optimization, making the compile time increase with
5854 probably small improvement in executable size.
5856 @item min-crossjump-insns
5857 The minimum number of instructions which must be matched at the end
5858 of two blocks before crossjumping will be performed on them.  This
5859 value is ignored in the case where all instructions in the block being
5860 crossjumped from are matched.  The default value is 5.
5862 @item max-grow-copy-bb-insns
5863 The maximum code size expansion factor when copying basic blocks
5864 instead of jumping.  The expansion is relative to a jump instruction.
5865 The default value is 8.
5867 @item max-goto-duplication-insns
5868 The maximum number of instructions to duplicate to a block that jumps
5869 to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
5870 passes, GCC factors computed gotos early in the compilation process,
5871 and unfactors them as late as possible.  Only computed jumps at the
5872 end of a basic blocks with no more than max-goto-duplication-insns are
5873 unfactored.  The default value is 8.
5875 @item max-delay-slot-insn-search
5876 The maximum number of instructions to consider when looking for an
5877 instruction to fill a delay slot.  If more than this arbitrary number of
5878 instructions is searched, the time savings from filling the delay slot
5879 will be minimal so stop searching.  Increasing values mean more
5880 aggressive optimization, making the compile time increase with probably
5881 small improvement in executable run time.
5883 @item max-delay-slot-live-search
5884 When trying to fill delay slots, the maximum number of instructions to
5885 consider when searching for a block with valid live register
5886 information.  Increasing this arbitrarily chosen value means more
5887 aggressive optimization, increasing the compile time.  This parameter
5888 should be removed when the delay slot code is rewritten to maintain the
5889 control-flow graph.
5891 @item max-gcse-memory
5892 The approximate maximum amount of memory that will be allocated in
5893 order to perform the global common subexpression elimination
5894 optimization.  If more memory than specified is required, the
5895 optimization will not be done.
5897 @item max-gcse-passes
5898 The maximum number of passes of GCSE to run.  The default is 1.
5900 @item max-pending-list-length
5901 The maximum number of pending dependencies scheduling will allow
5902 before flushing the current state and starting over.  Large functions
5903 with few branches or calls can create excessively large lists which
5904 needlessly consume memory and resources.
5906 @item max-inline-insns-single
5907 Several parameters control the tree inliner used in gcc.
5908 This number sets the maximum number of instructions (counted in GCC's
5909 internal representation) in a single function that the tree inliner
5910 will consider for inlining.  This only affects functions declared
5911 inline and methods implemented in a class declaration (C++).
5912 The default value is 450.
5914 @item max-inline-insns-auto
5915 When you use @option{-finline-functions} (included in @option{-O3}),
5916 a lot of functions that would otherwise not be considered for inlining
5917 by the compiler will be investigated.  To those functions, a different
5918 (more restrictive) limit compared to functions declared inline can
5919 be applied.
5920 The default value is 90.
5922 @item large-function-insns
5923 The limit specifying really large functions.  For functions larger than this
5924 limit after inlining inlining is constrained by
5925 @option{--param large-function-growth}.  This parameter is useful primarily
5926 to avoid extreme compilation time caused by non-linear algorithms used by the
5927 backend.
5928 This parameter is ignored when @option{-funit-at-a-time} is not used.
5929 The default value is 2700.
5931 @item large-function-growth
5932 Specifies maximal growth of large function caused by inlining in percents.
5933 This parameter is ignored when @option{-funit-at-a-time} is not used.
5934 The default value is 100 which limits large function growth to 2.0 times
5935 the original size.
5937 @item large-unit-insns
5938 The limit specifying large translation unit.  Growth caused by inlining of
5939 units larger than this limit is limited by @option{--param inline-unit-growth}.
5940 For small units this might be too tight (consider unit consisting of function A
5941 that is inline and B that just calls A three time.  If B is small relative to
5942 A, the growth of unit is 300\% and yet such inlining is very sane.  For very
5943 large units consisting of small inlininable functions however the overall unit
5944 growth limit is needed to avoid exponential explosion of code size.  Thus for
5945 smaller units, the size is increased to @option{--param large-unit-insns}
5946 before applying @option{--param inline-unit-growth}.  The default is 10000
5948 @item inline-unit-growth
5949 Specifies maximal overall growth of the compilation unit caused by inlining.
5950 This parameter is ignored when @option{-funit-at-a-time} is not used.
5951 The default value is 50 which limits unit growth to 1.5 times the original
5952 size.
5954 @item max-inline-insns-recursive
5955 @itemx max-inline-insns-recursive-auto
5956 Specifies maximum number of instructions out-of-line copy of self recursive inline
5957 function can grow into by performing recursive inlining.
5959 For functions declared inline @option{--param max-inline-insns-recursive} is
5960 taken into acount.  For function not declared inline, recursive inlining
5961 happens only when @option{-finline-functions} (included in @option{-O3}) is
5962 enabled and @option{--param max-inline-insns-recursive-auto} is used.  The
5963 default value is 450.
5965 @item max-inline-recursive-depth
5966 @itemx max-inline-recursive-depth-auto
5967 Specifies maximum recursion depth used by the recursive inlining.
5969 For functions declared inline @option{--param max-inline-recursive-depth} is
5970 taken into acount.  For function not declared inline, recursive inlining
5971 happens only when @option{-finline-functions} (included in @option{-O3}) is
5972 enabled and @option{--param max-inline-recursive-depth-auto} is used.  The
5973 default value is 450.
5975 @item min-inline-recursive-probability
5976 Recursive inlining is profitable only for function having deep recursion
5977 in average and can hurt for function having little recursion depth by
5978 increasing the prologue size or complexity of function body to other
5979 optimizers.
5981 When profile feedback is available (see @option{-fprofile-generate}) the actual
5982 recursion depth can be guessed from probability that function will recurse via
5983 given call expression.  This parameter limits inlining only to call expression
5984 whose probability exceeds given threshold (in percents).  The default value is
5987 @item inline-call-cost
5988 Specify cost of call instruction relative to simple arithmetics operations
5989 (having cost of 1).  Increasing this cost disqualifies inlining of non-leaf
5990 functions and at the same time increases size of leaf function that is believed to
5991 reduce function size by being inlined.  In effect it increases amount of
5992 inlining for code having large abstraction penalty (many functions that just
5993 pass the arguments to other functions) and decrease inlining for code with low
5994 abstraction penalty.  The default value is 16.
5996 @item max-unrolled-insns
5997 The maximum number of instructions that a loop should have if that loop
5998 is unrolled, and if the loop is unrolled, it determines how many times
5999 the loop code is unrolled.
6001 @item max-average-unrolled-insns
6002 The maximum number of instructions biased by probabilities of their execution
6003 that a loop should have if that loop is unrolled, and if the loop is unrolled,
6004 it determines how many times the loop code is unrolled.
6006 @item max-unroll-times
6007 The maximum number of unrollings of a single loop.
6009 @item max-peeled-insns
6010 The maximum number of instructions that a loop should have if that loop
6011 is peeled, and if the loop is peeled, it determines how many times
6012 the loop code is peeled.
6014 @item max-peel-times
6015 The maximum number of peelings of a single loop.
6017 @item max-completely-peeled-insns
6018 The maximum number of insns of a completely peeled loop.
6020 @item max-completely-peel-times
6021 The maximum number of iterations of a loop to be suitable for complete peeling.
6023 @item max-unswitch-insns
6024 The maximum number of insns of an unswitched loop.
6026 @item max-unswitch-level
6027 The maximum number of branches unswitched in a single loop.
6029 @item lim-expensive
6030 The minimum cost of an expensive expression in the loop invariant motion.
6032 @item iv-consider-all-candidates-bound
6033 Bound on number of candidates for induction variables below that
6034 all candidates are considered for each use in induction variable
6035 optimizations.  Only the most relevant candidates are considered
6036 if there are more candidates, to avoid quadratic time complexity.
6038 @item iv-max-considered-uses
6039 The induction variable optimizations give up on loops that contain more
6040 induction variable uses.
6042 @item iv-always-prune-cand-set-bound
6043 If number of candidates in the set is smaller than this value,
6044 we always try to remove unnecessary ivs from the set during its
6045 optimization when a new iv is added to the set.
6047 @item scev-max-expr-size
6048 Bound on size of expressions used in the scalar evolutions analyzer.
6049 Large expressions slow the analyzer.
6051 @item vect-max-version-checks
6052 The maximum number of runtime checks that can be performed when doing
6053 loop versioning in the vectorizer.  See option ftree-vect-loop-version
6054 for more information.
6056 @item max-iterations-to-track
6058 The maximum number of iterations of a loop the brute force algorithm
6059 for analysis of # of iterations of the loop tries to evaluate.
6061 @item hot-bb-count-fraction
6062 Select fraction of the maximal count of repetitions of basic block in program
6063 given basic block needs to have to be considered hot.
6065 @item hot-bb-frequency-fraction
6066 Select fraction of the maximal frequency of executions of basic block in
6067 function given basic block needs to have to be considered hot
6069 @item max-predicted-iterations
6070 The maximum number of loop iterations we predict statically.  This is useful
6071 in cases where function contain single loop with known bound and other loop
6072 with unknown.  We predict the known number of iterations correctly, while
6073 the unknown number of iterations average to roughly 10.  This means that the
6074 loop without bounds would appear artificially cold relative to the other one.
6076 @item tracer-dynamic-coverage
6077 @itemx tracer-dynamic-coverage-feedback
6079 This value is used to limit superblock formation once the given percentage of
6080 executed instructions is covered.  This limits unnecessary code size
6081 expansion.
6083 The @option{tracer-dynamic-coverage-feedback} is used only when profile
6084 feedback is available.  The real profiles (as opposed to statically estimated
6085 ones) are much less balanced allowing the threshold to be larger value.
6087 @item tracer-max-code-growth
6088 Stop tail duplication once code growth has reached given percentage.  This is
6089 rather hokey argument, as most of the duplicates will be eliminated later in
6090 cross jumping, so it may be set to much higher values than is the desired code
6091 growth.
6093 @item tracer-min-branch-ratio
6095 Stop reverse growth when the reverse probability of best edge is less than this
6096 threshold (in percent).
6098 @item tracer-min-branch-ratio
6099 @itemx tracer-min-branch-ratio-feedback
6101 Stop forward growth if the best edge do have probability lower than this
6102 threshold.
6104 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
6105 compilation for profile feedback and one for compilation without.  The value
6106 for compilation with profile feedback needs to be more conservative (higher) in
6107 order to make tracer effective.
6109 @item max-cse-path-length
6111 Maximum number of basic blocks on path that cse considers.  The default is 10.
6113 @item max-cse-insns
6114 The maximum instructions CSE process before flushing. The default is 1000.
6116 @item global-var-threshold
6118 Counts the number of function calls (@var{n}) and the number of
6119 call-clobbered variables (@var{v}).  If @var{n}x@var{v} is larger than this limit, a
6120 single artificial variable will be created to represent all the
6121 call-clobbered variables at function call sites.  This artificial
6122 variable will then be made to alias every call-clobbered variable.
6123 (done as @code{int * size_t} on the host machine; beware overflow).
6125 @item max-aliased-vops
6127 Maximum number of virtual operands allowed to represent aliases
6128 before triggering the alias grouping heuristic.  Alias grouping
6129 reduces compile times and memory consumption needed for aliasing at
6130 the expense of precision loss in alias information.
6132 @item ggc-min-expand
6134 GCC uses a garbage collector to manage its own memory allocation.  This
6135 parameter specifies the minimum percentage by which the garbage
6136 collector's heap should be allowed to expand between collections.
6137 Tuning this may improve compilation speed; it has no effect on code
6138 generation.
6140 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
6141 RAM >= 1GB@.  If @code{getrlimit} is available, the notion of "RAM" is
6142 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
6143 GCC is not able to calculate RAM on a particular platform, the lower
6144 bound of 30% is used.  Setting this parameter and
6145 @option{ggc-min-heapsize} to zero causes a full collection to occur at
6146 every opportunity.  This is extremely slow, but can be useful for
6147 debugging.
6149 @item ggc-min-heapsize
6151 Minimum size of the garbage collector's heap before it begins bothering
6152 to collect garbage.  The first collection occurs after the heap expands
6153 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
6154 tuning this may improve compilation speed, and has no effect on code
6155 generation.
6157 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
6158 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
6159 with a lower bound of 4096 (four megabytes) and an upper bound of
6160 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
6161 particular platform, the lower bound is used.  Setting this parameter
6162 very large effectively disables garbage collection.  Setting this
6163 parameter and @option{ggc-min-expand} to zero causes a full collection
6164 to occur at every opportunity.
6166 @item max-reload-search-insns
6167 The maximum number of instruction reload should look backward for equivalent
6168 register.  Increasing values mean more aggressive optimization, making the
6169 compile time increase with probably slightly better performance.  The default
6170 value is 100.
6172 @item max-cselib-memory-location
6173 The maximum number of memory locations cselib should take into acount.
6174 Increasing values mean more aggressive optimization, making the compile time
6175 increase with probably slightly better performance.  The default value is 500.
6177 @item max-flow-memory-location
6178 Similar as @option{max-cselib-memory-location} but for dataflow liveness.
6179 The default value is 100.
6181 @item reorder-blocks-duplicate
6182 @itemx reorder-blocks-duplicate-feedback
6184 Used by basic block reordering pass to decide whether to use unconditional
6185 branch or duplicate the code on its destination.  Code is duplicated when its
6186 estimated size is smaller than this value multiplied by the estimated size of
6187 unconditional jump in the hot spots of the program.
6189 The @option{reorder-block-duplicate-feedback} is used only when profile
6190 feedback is available and may be set to higher values than
6191 @option{reorder-block-duplicate} since information about the hot spots is more
6192 accurate.
6194 @item max-sched-ready-insns
6195 The maximum number of instructions ready to be issued the scheduler should
6196 consider at any given time during the first scheduling pass.  Increasing
6197 values mean more thorough searches, making the compilation time increase
6198 with probably little benefit.  The default value is 100.
6200 @item max-sched-region-blocks
6201 The maximum number of blocks in a region to be considered for
6202 interblock scheduling.  The default value is 10.
6204 @item max-sched-region-insns
6205 The maximum number of insns in a region to be considered for
6206 interblock scheduling.  The default value is 100.
6208 @item min-spec-prob
6209 The minimum probability (in percents) of reaching a source block
6210 for interblock speculative scheduling.  The default value is 40.
6212 @item max-sched-extend-regions-iters
6213 The maximum number of iterations through CFG to extend regions.
6214 0 - disable region extension,
6215 N - do at most N iterations.
6216 The default value is 2.
6218 @item max-sched-insn-conflict-delay
6219 The maximum conflict delay for an insn to be considered for speculative motion.
6220 The default value is 3.
6222 @item sched-spec-prob-cutoff
6223 The minimal probability of speculation success (in percents), so that
6224 speculative insn will be scheduled.
6225 The default value is 40.
6227 @item max-last-value-rtl
6229 The maximum size measured as number of RTLs that can be recorded in an expression
6230 in combiner for a pseudo register as last known value of that register.  The default
6231 is 10000.
6233 @item integer-share-limit
6234 Small integer constants can use a shared data structure, reducing the
6235 compiler's memory usage and increasing its speed.  This sets the maximum
6236 value of a shared integer constant's.  The default value is 256.
6238 @item min-virtual-mappings
6239 Specifies the minimum number of virtual mappings in the incremental
6240 SSA updater that should be registered to trigger the virtual mappings
6241 heuristic defined by virtual-mappings-ratio.  The default value is
6242 100.
6244 @item virtual-mappings-ratio
6245 If the number of virtual mappings is virtual-mappings-ratio bigger
6246 than the number of virtual symbols to be updated, then the incremental
6247 SSA updater switches to a full update for those symbols.  The default
6248 ratio is 3.
6250 @item ssp-buffer-size
6251 The minimum size of buffers (i.e. arrays) that will receive stack smashing
6252 protection when @option{-fstack-protection} is used.
6254 @item max-jump-thread-duplication-stmts
6255 Maximum number of statements allowed in a block that needs to be
6256 duplicated when threading jumps.
6258 @item max-fields-for-field-sensitive
6259 Maximum number of fields in a structure we will treat in
6260 a field sensitive manner during pointer analysis.
6262 @end table
6263 @end table
6265 @node Preprocessor Options
6266 @section Options Controlling the Preprocessor
6267 @cindex preprocessor options
6268 @cindex options, preprocessor
6270 These options control the C preprocessor, which is run on each C source
6271 file before actual compilation.
6273 If you use the @option{-E} option, nothing is done except preprocessing.
6274 Some of these options make sense only together with @option{-E} because
6275 they cause the preprocessor output to be unsuitable for actual
6276 compilation.
6278 @table @gcctabopt
6279 @opindex Wp
6280 You can use @option{-Wp,@var{option}} to bypass the compiler driver
6281 and pass @var{option} directly through to the preprocessor.  If
6282 @var{option} contains commas, it is split into multiple options at the
6283 commas.  However, many options are modified, translated or interpreted
6284 by the compiler driver before being passed to the preprocessor, and
6285 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
6286 interface is undocumented and subject to change, so whenever possible
6287 you should avoid using @option{-Wp} and let the driver handle the
6288 options instead.
6290 @item -Xpreprocessor @var{option}
6291 @opindex preprocessor
6292 Pass @var{option} as an option to the preprocessor.  You can use this to
6293 supply system-specific preprocessor options which GCC does not know how to
6294 recognize.
6296 If you want to pass an option that takes an argument, you must use
6297 @option{-Xpreprocessor} twice, once for the option and once for the argument.
6298 @end table
6300 @include cppopts.texi
6302 @node Assembler Options
6303 @section Passing Options to the Assembler
6305 @c prevent bad page break with this line
6306 You can pass options to the assembler.
6308 @table @gcctabopt
6309 @item -Wa,@var{option}
6310 @opindex Wa
6311 Pass @var{option} as an option to the assembler.  If @var{option}
6312 contains commas, it is split into multiple options at the commas.
6314 @item -Xassembler @var{option}
6315 @opindex Xassembler
6316 Pass @var{option} as an option to the assembler.  You can use this to
6317 supply system-specific assembler options which GCC does not know how to
6318 recognize.
6320 If you want to pass an option that takes an argument, you must use
6321 @option{-Xassembler} twice, once for the option and once for the argument.
6323 @end table
6325 @node Link Options
6326 @section Options for Linking
6327 @cindex link options
6328 @cindex options, linking
6330 These options come into play when the compiler links object files into
6331 an executable output file.  They are meaningless if the compiler is
6332 not doing a link step.
6334 @table @gcctabopt
6335 @cindex file names
6336 @item @var{object-file-name}
6337 A file name that does not end in a special recognized suffix is
6338 considered to name an object file or library.  (Object files are
6339 distinguished from libraries by the linker according to the file
6340 contents.)  If linking is done, these object files are used as input
6341 to the linker.
6343 @item -c
6344 @itemx -S
6345 @itemx -E
6346 @opindex c
6347 @opindex S
6348 @opindex E
6349 If any of these options is used, then the linker is not run, and
6350 object file names should not be used as arguments.  @xref{Overall
6351 Options}.
6353 @cindex Libraries
6354 @item -l@var{library}
6355 @itemx -l @var{library}
6356 @opindex l
6357 Search the library named @var{library} when linking.  (The second
6358 alternative with the library as a separate argument is only for
6359 POSIX compliance and is not recommended.)
6361 It makes a difference where in the command you write this option; the
6362 linker searches and processes libraries and object files in the order they
6363 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
6364 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
6365 to functions in @samp{z}, those functions may not be loaded.
6367 The linker searches a standard list of directories for the library,
6368 which is actually a file named @file{lib@var{library}.a}.  The linker
6369 then uses this file as if it had been specified precisely by name.
6371 The directories searched include several standard system directories
6372 plus any that you specify with @option{-L}.
6374 Normally the files found this way are library files---archive files
6375 whose members are object files.  The linker handles an archive file by
6376 scanning through it for members which define symbols that have so far
6377 been referenced but not defined.  But if the file that is found is an
6378 ordinary object file, it is linked in the usual fashion.  The only
6379 difference between using an @option{-l} option and specifying a file name
6380 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
6381 and searches several directories.
6383 @item -lobjc
6384 @opindex lobjc
6385 You need this special case of the @option{-l} option in order to
6386 link an Objective-C or Objective-C++ program.
6388 @item -nostartfiles
6389 @opindex nostartfiles
6390 Do not use the standard system startup files when linking.
6391 The standard system libraries are used normally, unless @option{-nostdlib}
6392 or @option{-nodefaultlibs} is used.
6394 @item -nodefaultlibs
6395 @opindex nodefaultlibs
6396 Do not use the standard system libraries when linking.
6397 Only the libraries you specify will be passed to the linker.
6398 The standard startup files are used normally, unless @option{-nostartfiles}
6399 is used.  The compiler may generate calls to @code{memcmp},
6400 @code{memset}, @code{memcpy} and @code{memmove}.
6401 These entries are usually resolved by entries in
6402 libc.  These entry points should be supplied through some other
6403 mechanism when this option is specified.
6405 @item -nostdlib
6406 @opindex nostdlib
6407 Do not use the standard system startup files or libraries when linking.
6408 No startup files and only the libraries you specify will be passed to
6409 the linker.  The compiler may generate calls to @code{memcmp}, @code{memset},
6410 @code{memcpy} and @code{memmove}.
6411 These entries are usually resolved by entries in
6412 libc.  These entry points should be supplied through some other
6413 mechanism when this option is specified.
6415 @cindex @option{-lgcc}, use with @option{-nostdlib}
6416 @cindex @option{-nostdlib} and unresolved references
6417 @cindex unresolved references and @option{-nostdlib}
6418 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
6419 @cindex @option{-nodefaultlibs} and unresolved references
6420 @cindex unresolved references and @option{-nodefaultlibs}
6421 One of the standard libraries bypassed by @option{-nostdlib} and
6422 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
6423 that GCC uses to overcome shortcomings of particular machines, or special
6424 needs for some languages.
6425 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
6426 Collection (GCC) Internals},
6427 for more discussion of @file{libgcc.a}.)
6428 In most cases, you need @file{libgcc.a} even when you want to avoid
6429 other standard libraries.  In other words, when you specify @option{-nostdlib}
6430 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
6431 This ensures that you have no unresolved references to internal GCC
6432 library subroutines.  (For example, @samp{__main}, used to ensure C++
6433 constructors will be called; @pxref{Collect2,,@code{collect2}, gccint,
6434 GNU Compiler Collection (GCC) Internals}.)
6436 @item -pie
6437 @opindex pie
6438 Produce a position independent executable on targets which support it.
6439 For predictable results, you must also specify the same set of options
6440 that were used to generate code (@option{-fpie}, @option{-fPIE},
6441 or model suboptions) when you specify this option.
6443 @item -rdynamic
6444 @opindex rdynamic
6445 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
6446 that support it. This instructs the linker to add all symbols, not
6447 only used ones, to the dynamic symbol table. This option is needed
6448 for some uses of @code{dlopen} or to allow obtaining backtraces
6449 from within a program.
6451 @item -s
6452 @opindex s
6453 Remove all symbol table and relocation information from the executable.
6455 @item -static
6456 @opindex static
6457 On systems that support dynamic linking, this prevents linking with the shared
6458 libraries.  On other systems, this option has no effect.
6460 @item -shared
6461 @opindex shared
6462 Produce a shared object which can then be linked with other objects to
6463 form an executable.  Not all systems support this option.  For predictable
6464 results, you must also specify the same set of options that were used to
6465 generate code (@option{-fpic}, @option{-fPIC}, or model suboptions)
6466 when you specify this option.@footnote{On some systems, @samp{gcc -shared}
6467 needs to build supplementary stub code for constructors to work.  On
6468 multi-libbed systems, @samp{gcc -shared} must select the correct support
6469 libraries to link against.  Failing to supply the correct flags may lead
6470 to subtle defects.  Supplying them in cases where they are not necessary
6471 is innocuous.}
6473 @item -shared-libgcc
6474 @itemx -static-libgcc
6475 @opindex shared-libgcc
6476 @opindex static-libgcc
6477 On systems that provide @file{libgcc} as a shared library, these options
6478 force the use of either the shared or static version respectively.
6479 If no shared version of @file{libgcc} was built when the compiler was
6480 configured, these options have no effect.
6482 There are several situations in which an application should use the
6483 shared @file{libgcc} instead of the static version.  The most common
6484 of these is when the application wishes to throw and catch exceptions
6485 across different shared libraries.  In that case, each of the libraries
6486 as well as the application itself should use the shared @file{libgcc}.
6488 Therefore, the G++ and GCJ drivers automatically add
6489 @option{-shared-libgcc} whenever you build a shared library or a main
6490 executable, because C++ and Java programs typically use exceptions, so
6491 this is the right thing to do.
6493 If, instead, you use the GCC driver to create shared libraries, you may
6494 find that they will not always be linked with the shared @file{libgcc}.
6495 If GCC finds, at its configuration time, that you have a non-GNU linker
6496 or a GNU linker that does not support option @option{--eh-frame-hdr},
6497 it will link the shared version of @file{libgcc} into shared libraries
6498 by default.  Otherwise, it will take advantage of the linker and optimize
6499 away the linking with the shared version of @file{libgcc}, linking with
6500 the static version of libgcc by default.  This allows exceptions to
6501 propagate through such shared libraries, without incurring relocation
6502 costs at library load time.
6504 However, if a library or main executable is supposed to throw or catch
6505 exceptions, you must link it using the G++ or GCJ driver, as appropriate
6506 for the languages used in the program, or using the option
6507 @option{-shared-libgcc}, such that it is linked with the shared
6508 @file{libgcc}.
6510 @item -symbolic
6511 @opindex symbolic
6512 Bind references to global symbols when building a shared object.  Warn
6513 about any unresolved references (unless overridden by the link editor
6514 option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
6515 this option.
6517 @item -Xlinker @var{option}
6518 @opindex Xlinker
6519 Pass @var{option} as an option to the linker.  You can use this to
6520 supply system-specific linker options which GCC does not know how to
6521 recognize.
6523 If you want to pass an option that takes an argument, you must use
6524 @option{-Xlinker} twice, once for the option and once for the argument.
6525 For example, to pass @option{-assert definitions}, you must write
6526 @samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
6527 @option{-Xlinker "-assert definitions"}, because this passes the entire
6528 string as a single argument, which is not what the linker expects.
6530 @item -Wl,@var{option}
6531 @opindex Wl
6532 Pass @var{option} as an option to the linker.  If @var{option} contains
6533 commas, it is split into multiple options at the commas.
6535 @item -u @var{symbol}
6536 @opindex u
6537 Pretend the symbol @var{symbol} is undefined, to force linking of
6538 library modules to define it.  You can use @option{-u} multiple times with
6539 different symbols to force loading of additional library modules.
6540 @end table
6542 @node Directory Options
6543 @section Options for Directory Search
6544 @cindex directory options
6545 @cindex options, directory search
6546 @cindex search path
6548 These options specify directories to search for header files, for
6549 libraries and for parts of the compiler:
6551 @table @gcctabopt
6552 @item -I@var{dir}
6553 @opindex I
6554 Add the directory @var{dir} to the head of the list of directories to be
6555 searched for header files.  This can be used to override a system header
6556 file, substituting your own version, since these directories are
6557 searched before the system header file directories.  However, you should
6558 not use this option to add directories that contain vendor-supplied
6559 system header files (use @option{-isystem} for that).  If you use more than
6560 one @option{-I} option, the directories are scanned in left-to-right
6561 order; the standard system directories come after.
6563 If a standard system include directory, or a directory specified with
6564 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
6565 option will be ignored.  The directory will still be searched but as a
6566 system directory at its normal position in the system include chain.
6567 This is to ensure that GCC's procedure to fix buggy system headers and
6568 the ordering for the include_next directive are not inadvertently changed.
6569 If you really need to change the search order for system directories,
6570 use the @option{-nostdinc} and/or @option{-isystem} options.
6572 @item -iquote@var{dir}
6573 @opindex iquote
6574 Add the directory @var{dir} to the head of the list of directories to
6575 be searched for header files only for the case of @samp{#include
6576 "@var{file}"}; they are not searched for @samp{#include <@var{file}>},
6577 otherwise just like @option{-I}.
6579 @item -L@var{dir}
6580 @opindex L
6581 Add directory @var{dir} to the list of directories to be searched
6582 for @option{-l}.
6584 @item -B@var{prefix}
6585 @opindex B
6586 This option specifies where to find the executables, libraries,
6587 include files, and data files of the compiler itself.
6589 The compiler driver program runs one or more of the subprograms
6590 @file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
6591 @var{prefix} as a prefix for each program it tries to run, both with and
6592 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
6594 For each subprogram to be run, the compiler driver first tries the
6595 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
6596 was not specified, the driver tries two standard prefixes, which are
6597 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
6598 those results in a file name that is found, the unmodified program
6599 name is searched for using the directories specified in your
6600 @env{PATH} environment variable.
6602 The compiler will check to see if the path provided by the @option{-B}
6603 refers to a directory, and if necessary it will add a directory
6604 separator character at the end of the path.
6606 @option{-B} prefixes that effectively specify directory names also apply
6607 to libraries in the linker, because the compiler translates these
6608 options into @option{-L} options for the linker.  They also apply to
6609 includes files in the preprocessor, because the compiler translates these
6610 options into @option{-isystem} options for the preprocessor.  In this case,
6611 the compiler appends @samp{include} to the prefix.
6613 The run-time support file @file{libgcc.a} can also be searched for using
6614 the @option{-B} prefix, if needed.  If it is not found there, the two
6615 standard prefixes above are tried, and that is all.  The file is left
6616 out of the link if it is not found by those means.
6618 Another way to specify a prefix much like the @option{-B} prefix is to use
6619 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
6620 Variables}.
6622 As a special kludge, if the path provided by @option{-B} is
6623 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
6624 9, then it will be replaced by @file{[dir/]include}.  This is to help
6625 with boot-strapping the compiler.
6627 @item -specs=@var{file}
6628 @opindex specs
6629 Process @var{file} after the compiler reads in the standard @file{specs}
6630 file, in order to override the defaults that the @file{gcc} driver
6631 program uses when determining what switches to pass to @file{cc1},
6632 @file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
6633 @option{-specs=@var{file}} can be specified on the command line, and they
6634 are processed in order, from left to right.
6636 @item --sysroot=@var{dir}
6637 @opindex sysroot
6638 Use @var{dir} as the logical root directory for headers and libraries.
6639 For example, if the compiler would normally search for headers in
6640 @file{/usr/include} and libraries in @file{/usr/lib}, it will instead
6641 search @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.  
6643 If you use both this option and the @option{-isysroot} option, then
6644 the @option{--sysroot} option will apply to libraries, but the
6645 @option{-isysroot} option will apply to header files.
6647 The GNU linker (beginning with version 2.16) has the necessary support
6648 for this option.  If your linker does not support this option, the
6649 header file aspect of @option{--sysroot} will still work, but the
6650 library aspect will not.
6652 @item -I-
6653 @opindex I-
6654 This option has been deprecated.  Please use @option{-iquote} instead for
6655 @option{-I} directories before the @option{-I-} and remove the @option{-I-}.
6656 Any directories you specify with @option{-I} options before the @option{-I-}
6657 option are searched only for the case of @samp{#include "@var{file}"};
6658 they are not searched for @samp{#include <@var{file}>}.
6660 If additional directories are specified with @option{-I} options after
6661 the @option{-I-}, these directories are searched for all @samp{#include}
6662 directives.  (Ordinarily @emph{all} @option{-I} directories are used
6663 this way.)
6665 In addition, the @option{-I-} option inhibits the use of the current
6666 directory (where the current input file came from) as the first search
6667 directory for @samp{#include "@var{file}"}.  There is no way to
6668 override this effect of @option{-I-}.  With @option{-I.} you can specify
6669 searching the directory which was current when the compiler was
6670 invoked.  That is not exactly the same as what the preprocessor does
6671 by default, but it is often satisfactory.
6673 @option{-I-} does not inhibit the use of the standard system directories
6674 for header files.  Thus, @option{-I-} and @option{-nostdinc} are
6675 independent.
6676 @end table
6678 @c man end
6680 @node Spec Files
6681 @section Specifying subprocesses and the switches to pass to them
6682 @cindex Spec Files
6684 @command{gcc} is a driver program.  It performs its job by invoking a
6685 sequence of other programs to do the work of compiling, assembling and
6686 linking.  GCC interprets its command-line parameters and uses these to
6687 deduce which programs it should invoke, and which command-line options
6688 it ought to place on their command lines.  This behavior is controlled
6689 by @dfn{spec strings}.  In most cases there is one spec string for each
6690 program that GCC can invoke, but a few programs have multiple spec
6691 strings to control their behavior.  The spec strings built into GCC can
6692 be overridden by using the @option{-specs=} command-line switch to specify
6693 a spec file.
6695 @dfn{Spec files} are plaintext files that are used to construct spec
6696 strings.  They consist of a sequence of directives separated by blank
6697 lines.  The type of directive is determined by the first non-whitespace
6698 character on the line and it can be one of the following:
6700 @table @code
6701 @item %@var{command}
6702 Issues a @var{command} to the spec file processor.  The commands that can
6703 appear here are:
6705 @table @code
6706 @item %include <@var{file}>
6707 @cindex %include
6708 Search for @var{file} and insert its text at the current point in the
6709 specs file.
6711 @item %include_noerr <@var{file}>
6712 @cindex %include_noerr
6713 Just like @samp{%include}, but do not generate an error message if the include
6714 file cannot be found.
6716 @item %rename @var{old_name} @var{new_name}
6717 @cindex %rename
6718 Rename the spec string @var{old_name} to @var{new_name}.
6720 @end table
6722 @item *[@var{spec_name}]:
6723 This tells the compiler to create, override or delete the named spec
6724 string.  All lines after this directive up to the next directive or
6725 blank line are considered to be the text for the spec string.  If this
6726 results in an empty string then the spec will be deleted.  (Or, if the
6727 spec did not exist, then nothing will happened.)  Otherwise, if the spec
6728 does not currently exist a new spec will be created.  If the spec does
6729 exist then its contents will be overridden by the text of this
6730 directive, unless the first character of that text is the @samp{+}
6731 character, in which case the text will be appended to the spec.
6733 @item [@var{suffix}]:
6734 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
6735 and up to the next directive or blank line are considered to make up the
6736 spec string for the indicated suffix.  When the compiler encounters an
6737 input file with the named suffix, it will processes the spec string in
6738 order to work out how to compile that file.  For example:
6740 @smallexample
6741 .ZZ:
6742 z-compile -input %i
6743 @end smallexample
6745 This says that any input file whose name ends in @samp{.ZZ} should be
6746 passed to the program @samp{z-compile}, which should be invoked with the
6747 command-line switch @option{-input} and with the result of performing the
6748 @samp{%i} substitution.  (See below.)
6750 As an alternative to providing a spec string, the text that follows a
6751 suffix directive can be one of the following:
6753 @table @code
6754 @item @@@var{language}
6755 This says that the suffix is an alias for a known @var{language}.  This is
6756 similar to using the @option{-x} command-line switch to GCC to specify a
6757 language explicitly.  For example:
6759 @smallexample
6760 .ZZ:
6761 @@c++
6762 @end smallexample
6764 Says that .ZZ files are, in fact, C++ source files.
6766 @item #@var{name}
6767 This causes an error messages saying:
6769 @smallexample
6770 @var{name} compiler not installed on this system.
6771 @end smallexample
6772 @end table
6774 GCC already has an extensive list of suffixes built into it.
6775 This directive will add an entry to the end of the list of suffixes, but
6776 since the list is searched from the end backwards, it is effectively
6777 possible to override earlier entries using this technique.
6779 @end table
6781 GCC has the following spec strings built into it.  Spec files can
6782 override these strings or create their own.  Note that individual
6783 targets can also add their own spec strings to this list.
6785 @smallexample
6786 asm          Options to pass to the assembler
6787 asm_final    Options to pass to the assembler post-processor
6788 cpp          Options to pass to the C preprocessor
6789 cc1          Options to pass to the C compiler
6790 cc1plus      Options to pass to the C++ compiler
6791 endfile      Object files to include at the end of the link
6792 link         Options to pass to the linker
6793 lib          Libraries to include on the command line to the linker
6794 libgcc       Decides which GCC support library to pass to the linker
6795 linker       Sets the name of the linker
6796 predefines   Defines to be passed to the C preprocessor
6797 signed_char  Defines to pass to CPP to say whether @code{char} is signed
6798              by default
6799 startfile    Object files to include at the start of the link
6800 @end smallexample
6802 Here is a small example of a spec file:
6804 @smallexample
6805 %rename lib                 old_lib
6807 *lib:
6808 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
6809 @end smallexample
6811 This example renames the spec called @samp{lib} to @samp{old_lib} and
6812 then overrides the previous definition of @samp{lib} with a new one.
6813 The new definition adds in some extra command-line options before
6814 including the text of the old definition.
6816 @dfn{Spec strings} are a list of command-line options to be passed to their
6817 corresponding program.  In addition, the spec strings can contain
6818 @samp{%}-prefixed sequences to substitute variable text or to
6819 conditionally insert text into the command line.  Using these constructs
6820 it is possible to generate quite complex command lines.
6822 Here is a table of all defined @samp{%}-sequences for spec
6823 strings.  Note that spaces are not generated automatically around the
6824 results of expanding these sequences.  Therefore you can concatenate them
6825 together or combine them with constant text in a single argument.
6827 @table @code
6828 @item %%
6829 Substitute one @samp{%} into the program name or argument.
6831 @item %i
6832 Substitute the name of the input file being processed.
6834 @item %b
6835 Substitute the basename of the input file being processed.
6836 This is the substring up to (and not including) the last period
6837 and not including the directory.
