* gimplify.c (nonlocal_vlas): Delete.
[official-gcc.git] / gcc / config / sparc / sparc.h
blob419995431e252a647be64db23dd69c19ea12386e
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config/vxworks-dummy.h"
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
30 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
31 /* #define SPARC_BI_ARCH */
33 /* Macro used later in this file to determine default architecture. */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37 architectures to compile for. We allow targets to choose compile time or
38 runtime selection. */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (!TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (!TARGET_ARCH32)
54 /* Code model selection in 64-bit environment.
56 The machine mode used for addresses is 32-bit wide:
58 TARGET_CM_32: 32-bit address space.
59 It is the code model used when generating 32-bit code.
61 The machine mode used for addresses is 64-bit wide:
63 TARGET_CM_MEDLOW: 32-bit address space.
64 The executable must be in the low 32 bits of memory.
65 This avoids generating %uhi and %ulo terms. Programs
66 can be statically or dynamically linked.
68 TARGET_CM_MEDMID: 44-bit address space.
69 The executable must be in the low 44 bits of memory,
70 and the %[hml]44 terms are used. The text and data
71 segments have a maximum size of 2GB (31-bit span).
72 The maximum offset from any instruction to the label
73 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
75 TARGET_CM_MEDANY: 64-bit address space.
76 The text and data segments have a maximum size of 2GB
77 (31-bit span) and may be located anywhere in memory.
78 The maximum offset from any instruction to the label
79 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
81 TARGET_CM_EMBMEDANY: 64-bit address space.
82 The text and data segments have a maximum size of 2GB
83 (31-bit span) and may be located anywhere in memory.
84 The global register %g4 contains the start address of
85 the data segment. Programs are statically linked and
86 PIC is not supported.
88 Different code models are not supported in 32-bit environment. */
90 enum cmodel {
91 CM_32,
92 CM_MEDLOW,
93 CM_MEDMID,
94 CM_MEDANY,
95 CM_EMBMEDANY
98 /* One of CM_FOO. */
99 extern enum cmodel sparc_cmodel;
101 /* V9 code model selection. */
102 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
107 #define SPARC_DEFAULT_CMODEL CM_32
109 /* Do not use the .note.GNU-stack convention by default. */
110 #define NEED_INDICATE_EXEC_STACK 0
112 /* This is call-clobbered in the normal ABI, but is reserved in the
113 home grown (aka upward compatible) embedded ABI. */
114 #define EMBMEDANY_BASE_REG "%g4"
116 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
117 and specified by the user via --with-cpu=foo.
118 This specifies the cpu implementation, not the architecture size. */
119 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
120 capable cpu's. */
121 #define TARGET_CPU_sparc 0
122 #define TARGET_CPU_v7 0 /* alias */
123 #define TARGET_CPU_cypress 0 /* alias */
124 #define TARGET_CPU_v8 1 /* generic v8 implementation */
125 #define TARGET_CPU_supersparc 2
126 #define TARGET_CPU_hypersparc 3
127 #define TARGET_CPU_leon 4
128 #define TARGET_CPU_leon3 5
129 #define TARGET_CPU_leon3v7 6
130 #define TARGET_CPU_sparclite 7
131 #define TARGET_CPU_f930 7 /* alias */
132 #define TARGET_CPU_f934 7 /* alias */
133 #define TARGET_CPU_sparclite86x 8
134 #define TARGET_CPU_sparclet 9
135 #define TARGET_CPU_tsc701 9 /* alias */
136 #define TARGET_CPU_v9 10 /* generic v9 implementation */
137 #define TARGET_CPU_sparcv9 10 /* alias */
138 #define TARGET_CPU_sparc64 10 /* alias */
139 #define TARGET_CPU_ultrasparc 11
140 #define TARGET_CPU_ultrasparc3 12
141 #define TARGET_CPU_niagara 13
142 #define TARGET_CPU_niagara2 14
143 #define TARGET_CPU_niagara3 15
144 #define TARGET_CPU_niagara4 16
145 #define TARGET_CPU_niagara7 19
146 #define TARGET_CPU_m8 20
148 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
149 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
150 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
152 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
153 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
154 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
155 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
156 || TARGET_CPU_DEFAULT == TARGET_CPU_m8
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
162 /* ??? What does Sun's CC pass? */
163 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
164 /* ??? It's not clear how other assemblers will handle this, so by default
165 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
166 is handled in sol2.h. */
167 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
168 #endif
169 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
172 #endif
173 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
174 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
175 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
176 #endif
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
178 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
179 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
180 #endif
181 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
182 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
183 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
184 #endif
185 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
186 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
187 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
188 #endif
189 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
190 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
191 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
192 #endif
193 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
194 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
195 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
196 #endif
197 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
198 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
199 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
200 #endif
202 #else
204 #define CPP_CPU64_DEFAULT_SPEC ""
205 #define ASM_CPU64_DEFAULT_SPEC ""
207 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
208 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
209 #define CPP_CPU32_DEFAULT_SPEC ""
210 #define ASM_CPU32_DEFAULT_SPEC ""
211 #endif
213 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
214 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
215 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
216 #endif
218 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
219 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
220 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
221 #endif
223 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
224 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
225 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
226 #endif
228 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
229 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
230 #define ASM_CPU32_DEFAULT_SPEC ""
231 #endif
233 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
234 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
235 #define ASM_CPU32_DEFAULT_SPEC ""
236 #endif
238 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
239 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
240 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
241 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
242 #endif
244 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
245 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
246 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
247 #endif
249 #endif
251 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
252 #error Unrecognized value in TARGET_CPU_DEFAULT.
