* fr.po: Update.
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable.h
blobbe67741ab5a5c9ef61e129c875f202d6ef0d3bf1
1 // hashtable.h header -*- C++ -*-
3 // Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
33 #pragma GCC system_header
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
40 namespace std _GLIBCXX_VISIBILITY(default)
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
44 template<typename _Tp, typename _Hash>
45 using __cache_default
46 = __not_<__and_<// Do not cache for fast hasher.
47 __is_fast_hash<_Hash>,
48 // Mandatory to have erase not throwing.
49 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
51 /**
52 * Primary class template _Hashtable.
54 * @ingroup hashtable-detail
56 * @tparam _Value CopyConstructible type.
58 * @tparam _Key CopyConstructible type.
60 * @tparam _Alloc An allocator type
61 * ([lib.allocator.requirements]) whose _Alloc::value_type is
62 * _Value. As a conforming extension, we allow for
63 * _Alloc::value_type != _Value.
65 * @tparam _ExtractKey Function object that takes an object of type
66 * _Value and returns a value of type _Key.
68 * @tparam _Equal Function object that takes two objects of type k
69 * and returns a bool-like value that is true if the two objects
70 * are considered equal.
72 * @tparam _H1 The hash function. A unary function object with
73 * argument type _Key and result type size_t. Return values should
74 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
76 * @tparam _H2 The range-hashing function (in the terminology of
77 * Tavori and Dreizin). A binary function object whose argument
78 * types and result type are all size_t. Given arguments r and N,
79 * the return value is in the range [0, N).
81 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
82 * binary function whose argument types are _Key and size_t and
83 * whose result type is size_t. Given arguments k and N, the
84 * return value is in the range [0, N). Default: hash(k, N) =
85 * h2(h1(k), N). If _Hash is anything other than the default, _H1
86 * and _H2 are ignored.
88 * @tparam _RehashPolicy Policy class with three members, all of
89 * which govern the bucket count. _M_next_bkt(n) returns a bucket
90 * count no smaller than n. _M_bkt_for_elements(n) returns a
91 * bucket count appropriate for an element count of n.
92 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93 * current bucket count is n_bkt and the current element count is
94 * n_elt, we need to increase the bucket count. If so, returns
95 * make_pair(true, n), where n is the new bucket count. If not,
96 * returns make_pair(false, <anything>)
98 * @tparam _Traits Compile-time class with three boolean
99 * std::integral_constant members: __cache_hash_code, __constant_iterators,
100 * __unique_keys.
102 * Each _Hashtable data structure has:
104 * - _Bucket[] _M_buckets
105 * - _Hash_node_base _M_before_begin
106 * - size_type _M_bucket_count
107 * - size_type _M_element_count
109 * with _Bucket being _Hash_node* and _Hash_node containing:
111 * - _Hash_node* _M_next
112 * - Tp _M_value
113 * - size_t _M_hash_code if cache_hash_code is true
115 * In terms of Standard containers the hashtable is like the aggregation of:
117 * - std::forward_list<_Node> containing the elements
118 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
120 * The non-empty buckets contain the node before the first node in the
121 * bucket. This design makes it possible to implement something like a
122 * std::forward_list::insert_after on container insertion and
123 * std::forward_list::erase_after on container erase
124 * calls. _M_before_begin is equivalent to
125 * std::forward_list::before_begin. Empty buckets contain
126 * nullptr. Note that one of the non-empty buckets contains
127 * &_M_before_begin which is not a dereferenceable node so the
128 * node pointer in a bucket shall never be dereferenced, only its
129 * next node can be.
131 * Walking through a bucket's nodes requires a check on the hash code to
132 * see if each node is still in the bucket. Such a design assumes a
133 * quite efficient hash functor and is one of the reasons it is
134 * highly advisable to set __cache_hash_code to true.
136 * The container iterators are simply built from nodes. This way
137 * incrementing the iterator is perfectly efficient independent of
138 * how many empty buckets there are in the container.