6839 @item %B
6840 This is the same as @samp{%b}, but include the file suffix (text after
6841 the last period).
6843 @item %d
6844 Marks the argument containing or following the @samp{%d} as a
6845 temporary file name, so that that file will be deleted if GCC exits
6846 successfully.  Unlike @samp{%g}, this contributes no text to the
6847 argument.
6849 @item %g@var{suffix}
6850 Substitute a file name that has suffix @var{suffix} and is chosen
6851 once per compilation, and mark the argument in the same way as
6852 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
6853 name is now chosen in a way that is hard to predict even when previously
6854 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
6855 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
6856 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
6857 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
6858 was simply substituted with a file name chosen once per compilation,
6859 without regard to any appended suffix (which was therefore treated
6860 just like ordinary text), making such attacks more likely to succeed.
6862 @item %u@var{suffix}
6863 Like @samp{%g}, but generates a new temporary file name even if
6864 @samp{%u@var{suffix}} was already seen.
6866 @item %U@var{suffix}
6867 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
6868 new one if there is no such last file name.  In the absence of any
6869 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
6870 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
6871 would involve the generation of two distinct file names, one
6872 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
6873 simply substituted with a file name chosen for the previous @samp{%u},
6874 without regard to any appended suffix.
6876 @item %j@var{suffix}
6877 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
6878 writable, and if save-temps is off; otherwise, substitute the name
6879 of a temporary file, just like @samp{%u}.  This temporary file is not
6880 meant for communication between processes, but rather as a junk
6881 disposal mechanism.
6883 @item %|@var{suffix}
6884 @itemx %m@var{suffix}
6885 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
6886 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
6887 all.  These are the two most common ways to instruct a program that it
6888 should read from standard input or write to standard output.  If you
6889 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
6890 construct: see for example @file{f/lang-specs.h}.
6892 @item %.@var{SUFFIX}
6893 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
6894 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
6895 terminated by the next space or %.
6897 @item %w
6898 Marks the argument containing or following the @samp{%w} as the
6899 designated output file of this compilation.  This puts the argument
6900 into the sequence of arguments that @samp{%o} will substitute later.
6902 @item %o
6903 Substitutes the names of all the output files, with spaces
6904 automatically placed around them.  You should write spaces
6905 around the @samp{%o} as well or the results are undefined.
6906 @samp{%o} is for use in the specs for running the linker.
6907 Input files whose names have no recognized suffix are not compiled
6908 at all, but they are included among the output files, so they will
6909 be linked.
6911 @item %O
6912 Substitutes the suffix for object files.  Note that this is
6913 handled specially when it immediately follows @samp{%g, %u, or %U},
6914 because of the need for those to form complete file names.  The
6915 handling is such that @samp{%O} is treated exactly as if it had already
6916 been substituted, except that @samp{%g, %u, and %U} do not currently
6917 support additional @var{suffix} characters following @samp{%O} as they would
6918 following, for example, @samp{.o}.
6920 @item %p
6921 Substitutes the standard macro predefinitions for the
6922 current target machine.  Use this when running @code{cpp}.
6924 @item %P
6925 Like @samp{%p}, but puts @samp{__} before and after the name of each
6926 predefined macro, except for macros that start with @samp{__} or with
6927 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
6930 @item %I
6931 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
6932 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
6933 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
6934 and @option{-imultilib} as necessary.
6936 @item %s
6937 Current argument is the name of a library or startup file of some sort.
6938 Search for that file in a standard list of directories and substitute
6939 the full name found.
6941 @item %e@var{str}
6942 Print @var{str} as an error message.  @var{str} is terminated by a newline.
6943 Use this when inconsistent options are detected.
6945 @item %(@var{name})
6946 Substitute the contents of spec string @var{name} at this point.
6948 @item %[@var{name}]
6949 Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments.
6951 @item %x@{@var{option}@}
6952 Accumulate an option for @samp{%X}.
6954 @item %X
6955 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
6956 spec string.
6958 @item %Y
6959 Output the accumulated assembler options specified by @option{-Wa}.
6961 @item %Z
6962 Output the accumulated preprocessor options specified by @option{-Wp}.
6964 @item %a
6965 Process the @code{asm} spec.  This is used to compute the
6966 switches to be passed to the assembler.
6968 @item %A
6969 Process the @code{asm_final} spec.  This is a spec string for
6970 passing switches to an assembler post-processor, if such a program is
6971 needed.
6973 @item %l
6974 Process the @code{link} spec.  This is the spec for computing the
6975 command line passed to the linker.  Typically it will make use of the
6976 @samp{%L %G %S %D and %E} sequences.
6978 @item %D
6979 Dump out a @option{-L} option for each directory that GCC believes might
6980 contain startup files.  If the target supports multilibs then the
6981 current multilib directory will be prepended to each of these paths.
6983 @item %L
6984 Process the @code{lib} spec.  This is a spec string for deciding which
6985 libraries should be included on the command line to the linker.
6987 @item %G
6988 Process the @code{libgcc} spec.  This is a spec string for deciding
6989 which GCC support library should be included on the command line to the linker.
6991 @item %S
6992 Process the @code{startfile} spec.  This is a spec for deciding which
6993 object files should be the first ones passed to the linker.  Typically
6994 this might be a file named @file{crt0.o}.
6996 @item %E
6997 Process the @code{endfile} spec.  This is a spec string that specifies
6998 the last object files that will be passed to the linker.
7000 @item %C
7001 Process the @code{cpp} spec.  This is used to construct the arguments
7002 to be passed to the C preprocessor.
7004 @item %1
7005 Process the @code{cc1} spec.  This is used to construct the options to be
7006 passed to the actual C compiler (@samp{cc1}).
7008 @item %2
7009 Process the @code{cc1plus} spec.  This is used to construct the options to be
7010 passed to the actual C++ compiler (@samp{cc1plus}).
7012 @item %*
7013 Substitute the variable part of a matched option.  See below.
7014 Note that each comma in the substituted string is replaced by
7015 a single space.
7017 @item %<@code{S}
7018 Remove all occurrences of @code{-S} from the command line.  Note---this
7019 command is position dependent.  @samp{%} commands in the spec string
7020 before this one will see @code{-S}, @samp{%} commands in the spec string
7021 after this one will not.
7023 @item %:@var{function}(@var{args})
7024 Call the named function @var{function}, passing it @var{args}.
7025 @var{args} is first processed as a nested spec string, then split
7026 into an argument vector in the usual fashion.  The function returns
7027 a string which is processed as if it had appeared literally as part
7028 of the current spec.
7030 The following built-in spec functions are provided:
7032 @table @code
7033 @item @code{if-exists}
7034 The @code{if-exists} spec function takes one argument, an absolute
7035 pathname to a file.  If the file exists, @code{if-exists} returns the
7036 pathname.  Here is a small example of its usage:
7038 @smallexample
7039 *startfile:
7040 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
7041 @end smallexample
7043 @item @code{if-exists-else}
7044 The @code{if-exists-else} spec function is similar to the @code{if-exists}
7045 spec function, except that it takes two arguments.  The first argument is
7046 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
7047 returns the pathname.  If it does not exist, it returns the second argument.
7048 This way, @code{if-exists-else} can be used to select one file or another,
7049 based on the existence of the first.  Here is a small example of its usage:
7051 @smallexample
7052 *startfile:
7053 crt0%O%s %:if-exists(crti%O%s) \
7054 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
7055 @end smallexample
7057 @item @code{replace-outfile}
7058 The @code{replace-outfile} spec function takes two arguments.  It looks for the
7059 first argument in the outfiles array and replaces it with the second argument.  Here
7060 is a small example of its usage:
7062 @smallexample
7063 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
7064 @end smallexample
7066 @end table
7068 @item %@{@code{S}@}
7069 Substitutes the @code{-S} switch, if that switch was given to GCC@.
7070 If that switch was not specified, this substitutes nothing.  Note that
7071 the leading dash is omitted when specifying this option, and it is
7072 automatically inserted if the substitution is performed.  Thus the spec
7073 string @samp{%@{foo@}} would match the command-line option @option{-foo}
7074 and would output the command line option @option{-foo}.
7076 @item %W@{@code{S}@}
7077 Like %@{@code{S}@} but mark last argument supplied within as a file to be
7078 deleted on failure.
7080 @item %@{@code{S}*@}
7081 Substitutes all the switches specified to GCC whose names start
7082 with @code{-S}, but which also take an argument.  This is used for
7083 switches like @option{-o}, @option{-D}, @option{-I}, etc.
7084 GCC considers @option{-o foo} as being
7085 one switch whose names starts with @samp{o}.  %@{o*@} would substitute this
7086 text, including the space.  Thus two arguments would be generated.
7088 @item %@{@code{S}*&@code{T}*@}
7089 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
7090 (the order of @code{S} and @code{T} in the spec is not significant).
7091 There can be any number of ampersand-separated variables; for each the
7092 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
7094 @item %@{@code{S}:@code{X}@}
7095 Substitutes @code{X}, if the @samp{-S} switch was given to GCC@.
7097 @item %@{!@code{S}:@code{X}@}
7098 Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@.
7100 @item %@{@code{S}*:@code{X}@}
7101 Substitutes @code{X} if one or more switches whose names start with
7102 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
7103 once, no matter how many such switches appeared.  However, if @code{%*}
7104 appears somewhere in @code{X}, then @code{X} will be substituted once
7105 for each matching switch, with the @code{%*} replaced by the part of
7106 that switch that matched the @code{*}.
7108 @item %@{.@code{S}:@code{X}@}
7109 Substitutes @code{X}, if processing a file with suffix @code{S}.
7111 @item %@{!.@code{S}:@code{X}@}
7112 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
7114 @item %@{@code{S}|@code{P}:@code{X}@}
7115 Substitutes @code{X} if either @code{-S} or @code{-P} was given to GCC@.
7116 This may be combined with @samp{!}, @samp{.}, and @code{*} sequences as well,
7117 although they have a stronger binding than the @samp{|}.  If @code{%*}
7118 appears in @code{X}, all of the alternatives must be starred, and only
7119 the first matching alternative is substituted.
7121 For example, a spec string like this:
7123 @smallexample
7124 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
7125 @end smallexample
7127 will output the following command-line options from the following input
7128 command-line options:
7130 @smallexample
7131 fred.c        -foo -baz
7132 jim.d         -bar -boggle
7133 -d fred.c     -foo -baz -boggle
7134 -d jim.d      -bar -baz -boggle
7135 @end smallexample
7137 @item %@{S:X; T:Y; :D@}
7139 If @code{S} was given to GCC, substitutes @code{X}; else if @code{T} was
7140 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
7141 be as many clauses as you need.  This may be combined with @code{.},
7142 @code{!}, @code{|}, and @code{*} as needed.
7145 @end table
7147 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
7148 construct may contain other nested @samp{%} constructs or spaces, or
7149 even newlines.  They are processed as usual, as described above.
7150 Trailing white space in @code{X} is ignored.  White space may also
7151 appear anywhere on the left side of the colon in these constructs,
7152 except between @code{.} or @code{*} and the corresponding word.
7154 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
7155 handled specifically in these constructs.  If another value of
7156 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
7157 @option{-W} switch is found later in the command line, the earlier
7158 switch value is ignored, except with @{@code{S}*@} where @code{S} is
7159 just one letter, which passes all matching options.
7161 The character @samp{|} at the beginning of the predicate text is used to
7162 indicate that a command should be piped to the following command, but
7163 only if @option{-pipe} is specified.
7165 It is built into GCC which switches take arguments and which do not.
7166 (You might think it would be useful to generalize this to allow each
7167 compiler's spec to say which switches take arguments.  But this cannot
7168 be done in a consistent fashion.  GCC cannot even decide which input
7169 files have been specified without knowing which switches take arguments,
7170 and it must know which input files to compile in order to tell which
7171 compilers to run).
7173 GCC also knows implicitly that arguments starting in @option{-l} are to be
7174 treated as compiler output files, and passed to the linker in their
7175 proper position among the other output files.
7177 @c man begin OPTIONS
7179 @node Target Options
7180 @section Specifying Target Machine and Compiler Version
7181 @cindex target options
7182 @cindex cross compiling
7183 @cindex specifying machine version
7184 @cindex specifying compiler version and target machine
7185 @cindex compiler version, specifying
7186 @cindex target machine, specifying
7188 The usual way to run GCC is to run the executable called @file{gcc}, or
7189 @file{<machine>-gcc} when cross-compiling, or
7190 @file{<machine>-gcc-<version>} to run a version other than the one that
7191 was installed last.  Sometimes this is inconvenient, so GCC provides
7192 options that will switch to another cross-compiler or version.
7194 @table @gcctabopt
7195 @item -b @var{machine}
7196 @opindex b
7197 The argument @var{machine} specifies the target machine for compilation.
7199 The value to use for @var{machine} is the same as was specified as the
7200 machine type when configuring GCC as a cross-compiler.  For
7201 example, if a cross-compiler was configured with @samp{configure
7202 arm-elf}, meaning to compile for an arm processor with elf binaries,
7203 then you would specify @option{-b arm-elf} to run that cross compiler.
7204 Because there are other options beginning with @option{-b}, the
7205 configuration must contain a hyphen. 
7207 @item -V @var{version}
7208 @opindex V
7209 The argument @var{version} specifies which version of GCC to run.
7210 This is useful when multiple versions are installed.  For example,
7211 @var{version} might be @samp{4.0}, meaning to run GCC version 4.0.
7212 @end table
7214 The @option{-V} and @option{-b} options work by running the
7215 @file{<machine>-gcc-<version>} executable, so there's no real reason to
7216 use them if you can just run that directly.
7218 @node Submodel Options
7219 @section Hardware Models and Configurations
7220 @cindex submodel options
7221 @cindex specifying hardware config
7222 @cindex hardware models and configurations, specifying
7223 @cindex machine dependent options
7225 Earlier we discussed the standard option @option{-b} which chooses among
7226 different installed compilers for completely different target
7227 machines, such as VAX vs.@: 68000 vs.@: 80386.
7229 In addition, each of these target machine types can have its own
7230 special options, starting with @samp{-m}, to choose among various
7231 hardware models or configurations---for example, 68010 vs 68020,
7232 floating coprocessor or none.  A single installed version of the
7233 compiler can compile for any model or configuration, according to the
7234 options specified.
7236 Some configurations of the compiler also support additional special
7237 options, usually for compatibility with other compilers on the same
7238 platform.
7240 @c This list is ordered alphanumerically by subsection name.
7241 @c It should be the same order and spelling as these options are listed
7242 @c in Machine Dependent Options
7244 @menu
7245 * ARC Options::
7246 * ARM Options::
7247 * AVR Options::
7248 * Blackfin Options::
7249 * CRIS Options::
7250 * CRX Options::
7251 * Darwin Options::
7252 * DEC Alpha Options::
7253 * DEC Alpha/VMS Options::
7254 * FRV Options::
7255 * GNU/Linux Options::
7256 * H8/300 Options::
7257 * HPPA Options::
7258 * i386 and x86-64 Options::
7259 * IA-64 Options::
7260 * M32C Options::
7261 * M32R/D Options::
7262 * M680x0 Options::
7263 * M68hc1x Options::
7264 * MCore Options::
7265 * MIPS Options::
7266 * MMIX Options::
7267 * MN10300 Options::
7268 * MT Options::
7269 * PDP-11 Options::
7270 * PowerPC Options::
7271 * RS/6000 and PowerPC Options::
7272 * S/390 and zSeries Options::
7273 * SH Options::
7274 * SPARC Options::
7275 * System V Options::
7276 * TMS320C3x/C4x Options::
7277 * V850 Options::
7278 * VAX Options::
7279 * x86-64 Options::
7280 * Xstormy16 Options::
7281 * Xtensa Options::
7282 * zSeries Options::
7283 @end menu
7285 @node ARC Options
7286 @subsection ARC Options
7287 @cindex ARC Options
7289 These options are defined for ARC implementations:
7291 @table @gcctabopt
7292 @item -EL
7293 @opindex EL
7294 Compile code for little endian mode.  This is the default.
7296 @item -EB
7297 @opindex EB
7298 Compile code for big endian mode.
7300 @item -mmangle-cpu
7301 @opindex mmangle-cpu
7302 Prepend the name of the cpu to all public symbol names.
7303 In multiple-processor systems, there are many ARC variants with different
7304 instruction and register set characteristics.  This flag prevents code
7305 compiled for one cpu to be linked with code compiled for another.
7306 No facility exists for handling variants that are ``almost identical''.
7307 This is an all or nothing option.
7309 @item -mcpu=@var{cpu}
7310 @opindex mcpu
7311 Compile code for ARC variant @var{cpu}.
7312 Which variants are supported depend on the configuration.
7313 All variants support @option{-mcpu=base}, this is the default.
7315 @item -mtext=@var{text-section}
7316 @itemx -mdata=@var{data-section}
7317 @itemx -mrodata=@var{readonly-data-section}
7318 @opindex mtext
7319 @opindex mdata
7320 @opindex mrodata
7321 Put functions, data, and readonly data in @var{text-section},
7322 @var{data-section}, and @var{readonly-data-section} respectively
7323 by default.  This can be overridden with the @code{section} attribute.
7324 @xref{Variable Attributes}.
7326 @end table
7328 @node ARM Options
7329 @subsection ARM Options
7330 @cindex ARM options
7332 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
7333 architectures:
7335 @table @gcctabopt
7336 @item -mabi=@var{name}
7337 @opindex mabi
7338 Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
7339 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
7341 @item -mapcs-frame
7342 @opindex mapcs-frame
7343 Generate a stack frame that is compliant with the ARM Procedure Call
7344 Standard for all functions, even if this is not strictly necessary for
7345 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
7346 with this option will cause the stack frames not to be generated for
7347 leaf functions.  The default is @option{-mno-apcs-frame}.
7349 @item -mapcs
7350 @opindex mapcs
7351 This is a synonym for @option{-mapcs-frame}.
7353 @ignore
7354 @c not currently implemented
7355 @item -mapcs-stack-check
7356 @opindex mapcs-stack-check
7357 Generate code to check the amount of stack space available upon entry to
7358 every function (that actually uses some stack space).  If there is
7359 insufficient space available then either the function
7360 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
7361 called, depending upon the amount of stack space required.  The run time
7362 system is required to provide these functions.  The default is
7363 @option{-mno-apcs-stack-check}, since this produces smaller code.
7365 @c not currently implemented
7366 @item -mapcs-float
7367 @opindex mapcs-float
7368 Pass floating point arguments using the float point registers.  This is
7369 one of the variants of the APCS@.  This option is recommended if the
7370 target hardware has a floating point unit or if a lot of floating point
7371 arithmetic is going to be performed by the code.  The default is
7372 @option{-mno-apcs-float}, since integer only code is slightly increased in
7373 size if @option{-mapcs-float} is used.
7375 @c not currently implemented
7376 @item -mapcs-reentrant
7377 @opindex mapcs-reentrant
7378 Generate reentrant, position independent code.  The default is
7379 @option{-mno-apcs-reentrant}.
7380 @end ignore
7382 @item -mthumb-interwork
7383 @opindex mthumb-interwork
7384 Generate code which supports calling between the ARM and Thumb
7385 instruction sets.  Without this option the two instruction sets cannot
7386 be reliably used inside one program.  The default is
7387 @option{-mno-thumb-interwork}, since slightly larger code is generated
7388 when @option{-mthumb-interwork} is specified.
7390 @item -mno-sched-prolog
7391 @opindex mno-sched-prolog
7392 Prevent the reordering of instructions in the function prolog, or the
7393 merging of those instruction with the instructions in the function's
7394 body.  This means that all functions will start with a recognizable set
7395 of instructions (or in fact one of a choice from a small set of
7396 different function prologues), and this information can be used to
7397 locate the start if functions inside an executable piece of code.  The
7398 default is @option{-msched-prolog}.
7400 @item -mhard-float
7401 @opindex mhard-float
7402 Generate output containing floating point instructions.  This is the
7403 default.
7405 @item -msoft-float
7406 @opindex msoft-float
7407 Generate output containing library calls for floating point.
7408 @strong{Warning:} the requisite libraries are not available for all ARM
7409 targets.  Normally the facilities of the machine's usual C compiler are
7410 used, but this cannot be done directly in cross-compilation.  You must make
7411 your own arrangements to provide suitable library functions for
7412 cross-compilation.
7414 @option{-msoft-float} changes the calling convention in the output file;
7415 therefore, it is only useful if you compile @emph{all} of a program with
7416 this option.  In particular, you need to compile @file{libgcc.a}, the
7417 library that comes with GCC, with @option{-msoft-float} in order for
7418 this to work.
7420 @item -mfloat-abi=@var{name}
7421 @opindex mfloat-abi
7422 Specifies which ABI to use for floating point values.  Permissible values
7423 are: @samp{soft}, @samp{softfp} and @samp{hard}.
7425 @samp{soft} and @samp{hard} are equivalent to @option{-msoft-float}
7426 and @option{-mhard-float} respectively.  @samp{softfp} allows the generation
7427 of floating point instructions, but still uses the soft-float calling
7428 conventions.
7430 @item -mlittle-endian
7431 @opindex mlittle-endian
7432 Generate code for a processor running in little-endian mode.  This is
7433 the default for all standard configurations.
7435 @item -mbig-endian
7436 @opindex mbig-endian
7437 Generate code for a processor running in big-endian mode; the default is
7438 to compile code for a little-endian processor.
7440 @item -mwords-little-endian
7441 @opindex mwords-little-endian
7442 This option only applies when generating code for big-endian processors.
7443 Generate code for a little-endian word order but a big-endian byte
7444 order.  That is, a byte order of the form @samp{32107654}.  Note: this
7445 option should only be used if you require compatibility with code for
7446 big-endian ARM processors generated by versions of the compiler prior to
7447 2.8.
7449 @item -mcpu=@var{name}
7450 @opindex mcpu
7451 This specifies the name of the target ARM processor.  GCC uses this name
7452 to determine what kind of instructions it can emit when generating
7453 assembly code.  Permissible names are: @samp{arm2}, @samp{arm250},
7454 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
7455 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
7456 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
7457 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
7458 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
7459 @samp{arm8}, @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
7460 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
7461 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
7462 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
7463 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
7464 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
7465 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
7466 @samp{arm1176jz-s}, @samp{arm1176jzf-s}, @samp{xscale}, @samp{iwmmxt},
7467 @samp{ep9312}.
7469 @itemx -mtune=@var{name}
7470 @opindex mtune
7471 This option is very similar to the @option{-mcpu=} option, except that
7472 instead of specifying the actual target processor type, and hence
7473 restricting which instructions can be used, it specifies that GCC should
7474 tune the performance of the code as if the target were of the type
7475 specified in this option, but still choosing the instructions that it
7476 will generate based on the cpu specified by a @option{-mcpu=} option.
7477 For some ARM implementations better performance can be obtained by using
7478 this option.
7480 @item -march=@var{name}
7481 @opindex march
7482 This specifies the name of the target ARM architecture.  GCC uses this
7483 name to determine what kind of instructions it can emit when generating
7484 assembly code.  This option can be used in conjunction with or instead
7485 of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
7486 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
7487 @samp{armv5}, @samp{armv5t}, @samp{armv5te}, @samp{armv6}, @samp{armv6j},
7488 @samp{iwmmxt}, @samp{ep9312}.
7490 @item -mfpu=@var{name}
7491 @itemx -mfpe=@var{number}
7492 @itemx -mfp=@var{number}
7493 @opindex mfpu
7494 @opindex mfpe
7495 @opindex mfp
7496 This specifies what floating point hardware (or hardware emulation) is
7497 available on the target.  Permissible names are: @samp{fpa}, @samp{fpe2},
7498 @samp{fpe3}, @samp{maverick}, @samp{vfp}.  @option{-mfp} and @option{-mfpe}
7499 are synonyms for @option{-mfpu}=@samp{fpe}@var{number}, for compatibility
7500 with older versions of GCC@.
7502 If @option{-msoft-float} is specified this specifies the format of
7503 floating point values.
7505 @item -mstructure-size-boundary=@var{n}
7506 @opindex mstructure-size-boundary
7507 The size of all structures and unions will be rounded up to a multiple
7508 of the number of bits set by this option.  Permissible values are 8, 32
7509 and 64.  The default value varies for different toolchains.  For the COFF
7510 targeted toolchain the default value is 8.  A value of 64 is only allowed
7511 if the underlying ABI supports it.
7513 Specifying the larger number can produce faster, more efficient code, but
7514 can also increase the size of the program.  Different values are potentially
7515 incompatible.  Code compiled with one value cannot necessarily expect to
7516 work with code or libraries compiled with another value, if they exchange
7517 information using structures or unions.
7519 @item -mabort-on-noreturn
7520 @opindex mabort-on-noreturn
7521 Generate a call to the function @code{abort} at the end of a
7522 @code{noreturn} function.  It will be executed if the function tries to
7523 return.
7525 @item -mlong-calls
7526 @itemx -mno-long-calls
7527 @opindex mlong-calls
7528 @opindex mno-long-calls
7529 Tells the compiler to perform function calls by first loading the
7530 address of the function into a register and then performing a subroutine
7531 call on this register.  This switch is needed if the target function
7532 will lie outside of the 64 megabyte addressing range of the offset based
7533 version of subroutine call instruction.
7535 Even if this switch is enabled, not all function calls will be turned
7536 into long calls.  The heuristic is that static functions, functions
7537 which have the @samp{short-call} attribute, functions that are inside
7538 the scope of a @samp{#pragma no_long_calls} directive and functions whose
7539 definitions have already been compiled within the current compilation
7540 unit, will not be turned into long calls.  The exception to this rule is
7541 that weak function definitions, functions with the @samp{long-call}
7542 attribute or the @samp{section} attribute, and functions that are within
7543 the scope of a @samp{#pragma long_calls} directive, will always be
7544 turned into long calls.
7546 This feature is not enabled by default.  Specifying
7547 @option{-mno-long-calls} will restore the default behavior, as will
7548 placing the function calls within the scope of a @samp{#pragma
7549 long_calls_off} directive.  Note these switches have no effect on how
7550 the compiler generates code to handle function calls via function
7551 pointers.
7553 @item -mnop-fun-dllimport
7554 @opindex mnop-fun-dllimport
7555 Disable support for the @code{dllimport} attribute.
7557 @item -msingle-pic-base
7558 @opindex msingle-pic-base
7559 Treat the register used for PIC addressing as read-only, rather than
7560 loading it in the prologue for each function.  The run-time system is
7561 responsible for initializing this register with an appropriate value
7562 before execution begins.
7564 @item -mpic-register=@var{reg}
7565 @opindex mpic-register
7566 Specify the register to be used for PIC addressing.  The default is R10
7567 unless stack-checking is enabled, when R9 is used.
7569 @item -mcirrus-fix-invalid-insns
7570 @opindex mcirrus-fix-invalid-insns
7571 @opindex mno-cirrus-fix-invalid-insns
7572 Insert NOPs into the instruction stream to in order to work around
7573 problems with invalid Maverick instruction combinations.  This option
7574 is only valid if the @option{-mcpu=ep9312} option has been used to
7575 enable generation of instructions for the Cirrus Maverick floating
7576 point co-processor.  This option is not enabled by default, since the
7577 problem is only present in older Maverick implementations.  The default
7578 can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns}
7579 switch.
7581 @item -mpoke-function-name
7582 @opindex mpoke-function-name
7583 Write the name of each function into the text section, directly
7584 preceding the function prologue.  The generated code is similar to this:
7586 @smallexample
7587      t0
7588          .ascii "arm_poke_function_name", 0
7589          .align
7590      t1
7591          .word 0xff000000 + (t1 - t0)
7592      arm_poke_function_name
7593          mov     ip, sp
7594          stmfd   sp!, @{fp, ip, lr, pc@}
7595          sub     fp, ip, #4
7596 @end smallexample
7598 When performing a stack backtrace, code can inspect the value of
7599 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
7600 location @code{pc - 12} and the top 8 bits are set, then we know that
7601 there is a function name embedded immediately preceding this location
7602 and has length @code{((pc[-3]) & 0xff000000)}.
7604 @item -mthumb
7605 @opindex mthumb
7606 Generate code for the 16-bit Thumb instruction set.  The default is to
7607 use the 32-bit ARM instruction set.
7609 @item -mtpcs-frame
7610 @opindex mtpcs-frame
7611 Generate a stack frame that is compliant with the Thumb Procedure Call
7612 Standard for all non-leaf functions.  (A leaf function is one that does
7613 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
7615 @item -mtpcs-leaf-frame
7616 @opindex mtpcs-leaf-frame
7617 Generate a stack frame that is compliant with the Thumb Procedure Call
7618 Standard for all leaf functions.  (A leaf function is one that does
7619 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
7621 @item -mcallee-super-interworking
7622 @opindex mcallee-super-interworking
7623 Gives all externally visible functions in the file being compiled an ARM
7624 instruction set header which switches to Thumb mode before executing the
7625 rest of the function.  This allows these functions to be called from
7626 non-interworking code.
7628 @item -mcaller-super-interworking
7629 @opindex mcaller-super-interworking
7630 Allows calls via function pointers (including virtual functions) to
7631 execute correctly regardless of whether the target code has been
7632 compiled for interworking or not.  There is a small overhead in the cost
7633 of executing a function pointer if this option is enabled.
7635 @item -mtp=@var{name}
7636 @opindex mtp
7637 Specify the access model for the thread local storage pointer.  The valid
7638 models are @option{soft}, which generates calls to @code{__aeabi_read_tp},
7639 @option{cp15}, which fetches the thread pointer from @code{cp15} directly
7640 (supported in the arm6k architecture), and @option{auto}, which uses the
7641 best available method for the selected processor.  The default setting is
7642 @option{auto}.
7644 @end table
7646 @node AVR Options
7647 @subsection AVR Options
7648 @cindex AVR Options
7650 These options are defined for AVR implementations:
7652 @table @gcctabopt
7653 @item -mmcu=@var{mcu}
7654 @opindex mmcu
7655 Specify ATMEL AVR instruction set or MCU type.
7657 Instruction set avr1 is for the minimal AVR core, not supported by the C
7658 compiler, only for assembler programs (MCU types: at90s1200, attiny10,
7659 attiny11, attiny12, attiny15, attiny28).
7661 Instruction set avr2 (default) is for the classic AVR core with up to
7662 8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
7663 at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
7664 at90c8534, at90s8535).
7666 Instruction set avr3 is for the classic AVR core with up to 128K program
7667 memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).
7669 Instruction set avr4 is for the enhanced AVR core with up to 8K program
7670 memory space (MCU types: atmega8, atmega83, atmega85).
7672 Instruction set avr5 is for the enhanced AVR core with up to 128K program
7673 memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
7674 atmega64, atmega128, at43usb355, at94k).
7676 @item -msize
7677 @opindex msize
7678 Output instruction sizes to the asm file.
7680 @item -minit-stack=@var{N}
7681 @opindex minit-stack
7682 Specify the initial stack address, which may be a symbol or numeric value,
7683 @samp{__stack} is the default.
7685 @item -mno-interrupts
7686 @opindex mno-interrupts
7687 Generated code is not compatible with hardware interrupts.
7688 Code size will be smaller.
7690 @item -mcall-prologues
7691 @opindex mcall-prologues
7692 Functions prologues/epilogues expanded as call to appropriate
7693 subroutines.  Code size will be smaller.
7695 @item -mno-tablejump
7696 @opindex mno-tablejump
7697 Do not generate tablejump insns which sometimes increase code size.
7699 @item -mtiny-stack
7700 @opindex mtiny-stack
7701 Change only the low 8 bits of the stack pointer.
7703 @item -mint8
7704 @opindex mint8
7705 Assume int to be 8 bit integer.  This affects the sizes of all types: A
7706 char will be 1 byte, an int will be 1 byte, an long will be 2 bytes
7707 and long long will be 4 bytes.  Please note that this option does not
7708 comply to the C standards, but it will provide you with smaller code
7709 size.
7710 @end table
7712 @node Blackfin Options
7713 @subsection Blackfin Options
7714 @cindex Blackfin Options
7716 @table @gcctabopt
7717 @item -momit-leaf-frame-pointer
7718 @opindex momit-leaf-frame-pointer
7719 Don't keep the frame pointer in a register for leaf functions.  This
7720 avoids the instructions to save, set up and restore frame pointers and
7721 makes an extra register available in leaf functions.  The option
7722 @option{-fomit-frame-pointer} removes the frame pointer for all functions
7723 which might make debugging harder.
7725 @item -mspecld-anomaly
7726 @opindex mspecld-anomaly
7727 When enabled, the compiler will ensure that the generated code does not
7728 contain speculative loads after jump instructions.  This option is enabled
7729 by default.
7731 @item -mno-specld-anomaly
7732 @opindex mno-specld-anomaly
7733 Don't generate extra code to prevent speculative loads from occurring.
7735 @item -mcsync-anomaly
7736 @opindex mcsync-anomaly
7737 When enabled, the compiler will ensure that the generated code does not
7738 contain CSYNC or SSYNC instructions too soon after conditional branches.
7739 This option is enabled by default.
7741 @item -mno-csync-anomaly
7742 @opindex mno-csync-anomaly
7743 Don't generate extra code to prevent CSYNC or SSYNC instructions from
7744 occurring too soon after a conditional branch.
7746 @item -mlow-64k
7747 @opindex mlow-64k
7748 When enabled, the compiler is free to take advantage of the knowledge that
7749 the entire program fits into the low 64k of memory.
7751 @item -mno-low-64k
7752 @opindex mno-low-64k
7753 Assume that the program is arbitrarily large.  This is the default.
7755 @item -mid-shared-library
7756 @opindex mid-shared-library
7757 Generate code that supports shared libraries via the library ID method.
7758 This allows for execute in place and shared libraries in an environment
7759 without virtual memory management.  This option implies @option{-fPIC}.
7761 @item -mno-id-shared-library
7762 @opindex mno-id-shared-library
7763 Generate code that doesn't assume ID based shared libraries are being used.
7764 This is the default.
7766 @item -mshared-library-id=n
7767 @opindex mshared-library-id
7768 Specified the identification number of the ID based shared library being
7769 compiled.  Specifying a value of 0 will generate more compact code, specifying
7770 other values will force the allocation of that number to the current
7771 library but is no more space or time efficient than omitting this option.
7773 @item -mlong-calls
7774 @itemx -mno-long-calls
7775 @opindex mlong-calls
7776 @opindex mno-long-calls
7777 Tells the compiler to perform function calls by first loading the
7778 address of the function into a register and then performing a subroutine
7779 call on this register.  This switch is needed if the target function
7780 will lie outside of the 24 bit addressing range of the offset based
7781 version of subroutine call instruction.
7783 This feature is not enabled by default.  Specifying
7784 @option{-mno-long-calls} will restore the default behavior.  Note these
7785 switches have no effect on how the compiler generates code to handle
7786 function calls via function pointers.
7787 @end table
7789 @node CRIS Options
7790 @subsection CRIS Options
7791 @cindex CRIS Options
7793 These options are defined specifically for the CRIS ports.
7795 @table @gcctabopt
7796 @item -march=@var{architecture-type}
7797 @itemx -mcpu=@var{architecture-type}
7798 @opindex march
7799 @opindex mcpu
7800 Generate code for the specified architecture.  The choices for
7801 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
7802 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
7803 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
7804 @samp{v10}.
7806 @item -mtune=@var{architecture-type}
7807 @opindex mtune
7808 Tune to @var{architecture-type} everything applicable about the generated
7809 code, except for the ABI and the set of available instructions.  The
7810 choices for @var{architecture-type} are the same as for
7811 @option{-march=@var{architecture-type}}.
7813 @item -mmax-stack-frame=@var{n}
7814 @opindex mmax-stack-frame
7815 Warn when the stack frame of a function exceeds @var{n} bytes.
7817 @item -melinux-stacksize=@var{n}
7818 @opindex melinux-stacksize
7819 Only available with the @samp{cris-axis-aout} target.  Arranges for
7820 indications in the program to the kernel loader that the stack of the
7821 program should be set to @var{n} bytes.
7823 @item -metrax4
7824 @itemx -metrax100
7825 @opindex metrax4
7826 @opindex metrax100
7827 The options @option{-metrax4} and @option{-metrax100} are synonyms for
7828 @option{-march=v3} and @option{-march=v8} respectively.
7830 @item -mmul-bug-workaround
7831 @itemx -mno-mul-bug-workaround
7832 @opindex mmul-bug-workaround
7833 @opindex mno-mul-bug-workaround
7834 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
7835 models where it applies.  This option is active by default.
7837 @item -mpdebug
7838 @opindex mpdebug
7839 Enable CRIS-specific verbose debug-related information in the assembly
7840 code.  This option also has the effect to turn off the @samp{#NO_APP}
7841 formatted-code indicator to the assembler at the beginning of the
7842 assembly file.
7844 @item -mcc-init
7845 @opindex mcc-init
7846 Do not use condition-code results from previous instruction; always emit
7847 compare and test instructions before use of condition codes.
7849 @item -mno-side-effects
7850 @opindex mno-side-effects
7851 Do not emit instructions with side-effects in addressing modes other than
7852 post-increment.
7854 @item -mstack-align
7855 @itemx -mno-stack-align
7856 @itemx -mdata-align
7857 @itemx -mno-data-align
7858 @itemx -mconst-align
7859 @itemx -mno-const-align
7860 @opindex mstack-align
7861 @opindex mno-stack-align
7862 @opindex mdata-align
7863 @opindex mno-data-align
7864 @opindex mconst-align
7865 @opindex mno-const-align
7866 These options (no-options) arranges (eliminate arrangements) for the
7867 stack-frame, individual data and constants to be aligned for the maximum
7868 single data access size for the chosen CPU model.  The default is to
7869 arrange for 32-bit alignment.  ABI details such as structure layout are
7870 not affected by these options.