253 #endif
255 #ifdef SPARC_BI_ARCH
257 #define CPP_CPU_DEFAULT_SPEC \
258 (DEFAULT_ARCH32_P ? "\
259 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
260 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
261 " : "\
262 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
263 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
265 #define ASM_CPU_DEFAULT_SPEC \
266 (DEFAULT_ARCH32_P ? "\
267 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
268 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
269 " : "\
270 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
271 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
274 #else /* !SPARC_BI_ARCH */
276 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
277 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
279 #endif /* !SPARC_BI_ARCH */
281 /* Define macros to distinguish architectures. */
283 /* Common CPP definitions used by CPP_SPEC amongst the various targets
284 for handling -mcpu=xxx switches. */
285 #define CPP_CPU_SPEC "\
286 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
287 %{mcpu=sparclite:-D__sparclite__} \
288 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
289 %{mcpu=sparclite86x:-D__sparclite86x__} \
290 %{mcpu=v8:-D__sparc_v8__} \
291 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
292 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
293 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
294 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
295 %{mcpu=leon3v7:-D__leon__} \
296 %{mcpu=v9:-D__sparc_v9__} \
297 %{mcpu=ultrasparc:-D__sparc_v9__} \
298 %{mcpu=ultrasparc3:-D__sparc_v9__} \
299 %{mcpu=niagara:-D__sparc_v9__} \
300 %{mcpu=niagara2:-D__sparc_v9__} \
301 %{mcpu=niagara3:-D__sparc_v9__} \
302 %{mcpu=niagara4:-D__sparc_v9__} \
303 %{mcpu=niagara7:-D__sparc_v9__} \
304 %{mcpu=m8:-D__sparc_v9__} \
305 %{!mcpu*:%(cpp_cpu_default)} \
307 #define CPP_ARCH32_SPEC ""
308 #define CPP_ARCH64_SPEC "-D__arch64__"
310 #define CPP_ARCH_DEFAULT_SPEC \
311 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
313 #define CPP_ARCH_SPEC "\
314 %{m32:%(cpp_arch32)} \
315 %{m64:%(cpp_arch64)} \
316 %{!m32:%{!m64:%(cpp_arch_default)}} \
319 /* Macros to distinguish the endianness, window model and FP support. */
320 #define CPP_OTHER_SPEC "\
321 %{mflat:-D_FLAT} \
322 %{msoft-float:-D_SOFT_FLOAT} \
325 /* Macros to distinguish the particular subtarget. */
326 #define CPP_SUBTARGET_SPEC ""
328 #define CPP_SPEC \
329 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
331 /* This used to translate -dalign to -malign, but that is no good
332 because it can't turn off the usual meaning of making debugging dumps. */
334 #define CC1_SPEC ""
336 /* Override in target specific files. */
337 #define ASM_CPU_SPEC "\
338 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
339 %{mcpu=sparclite:-Asparclite} \
340 %{mcpu=sparclite86x:-Asparclite} \
341 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
342 %{mcpu=v8:-Av8} \
343 %{mcpu=supersparc:-Av8} \
344 %{mcpu=hypersparc:-Av8} \
345 %{mcpu=leon:" AS_LEON_FLAG "} \
346 %{mcpu=leon3:" AS_LEON_FLAG "} \
347 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
348 %{mv8plus:-Av8plus} \
349 %{mcpu=v9:-Av9} \
350 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
351 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
352 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
353 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
354 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
355 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
356 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
357 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
358 %{!mcpu*:%(asm_cpu_default)} \
361 /* Word size selection, among other things.
362 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
364 #define ASM_ARCH32_SPEC "-32"
365 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
366 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
367 #else
368 #define ASM_ARCH64_SPEC "-64"
369 #endif
370 #define ASM_ARCH_DEFAULT_SPEC \
371 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
373 #define ASM_ARCH_SPEC "\
374 %{m32:%(asm_arch32)} \
375 %{m64:%(asm_arch64)} \
376 %{!m32:%{!m64:%(asm_arch_default)}} \
379 #ifdef HAVE_AS_RELAX_OPTION
380 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
381 #else
382 #define ASM_RELAX_SPEC ""
383 #endif
385 /* Special flags to the Sun-4 assembler when using pipe for input. */
387 #define ASM_SPEC "\
388 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
389 %(asm_cpu) %(asm_relax)"
391 /* This macro defines names of additional specifications to put in the specs
392 that can be used in various specifications like CC1_SPEC. Its definition
393 is an initializer with a subgrouping for each command option.
395 Each subgrouping contains a string constant, that defines the
396 specification name, and a string constant that used by the GCC driver
397 program.
399 Do not define this macro if it does not need to do anything. */
401 #define EXTRA_SPECS \
402 { "cpp_cpu", CPP_CPU_SPEC }, \
403 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
404 { "cpp_arch32", CPP_ARCH32_SPEC }, \
405 { "cpp_arch64", CPP_ARCH64_SPEC }, \
406 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
407 { "cpp_arch", CPP_ARCH_SPEC }, \
408 { "cpp_other", CPP_OTHER_SPEC }, \
409 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
410 { "asm_cpu", ASM_CPU_SPEC }, \
411 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
412 { "asm_arch32", ASM_ARCH32_SPEC }, \
413 { "asm_arch64", ASM_ARCH64_SPEC }, \
414 { "asm_relax", ASM_RELAX_SPEC }, \
415 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
416 { "asm_arch", ASM_ARCH_SPEC }, \
417 SUBTARGET_EXTRA_SPECS
419 #define SUBTARGET_EXTRA_SPECS
421 /* Because libgcc can generate references back to libc (via .umul etc.) we have
422 to list libc again after the second libgcc. */
423 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
426 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
427 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
429 /* ??? This should be 32 bits for v9 but what can we do? */
430 #define WCHAR_TYPE "short unsigned int"
431 #define WCHAR_TYPE_SIZE 16
433 /* Mask of all CPU selection flags. */
434 #define MASK_ISA \
435 (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3 \
436 + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
438 /* Mask of all CPU feature flags. */
439 #define MASK_FEATURES \
440 (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3 \
441 + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD \
442 + MASK_POPC + MASK_SUBXC)
444 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y. */
445 #define TARGET_HARD_MUL \
446 (TARGET_SPARCLITE || TARGET_SPARCLET \
447 || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
449 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
450 to get high 32 bits. False in 64-bit or V8+ because multiply stores
451 a 64-bit result in a register. */
452 #define TARGET_HARD_MUL32 \
453 (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
455 /* MASK_APP_REGS must always be the default because that's what
456 FIXED_REGISTERS is set to and -ffixed- is processed before
457 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
458 -mno-app-regs). */
459 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
461 /* Recast the cpu class to be the cpu attribute.
462 Every file includes us, but not every file includes insn-attr.h. */
463 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
465 /* Support for a compile-time default CPU, et cetera. The rules are:
466 --with-cpu is ignored if -mcpu is specified.
467 --with-tune is ignored if -mtune is specified.