140 * On insert we compute the element's hash code and use it to find the
141 * bucket index. If the element must be inserted in an empty bucket
142 * we add it at the beginning of the singly linked list and make the
143 * bucket point to _M_before_begin. The bucket that used to point to
144 * _M_before_begin, if any, is updated to point to its new before
145 * begin node.
147 * On erase, the simple iterator design requires using the hash
148 * functor to get the index of the bucket to update. For this
149 * reason, when __cache_hash_code is set to false the hash functor must
150 * not throw and this is enforced by a static assertion.
152 * Functionality is implemented by decomposition into base classes,
153 * where the derived _Hashtable class is used in _Map_base,
154 * _Insert, _Rehash_base, and _Equality base classes to access the
155 * "this" pointer. _Hashtable_base is used in the base classes as a
156 * non-recursive, fully-completed-type so that detailed nested type
157 * information, such as iterator type and node type, can be
158 * used. This is similar to the "Curiously Recurring Template
159 * Pattern" (CRTP) technique, but uses a reconstructed, not
160 * explicitly passed, template pattern.
162 * Base class templates are:
163 * - __detail::_Hashtable_base
164 * - __detail::_Map_base
165 * - __detail::_Insert
166 * - __detail::_Rehash_base
167 * - __detail::_Equality
169 template<typename _Key, typename _Value, typename _Alloc,
170 typename _ExtractKey, typename _Equal,
171 typename _H1, typename _H2, typename _Hash,
172 typename _RehashPolicy, typename _Traits>
173 class _Hashtable
174 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 _H1, _H2, _Hash, _Traits>,
176 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184 private __detail::_Hashtable_alloc<
185 __alloc_rebind<_Alloc,
186 __detail::_Hash_node<_Value,
187 _Traits::__hash_cached::value>>>
189 using __traits_type = _Traits;
190 using __hash_cached = typename __traits_type::__hash_cached;
191 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
192 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
194 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
196 using __value_alloc_traits =
197 typename __hashtable_alloc::__value_alloc_traits;
198 using __node_alloc_traits =
199 typename __hashtable_alloc::__node_alloc_traits;
200 using __node_base = typename __hashtable_alloc::__node_base;
201 using __bucket_type = typename __hashtable_alloc::__bucket_type;
203 public:
204 typedef _Key key_type;
205 typedef _Value value_type;
206 typedef _Alloc allocator_type;
207 typedef _Equal key_equal;
209 // mapped_type, if present, comes from _Map_base.
210 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
211 typedef typename __value_alloc_traits::pointer pointer;
212 typedef typename __value_alloc_traits::const_pointer const_pointer;
213 typedef value_type& reference;
214 typedef const value_type& const_reference;
216 private:
217 using __rehash_type = _RehashPolicy;
218 using __rehash_state = typename __rehash_type::_State;
220 using __constant_iterators = typename __traits_type::__constant_iterators;
221 using __unique_keys = typename __traits_type::__unique_keys;
223 using __key_extract = typename std::conditional<
224 __constant_iterators::value,
225 __detail::_Identity,
226 __detail::_Select1st>::type;
228 using __hashtable_base = __detail::
229 _Hashtable_base<_Key, _Value, _ExtractKey,
230 _Equal, _H1, _H2, _Hash, _Traits>;
232 using __hash_code_base = typename __hashtable_base::__hash_code_base;
233 using __hash_code = typename __hashtable_base::__hash_code;
234 using __ireturn_type = typename __hashtable_base::__ireturn_type;
236 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
237 _Equal, _H1, _H2, _Hash,
238 _RehashPolicy, _Traits>;
240 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
241 _ExtractKey, _Equal,
242 _H1, _H2, _Hash,
243 _RehashPolicy, _Traits>;
245 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
246 _Equal, _H1, _H2, _Hash,
247 _RehashPolicy, _Traits>;
249 using __reuse_or_alloc_node_type =
250 __detail::_ReuseOrAllocNode<__node_alloc_type>;
252 // Metaprogramming for picking apart hash caching.
253 template<typename _Cond>
254 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
256 template<typename _Cond>
257 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
259 // Compile-time diagnostics.