7872 @item -m32-bit
7873 @itemx -m16-bit
7874 @itemx -m8-bit
7875 @opindex m32-bit
7876 @opindex m16-bit
7877 @opindex m8-bit
7878 Similar to the stack- data- and const-align options above, these options
7879 arrange for stack-frame, writable data and constants to all be 32-bit,
7880 16-bit or 8-bit aligned.  The default is 32-bit alignment.
7882 @item -mno-prologue-epilogue
7883 @itemx -mprologue-epilogue
7884 @opindex mno-prologue-epilogue
7885 @opindex mprologue-epilogue
7886 With @option{-mno-prologue-epilogue}, the normal function prologue and
7887 epilogue that sets up the stack-frame are omitted and no return
7888 instructions or return sequences are generated in the code.  Use this
7889 option only together with visual inspection of the compiled code: no
7890 warnings or errors are generated when call-saved registers must be saved,
7891 or storage for local variable needs to be allocated.
7893 @item -mno-gotplt
7894 @itemx -mgotplt
7895 @opindex mno-gotplt
7896 @opindex mgotplt
7897 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
7898 instruction sequences that load addresses for functions from the PLT part
7899 of the GOT rather than (traditional on other architectures) calls to the
7900 PLT@.  The default is @option{-mgotplt}.
7902 @item -maout
7903 @opindex maout
7904 Legacy no-op option only recognized with the cris-axis-aout target.
7906 @item -melf
7907 @opindex melf
7908 Legacy no-op option only recognized with the cris-axis-elf and
7909 cris-axis-linux-gnu targets.
7911 @item -melinux
7912 @opindex melinux
7913 Only recognized with the cris-axis-aout target, where it selects a
7914 GNU/linux-like multilib, include files and instruction set for
7915 @option{-march=v8}.
7917 @item -mlinux
7918 @opindex mlinux
7919 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
7921 @item -sim
7922 @opindex sim
7923 This option, recognized for the cris-axis-aout and cris-axis-elf arranges
7924 to link with input-output functions from a simulator library.  Code,
7925 initialized data and zero-initialized data are allocated consecutively.
7927 @item -sim2
7928 @opindex sim2
7929 Like @option{-sim}, but pass linker options to locate initialized data at
7930 0x40000000 and zero-initialized data at 0x80000000.
7931 @end table
7933 @node CRX Options
7934 @subsection CRX Options
7935 @cindex CRX Options
7937 These options are defined specifically for the CRX ports.
7939 @table @gcctabopt
7941 @item -mmac
7942 @opindex mmac
7943 Enable the use of multiply-accumulate instructions. Disabled by default.
7945 @item -mpush-args
7946 @opindex mpush-args
7947 Push instructions will be used to pass outgoing arguments when functions
7948 are called. Enabled by default.
7949 @end table
7951 @node Darwin Options
7952 @subsection Darwin Options
7953 @cindex Darwin options
7955 These options are defined for all architectures running the Darwin operating
7956 system.
7958 FSF GCC on Darwin does not create ``fat'' object files; it will create
7959 an object file for the single architecture that it was built to
7960 target.  Apple's GCC on Darwin does create ``fat'' files if multiple
7961 @option{-arch} options are used; it does so by running the compiler or
7962 linker multiple times and joining the results together with
7963 @file{lipo}.
7965 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
7966 @samp{i686}) is determined by the flags that specify the ISA
7967 that GCC is targetting, like @option{-mcpu} or @option{-march}.  The
7968 @option{-force_cpusubtype_ALL} option can be used to override this.
7970 The Darwin tools vary in their behavior when presented with an ISA
7971 mismatch.  The assembler, @file{as}, will only permit instructions to
7972 be used that are valid for the subtype of the file it is generating,
7973 so you cannot put 64-bit instructions in an @samp{ppc750} object file.
7974 The linker for shared libraries, @file{/usr/bin/libtool}, will fail
7975 and print an error if asked to create a shared library with a less
7976 restrictive subtype than its input files (for instance, trying to put
7977 a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
7978 for executables, @file{ld}, will quietly give the executable the most
7979 restrictive subtype of any of its input files.
7981 @table @gcctabopt
7982 @item -F@var{dir}
7983 @opindex F
7984 Add the framework directory @var{dir} to the head of the list of
7985 directories to be searched for header files.  These directories are
7986 interleaved with those specified by @option{-I} options and are
7987 scanned in a left-to-right order.
7989 A framework directory is a directory with frameworks in it.  A
7990 framework is a directory with a @samp{"Headers"} and/or
7991 @samp{"PrivateHeaders"} directory contained directly in it that ends
7992 in @samp{".framework"}.  The name of a framework is the name of this
7993 directory excluding the @samp{".framework"}.  Headers associated with
7994 the framework are found in one of those two directories, with
7995 @samp{"Headers"} being searched first.  A subframework is a framework
7996 directory that is in a framework's @samp{"Frameworks"} directory.
7997 Includes of subframework headers can only appear in a header of a
7998 framework that contains the subframework, or in a sibling subframework
7999 header.  Two subframeworks are siblings if they occur in the same
8000 framework.  A subframework should not have the same name as a
8001 framework, a warning will be issued if this is violated.  Currently a
8002 subframework cannot have subframeworks, in the future, the mechanism
8003 may be extended to support this.  The standard frameworks can be found
8004 in @samp{"/System/Library/Frameworks"} and
8005 @samp{"/Library/Frameworks"}.  An example include looks like
8006 @code{#include <Framework/header.h>}, where @samp{Framework} denotes
8007 the name of the framework and header.h is found in the
8008 @samp{"PrivateHeaders"} or @samp{"Headers"} directory.
8010 @item -gused
8011 @opindex -gused
8012 Emit debugging information for symbols that are used.  For STABS
8013 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
8014 This is by default ON@.
8016 @item -gfull
8017 @opindex -gfull
8018 Emit debugging information for all symbols and types.
8020 @item -mmacosx-version-min=@var{version}
8021 The earliest version of MacOS X that this executable will run on
8022 is @var{version}.  Typical values of @var{version} include @code{10.1},
8023 @code{10.2}, and @code{10.3.9}.
8025 The default for this option is to make choices that seem to be most
8026 useful.  
8028 @item -mone-byte-bool
8029 @opindex -mone-byte-bool
8030 Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}.
8031 By default @samp{sizeof(bool)} is @samp{4} when compiling for
8032 Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this
8033 option has no effect on x86.
8035 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
8036 to generate code that is not binary compatible with code generated
8037 without that switch.  Using this switch may require recompiling all
8038 other modules in a program, including system libraries.  Use this
8039 switch to conform to a non-default data model.
8041 @item -mfix-and-continue
8042 @itemx -ffix-and-continue
8043 @itemx -findirect-data
8044 @opindex mfix-and-continue
8045 @opindex ffix-and-continue
8046 @opindex findirect-data
8047 Generate code suitable for fast turn around development.  Needed to
8048 enable gdb to dynamically load @code{.o} files into already running
8049 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
8050 are provided for backwards compatibility.
8052 @item -all_load
8053 @opindex all_load
8054 Loads all members of static archive libraries.
8055 See man ld(1) for more information.
8057 @item -arch_errors_fatal
8058 @opindex arch_errors_fatal
8059 Cause the errors having to do with files that have the wrong architecture
8060 to be fatal.
8062 @item -bind_at_load
8063 @opindex bind_at_load
8064 Causes the output file to be marked such that the dynamic linker will
8065 bind all undefined references when the file is loaded or launched.
8067 @item -bundle
8068 @opindex bundle
8069 Produce a Mach-o bundle format file.
8070 See man ld(1) for more information.
8072 @item -bundle_loader @var{executable}
8073 @opindex bundle_loader
8074 This option specifies the @var{executable} that will be loading the build
8075 output file being linked.  See man ld(1) for more information.
8077 @item -dynamiclib
8078 @opindex -dynamiclib
8079 When passed this option, GCC will produce a dynamic library instead of
8080 an executable when linking, using the Darwin @file{libtool} command.
8082 @item -force_cpusubtype_ALL
8083 @opindex -force_cpusubtype_ALL
8084 This causes GCC's output file to have the @var{ALL} subtype, instead of
8085 one controlled by the @option{-mcpu} or @option{-march} option.
8087 @item -allowable_client  @var{client_name}
8088 @itemx -client_name
8089 @itemx -compatibility_version
8090 @itemx -current_version
8091 @itemx -dead_strip
8092 @itemx -dependency-file
8093 @itemx -dylib_file
8094 @itemx -dylinker_install_name
8095 @itemx -dynamic
8096 @itemx -exported_symbols_list
8097 @itemx -filelist
8098 @itemx -flat_namespace
8099 @itemx -force_flat_namespace
8100 @itemx -headerpad_max_install_names
8101 @itemx -image_base
8102 @itemx -init
8103 @itemx -install_name
8104 @itemx -keep_private_externs
8105 @itemx -multi_module
8106 @itemx -multiply_defined
8107 @itemx -multiply_defined_unused
8108 @itemx -noall_load
8109 @itemx -no_dead_strip_inits_and_terms
8110 @itemx -nofixprebinding
8111 @itemx -nomultidefs
8112 @itemx -noprebind
8113 @itemx -noseglinkedit
8114 @itemx -pagezero_size
8115 @itemx -prebind
8116 @itemx -prebind_all_twolevel_modules
8117 @itemx -private_bundle
8118 @itemx -read_only_relocs
8119 @itemx -sectalign
8120 @itemx -sectobjectsymbols
8121 @itemx -whyload
8122 @itemx -seg1addr
8123 @itemx -sectcreate
8124 @itemx -sectobjectsymbols
8125 @itemx -sectorder
8126 @itemx -segaddr
8127 @itemx -segs_read_only_addr
8128 @itemx -segs_read_write_addr
8129 @itemx -seg_addr_table
8130 @itemx -seg_addr_table_filename
8131 @itemx -seglinkedit
8132 @itemx -segprot
8133 @itemx -segs_read_only_addr
8134 @itemx -segs_read_write_addr
8135 @itemx -single_module
8136 @itemx -static
8137 @itemx -sub_library
8138 @itemx -sub_umbrella
8139 @itemx -twolevel_namespace
8140 @itemx -umbrella
8141 @itemx -undefined
8142 @itemx -unexported_symbols_list
8143 @itemx -weak_reference_mismatches
8144 @itemx -whatsloaded
8146 @opindex allowable_client
8147 @opindex client_name
8148 @opindex compatibility_version
8149 @opindex current_version
8150 @opindex dead_strip
8151 @opindex dependency-file
8152 @opindex dylib_file
8153 @opindex dylinker_install_name
8154 @opindex dynamic
8155 @opindex exported_symbols_list
8156 @opindex filelist
8157 @opindex flat_namespace
8158 @opindex force_flat_namespace
8159 @opindex headerpad_max_install_names
8160 @opindex image_base
8161 @opindex init
8162 @opindex install_name
8163 @opindex keep_private_externs
8164 @opindex multi_module
8165 @opindex multiply_defined
8166 @opindex multiply_defined_unused
8167 @opindex noall_load
8168 @opindex no_dead_strip_inits_and_terms
8169 @opindex nofixprebinding
8170 @opindex nomultidefs
8171 @opindex noprebind
8172 @opindex noseglinkedit
8173 @opindex pagezero_size
8174 @opindex prebind
8175 @opindex prebind_all_twolevel_modules
8176 @opindex private_bundle
8177 @opindex read_only_relocs
8178 @opindex sectalign
8179 @opindex sectobjectsymbols
8180 @opindex whyload
8181 @opindex seg1addr
8182 @opindex sectcreate
8183 @opindex sectobjectsymbols
8184 @opindex sectorder
8185 @opindex segaddr
8186 @opindex segs_read_only_addr
8187 @opindex segs_read_write_addr
8188 @opindex seg_addr_table
8189 @opindex seg_addr_table_filename
8190 @opindex seglinkedit
8191 @opindex segprot
8192 @opindex segs_read_only_addr
8193 @opindex segs_read_write_addr
8194 @opindex single_module
8195 @opindex static
8196 @opindex sub_library
8197 @opindex sub_umbrella
8198 @opindex twolevel_namespace
8199 @opindex umbrella
8200 @opindex undefined
8201 @opindex unexported_symbols_list
8202 @opindex weak_reference_mismatches
8203 @opindex whatsloaded
8205 These options are passed to the Darwin linker.  The Darwin linker man page
8206 describes them in detail.
8207 @end table
8209 @node DEC Alpha Options
8210 @subsection DEC Alpha Options
8212 These @samp{-m} options are defined for the DEC Alpha implementations:
8214 @table @gcctabopt
8215 @item -mno-soft-float
8216 @itemx -msoft-float
8217 @opindex mno-soft-float
8218 @opindex msoft-float
8219 Use (do not use) the hardware floating-point instructions for
8220 floating-point operations.  When @option{-msoft-float} is specified,
8221 functions in @file{libgcc.a} will be used to perform floating-point
8222 operations.  Unless they are replaced by routines that emulate the
8223 floating-point operations, or compiled in such a way as to call such
8224 emulations routines, these routines will issue floating-point
8225 operations.   If you are compiling for an Alpha without floating-point
8226 operations, you must ensure that the library is built so as not to call
8227 them.
8229 Note that Alpha implementations without floating-point operations are
8230 required to have floating-point registers.
8232 @item -mfp-reg
8233 @itemx -mno-fp-regs
8234 @opindex mfp-reg
8235 @opindex mno-fp-regs
8236 Generate code that uses (does not use) the floating-point register set.
8237 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
8238 register set is not used, floating point operands are passed in integer
8239 registers as if they were integers and floating-point results are passed
8240 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
8241 so any function with a floating-point argument or return value called by code
8242 compiled with @option{-mno-fp-regs} must also be compiled with that
8243 option.
8245 A typical use of this option is building a kernel that does not use,
8246 and hence need not save and restore, any floating-point registers.
8248 @item -mieee
8249 @opindex mieee
8250 The Alpha architecture implements floating-point hardware optimized for
8251 maximum performance.  It is mostly compliant with the IEEE floating
8252 point standard.  However, for full compliance, software assistance is
8253 required.  This option generates code fully IEEE compliant code
8254 @emph{except} that the @var{inexact-flag} is not maintained (see below).
8255 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
8256 defined during compilation.  The resulting code is less efficient but is
8257 able to correctly support denormalized numbers and exceptional IEEE
8258 values such as not-a-number and plus/minus infinity.  Other Alpha
8259 compilers call this option @option{-ieee_with_no_inexact}.
8261 @item -mieee-with-inexact
8262 @opindex mieee-with-inexact
8263 This is like @option{-mieee} except the generated code also maintains
8264 the IEEE @var{inexact-flag}.  Turning on this option causes the
8265 generated code to implement fully-compliant IEEE math.  In addition to
8266 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
8267 macro.  On some Alpha implementations the resulting code may execute
8268 significantly slower than the code generated by default.  Since there is
8269 very little code that depends on the @var{inexact-flag}, you should
8270 normally not specify this option.  Other Alpha compilers call this
8271 option @option{-ieee_with_inexact}.
8273 @item -mfp-trap-mode=@var{trap-mode}
8274 @opindex mfp-trap-mode
8275 This option controls what floating-point related traps are enabled.
8276 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
8277 The trap mode can be set to one of four values:
8279 @table @samp
8280 @item n
8281 This is the default (normal) setting.  The only traps that are enabled
8282 are the ones that cannot be disabled in software (e.g., division by zero
8283 trap).
8285 @item u
8286 In addition to the traps enabled by @samp{n}, underflow traps are enabled
8287 as well.
8289 @item su
8290 Like @samp{su}, but the instructions are marked to be safe for software
8291 completion (see Alpha architecture manual for details).
8293 @item sui
8294 Like @samp{su}, but inexact traps are enabled as well.
8295 @end table
8297 @item -mfp-rounding-mode=@var{rounding-mode}
8298 @opindex mfp-rounding-mode
8299 Selects the IEEE rounding mode.  Other Alpha compilers call this option
8300 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
8303 @table @samp
8304 @item n
8305 Normal IEEE rounding mode.  Floating point numbers are rounded towards
8306 the nearest machine number or towards the even machine number in case
8307 of a tie.
8309 @item m
8310 Round towards minus infinity.
8312 @item c
8313 Chopped rounding mode.  Floating point numbers are rounded towards zero.
8315 @item d
8316 Dynamic rounding mode.  A field in the floating point control register
8317 (@var{fpcr}, see Alpha architecture reference manual) controls the
8318 rounding mode in effect.  The C library initializes this register for
8319 rounding towards plus infinity.  Thus, unless your program modifies the
8320 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
8321 @end table
8323 @item -mtrap-precision=@var{trap-precision}
8324 @opindex mtrap-precision
8325 In the Alpha architecture, floating point traps are imprecise.  This
8326 means without software assistance it is impossible to recover from a
8327 floating trap and program execution normally needs to be terminated.
8328 GCC can generate code that can assist operating system trap handlers
8329 in determining the exact location that caused a floating point trap.
8330 Depending on the requirements of an application, different levels of
8331 precisions can be selected:
8333 @table @samp
8334 @item p
8335 Program precision.  This option is the default and means a trap handler
8336 can only identify which program caused a floating point exception.
8338 @item f
8339 Function precision.  The trap handler can determine the function that
8340 caused a floating point exception.
8342 @item i
8343 Instruction precision.  The trap handler can determine the exact
8344 instruction that caused a floating point exception.
8345 @end table
8347 Other Alpha compilers provide the equivalent options called
8348 @option{-scope_safe} and @option{-resumption_safe}.
8350 @item -mieee-conformant
8351 @opindex mieee-conformant
8352 This option marks the generated code as IEEE conformant.  You must not
8353 use this option unless you also specify @option{-mtrap-precision=i} and either
8354 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
8355 is to emit the line @samp{.eflag 48} in the function prologue of the
8356 generated assembly file.  Under DEC Unix, this has the effect that
8357 IEEE-conformant math library routines will be linked in.
8359 @item -mbuild-constants
8360 @opindex mbuild-constants
8361 Normally GCC examines a 32- or 64-bit integer constant to
8362 see if it can construct it from smaller constants in two or three
8363 instructions.  If it cannot, it will output the constant as a literal and
8364 generate code to load it from the data segment at runtime.
8366 Use this option to require GCC to construct @emph{all} integer constants
8367 using code, even if it takes more instructions (the maximum is six).
8369 You would typically use this option to build a shared library dynamic
8370 loader.  Itself a shared library, it must relocate itself in memory
8371 before it can find the variables and constants in its own data segment.
8373 @item -malpha-as
8374 @itemx -mgas
8375 @opindex malpha-as
8376 @opindex mgas
8377 Select whether to generate code to be assembled by the vendor-supplied
8378 assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}.
8380 @item -mbwx
8381 @itemx -mno-bwx
8382 @itemx -mcix
8383 @itemx -mno-cix
8384 @itemx -mfix
8385 @itemx -mno-fix
8386 @itemx -mmax
8387 @itemx -mno-max
8388 @opindex mbwx
8389 @opindex mno-bwx
8390 @opindex mcix
8391 @opindex mno-cix
8392 @opindex mfix
8393 @opindex mno-fix
8394 @opindex mmax
8395 @opindex mno-max
8396 Indicate whether GCC should generate code to use the optional BWX,
8397 CIX, FIX and MAX instruction sets.  The default is to use the instruction
8398 sets supported by the CPU type specified via @option{-mcpu=} option or that
8399 of the CPU on which GCC was built if none was specified.
8401 @item -mfloat-vax
8402 @itemx -mfloat-ieee
8403 @opindex mfloat-vax
8404 @opindex mfloat-ieee
8405 Generate code that uses (does not use) VAX F and G floating point
8406 arithmetic instead of IEEE single and double precision.
8408 @item -mexplicit-relocs
8409 @itemx -mno-explicit-relocs
8410 @opindex mexplicit-relocs
8411 @opindex mno-explicit-relocs
8412 Older Alpha assemblers provided no way to generate symbol relocations
8413 except via assembler macros.  Use of these macros does not allow
8414 optimal instruction scheduling.  GNU binutils as of version 2.12
8415 supports a new syntax that allows the compiler to explicitly mark
8416 which relocations should apply to which instructions.  This option
8417 is mostly useful for debugging, as GCC detects the capabilities of
8418 the assembler when it is built and sets the default accordingly.
8420 @item -msmall-data
8421 @itemx -mlarge-data
8422 @opindex msmall-data
8423 @opindex mlarge-data
8424 When @option{-mexplicit-relocs} is in effect, static data is
8425 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
8426 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
8427 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
8428 16-bit relocations off of the @code{$gp} register.  This limits the
8429 size of the small data area to 64KB, but allows the variables to be
8430 directly accessed via a single instruction.
8432 The default is @option{-mlarge-data}.  With this option the data area
8433 is limited to just below 2GB@.  Programs that require more than 2GB of
8434 data must use @code{malloc} or @code{mmap} to allocate the data in the
8435 heap instead of in the program's data segment.
8437 When generating code for shared libraries, @option{-fpic} implies
8438 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
8440 @item -msmall-text
8441 @itemx -mlarge-text
8442 @opindex msmall-text
8443 @opindex mlarge-text
8444 When @option{-msmall-text} is used, the compiler assumes that the
8445 code of the entire program (or shared library) fits in 4MB, and is
8446 thus reachable with a branch instruction.  When @option{-msmall-data}
8447 is used, the compiler can assume that all local symbols share the
8448 same @code{$gp} value, and thus reduce the number of instructions
8449 required for a function call from 4 to 1.
8451 The default is @option{-mlarge-text}.
8453 @item -mcpu=@var{cpu_type}
8454 @opindex mcpu
8455 Set the instruction set and instruction scheduling parameters for
8456 machine type @var{cpu_type}.  You can specify either the @samp{EV}
8457 style name or the corresponding chip number.  GCC supports scheduling
8458 parameters for the EV4, EV5 and EV6 family of processors and will
8459 choose the default values for the instruction set from the processor
8460 you specify.  If you do not specify a processor type, GCC will default
8461 to the processor on which the compiler was built.
8463 Supported values for @var{cpu_type} are
8465 @table @samp
8466 @item ev4
8467 @itemx ev45
8468 @itemx 21064
8469 Schedules as an EV4 and has no instruction set extensions.
8471 @item ev5
8472 @itemx 21164
8473 Schedules as an EV5 and has no instruction set extensions.
8475 @item ev56
8476 @itemx 21164a
8477 Schedules as an EV5 and supports the BWX extension.
8479 @item pca56
8480 @itemx 21164pc
8481 @itemx 21164PC
8482 Schedules as an EV5 and supports the BWX and MAX extensions.
8484 @item ev6
8485 @itemx 21264
8486 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
8488 @item ev67
8489 @itemx 21264a
8490 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
8491 @end table
8493 @item -mtune=@var{cpu_type}
8494 @opindex mtune
8495 Set only the instruction scheduling parameters for machine type
8496 @var{cpu_type}.  The instruction set is not changed.
8498 @item -mmemory-latency=@var{time}
8499 @opindex mmemory-latency
8500 Sets the latency the scheduler should assume for typical memory
8501 references as seen by the application.  This number is highly
8502 dependent on the memory access patterns used by the application
8503 and the size of the external cache on the machine.
8505 Valid options for @var{time} are
8507 @table @samp
8508 @item @var{number}
8509 A decimal number representing clock cycles.
8511 @item L1
8512 @itemx L2
8513 @itemx L3
8514 @itemx main
8515 The compiler contains estimates of the number of clock cycles for
8516 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
8517 (also called Dcache, Scache, and Bcache), as well as to main memory.
8518 Note that L3 is only valid for EV5.
8520 @end table
8521 @end table
8523 @node DEC Alpha/VMS Options
8524 @subsection DEC Alpha/VMS Options
8526 These @samp{-m} options are defined for the DEC Alpha/VMS implementations:
8528 @table @gcctabopt
8529 @item -mvms-return-codes
8530 @opindex mvms-return-codes
8531 Return VMS condition codes from main.  The default is to return POSIX
8532 style condition (e.g.@ error) codes.
8533 @end table
8535 @node FRV Options
8536 @subsection FRV Options
8537 @cindex FRV Options
8539 @table @gcctabopt
8540 @item -mgpr-32
8541 @opindex mgpr-32
8543 Only use the first 32 general purpose registers.
8545 @item -mgpr-64
8546 @opindex mgpr-64
8548 Use all 64 general purpose registers.
8550 @item -mfpr-32
8551 @opindex mfpr-32
8553 Use only the first 32 floating point registers.
8555 @item -mfpr-64
8556 @opindex mfpr-64
8558 Use all 64 floating point registers
8560 @item -mhard-float
8561 @opindex mhard-float
8563 Use hardware instructions for floating point operations.
8565 @item -msoft-float
8566 @opindex msoft-float
8568 Use library routines for floating point operations.
8570 @item -malloc-cc
8571 @opindex malloc-cc
8573 Dynamically allocate condition code registers.
8575 @item -mfixed-cc
8576 @opindex mfixed-cc
8578 Do not try to dynamically allocate condition code registers, only
8579 use @code{icc0} and @code{fcc0}.
8581 @item -mdword
8582 @opindex mdword
8584 Change ABI to use double word insns.
8586 @item -mno-dword
8587 @opindex mno-dword
8589 Do not use double word instructions.
8591 @item -mdouble
8592 @opindex mdouble
8594 Use floating point double instructions.
8596 @item -mno-double
8597 @opindex mno-double
8599 Do not use floating point double instructions.
8601 @item -mmedia
8602 @opindex mmedia
8604 Use media instructions.
8606 @item -mno-media
8607 @opindex mno-media
8609 Do not use media instructions.
8611 @item -mmuladd
8612 @opindex mmuladd
8614 Use multiply and add/subtract instructions.
8616 @item -mno-muladd
8617 @opindex mno-muladd
8619 Do not use multiply and add/subtract instructions.
8621 @item -mfdpic
8622 @opindex mfdpic
8624 Select the FDPIC ABI, that uses function descriptors to represent
8625 pointers to functions.  Without any PIC/PIE-related options, it
8626 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
8627 assumes GOT entries and small data are within a 12-bit range from the
8628 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
8629 are computed with 32 bits.
8631 @item -minline-plt
8632 @opindex minline-plt
8634 Enable inlining of PLT entries in function calls to functions that are
8635 not known to bind locally.  It has no effect without @option{-mfdpic}.
8636 It's enabled by default if optimizing for speed and compiling for
8637 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
8638 optimization option such as @option{-O3} or above is present in the
8639 command line.
8641 @item -mTLS
8642 @opindex TLS
8644 Assume a large TLS segment when generating thread-local code.
8646 @item -mtls
8647 @opindex tls
8649 Do not assume a large TLS segment when generating thread-local code.
8651 @item -mgprel-ro
8652 @opindex mgprel-ro
8654 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
8655 that is known to be in read-only sections.  It's enabled by default,
8656 except for @option{-fpic} or @option{-fpie}: even though it may help
8657 make the global offset table smaller, it trades 1 instruction for 4.
8658 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
8659 one of which may be shared by multiple symbols, and it avoids the need
8660 for a GOT entry for the referenced symbol, so it's more likely to be a
8661 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
8663 @item -multilib-library-pic
8664 @opindex multilib-library-pic
8666 Link with the (library, not FD) pic libraries.  It's implied by
8667 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
8668 @option{-fpic} without @option{-mfdpic}.  You should never have to use
8669 it explicitly.
8671 @item -mlinked-fp
8672 @opindex mlinked-fp
8674 Follow the EABI requirement of always creating a frame pointer whenever
8675 a stack frame is allocated.  This option is enabled by default and can
8676 be disabled with @option{-mno-linked-fp}.
8678 @item -mlong-calls
8679 @opindex mlong-calls
8681 Use indirect addressing to call functions outside the current
8682 compilation unit.  This allows the functions to be placed anywhere
8683 within the 32-bit address space.
8685 @item -malign-labels
8686 @opindex malign-labels
8688 Try to align labels to an 8-byte boundary by inserting nops into the
8689 previous packet.  This option only has an effect when VLIW packing
8690 is enabled.  It doesn't create new packets; it merely adds nops to
8691 existing ones.
8693 @item -mlibrary-pic
8694 @opindex mlibrary-pic
8696 Generate position-independent EABI code.
8698 @item -macc-4
8699 @opindex macc-4
8701 Use only the first four media accumulator registers.
8703 @item -macc-8
8704 @opindex macc-8
8706 Use all eight media accumulator registers.
8708 @item -mpack
8709 @opindex mpack
8711 Pack VLIW instructions.
8713 @item -mno-pack
8714 @opindex mno-pack
8716 Do not pack VLIW instructions.
8718 @item -mno-eflags
8719 @opindex mno-eflags
8721 Do not mark ABI switches in e_flags.
8723 @item -mcond-move
8724 @opindex mcond-move
8726 Enable the use of conditional-move instructions (default).
8728 This switch is mainly for debugging the compiler and will likely be removed
8729 in a future version.
8731 @item -mno-cond-move
8732 @opindex mno-cond-move
8734 Disable the use of conditional-move instructions.
8736 This switch is mainly for debugging the compiler and will likely be removed
8737 in a future version.
8739 @item -mscc
8740 @opindex mscc
8742 Enable the use of conditional set instructions (default).
8744 This switch is mainly for debugging the compiler and will likely be removed
8745 in a future version.
8747 @item -mno-scc
8748 @opindex mno-scc
8750 Disable the use of conditional set instructions.
8752 This switch is mainly for debugging the compiler and will likely be removed
8753 in a future version.
8755 @item -mcond-exec
8756 @opindex mcond-exec
8758 Enable the use of conditional execution (default).
8760 This switch is mainly for debugging the compiler and will likely be removed
8761 in a future version.
8763 @item -mno-cond-exec
8764 @opindex mno-cond-exec
8766 Disable the use of conditional execution.
8768 This switch is mainly for debugging the compiler and will likely be removed
8769 in a future version.
8771 @item -mvliw-branch
8772 @opindex mvliw-branch
8774 Run a pass to pack branches into VLIW instructions (default).
8776 This switch is mainly for debugging the compiler and will likely be removed
8777 in a future version.
8779 @item -mno-vliw-branch
8780 @opindex mno-vliw-branch
8782 Do not run a pass to pack branches into VLIW instructions.
8784 This switch is mainly for debugging the compiler and will likely be removed
8785 in a future version.
8787 @item -mmulti-cond-exec
8788 @opindex mmulti-cond-exec
8790 Enable optimization of @code{&&} and @code{||} in conditional execution
8791 (default).
8793 This switch is mainly for debugging the compiler and will likely be removed
8794 in a future version.
8796 @item -mno-multi-cond-exec
8797 @opindex mno-multi-cond-exec
8799 Disable optimization of @code{&&} and @code{||} in conditional execution.
8801 This switch is mainly for debugging the compiler and will likely be removed
8802 in a future version.
8804 @item -mnested-cond-exec
8805 @opindex mnested-cond-exec
8807 Enable nested conditional execution optimizations (default).
8809 This switch is mainly for debugging the compiler and will likely be removed
8810 in a future version.
8812 @item -mno-nested-cond-exec
8813 @opindex mno-nested-cond-exec
8815 Disable nested conditional execution optimizations.
8817 This switch is mainly for debugging the compiler and will likely be removed
8818 in a future version.
8820 @item -moptimize-membar
8821 @opindex moptimize-membar
8823 This switch removes redundant @code{membar} instructions from the
8824 compiler generated code.  It is enabled by default.
8826 @item -mno-optimize-membar
8827 @opindex mno-optimize-membar
8829 This switch disables the automatic removal of redundant @code{membar}
8830 instructions from the generated code.
8832 @item -mtomcat-stats
8833 @opindex mtomcat-stats
8835 Cause gas to print out tomcat statistics.
8837 @item -mcpu=@var{cpu}
8838 @opindex mcpu
8840 Select the processor type for which to generate code.  Possible values are
8841 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
8842 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
8844 @end table
8846 @node GNU/Linux Options
8847 @subsection GNU/Linux Options
8849 These @samp{-m} options are defined for GNU/Linux targets:
8851 @table @gcctabopt
8852 @item -mglibc
8853 @opindex mglibc
8854 Use the GNU C library instead of uClibc.  This is the default except
8855 on @samp{*-*-linux-*uclibc*} targets.
8857 @item -muclibc
8858 @opindex muclibc
8859 Use uClibc instead of the GNU C library.  This is the default on
8860 @samp{*-*-linux-*uclibc*} targets.
8861 @end table
8863 @node H8/300 Options
8864 @subsection H8/300 Options
8866 These @samp{-m} options are defined for the H8/300 implementations:
8868 @table @gcctabopt
8869 @item -mrelax
8870 @opindex mrelax
8871 Shorten some address references at link time, when possible; uses the
8872 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
8873 ld, Using ld}, for a fuller description.
8875 @item -mh
8876 @opindex mh
8877 Generate code for the H8/300H@.
8879 @item -ms
8880 @opindex ms
8881 Generate code for the H8S@.
8883 @item -mn
8884 @opindex mn
8885 Generate code for the H8S and H8/300H in the normal mode.  This switch
8886 must be used either with @option{-mh} or @option{-ms}.
8888 @item -ms2600
8889 @opindex ms2600
8890 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
8892 @item -mint32
8893 @opindex mint32
8894 Make @code{int} data 32 bits by default.
8896 @item -malign-300
8897 @opindex malign-300
8898 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
8899 The default for the H8/300H and H8S is to align longs and floats on 4
8900 byte boundaries.
8901 @option{-malign-300} causes them to be aligned on 2 byte boundaries.
8902 This option has no effect on the H8/300.
8903 @end table
8905 @node HPPA Options
8906 @subsection HPPA Options
8907 @cindex HPPA Options
8909 These @samp{-m} options are defined for the HPPA family of computers:
8911 @table @gcctabopt
8912 @item -march=@var{architecture-type}
8913 @opindex march
8914 Generate code for the specified architecture.  The choices for
8915 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
8916 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
8917 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
8918 architecture option for your machine.  Code compiled for lower numbered
8919 architectures will run on higher numbered architectures, but not the
8920 other way around.
8922 @item -mpa-risc-1-0
8923 @itemx -mpa-risc-1-1
8924 @itemx -mpa-risc-2-0
8925 @opindex mpa-risc-1-0
8926 @opindex mpa-risc-1-1
8927 @opindex mpa-risc-2-0
8928 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
8930 @item -mbig-switch
8931 @opindex mbig-switch
8932 Generate code suitable for big switch tables.  Use this option only if
8933 the assembler/linker complain about out of range branches within a switch
8934 table.
8936 @item -mjump-in-delay
8937 @opindex mjump-in-delay
8938 Fill delay slots of function calls with unconditional jump instructions
8939 by modifying the return pointer for the function call to be the target
8940 of the conditional jump.
8942 @item -mdisable-fpregs
8943 @opindex mdisable-fpregs
8944 Prevent floating point registers from being used in any manner.  This is
8945 necessary for compiling kernels which perform lazy context switching of
8946 floating point registers.  If you use this option and attempt to perform
8947 floating point operations, the compiler will abort.
8949 @item -mdisable-indexing
8950 @opindex mdisable-indexing
8951 Prevent the compiler from using indexing address modes.  This avoids some
8952 rather obscure problems when compiling MIG generated code under MACH@.
8954 @item -mno-space-regs
8955 @opindex mno-space-regs
8956 Generate code that assumes the target has no space registers.  This allows
8957 GCC to generate faster indirect calls and use unscaled index address modes.
8959 Such code is suitable for level 0 PA systems and kernels.
8961 @item -mfast-indirect-calls
8962 @opindex mfast-indirect-calls
8963 Generate code that assumes calls never cross space boundaries.  This
8964 allows GCC to emit code which performs faster indirect calls.
8966 This option will not work in the presence of shared libraries or nested
8967 functions.
8969 @item -mfixed-range=@var{register-range}
8970 @opindex mfixed-range
8971 Generate code treating the given register range as fixed registers.
8972 A fixed register is one that the register allocator can not use.  This is
8973 useful when compiling kernel code.  A register range is specified as
8974 two registers separated by a dash.  Multiple register ranges can be
8975 specified separated by a comma.
8977 @item -mlong-load-store
8978 @opindex mlong-load-store
8979 Generate 3-instruction load and store sequences as sometimes required by
8980 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
8981 the HP compilers.
8983 @item -mportable-runtime
8984 @opindex mportable-runtime
8985 Use the portable calling conventions proposed by HP for ELF systems.
8987 @item -mgas
8988 @opindex mgas
8989 Enable the use of assembler directives only GAS understands.
8991 @item -mschedule=@var{cpu-type}
8992 @opindex mschedule
8993 Schedule code according to the constraints for the machine type
8994 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
8995 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
8996 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
8997 proper scheduling option for your machine.  The default scheduling is
8998 @samp{8000}.
9000 @item -mlinker-opt
9001 @opindex mlinker-opt
9002 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
9003 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
9004 linkers in which they give bogus error messages when linking some programs.
9006 @item -msoft-float
9007 @opindex msoft-float
9008 Generate output containing library calls for floating point.
9009 @strong{Warning:} the requisite libraries are not available for all HPPA
9010 targets.  Normally the facilities of the machine's usual C compiler are
9011 used, but this cannot be done directly in cross-compilation.  You must make
9012 your own arrangements to provide suitable library functions for
9013 cross-compilation.  The embedded target @samp{hppa1.1-*-pro}
9014 does provide software floating point support.