468 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
469 are specified. */
470 #define OPTION_DEFAULT_SPECS \
471 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
472 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
473 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
475 /* target machine storage layout */
477 /* Define this if most significant bit is lowest numbered
478 in instructions that operate on numbered bit-fields. */
479 #define BITS_BIG_ENDIAN 1
481 /* Define this if most significant byte of a word is the lowest numbered. */
482 #define BYTES_BIG_ENDIAN 1
484 /* Define this if most significant word of a multiword number is the lowest
485 numbered. */
486 #define WORDS_BIG_ENDIAN 1
488 #define MAX_BITS_PER_WORD 64
490 /* Width of a word, in units (bytes). */
491 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
492 #ifdef IN_LIBGCC2
493 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
494 #else
495 #define MIN_UNITS_PER_WORD 4
496 #endif
498 /* Now define the sizes of the C data types. */
499 #define SHORT_TYPE_SIZE 16
500 #define INT_TYPE_SIZE 32
501 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
502 #define LONG_LONG_TYPE_SIZE 64
503 #define FLOAT_TYPE_SIZE 32
504 #define DOUBLE_TYPE_SIZE 64
506 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
507 SPARC ABI says that it is 128-bit wide. */
508 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
510 /* The widest floating-point format really supported by the hardware. */
511 #define WIDEST_HARDWARE_FP_SIZE 64
513 /* Width in bits of a pointer. This is the size of ptr_mode. */
514 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
516 /* This is the machine mode used for addresses. */
517 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
519 /* If we have to extend pointers (only when TARGET_ARCH64 and not
520 TARGET_PTR64), we want to do it unsigned. This macro does nothing
521 if ptr_mode and Pmode are the same. */
522 #define POINTERS_EXTEND_UNSIGNED 1
524 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
525 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
527 /* Boundary (in *bits*) on which stack pointer should be aligned. */
528 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
529 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
530 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
532 /* Temporary hack until the FIXME above is fixed. */
533 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
535 /* ALIGN FRAMES on double word boundaries */
536 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
538 /* Allocation boundary (in *bits*) for the code of a function. */
539 #define FUNCTION_BOUNDARY 32
541 /* Alignment of field after `int : 0' in a structure. */
542 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
544 /* Every structure's size must be a multiple of this. */
545 #define STRUCTURE_SIZE_BOUNDARY 8
547 /* A bit-field declared as `int' forces `int' alignment for the struct. */
548 #define PCC_BITFIELD_TYPE_MATTERS 1
550 /* No data type wants to be aligned rounder than this. */
551 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
553 /* The best alignment to use in cases where we have a choice. */
554 #define FASTEST_ALIGNMENT 64
556 /* Define this macro as an expression for the alignment of a structure
557 (given by STRUCT as a tree node) if the alignment computed in the
558 usual way is COMPUTED and the alignment explicitly specified was
559 SPECIFIED.
561 The default is to use SPECIFIED if it is larger; otherwise, use
562 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
563 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
564 (TARGET_FASTER_STRUCTS ? \
565 ((TREE_CODE (STRUCT) == RECORD_TYPE \
566 || TREE_CODE (STRUCT) == UNION_TYPE \
567 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
568 && TYPE_FIELDS (STRUCT) != 0 \
569 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
570 : MAX ((COMPUTED), (SPECIFIED))) \
571 : MAX ((COMPUTED), (SPECIFIED)))
573 /* An integer expression for the size in bits of the largest integer machine
574 mode that should actually be used. We allow pairs of registers. */
575 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
577 /* We need 2 words, so we can save the stack pointer and the return register
578 of the function containing a non-local goto target. */
579 #define STACK_SAVEAREA_MODE(LEVEL) \
580 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
582 /* Make arrays of chars word-aligned for the same reasons. */
583 #define DATA_ALIGNMENT(TYPE, ALIGN) \
584 (TREE_CODE (TYPE) == ARRAY_TYPE \
585 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
586 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
588 /* Make local arrays of chars word-aligned for the same reasons. */
589 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
591 /* Set this nonzero if move instructions will actually fail to work
592 when given unaligned data. */
593 #define STRICT_ALIGNMENT 1
595 /* Things that must be doubleword aligned cannot go in the text section,
596 because the linker fails to align the text section enough!
597 Put them in the data section. This macro is only used in this file. */
598 #define MAX_TEXT_ALIGN 32
600 /* Standard register usage. */
602 /* Number of actual hardware registers.
603 The hardware registers are assigned numbers for the compiler
604 from 0 to just below FIRST_PSEUDO_REGISTER.
605 All registers that the compiler knows about must be given numbers,
606 even those that are not normally considered general registers.
608 SPARC has 32 integer registers and 32 floating point registers.
609 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
610 accessible. We still account for them to simplify register computations
611 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
612 32+32+32+4 == 100.
613 Register 100 is used as the integer condition code register.
614 Register 101 is used as the soft frame pointer register.
615 Register 102 is used as the general status register by VIS instructions. */
617 #define FIRST_PSEUDO_REGISTER 103
619 #define SPARC_FIRST_INT_REG 0
620 #define SPARC_LAST_INT_REG 31
621 #define SPARC_FIRST_FP_REG 32
622 /* Additional V9 fp regs. */
623 #define SPARC_FIRST_V9_FP_REG 64
624 #define SPARC_LAST_V9_FP_REG 95
625 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
626 #define SPARC_FIRST_V9_FCC_REG 96
627 #define SPARC_LAST_V9_FCC_REG 99
628 /* V8 fcc reg. */
629 #define SPARC_FCC_REG 96
630 /* Integer CC reg. We don't distinguish %icc from %xcc. */
631 #define SPARC_ICC_REG 100
632 #define SPARC_GSR_REG 102
634 /* Nonzero if REGNO is an fp reg. */
635 #define SPARC_FP_REG_P(REGNO) \
636 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
638 /* Nonzero if REGNO is an int reg. */
639 #define SPARC_INT_REG_P(REGNO) \
640 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
642 /* Argument passing regs. */
643 #define SPARC_OUTGOING_INT_ARG_FIRST 8
644 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
645 #define SPARC_FP_ARG_FIRST 32
647 /* 1 for registers that have pervasive standard uses
648 and are not available for the register allocator.
650 On non-v9 systems:
651 g1 is free to use as temporary.
652 g2-g4 are reserved for applications. Gcc normally uses them as
653 temporaries, but this can be disabled via the -mno-app-regs option.
654 g5 through g7 are reserved for the operating system.
656 On v9 systems:
657 g1,g5 are free to use as temporaries, and are free to use between calls
658 if the call is to an external function via the PLT.
659 g4 is free to use as a temporary in the non-embedded case.
660 g4 is reserved in the embedded case.
661 g2-g3 are reserved for applications. Gcc normally uses them as
662 temporaries, but this can be disabled via the -mno-app-regs option.
663 g6-g7 are reserved for the operating system (or application in
664 embedded case).
665 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
666 currently be a fixed register until this pattern is rewritten.
667 Register 1 is also used when restoring call-preserved registers in large
668 stack frames.
670 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
671 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
674 #define FIXED_REGISTERS \
675 {1, 0, 2, 2, 2, 2, 1, 1, \
676 0, 0, 0, 0, 0, 0, 1, 0, \
677 0, 0, 0, 0, 0, 0, 0, 0, \
678 0, 0, 0, 0, 0, 0, 0, 1, \
680 0, 0, 0, 0, 0, 0, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 0, \
682 0, 0, 0, 0, 0, 0, 0, 0, \
683 0, 0, 0, 0, 0, 0, 0, 0, \
685 0, 0, 0, 0, 0, 0, 0, 0, \
686 0, 0, 0, 0, 0, 0, 0, 0, \
687 0, 0, 0, 0, 0, 0, 0, 0, \
688 0, 0, 0, 0, 0, 0, 0, 0, \
690 0, 0, 0, 0, 1, 1, 1}
692 /* 1 for registers not available across function calls.