261 // _Hash_code_base has everything protected, so use this derived type to
262 // access it.
263 struct __hash_code_base_access : __hash_code_base
264 { using __hash_code_base::_M_bucket_index; };
266 // Getting a bucket index from a node shall not throw because it is used
267 // in methods (erase, swap...) that shall not throw.
268 static_assert(noexcept(declval<const __hash_code_base_access&>()
269 ._M_bucket_index((const __node_type*)nullptr,
270 (std::size_t)0)),
271 "Cache the hash code or qualify your functors involved"
272 " in hash code and bucket index computation with noexcept");
274 // Following two static assertions are necessary to guarantee
275 // that local_iterator will be default constructible.
277 // When hash codes are cached local iterator inherits from H2 functor
278 // which must then be default constructible.
279 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
280 "Functor used to map hash code to bucket index"
281 " must be default constructible");
283 template<typename _Keya, typename _Valuea, typename _Alloca,
284 typename _ExtractKeya, typename _Equala,
285 typename _H1a, typename _H2a, typename _Hasha,
286 typename _RehashPolicya, typename _Traitsa,
287 bool _Unique_keysa>
288 friend struct __detail::_Map_base;
290 template<typename _Keya, typename _Valuea, typename _Alloca,
291 typename _ExtractKeya, typename _Equala,
292 typename _H1a, typename _H2a, typename _Hasha,
293 typename _RehashPolicya, typename _Traitsa>
294 friend struct __detail::_Insert_base;
296 template<typename _Keya, typename _Valuea, typename _Alloca,
297 typename _ExtractKeya, typename _Equala,
298 typename _H1a, typename _H2a, typename _Hasha,
299 typename _RehashPolicya, typename _Traitsa,
300 bool _Constant_iteratorsa>
301 friend struct __detail::_Insert;
303 public:
304 using size_type = typename __hashtable_base::size_type;
305 using difference_type = typename __hashtable_base::difference_type;
307 using iterator = typename __hashtable_base::iterator;
308 using const_iterator = typename __hashtable_base::const_iterator;
310 using local_iterator = typename __hashtable_base::local_iterator;
311 using const_local_iterator = typename __hashtable_base::
312 const_local_iterator;
314 #if __cplusplus > 201402L
315 using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
316 using insert_return_type = _Node_insert_return<iterator, node_type>;
317 #endif
319 private:
320 __bucket_type* _M_buckets = &_M_single_bucket;
321 size_type _M_bucket_count = 1;
322 __node_base _M_before_begin;
323 size_type _M_element_count = 0;
324 _RehashPolicy _M_rehash_policy;
326 // A single bucket used when only need for 1 bucket. Especially
327 // interesting in move semantic to leave hashtable with only 1 buckets
328 // which is not allocated so that we can have those operations noexcept
329 // qualified.
330 // Note that we can't leave hashtable with 0 bucket without adding
331 // numerous checks in the code to avoid 0 modulus.
332 __bucket_type _M_single_bucket = nullptr;
334 bool
335 _M_uses_single_bucket(__bucket_type* __bkts) const
336 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
338 bool
339 _M_uses_single_bucket() const
340 { return _M_uses_single_bucket(_M_buckets); }
342 __hashtable_alloc&
343 _M_base_alloc() { return *this; }
345 __bucket_type*
346 _M_allocate_buckets(size_type __n)
348 if (__builtin_expect(__n == 1, false))
350 _M_single_bucket = nullptr;
351 return &_M_single_bucket;
354 return __hashtable_alloc::_M_allocate_buckets(__n);
357 void
358 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
360 if (_M_uses_single_bucket(__bkts))
361 return;
363 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
366 void
367 _M_deallocate_buckets()
368 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
370 // Gets bucket begin, deals with the fact that non-empty buckets contain
371 // their before begin node.