9016 @option{-msoft-float} changes the calling convention in the output file;
9017 therefore, it is only useful if you compile @emph{all} of a program with
9018 this option.  In particular, you need to compile @file{libgcc.a}, the
9019 library that comes with GCC, with @option{-msoft-float} in order for
9020 this to work.
9022 @item -msio
9023 @opindex msio
9024 Generate the predefine, @code{_SIO}, for server IO@.  The default is
9025 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
9026 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
9027 options are available under HP-UX and HI-UX@.
9029 @item -mgnu-ld
9030 @opindex gnu-ld
9031 Use GNU ld specific options.  This passes @option{-shared} to ld when
9032 building a shared library.  It is the default when GCC is configured,
9033 explicitly or implicitly, with the GNU linker.  This option does not
9034 have any affect on which ld is called, it only changes what parameters
9035 are passed to that ld.  The ld that is called is determined by the
9036 @option{--with-ld} configure option, GCC's program search path, and
9037 finally by the user's @env{PATH}.  The linker used by GCC can be printed
9038 using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
9039 on the 64 bit HP-UX GCC, i.e. configured with @samp{hppa*64*-*-hpux*}.
9041 @item -mhp-ld
9042 @opindex hp-ld
9043 Use HP ld specific options.  This passes @option{-b} to ld when building
9044 a shared library and passes @option{+Accept TypeMismatch} to ld on all
9045 links.  It is the default when GCC is configured, explicitly or
9046 implicitly, with the HP linker.  This option does not have any affect on
9047 which ld is called, it only changes what parameters are passed to that
9048 ld.  The ld that is called is determined by the @option{--with-ld}
9049 configure option, GCC's program search path, and finally by the user's
9050 @env{PATH}.  The linker used by GCC can be printed using @samp{which
9051 `gcc -print-prog-name=ld`}.  This option is only available on the 64 bit
9052 HP-UX GCC, i.e. configured with @samp{hppa*64*-*-hpux*}.
9054 @item -mlong-calls
9055 @opindex mno-long-calls
9056 Generate code that uses long call sequences.  This ensures that a call
9057 is always able to reach linker generated stubs.  The default is to generate
9058 long calls only when the distance from the call site to the beginning
9059 of the function or translation unit, as the case may be, exceeds a
9060 predefined limit set by the branch type being used.  The limits for
9061 normal calls are 7,600,000 and 240,000 bytes, respectively for the
9062 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
9063 240,000 bytes.
9065 Distances are measured from the beginning of functions when using the
9066 @option{-ffunction-sections} option, or when using the @option{-mgas}
9067 and @option{-mno-portable-runtime} options together under HP-UX with
9068 the SOM linker.
9070 It is normally not desirable to use this option as it will degrade
9071 performance.  However, it may be useful in large applications,
9072 particularly when partial linking is used to build the application.
9074 The types of long calls used depends on the capabilities of the
9075 assembler and linker, and the type of code being generated.  The
9076 impact on systems that support long absolute calls, and long pic
9077 symbol-difference or pc-relative calls should be relatively small.
9078 However, an indirect call is used on 32-bit ELF systems in pic code
9079 and it is quite long.
9081 @item -munix=@var{unix-std}
9082 @opindex march
9083 Generate compiler predefines and select a startfile for the specified
9084 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
9085 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
9086 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
9087 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
9088 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
9089 and later.
9091 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
9092 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
9093 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
9094 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
9095 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
9096 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
9098 It is @emph{important} to note that this option changes the interfaces
9099 for various library routines.  It also affects the operational behavior
9100 of the C library.  Thus, @emph{extreme} care is needed in using this
9101 option.
9103 Library code that is intended to operate with more than one UNIX
9104 standard must test, set and restore the variable @var{__xpg4_extended_mask}
9105 as appropriate.  Most GNU software doesn't provide this capability.
9107 @item -nolibdld
9108 @opindex nolibdld
9109 Suppress the generation of link options to search libdld.sl when the
9110 @option{-static} option is specified on HP-UX 10 and later.
9112 @item -static
9113 @opindex static
9114 The HP-UX implementation of setlocale in libc has a dependency on
9115 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
9116 when the @option{-static} option is specified, special link options
9117 are needed to resolve this dependency.
9119 On HP-UX 10 and later, the GCC driver adds the necessary options to
9120 link with libdld.sl when the @option{-static} option is specified.
9121 This causes the resulting binary to be dynamic.  On the 64-bit port,
9122 the linkers generate dynamic binaries by default in any case.  The
9123 @option{-nolibdld} option can be used to prevent the GCC driver from
9124 adding these link options.
9126 @item -threads
9127 @opindex threads
9128 Add support for multithreading with the @dfn{dce thread} library
9129 under HP-UX@.  This option sets flags for both the preprocessor and
9130 linker.
9131 @end table
9133 @node i386 and x86-64 Options
9134 @subsection Intel 386 and AMD x86-64 Options
9135 @cindex i386 Options
9136 @cindex x86-64 Options
9137 @cindex Intel 386 Options
9138 @cindex AMD x86-64 Options
9140 These @samp{-m} options are defined for the i386 and x86-64 family of
9141 computers:
9143 @table @gcctabopt
9144 @item -mtune=@var{cpu-type}
9145 @opindex mtune
9146 Tune to @var{cpu-type} everything applicable about the generated code, except
9147 for the ABI and the set of available instructions.  The choices for
9148 @var{cpu-type} are:
9149 @table @emph
9150 @item generic
9151 Produce code optimized for the most common IA32/AMD64/EM64T processors.
9152 If you know the CPU on which your code will run, then you should use
9153 the corresponding @option{-mtune} option instead of
9154 @option{-mtune=generic}.  But, if you do not know exactly what CPU users
9155 of your application will have, then you should use this option.
9157 As new processors are deployed in the marketplace, the behavior of this
9158 option will change.  Therefore, if you upgrade to a newer version of
9159 GCC, the code generated option will change to reflect the processors
9160 that were most common when that version of GCC was released.
9162 There is no @option{-march=generic} option because @option{-march}
9163 indicates the instruction set the compiler can use, and there is no
9164 generic instruction set applicable to all processors.  In contrast,
9165 @option{-mtune} indicates the processor (or, in this case, collection of
9166 processors) for which the code is optimized.
9167 @item i386
9168 Original Intel's i386 CPU@.
9169 @item i486
9170 Intel's i486 CPU@.  (No scheduling is implemented for this chip.)
9171 @item i586, pentium
9172 Intel Pentium CPU with no MMX support.
9173 @item pentium-mmx
9174 Intel PentiumMMX CPU based on Pentium core with MMX instruction set support.
9175 @item pentiumpro
9176 Intel PentiumPro CPU@.
9177 @item i686
9178 Same as @code{generic}, but when used as @code{march} option, PentiumPro
9179 instruction set will be used, so the code will run on all i686 family chips.
9180 @item pentium2
9181 Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support.
9182 @item pentium3, pentium3m
9183 Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
9184 support.
9185 @item pentium-m
9186 Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
9187 support.  Used by Centrino notebooks.
9188 @item pentium4, pentium4m
9189 Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.
9190 @item prescott
9191 Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
9192 set support.
9193 @item nocona
9194 Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
9195 SSE2 and SSE3 instruction set support.
9196 @item k6
9197 AMD K6 CPU with MMX instruction set support.
9198 @item k6-2, k6-3
9199 Improved versions of AMD K6 CPU with MMX and 3dNOW! instruction set support.
9200 @item athlon, athlon-tbird
9201 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and SSE prefetch instructions
9202 support.
9203 @item athlon-4, athlon-xp, athlon-mp
9204 Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and full SSE
9205 instruction set support.
9206 @item k8, opteron, athlon64, athlon-fx
9207 AMD K8 core based CPUs with x86-64 instruction set support.  (This supersets
9208 MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW! and 64-bit instruction set extensions.)
9209 @item winchip-c6
9210 IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
9211 set support.
9212 @item winchip2
9213 IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!
9214 instruction set support.
9215 @item c3
9216 Via C3 CPU with MMX and 3dNOW! instruction set support.  (No scheduling is
9217 implemented for this chip.)
9218 @item c3-2
9219 Via C3-2 CPU with MMX and SSE instruction set support.  (No scheduling is
9220 implemented for this chip.)
9221 @end table
9223 While picking a specific @var{cpu-type} will schedule things appropriately
9224 for that particular chip, the compiler will not generate any code that
9225 does not run on the i386 without the @option{-march=@var{cpu-type}} option
9226 being used.
9228 @item -march=@var{cpu-type}
9229 @opindex march
9230 Generate instructions for the machine type @var{cpu-type}.  The choices
9231 for @var{cpu-type} are the same as for @option{-mtune}.  Moreover,
9232 specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}.
9234 @item -mcpu=@var{cpu-type}
9235 @opindex mcpu
9236 A deprecated synonym for @option{-mtune}.
9238 @item -m386
9239 @itemx -m486
9240 @itemx -mpentium
9241 @itemx -mpentiumpro
9242 @opindex m386
9243 @opindex m486
9244 @opindex mpentium
9245 @opindex mpentiumpro
9246 These options are synonyms for @option{-mtune=i386}, @option{-mtune=i486},
9247 @option{-mtune=pentium}, and @option{-mtune=pentiumpro} respectively.
9248 These synonyms are deprecated.
9250 @item -mfpmath=@var{unit}
9251 @opindex march
9252 Generate floating point arithmetics for selected unit @var{unit}.  The choices
9253 for @var{unit} are:
9255 @table @samp
9256 @item 387
9257 Use the standard 387 floating point coprocessor present majority of chips and
9258 emulated otherwise.  Code compiled with this option will run almost everywhere.
9259 The temporary results are computed in 80bit precision instead of precision
9260 specified by the type resulting in slightly different results compared to most
9261 of other chips.  See @option{-ffloat-store} for more detailed description.
9263 This is the default choice for i386 compiler.
9265 @item sse
9266 Use scalar floating point instructions present in the SSE instruction set.
9267 This instruction set is supported by Pentium3 and newer chips, in the AMD line
9268 by Athlon-4, Athlon-xp and Athlon-mp chips.  The earlier version of SSE
9269 instruction set supports only single precision arithmetics, thus the double and
9270 extended precision arithmetics is still done using 387.  Later version, present
9271 only in Pentium4 and the future AMD x86-64 chips supports double precision
9272 arithmetics too.
9274 For the i386 compiler, you need to use @option{-march=@var{cpu-type}}, @option{-msse}
9275 or @option{-msse2} switches to enable SSE extensions and make this option
9276 effective.  For the x86-64 compiler, these extensions are enabled by default.
9278 The resulting code should be considerably faster in the majority of cases and avoid
9279 the numerical instability problems of 387 code, but may break some existing
9280 code that expects temporaries to be 80bit.
9282 This is the default choice for the x86-64 compiler.
9284 @item sse,387
9285 Attempt to utilize both instruction sets at once.  This effectively double the
9286 amount of available registers and on chips with separate execution units for
9287 387 and SSE the execution resources too.  Use this option with care, as it is
9288 still experimental, because the GCC register allocator does not model separate
9289 functional units well resulting in instable performance.
9290 @end table
9292 @item -masm=@var{dialect}
9293 @opindex masm=@var{dialect}
9294 Output asm instructions using selected @var{dialect}.  Supported
9295 choices are @samp{intel} or @samp{att} (the default one).  Darwin does
9296 not support @samp{intel}.
9298 @item -mieee-fp
9299 @itemx -mno-ieee-fp
9300 @opindex mieee-fp
9301 @opindex mno-ieee-fp
9302 Control whether or not the compiler uses IEEE floating point
9303 comparisons.  These handle correctly the case where the result of a
9304 comparison is unordered.
9306 @item -msoft-float
9307 @opindex msoft-float
9308 Generate output containing library calls for floating point.
9309 @strong{Warning:} the requisite libraries are not part of GCC@.
9310 Normally the facilities of the machine's usual C compiler are used, but
9311 this can't be done directly in cross-compilation.  You must make your
9312 own arrangements to provide suitable library functions for
9313 cross-compilation.
9315 On machines where a function returns floating point results in the 80387
9316 register stack, some floating point opcodes may be emitted even if
9317 @option{-msoft-float} is used.
9319 @item -mno-fp-ret-in-387
9320 @opindex mno-fp-ret-in-387
9321 Do not use the FPU registers for return values of functions.
9323 The usual calling convention has functions return values of types
9324 @code{float} and @code{double} in an FPU register, even if there
9325 is no FPU@.  The idea is that the operating system should emulate
9326 an FPU@.
9328 The option @option{-mno-fp-ret-in-387} causes such values to be returned
9329 in ordinary CPU registers instead.
9331 @item -mno-fancy-math-387
9332 @opindex mno-fancy-math-387
9333 Some 387 emulators do not support the @code{sin}, @code{cos} and
9334 @code{sqrt} instructions for the 387.  Specify this option to avoid
9335 generating those instructions.  This option is the default on FreeBSD,
9336 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
9337 indicates that the target cpu will always have an FPU and so the
9338 instruction will not need emulation.  As of revision 2.6.1, these
9339 instructions are not generated unless you also use the
9340 @option{-funsafe-math-optimizations} switch.
9342 @item -malign-double
9343 @itemx -mno-align-double
9344 @opindex malign-double
9345 @opindex mno-align-double
9346 Control whether GCC aligns @code{double}, @code{long double}, and
9347 @code{long long} variables on a two word boundary or a one word
9348 boundary.  Aligning @code{double} variables on a two word boundary will
9349 produce code that runs somewhat faster on a @samp{Pentium} at the
9350 expense of more memory.
9352 @strong{Warning:} if you use the @option{-malign-double} switch,
9353 structures containing the above types will be aligned differently than
9354 the published application binary interface specifications for the 386
9355 and will not be binary compatible with structures in code compiled
9356 without that switch.
9358 @item -m96bit-long-double
9359 @itemx -m128bit-long-double
9360 @opindex m96bit-long-double
9361 @opindex m128bit-long-double
9362 These switches control the size of @code{long double} type.  The i386
9363 application binary interface specifies the size to be 96 bits,
9364 so @option{-m96bit-long-double} is the default in 32 bit mode.
9366 Modern architectures (Pentium and newer) would prefer @code{long double}
9367 to be aligned to an 8 or 16 byte boundary.  In arrays or structures
9368 conforming to the ABI, this would not be possible.  So specifying a
9369 @option{-m128bit-long-double} will align @code{long double}
9370 to a 16 byte boundary by padding the @code{long double} with an additional
9371 32 bit zero.
9373 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
9374 its ABI specifies that @code{long double} is to be aligned on 16 byte boundary.
9376 Notice that neither of these options enable any extra precision over the x87
9377 standard of 80 bits for a @code{long double}.
9379 @strong{Warning:} if you override the default value for your target ABI, the
9380 structures and arrays containing @code{long double} variables will change
9381 their size as well as function calling convention for function taking
9382 @code{long double} will be modified.  Hence they will not be binary
9383 compatible with arrays or structures in code compiled without that switch.
9385 @item -mmlarge-data-threshold=@var{number}
9386 @opindex mlarge-data-threshold=@var{number}
9387 When @option{-mcmodel=medium} is specified, the data greater than
9388 @var{threshold} are placed in large data section.  This value must be the
9389 same across all object linked into the binary and defaults to 65535.
9391 @item -msvr3-shlib
9392 @itemx -mno-svr3-shlib
9393 @opindex msvr3-shlib
9394 @opindex mno-svr3-shlib
9395 Control whether GCC places uninitialized local variables into the
9396 @code{bss} or @code{data} segments.  @option{-msvr3-shlib} places them
9397 into @code{bss}.  These options are meaningful only on System V Release 3.
9399 @item -mrtd
9400 @opindex mrtd
9401 Use a different function-calling convention, in which functions that
9402 take a fixed number of arguments return with the @code{ret} @var{num}
9403 instruction, which pops their arguments while returning.  This saves one
9404 instruction in the caller since there is no need to pop the arguments
9405 there.
9407 You can specify that an individual function is called with this calling
9408 sequence with the function attribute @samp{stdcall}.  You can also
9409 override the @option{-mrtd} option by using the function attribute
9410 @samp{cdecl}.  @xref{Function Attributes}.
9412 @strong{Warning:} this calling convention is incompatible with the one
9413 normally used on Unix, so you cannot use it if you need to call
9414 libraries compiled with the Unix compiler.
9416 Also, you must provide function prototypes for all functions that
9417 take variable numbers of arguments (including @code{printf});
9418 otherwise incorrect code will be generated for calls to those
9419 functions.
9421 In addition, seriously incorrect code will result if you call a
9422 function with too many arguments.  (Normally, extra arguments are
9423 harmlessly ignored.)
9425 @item -mregparm=@var{num}
9426 @opindex mregparm
9427 Control how many registers are used to pass integer arguments.  By
9428 default, no registers are used to pass arguments, and at most 3
9429 registers can be used.  You can control this behavior for a specific
9430 function by using the function attribute @samp{regparm}.
9431 @xref{Function Attributes}.
9433 @strong{Warning:} if you use this switch, and
9434 @var{num} is nonzero, then you must build all modules with the same
9435 value, including any libraries.  This includes the system libraries and
9436 startup modules.
9438 @item -msseregparm
9439 @opindex msseregparm
9440 Use SSE register passing conventions for float and double arguments
9441 and return values.  You can control this behavior for a specific
9442 function by using the function attribute @samp{sseregparm}.
9443 @xref{Function Attributes}.
9445 @strong{Warning:} if you use this switch then you must build all
9446 modules with the same value, including any libraries.  This includes
9447 the system libraries and startup modules.
9449 @item -mpreferred-stack-boundary=@var{num}
9450 @opindex mpreferred-stack-boundary
9451 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
9452 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
9453 the default is 4 (16 bytes or 128 bits), except when optimizing for code
9454 size (@option{-Os}), in which case the default is the minimum correct
9455 alignment (4 bytes for x86, and 8 bytes for x86-64).
9457 On Pentium and PentiumPro, @code{double} and @code{long double} values
9458 should be aligned to an 8 byte boundary (see @option{-malign-double}) or
9459 suffer significant run time performance penalties.  On Pentium III, the
9460 Streaming SIMD Extension (SSE) data type @code{__m128} suffers similar
9461 penalties if it is not 16 byte aligned.
9463 To ensure proper alignment of this values on the stack, the stack boundary
9464 must be as aligned as that required by any value stored on the stack.
9465 Further, every function must be generated such that it keeps the stack
9466 aligned.  Thus calling a function compiled with a higher preferred
9467 stack boundary from a function compiled with a lower preferred stack
9468 boundary will most likely misalign the stack.  It is recommended that
9469 libraries that use callbacks always use the default setting.
9471 This extra alignment does consume extra stack space, and generally
9472 increases code size.  Code that is sensitive to stack space usage, such
9473 as embedded systems and operating system kernels, may want to reduce the
9474 preferred alignment to @option{-mpreferred-stack-boundary=2}.
9476 @item -mmmx
9477 @itemx -mno-mmx
9478 @item -msse
9479 @itemx -mno-sse
9480 @item -msse2
9481 @itemx -mno-sse2
9482 @item -msse3
9483 @itemx -mno-sse3
9484 @item -m3dnow
9485 @itemx -mno-3dnow
9486 @opindex mmmx
9487 @opindex mno-mmx
9488 @opindex msse
9489 @opindex mno-sse
9490 @opindex m3dnow
9491 @opindex mno-3dnow
9492 These switches enable or disable the use of instructions in the MMX,
9493 SSE, SSE2 or 3DNow! extended instruction sets.  These extensions are
9494 also available as built-in functions: see @ref{X86 Built-in Functions},
9495 for details of the functions enabled and disabled by these switches.
9497 To have SSE/SSE2 instructions generated automatically from floating-point
9498 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
9500 These options will enable GCC to use these extended instructions in
9501 generated code, even without @option{-mfpmath=sse}.  Applications which
9502 perform runtime CPU detection must compile separate files for each
9503 supported architecture, using the appropriate flags.  In particular,
9504 the file containing the CPU detection code should be compiled without
9505 these options.
9507 @item -msselibm
9508 @opindex msselibm
9509 Use special versions of certain libm routines that come with an SSE
9510 ABI and an SSE implementation.  Useful together with @option{-mfpmath=sse}
9511 to avoid moving values between SSE registers and the x87 FP stack.
9513 @item -mpush-args
9514 @itemx -mno-push-args
9515 @opindex mpush-args
9516 @opindex mno-push-args
9517 Use PUSH operations to store outgoing parameters.  This method is shorter
9518 and usually equally fast as method using SUB/MOV operations and is enabled
9519 by default.  In some cases disabling it may improve performance because of
9520 improved scheduling and reduced dependencies.
9522 @item -maccumulate-outgoing-args
9523 @opindex maccumulate-outgoing-args
9524 If enabled, the maximum amount of space required for outgoing arguments will be
9525 computed in the function prologue.  This is faster on most modern CPUs
9526 because of reduced dependencies, improved scheduling and reduced stack usage
9527 when preferred stack boundary is not equal to 2.  The drawback is a notable
9528 increase in code size.  This switch implies @option{-mno-push-args}.
9530 @item -mthreads
9531 @opindex mthreads
9532 Support thread-safe exception handling on @samp{Mingw32}.  Code that relies
9533 on thread-safe exception handling must compile and link all code with the
9534 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
9535 @option{-D_MT}; when linking, it links in a special thread helper library
9536 @option{-lmingwthrd} which cleans up per thread exception handling data.
9538 @item -mno-align-stringops
9539 @opindex mno-align-stringops
9540 Do not align destination of inlined string operations.  This switch reduces
9541 code size and improves performance in case the destination is already aligned,
9542 but GCC doesn't know about it.
9544 @item -minline-all-stringops
9545 @opindex minline-all-stringops
9546 By default GCC inlines string operations only when destination is known to be
9547 aligned at least to 4 byte boundary.  This enables more inlining, increase code
9548 size, but may improve performance of code that depends on fast memcpy, strlen
9549 and memset for short lengths.
9551 @item -momit-leaf-frame-pointer
9552 @opindex momit-leaf-frame-pointer
9553 Don't keep the frame pointer in a register for leaf functions.  This
9554 avoids the instructions to save, set up and restore frame pointers and
9555 makes an extra register available in leaf functions.  The option
9556 @option{-fomit-frame-pointer} removes the frame pointer for all functions
9557 which might make debugging harder.
9559 @item -mtls-direct-seg-refs
9560 @itemx -mno-tls-direct-seg-refs
9561 @opindex mtls-direct-seg-refs
9562 Controls whether TLS variables may be accessed with offsets from the
9563 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
9564 or whether the thread base pointer must be added.  Whether or not this
9565 is legal depends on the operating system, and whether it maps the
9566 segment to cover the entire TLS area.
9568 For systems that use GNU libc, the default is on.
9569 @end table
9571 These @samp{-m} switches are supported in addition to the above
9572 on AMD x86-64 processors in 64-bit environments.
9574 @table @gcctabopt
9575 @item -m32
9576 @itemx -m64
9577 @opindex m32
9578 @opindex m64
9579 Generate code for a 32-bit or 64-bit environment.
9580 The 32-bit environment sets int, long and pointer to 32 bits and
9581 generates code that runs on any i386 system.
9582 The 64-bit environment sets int to 32 bits and long and pointer
9583 to 64 bits and generates code for AMD's x86-64 architecture.
9585 @item -mno-red-zone
9586 @opindex no-red-zone
9587 Do not use a so called red zone for x86-64 code.  The red zone is mandated
9588 by the x86-64 ABI, it is a 128-byte area beyond the location of the
9589 stack pointer that will not be modified by signal or interrupt handlers
9590 and therefore can be used for temporary data without adjusting the stack
9591 pointer.  The flag @option{-mno-red-zone} disables this red zone.
9593 @item -mcmodel=small
9594 @opindex mcmodel=small
9595 Generate code for the small code model: the program and its symbols must
9596 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
9597 Programs can be statically or dynamically linked.  This is the default
9598 code model.
9600 @item -mcmodel=kernel
9601 @opindex mcmodel=kernel
9602 Generate code for the kernel code model.  The kernel runs in the
9603 negative 2 GB of the address space.
9604 This model has to be used for Linux kernel code.
9606 @item -mcmodel=medium
9607 @opindex mcmodel=medium
9608 Generate code for the medium model: The program is linked in the lower 2
9609 GB of the address space but symbols can be located anywhere in the
9610 address space.  Programs can be statically or dynamically linked, but
9611 building of shared libraries are not supported with the medium model.
9613 @item -mcmodel=large
9614 @opindex mcmodel=large
9615 Generate code for the large model: This model makes no assumptions
9616 about addresses and sizes of sections.  Currently GCC does not implement
9617 this model.
9618 @end table
9620 @node IA-64 Options
9621 @subsection IA-64 Options
9622 @cindex IA-64 Options
9624 These are the @samp{-m} options defined for the Intel IA-64 architecture.
9626 @table @gcctabopt
9627 @item -mbig-endian
9628 @opindex mbig-endian
9629 Generate code for a big endian target.  This is the default for HP-UX@.
9631 @item -mlittle-endian
9632 @opindex mlittle-endian
9633 Generate code for a little endian target.  This is the default for AIX5
9634 and GNU/Linux.
9636 @item -mgnu-as
9637 @itemx -mno-gnu-as
9638 @opindex mgnu-as
9639 @opindex mno-gnu-as
9640 Generate (or don't) code for the GNU assembler.  This is the default.
9641 @c Also, this is the default if the configure option @option{--with-gnu-as}
9642 @c is used.
9644 @item -mgnu-ld
9645 @itemx -mno-gnu-ld
9646 @opindex mgnu-ld
9647 @opindex mno-gnu-ld
9648 Generate (or don't) code for the GNU linker.  This is the default.
9649 @c Also, this is the default if the configure option @option{--with-gnu-ld}
9650 @c is used.
9652 @item -mno-pic
9653 @opindex mno-pic
9654 Generate code that does not use a global pointer register.  The result
9655 is not position independent code, and violates the IA-64 ABI@.
9657 @item -mvolatile-asm-stop
9658 @itemx -mno-volatile-asm-stop
9659 @opindex mvolatile-asm-stop
9660 @opindex mno-volatile-asm-stop
9661 Generate (or don't) a stop bit immediately before and after volatile asm
9662 statements.
9664 @item -mregister-names
9665 @itemx -mno-register-names
9666 @opindex mregister-names
9667 @opindex mno-register-names
9668 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
9669 the stacked registers.  This may make assembler output more readable.
9671 @item -mno-sdata
9672 @itemx -msdata
9673 @opindex mno-sdata
9674 @opindex msdata
9675 Disable (or enable) optimizations that use the small data section.  This may
9676 be useful for working around optimizer bugs.
9678 @item -mconstant-gp
9679 @opindex mconstant-gp
9680 Generate code that uses a single constant global pointer value.  This is
9681 useful when compiling kernel code.
9683 @item -mauto-pic
9684 @opindex mauto-pic
9685 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
9686 This is useful when compiling firmware code.
9688 @item -minline-float-divide-min-latency
9689 @opindex minline-float-divide-min-latency
9690 Generate code for inline divides of floating point values
9691 using the minimum latency algorithm.
9693 @item -minline-float-divide-max-throughput
9694 @opindex minline-float-divide-max-throughput
9695 Generate code for inline divides of floating point values
9696 using the maximum throughput algorithm.
9698 @item -minline-int-divide-min-latency
9699 @opindex minline-int-divide-min-latency
9700 Generate code for inline divides of integer values
9701 using the minimum latency algorithm.
9703 @item -minline-int-divide-max-throughput
9704 @opindex minline-int-divide-max-throughput
9705 Generate code for inline divides of integer values
9706 using the maximum throughput algorithm.
9708 @item -minline-sqrt-min-latency
9709 @opindex minline-sqrt-min-latency
9710 Generate code for inline square roots
9711 using the minimum latency algorithm.
9713 @item -minline-sqrt-max-throughput
9714 @opindex minline-sqrt-max-throughput
9715 Generate code for inline square roots
9716 using the maximum throughput algorithm.
9718 @item -mno-dwarf2-asm
9719 @itemx -mdwarf2-asm
9720 @opindex mno-dwarf2-asm
9721 @opindex mdwarf2-asm
9722 Don't (or do) generate assembler code for the DWARF2 line number debugging
9723 info.  This may be useful when not using the GNU assembler.
9725 @item -mearly-stop-bits
9726 @itemx -mno-early-stop-bits
9727 @opindex mearly-stop-bits
9728 @opindex mno-early-stop-bits
9729 Allow stop bits to be placed earlier than immediately preceding the
9730 instruction that triggered the stop bit.  This can improve instruction
9731 scheduling, but does not always do so.
9733 @item -mfixed-range=@var{register-range}
9734 @opindex mfixed-range
9735 Generate code treating the given register range as fixed registers.
9736 A fixed register is one that the register allocator can not use.  This is
9737 useful when compiling kernel code.  A register range is specified as
9738 two registers separated by a dash.  Multiple register ranges can be
9739 specified separated by a comma.
9741 @item -mtls-size=@var{tls-size}
9742 @opindex mtls-size
9743 Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
9746 @item -mtune=@var{cpu-type}
9747 @opindex mtune
9748 Tune the instruction scheduling for a particular CPU, Valid values are
9749 itanium, itanium1, merced, itanium2, and mckinley.
9751 @item -mt
9752 @itemx -pthread
9753 @opindex mt
9754 @opindex pthread
9755 Add support for multithreading using the POSIX threads library.  This
9756 option sets flags for both the preprocessor and linker.  It does
9757 not affect the thread safety of object code produced by the compiler or
9758 that of libraries supplied with it.  These are HP-UX specific flags.
9760 @item -milp32
9761 @itemx -mlp64
9762 @opindex milp32
9763 @opindex mlp64
9764 Generate code for a 32-bit or 64-bit environment.
9765 The 32-bit environment sets int, long and pointer to 32 bits.
9766 The 64-bit environment sets int to 32 bits and long and pointer
9767 to 64 bits.  These are HP-UX specific flags.
9769 @item -mno-sched-br-data-spec
9770 @itemx -msched-br-data-spec
9771 @opindex -mno-sched-br-data-spec
9772 @opindex -msched-br-data-spec
9773 (Dis/En)able data speculative scheduling before reload.
9774 This will result in generation of the ld.a instructions and
9775 the corresponding check instructions (ld.c / chk.a).
9776 The default is 'disable'.
9778 @item -msched-ar-data-spec
9779 @itemx -mno-sched-ar-data-spec
9780 @opindex -msched-ar-data-spec
9781 @opindex -mno-sched-ar-data-spec
9782 (En/Dis)able data speculative scheduling after reload.
9783 This will result in generation of the ld.a instructions and
9784 the corresponding check instructions (ld.c / chk.a).
9785 The default is 'enable'.
9787 @item -mno-sched-control-spec
9788 @itemx -msched-control-spec
9789 @opindex -mno-sched-control-spec
9790 @opindex -msched-control-spec
9791 (Dis/En)able control speculative scheduling.  This feature is
9792 available only during region scheduling (i.e. before reload).
9793 This will result in generation of the ld.s instructions and
9794 the corresponding check instructions chk.s .
9795 The default is 'disable'.
9797 @item -msched-br-in-data-spec
9798 @itemx -mno-sched-br-in-data-spec
9799 @opindex -msched-br-in-data-spec
9800 @opindex -mno-sched-br-in-data-spec
9801 (En/Dis)able speculative scheduling of the instructions that
9802 are dependent on the data speculative loads before reload.
9803 This is effective only with @option{-msched-br-data-spec} enabled.
9804 The default is 'enable'.
9806 @item -msched-ar-in-data-spec
9807 @itemx -mno-sched-ar-in-data-spec
9808 @opindex -msched-ar-in-data-spec
9809 @opindex -mno-sched-ar-in-data-spec
9810 (En/Dis)able speculative scheduling of the instructions that
9811 are dependent on the data speculative loads after reload.
9812 This is effective only with @option{-msched-ar-data-spec} enabled.
9813 The default is 'enable'.
9815 @item -msched-in-control-spec
9816 @itemx -mno-sched-in-control-spec
9817 @opindex -msched-in-control-spec
9818 @opindex -mno-sched-in-control-spec
9819 (En/Dis)able speculative scheduling of the instructions that
9820 are dependent on the control speculative loads.
9821 This is effective only with @option{-msched-control-spec} enabled.
9822 The default is 'enable'.
9824 @item -msched-ldc
9825 @itemx -mno-sched-ldc
9826 @opindex -msched-ldc
9827 @opindex -mno-sched-ldc
9828 (En/Dis)able use of simple data speculation checks ld.c .
9829 If disabled, only chk.a instructions will be emitted to check
9830 data speculative loads.
9831 The default is 'enable'.
9833 @item -mno-sched-control-ldc
9834 @itemx -msched-control-ldc
9835 @opindex -mno-sched-control-ldc
9836 @opindex -msched-control-ldc 
9837 (Dis/En)able use of ld.c instructions to check control speculative loads.
9838 If enabled, in case of control speculative load with no speculatively
9839 scheduled dependent instructions this load will be emitted as ld.sa and
9840 ld.c will be used to check it.
9841 The default is 'disable'.
9843 @item -mno-sched-spec-verbose
9844 @itemx -msched-spec-verbose
9845 @opindex -mno-sched-spec-verbose
9846 @opindex -msched-spec-verbose
9847 (Dis/En)able printing of the information about speculative motions.
9849 @item -mno-sched-prefer-non-data-spec-insns
9850 @itemx -msched-prefer-non-data-spec-insns
9851 @opindex -mno-sched-prefer-non-data-spec-insns
9852 @opindex -msched-prefer-non-data-spec-insns
9853 If enabled, data speculative instructions will be chosen for schedule
9854 only if there are no other choices at the moment.  This will make
9855 the use of the data speculation much more conservative.
9856 The default is 'disable'.
9858 @item -mno-sched-prefer-non-control-spec-insns
9859 @itemx -msched-prefer-non-control-spec-insns
9860 @opindex -mno-sched-prefer-non-control-spec-insns
9861 @opindex -msched-prefer-non-control-spec-insns
9862 If enabled, control speculative instructions will be chosen for schedule
9863 only if there are no other choices at the moment.  This will make
9864 the use of the control speculation much more conservative.
9865 The default is 'disable'.
9867 @item -mno-sched-count-spec-in-critical-path
9868 @itemx -msched-count-spec-in-critical-path
9869 @opindex -mno-sched-count-spec-in-critical-path
9870 @opindex -msched-count-spec-in-critical-path
9871 If enabled, speculative dependencies will be considered during
9872 computation of the instructions priorities.  This will make the use of the
9873 speculation a bit more conservative.
9874 The default is 'disable'.
9876 @end table
9878 @node M32C Options
9879 @subsection M32C Options
9880 @cindex M32C options
9882 @table @gcctabopt
9883 @item -mcpu=@var{name}
9884 @opindex mcpu=
9885 Select the CPU for which code is generated.  @var{name} may be one of
9886 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
9887 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
9888 the M32C/80 series.
9890 @item -msim
9891 @opindex msim
9892 Specifies that the program will be run on the simulator.  This causes
9893 an alternate runtime library to be linked in which supports, for
9894 example, file I/O.  You must not use this option when generating
9895 programs that will run on real hardware; you must provide your own
9896 runtime library for whatever I/O functions are needed.
9898 @item -memregs=@var{number}
9899 @opindex memregs=
9900 Specifies the number of memory-based pseudo-registers GCC will use
9901 during code generation.  These pseudo-registers will be used like real
9902 registers, so there is a tradeoff between GCC's ability to fit the
9903 code into available registers, and the performance penalty of using
9904 memory instead of registers.  Note that all modules in a program must
9905 be compiled with the same value for this option.  Because of that, you
9906 must not use this option with the default runtime libraries gcc
9907 builds.
9909 @end table
9911 @node M32R/D Options
9912 @subsection M32R/D Options
9913 @cindex M32R/D options
9915 These @option{-m} options are defined for Renesas M32R/D architectures:
9917 @table @gcctabopt
9918 @item -m32r2
9919 @opindex m32r2
9920 Generate code for the M32R/2@.
9922 @item -m32rx
9923 @opindex m32rx
9924 Generate code for the M32R/X@.
9926 @item -m32r
9927 @opindex m32r
9928 Generate code for the M32R@.  This is the default.
9930 @item -mmodel=small
9931 @opindex mmodel=small
9932 Assume all objects live in the lower 16MB of memory (so that their addresses
9933 can be loaded with the @code{ld24} instruction), and assume all subroutines
9934 are reachable with the @code{bl} instruction.
9935 This is the default.
9937 The addressability of a particular object can be set with the
9938 @code{model} attribute.
9940 @item -mmodel=medium
9941 @opindex mmodel=medium
9942 Assume objects may be anywhere in the 32-bit address space (the compiler
9943 will generate @code{seth/add3} instructions to load their addresses), and
9944 assume all subroutines are reachable with the @code{bl} instruction.
9946 @item -mmodel=large
9947 @opindex mmodel=large
9948 Assume objects may be anywhere in the 32-bit address space (the compiler
9949 will generate @code{seth/add3} instructions to load their addresses), and
9950 assume subroutines may not be reachable with the @code{bl} instruction
9951 (the compiler will generate the much slower @code{seth/add3/jl}
9952 instruction sequence).
9954 @item -msdata=none
9955 @opindex msdata=none
9956 Disable use of the small data area.  Variables will be put into
9957 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
9958 @code{section} attribute has been specified).
9959 This is the default.
9961 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
9962 Objects may be explicitly put in the small data area with the
9963 @code{section} attribute using one of these sections.