693 These must include the FIXED_REGISTERS and also any
694 registers that can be used without being saved.
695 The latter must include the registers where values are returned
696 and the register where structure-value addresses are passed.
697 Aside from that, you can include as many other registers as you like. */
699 #define CALL_USED_REGISTERS \
700 {1, 1, 1, 1, 1, 1, 1, 1, \
701 1, 1, 1, 1, 1, 1, 1, 1, \
702 0, 0, 0, 0, 0, 0, 0, 0, \
703 0, 0, 0, 0, 0, 0, 0, 1, \
705 1, 1, 1, 1, 1, 1, 1, 1, \
706 1, 1, 1, 1, 1, 1, 1, 1, \
707 1, 1, 1, 1, 1, 1, 1, 1, \
708 1, 1, 1, 1, 1, 1, 1, 1, \
710 1, 1, 1, 1, 1, 1, 1, 1, \
711 1, 1, 1, 1, 1, 1, 1, 1, \
712 1, 1, 1, 1, 1, 1, 1, 1, \
713 1, 1, 1, 1, 1, 1, 1, 1, \
715 1, 1, 1, 1, 1, 1, 1}
717 /* 1 for registers not available across function calls.
718 Unlike the above, this need not include the FIXED_REGISTERS, but any
719 registers that can be used without being saved.
720 The latter must include the registers where values are returned
721 and the register where structure-value addresses are passed.
722 Aside from that, you can include as many other registers as you like. */
724 #define CALL_REALLY_USED_REGISTERS \
725 {1, 1, 1, 1, 1, 1, 1, 1, \
726 1, 1, 1, 1, 1, 1, 1, 1, \
727 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, \
730 1, 1, 1, 1, 1, 1, 1, 1, \
731 1, 1, 1, 1, 1, 1, 1, 1, \
732 1, 1, 1, 1, 1, 1, 1, 1, \
733 1, 1, 1, 1, 1, 1, 1, 1, \
735 1, 1, 1, 1, 1, 1, 1, 1, \
736 1, 1, 1, 1, 1, 1, 1, 1, \
737 1, 1, 1, 1, 1, 1, 1, 1, \
738 1, 1, 1, 1, 1, 1, 1, 1, \
740 1, 1, 1, 1, 1, 1, 1}
742 /* Due to the ARCH64 discrepancy above we must override this next
743 macro too. */
744 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
746 /* Value is 1 if it is OK to rename a hard register FROM to another hard
747 register TO. We cannot rename %g1 as it may be used before the save
748 register window instruction in the prologue. */
749 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
751 /* Specify the registers used for certain standard purposes.
752 The values of these macros are register numbers. */
754 /* Register to use for pushing function arguments. */
755 #define STACK_POINTER_REGNUM 14
757 /* The stack bias (amount by which the hardware register is offset by). */
758 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
760 /* Actual top-of-stack address is 92/176 greater than the contents of the
761 stack pointer register for !v9/v9. That is:
762 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
763 address, and 6*4 bytes for the 6 register parameters.
764 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
765 parameter regs. */
766 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
768 /* Base register for access to local variables of the function. */
769 #define HARD_FRAME_POINTER_REGNUM 30
771 /* The soft frame pointer does not have the stack bias applied. */
772 #define FRAME_POINTER_REGNUM 101
774 #define INIT_EXPANDERS \
775 do { \
776 if (crtl->emit.regno_pointer_align) \
778 /* The biased stack pointer is only aligned on BITS_PER_UNIT. */\
779 if (SPARC_STACK_BIAS) \
781 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) \
782 = BITS_PER_UNIT; \
783 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) \
784 = BITS_PER_UNIT; \
787 /* In 32-bit mode, not everything is double-word aligned. */ \
788 if (TARGET_ARCH32) \
790 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) \
791 = BITS_PER_WORD; \
792 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) \
793 = BITS_PER_WORD; \
794 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) \
795 = BITS_PER_WORD; \
798 } while (0)
800 /* Base register for access to arguments of the function. */
801 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
803 /* Register in which static-chain is passed to a function. This must
804 not be a register used by the prologue. */
805 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
807 /* Register which holds the global offset table, if any. */
809 #define GLOBAL_OFFSET_TABLE_REGNUM 23
811 /* Register which holds offset table for position-independent data references.
812 The original SPARC ABI imposes no requirement on the choice of the register
813 so we use a pseudo-register to make sure it is properly saved and restored
814 around calls to setjmp. Now the ABI of VxWorks RTP makes it live on entry
815 to PLT entries so we use the canonical GOT register in this case. */
817 #define PIC_OFFSET_TABLE_REGNUM \
818 (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
820 /* Pick a default value we can notice from override_options:
821 !v9: Default is on.
822 v9: Default is off.
823 Originally it was -1, but later on the container of options changed to
824 unsigned byte, so we decided to pick 127 as default value, which does
825 reflect an undefined default value in case of 0/1. */
827 #define DEFAULT_PCC_STRUCT_RETURN 127
829 /* Functions which return large structures get the address
830 to place the wanted value at offset 64 from the frame.
831 Must reserve 64 bytes for the in and local registers.
832 v9: Functions which return large structures get the address to place the
833 wanted value from an invisible first argument. */
834 #define STRUCT_VALUE_OFFSET 64
836 /* Define the classes of registers for register constraints in the
837 machine description. Also define ranges of constants.
839 One of the classes must always be named ALL_REGS and include all hard regs.
840 If there is more than one class, another class must be named NO_REGS
841 and contain no registers.
843 The name GENERAL_REGS must be the name of a class (or an alias for
844 another name such as ALL_REGS). This is the class of registers
845 that is allowed by "g" or "r" in a register constraint.
846 Also, registers outside this class are allocated only when
847 instructions express preferences for them.
849 The classes must be numbered in nondecreasing order; that is,
850 a larger-numbered class must never be contained completely
851 in a smaller-numbered class.
853 For any two classes, it is very desirable that there be another
854 class that represents their union. */
856 /* The SPARC has various kinds of registers: general, floating point,
857 and condition codes [well, it has others as well, but none that we
858 care directly about].
860 For v9 we must distinguish between the upper and lower floating point
861 registers because the upper ones can't hold SFmode values.
862 TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
863 register(s) satisfying a group need for a class will also satisfy a
864 single need for that class. EXTRA_FP_REGS is a bit of a misnomer as
865 it covers all 64 fp regs.
867 It is important that one class contains all the general and all the standard
868 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
869 because reg_class_record() will bias the selection in favor of fp regs,
870 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
871 because FP_REGS > GENERAL_REGS.
873 It is also important that one class contain all the general and all
874 the fp regs. Otherwise when spilling a DFmode reg, it may be from
875 EXTRA_FP_REGS but find_reloads() may use class
876 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
877 because the compiler thinks it doesn't have a spill reg when in
878 fact it does.