9965 @item -msdata=sdata
9966 @opindex msdata=sdata
9967 Put small global and static data in the small data area, but do not
9968 generate special code to reference them.
9970 @item -msdata=use
9971 @opindex msdata=use
9972 Put small global and static data in the small data area, and generate
9973 special instructions to reference them.
9975 @item -G @var{num}
9976 @opindex G
9977 @cindex smaller data references
9978 Put global and static objects less than or equal to @var{num} bytes
9979 into the small data or bss sections instead of the normal data or bss
9980 sections.  The default value of @var{num} is 8.
9981 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
9982 for this option to have any effect.
9984 All modules should be compiled with the same @option{-G @var{num}} value.
9985 Compiling with different values of @var{num} may or may not work; if it
9986 doesn't the linker will give an error message---incorrect code will not be
9987 generated.
9989 @item -mdebug
9990 @opindex mdebug
9991 Makes the M32R specific code in the compiler display some statistics
9992 that might help in debugging programs.
9994 @item -malign-loops
9995 @opindex malign-loops
9996 Align all loops to a 32-byte boundary.
9998 @item -mno-align-loops
9999 @opindex mno-align-loops
10000 Do not enforce a 32-byte alignment for loops.  This is the default.
10002 @item -missue-rate=@var{number}
10003 @opindex missue-rate=@var{number}
10004 Issue @var{number} instructions per cycle.  @var{number} can only be 1
10005 or 2.
10007 @item -mbranch-cost=@var{number}
10008 @opindex mbranch-cost=@var{number}
10009 @var{number} can only be 1 or 2.  If it is 1 then branches will be
10010 preferred over conditional code, if it is 2, then the opposite will
10011 apply.
10013 @item -mflush-trap=@var{number}
10014 @opindex mflush-trap=@var{number}
10015 Specifies the trap number to use to flush the cache.  The default is
10016 12.  Valid numbers are between 0 and 15 inclusive.
10018 @item -mno-flush-trap
10019 @opindex mno-flush-trap
10020 Specifies that the cache cannot be flushed by using a trap.
10022 @item -mflush-func=@var{name}
10023 @opindex mflush-func=@var{name}
10024 Specifies the name of the operating system function to call to flush
10025 the cache.  The default is @emph{_flush_cache}, but a function call
10026 will only be used if a trap is not available.
10028 @item -mno-flush-func
10029 @opindex mno-flush-func
10030 Indicates that there is no OS function for flushing the cache.
10032 @end table
10034 @node M680x0 Options
10035 @subsection M680x0 Options
10036 @cindex M680x0 options
10038 These are the @samp{-m} options defined for the 68000 series.  The default
10039 values for these options depends on which style of 68000 was selected when
10040 the compiler was configured; the defaults for the most common choices are
10041 given below.
10043 @table @gcctabopt
10044 @item -m68000
10045 @itemx -mc68000
10046 @opindex m68000
10047 @opindex mc68000
10048 Generate output for a 68000.  This is the default
10049 when the compiler is configured for 68000-based systems.
10051 Use this option for microcontrollers with a 68000 or EC000 core,
10052 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
10054 @item -m68020
10055 @itemx -mc68020
10056 @opindex m68020
10057 @opindex mc68020
10058 Generate output for a 68020.  This is the default
10059 when the compiler is configured for 68020-based systems.
10061 @item -m68881
10062 @opindex m68881
10063 Generate output containing 68881 instructions for floating point.
10064 This is the default for most 68020 systems unless @option{--nfp} was
10065 specified when the compiler was configured.
10067 @item -m68030
10068 @opindex m68030
10069 Generate output for a 68030.  This is the default when the compiler is
10070 configured for 68030-based systems.
10072 @item -m68040
10073 @opindex m68040
10074 Generate output for a 68040.  This is the default when the compiler is
10075 configured for 68040-based systems.
10077 This option inhibits the use of 68881/68882 instructions that have to be
10078 emulated by software on the 68040.  Use this option if your 68040 does not
10079 have code to emulate those instructions.
10081 @item -m68060
10082 @opindex m68060
10083 Generate output for a 68060.  This is the default when the compiler is
10084 configured for 68060-based systems.
10086 This option inhibits the use of 68020 and 68881/68882 instructions that
10087 have to be emulated by software on the 68060.  Use this option if your 68060
10088 does not have code to emulate those instructions.
10090 @item -mcpu32
10091 @opindex mcpu32
10092 Generate output for a CPU32.  This is the default
10093 when the compiler is configured for CPU32-based systems.
10095 Use this option for microcontrollers with a
10096 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
10097 68336, 68340, 68341, 68349 and 68360.
10099 @item -m5200
10100 @opindex m5200
10101 Generate output for a 520X ``coldfire'' family cpu.  This is the default
10102 when the compiler is configured for 520X-based systems.
10104 Use this option for microcontroller with a 5200 core, including
10105 the MCF5202, MCF5203, MCF5204 and MCF5202.
10107 @item -mcfv4e
10108 @opindex mcfv4e
10109 Generate output for a ColdFire V4e family cpu (e.g.@: 547x/548x).
10110 This includes use of hardware floating point instructions.
10112 @item -m68020-40
10113 @opindex m68020-40
10114 Generate output for a 68040, without using any of the new instructions.
10115 This results in code which can run relatively efficiently on either a
10116 68020/68881 or a 68030 or a 68040.  The generated code does use the
10117 68881 instructions that are emulated on the 68040.
10119 @item -m68020-60
10120 @opindex m68020-60
10121 Generate output for a 68060, without using any of the new instructions.
10122 This results in code which can run relatively efficiently on either a
10123 68020/68881 or a 68030 or a 68040.  The generated code does use the
10124 68881 instructions that are emulated on the 68060.
10126 @item -msoft-float
10127 @opindex msoft-float
10128 Generate output containing library calls for floating point.
10129 @strong{Warning:} the requisite libraries are not available for all m68k
10130 targets.  Normally the facilities of the machine's usual C compiler are
10131 used, but this can't be done directly in cross-compilation.  You must
10132 make your own arrangements to provide suitable library functions for
10133 cross-compilation.  The embedded targets @samp{m68k-*-aout} and
10134 @samp{m68k-*-coff} do provide software floating point support.
10136 @item -mshort
10137 @opindex mshort
10138 Consider type @code{int} to be 16 bits wide, like @code{short int}.
10139 Additionally, parameters passed on the stack are also aligned to a
10140 16-bit boundary even on targets whose API mandates promotion to 32-bit.
10142 @item -mnobitfield
10143 @opindex mnobitfield
10144 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
10145 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
10147 @item -mbitfield
10148 @opindex mbitfield
10149 Do use the bit-field instructions.  The @option{-m68020} option implies
10150 @option{-mbitfield}.  This is the default if you use a configuration
10151 designed for a 68020.
10153 @item -mrtd
10154 @opindex mrtd
10155 Use a different function-calling convention, in which functions
10156 that take a fixed number of arguments return with the @code{rtd}
10157 instruction, which pops their arguments while returning.  This
10158 saves one instruction in the caller since there is no need to pop
10159 the arguments there.
10161 This calling convention is incompatible with the one normally
10162 used on Unix, so you cannot use it if you need to call libraries
10163 compiled with the Unix compiler.
10165 Also, you must provide function prototypes for all functions that
10166 take variable numbers of arguments (including @code{printf});
10167 otherwise incorrect code will be generated for calls to those
10168 functions.
10170 In addition, seriously incorrect code will result if you call a
10171 function with too many arguments.  (Normally, extra arguments are
10172 harmlessly ignored.)
10174 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
10175 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
10177 @item -malign-int
10178 @itemx -mno-align-int
10179 @opindex malign-int
10180 @opindex mno-align-int
10181 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
10182 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
10183 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
10184 Aligning variables on 32-bit boundaries produces code that runs somewhat
10185 faster on processors with 32-bit busses at the expense of more memory.
10187 @strong{Warning:} if you use the @option{-malign-int} switch, GCC will
10188 align structures containing the above types  differently than
10189 most published application binary interface specifications for the m68k.
10191 @item -mpcrel
10192 @opindex mpcrel
10193 Use the pc-relative addressing mode of the 68000 directly, instead of
10194 using a global offset table.  At present, this option implies @option{-fpic},
10195 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
10196 not presently supported with @option{-mpcrel}, though this could be supported for
10197 68020 and higher processors.
10199 @item -mno-strict-align
10200 @itemx -mstrict-align
10201 @opindex mno-strict-align
10202 @opindex mstrict-align
10203 Do not (do) assume that unaligned memory references will be handled by
10204 the system.
10206 @item -msep-data
10207 Generate code that allows the data segment to be located in a different
10208 area of memory from the text segment.  This allows for execute in place in
10209 an environment without virtual memory management.  This option implies
10210 @option{-fPIC}.
10212 @item -mno-sep-data
10213 Generate code that assumes that the data segment follows the text segment.
10214 This is the default.
10216 @item -mid-shared-library
10217 Generate code that supports shared libraries via the library ID method.
10218 This allows for execute in place and shared libraries in an environment
10219 without virtual memory management.  This option implies @option{-fPIC}.
10221 @item -mno-id-shared-library
10222 Generate code that doesn't assume ID based shared libraries are being used.
10223 This is the default.
10225 @item -mshared-library-id=n
10226 Specified the identification number of the ID based shared library being
10227 compiled.  Specifying a value of 0 will generate more compact code, specifying
10228 other values will force the allocation of that number to the current
10229 library but is no more space or time efficient than omitting this option.
10231 @end table
10233 @node M68hc1x Options
10234 @subsection M68hc1x Options
10235 @cindex M68hc1x options
10237 These are the @samp{-m} options defined for the 68hc11 and 68hc12
10238 microcontrollers.  The default values for these options depends on
10239 which style of microcontroller was selected when the compiler was configured;
10240 the defaults for the most common choices are given below.
10242 @table @gcctabopt
10243 @item -m6811
10244 @itemx -m68hc11
10245 @opindex m6811
10246 @opindex m68hc11
10247 Generate output for a 68HC11.  This is the default
10248 when the compiler is configured for 68HC11-based systems.
10250 @item -m6812
10251 @itemx -m68hc12
10252 @opindex m6812
10253 @opindex m68hc12
10254 Generate output for a 68HC12.  This is the default
10255 when the compiler is configured for 68HC12-based systems.
10257 @item -m68S12
10258 @itemx -m68hcs12
10259 @opindex m68S12
10260 @opindex m68hcs12
10261 Generate output for a 68HCS12.
10263 @item -mauto-incdec
10264 @opindex mauto-incdec
10265 Enable the use of 68HC12 pre and post auto-increment and auto-decrement
10266 addressing modes.
10268 @item -minmax
10269 @itemx -nominmax
10270 @opindex minmax
10271 @opindex mnominmax
10272 Enable the use of 68HC12 min and max instructions.
10274 @item -mlong-calls
10275 @itemx -mno-long-calls
10276 @opindex mlong-calls
10277 @opindex mno-long-calls
10278 Treat all calls as being far away (near).  If calls are assumed to be
10279 far away, the compiler will use the @code{call} instruction to
10280 call a function and the @code{rtc} instruction for returning.
10282 @item -mshort
10283 @opindex mshort
10284 Consider type @code{int} to be 16 bits wide, like @code{short int}.
10286 @item -msoft-reg-count=@var{count}
10287 @opindex msoft-reg-count
10288 Specify the number of pseudo-soft registers which are used for the
10289 code generation.  The maximum number is 32.  Using more pseudo-soft
10290 register may or may not result in better code depending on the program.
10291 The default is 4 for 68HC11 and 2 for 68HC12.
10293 @end table
10295 @node MCore Options
10296 @subsection MCore Options
10297 @cindex MCore options
10299 These are the @samp{-m} options defined for the Motorola M*Core
10300 processors.
10302 @table @gcctabopt
10304 @item -mhardlit
10305 @itemx -mno-hardlit
10306 @opindex mhardlit
10307 @opindex mno-hardlit
10308 Inline constants into the code stream if it can be done in two
10309 instructions or less.
10311 @item -mdiv
10312 @itemx -mno-div
10313 @opindex mdiv
10314 @opindex mno-div
10315 Use the divide instruction.  (Enabled by default).
10317 @item -mrelax-immediate
10318 @itemx -mno-relax-immediate
10319 @opindex mrelax-immediate
10320 @opindex mno-relax-immediate
10321 Allow arbitrary sized immediates in bit operations.
10323 @item -mwide-bitfields
10324 @itemx -mno-wide-bitfields
10325 @opindex mwide-bitfields
10326 @opindex mno-wide-bitfields
10327 Always treat bit-fields as int-sized.
10329 @item -m4byte-functions
10330 @itemx -mno-4byte-functions
10331 @opindex m4byte-functions
10332 @opindex mno-4byte-functions
10333 Force all functions to be aligned to a four byte boundary.
10335 @item -mcallgraph-data
10336 @itemx -mno-callgraph-data
10337 @opindex mcallgraph-data
10338 @opindex mno-callgraph-data
10339 Emit callgraph information.
10341 @item -mslow-bytes
10342 @itemx -mno-slow-bytes
10343 @opindex mslow-bytes
10344 @opindex mno-slow-bytes
10345 Prefer word access when reading byte quantities.
10347 @item -mlittle-endian
10348 @itemx -mbig-endian
10349 @opindex mlittle-endian
10350 @opindex mbig-endian
10351 Generate code for a little endian target.
10353 @item -m210
10354 @itemx -m340
10355 @opindex m210
10356 @opindex m340
10357 Generate code for the 210 processor.
10358 @end table
10360 @node MIPS Options
10361 @subsection MIPS Options
10362 @cindex MIPS options
10364 @table @gcctabopt
10366 @item -EB
10367 @opindex EB
10368 Generate big-endian code.
10370 @item -EL
10371 @opindex EL
10372 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
10373 configurations.
10375 @item -march=@var{arch}
10376 @opindex march
10377 Generate code that will run on @var{arch}, which can be the name of a
10378 generic MIPS ISA, or the name of a particular processor.
10379 The ISA names are:
10380 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
10381 @samp{mips32}, @samp{mips32r2}, and @samp{mips64}.
10382 The processor names are:
10383 @samp{4kc}, @samp{4km}, @samp{4kp},
10384 @samp{5kc}, @samp{5kf},
10385 @samp{20kc},
10386 @samp{24k}, @samp{24kc}, @samp{24kf}, @samp{24kx},
10387 @samp{m4k},
10388 @samp{orion},
10389 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
10390 @samp{r4600}, @samp{r4650}, @samp{r6000}, @samp{r8000},
10391 @samp{rm7000}, @samp{rm9000},
10392 @samp{sb1},
10393 @samp{sr71000},
10394 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
10395 @samp{vr5000}, @samp{vr5400} and @samp{vr5500}.
10396 The special value @samp{from-abi} selects the
10397 most compatible architecture for the selected ABI (that is,
10398 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
10400 In processor names, a final @samp{000} can be abbreviated as @samp{k}
10401 (for example, @samp{-march=r2k}).  Prefixes are optional, and
10402 @samp{vr} may be written @samp{r}.
10404 GCC defines two macros based on the value of this option.  The first
10405 is @samp{_MIPS_ARCH}, which gives the name of target architecture, as
10406 a string.  The second has the form @samp{_MIPS_ARCH_@var{foo}},
10407 where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@.
10408 For example, @samp{-march=r2000} will set @samp{_MIPS_ARCH}
10409 to @samp{"r2000"} and define the macro @samp{_MIPS_ARCH_R2000}.
10411 Note that the @samp{_MIPS_ARCH} macro uses the processor names given
10412 above.  In other words, it will have the full prefix and will not
10413 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
10414 the macro names the resolved architecture (either @samp{"mips1"} or
10415 @samp{"mips3"}).  It names the default architecture when no
10416 @option{-march} option is given.
10418 @item -mtune=@var{arch}
10419 @opindex mtune
10420 Optimize for @var{arch}.  Among other things, this option controls
10421 the way instructions are scheduled, and the perceived cost of arithmetic
10422 operations.  The list of @var{arch} values is the same as for
10423 @option{-march}.
10425 When this option is not used, GCC will optimize for the processor
10426 specified by @option{-march}.  By using @option{-march} and
10427 @option{-mtune} together, it is possible to generate code that will
10428 run on a family of processors, but optimize the code for one
10429 particular member of that family.
10431 @samp{-mtune} defines the macros @samp{_MIPS_TUNE} and
10432 @samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the
10433 @samp{-march} ones described above.
10435 @item -mips1
10436 @opindex mips1
10437 Equivalent to @samp{-march=mips1}.
10439 @item -mips2
10440 @opindex mips2
10441 Equivalent to @samp{-march=mips2}.
10443 @item -mips3
10444 @opindex mips3
10445 Equivalent to @samp{-march=mips3}.
10447 @item -mips4
10448 @opindex mips4
10449 Equivalent to @samp{-march=mips4}.
10451 @item -mips32
10452 @opindex mips32
10453 Equivalent to @samp{-march=mips32}.
10455 @item -mips32r2
10456 @opindex mips32r2
10457 Equivalent to @samp{-march=mips32r2}.
10459 @item -mips64
10460 @opindex mips64
10461 Equivalent to @samp{-march=mips64}.
10463 @item -mips16
10464 @itemx -mno-mips16
10465 @opindex mips16
10466 @opindex mno-mips16
10467 Generate (do not generate) MIPS16 code.  If GCC is targetting a
10468 MIPS32 or MIPS64 architecture, it will make use of the MIPS16e ASE@.
10470 @item -mabi=32
10471 @itemx -mabi=o64
10472 @itemx -mabi=n32
10473 @itemx -mabi=64
10474 @itemx -mabi=eabi
10475 @opindex mabi=32
10476 @opindex mabi=o64
10477 @opindex mabi=n32
10478 @opindex mabi=64
10479 @opindex mabi=eabi
10480 Generate code for the given ABI@.
10482 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
10483 generates 64-bit code when you select a 64-bit architecture, but you
10484 can use @option{-mgp32} to get 32-bit code instead.
10486 For information about the O64 ABI, see
10487 @w{@uref{http://gcc.gnu.org/projects/mipso64-abi.html}}.
10489 @item -mabicalls
10490 @itemx -mno-abicalls
10491 @opindex mabicalls
10492 @opindex mno-abicalls
10493 Generate (do not generate) code that is suitable for SVR4-style
10494 dynamic objects.  @option{-mabicalls} is the default for SVR4-based
10495 systems.
10497 @item -mshared
10498 @itemx -mno-shared
10499 Generate (do not generate) code that is fully position-independent,
10500 and that can therefore be linked into shared libraries.  This option
10501 only affects @option{-mabicalls}.
10503 All @option{-mabicalls} code has traditionally been position-independent,
10504 regardless of options like @option{-fPIC} and @option{-fpic}.  However,
10505 as an extension, the GNU toolchain allows executables to use absolute
10506 accesses for locally-binding symbols.  It can also use shorter GP
10507 initialization sequences and generate direct calls to locally-defined
10508 functions.  This mode is selected by @option{-mno-shared}.
10510 @option{-mno-shared} depends on binutils 2.16 or higher and generates
10511 objects that can only be linked by the GNU linker.  However, the option
10512 does not affect the ABI of the final executable; it only affects the ABI
10513 of relocatable objects.  Using @option{-mno-shared} will generally make
10514 executables both smaller and quicker.
10516 @option{-mshared} is the default.
10518 @item -mxgot
10519 @itemx -mno-xgot
10520 @opindex mxgot
10521 @opindex mno-xgot
10522 Lift (do not lift) the usual restrictions on the size of the global
10523 offset table.
10525 GCC normally uses a single instruction to load values from the GOT@.
10526 While this is relatively efficient, it will only work if the GOT
10527 is smaller than about 64k.  Anything larger will cause the linker
10528 to report an error such as:
10530 @cindex relocation truncated to fit (MIPS)
10531 @smallexample
10532 relocation truncated to fit: R_MIPS_GOT16 foobar
10533 @end smallexample
10535 If this happens, you should recompile your code with @option{-mxgot}.
10536 It should then work with very large GOTs, although it will also be
10537 less efficient, since it will take three instructions to fetch the
10538 value of a global symbol.
10540 Note that some linkers can create multiple GOTs.  If you have such a
10541 linker, you should only need to use @option{-mxgot} when a single object
10542 file accesses more than 64k's worth of GOT entries.  Very few do.
10544 These options have no effect unless GCC is generating position
10545 independent code.
10547 @item -mgp32
10548 @opindex mgp32
10549 Assume that general-purpose registers are 32 bits wide.
10551 @item -mgp64
10552 @opindex mgp64
10553 Assume that general-purpose registers are 64 bits wide.
10555 @item -mfp32
10556 @opindex mfp32
10557 Assume that floating-point registers are 32 bits wide.
10559 @item -mfp64
10560 @opindex mfp64
10561 Assume that floating-point registers are 64 bits wide.
10563 @item -mhard-float
10564 @opindex mhard-float
10565 Use floating-point coprocessor instructions.
10567 @item -msoft-float
10568 @opindex msoft-float
10569 Do not use floating-point coprocessor instructions.  Implement
10570 floating-point calculations using library calls instead.
10572 @item -msingle-float
10573 @opindex msingle-float
10574 Assume that the floating-point coprocessor only supports single-precision
10575 operations.
10577 @itemx -mdouble-float
10578 @opindex mdouble-float
10579 Assume that the floating-point coprocessor supports double-precision
10580 operations.  This is the default.
10582 @itemx -mdsp
10583 @itemx -mno-dsp
10584 @opindex mdsp
10585 @opindex mno-dsp
10586 Use (do not use) the MIPS DSP ASE.  @xref{MIPS DSP Built-in Functions}.
10588 @itemx -mpaired-single
10589 @itemx -mno-paired-single
10590 @opindex mpaired-single
10591 @opindex mno-paired-single
10592 Use (do not use) paired-single floating-point instructions.
10593 @xref{MIPS Paired-Single Support}.  This option can only be used
10594 when generating 64-bit code and requires hardware floating-point
10595 support to be enabled.
10597 @itemx -mips3d
10598 @itemx -mno-mips3d
10599 @opindex mips3d
10600 @opindex mno-mips3d
10601 Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
10602 The option @option{-mips3d} implies @option{-mpaired-single}.
10604 @item -mlong64
10605 @opindex mlong64
10606 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
10607 an explanation of the default and the way that the pointer size is
10608 determined.
10610 @item -mlong32
10611 @opindex mlong32
10612 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
10614 The default size of @code{int}s, @code{long}s and pointers depends on
10615 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
10616 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
10617 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
10618 or the same size as integer registers, whichever is smaller.
10620 @item -msym32
10621 @itemx -mno-sym32
10622 @opindex msym32
10623 @opindex mno-sym32
10624 Assume (do not assume) that all symbols have 32-bit values, regardless
10625 of the selected ABI@.  This option is useful in combination with
10626 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
10627 to generate shorter and faster references to symbolic addresses.
10629 @item -G @var{num}
10630 @opindex G
10631 @cindex smaller data references (MIPS)
10632 @cindex gp-relative references (MIPS)
10633 Put global and static items less than or equal to @var{num} bytes into
10634 the small data or bss section instead of the normal data or bss section.
10635 This allows the data to be accessed using a single instruction.
10637 All modules should be compiled with the same @option{-G @var{num}}
10638 value.
10640 @item -membedded-data
10641 @itemx -mno-embedded-data
10642 @opindex membedded-data
10643 @opindex mno-embedded-data
10644 Allocate variables to the read-only data section first if possible, then
10645 next in the small data section if possible, otherwise in data.  This gives
10646 slightly slower code than the default, but reduces the amount of RAM required
10647 when executing, and thus may be preferred for some embedded systems.
10649 @item -muninit-const-in-rodata
10650 @itemx -mno-uninit-const-in-rodata
10651 @opindex muninit-const-in-rodata
10652 @opindex mno-uninit-const-in-rodata
10653 Put uninitialized @code{const} variables in the read-only data section.
10654 This option is only meaningful in conjunction with @option{-membedded-data}.
10656 @item -msplit-addresses
10657 @itemx -mno-split-addresses
10658 @opindex msplit-addresses
10659 @opindex mno-split-addresses
10660 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
10661 relocation operators.  This option has been superseded by
10662 @option{-mexplicit-relocs} but is retained for backwards compatibility.
10664 @item -mexplicit-relocs
10665 @itemx -mno-explicit-relocs
10666 @opindex mexplicit-relocs
10667 @opindex mno-explicit-relocs
10668 Use (do not use) assembler relocation operators when dealing with symbolic
10669 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
10670 is to use assembler macros instead.
10672 @option{-mexplicit-relocs} is the default if GCC was configured
10673 to use an assembler that supports relocation operators.
10675 @item -mcheck-zero-division
10676 @itemx -mno-check-zero-division
10677 @opindex mcheck-zero-division
10678 @opindex mno-check-zero-division
10679 Trap (do not trap) on integer division by zero.  The default is
10680 @option{-mcheck-zero-division}.
10682 @item -mdivide-traps
10683 @itemx -mdivide-breaks
10684 @opindex mdivide-traps
10685 @opindex mdivide-breaks
10686 MIPS systems check for division by zero by generating either a
10687 conditional trap or a break instruction.  Using traps results in
10688 smaller code, but is only supported on MIPS II and later.  Also, some
10689 versions of the Linux kernel have a bug that prevents trap from
10690 generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
10691 allow conditional traps on architectures that support them and
10692 @option{-mdivide-breaks} to force the use of breaks.
10694 The default is usually @option{-mdivide-traps}, but this can be
10695 overridden at configure time using @option{--with-divide=breaks}.
10696 Divide-by-zero checks can be completely disabled using
10697 @option{-mno-check-zero-division}.
10699 @item -mmemcpy
10700 @itemx -mno-memcpy
10701 @opindex mmemcpy
10702 @opindex mno-memcpy
10703 Force (do not force) the use of @code{memcpy()} for non-trivial block
10704 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
10705 most constant-sized copies.
10707 @item -mlong-calls
10708 @itemx -mno-long-calls
10709 @opindex mlong-calls
10710 @opindex mno-long-calls
10711 Disable (do not disable) use of the @code{jal} instruction.  Calling
10712 functions using @code{jal} is more efficient but requires the caller
10713 and callee to be in the same 256 megabyte segment.
10715 This option has no effect on abicalls code.  The default is
10716 @option{-mno-long-calls}.
10718 @item -mmad
10719 @itemx -mno-mad
10720 @opindex mmad
10721 @opindex mno-mad
10722 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
10723 instructions, as provided by the R4650 ISA@.
10725 @item -mfused-madd
10726 @itemx -mno-fused-madd
10727 @opindex mfused-madd
10728 @opindex mno-fused-madd
10729 Enable (disable) use of the floating point multiply-accumulate
10730 instructions, when they are available.  The default is
10731 @option{-mfused-madd}.
10733 When multiply-accumulate instructions are used, the intermediate
10734 product is calculated to infinite precision and is not subject to
10735 the FCSR Flush to Zero bit.  This may be undesirable in some
10736 circumstances.
10738 @item -nocpp
10739 @opindex nocpp
10740 Tell the MIPS assembler to not run its preprocessor over user
10741 assembler files (with a @samp{.s} suffix) when assembling them.
10743 @item -mfix-r4000
10744 @itemx -mno-fix-r4000
10745 @opindex mfix-r4000
10746 @opindex mno-fix-r4000
10747 Work around certain R4000 CPU errata:
10748 @itemize @minus
10749 @item
10750 A double-word or a variable shift may give an incorrect result if executed
10751 immediately after starting an integer division.
10752 @item
10753 A double-word or a variable shift may give an incorrect result if executed
10754 while an integer multiplication is in progress.
10755 @item
10756 An integer division may give an incorrect result if started in a delay slot
10757 of a taken branch or a jump.
10758 @end itemize
10760 @item -mfix-r4400
10761 @itemx -mno-fix-r4400
10762 @opindex mfix-r4400
10763 @opindex mno-fix-r4400
10764 Work around certain R4400 CPU errata:
10765 @itemize @minus
10766 @item
10767 A double-word or a variable shift may give an incorrect result if executed
10768 immediately after starting an integer division.
10769 @end itemize
10771 @item -mfix-vr4120
10772 @itemx -mno-fix-vr4120
10773 @opindex mfix-vr4120
10774 Work around certain VR4120 errata:
10775 @itemize @minus
10776 @item
10777 @code{dmultu} does not always produce the correct result.
10778 @item
10779 @code{div} and @code{ddiv} do not always produce the correct result if one
10780 of the operands is negative.
10781 @end itemize
10782 The workarounds for the division errata rely on special functions in
10783 @file{libgcc.a}.  At present, these functions are only provided by
10784 the @code{mips64vr*-elf} configurations.
10786 Other VR4120 errata require a nop to be inserted between certain pairs of
10787 instructions.  These errata are handled by the assembler, not by GCC itself.
10789 @item -mfix-vr4130
10790 @opindex mfix-vr4130
10791 Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
10792 workarounds are implemented by the assembler rather than by GCC,
10793 although GCC will avoid using @code{mflo} and @code{mfhi} if the
10794 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
10795 instructions are available instead.
10797 @item -mfix-sb1
10798 @itemx -mno-fix-sb1
10799 @opindex mfix-sb1
10800 Work around certain SB-1 CPU core errata.
10801 (This flag currently works around the SB-1 revision 2
10802 ``F1'' and ``F2'' floating point errata.)
10804 @item -mflush-func=@var{func}
10805 @itemx -mno-flush-func
10806 @opindex mflush-func
10807 Specifies the function to call to flush the I and D caches, or to not
10808 call any such function.  If called, the function must take the same
10809 arguments as the common @code{_flush_func()}, that is, the address of the
10810 memory range for which the cache is being flushed, the size of the
10811 memory range, and the number 3 (to flush both caches).  The default
10812 depends on the target GCC was configured for, but commonly is either
10813 @samp{_flush_func} or @samp{__cpu_flush}.
10815 @item -mbranch-likely
10816 @itemx -mno-branch-likely
10817 @opindex mbranch-likely
10818 @opindex mno-branch-likely
10819 Enable or disable use of Branch Likely instructions, regardless of the
10820 default for the selected architecture.  By default, Branch Likely
10821 instructions may be generated if they are supported by the selected
10822 architecture.  An exception is for the MIPS32 and MIPS64 architectures
10823 and processors which implement those architectures; for those, Branch
10824 Likely instructions will not be generated by default because the MIPS32
10825 and MIPS64 architectures specifically deprecate their use.
10827 @item -mfp-exceptions
10828 @itemx -mno-fp-exceptions
10829 @opindex mfp-exceptions
10830 Specifies whether FP exceptions are enabled.  This affects how we schedule
10831 FP instructions for some processors.  The default is that FP exceptions are
10832 enabled.
10834 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
10835 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
10836 FP pipe.
10838 @item -mvr4130-align
10839 @itemx -mno-vr4130-align
10840 @opindex mvr4130-align
10841 The VR4130 pipeline is two-way superscalar, but can only issue two
10842 instructions together if the first one is 8-byte aligned.  When this
10843 option is enabled, GCC will align pairs of instructions that it
10844 thinks should execute in parallel.
10846 This option only has an effect when optimizing for the VR4130.
10847 It normally makes code faster, but at the expense of making it bigger.
10848 It is enabled by default at optimization level @option{-O3}.
10849 @end table
10851 @node MMIX Options
10852 @subsection MMIX Options
10853 @cindex MMIX Options
10855 These options are defined for the MMIX:
10857 @table @gcctabopt
10858 @item -mlibfuncs
10859 @itemx -mno-libfuncs
10860 @opindex mlibfuncs
10861 @opindex mno-libfuncs
10862 Specify that intrinsic library functions are being compiled, passing all
10863 values in registers, no matter the size.
10865 @item -mepsilon
10866 @itemx -mno-epsilon
10867 @opindex mepsilon
10868 @opindex mno-epsilon
10869 Generate floating-point comparison instructions that compare with respect
10870 to the @code{rE} epsilon register.
10872 @item -mabi=mmixware
10873 @itemx -mabi=gnu
10874 @opindex mabi-mmixware
10875 @opindex mabi=gnu
10876 Generate code that passes function parameters and return values that (in
10877 the called function) are seen as registers @code{$0} and up, as opposed to
10878 the GNU ABI which uses global registers @code{$231} and up.
10880 @item -mzero-extend
10881 @itemx -mno-zero-extend
10882 @opindex mzero-extend
10883 @opindex mno-zero-extend
10884 When reading data from memory in sizes shorter than 64 bits, use (do not
10885 use) zero-extending load instructions by default, rather than
10886 sign-extending ones.
10888 @item -mknuthdiv
10889 @itemx -mno-knuthdiv
10890 @opindex mknuthdiv
10891 @opindex mno-knuthdiv
10892 Make the result of a division yielding a remainder have the same sign as
10893 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
10894 remainder follows the sign of the dividend.  Both methods are
10895 arithmetically valid, the latter being almost exclusively used.
10897 @item -mtoplevel-symbols
10898 @itemx -mno-toplevel-symbols
10899 @opindex mtoplevel-symbols
10900 @opindex mno-toplevel-symbols
10901 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
10902 code can be used with the @code{PREFIX} assembly directive.
10904 @item -melf
10905 @opindex melf
10906 Generate an executable in the ELF format, rather than the default
10907 @samp{mmo} format used by the @command{mmix} simulator.
10909 @item -mbranch-predict
10910 @itemx -mno-branch-predict
10911 @opindex mbranch-predict
10912 @opindex mno-branch-predict
10913 Use (do not use) the probable-branch instructions, when static branch
10914 prediction indicates a probable branch.
10916 @item -mbase-addresses
10917 @itemx -mno-base-addresses
10918 @opindex mbase-addresses
10919 @opindex mno-base-addresses
10920 Generate (do not generate) code that uses @emph{base addresses}.  Using a
10921 base address automatically generates a request (handled by the assembler
10922 and the linker) for a constant to be set up in a global register.  The
10923 register is used for one or more base address requests within the range 0
10924 to 255 from the value held in the register.  The generally leads to short
10925 and fast code, but the number of different data items that can be
10926 addressed is limited.  This means that a program that uses lots of static
10927 data may require @option{-mno-base-addresses}.
10929 @item -msingle-exit
10930 @itemx -mno-single-exit
10931 @opindex msingle-exit
10932 @opindex mno-single-exit
10933 Force (do not force) generated code to have a single exit point in each
10934 function.
10935 @end table
10937 @node MN10300 Options
10938 @subsection MN10300 Options
10939 @cindex MN10300 options
10941 These @option{-m} options are defined for Matsushita MN10300 architectures:
10943 @table @gcctabopt
10944 @item -mmult-bug
10945 @opindex mmult-bug
10946 Generate code to avoid bugs in the multiply instructions for the MN10300
10947 processors.  This is the default.
10949 @item -mno-mult-bug
10950 @opindex mno-mult-bug
10951 Do not generate code to avoid bugs in the multiply instructions for the
10952 MN10300 processors.
10954 @item -mam33
10955 @opindex mam33
10956 Generate code which uses features specific to the AM33 processor.
10958 @item -mno-am33
10959 @opindex mno-am33
10960 Do not generate code which uses features specific to the AM33 processor.  This
10961 is the default.
10963 @item -mreturn-pointer-on-d0
10964 @opindex mreturn-pointer-on-d0
10965 When generating a function which returns a pointer, return the pointer
10966 in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
10967 only in a0, and attempts to call such functions without a prototype
10968 would result in errors.  Note that this option is on by default; use
10969 @option{-mno-return-pointer-on-d0} to disable it.
10971 @item -mno-crt0
10972 @opindex mno-crt0
10973 Do not link in the C run-time initialization object file.
10975 @item -mrelax
10976 @opindex mrelax
10977 Indicate to the linker that it should perform a relaxation optimization pass
10978 to shorten branches, calls and absolute memory addresses.  This option only
10979 has an effect when used on the command line for the final link step.
10981 This option makes symbolic debugging impossible.
10982 @end table
10984 @node MT Options
10985 @subsection MT Options
10986 @cindex MT options
10988 These @option{-m} options are defined for Morpho MT architectures:
10990 @table @gcctabopt
10992 @item -march=@var{cpu-type}
10993 @opindex march
10994 Generate code that will run on @var{cpu-type}, which is the name of a system
10995 representing a certain processor type.  Possible values for
10996 @var{cpu-type} are @samp{ms1-64-001}, @samp{ms1-16-002},
10997 @samp{ms1-16-003} and @samp{ms2}.
10999 When this option is not used, the default is @option{-march=ms1-16-002}.
11001 @item -mbacc
11002 @opindex mbacc
11003 Use byte loads and stores when generating code.
11005 @item -mno-bacc
11006 @opindex mno-bacc
11007 Do not use byte loads and stores when generating code.
11009 @item -msim
11010 @opindex msim
11011 Use simulator runtime
11013 @item -mno-crt0
11014 @opindex mno-crt0
11015 Do not link in the C run-time initialization object file
11016 @file{crti.o}.  Other run-time initialization and termination files
11017 such as @file{startup.o} and @file{exit.o} are still included on the
11018 linker command line.
11020 @end table
11022 @node PDP-11 Options
11023 @subsection PDP-11 Options
11024 @cindex PDP-11 Options
11026 These options are defined for the PDP-11:
11028 @table @gcctabopt
11029 @item -mfpu
11030 @opindex mfpu
11031 Use hardware FPP floating point.  This is the default.  (FIS floating
11032 point on the PDP-11/40 is not supported.)
11034 @item -msoft-float
11035 @opindex msoft-float
11036 Do not use hardware floating point.
11038 @item -mac0
11039 @opindex mac0
11040 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
11042 @item -mno-ac0
11043 @opindex mno-ac0
11044 Return floating-point results in memory.  This is the default.
11046 @item -m40
11047 @opindex m40
11048 Generate code for a PDP-11/40.
11050 @item -m45
11051 @opindex m45
11052 Generate code for a PDP-11/45.  This is the default.
11054 @item -m10
11055 @opindex m10
11056 Generate code for a PDP-11/10.
11058 @item -mbcopy-builtin
11059 @opindex bcopy-builtin
11060 Use inline @code{movmemhi} patterns for copying memory.  This is the
11061 default.
11063 @item -mbcopy
11064 @opindex mbcopy
11065 Do not use inline @code{movmemhi} patterns for copying memory.
11067 @item -mint16
11068 @itemx -mno-int32
11069 @opindex mint16
11070 @opindex mno-int32
11071 Use 16-bit @code{int}.  This is the default.
11073 @item -mint32
11074 @itemx -mno-int16
11075 @opindex mint32
11076 @opindex mno-int16
11077 Use 32-bit @code{int}.
11079 @item -mfloat64
11080 @itemx -mno-float32
11081 @opindex mfloat64
11082 @opindex mno-float32
11083 Use 64-bit @code{float}.  This is the default.
11085 @item -mfloat32
11086 @itemx -mno-float64
11087 @opindex mfloat32
11088 @opindex mno-float64
11089 Use 32-bit @code{float}.
11091 @item -mabshi
11092 @opindex mabshi
11093 Use @code{abshi2} pattern.  This is the default.
11095 @item -mno-abshi
11096 @opindex mno-abshi
11097 Do not use @code{abshi2} pattern.
11099 @item -mbranch-expensive
11100 @opindex mbranch-expensive
11101 Pretend that branches are expensive.  This is for experimenting with
11102 code generation only.
11104 @item -mbranch-cheap
11105 @opindex mbranch-cheap
11106 Do not pretend that branches are expensive.  This is the default.
11108 @item -msplit
11109 @opindex msplit
11110 Generate code for a system with split I&D@.
11112 @item -mno-split
11113 @opindex mno-split
11114 Generate code for a system without split I&D@.  This is the default.
11116 @item -munix-asm
11117 @opindex munix-asm
11118 Use Unix assembler syntax.  This is the default when configured for
11119 @samp{pdp11-*-bsd}.
11121 @item -mdec-asm
11122 @opindex mdec-asm
11123 Use DEC assembler syntax.  This is the default when configured for any
11124 PDP-11 target other than @samp{pdp11-*-bsd}.
11125 @end table
11127 @node PowerPC Options
11128 @subsection PowerPC Options
11129 @cindex PowerPC options
11131 These are listed under @xref{RS/6000 and PowerPC Options}.
11133 @node RS/6000 and PowerPC Options
11134 @subsection IBM RS/6000 and PowerPC Options
11135 @cindex RS/6000 and PowerPC Options
11136 @cindex IBM RS/6000 and PowerPC Options
11138 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
11139 @table @gcctabopt
11140 @item -mpower
11141 @itemx -mno-power
11142 @itemx -mpower2
11143 @itemx -mno-power2
11144 @itemx -mpowerpc
11145 @itemx -mno-powerpc
11146 @itemx -mpowerpc-gpopt
11147 @itemx -mno-powerpc-gpopt
11148 @itemx -mpowerpc-gfxopt
11149 @itemx -mno-powerpc-gfxopt
11150 @itemx -mpowerpc64
11151 @itemx -mno-powerpc64
11152 @itemx -mmfcrf
11153 @itemx -mno-mfcrf
11154 @itemx -mpopcntb
11155 @itemx -mno-popcntb
11156 @itemx -mfprnd
11157 @itemx -mno-fprnd
11158 @opindex mpower
11159 @opindex mno-power
11160 @opindex mpower2
11161 @opindex mno-power2
11162 @opindex mpowerpc
11163 @opindex mno-powerpc
11164 @opindex mpowerpc-gpopt
11165 @opindex mno-powerpc-gpopt
11166 @opindex mpowerpc-gfxopt
11167 @opindex mno-powerpc-gfxopt
11168 @opindex mpowerpc64
11169 @opindex mno-powerpc64
11170 @opindex mmfcrf
11171 @opindex mno-mfcrf
11172 @opindex mpopcntb
11173 @opindex mno-popcntb
11174 @opindex mfprnd
11175 @opindex mno-fprnd
11176 GCC supports two related instruction set architectures for the
11177 RS/6000 and PowerPC@.  The @dfn{POWER} instruction set are those
11178 instructions supported by the @samp{rios} chip set used in the original
11179 RS/6000 systems and the @dfn{PowerPC} instruction set is the
11180 architecture of the Freescale MPC5xx, MPC6xx, MPC8xx microprocessors, and
11181 the IBM 4xx, 6xx, and follow-on microprocessors.
11183 Neither architecture is a subset of the other.  However there is a
11184 large common subset of instructions supported by both.  An MQ
11185 register is included in processors supporting the POWER architecture.
11187 You use these options to specify which instructions are available on the
11188 processor you are using.  The default value of these options is
11189 determined when configuring GCC@.  Specifying the
11190 @option{-mcpu=@var{cpu_type}} overrides the specification of these
11191 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
11192 rather than the options listed above.
11194 The @option{-mpower} option allows GCC to generate instructions that
11195 are found only in the POWER architecture and to use the MQ register.
11196 Specifying @option{-mpower2} implies @option{-power} and also allows GCC
11197 to generate instructions that are present in the POWER2 architecture but
11198 not the original POWER architecture.
11200 The @option{-mpowerpc} option allows GCC to generate instructions that
11201 are found only in the 32-bit subset of the PowerPC architecture.
11202 Specifying @option{-mpowerpc-gpopt} implies @option{-mpowerpc} and also allows
11203 GCC to use the optional PowerPC architecture instructions in the
11204 General Purpose group, including floating-point square root.  Specifying
11205 @option{-mpowerpc-gfxopt} implies @option{-mpowerpc} and also allows GCC to
11206 use the optional PowerPC architecture instructions in the Graphics
11207 group, including floating-point select.
11209 The @option{-mmfcrf} option allows GCC to generate the move from
11210 condition register field instruction implemented on the POWER4
11211 processor and other processors that support the PowerPC V2.01
11212 architecture.
11213 The @option{-mpopcntb} option allows GCC to generate the popcount and
11214 double precision FP reciprocal estimate instruction implemented on the
11215 POWER5 processor and other processors that support the PowerPC V2.02
11216 architecture.
11217 The @option{-mfprnd} option allows GCC to generate the FP round to
11218 integer instructions implemented on the POWER5+ processor and other
11219 processors that support the PowerPC V2.03 architecture.
11221 The @option{-mpowerpc64} option allows GCC to generate the additional
11222 64-bit instructions that are found in the full PowerPC64 architecture
11223 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
11224 @option{-mno-powerpc64}.
11226 If you specify both @option{-mno-power} and @option{-mno-powerpc}, GCC
11227 will use only the instructions in the common subset of both
11228 architectures plus some special AIX common-mode calls, and will not use
11229 the MQ register.  Specifying both @option{-mpower} and @option{-mpowerpc}
11230 permits GCC to use any instruction from either architecture and to
11231 allow use of the MQ register; specify this for the Motorola MPC601.
11233 @item -mnew-mnemonics
11234 @itemx -mold-mnemonics
11235 @opindex mnew-mnemonics
11236 @opindex mold-mnemonics
11237 Select which mnemonics to use in the generated assembler code.  With
11238 @option{-mnew-mnemonics}, GCC uses the assembler mnemonics defined for
11239 the PowerPC architecture.  With @option{-mold-mnemonics} it uses the
11240 assembler mnemonics defined for the POWER architecture.  Instructions
11241 defined in only one architecture have only one mnemonic; GCC uses that
11242 mnemonic irrespective of which of these options is specified.
11244 GCC defaults to the mnemonics appropriate for the architecture in
11245 use.  Specifying @option{-mcpu=@var{cpu_type}} sometimes overrides the
11246 value of these option.  Unless you are building a cross-compiler, you
11247 should normally not specify either @option{-mnew-mnemonics} or
11248 @option{-mold-mnemonics}, but should instead accept the default.
11250 @item -mcpu=@var{cpu_type}
11251 @opindex mcpu
11252 Set architecture type, register usage, choice of mnemonics, and
11253 instruction scheduling parameters for machine type @var{cpu_type}.
11254 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
11255 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{505},
11256 @samp{601}, @samp{602}, @samp{603}, @samp{603e}, @samp{604},
11257 @samp{604e}, @samp{620}, @samp{630}, @samp{740}, @samp{7400},
11258 @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
11259 @samp{860}, @samp{970}, @samp{8540}, @samp{ec603e}, @samp{G3},
11260 @samp{G4}, @samp{G5}, @samp{power}, @samp{power2}, @samp{power3},
11261 @samp{power4}, @samp{power5}, @samp{power5+},
11262 @samp{common}, @samp{powerpc}, @samp{powerpc64},
11263 @samp{rios}, @samp{rios1}, @samp{rios2}, @samp{rsc}, and @samp{rs64}.
11265 @option{-mcpu=common} selects a completely generic processor.  Code
11266 generated under this option will run on any POWER or PowerPC processor.
11267 GCC will use only the instructions in the common subset of both
11268 architectures, and will not use the MQ register.  GCC assumes a generic
11269 processor model for scheduling purposes.
11271 @option{-mcpu=power}, @option{-mcpu=power2}, @option{-mcpu=powerpc}, and
11272 @option{-mcpu=powerpc64} specify generic POWER, POWER2, pure 32-bit
11273 PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
11274 types, with an appropriate, generic processor model assumed for
11275 scheduling purposes.
11277 The other options specify a specific processor.  Code generated under
11278 those options will run best on that processor, and may not run at all on
11279 others.
11281 The @option{-mcpu} options automatically enable or disable the
11282 following options: @option{-maltivec}, @option{-mfprnd},
11283 @option{-mhard-float}, @option{-mmfcrf}, @option{-mmultiple},
11284 @option{-mnew-mnemonics}, @option{-mpopcntb}, @option{-mpower},
11285 @option{-mpower2}, @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
11286 @option{-mpowerpc-gfxopt}, @option{-mstring}, @option{-mmulhw}, @option{dlmzb}.
11287 The particular options
11288 set for any particular CPU will vary between compiler versions,
11289 depending on what setting seems to produce optimal code for that CPU;
11290 it doesn't necessarily reflect the actual hardware's capabilities.  If
11291 you wish to set an individual option to a particular value, you may
11292 specify it after the @option{-mcpu} option, like @samp{-mcpu=970
11293 -mno-altivec}.
11295 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
11296 not enabled or disabled by the @option{-mcpu} option at present because
11297 AIX does not have full support for these options.  You may still
11298 enable or disable them individually if you're sure it'll work in your
11299 environment.
11301 @item -mtune=@var{cpu_type}
11302 @opindex mtune
11303 Set the instruction scheduling parameters for machine type
11304 @var{cpu_type}, but do not set the architecture type, register usage, or
11305 choice of mnemonics, as @option{-mcpu=@var{cpu_type}} would.  The same
11306 values for @var{cpu_type} are used for @option{-mtune} as for
11307 @option{-mcpu}.  If both are specified, the code generated will use the
11308 architecture, registers, and mnemonics set by @option{-mcpu}, but the
11309 scheduling parameters set by @option{-mtune}.
11311 @item -mswdiv
11312 @itemx -mno-swdiv
11313 @opindex mswdiv
11314 @opindex mno-swdiv
11315 Generate code to compute division as reciprocal estimate and iterative
11316 refinement, creating opportunities for increased throughput.  This
11317 feature requires: optional PowerPC Graphics instruction set for single
11318 precision and FRE instruction for double precision, assuming divides
11319 cannot generate user-visible traps, and the domain values not include
11320 Infinities, denormals or zero denominator.
11322 @item -maltivec
11323 @itemx -mno-altivec
11324 @opindex maltivec
11325 @opindex mno-altivec
11326 Generate code that uses (does not use) AltiVec instructions, and also
11327 enable the use of built-in functions that allow more direct access to
11328 the AltiVec instruction set.  You may also need to set
11329 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
11330 enhancements.
11332 @item -mvrsave
11333 @item -mno-vrsave
11334 @opindex mvrsave
11335 @opindex mno-vrsave
11336 Generate VRSAVE instructions when generating AltiVec code.
11338 @item -msecure-plt
11339 @opindex msecure-plt
11340 Generate code that allows ld and ld.so to build executables and shared
11341 libraries with non-exec .plt and .got sections.  This is a PowerPC
11342 32-bit SYSV ABI option.
11344 @item -mbss-plt
11345 @opindex mbss-plt
11346 Generate code that uses a BSS .plt section that ld.so fills in, and
11347 requires .plt and .got sections that are both writable and executable.
11348 This is a PowerPC 32-bit SYSV ABI option.
11350 @item -misel
11351 @itemx -mno-isel
11352 @opindex misel
11353 @opindex mno-isel
11354 This switch enables or disables the generation of ISEL instructions.
11356 @item -misel=@var{yes/no}
11357 This switch has been deprecated.  Use @option{-misel} and
11358 @option{-mno-isel} instead.
11360 @item -mspe
11361 @itemx -mno-isel
11362 @opindex mspe
11363 @opindex mno-spe
11364 This switch enables or disables the generation of SPE simd
11365 instructions.
11367 @item -mspe=@var{yes/no}
11368 This option has been deprecated.  Use @option{-mspe} and
11369 @option{-mno-spe} instead.
11371 @item -mfloat-gprs=@var{yes/single/double/no}
11372 @itemx -mfloat-gprs
11373 @opindex mfloat-gprs
11374 This switch enables or disables the generation of floating point
11375 operations on the general purpose registers for architectures that
11376 support it.
11378 The argument @var{yes} or @var{single} enables the use of
11379 single-precision floating point operations.
11381 The argument @var{double} enables the use of single and
11382 double-precision floating point operations.
11384 The argument @var{no} disables floating point operations on the
11385 general purpose registers.
11387 This option is currently only available on the MPC854x.
11389 @item -m32
11390 @itemx -m64
11391 @opindex m32
11392 @opindex m64
11393 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
11394 targets (including GNU/Linux).  The 32-bit environment sets int, long
11395 and pointer to 32 bits and generates code that runs on any PowerPC
11396 variant.  The 64-bit environment sets int to 32 bits and long and
11397 pointer to 64 bits, and generates code for PowerPC64, as for
11398 @option{-mpowerpc64}.
11400 @item -mfull-toc
11401 @itemx -mno-fp-in-toc
11402 @itemx -mno-sum-in-toc
11403 @itemx -mminimal-toc
11404 @opindex mfull-toc
11405 @opindex mno-fp-in-toc
11406 @opindex mno-sum-in-toc
11407 @opindex mminimal-toc
11408 Modify generation of the TOC (Table Of Contents), which is created for
11409 every executable file.  The @option{-mfull-toc} option is selected by
11410 default.  In that case, GCC will allocate at least one TOC entry for
11411 each unique non-automatic variable reference in your program.  GCC
11412 will also place floating-point constants in the TOC@.  However, only
11413 16,384 entries are available in the TOC@.
11415 If you receive a linker error message that saying you have overflowed
11416 the available TOC space, you can reduce the amount of TOC space used
11417 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
11418 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
11419 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
11420 generate code to calculate the sum of an address and a constant at
11421 run-time instead of putting that sum into the TOC@.  You may specify one
11422 or both of these options.  Each causes GCC to produce very slightly
11423 slower and larger code at the expense of conserving TOC space.
11425 If you still run out of space in the TOC even when you specify both of
11426 these options, specify @option{-mminimal-toc} instead.  This option causes
11427 GCC to make only one TOC entry for every file.  When you specify this
11428 option, GCC will produce code that is slower and larger but which
11429 uses extremely little TOC space.  You may wish to use this option
11430 only on files that contain less frequently executed code.
11432 @item -maix64
11433 @itemx -maix32
11434 @opindex maix64
11435 @opindex maix32
11436 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
11437 @code{long} type, and the infrastructure needed to support them.
11438 Specifying @option{-maix64} implies @option{-mpowerpc64} and
11439 @option{-mpowerpc}, while @option{-maix32} disables the 64-bit ABI and
11440 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
11442 @item -mxl-compat
11443 @itemx -mno-xl-compat
11444 @opindex mxl-compat
11445 @opindex mno-xl-compat
11446 Produce code that conforms more closely to IBM XL compiler semantics
11447 when using AIX-compatible ABI.  Pass floating-point arguments to
11448 prototyped functions beyond the register save area (RSA) on the stack
11449 in addition to argument FPRs.  Do not assume that most significant
11450 double in 128-bit long double value is properly rounded when comparing
11451 values and converting to double.  Use XL symbol names for long double
11452 support routines.
11454 The AIX calling convention was extended but not initially documented to
11455 handle an obscure K&R C case of calling a function that takes the
11456 address of its arguments with fewer arguments than declared.  IBM XL
11457 compilers access floating point arguments which do not fit in the
11458 RSA from the stack when a subroutine is compiled without
11459 optimization.  Because always storing floating-point arguments on the
11460 stack is inefficient and rarely needed, this option is not enabled by
11461 default and only is necessary when calling subroutines compiled by IBM
11462 XL compilers without optimization.
11464 @item -mpe
11465 @opindex mpe
11466 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
11467 application written to use message passing with special startup code to
11468 enable the application to run.  The system must have PE installed in the
11469 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
11470 must be overridden with the @option{-specs=} option to specify the
11471 appropriate directory location.  The Parallel Environment does not
11472 support threads, so the @option{-mpe} option and the @option{-pthread}
11473 option are incompatible.
11475 @item -malign-natural
11476 @itemx -malign-power
11477 @opindex malign-natural
11478 @opindex malign-power
11479 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
11480 @option{-malign-natural} overrides the ABI-defined alignment of larger
11481 types, such as floating-point doubles, on their natural size-based boundary.
11482 The option @option{-malign-power} instructs GCC to follow the ABI-specified
11483 alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
11485 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
11486 is not supported.
11488 @item -msoft-float
11489 @itemx -mhard-float
11490 @opindex msoft-float
11491 @opindex mhard-float
11492 Generate code that does not use (uses) the floating-point register set.
11493 Software floating point emulation is provided if you use the
11494 @option{-msoft-float} option, and pass the option to GCC when linking.
11496 @item -mmultiple
11497 @itemx -mno-multiple
11498 @opindex mmultiple
11499 @opindex mno-multiple
11500 Generate code that uses (does not use) the load multiple word
11501 instructions and the store multiple word instructions.  These
11502 instructions are generated by default on POWER systems, and not
11503 generated on PowerPC systems.  Do not use @option{-mmultiple} on little
11504 endian PowerPC systems, since those instructions do not work when the
11505 processor is in little endian mode.  The exceptions are PPC740 and
11506 PPC750 which permit the instructions usage in little endian mode.
11508 @item -mstring
11509 @itemx -mno-string
11510 @opindex mstring
11511 @opindex mno-string
11512 Generate code that uses (does not use) the load string instructions
11513 and the store string word instructions to save multiple registers and
11514 do small block moves.  These instructions are generated by default on
11515 POWER systems, and not generated on PowerPC systems.  Do not use
11516 @option{-mstring} on little endian PowerPC systems, since those
11517 instructions do not work when the processor is in little endian mode.
11518 The exceptions are PPC740 and PPC750 which permit the instructions
11519 usage in little endian mode.
11521 @item -mupdate
11522 @itemx -mno-update
11523 @opindex mupdate
11524 @opindex mno-update
11525 Generate code that uses (does not use) the load or store instructions
11526 that update the base register to the address of the calculated memory
11527 location.  These instructions are generated by default.  If you use
11528 @option{-mno-update}, there is a small window between the time that the
11529 stack pointer is updated and the address of the previous frame is
11530 stored, which means code that walks the stack frame across interrupts or
11531 signals may get corrupted data.
11533 @item -mfused-madd
11534 @itemx -mno-fused-madd
11535 @opindex mfused-madd
11536 @opindex mno-fused-madd
11537 Generate code that uses (does not use) the floating point multiply and
11538 accumulate instructions.  These instructions are generated by default if
11539 hardware floating is used.
11541 @item -mmulhw
11542 @itemx -mno-mulhw
11543 @opindex mmulhw
11544 @opindex mno-mulhw
11545 Generate code that uses (does not use) the half-word multiply and
11546 multiply-accumulate instructions on the IBM 405 and 440 processors.
11547 These instructions are generated by default when targetting those
11548 processors.
11550 @item -mdlmzb
11551 @itemx -mno-dlmzb
11552 @opindex mdlmzb
11553 @opindex mno-dlmzb
11554 Generate code that uses (does not use) the string-search @samp{dlmzb}
11555 instruction on the IBM 405 and 440 processors.  This instruction is
11556 generated by default when targetting those processors.
11558 @item -mno-bit-align
11559 @itemx -mbit-align
11560 @opindex mno-bit-align
11561 @opindex mbit-align
11562 On System V.4 and embedded PowerPC systems do not (do) force structures
11563 and unions that contain bit-fields to be aligned to the base type of the
11564 bit-field.
11566 For example, by default a structure containing nothing but 8
11567 @code{unsigned} bit-fields of length 1 would be aligned to a 4 byte
11568 boundary and have a size of 4 bytes.  By using @option{-mno-bit-align},
11569 the structure would be aligned to a 1 byte boundary and be one byte in
11570 size.
11572 @item -mno-strict-align
11573 @itemx -mstrict-align
11574 @opindex mno-strict-align
11575 @opindex mstrict-align
11576 On System V.4 and embedded PowerPC systems do not (do) assume that
11577 unaligned memory references will be handled by the system.
11579 @item -mrelocatable
11580 @itemx -mno-relocatable
11581 @opindex mrelocatable
11582 @opindex mno-relocatable
11583 On embedded PowerPC systems generate code that allows (does not allow)
11584 the program to be relocated to a different address at runtime.  If you
11585 use @option{-mrelocatable} on any module, all objects linked together must
11586 be compiled with @option{-mrelocatable} or @option{-mrelocatable-lib}.
11588 @item -mrelocatable-lib
11589 @itemx -mno-relocatable-lib
11590 @opindex mrelocatable-lib
11591 @opindex mno-relocatable-lib
11592 On embedded PowerPC systems generate code that allows (does not allow)
11593 the program to be relocated to a different address at runtime.  Modules
11594 compiled with @option{-mrelocatable-lib} can be linked with either modules
11595 compiled without @option{-mrelocatable} and @option{-mrelocatable-lib} or
11596 with modules compiled with the @option{-mrelocatable} options.
11598 @item -mno-toc
11599 @itemx -mtoc
11600 @opindex mno-toc
11601 @opindex mtoc
11602 On System V.4 and embedded PowerPC systems do not (do) assume that
11603 register 2 contains a pointer to a global area pointing to the addresses
11604 used in the program.
11606 @item -mlittle
11607 @itemx -mlittle-endian
11608 @opindex mlittle
11609 @opindex mlittle-endian
11610 On System V.4 and embedded PowerPC systems compile code for the
11611 processor in little endian mode.  The @option{-mlittle-endian} option is
11612 the same as @option{-mlittle}.
11614 @item -mbig
11615 @itemx -mbig-endian
11616 @opindex mbig
11617 @opindex mbig-endian
11618 On System V.4 and embedded PowerPC systems compile code for the
11619 processor in big endian mode.  The @option{-mbig-endian} option is
11620 the same as @option{-mbig}.
11622 @item -mdynamic-no-pic
11623 @opindex mdynamic-no-pic
11624 On Darwin and Mac OS X systems, compile code so that it is not
11625 relocatable, but that its external references are relocatable.  The
11626 resulting code is suitable for applications, but not shared
11627 libraries.
11629 @item -mprioritize-restricted-insns=@var{priority}
11630 @opindex mprioritize-restricted-insns
11631 This option controls the priority that is assigned to
11632 dispatch-slot restricted instructions during the second scheduling
11633 pass.  The argument @var{priority} takes the value @var{0/1/2} to assign
11634 @var{no/highest/second-highest} priority to dispatch slot restricted
11635 instructions.
11637 @item -msched-costly-dep=@var{dependence_type}
11638 @opindex msched-costly-dep
11639 This option controls which dependences are considered costly
11640 by the target during instruction scheduling.  The argument
11641 @var{dependence_type} takes one of the following values:
11642 @var{no}: no dependence is costly,
11643 @var{all}: all dependences are costly,
11644 @var{true_store_to_load}: a true dependence from store to load is costly,
11645 @var{store_to_load}: any dependence from store to load is costly,
11646 @var{number}: any dependence which latency >= @var{number} is costly.
11648 @item -minsert-sched-nops=@var{scheme}
11649 @opindex minsert-sched-nops
11650 This option controls which nop insertion scheme will be used during
11651 the second scheduling pass.  The argument @var{scheme} takes one of the
11652 following values:
11653 @var{no}: Don't insert nops.
11654 @var{pad}: Pad with nops any dispatch group which has vacant issue slots,
11655 according to the scheduler's grouping.
11656 @var{regroup_exact}: Insert nops to force costly dependent insns into
11657 separate groups.  Insert exactly as many nops as needed to force an insn
11658 to a new group, according to the estimated processor grouping.
11659 @var{number}: Insert nops to force costly dependent insns into
11660 separate groups.  Insert @var{number} nops to force an insn to a new group.
11662 @item -mcall-sysv
11663 @opindex mcall-sysv
11664 On System V.4 and embedded PowerPC systems compile code using calling
11665 conventions that adheres to the March 1995 draft of the System V
11666 Application Binary Interface, PowerPC processor supplement.  This is the
11667 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
11669 @item -mcall-sysv-eabi
11670 @opindex mcall-sysv-eabi
11671 Specify both @option{-mcall-sysv} and @option{-meabi} options.
11673 @item -mcall-sysv-noeabi
11674 @opindex mcall-sysv-noeabi
11675 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
11677 @item -mcall-solaris
11678 @opindex mcall-solaris
11679 On System V.4 and embedded PowerPC systems compile code for the Solaris
11680 operating system.
11682 @item -mcall-linux
11683 @opindex mcall-linux
11684 On System V.4 and embedded PowerPC systems compile code for the
11685 Linux-based GNU system.
11687 @item -mcall-gnu
11688 @opindex mcall-gnu
11689 On System V.4 and embedded PowerPC systems compile code for the
11690 Hurd-based GNU system.
11692 @item -mcall-netbsd
11693 @opindex mcall-netbsd
11694 On System V.4 and embedded PowerPC systems compile code for the
11695 NetBSD operating system.
11697 @item -maix-struct-return
11698 @opindex maix-struct-return
11699 Return all structures in memory (as specified by the AIX ABI)@.
11701 @item -msvr4-struct-return
11702 @opindex msvr4-struct-return
11703 Return structures smaller than 8 bytes in registers (as specified by the
11704 SVR4 ABI)@.
11706 @item -mabi=@var{abi-type}
11707 @opindex mabi
11708 Extend the current ABI with a particular extension, or remove such extension.
11709 Valid values are @var{altivec}, @var{no-altivec}, @var{spe},
11710 @var{no-spe}, @var{ibmlongdouble}, @var{ieeelongdouble}@.
11712 @item -mabi=spe
11713 @opindex mabi=spe
11714 Extend the current ABI with SPE ABI extensions.  This does not change
11715 the default ABI, instead it adds the SPE ABI extensions to the current
11716 ABI@.
11718 @item -mabi=no-spe
11719 @opindex mabi=no-spe
11720 Disable Booke SPE ABI extensions for the current ABI@.
11722 @item -mabi=ibmlongdouble
11723 @opindex mabi=ibmlongdouble
11724 Change the current ABI to use IBM extended precision long double.
11725 This is a PowerPC 32-bit SYSV ABI option.
11727 @item -mabi=ieeelongdouble
11728 @opindex mabi=ieeelongdouble
11729 Change the current ABI to use IEEE extended precision long double.
11730 This is a PowerPC 32-bit Linux ABI option.
11732 @item -mprototype
11733 @itemx -mno-prototype
11734 @opindex mprototype
11735 @opindex mno-prototype
11736 On System V.4 and embedded PowerPC systems assume that all calls to
11737 variable argument functions are properly prototyped.  Otherwise, the
11738 compiler must insert an instruction before every non prototyped call to
11739 set or clear bit 6 of the condition code register (@var{CR}) to
11740 indicate whether floating point values were passed in the floating point
11741 registers in case the function takes a variable arguments.  With
11742 @option{-mprototype}, only calls to prototyped variable argument functions
11743 will set or clear the bit.
11745 @item -msim
11746 @opindex msim
11747 On embedded PowerPC systems, assume that the startup module is called
11748 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
11749 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}.
11750 configurations.
11752 @item -mmvme
11753 @opindex mmvme
11754 On embedded PowerPC systems, assume that the startup module is called
11755 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
11756 @file{libc.a}.
11758 @item -mads
11759 @opindex mads
11760 On embedded PowerPC systems, assume that the startup module is called
11761 @file{crt0.o} and the standard C libraries are @file{libads.a} and
11762 @file{libc.a}.
11764 @item -myellowknife
11765 @opindex myellowknife
11766 On embedded PowerPC systems, assume that the startup module is called
11767 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
11768 @file{libc.a}.
11770 @item -mvxworks
11771 @opindex mvxworks
11772 On System V.4 and embedded PowerPC systems, specify that you are
11773 compiling for a VxWorks system.
11775 @item -mwindiss
11776 @opindex mwindiss
11777 Specify that you are compiling for the WindISS simulation environment.
11779 @item -memb
11780 @opindex memb
11781 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
11782 header to indicate that @samp{eabi} extended relocations are used.
11784 @item -meabi
11785 @itemx -mno-eabi
11786 @opindex meabi
11787 @opindex mno-eabi
11788 On System V.4 and embedded PowerPC systems do (do not) adhere to the
11789 Embedded Applications Binary Interface (eabi) which is a set of
11790 modifications to the System V.4 specifications.  Selecting @option{-meabi}
11791 means that the stack is aligned to an 8 byte boundary, a function
11792 @code{__eabi} is called to from @code{main} to set up the eabi
11793 environment, and the @option{-msdata} option can use both @code{r2} and
11794 @code{r13} to point to two separate small data areas.  Selecting
11795 @option{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
11796 do not call an initialization function from @code{main}, and the
11797 @option{-msdata} option will only use @code{r13} to point to a single
11798 small data area.  The @option{-meabi} option is on by default if you
11799 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
11801 @item -msdata=eabi
11802 @opindex msdata=eabi
11803 On System V.4 and embedded PowerPC systems, put small initialized
11804 @code{const} global and static data in the @samp{.sdata2} section, which
11805 is pointed to by register @code{r2}.  Put small initialized
11806 non-@code{const} global and static data in the @samp{.sdata} section,
11807 which is pointed to by register @code{r13}.  Put small uninitialized
11808 global and static data in the @samp{.sbss} section, which is adjacent to
11809 the @samp{.sdata} section.  The @option{-msdata=eabi} option is
11810 incompatible with the @option{-mrelocatable} option.  The
11811 @option{-msdata=eabi} option also sets the @option{-memb} option.
11813 @item -msdata=sysv
11814 @opindex msdata=sysv
11815 On System V.4 and embedded PowerPC systems, put small global and static
11816 data in the @samp{.sdata} section, which is pointed to by register
11817 @code{r13}.  Put small uninitialized global and static data in the
11818 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
11819 The @option{-msdata=sysv} option is incompatible with the
11820 @option{-mrelocatable} option.
11822 @item -msdata=default
11823 @itemx -msdata
11824 @opindex msdata=default
11825 @opindex msdata
11826 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
11827 compile code the same as @option{-msdata=eabi}, otherwise compile code the
11828 same as @option{-msdata=sysv}.
11830 @item -msdata-data
11831 @opindex msdata-data
11832 On System V.4 and embedded PowerPC systems, put small global
11833 data in the @samp{.sdata} section.  Put small uninitialized global
11834 data in the @samp{.sbss} section.  Do not use register @code{r13}
11835 to address small data however.  This is the default behavior unless
11836 other @option{-msdata} options are used.
11838 @item -msdata=none
11839 @itemx -mno-sdata
11840 @opindex msdata=none
11841 @opindex mno-sdata
11842 On embedded PowerPC systems, put all initialized global and static data
11843 in the @samp{.data} section, and all uninitialized data in the
11844 @samp{.bss} section.
11846 @item -G @var{num}
11847 @opindex G
11848 @cindex smaller data references (PowerPC)
11849 @cindex .sdata/.sdata2 references (PowerPC)
11850 On embedded PowerPC systems, put global and static items less than or
11851 equal to @var{num} bytes into the small data or bss sections instead of
11852 the normal data or bss section.  By default, @var{num} is 8.  The
11853 @option{-G @var{num}} switch is also passed to the linker.
11854 All modules should be compiled with the same @option{-G @var{num}} value.
11856 @item -mregnames
11857 @itemx -mno-regnames
11858 @opindex mregnames
11859 @opindex mno-regnames
11860 On System V.4 and embedded PowerPC systems do (do not) emit register
11861 names in the assembly language output using symbolic forms.
11863 @item -mlongcall
11864 @itemx -mno-longcall
11865 @opindex mlongcall
11866 @opindex mno-longcall
11867 Default to making all function calls indirectly, using a register, so
11868 that functions which reside further than 32 megabytes (33,554,432
11869 bytes) from the current location can be called.  This setting can be
11870 overridden by the @code{shortcall} function attribute, or by
11871 @code{#pragma longcall(0)}.
11873 Some linkers are capable of detecting out-of-range calls and generating
11874 glue code on the fly.  On these systems, long calls are unnecessary and
11875 generate slower code.  As of this writing, the AIX linker can do this,
11876 as can the GNU linker for PowerPC/64.  It is planned to add this feature
11877 to the GNU linker for 32-bit PowerPC systems as well.
11879 On Darwin/PPC systems, @code{#pragma longcall} will generate ``jbsr
11880 callee, L42'', plus a ``branch island'' (glue code).  The two target
11881 addresses represent the callee and the ``branch island''.  The
11882 Darwin/PPC linker will prefer the first address and generate a ``bl
11883 callee'' if the PPC ``bl'' instruction will reach the callee directly;
11884 otherwise, the linker will generate ``bl L42'' to call the ``branch
11885 island''.  The ``branch island'' is appended to the body of the
11886 calling function; it computes the full 32-bit address of the callee
11887 and jumps to it.
11889 On Mach-O (Darwin) systems, this option directs the compiler emit to
11890 the glue for every direct call, and the Darwin linker decides whether
11891 to use or discard it.
11893 In the future, we may cause GCC to ignore all longcall specifications
11894 when the linker is known to generate glue.
11896 @item -pthread
11897 @opindex pthread
11898 Adds support for multithreading with the @dfn{pthreads} library.
11899 This option sets flags for both the preprocessor and linker.
11901 @end table
11903 @node S/390 and zSeries Options
11904 @subsection S/390 and zSeries Options
11905 @cindex S/390 and zSeries Options
11907 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
11909 @table @gcctabopt
11910 @item -mhard-float
11911 @itemx -msoft-float
11912 @opindex mhard-float
11913 @opindex msoft-float
11914 Use (do not use) the hardware floating-point instructions and registers
11915 for floating-point operations.  When @option{-msoft-float} is specified,
11916 functions in @file{libgcc.a} will be used to perform floating-point
11917 operations.  When @option{-mhard-float} is specified, the compiler
11918 generates IEEE floating-point instructions.  This is the default.
11920 @item -mlong-double-64
11921 @itemx -mlong-double-128
11922 @opindex mlong-double-64
11923 @opindex mlong-double-128
11924 These switches control the size of @code{long double} type. A size
11925 of 64bit makes the @code{long double} type equivalent to the @code{double}
11926 type. This is the default.
11928 @item -mbackchain
11929 @itemx -mno-backchain
11930 @opindex mbackchain
11931 @opindex mno-backchain
11932 Store (do not store) the address of the caller's frame as backchain pointer
11933 into the callee's stack frame.
11934 A backchain may be needed to allow debugging using tools that do not understand
11935 DWARF-2 call frame information.
11936 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
11937 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
11938 the backchain is placed into the topmost word of the 96/160 byte register
11939 save area.
11941 In general, code compiled with @option{-mbackchain} is call-compatible with
11942 code compiled with @option{-mmo-backchain}; however, use of the backchain
11943 for debugging purposes usually requires that the whole binary is built with
11944 @option{-mbackchain}.  Note that the combination of @option{-mbackchain},
11945 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
11946 to build a linux kernel use @option{-msoft-float}.
11948 The default is to not maintain the backchain.
11950 @item -mpacked-stack
11951 @item -mno-packed-stack
11952 @opindex mpacked-stack
11953 @opindex mno-packed-stack
11954 Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
11955 specified, the compiler uses the all fields of the 96/160 byte register save
11956 area only for their default purpose; unused fields still take up stack space.
11957 When @option{-mpacked-stack} is specified, register save slots are densely
11958 packed at the top of the register save area; unused space is reused for other
11959 purposes, allowing for more efficient use of the available stack space.
11960 However, when @option{-mbackchain} is also in effect, the topmost word of
11961 the save area is always used to store the backchain, and the return address
11962 register is always saved two words below the backchain.
11964 As long as the stack frame backchain is not used, code generated with
11965 @option{-mpacked-stack} is call-compatible with code generated with
11966 @option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
11967 S/390 or zSeries generated code that uses the stack frame backchain at run
11968 time, not just for debugging purposes.  Such code is not call-compatible
11969 with code compiled with @option{-mpacked-stack}.  Also, note that the
11970 combination of @option{-mbackchain},
11971 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
11972 to build a linux kernel use @option{-msoft-float}.