880 v9 also has 4 floating point condition code registers. Since we don't
881 have a class that is the union of FPCC_REGS with either of the others,
882 it is important that it appear first. Otherwise the compiler will die
883 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
884 constraints. */
886 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
887 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
888 ALL_REGS, LIM_REG_CLASSES };
890 #define N_REG_CLASSES (int) LIM_REG_CLASSES
892 /* Give names of register classes as strings for dump file. */
894 #define REG_CLASS_NAMES \
895 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
896 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
897 "ALL_REGS" }
899 /* Define which registers fit in which classes.
900 This is an initializer for a vector of HARD_REG_SET
901 of length N_REG_CLASSES. */
903 #define REG_CLASS_CONTENTS \
904 {{0, 0, 0, 0}, /* NO_REGS */ \
905 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
906 {0xffff, 0, 0, 0}, /* I64_REGS */ \
907 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
908 {0, -1, 0, 0}, /* FP_REGS */ \
909 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
910 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
911 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
912 {-1, -1, -1, 0x7f}} /* ALL_REGS */
914 /* The same information, inverted:
915 Return the class number of the smallest class containing
916 reg number REGNO. This could be a conditional expression
917 or could index an array. */
919 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
921 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
923 /* This is the order in which to allocate registers normally.
925 We put %f0-%f7 last among the float registers, so as to make it more
926 likely that a pseudo-register which dies in the float return register
927 area will get allocated to the float return register, thus saving a move
928 instruction at the end of the function.
930 Similarly for integer return value registers.
932 We know in this case that we will not end up with a leaf function.
934 The register allocator is given the global and out registers first
935 because these registers are call clobbered and thus less useful to
936 global register allocation.
938 Next we list the local and in registers. They are not call clobbered
939 and thus very useful for global register allocation. We list the input
940 registers before the locals so that it is more likely the incoming
941 arguments received in those registers can just stay there and not be
942 reloaded. */
944 #define REG_ALLOC_ORDER \
945 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
946 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
947 15, /* %o7 */ \
948 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
949 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
950 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
951 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
952 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
953 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
954 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
955 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
956 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
957 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
958 96, 97, 98, 99, /* %fcc0-3 */ \
959 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
961 /* This is the order in which to allocate registers for
962 leaf functions. If all registers can fit in the global and
963 output registers, then we have the possibility of having a leaf
964 function.
966 The macro actually mentioned the input registers first,
967 because they get renumbered into the output registers once
968 we know really do have a leaf function.
970 To be more precise, this register allocation order is used
971 when %o7 is found to not be clobbered right before register
972 allocation. Normally, the reason %o7 would be clobbered is
973 due to a call which could not be transformed into a sibling
974 call.
976 As a consequence, it is possible to use the leaf register
977 allocation order and not end up with a leaf function. We will
978 not get suboptimal register allocation in that case because by
979 definition of being potentially leaf, there were no function
980 calls. Therefore, allocation order within the local register
981 window is not critical like it is when we do have function calls. */
983 #define REG_LEAF_ALLOC_ORDER \
984 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
985 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
986 15, /* %o7 */ \
987 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
988 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
989 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
990 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
991 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
992 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
993 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
994 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
995 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
996 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
997 96, 97, 98, 99, /* %fcc0-3 */ \
998 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1000 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1002 extern char sparc_leaf_regs[];
1003 #define LEAF_REGISTERS sparc_leaf_regs
1005 extern char leaf_reg_remap[];
1006 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1008 /* The class value for index registers, and the one for base regs. */
1009 #define INDEX_REG_CLASS GENERAL_REGS
1010 #define BASE_REG_CLASS GENERAL_REGS
1012 /* Local macro to handle the two v9 classes of FP regs. */
1013 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1015 /* Predicate for 2-bit and 5-bit unsigned constants. */
1016 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
1017 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F) == 0)
1019 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants. */
1020 #define SPARC_SIMM5_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1021 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1022 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1023 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1025 /* 10- and 11-bit immediates are only used for a few specific insns.
1026 SMALL_INT is used throughout the port so we continue to use it. */
1027 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1029 /* Predicate for constants that can be loaded with a sethi instruction.
1030 This is the general, 64-bit aware, bitwise version that ensures that
1031 only constants whose representation fits in the mask
1033 0x00000000fffffc00
1035 are accepted. It will reject, for example, negative SImode constants
1036 on 64-bit hosts, so correct handling is to mask the value beforehand
1037 according to the mode of the instruction. */
1038 #define SPARC_SETHI_P(X) \
1039 (((unsigned HOST_WIDE_INT) (X) \
1040 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1042 /* Version of the above predicate for SImode constants and below. */
1043 #define SPARC_SETHI32_P(X) \
1044 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1046 /* Return the maximum number of consecutive registers
1047 needed to represent mode MODE in a register of class CLASS. */
1048 /* On SPARC, this is the size of MODE in words. */
1049 #define CLASS_MAX_NREGS(CLASS, MODE) \
1050 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1051 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1053 /* Stack layout; function entry, exit and calling. */
1055 /* Define this if pushing a word on the stack
1056 makes the stack pointer a smaller address. */
1057 #define STACK_GROWS_DOWNWARD 1
1059 /* Define this to nonzero if the nominal address of the stack frame
1060 is at the high-address end of the local variables;
1061 that is, each additional local variable allocated
1062 goes at a more negative offset in the frame. */
1063 #define FRAME_GROWS_DOWNWARD 1
1065 /* Offset of first parameter from the argument pointer register value.
1066 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1067 even if this function isn't going to use it.
1068 v9: This is 128 for the ins and locals. */
1069 #define FIRST_PARM_OFFSET(FNDECL) \
1070 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1072 /* Offset from the argument pointer register value to the CFA.
1073 This is different from FIRST_PARM_OFFSET because the register window
1074 comes between the CFA and the arguments. */
1075 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1077 /* When a parameter is passed in a register, stack space is still
1078 allocated for it.
1079 !v9: All 6 possible integer registers have backing store allocated.
1080 v9: Only space for the arguments passed is allocated. */
1081 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1082 meaning to the backend. Further, we need to be able to detect if a
1083 varargs/unprototyped function is called, as they may want to spill more
1084 registers than we've provided space. Ugly, ugly. So for now we retain
1085 all 6 slots even for v9. */
1086 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1088 /* Definitions for register elimination. */
1090 #define ELIMINABLE_REGS \
1091 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1092 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1094 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1095 do \
1097 (OFFSET) = sparc_initial_elimination_offset ((TO)); \
1099 while (0)
1101 /* Keep the stack pointer constant throughout the function.