11974 The default is to not use the packed stack layout.
11976 @item -msmall-exec
11977 @itemx -mno-small-exec
11978 @opindex msmall-exec
11979 @opindex mno-small-exec
11980 Generate (or do not generate) code using the @code{bras} instruction
11981 to do subroutine calls.
11982 This only works reliably if the total executable size does not
11983 exceed 64k.  The default is to use the @code{basr} instruction instead,
11984 which does not have this limitation.
11986 @item -m64
11987 @itemx -m31
11988 @opindex m64
11989 @opindex m31
11990 When @option{-m31} is specified, generate code compliant to the
11991 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
11992 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
11993 particular to generate 64-bit instructions.  For the @samp{s390}
11994 targets, the default is @option{-m31}, while the @samp{s390x}
11995 targets default to @option{-m64}.
11997 @item -mzarch
11998 @itemx -mesa
11999 @opindex mzarch
12000 @opindex mesa
12001 When @option{-mzarch} is specified, generate code using the
12002 instructions available on z/Architecture.
12003 When @option{-mesa} is specified, generate code using the
12004 instructions available on ESA/390.  Note that @option{-mesa} is
12005 not possible with @option{-m64}.
12006 When generating code compliant to the GNU/Linux for S/390 ABI,
12007 the default is @option{-mesa}.  When generating code compliant
12008 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
12010 @item -mmvcle
12011 @itemx -mno-mvcle
12012 @opindex mmvcle
12013 @opindex mno-mvcle
12014 Generate (or do not generate) code using the @code{mvcle} instruction
12015 to perform block moves.  When @option{-mno-mvcle} is specified,
12016 use a @code{mvc} loop instead.  This is the default unless optimizing for
12017 size.
12019 @item -mdebug
12020 @itemx -mno-debug
12021 @opindex mdebug
12022 @opindex mno-debug
12023 Print (or do not print) additional debug information when compiling.
12024 The default is to not print debug information.
12026 @item -march=@var{cpu-type}
12027 @opindex march
12028 Generate code that will run on @var{cpu-type}, which is the name of a system
12029 representing a certain processor type.  Possible values for
12030 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, and @samp{z990}.
12031 When generating code using the instructions available on z/Architecture,
12032 the default is @option{-march=z900}.  Otherwise, the default is
12033 @option{-march=g5}.
12035 @item -mtune=@var{cpu-type}
12036 @opindex mtune
12037 Tune to @var{cpu-type} everything applicable about the generated code,
12038 except for the ABI and the set of available instructions.
12039 The list of @var{cpu-type} values is the same as for @option{-march}.
12040 The default is the value used for @option{-march}.
12042 @item -mtpf-trace
12043 @itemx -mno-tpf-trace
12044 @opindex mtpf-trace
12045 @opindex mno-tpf-trace
12046 Generate code that adds (does not add) in TPF OS specific branches to trace
12047 routines in the operating system.  This option is off by default, even
12048 when compiling for the TPF OS@.
12050 @item -mfused-madd
12051 @itemx -mno-fused-madd
12052 @opindex mfused-madd
12053 @opindex mno-fused-madd
12054 Generate code that uses (does not use) the floating point multiply and
12055 accumulate instructions.  These instructions are generated by default if
12056 hardware floating point is used.
12058 @item -mwarn-framesize=@var{framesize}
12059 @opindex mwarn-framesize
12060 Emit a warning if the current function exceeds the given frame size.  Because
12061 this is a compile time check it doesn't need to be a real problem when the program
12062 runs.  It is intended to identify functions which most probably cause
12063 a stack overflow.  It is useful to be used in an environment with limited stack
12064 size e.g.@: the linux kernel.
12066 @item -mwarn-dynamicstack
12067 @opindex mwarn-dynamicstack
12068 Emit a warning if the function calls alloca or uses dynamically
12069 sized arrays.  This is generally a bad idea with a limited stack size.
12071 @item -mstack-guard=@var{stack-guard}
12072 @item -mstack-size=@var{stack-size}
12073 @opindex mstack-guard
12074 @opindex mstack-size
12075 These arguments always have to be used in conjunction.  If they are present the s390
12076 back end emits additional instructions in the function prologue which trigger a trap
12077 if the stack size is @var{stack-guard} bytes above the @var{stack-size}
12078 (remember that the stack on s390 grows downward).  These options are intended to
12079 be used to help debugging stack overflow problems.  The additionally emitted code
12080 causes only little overhead and hence can also be used in production like systems
12081 without greater performance degradation.  The given values have to be exact
12082 powers of 2 and @var{stack-size} has to be greater than @var{stack-guard} without
12083 exceeding 64k.
12084 In order to be efficient the extra code makes the assumption that the stack starts
12085 at an address aligned to the value given by @var{stack-size}.
12086 @end table
12088 @node SH Options
12089 @subsection SH Options
12091 These @samp{-m} options are defined for the SH implementations:
12093 @table @gcctabopt
12094 @item -m1
12095 @opindex m1
12096 Generate code for the SH1.
12098 @item -m2
12099 @opindex m2
12100 Generate code for the SH2.
12102 @item -m2e
12103 Generate code for the SH2e.
12105 @item -m3
12106 @opindex m3
12107 Generate code for the SH3.
12109 @item -m3e
12110 @opindex m3e
12111 Generate code for the SH3e.
12113 @item -m4-nofpu
12114 @opindex m4-nofpu
12115 Generate code for the SH4 without a floating-point unit.
12117 @item -m4-single-only
12118 @opindex m4-single-only
12119 Generate code for the SH4 with a floating-point unit that only
12120 supports single-precision arithmetic.
12122 @item -m4-single
12123 @opindex m4-single
12124 Generate code for the SH4 assuming the floating-point unit is in
12125 single-precision mode by default.
12127 @item -m4
12128 @opindex m4
12129 Generate code for the SH4.
12131 @item -m4a-nofpu
12132 @opindex m4a-nofpu
12133 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
12134 floating-point unit is not used.
12136 @item -m4a-single-only
12137 @opindex m4a-single-only
12138 Generate code for the SH4a, in such a way that no double-precision
12139 floating point operations are used.
12141 @item -m4a-single
12142 @opindex m4a-single
12143 Generate code for the SH4a assuming the floating-point unit is in
12144 single-precision mode by default.
12146 @item -m4a
12147 @opindex m4a
12148 Generate code for the SH4a.
12150 @item -m4al
12151 @opindex m4al
12152 Same as @option{-m4a-nofpu}, except that it implicitly passes
12153 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
12154 instructions at the moment.
12156 @item -mb
12157 @opindex mb
12158 Compile code for the processor in big endian mode.
12160 @item -ml
12161 @opindex ml
12162 Compile code for the processor in little endian mode.
12164 @item -mdalign
12165 @opindex mdalign
12166 Align doubles at 64-bit boundaries.  Note that this changes the calling
12167 conventions, and thus some functions from the standard C library will
12168 not work unless you recompile it first with @option{-mdalign}.
12170 @item -mrelax
12171 @opindex mrelax
12172 Shorten some address references at link time, when possible; uses the
12173 linker option @option{-relax}.
12175 @item -mbigtable
12176 @opindex mbigtable
12177 Use 32-bit offsets in @code{switch} tables.  The default is to use
12178 16-bit offsets.
12180 @item -mfmovd
12181 @opindex mfmovd
12182 Enable the use of the instruction @code{fmovd}.
12184 @item -mhitachi
12185 @opindex mhitachi
12186 Comply with the calling conventions defined by Renesas.
12188 @item -mrenesas
12189 @opindex mhitachi
12190 Comply with the calling conventions defined by Renesas.
12192 @item -mno-renesas
12193 @opindex mhitachi
12194 Comply with the calling conventions defined for GCC before the Renesas
12195 conventions were available.  This option is the default for all
12196 targets of the SH toolchain except for @samp{sh-symbianelf}.
12198 @item -mnomacsave
12199 @opindex mnomacsave
12200 Mark the @code{MAC} register as call-clobbered, even if
12201 @option{-mhitachi} is given.
12203 @item -mieee
12204 @opindex mieee
12205 Increase IEEE-compliance of floating-point code.
12206 At the moment, this is equivalent to @option{-fno-finite-math-only}.
12207 When generating 16 bit SH opcodes, getting IEEE-conforming results for
12208 comparisons of NANs / infinities incurs extra overhead in every
12209 floating point comparison, therefore the default is set to
12210 @option{-ffinite-math-only}.
12212 @item -misize
12213 @opindex misize
12214 Dump instruction size and location in the assembly code.
12216 @item -mpadstruct
12217 @opindex mpadstruct
12218 This option is deprecated.  It pads structures to multiple of 4 bytes,
12219 which is incompatible with the SH ABI@.
12221 @item -mspace
12222 @opindex mspace
12223 Optimize for space instead of speed.  Implied by @option{-Os}.
12225 @item -mprefergot
12226 @opindex mprefergot
12227 When generating position-independent code, emit function calls using
12228 the Global Offset Table instead of the Procedure Linkage Table.
12230 @item -musermode
12231 @opindex musermode
12232 Generate a library function call to invalidate instruction cache
12233 entries, after fixing up a trampoline.  This library function call
12234 doesn't assume it can write to the whole memory address space.  This
12235 is the default when the target is @code{sh-*-linux*}.
12237 @item -multcost=@var{number}
12238 @opindex multcost=@var{number}
12239 Set the cost to assume for a multiply insn.
12241 @item -mdiv=@var{strategy}
12242 @opindex mdiv=@var{strategy}
12243 Set the division strategy to use for SHmedia code.  @var{strategy} must be
12244 one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call,
12245 inv:call2, inv:fp .
12246 "fp" performs the operation in floating point.  This has a very high latency,
12247 but needs only a few instructions, so it might be a good choice if
12248 your code has enough easily exploitable ILP to allow the compiler to
12249 schedule the floating point instructions together with other instructions.
12250 Division by zero causes a floating point exception.
12251 "inv" uses integer operations to calculate the inverse of the divisor,
12252 and then multiplies the dividend with the inverse.  This strategy allows
12253 cse and hoisting of the inverse calculation.  Division by zero calculates
12254 an unspecified result, but does not trap.
12255 "inv:minlat" is a variant of "inv" where if no cse / hoisting opportunities
12256 have been found, or if the entire operation has been hoisted to the same
12257 place, the last stages of the inverse calculation are intertwined with the
12258 final multiply to reduce the overall latency, at the expense of using a few
12259 more instructions, and thus offering fewer scheduling opportunities with
12260 other code.
12261 "call" calls a library function that usually implements the inv:minlat
12262 strategy.
12263 This gives high code density for m5-*media-nofpu compilations.
12264 "call2" uses a different entry point of the same library function, where it
12265 assumes that a pointer to a lookup table has already been set up, which
12266 exposes the pointer load to cse / code hoisting optimizations.
12267 "inv:call", "inv:call2" and "inv:fp" all use the "inv" algorithm for initial
12268 code generation, but if the code stays unoptimized, revert to the "call",
12269 "call2", or "fp" strategies, respectively.  Note that the
12270 potentially-trapping side effect of division by zero is carried by a
12271 separate instruction, so it is possible that all the integer instructions
12272 are hoisted out, but the marker for the side effect stays where it is.
12273 A recombination to fp operations or a call is not possible in that case.
12274 "inv20u" and "inv20l" are variants of the "inv:minlat" strategy.  In the case
12275 that the inverse calculation was nor separated from the multiply, they speed
12276 up division where the dividend fits into 20 bits (plus sign where applicable),
12277 by inserting a test to skip a number of operations in this case; this test
12278 slows down the case of larger dividends.  inv20u assumes the case of a such
12279 a small dividend to be unlikely, and inv20l assumes it to be likely.
12281 @item -mdivsi3_libfunc=@var{name}
12282 @opindex mdivsi3_libfunc=@var{name}
12283 Set the name of the library function used for 32 bit signed division to
12284 @var{name}.  This only affect the name used in the call and inv:call
12285 division strategies, and the compiler will still expect the same
12286 sets of input/output/clobbered registers as if this option was not present.
12288 @item -madjust-unroll
12289 @opindex madjust-unroll
12290 Throttle unrolling to avoid thrashing target registers.
12291 This option only has an effect if the gcc code base supports the
12292 TARGET_ADJUST_UNROLL_MAX target hook.
12294 @item -mindexed-addressing
12295 @opindex mindexed-addressing
12296 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
12297 This is only safe if the hardware and/or OS implement 32 bit wrap-around
12298 semantics for the indexed addressing mode.  The architecture allows the
12299 implementation of processors with 64 bit MMU, which the OS could use to
12300 get 32 bit addressing, but since no current hardware implementation supports
12301 this or any other way to make the indexed addressing mode safe to use in
12302 the 32 bit ABI, the default is -mno-indexed-addressing.
12304 @item -mgettrcost=@var{number}
12305 @opindex mgettrcost=@var{number}
12306 Set the cost assumed for the gettr instruction to @var{number}.
12307 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
12309 @item -mpt-fixed
12310 @opindex mpt-fixed
12311 Assume pt* instructions won't trap.  This will generally generate better
12312 scheduled code, but is unsafe on current hardware.  The current architecture
12313 definition says that ptabs and ptrel trap when the target anded with 3 is 3.
12314 This has the unintentional effect of making it unsafe to schedule ptabs /
12315 ptrel before a branch, or hoist it out of a loop.  For example,
12316 __do_global_ctors, a part of libgcc that runs constructors at program
12317 startup, calls functions in a list which is delimited by -1.  With the
12318 -mpt-fixed option, the ptabs will be done before testing against -1.
12319 That means that all the constructors will be run a bit quicker, but when
12320 the loop comes to the end of the list, the program crashes because ptabs
12321 loads -1 into a target register.  Since this option is unsafe for any
12322 hardware implementing the current architecture specification, the default
12323 is -mno-pt-fixed.  Unless the user specifies a specific cost with
12324 @option{-mgettrcost}, -mno-pt-fixed also implies @option{-mgettrcost=100};
12325 this deters register allocation using target registers for storing
12326 ordinary integers.
12328 @item -minvalid-symbols
12329 @opindex minvalid-symbols
12330 Assume symbols might be invalid.  Ordinary function symbols generated by
12331 the compiler will always be valid to load with movi/shori/ptabs or
12332 movi/shori/ptrel, but with assembler and/or linker tricks it is possible
12333 to generate symbols that will cause ptabs / ptrel to trap.
12334 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
12335 It will then prevent cross-basic-block cse, hoisting and most scheduling
12336 of symbol loads.  The default is @option{-mno-invalid-symbols}.
12337 @end table
12339 @node SPARC Options
12340 @subsection SPARC Options
12341 @cindex SPARC options
12343 These @samp{-m} options are supported on the SPARC:
12345 @table @gcctabopt
12346 @item -mno-app-regs
12347 @itemx -mapp-regs
12348 @opindex mno-app-regs
12349 @opindex mapp-regs
12350 Specify @option{-mapp-regs} to generate output using the global registers
12351 2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
12352 is the default.
12354 To be fully SVR4 ABI compliant at the cost of some performance loss,
12355 specify @option{-mno-app-regs}.  You should compile libraries and system
12356 software with this option.
12358 @item -mfpu
12359 @itemx -mhard-float
12360 @opindex mfpu
12361 @opindex mhard-float
12362 Generate output containing floating point instructions.  This is the
12363 default.
12365 @item -mno-fpu
12366 @itemx -msoft-float
12367 @opindex mno-fpu
12368 @opindex msoft-float
12369 Generate output containing library calls for floating point.
12370 @strong{Warning:} the requisite libraries are not available for all SPARC
12371 targets.  Normally the facilities of the machine's usual C compiler are
12372 used, but this cannot be done directly in cross-compilation.  You must make
12373 your own arrangements to provide suitable library functions for
12374 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
12375 @samp{sparclite-*-*} do provide software floating point support.
12377 @option{-msoft-float} changes the calling convention in the output file;
12378 therefore, it is only useful if you compile @emph{all} of a program with
12379 this option.  In particular, you need to compile @file{libgcc.a}, the
12380 library that comes with GCC, with @option{-msoft-float} in order for
12381 this to work.
12383 @item -mhard-quad-float
12384 @opindex mhard-quad-float
12385 Generate output containing quad-word (long double) floating point
12386 instructions.
12388 @item -msoft-quad-float
12389 @opindex msoft-quad-float
12390 Generate output containing library calls for quad-word (long double)
12391 floating point instructions.  The functions called are those specified
12392 in the SPARC ABI@.  This is the default.
12394 As of this writing, there are no SPARC implementations that have hardware
12395 support for the quad-word floating point instructions.  They all invoke
12396 a trap handler for one of these instructions, and then the trap handler
12397 emulates the effect of the instruction.  Because of the trap handler overhead,
12398 this is much slower than calling the ABI library routines.  Thus the
12399 @option{-msoft-quad-float} option is the default.
12401 @item -mno-unaligned-doubles
12402 @itemx -munaligned-doubles
12403 @opindex mno-unaligned-doubles
12404 @opindex munaligned-doubles
12405 Assume that doubles have 8 byte alignment.  This is the default.
12407 With @option{-munaligned-doubles}, GCC assumes that doubles have 8 byte
12408 alignment only if they are contained in another type, or if they have an
12409 absolute address.  Otherwise, it assumes they have 4 byte alignment.
12410 Specifying this option avoids some rare compatibility problems with code
12411 generated by other compilers.  It is not the default because it results
12412 in a performance loss, especially for floating point code.
12414 @item -mno-faster-structs
12415 @itemx -mfaster-structs
12416 @opindex mno-faster-structs
12417 @opindex mfaster-structs
12418 With @option{-mfaster-structs}, the compiler assumes that structures
12419 should have 8 byte alignment.  This enables the use of pairs of
12420 @code{ldd} and @code{std} instructions for copies in structure
12421 assignment, in place of twice as many @code{ld} and @code{st} pairs.
12422 However, the use of this changed alignment directly violates the SPARC
12423 ABI@.  Thus, it's intended only for use on targets where the developer
12424 acknowledges that their resulting code will not be directly in line with
12425 the rules of the ABI@.
12427 @item -mimpure-text
12428 @opindex mimpure-text
12429 @option{-mimpure-text}, used in addition to @option{-shared}, tells
12430 the compiler to not pass @option{-z text} to the linker when linking a
12431 shared object.  Using this option, you can link position-dependent
12432 code into a shared object.
12434 @option{-mimpure-text} suppresses the ``relocations remain against
12435 allocatable but non-writable sections'' linker error message.
12436 However, the necessary relocations will trigger copy-on-write, and the
12437 shared object is not actually shared across processes.  Instead of
12438 using @option{-mimpure-text}, you should compile all source code with
12439 @option{-fpic} or @option{-fPIC}.
12441 This option is only available on SunOS and Solaris.
12443 @item -mcpu=@var{cpu_type}
12444 @opindex mcpu
12445 Set the instruction set, register set, and instruction scheduling parameters
12446 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
12447 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
12448 @samp{f930}, @samp{f934}, @samp{hypersparc}, @samp{sparclite86x},
12449 @samp{sparclet}, @samp{tsc701}, @samp{v9}, @samp{ultrasparc},
12450 @samp{ultrasparc3}, and @samp{niagara}.
12452 Default instruction scheduling parameters are used for values that select
12453 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
12454 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
12456 Here is a list of each supported architecture and their supported
12457 implementations.
12459 @smallexample
12460     v7:             cypress
12461     v8:             supersparc, hypersparc
12462     sparclite:      f930, f934, sparclite86x
12463     sparclet:       tsc701
12464     v9:             ultrasparc, ultrasparc3, niagara
12465 @end smallexample
12467 By default (unless configured otherwise), GCC generates code for the V7
12468 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
12469 additionally optimizes it for the Cypress CY7C602 chip, as used in the
12470 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
12471 SPARCStation 1, 2, IPX etc.
12473 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
12474 architecture.  The only difference from V7 code is that the compiler emits
12475 the integer multiply and integer divide instructions which exist in SPARC-V8
12476 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
12477 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
12478 2000 series.
12480 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
12481 the SPARC architecture.  This adds the integer multiply, integer divide step
12482 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
12483 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
12484 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
12485 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
12486 MB86934 chip, which is the more recent SPARClite with FPU@.
12488 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
12489 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
12490 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
12491 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
12492 optimizes it for the TEMIC SPARClet chip.
12494 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
12495 architecture.  This adds 64-bit integer and floating-point move instructions,
12496 3 additional floating-point condition code registers and conditional move
12497 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
12498 optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
12499 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
12500 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
12501 @option{-mcpu=niagara}, the compiler additionally optimizes it for
12502 Sun UltraSPARC T1 chips.
12504 @item -mtune=@var{cpu_type}
12505 @opindex mtune
12506 Set the instruction scheduling parameters for machine type
12507 @var{cpu_type}, but do not set the instruction set or register set that the
12508 option @option{-mcpu=@var{cpu_type}} would.
12510 The same values for @option{-mcpu=@var{cpu_type}} can be used for
12511 @option{-mtune=@var{cpu_type}}, but the only useful values are those
12512 that select a particular cpu implementation.  Those are @samp{cypress},
12513 @samp{supersparc}, @samp{hypersparc}, @samp{f930}, @samp{f934},
12514 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
12515 @samp{ultrasparc3}, and @samp{niagara}.
12517 @item -mv8plus
12518 @itemx -mno-v8plus
12519 @opindex mv8plus
12520 @opindex mno-v8plus
12521 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
12522 difference from the V8 ABI is that the global and out registers are
12523 considered 64-bit wide.  This is enabled by default on Solaris in 32-bit
12524 mode for all SPARC-V9 processors.
12526 @item -mvis
12527 @itemx -mno-vis
12528 @opindex mvis
12529 @opindex mno-vis
12530 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
12531 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
12532 @end table
12534 These @samp{-m} options are supported in addition to the above
12535 on SPARC-V9 processors in 64-bit environments:
12537 @table @gcctabopt
12538 @item -mlittle-endian
12539 @opindex mlittle-endian
12540 Generate code for a processor running in little-endian mode.  It is only
12541 available for a few configurations and most notably not on Solaris and Linux.
12543 @item -m32
12544 @itemx -m64
12545 @opindex m32
12546 @opindex m64
12547 Generate code for a 32-bit or 64-bit environment.
12548 The 32-bit environment sets int, long and pointer to 32 bits.
12549 The 64-bit environment sets int to 32 bits and long and pointer
12550 to 64 bits.
12552 @item -mcmodel=medlow
12553 @opindex mcmodel=medlow
12554 Generate code for the Medium/Low code model: 64-bit addresses, programs
12555 must be linked in the low 32 bits of memory.  Programs can be statically
12556 or dynamically linked.
12558 @item -mcmodel=medmid
12559 @opindex mcmodel=medmid
12560 Generate code for the Medium/Middle code model: 64-bit addresses, programs
12561 must be linked in the low 44 bits of memory, the text and data segments must
12562 be less than 2GB in size and the data segment must be located within 2GB of
12563 the text segment.
12565 @item -mcmodel=medany
12566 @opindex mcmodel=medany
12567 Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
12568 may be linked anywhere in memory, the text and data segments must be less
12569 than 2GB in size and the data segment must be located within 2GB of the
12570 text segment.
12572 @item -mcmodel=embmedany
12573 @opindex mcmodel=embmedany
12574 Generate code for the Medium/Anywhere code model for embedded systems:
12575 64-bit addresses, the text and data segments must be less than 2GB in
12576 size, both starting anywhere in memory (determined at link time).  The
12577 global register %g4 points to the base of the data segment.  Programs
12578 are statically linked and PIC is not supported.
12580 @item -mstack-bias
12581 @itemx -mno-stack-bias
12582 @opindex mstack-bias
12583 @opindex mno-stack-bias
12584 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
12585 frame pointer if present, are offset by @minus{}2047 which must be added back
12586 when making stack frame references.  This is the default in 64-bit mode.
12587 Otherwise, assume no such offset is present.
12588 @end table
12590 These switches are supported in addition to the above on Solaris:
12592 @table @gcctabopt
12593 @item -threads
12594 @opindex threads
12595 Add support for multithreading using the Solaris threads library.  This
12596 option sets flags for both the preprocessor and linker.  This option does
12597 not affect the thread safety of object code produced by the compiler or
12598 that of libraries supplied with it.
12600 @item -pthreads
12601 @opindex pthreads
12602 Add support for multithreading using the POSIX threads library.  This
12603 option sets flags for both the preprocessor and linker.  This option does
12604 not affect the thread safety of object code produced  by the compiler or
12605 that of libraries supplied with it.
12607 @item -pthread
12608 @opindex pthread
12609 This is a synonym for @option{-pthreads}.
12610 @end table
12612 @node System V Options
12613 @subsection Options for System V
12615 These additional options are available on System V Release 4 for
12616 compatibility with other compilers on those systems:
12618 @table @gcctabopt
12619 @item -G
12620 @opindex G
12621 Create a shared object.
12622 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
12624 @item -Qy
12625 @opindex Qy
12626 Identify the versions of each tool used by the compiler, in a
12627 @code{.ident} assembler directive in the output.
12629 @item -Qn
12630 @opindex Qn
12631 Refrain from adding @code{.ident} directives to the output file (this is
12632 the default).
12634 @item -YP,@var{dirs}
12635 @opindex YP
12636 Search the directories @var{dirs}, and no others, for libraries
12637 specified with @option{-l}.
12639 @item -Ym,@var{dir}
12640 @opindex Ym
12641 Look in the directory @var{dir} to find the M4 preprocessor.
12642 The assembler uses this option.
12643 @c This is supposed to go with a -Yd for predefined M4 macro files, but
12644 @c the generic assembler that comes with Solaris takes just -Ym.
12645 @end table
12647 @node TMS320C3x/C4x Options
12648 @subsection TMS320C3x/C4x Options
12649 @cindex TMS320C3x/C4x Options
12651 These @samp{-m} options are defined for TMS320C3x/C4x implementations:
12653 @table @gcctabopt
12655 @item -mcpu=@var{cpu_type}
12656 @opindex mcpu
12657 Set the instruction set, register set, and instruction scheduling
12658 parameters for machine type @var{cpu_type}.  Supported values for
12659 @var{cpu_type} are @samp{c30}, @samp{c31}, @samp{c32}, @samp{c40}, and
12660 @samp{c44}.  The default is @samp{c40} to generate code for the
12661 TMS320C40.
12663 @item -mbig-memory
12664 @itemx -mbig
12665 @itemx -msmall-memory
12666 @itemx -msmall
12667 @opindex mbig-memory
12668 @opindex mbig
12669 @opindex msmall-memory
12670 @opindex msmall
12671 Generates code for the big or small memory model.  The small memory
12672 model assumed that all data fits into one 64K word page.  At run-time
12673 the data page (DP) register must be set to point to the 64K page
12674 containing the .bss and .data program sections.  The big memory model is
12675 the default and requires reloading of the DP register for every direct
12676 memory access.
12678 @item -mbk
12679 @itemx -mno-bk
12680 @opindex mbk
12681 @opindex mno-bk
12682 Allow (disallow) allocation of general integer operands into the block
12683 count register BK@.
12685 @item -mdb
12686 @itemx -mno-db
12687 @opindex mdb
12688 @opindex mno-db
12689 Enable (disable) generation of code using decrement and branch,
12690 DBcond(D), instructions.  This is enabled by default for the C4x.  To be
12691 on the safe side, this is disabled for the C3x, since the maximum
12692 iteration count on the C3x is @math{2^{23} + 1} (but who iterates loops more than
12693 @math{2^{23}} times on the C3x?).  Note that GCC will try to reverse a loop so
12694 that it can utilize the decrement and branch instruction, but will give
12695 up if there is more than one memory reference in the loop.  Thus a loop
12696 where the loop counter is decremented can generate slightly more
12697 efficient code, in cases where the RPTB instruction cannot be utilized.
12699 @item -mdp-isr-reload
12700 @itemx -mparanoid
12701 @opindex mdp-isr-reload
12702 @opindex mparanoid
12703 Force the DP register to be saved on entry to an interrupt service
12704 routine (ISR), reloaded to point to the data section, and restored on
12705 exit from the ISR@.  This should not be required unless someone has
12706 violated the small memory model by modifying the DP register, say within
12707 an object library.
12709 @item -mmpyi
12710 @itemx -mno-mpyi
12711 @opindex mmpyi
12712 @opindex mno-mpyi
12713 For the C3x use the 24-bit MPYI instruction for integer multiplies
12714 instead of a library call to guarantee 32-bit results.  Note that if one
12715 of the operands is a constant, then the multiplication will be performed
12716 using shifts and adds.  If the @option{-mmpyi} option is not specified for the C3x,
12717 then squaring operations are performed inline instead of a library call.
12719 @item -mfast-fix
12720 @itemx -mno-fast-fix
12721 @opindex mfast-fix
12722 @opindex mno-fast-fix
12723 The C3x/C4x FIX instruction to convert a floating point value to an
12724 integer value chooses the nearest integer less than or equal to the
12725 floating point value rather than to the nearest integer.  Thus if the
12726 floating point number is negative, the result will be incorrectly
12727 truncated an additional code is necessary to detect and correct this
12728 case.  This option can be used to disable generation of the additional
12729 code required to correct the result.
12731 @item -mrptb
12732 @itemx -mno-rptb
12733 @opindex mrptb
12734 @opindex mno-rptb
12735 Enable (disable) generation of repeat block sequences using the RPTB
12736 instruction for zero overhead looping.  The RPTB construct is only used
12737 for innermost loops that do not call functions or jump across the loop
12738 boundaries.  There is no advantage having nested RPTB loops due to the
12739 overhead required to save and restore the RC, RS, and RE registers.
12740 This is enabled by default with @option{-O2}.
12742 @item -mrpts=@var{count}
12743 @itemx -mno-rpts
12744 @opindex mrpts
12745 @opindex mno-rpts
12746 Enable (disable) the use of the single instruction repeat instruction
12747 RPTS@.  If a repeat block contains a single instruction, and the loop
12748 count can be guaranteed to be less than the value @var{count}, GCC will
12749 emit a RPTS instruction instead of a RPTB@.  If no value is specified,
12750 then a RPTS will be emitted even if the loop count cannot be determined
12751 at compile time.  Note that the repeated instruction following RPTS does
12752 not have to be reloaded from memory each iteration, thus freeing up the
12753 CPU buses for operands.  However, since interrupts are blocked by this
12754 instruction, it is disabled by default.
12756 @item -mloop-unsigned
12757 @itemx -mno-loop-unsigned
12758 @opindex mloop-unsigned
12759 @opindex mno-loop-unsigned
12760 The maximum iteration count when using RPTS and RPTB (and DB on the C40)
12761 is @math{2^{31} + 1} since these instructions test if the iteration count is
12762 negative to terminate the loop.  If the iteration count is unsigned
12763 there is a possibility than the @math{2^{31} + 1} maximum iteration count may be
12764 exceeded.  This switch allows an unsigned iteration count.
12766 @item -mti
12767 @opindex mti
12768 Try to emit an assembler syntax that the TI assembler (asm30) is happy
12769 with.  This also enforces compatibility with the API employed by the TI
12770 C3x C compiler.  For example, long doubles are passed as structures
12771 rather than in floating point registers.
12773 @item -mregparm
12774 @itemx -mmemparm
12775 @opindex mregparm
12776 @opindex mmemparm
12777 Generate code that uses registers (stack) for passing arguments to functions.
12778 By default, arguments are passed in registers where possible rather
12779 than by pushing arguments on to the stack.
12781 @item -mparallel-insns
12782 @itemx -mno-parallel-insns
12783 @opindex mparallel-insns
12784 @opindex mno-parallel-insns
12785 Allow the generation of parallel instructions.  This is enabled by
12786 default with @option{-O2}.
12788 @item -mparallel-mpy
12789 @itemx -mno-parallel-mpy
12790 @opindex mparallel-mpy
12791 @opindex mno-parallel-mpy
12792 Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
12793 provided @option{-mparallel-insns} is also specified.  These instructions have
12794 tight register constraints which can pessimize the code generation
12795 of large functions.
12797 @end table
12799 @node V850 Options
12800 @subsection V850 Options
12801 @cindex V850 Options
12803 These @samp{-m} options are defined for V850 implementations:
12805 @table @gcctabopt
12806 @item -mlong-calls
12807 @itemx -mno-long-calls
12808 @opindex mlong-calls
12809 @opindex mno-long-calls
12810 Treat all calls as being far away (near).  If calls are assumed to be
12811 far away, the compiler will always load the functions address up into a
12812 register, and call indirect through the pointer.
12814 @item -mno-ep
12815 @itemx -mep
12816 @opindex mno-ep
12817 @opindex mep
12818 Do not optimize (do optimize) basic blocks that use the same index
12819 pointer 4 or more times to copy pointer into the @code{ep} register, and
12820 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
12821 option is on by default if you optimize.
12823 @item -mno-prolog-function
12824 @itemx -mprolog-function
12825 @opindex mno-prolog-function
12826 @opindex mprolog-function
12827 Do not use (do use) external functions to save and restore registers
12828 at the prologue and epilogue of a function.  The external functions
12829 are slower, but use less code space if more than one function saves
12830 the same number of registers.  The @option{-mprolog-function} option
12831 is on by default if you optimize.
12833 @item -mspace
12834 @opindex mspace
12835 Try to make the code as small as possible.  At present, this just turns
12836 on the @option{-mep} and @option{-mprolog-function} options.
12838 @item -mtda=@var{n}
12839 @opindex mtda
12840 Put static or global variables whose size is @var{n} bytes or less into
12841 the tiny data area that register @code{ep} points to.  The tiny data
12842 area can hold up to 256 bytes in total (128 bytes for byte references).
12844 @item -msda=@var{n}
12845 @opindex msda
12846 Put static or global variables whose size is @var{n} bytes or less into
12847 the small data area that register @code{gp} points to.  The small data
12848 area can hold up to 64 kilobytes.
12850 @item -mzda=@var{n}
12851 @opindex mzda
12852 Put static or global variables whose size is @var{n} bytes or less into
12853 the first 32 kilobytes of memory.
12855 @item -mv850
12856 @opindex mv850
12857 Specify that the target processor is the V850.
12859 @item -mbig-switch
12860 @opindex mbig-switch
12861 Generate code suitable for big switch tables.  Use this option only if
12862 the assembler/linker complain about out of range branches within a switch
12863 table.
12865 @item -mapp-regs
12866 @opindex mapp-regs
12867 This option will cause r2 and r5 to be used in the code generated by
12868 the compiler.  This setting is the default.
12870 @item -mno-app-regs
12871 @opindex mno-app-regs
12872 This option will cause r2 and r5 to be treated as fixed registers.
12874 @item -mv850e1
12875 @opindex mv850e1
12876 Specify that the target processor is the V850E1.  The preprocessor
12877 constants @samp{__v850e1__} and @samp{__v850e__} will be defined if
12878 this option is used.
12880 @item -mv850e
12881 @opindex mv850e
12882 Specify that the target processor is the V850E@.  The preprocessor
12883 constant @samp{__v850e__} will be defined if this option is used.
12885 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
12886 are defined then a default target processor will be chosen and the
12887 relevant @samp{__v850*__} preprocessor constant will be defined.
12889 The preprocessor constants @samp{__v850} and @samp{__v851__} are always
12890 defined, regardless of which processor variant is the target.
12892 @item -mdisable-callt
12893 @opindex mdisable-callt
12894 This option will suppress generation of the CALLT instruction for the
12895 v850e and v850e1 flavors of the v850 architecture.  The default is
12896 @option{-mno-disable-callt} which allows the CALLT instruction to be used.
12898 @end table
12900 @node VAX Options
12901 @subsection VAX Options
12902 @cindex VAX options
12904 These @samp{-m} options are defined for the VAX:
12906 @table @gcctabopt
12907 @item -munix
12908 @opindex munix
12909 Do not output certain jump instructions (@code{aobleq} and so on)
12910 that the Unix assembler for the VAX cannot handle across long
12911 ranges.
12913 @item -mgnu
12914 @opindex mgnu
12915 Do output those jump instructions, on the assumption that you
12916 will assemble with the GNU assembler.
12918 @item -mg
12919 @opindex mg
12920 Output code for g-format floating point numbers instead of d-format.
12921 @end table
12923 @node x86-64 Options
12924 @subsection x86-64 Options
12925 @cindex x86-64 options
12927 These are listed under @xref{i386 and x86-64 Options}.
12929 @node Xstormy16 Options
12930 @subsection Xstormy16 Options
12931 @cindex Xstormy16 Options
12933 These options are defined for Xstormy16:
12935 @table @gcctabopt
12936 @item -msim
12937 @opindex msim
12938 Choose startup files and linker script suitable for the simulator.
12939 @end table
12941 @node Xtensa Options
12942 @subsection Xtensa Options
12943 @cindex Xtensa Options
12945 These options are supported for Xtensa targets:
12947 @table @gcctabopt
12948 @item -mconst16
12949 @itemx -mno-const16
12950 @opindex mconst16
12951 @opindex mno-const16
12952 Enable or disable use of @code{CONST16} instructions for loading
12953 constant values.  The @code{CONST16} instruction is currently not a
12954 standard option from Tensilica.  When enabled, @code{CONST16}
12955 instructions are always used in place of the standard @code{L32R}
12956 instructions.  The use of @code{CONST16} is enabled by default only if
12957 the @code{L32R} instruction is not available.