1102 This is both an optimization and a necessity: longjmp
1103 doesn't behave itself when the stack pointer moves within
1104 the function! */
1105 #define ACCUMULATE_OUTGOING_ARGS 1
1107 /* Define this macro if the target machine has "register windows". This
1108 C expression returns the register number as seen by the called function
1109 corresponding to register number OUT as seen by the calling function.
1110 Return OUT if register number OUT is not an outbound register. */
1112 #define INCOMING_REGNO(OUT) \
1113 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1115 /* Define this macro if the target machine has "register windows". This
1116 C expression returns the register number as seen by the calling function
1117 corresponding to register number IN as seen by the called function.
1118 Return IN if register number IN is not an inbound register. */
1120 #define OUTGOING_REGNO(IN) \
1121 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1123 /* Define this macro if the target machine has register windows. This
1124 C expression returns true if the register is call-saved but is in the
1125 register window. */
1127 #define LOCAL_REGNO(REGNO) \
1128 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1130 /* Define the size of space to allocate for the return value of an
1131 untyped_call. */
1133 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1135 /* 1 if N is a possible register number for function argument passing.
1136 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1138 #define FUNCTION_ARG_REGNO_P(N) \
1139 (((N) >= 8 && (N) <= 13) \
1140 || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1142 /* Define a data type for recording info about an argument list
1143 during the scan of that argument list. This data type should
1144 hold all necessary information about the function itself
1145 and about the args processed so far, enough to enable macros
1146 such as FUNCTION_ARG to determine where the next arg should go.
1148 On SPARC (!v9), this is a single integer, which is a number of words
1149 of arguments scanned so far (including the invisible argument,
1150 if any, which holds the structure-value-address).
1151 Thus 7 or more means all following args should go on the stack.
1153 For v9, we also need to know whether a prototype is present. */
1155 struct sparc_args {
1156 int words; /* number of words passed so far */
1157 int prototype_p; /* nonzero if a prototype is present */
1158 int libcall_p; /* nonzero if a library call */
1160 #define CUMULATIVE_ARGS struct sparc_args
1162 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1163 for a call to a function whose data type is FNTYPE.
1164 For a library call, FNTYPE is 0. */
1166 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1167 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1170 /* Generate the special assembly code needed to tell the assembler whatever
1171 it might need to know about the return value of a function.
1173 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1174 information to the assembler relating to peephole optimization (done in
1175 the assembler). */
1177 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1178 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1180 /* Output the special assembly code needed to tell the assembler some
1181 register is used as global register variable.
1183 SPARC 64bit psABI declares registers %g2 and %g3 as application
1184 registers and %g6 and %g7 as OS registers. Any object using them
1185 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1186 and how they are used (scratch or some global variable).
1187 Linker will then refuse to link together objects which use those
1188 registers incompatibly.
1190 Unless the registers are used for scratch, two different global
1191 registers cannot be declared to the same name, so in the unlikely
1192 case of a global register variable occupying more than one register
1193 we prefix the second and following registers with .gnu.part1. etc. */
1195 extern GTY(()) char sparc_hard_reg_printed[8];
1197 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1198 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1199 do { \
1200 if (TARGET_ARCH64) \
1202 int end = end_hard_regno (DECL_MODE (decl), REGNO); \
1203 int reg; \
1204 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1205 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1207 if (reg == (REGNO)) \
1208 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1209 else \
1210 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1211 reg, reg - (REGNO), (NAME)); \
1212 sparc_hard_reg_printed[reg] = 1; \
1215 } while (0)
1216 #endif
1219 /* Emit rtl for profiling. */
1220 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1222 /* All the work done in PROFILE_HOOK, but still required. */
1223 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1225 /* Set the name of the mcount function for the system. */
1226 #define MCOUNT_FUNCTION "*mcount"
1228 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1229 the stack pointer does not matter. The value is tested only in
1230 functions that have frame pointers. */
1231 #define EXIT_IGNORE_STACK 1
1233 /* Length in units of the trampoline for entering a nested function. */
1234 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1236 /* Alignment required for trampolines, in bits. */
1237 #define TRAMPOLINE_ALIGNMENT 128
1239 /* Generate RTL to flush the register windows so as to make arbitrary frames
1240 available. */
1241 #define SETUP_FRAME_ADDRESSES() \
1242 do { \
1243 if (!TARGET_FLAT) \
1244 emit_insn (gen_flush_register_windows ());\
1245 } while (0)
1247 /* Given an rtx for the address of a frame,
1248 return an rtx for the address of the word in the frame
1249 that holds the dynamic chain--the previous frame's address. */
1250 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1251 plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1253 /* Given an rtx for the frame pointer,
1254 return an rtx for the address of the frame. */
1255 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1257 /* The return address isn't on the stack, it is in a register, so we can't
1258 access it from the current frame pointer. We can access it from the
1259 previous frame pointer though by reading a value from the register window
1260 save area. */
1261 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1263 /* This is the offset of the return address to the true next instruction to be
1264 executed for the current function. */
1265 #define RETURN_ADDR_OFFSET \
1266 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1268 /* The current return address is in %i7. The return address of anything
1269 farther back is in the register window save area at [%fp+60]. */
1270 /* ??? This ignores the fact that the actual return address is +8 for normal
1271 returns, and +12 for structure returns. */
1272 #define RETURN_ADDR_REGNUM 31
1273 #define RETURN_ADDR_RTX(count, frame) \
1274 ((count == -1) \
1275 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1276 : gen_rtx_MEM (Pmode, \
1277 memory_address (Pmode, plus_constant (Pmode, frame, \
1278 15 * UNITS_PER_WORD \
1279 + SPARC_STACK_BIAS))))
1281 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1282 +12, but always using +8 is close enough for frame unwind purposes.
1283 Actually, just using %o7 is close enough for unwinding, but %o7+8
1284 is something you can return to. */
1285 #define INCOMING_RETURN_ADDR_REGNUM 15
1286 #define INCOMING_RETURN_ADDR_RTX \
1287 plus_constant (word_mode, \
1288 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1289 #define DWARF_FRAME_RETURN_COLUMN \
1290 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1292 /* The offset from the incoming value of %sp to the top of the stack frame
1293 for the current function. On sparc64, we have to account for the stack
1294 bias if present. */
1295 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1297 /* Describe how we implement __builtin_eh_return. */
1298 #define EH_RETURN_REGNUM 1
1299 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1300 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1302 /* Define registers used by the epilogue and return instruction. */
1303 #define EPILOGUE_USES(REGNO) \
1304 ((REGNO) == RETURN_ADDR_REGNUM \
1305 || (TARGET_FLAT \
1306 && epilogue_completed \
1307 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1308 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1310 /* Select a format to encode pointers in exception handling data. CODE
1311 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1312 true if the symbol may be affected by dynamic relocations.
1314 If assembler and linker properly support .uaword %r_disp32(foo),
1315 then use PC relative 32-bit relocations instead of absolute relocs
1316 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1317 for binaries, to save memory.
1319 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1320 symbol %r_disp32() is against was not local, but .hidden. In that
1321 case, we have to use DW_EH_PE_absptr for pic personality. */
1322 #ifdef HAVE_AS_SPARC_UA_PCREL
1323 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1324 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1325 (flag_pic \
1326 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1327 : ((TARGET_ARCH64 && ! GLOBAL) \
1328 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1329 : DW_EH_PE_absptr))
1330 #else
1331 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1332 (flag_pic \
1333 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1334 : ((TARGET_ARCH64 && ! GLOBAL) \
1335 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1336 : DW_EH_PE_absptr))
1337 #endif
1339 /* Emit a PC-relative relocation. */
1340 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1341 do { \
1342 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1343 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1344 assemble_name (FILE, LABEL); \
1345 fputc (')', FILE); \
1346 } while (0)
1347 #endif
1349 /* Addressing modes, and classification of registers for them. */
1351 /* Macros to check register numbers against specific register classes. */
1353 /* These assume that REGNO is a hard or pseudo reg number.
1354 They give nonzero only if REGNO is a hard reg of the suitable class
1355 or a pseudo reg currently allocated to a suitable hard reg.
1356 Since they use reg_renumber, they are safe only once reg_renumber
1357 has been allocated, which happens in reginfo.c during register
1358 allocation. */
1360 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1361 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1362 || (REGNO) == FRAME_POINTER_REGNUM \
1363 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1365 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1367 #define REGNO_OK_FOR_FP_P(REGNO) \
1368 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1369 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1371 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1372 (TARGET_V9 \
1373 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1374 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1376 /* Maximum number of registers that can appear in a valid memory address. */
1378 #define MAX_REGS_PER_ADDRESS 2
1380 /* Recognize any constant value that is a valid address.
1381 When PIC, we do not accept an address that would require a scratch reg
1382 to load into a register. */
1384 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1386 /* Define this, so that when PIC, reload won't try to reload invalid
1387 addresses which require two reload registers. */
1389 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1391 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1393 #ifdef HAVE_AS_OFFSETABLE_LO10
1394 #define USE_AS_OFFSETABLE_LO10 1
1395 #else
1396 #define USE_AS_OFFSETABLE_LO10 0
1397 #endif
1399 /* Try a machine-dependent way of reloading an illegitimate address
1400 operand. If we find one, push the reload and jump to WIN. This
1401 macro is used in only one place: `find_reloads_address' in reload.c. */
1402 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1403 do { \
1404 int win; \
1405 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1406 (int)(TYPE), (IND_LEVELS), &win); \
1407 if (win) \
1408 goto WIN; \
1409 } while (0)
1411 /* Specify the machine mode that this machine uses
1412 for the index in the tablejump instruction. */
1413 /* If we ever implement any of the full models (such as CM_FULLANY),
1414 this has to be DImode in that case */
1415 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1416 #define CASE_VECTOR_MODE \
1417 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1418 #else
1419 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1420 we have to sign extend which slows things down. */
1421 #define CASE_VECTOR_MODE \
1422 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1423 #endif
1425 /* Define this as 1 if `char' should by default be signed; else as 0. */
1426 #define DEFAULT_SIGNED_CHAR 1
1428 /* Max number of bytes we can move from memory to memory
1429 in one reasonably fast instruction. */
1430 #define MOVE_MAX 8
1432 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1433 move-instruction pairs, we will do a movmem or libcall instead. */
1435 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1437 /* Define if operations between registers always perform the operation
1438 on the full register even if a narrower mode is specified. */
1439 #define WORD_REGISTER_OPERATIONS 1
1441 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1442 will either zero-extend or sign-extend. The value of this macro should
1443 be the code that says which one of the two operations is implicitly
1444 done, UNKNOWN if none. */
1445 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1447 /* Nonzero if access to memory by bytes is slow and undesirable.
1448 For RISC chips, it means that access to memory by bytes is no
1449 better than access by words when possible, so grab a whole word
1450 and maybe make use of that. */
1451 #define SLOW_BYTE_ACCESS 1
1453 /* Define this to be nonzero if shift instructions ignore all but the low-order
1454 few bits. */
1455 #define SHIFT_COUNT_TRUNCATED 1
1457 /* For SImode, we make sure the top 32-bits of the register are clear and
1458 then we subtract 32 from the lzd instruction result. */
1459 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1460 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1462 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1463 return the mode to be used for the comparison. For floating-point,
1464 CCFP[E]mode is used. CCNZmode should be used when the first operand
1465 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1466 processing is needed. */
1467 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1469 /* Return nonzero if MODE implies a floating point inequality can be
1470 reversed. For SPARC this is always true because we have a full
1471 compliment of ordered and unordered comparisons, but until generic
1472 code knows how to reverse it correctly we keep the old definition. */
1473 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1475 /* A function address in a call instruction for indexing purposes. */
1476 #define FUNCTION_MODE Pmode
1478 /* Define this if addresses of constant functions
1479 shouldn't be put through pseudo regs where they can be cse'd.
1480 Desirable on machines where ordinary constants are expensive
1481 but a CALL with constant address is cheap. */
1482 #define NO_FUNCTION_CSE 1
1484 /* The _Q_* comparison libcalls return booleans. */
1485 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1487 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1488 that the inputs are fully consumed before the output memory is clobbered. */
1490 #define TARGET_BUGGY_QP_LIB 0
1492 /* Assume by default that we do not have the Solaris-specific conversion
1493 routines nor 64-bit integer multiply and divide routines. */
1495 #define SUN_CONVERSION_LIBFUNCS 0
1496 #define DITF_CONVERSION_LIBFUNCS 0
1497 #define SUN_INTEGER_MULTIPLY_64 0
1499 /* Provide the cost of a branch. For pre-v9 processors we use
1500 a value of 3 to take into account the potential annulling of
1501 the delay slot (which ends up being a bubble in the pipeline slot)
1502 plus a cycle to take into consideration the instruction cache
1503 effects.
1505 On v9 and later, which have branch prediction facilities, we set
1506 it to the depth of the pipeline as that is the cost of a
1507 mispredicted branch.
1509 On Niagara, normal branches insert 3 bubbles into the pipe
1510 and annulled branches insert 4 bubbles.