12959 @item -mfused-madd
12960 @itemx -mno-fused-madd
12961 @opindex mfused-madd
12962 @opindex mno-fused-madd
12963 Enable or disable use of fused multiply/add and multiply/subtract
12964 instructions in the floating-point option.  This has no effect if the
12965 floating-point option is not also enabled.  Disabling fused multiply/add
12966 and multiply/subtract instructions forces the compiler to use separate
12967 instructions for the multiply and add/subtract operations.  This may be
12968 desirable in some cases where strict IEEE 754-compliant results are
12969 required: the fused multiply add/subtract instructions do not round the
12970 intermediate result, thereby producing results with @emph{more} bits of
12971 precision than specified by the IEEE standard.  Disabling fused multiply
12972 add/subtract instructions also ensures that the program output is not
12973 sensitive to the compiler's ability to combine multiply and add/subtract
12974 operations.
12976 @item -mtext-section-literals
12977 @itemx -mno-text-section-literals
12978 @opindex mtext-section-literals
12979 @opindex mno-text-section-literals
12980 Control the treatment of literal pools.  The default is
12981 @option{-mno-text-section-literals}, which places literals in a separate
12982 section in the output file.  This allows the literal pool to be placed
12983 in a data RAM/ROM, and it also allows the linker to combine literal
12984 pools from separate object files to remove redundant literals and
12985 improve code size.  With @option{-mtext-section-literals}, the literals
12986 are interspersed in the text section in order to keep them as close as
12987 possible to their references.  This may be necessary for large assembly
12988 files.
12990 @item -mtarget-align
12991 @itemx -mno-target-align
12992 @opindex mtarget-align
12993 @opindex mno-target-align
12994 When this option is enabled, GCC instructs the assembler to
12995 automatically align instructions to reduce branch penalties at the
12996 expense of some code density.  The assembler attempts to widen density
12997 instructions to align branch targets and the instructions following call
12998 instructions.  If there are not enough preceding safe density
12999 instructions to align a target, no widening will be performed.  The
13000 default is @option{-mtarget-align}.  These options do not affect the
13001 treatment of auto-aligned instructions like @code{LOOP}, which the
13002 assembler will always align, either by widening density instructions or
13003 by inserting no-op instructions.
13005 @item -mlongcalls
13006 @itemx -mno-longcalls
13007 @opindex mlongcalls
13008 @opindex mno-longcalls
13009 When this option is enabled, GCC instructs the assembler to translate
13010 direct calls to indirect calls unless it can determine that the target
13011 of a direct call is in the range allowed by the call instruction.  This
13012 translation typically occurs for calls to functions in other source
13013 files.  Specifically, the assembler translates a direct @code{CALL}
13014 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
13015 The default is @option{-mno-longcalls}.  This option should be used in
13016 programs where the call target can potentially be out of range.  This
13017 option is implemented in the assembler, not the compiler, so the
13018 assembly code generated by GCC will still show direct call
13019 instructions---look at the disassembled object code to see the actual
13020 instructions.  Note that the assembler will use an indirect call for
13021 every cross-file call, not just those that really will be out of range.
13022 @end table
13024 @node zSeries Options
13025 @subsection zSeries Options
13026 @cindex zSeries options
13028 These are listed under @xref{S/390 and zSeries Options}.
13030 @node Code Gen Options
13031 @section Options for Code Generation Conventions
13032 @cindex code generation conventions
13033 @cindex options, code generation
13034 @cindex run-time options
13036 These machine-independent options control the interface conventions
13037 used in code generation.
13039 Most of them have both positive and negative forms; the negative form
13040 of @option{-ffoo} would be @option{-fno-foo}.  In the table below, only
13041 one of the forms is listed---the one which is not the default.  You
13042 can figure out the other form by either removing @samp{no-} or adding
13045 @table @gcctabopt
13046 @item -fbounds-check
13047 @opindex fbounds-check
13048 For front-ends that support it, generate additional code to check that
13049 indices used to access arrays are within the declared range.  This is
13050 currently only supported by the Java and Fortran 77 front-ends, where
13051 this option defaults to true and false respectively.
13053 @item -ftrapv
13054 @opindex ftrapv
13055 This option generates traps for signed overflow on addition, subtraction,
13056 multiplication operations.
13058 @item -fwrapv
13059 @opindex fwrapv
13060 This option instructs the compiler to assume that signed arithmetic
13061 overflow of addition, subtraction and multiplication wraps around
13062 using twos-complement representation.  This flag enables some optimizations
13063 and disables others.  This option is enabled by default for the Java
13064 front-end, as required by the Java language specification.
13066 @item -fexceptions
13067 @opindex fexceptions
13068 Enable exception handling.  Generates extra code needed to propagate
13069 exceptions.  For some targets, this implies GCC will generate frame
13070 unwind information for all functions, which can produce significant data
13071 size overhead, although it does not affect execution.  If you do not
13072 specify this option, GCC will enable it by default for languages like
13073 C++ which normally require exception handling, and disable it for
13074 languages like C that do not normally require it.  However, you may need
13075 to enable this option when compiling C code that needs to interoperate
13076 properly with exception handlers written in C++.  You may also wish to
13077 disable this option if you are compiling older C++ programs that don't
13078 use exception handling.
13080 @item -fnon-call-exceptions
13081 @opindex fnon-call-exceptions
13082 Generate code that allows trapping instructions to throw exceptions.
13083 Note that this requires platform-specific runtime support that does
13084 not exist everywhere.  Moreover, it only allows @emph{trapping}
13085 instructions to throw exceptions, i.e.@: memory references or floating
13086 point instructions.  It does not allow exceptions to be thrown from
13087 arbitrary signal handlers such as @code{SIGALRM}.
13089 @item -funwind-tables
13090 @opindex funwind-tables
13091 Similar to @option{-fexceptions}, except that it will just generate any needed
13092 static data, but will not affect the generated code in any other way.
13093 You will normally not enable this option; instead, a language processor
13094 that needs this handling would enable it on your behalf.
13096 @item -fasynchronous-unwind-tables
13097 @opindex fasynchronous-unwind-tables
13098 Generate unwind table in dwarf2 format, if supported by target machine.  The
13099 table is exact at each instruction boundary, so it can be used for stack
13100 unwinding from asynchronous events (such as debugger or garbage collector).
13102 @item -fpcc-struct-return
13103 @opindex fpcc-struct-return
13104 Return ``short'' @code{struct} and @code{union} values in memory like
13105 longer ones, rather than in registers.  This convention is less
13106 efficient, but it has the advantage of allowing intercallability between
13107 GCC-compiled files and files compiled with other compilers, particularly
13108 the Portable C Compiler (pcc).
13110 The precise convention for returning structures in memory depends
13111 on the target configuration macros.
13113 Short structures and unions are those whose size and alignment match
13114 that of some integer type.
13116 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13117 switch is not binary compatible with code compiled with the
13118 @option{-freg-struct-return} switch.
13119 Use it to conform to a non-default application binary interface.
13121 @item -freg-struct-return
13122 @opindex freg-struct-return
13123 Return @code{struct} and @code{union} values in registers when possible.
13124 This is more efficient for small structures than
13125 @option{-fpcc-struct-return}.
13127 If you specify neither @option{-fpcc-struct-return} nor
13128 @option{-freg-struct-return}, GCC defaults to whichever convention is
13129 standard for the target.  If there is no standard convention, GCC
13130 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13131 the principal compiler.  In those cases, we can choose the standard, and
13132 we chose the more efficient register return alternative.
13134 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13135 switch is not binary compatible with code compiled with the
13136 @option{-fpcc-struct-return} switch.
13137 Use it to conform to a non-default application binary interface.
13139 @item -fshort-enums
13140 @opindex fshort-enums
13141 Allocate to an @code{enum} type only as many bytes as it needs for the
13142 declared range of possible values.  Specifically, the @code{enum} type
13143 will be equivalent to the smallest integer type which has enough room.
13145 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13146 code that is not binary compatible with code generated without that switch.
13147 Use it to conform to a non-default application binary interface.
13149 @item -fshort-double
13150 @opindex fshort-double
13151 Use the same size for @code{double} as for @code{float}.
13153 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
13154 code that is not binary compatible with code generated without that switch.
13155 Use it to conform to a non-default application binary interface.
13157 @item -fshort-wchar
13158 @opindex fshort-wchar
13159 Override the underlying type for @samp{wchar_t} to be @samp{short
13160 unsigned int} instead of the default for the target.  This option is
13161 useful for building programs to run under WINE@.
13163 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13164 code that is not binary compatible with code generated without that switch.
13165 Use it to conform to a non-default application binary interface.
13167 @item -fno-common
13168 @opindex fno-common
13169 In C, allocate even uninitialized global variables in the data section of the
13170 object file, rather than generating them as common blocks.  This has the
13171 effect that if the same variable is declared (without @code{extern}) in
13172 two different compilations, you will get an error when you link them.
13173 The only reason this might be useful is if you wish to verify that the
13174 program will work on other systems which always work this way.
13176 @item -fno-ident
13177 @opindex fno-ident
13178 Ignore the @samp{#ident} directive.
13180 @item -finhibit-size-directive
13181 @opindex finhibit-size-directive
13182 Don't output a @code{.size} assembler directive, or anything else that
13183 would cause trouble if the function is split in the middle, and the
13184 two halves are placed at locations far apart in memory.  This option is
13185 used when compiling @file{crtstuff.c}; you should not need to use it
13186 for anything else.
13188 @item -fverbose-asm
13189 @opindex fverbose-asm
13190 Put extra commentary information in the generated assembly code to
13191 make it more readable.  This option is generally only of use to those
13192 who actually need to read the generated assembly code (perhaps while
13193 debugging the compiler itself).
13195 @option{-fno-verbose-asm}, the default, causes the
13196 extra information to be omitted and is useful when comparing two assembler
13197 files.
13199 @item -fpic
13200 @opindex fpic
13201 @cindex global offset table
13202 @cindex PIC
13203 Generate position-independent code (PIC) suitable for use in a shared
13204 library, if supported for the target machine.  Such code accesses all
13205 constant addresses through a global offset table (GOT)@.  The dynamic
13206 loader resolves the GOT entries when the program starts (the dynamic
13207 loader is not part of GCC; it is part of the operating system).  If
13208 the GOT size for the linked executable exceeds a machine-specific
13209 maximum size, you get an error message from the linker indicating that
13210 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
13211 instead.  (These maximums are 8k on the SPARC and 32k
13212 on the m68k and RS/6000.  The 386 has no such limit.)
13214 Position-independent code requires special support, and therefore works
13215 only on certain machines.  For the 386, GCC supports PIC for System V
13216 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
13217 position-independent.
13219 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13220 are defined to 1.
13222 @item -fPIC
13223 @opindex fPIC
13224 If supported for the target machine, emit position-independent code,
13225 suitable for dynamic linking and avoiding any limit on the size of the
13226 global offset table.  This option makes a difference on the m68k,
13227 PowerPC and SPARC@.
13229 Position-independent code requires special support, and therefore works
13230 only on certain machines.
13232 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
13233 are defined to 2.
13235 @item -fpie
13236 @itemx -fPIE
13237 @opindex fpie
13238 @opindex fPIE
13239 These options are similar to @option{-fpic} and @option{-fPIC}, but
13240 generated position independent code can be only linked into executables.
13241 Usually these options are used when @option{-pie} GCC option will be
13242 used during linking.
13244 @item -fno-jump-tables
13245 @opindex fno-jump-tables
13246 Do not use jump tables for switch statements even where it would be
13247 more efficient than other code generation strategies.  This option is
13248 of use in conjunction with @option{-fpic} or @option{-fPIC} for
13249 building code which forms part of a dynamic linker and cannot
13250 reference the address of a jump table.  On some targets, jump tables
13251 do not require a GOT and this option is not needed.
13253 @item -ffixed-@var{reg}
13254 @opindex ffixed
13255 Treat the register named @var{reg} as a fixed register; generated code
13256 should never refer to it (except perhaps as a stack pointer, frame
13257 pointer or in some other fixed role).
13259 @var{reg} must be the name of a register.  The register names accepted
13260 are machine-specific and are defined in the @code{REGISTER_NAMES}
13261 macro in the machine description macro file.
13263 This flag does not have a negative form, because it specifies a
13264 three-way choice.
13266 @item -fcall-used-@var{reg}
13267 @opindex fcall-used
13268 Treat the register named @var{reg} as an allocable register that is
13269 clobbered by function calls.  It may be allocated for temporaries or
13270 variables that do not live across a call.  Functions compiled this way
13271 will not save and restore the register @var{reg}.
13273 It is an error to used this flag with the frame pointer or stack pointer.
13274 Use of this flag for other registers that have fixed pervasive roles in
13275 the machine's execution model will produce disastrous results.
13277 This flag does not have a negative form, because it specifies a
13278 three-way choice.
13280 @item -fcall-saved-@var{reg}
13281 @opindex fcall-saved
13282 Treat the register named @var{reg} as an allocable register saved by
13283 functions.  It may be allocated even for temporaries or variables that
13284 live across a call.  Functions compiled this way will save and restore
13285 the register @var{reg} if they use it.
13287 It is an error to used this flag with the frame pointer or stack pointer.
13288 Use of this flag for other registers that have fixed pervasive roles in
13289 the machine's execution model will produce disastrous results.
13291 A different sort of disaster will result from the use of this flag for
13292 a register in which function values may be returned.
13294 This flag does not have a negative form, because it specifies a
13295 three-way choice.
13297 @item -fpack-struct[=@var{n}]
13298 @opindex fpack-struct
13299 Without a value specified, pack all structure members together without
13300 holes.  When a value is specified (which must be a small power of two), pack
13301 structure members according to this value, representing the maximum
13302 alignment (that is, objects with default alignment requirements larger than
13303 this will be output potentially unaligned at the next fitting location.
13305 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
13306 code that is not binary compatible with code generated without that switch.
13307 Additionally, it makes the code suboptimal.
13308 Use it to conform to a non-default application binary interface.
13310 @item -finstrument-functions
13311 @opindex finstrument-functions
13312 Generate instrumentation calls for entry and exit to functions.  Just
13313 after function entry and just before function exit, the following
13314 profiling functions will be called with the address of the current
13315 function and its call site.  (On some platforms,
13316 @code{__builtin_return_address} does not work beyond the current
13317 function, so the call site information may not be available to the
13318 profiling functions otherwise.)
13320 @smallexample
13321 void __cyg_profile_func_enter (void *this_fn,
13322                                void *call_site);
13323 void __cyg_profile_func_exit  (void *this_fn,
13324                                void *call_site);
13325 @end smallexample
13327 The first argument is the address of the start of the current function,
13328 which may be looked up exactly in the symbol table.
13330 This instrumentation is also done for functions expanded inline in other
13331 functions.  The profiling calls will indicate where, conceptually, the
13332 inline function is entered and exited.  This means that addressable
13333 versions of such functions must be available.  If all your uses of a
13334 function are expanded inline, this may mean an additional expansion of
13335 code size.  If you use @samp{extern inline} in your C code, an
13336 addressable version of such functions must be provided.  (This is
13337 normally the case anyways, but if you get lucky and the optimizer always
13338 expands the functions inline, you might have gotten away without
13339 providing static copies.)
13341 A function may be given the attribute @code{no_instrument_function}, in
13342 which case this instrumentation will not be done.  This can be used, for
13343 example, for the profiling functions listed above, high-priority
13344 interrupt routines, and any functions from which the profiling functions
13345 cannot safely be called (perhaps signal handlers, if the profiling
13346 routines generate output or allocate memory).
13348 @item -fstack-check
13349 @opindex fstack-check
13350 Generate code to verify that you do not go beyond the boundary of the
13351 stack.  You should specify this flag if you are running in an
13352 environment with multiple threads, but only rarely need to specify it in
13353 a single-threaded environment since stack overflow is automatically
13354 detected on nearly all systems if there is only one stack.
13356 Note that this switch does not actually cause checking to be done; the
13357 operating system must do that.  The switch causes generation of code
13358 to ensure that the operating system sees the stack being extended.
13360 @item -fstack-limit-register=@var{reg}
13361 @itemx -fstack-limit-symbol=@var{sym}
13362 @itemx -fno-stack-limit
13363 @opindex fstack-limit-register
13364 @opindex fstack-limit-symbol
13365 @opindex fno-stack-limit
13366 Generate code to ensure that the stack does not grow beyond a certain value,
13367 either the value of a register or the address of a symbol.  If the stack
13368 would grow beyond the value, a signal is raised.  For most targets,
13369 the signal is raised before the stack overruns the boundary, so
13370 it is possible to catch the signal without taking special precautions.
13372 For instance, if the stack starts at absolute address @samp{0x80000000}
13373 and grows downwards, you can use the flags
13374 @option{-fstack-limit-symbol=__stack_limit} and
13375 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
13376 of 128KB@.  Note that this may only work with the GNU linker.
13378 @cindex aliasing of parameters
13379 @cindex parameters, aliased
13380 @item -fargument-alias
13381 @itemx -fargument-noalias
13382 @itemx -fargument-noalias-global
13383 @itemx -fargument-noalias-anything
13384 @opindex fargument-alias
13385 @opindex fargument-noalias
13386 @opindex fargument-noalias-global
13387 @opindex fargument-noalias-anything
13388 Specify the possible relationships among parameters and between
13389 parameters and global data.
13391 @option{-fargument-alias} specifies that arguments (parameters) may
13392 alias each other and may alias global storage.@*
13393 @option{-fargument-noalias} specifies that arguments do not alias
13394 each other, but may alias global storage.@*
13395 @option{-fargument-noalias-global} specifies that arguments do not
13396 alias each other and do not alias global storage.
13397 @option{-fargument-noalias-anything} specifies that arguments do not
13398 alias any other storage.
13400 Each language will automatically use whatever option is required by
13401 the language standard.  You should not need to use these options yourself.
13403 @item -fleading-underscore
13404 @opindex fleading-underscore
13405 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
13406 change the way C symbols are represented in the object file.  One use
13407 is to help link with legacy assembly code.
13409 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
13410 generate code that is not binary compatible with code generated without that
13411 switch.  Use it to conform to a non-default application binary interface.
13412 Not all targets provide complete support for this switch.
13414 @item -ftls-model=@var{model}
13415 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
13416 The @var{model} argument should be one of @code{global-dynamic},
13417 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
13419 The default without @option{-fpic} is @code{initial-exec}; with
13420 @option{-fpic} the default is @code{global-dynamic}.
13422 @item -fvisibility=@var{default|internal|hidden|protected}
13423 @opindex fvisibility
13424 Set the default ELF image symbol visibility to the specified option---all
13425 symbols will be marked with this unless overridden within the code.
13426 Using this feature can very substantially improve linking and
13427 load times of shared object libraries, produce more optimized
13428 code, provide near-perfect API export and prevent symbol clashes.
13429 It is @strong{strongly} recommended that you use this in any shared objects
13430 you distribute.
13432 Despite the nomenclature, @code{default} always means public ie;
13433 available to be linked against from outside the shared object.
13434 @code{protected} and @code{internal} are pretty useless in real-world
13435 usage so the only other commonly used option will be @code{hidden}.
13436 The default if @option{-fvisibility} isn't specified is
13437 @code{default}, i.e., make every
13438 symbol public---this causes the same behavior as previous versions of
13439 GCC@.
13441 A good explanation of the benefits offered by ensuring ELF
13442 symbols have the correct visibility is given by ``How To Write
13443 Shared Libraries'' by Ulrich Drepper (which can be found at
13444 @w{@uref{http://people.redhat.com/~drepper/}})---however a superior
13445 solution made possible by this option to marking things hidden when
13446 the default is public is to make the default hidden and mark things
13447 public.  This is the norm with DLL's on Windows and with @option{-fvisibility=hidden}
13448 and @code{__attribute__ ((visibility("default")))} instead of
13449 @code{__declspec(dllexport)} you get almost identical semantics with
13450 identical syntax.  This is a great boon to those working with
13451 cross-platform projects.
13453 For those adding visibility support to existing code, you may find
13454 @samp{#pragma GCC visibility} of use.  This works by you enclosing
13455 the declarations you wish to set visibility for with (for example)
13456 @samp{#pragma GCC visibility push(hidden)} and
13457 @samp{#pragma GCC visibility pop}.
13458 Bear in mind that symbol visibility should be viewed @strong{as
13459 part of the API interface contract} and thus all new code should
13460 always specify visibility when it is not the default ie; declarations
13461 only for use within the local DSO should @strong{always} be marked explicitly
13462 as hidden as so to avoid PLT indirection overheads---making this
13463 abundantly clear also aids readability and self-documentation of the code.
13464 Note that due to ISO C++ specification requirements, operator new and
13465 operator delete must always be of default visibility.
13467 Be aware that headers from outside your project, in particular system
13468 headers and headers from any other library you use, may not be
13469 expecting to be compiled with visibility other than the default.  You
13470 may need to explicitly say @samp{#pragma GCC visibility push(default)}
13471 before including any such headers.
13473 An overview of these techniques, their benefits and how to use them
13474 is at @w{@uref{http://gcc.gnu.org/wiki/Visibility}}.
13476 @item -fopenmp
13477 @opindex fopenmp
13478 @cindex openmp parallel
13479 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
13480 @code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
13481 compiler generates parallel code according to the OpenMP Application
13482 Program Interface v2.5 @w{@uref{http://www.openmp.org/}}.
13484 @end table
13486 @c man end
13488 @node Environment Variables
13489 @section Environment Variables Affecting GCC
13490 @cindex environment variables
13492 @c man begin ENVIRONMENT
13493 This section describes several environment variables that affect how GCC
13494 operates.  Some of them work by specifying directories or prefixes to use
13495 when searching for various kinds of files.  Some are used to specify other
13496 aspects of the compilation environment.
13498 Note that you can also specify places to search using options such as
13499 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
13500 take precedence over places specified using environment variables, which
13501 in turn take precedence over those specified by the configuration of GCC@.
13502 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
13503 GNU Compiler Collection (GCC) Internals}.
13505 @table @env
13506 @item LANG
13507 @itemx LC_CTYPE
13508 @c @itemx LC_COLLATE
13509 @itemx LC_MESSAGES
13510 @c @itemx LC_MONETARY
13511 @c @itemx LC_NUMERIC
13512 @c @itemx LC_TIME
13513 @itemx LC_ALL
13514 @findex LANG
13515 @findex LC_CTYPE
13516 @c @findex LC_COLLATE
13517 @findex LC_MESSAGES
13518 @c @findex LC_MONETARY
13519 @c @findex LC_NUMERIC
13520 @c @findex LC_TIME
13521 @findex LC_ALL
13522 @cindex locale
13523 These environment variables control the way that GCC uses
13524 localization information that allow GCC to work with different
13525 national conventions.  GCC inspects the locale categories
13526 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
13527 so.  These locale categories can be set to any value supported by your
13528 installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
13529 Kingdom encoded in UTF-8.
13531 The @env{LC_CTYPE} environment variable specifies character
13532 classification.  GCC uses it to determine the character boundaries in
13533 a string; this is needed for some multibyte encodings that contain quote
13534 and escape characters that would otherwise be interpreted as a string
13535 end or escape.
13537 The @env{LC_MESSAGES} environment variable specifies the language to
13538 use in diagnostic messages.
13540 If the @env{LC_ALL} environment variable is set, it overrides the value
13541 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
13542 and @env{LC_MESSAGES} default to the value of the @env{LANG}
13543 environment variable.  If none of these variables are set, GCC
13544 defaults to traditional C English behavior.
13546 @item TMPDIR
13547 @findex TMPDIR
13548 If @env{TMPDIR} is set, it specifies the directory to use for temporary
13549 files.  GCC uses temporary files to hold the output of one stage of
13550 compilation which is to be used as input to the next stage: for example,
13551 the output of the preprocessor, which is the input to the compiler
13552 proper.
13554 @item GCC_EXEC_PREFIX
13555 @findex GCC_EXEC_PREFIX
13556 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
13557 names of the subprograms executed by the compiler.  No slash is added
13558 when this prefix is combined with the name of a subprogram, but you can
13559 specify a prefix that ends with a slash if you wish.
13561 If @env{GCC_EXEC_PREFIX} is not set, GCC will attempt to figure out
13562 an appropriate prefix to use based on the pathname it was invoked with.
13564 If GCC cannot find the subprogram using the specified prefix, it
13565 tries looking in the usual places for the subprogram.
13567 The default value of @env{GCC_EXEC_PREFIX} is
13568 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the value
13569 of @code{prefix} when you ran the @file{configure} script.
13571 Other prefixes specified with @option{-B} take precedence over this prefix.
13573 This prefix is also used for finding files such as @file{crt0.o} that are
13574 used for linking.
13576 In addition, the prefix is used in an unusual way in finding the
13577 directories to search for header files.  For each of the standard
13578 directories whose name normally begins with @samp{/usr/local/lib/gcc}
13579 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
13580 replacing that beginning with the specified prefix to produce an
13581 alternate directory name.  Thus, with @option{-Bfoo/}, GCC will search
13582 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
13583 These alternate directories are searched first; the standard directories
13584 come next.
13586 @item COMPILER_PATH
13587 @findex COMPILER_PATH
13588 The value of @env{COMPILER_PATH} is a colon-separated list of
13589 directories, much like @env{PATH}.  GCC tries the directories thus
13590 specified when searching for subprograms, if it can't find the
13591 subprograms using @env{GCC_EXEC_PREFIX}.
13593 @item LIBRARY_PATH
13594 @findex LIBRARY_PATH
13595 The value of @env{LIBRARY_PATH} is a colon-separated list of
13596 directories, much like @env{PATH}.  When configured as a native compiler,
13597 GCC tries the directories thus specified when searching for special
13598 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
13599 using GCC also uses these directories when searching for ordinary
13600 libraries for the @option{-l} option (but directories specified with
13601 @option{-L} come first).
13603 @item LANG
13604 @findex LANG
13605 @cindex locale definition
13606 This variable is used to pass locale information to the compiler.  One way in
13607 which this information is used is to determine the character set to be used
13608 when character literals, string literals and comments are parsed in C and C++.
13609 When the compiler is configured to allow multibyte characters,
13610 the following values for @env{LANG} are recognized:
13612 @table @samp
13613 @item C-JIS
13614 Recognize JIS characters.
13615 @item C-SJIS
13616 Recognize SJIS characters.
13617 @item C-EUCJP
13618 Recognize EUCJP characters.
13619 @end table
13621 If @env{LANG} is not defined, or if it has some other value, then the
13622 compiler will use mblen and mbtowc as defined by the default locale to
13623 recognize and translate multibyte characters.
13624 @end table
13626 @noindent
13627 Some additional environments variables affect the behavior of the
13628 preprocessor.
13630 @include cppenv.texi
13632 @c man end
13634 @node Precompiled Headers
13635 @section Using Precompiled Headers
13636 @cindex precompiled headers
13637 @cindex speed of compilation
13639 Often large projects have many header files that are included in every
13640 source file.  The time the compiler takes to process these header files
13641 over and over again can account for nearly all of the time required to
13642 build the project.  To make builds faster, GCC allows users to
13643 `precompile' a header file; then, if builds can use the precompiled
13644 header file they will be much faster.
13646 To create a precompiled header file, simply compile it as you would any
13647 other file, if necessary using the @option{-x} option to make the driver
13648 treat it as a C or C++ header file.  You will probably want to use a
13649 tool like @command{make} to keep the precompiled header up-to-date when
13650 the headers it contains change.
13652 A precompiled header file will be searched for when @code{#include} is
13653 seen in the compilation.  As it searches for the included file
13654 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
13655 compiler looks for a precompiled header in each directory just before it
13656 looks for the include file in that directory.  The name searched for is
13657 the name specified in the @code{#include} with @samp{.gch} appended.  If
13658 the precompiled header file can't be used, it is ignored.
13660 For instance, if you have @code{#include "all.h"}, and you have
13661 @file{all.h.gch} in the same directory as @file{all.h}, then the
13662 precompiled header file will be used if possible, and the original
13663 header will be used otherwise.
13665 Alternatively, you might decide to put the precompiled header file in a
13666 directory and use @option{-I} to ensure that directory is searched
13667 before (or instead of) the directory containing the original header.
13668 Then, if you want to check that the precompiled header file is always
13669 used, you can put a file of the same name as the original header in this
13670 directory containing an @code{#error} command.
13672 This also works with @option{-include}.  So yet another way to use
13673 precompiled headers, good for projects not designed with precompiled
13674 header files in mind, is to simply take most of the header files used by
13675 a project, include them from another header file, precompile that header
13676 file, and @option{-include} the precompiled header.  If the header files
13677 have guards against multiple inclusion, they will be skipped because
13678 they've already been included (in the precompiled header).
13680 If you need to precompile the same header file for different
13681 languages, targets, or compiler options, you can instead make a
13682 @emph{directory} named like @file{all.h.gch}, and put each precompiled
13683 header in the directory, perhaps using @option{-o}.  It doesn't matter
13684 what you call the files in the directory, every precompiled header in
13685 the directory will be considered.  The first precompiled header
13686 encountered in the directory that is valid for this compilation will
13687 be used; they're searched in no particular order.
13689 There are many other possibilities, limited only by your imagination,
13690 good sense, and the constraints of your build system.
13692 A precompiled header file can be used only when these conditions apply:
13694 @itemize
13695 @item
13696 Only one precompiled header can be used in a particular compilation.
13698 @item
13699 A precompiled header can't be used once the first C token is seen.  You
13700 can have preprocessor directives before a precompiled header; you can
13701 even include a precompiled header from inside another header, so long as
13702 there are no C tokens before the @code{#include}.
13704 @item
13705 The precompiled header file must be produced for the same language as
13706 the current compilation.  You can't use a C precompiled header for a C++
13707 compilation.
13709 @item
13710 The precompiled header file must have been produced by the same compiler
13711 binary as the current compilation is using.
13713 @item
13714 Any macros defined before the precompiled header is included must
13715 either be defined in the same way as when the precompiled header was
13716 generated, or must not affect the precompiled header, which usually
13717 means that they don't appear in the precompiled header at all.
13719 The @option{-D} option is one way to define a macro before a
13720 precompiled header is included; using a @code{#define} can also do it.
13721 There are also some options that define macros implicitly, like
13722 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
13723 defined this way.
13725 @item If debugging information is output when using the precompiled
13726 header, using @option{-g} or similar, the same kind of debugging information
13727 must have been output when building the precompiled header.  However,
13728 a precompiled header built using @option{-g} can be used in a compilation
13729 when no debugging information is being output.
13731 @item The same @option{-m} options must generally be used when building
13732 and using the precompiled header.  @xref{Submodel Options},
13733 for any cases where this rule is relaxed.
13735 @item Each of the following options must be the same when building and using
13736 the precompiled header:
13738 @gccoptlist{-fexceptions -funit-at-a-time}
13740 @item
13741 Some other command-line options starting with @option{-f},
13742 @option{-p}, or @option{-O} must be defined in the same way as when
13743 the precompiled header was generated.  At present, it's not clear
13744 which options are safe to change and which are not; the safest choice
13745 is to use exactly the same options when generating and using the
13746 precompiled header.  The following are known to be safe:
13748 @gccoptlist{-fmessage-length= -fpreprocessed
13749 -fsched-interblock -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
13750 -fsched-verbose=<number> -fschedule-insns -fvisibility=
13751 -pedantic-errors}
13753 @end itemize
13755 For all of these except the last, the compiler will automatically
13756 ignore the precompiled header if the conditions aren't met.  If you
13757 find an option combination that doesn't work and doesn't cause the
13758 precompiled header to be ignored, please consider filing a bug report,
13759 see @ref{Bugs}.
13761 If you do use differing options when generating and using the
13762 precompiled header, the actual behavior will be a mixture of the
13763 behavior for the options.  For instance, if you use @option{-g} to
13764 generate the precompiled header but not when using it, you may or may
13765 not get debugging information for routines in the precompiled header.
13767 @node Running Protoize
13768 @section Running Protoize
13770 The program @code{protoize} is an optional part of GCC@.  You can use
13771 it to add prototypes to a program, thus converting the program to ISO
13772 C in one respect.  The companion program @code{unprotoize} does the
13773 reverse: it removes argument types from any prototypes that are found.
13775 When you run these programs, you must specify a set of source files as
13776 command line arguments.  The conversion programs start out by compiling
13777 these files to see what functions they define.  The information gathered
13778 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
13780 After scanning comes actual conversion.  The specified files are all
13781 eligible to be converted; any files they include (whether sources or
13782 just headers) are eligible as well.
13784 But not all the eligible files are converted.  By default,
13785 @code{protoize} and @code{unprotoize} convert only source and header
13786 files in the current directory.  You can specify additional directories
13787 whose files should be converted with the @option{-d @var{directory}}
13788 option.  You can also specify particular files to exclude with the
13789 @option{-x @var{file}} option.  A file is converted if it is eligible, its
13790 directory name matches one of the specified directory names, and its
13791 name within the directory has not been excluded.
13793 Basic conversion with @code{protoize} consists of rewriting most
13794 function definitions and function declarations to specify the types of
13795 the arguments.  The only ones not rewritten are those for varargs
13796 functions.
13798 @code{protoize} optionally inserts prototype declarations at the
13799 beginning of the source file, to make them available for any calls that
13800 precede the function's definition.  Or it can insert prototype
13801 declarations with block scope in the blocks where undeclared functions
13802 are called.
13804 Basic conversion with @code{unprotoize} consists of rewriting most
13805 function declarations to remove any argument types, and rewriting
13806 function definitions to the old-style pre-ISO form.
13808 Both conversion programs print a warning for any function declaration or
13809 definition that they can't convert.  You can suppress these warnings
13810 with @option{-q}.
13812 The output from @code{protoize} or @code{unprotoize} replaces the
13813 original source file.  The original file is renamed to a name ending
13814 with @samp{.save} (for DOS, the saved filename ends in @samp{.sav}
13815 without the original @samp{.c} suffix).  If the @samp{.save} (@samp{.sav}
13816 for DOS) file already exists, then the source file is simply discarded.
13818 @code{protoize} and @code{unprotoize} both depend on GCC itself to
13819 scan the program and collect information about the functions it uses.
13820 So neither of these programs will work until GCC is installed.
13822 Here is a table of the options you can use with @code{protoize} and
13823 @code{unprotoize}.  Each option works with both programs unless
13824 otherwise stated.
13826 @table @code
13827 @item -B @var{directory}
13828 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
13829 usual directory (normally @file{/usr/local/lib}).  This file contains
13830 prototype information about standard system functions.  This option
13831 applies only to @code{protoize}.
13833 @item -c @var{compilation-options}
13834 Use @var{compilation-options} as the options when running @command{gcc} to
13835 produce the @samp{.X} files.  The special option @option{-aux-info} is
13836 always passed in addition, to tell @command{gcc} to write a @samp{.X} file.
13838 Note that the compilation options must be given as a single argument to
13839 @code{protoize} or @code{unprotoize}.  If you want to specify several
13840 @command{gcc} options, you must quote the entire set of compilation options
13841 to make them a single word in the shell.
13843 There are certain @command{gcc} arguments that you cannot use, because they
13844 would produce the wrong kind of output.  These include @option{-g},
13845 @option{-O}, @option{-c}, @option{-S}, and @option{-o} If you include these in
13846 the @var{compilation-options}, they are ignored.
13848 @item -C
13849 Rename files to end in @samp{.C} (@samp{.cc} for DOS-based file
13850 systems) instead of @samp{.c}.  This is convenient if you are converting
13851 a C program to C++.  This option applies only to @code{protoize}.
13853 @item -g
13854 Add explicit global declarations.  This means inserting explicit
13855 declarations at the beginning of each source file for each function
13856 that is called in the file and was not declared.  These declarations
13857 precede the first function definition that contains a call to an
13858 undeclared function.  This option applies only to @code{protoize}.
13860 @item -i @var{string}
13861 Indent old-style parameter declarations with the string @var{string}.
13862 This option applies only to @code{protoize}.
13864 @code{unprotoize} converts prototyped function definitions to old-style
13865 function definitions, where the arguments are declared between the
13866 argument list and the initial @samp{@{}.  By default, @code{unprotoize}
13867 uses five spaces as the indentation.  If you want to indent with just
13868 one space instead, use @option{-i " "}.
13870 @item -k
13871 Keep the @samp{.X} files.  Normally, they are deleted after conversion
13872 is finished.
13874 @item -l
13875 Add explicit local declarations.  @code{protoize} with @option{-l} inserts
13876 a prototype declaration for each function in each block which calls the
13877 function without any declaration.  This option applies only to
13878 @code{protoize}.
13880 @item -n
13881 Make no real changes.  This mode just prints information about the conversions
13882 that would have been done without @option{-n}.
13884 @item -N
13885 Make no @samp{.save} files.  The original files are simply deleted.
13886 Use this option with caution.
13888 @item -p @var{program}
13889 Use the program @var{program} as the compiler.  Normally, the name
13890 @file{gcc} is used.
13892 @item -q
13893 Work quietly.  Most warnings are suppressed.
13895 @item -v
13896 Print the version number, just like @option{-v} for @command{gcc}.
13897 @end table
13899 If you need special compiler options to compile one of your program's
13900 source files, then you should generate that file's @samp{.X} file
13901 specially, by running @command{gcc} on that source file with the
13902 appropriate options and the option @option{-aux-info}.  Then run
13903 @code{protoize} on the entire set of files.  @code{protoize} will use
13904 the existing @samp{.X} file because it is newer than the source file.
13905 For example:
13907 @smallexample
13908 gcc -Dfoo=bar file1.c -aux-info file1.X
13909 protoize *.c
13910 @end smallexample
13912 @noindent
13913 You need to include the special files along with the rest in the
13914 @code{protoize} command, even though their @samp{.X} files already
13915 exist, because otherwise they won't get converted.
13917 @xref{Protoize Caveats}, for more information on how to use
13918 @code{protoize} successfully.