1512 On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1513 a taken branch costs 6 cycles.
1515 The T4 Supplement specifies the branch latency at 2 cycles.
1516 The M7 Supplement specifies the branch latency at 1 cycle. */
1518 #define BRANCH_COST(speed_p, predictable_p) \
1519 ((sparc_cpu == PROCESSOR_V9 \
1520 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1521 ? 7 \
1522 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1523 ? 9 \
1524 : (sparc_cpu == PROCESSOR_NIAGARA \
1525 ? 4 \
1526 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1527 || sparc_cpu == PROCESSOR_NIAGARA3) \
1528 ? 5 \
1529 : (sparc_cpu == PROCESSOR_NIAGARA4 \
1530 ? 2 \
1531 : (sparc_cpu == PROCESSOR_NIAGARA7 \
1532 ? 1 \
1533 : 3))))))
1535 /* Control the assembler format that we output. */
1537 /* A C string constant describing how to begin a comment in the target
1538 assembler language. The compiler assumes that the comment will end at
1539 the end of the line. */
1541 #define ASM_COMMENT_START "!"
1543 /* Output to assembler file text saying following lines
1544 may contain character constants, extra white space, comments, etc. */
1546 #define ASM_APP_ON ""
1548 /* Output to assembler file text saying following lines
1549 no longer contain unusual constructs. */
1551 #define ASM_APP_OFF ""
1553 /* How to refer to registers in assembler output.
1554 This sequence is indexed by compiler's hard-register-number (see above). */
1556 #define REGISTER_NAMES \
1557 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1558 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1559 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1560 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1561 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1562 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1563 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1564 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1565 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1566 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1567 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1568 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1569 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1571 /* Define additional names for use in asm clobbers and asm declarations. */
1573 #define ADDITIONAL_REGISTER_NAMES \
1574 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1576 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1577 can run past this up to a continuation point. Once we used 1500, but
1578 a single entry in C++ can run more than 500 bytes, due to the length of
1579 mangled symbol names. dbxout.c should really be fixed to do
1580 continuations when they are actually needed instead of trying to
1581 guess... */
1582 #define DBX_CONTIN_LENGTH 1000
1584 /* This is how to output a command to make the user-level label named NAME
1585 defined for reference from other files. */
1587 /* Globalizing directive for a label. */
1588 #define GLOBAL_ASM_OP "\t.global "
1590 /* The prefix to add to user-visible assembler symbols. */
1592 #define USER_LABEL_PREFIX "_"
1594 /* This is how to store into the string LABEL
1595 the symbol_ref name of an internal numbered label where
1596 PREFIX is the class of label and NUM is the number within the class.
1597 This is suitable for output with `assemble_name'. */
1599 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1600 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1602 /* This is how we hook in and defer the case-vector until the end of
1603 the function. */
1604 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1605 sparc_defer_case_vector ((LAB),(VEC), 0)
1607 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1608 sparc_defer_case_vector ((LAB),(VEC), 1)
1610 /* This is how to output an element of a case-vector that is absolute. */
1612 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1613 do { \
1614 char label[30]; \
1615 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1616 if (CASE_VECTOR_MODE == SImode) \
1617 fprintf (FILE, "\t.word\t"); \
1618 else \
1619 fprintf (FILE, "\t.xword\t"); \
1620 assemble_name (FILE, label); \
1621 fputc ('\n', FILE); \
1622 } while (0)
1624 /* This is how to output an element of a case-vector that is relative.
1625 (SPARC uses such vectors only when generating PIC.) */
1627 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1628 do { \
1629 char label[30]; \
1630 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1631 if (CASE_VECTOR_MODE == SImode) \
1632 fprintf (FILE, "\t.word\t"); \
1633 else \
1634 fprintf (FILE, "\t.xword\t"); \
1635 assemble_name (FILE, label); \
1636 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1637 fputc ('-', FILE); \
1638 assemble_name (FILE, label); \
1639 fputc ('\n', FILE); \
1640 } while (0)
1642 /* This is what to output before and after case-vector (both
1643 relative and absolute). If .subsection -1 works, we put case-vectors
1644 at the beginning of the current section. */
1646 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1648 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1649 fprintf(FILE, "\t.subsection\t-1\n")
1651 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1652 fprintf(FILE, "\t.previous\n")
1654 #endif
1656 /* This is how to output an assembler line
1657 that says to advance the location counter
1658 to a multiple of 2**LOG bytes. */
1660 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1661 if ((LOG) != 0) \
1662 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1664 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1665 fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1667 /* This says how to output an assembler line
1668 to define a global common symbol. */
1670 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1671 ( fputs ("\t.common ", (FILE)), \
1672 assemble_name ((FILE), (NAME)), \
1673 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1675 /* This says how to output an assembler line to define a local common
1676 symbol. */
1678 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1679 ( fputs ("\t.reserve ", (FILE)), \
1680 assemble_name ((FILE), (NAME)), \
1681 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1682 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1684 /* A C statement (sans semicolon) to output to the stdio stream
1685 FILE the assembler definition of uninitialized global DECL named
1686 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1687 Try to use asm_output_aligned_bss to implement this macro. */
1689 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1690 do { \
1691 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1692 } while (0)
1694 /* Output #ident as a .ident. */
1696 #undef TARGET_ASM_OUTPUT_IDENT
1697 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1699 /* Prettify the assembly. */
1701 extern int sparc_indent_opcode;
1703 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1704 do { \
1705 if (sparc_indent_opcode) \
1707 putc (' ', FILE); \
1708 sparc_indent_opcode = 0; \
1710 } while (0)
1712 /* TLS support defaulting to original Sun flavor. GNU extensions
1713 must be activated in separate configuration files. */
1714 #ifdef HAVE_AS_TLS
1715 #define TARGET_TLS 1
1716 #else
1717 #define TARGET_TLS 0
1718 #endif
1720 #define TARGET_SUN_TLS TARGET_TLS
1721 #define TARGET_GNU_TLS 0
1723 #ifdef HAVE_AS_FMAF_HPC_VIS3
1724 #define AS_NIAGARA3_FLAG "d"
1725 #else
1726 #define AS_NIAGARA3_FLAG "b"
1727 #endif
1729 #ifdef HAVE_AS_SPARC4
1730 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1731 #else
1732 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1733 #endif
1735 #ifdef HAVE_AS_SPARC5_VIS4
1736 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1737 #else
1738 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1739 #endif
1741 #ifdef HAVE_AS_SPARC6
1742 #define AS_M8_FLAG "-xarch=sparc6"
1743 #else
1744 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1745 #endif
1747 #ifdef HAVE_AS_LEON
1748 #define AS_LEON_FLAG "-Aleon"
1749 #define AS_LEONV7_FLAG "-Aleon"
1750 #else
1751 #define AS_LEON_FLAG "-Av8"
1752 #define AS_LEONV7_FLAG "-Av7"
1753 #endif
1755 /* We use gcc _mcount for profiling. */
1756 #define NO_PROFILE_COUNTERS 0
1758 /* Debug support */
1759 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1760 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1762 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)
1764 /* By default, use the weakest memory model for the cpu. */
1765 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1766 #define SUBTARGET_DEFAULT_MEMORY_MODEL SMM_DEFAULT
1767 #endif
1769 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1. */
1770 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1772 #define TARGET_SUPPORTS_WIDE_INT 1