372 __node_type*
373 _M_bucket_begin(size_type __bkt) const;
375 __node_type*
376 _M_begin() const
377 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
379 template<typename _NodeGenerator>
380 void
381 _M_assign(const _Hashtable&, const _NodeGenerator&);
383 void
384 _M_move_assign(_Hashtable&&, std::true_type);
386 void
387 _M_move_assign(_Hashtable&&, std::false_type);
389 void
390 _M_reset() noexcept;
392 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
393 const _Equal& __eq, const _ExtractKey& __exk,
394 const allocator_type& __a)
395 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
396 __hashtable_alloc(__node_alloc_type(__a))
399 public:
400 // Constructor, destructor, assignment, swap
401 _Hashtable() = default;
402 _Hashtable(size_type __bucket_hint,
403 const _H1&, const _H2&, const _Hash&,
404 const _Equal&, const _ExtractKey&,
405 const allocator_type&);
407 template<typename _InputIterator>
408 _Hashtable(_InputIterator __first, _InputIterator __last,
409 size_type __bucket_hint,
410 const _H1&, const _H2&, const _Hash&,
411 const _Equal&, const _ExtractKey&,
412 const allocator_type&);
414 _Hashtable(const _Hashtable&);
416 _Hashtable(_Hashtable&&) noexcept;
418 _Hashtable(const _Hashtable&, const allocator_type&);
420 _Hashtable(_Hashtable&&, const allocator_type&);
422 // Use delegating constructors.
423 explicit
424 _Hashtable(const allocator_type& __a)
425 : __hashtable_alloc(__node_alloc_type(__a))
428 explicit
429 _Hashtable(size_type __n,
430 const _H1& __hf = _H1(),
431 const key_equal& __eql = key_equal(),
432 const allocator_type& __a = allocator_type())
433 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
434 __key_extract(), __a)
437 template<typename _InputIterator>
438 _Hashtable(_InputIterator __f, _InputIterator __l,
439 size_type __n = 0,
440 const _H1& __hf = _H1(),
441 const key_equal& __eql = key_equal(),
442 const allocator_type& __a = allocator_type())
443 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
444 __key_extract(), __a)
447 _Hashtable(initializer_list<value_type> __l,
448 size_type __n = 0,
449 const _H1& __hf = _H1(),
450 const key_equal& __eql = key_equal(),
451 const allocator_type& __a = allocator_type())
452 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
453 __key_extract(), __a)
456 _Hashtable&
457 operator=(const _Hashtable& __ht);
459 _Hashtable&
460 operator=(_Hashtable&& __ht)
461 noexcept(__node_alloc_traits::_S_nothrow_move()
462 && is_nothrow_move_assignable<_H1>::value
463 && is_nothrow_move_assignable<_Equal>::value)
465 constexpr bool __move_storage =
466 __node_alloc_traits::_S_propagate_on_move_assign()
467 || __node_alloc_traits::_S_always_equal();
468 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
469 return *this;
472 _Hashtable&
473 operator=(initializer_list<value_type> __l)
475 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
476 _M_before_begin._M_nxt = nullptr;
477 clear();
478 this->_M_insert_range(__l.begin(), __l.end(), __roan);
479 return *this;
482 ~_Hashtable() noexcept;
484 void
485 swap(_Hashtable&)
486 noexcept(__and_<__is_nothrow_swappable<_H1>,
487 __is_nothrow_swappable<_Equal>>::value);
489 // Basic container operations
490 iterator
491 begin() noexcept
492 { return iterator(_M_begin()); }
494 const_iterator
495 begin() const noexcept
496 { return const_iterator(_M_begin()); }
498 iterator
499 end() noexcept
500 { return iterator(nullptr); }
502 const_iterator
503 end() const noexcept
504 { return const_iterator(nullptr); }
506 const_iterator
507 cbegin() const noexcept
508 { return const_iterator(_M_begin()); }
510 const_iterator
511 cend() const noexcept
512 { return const_iterator(nullptr); }
514 size_type
515 size() const noexcept
516 { return _M_element_count; }
518 bool
519 empty() const noexcept
520 { return size() == 0; }
522 allocator_type
523 get_allocator() const noexcept
524 { return allocator_type(this->_M_node_allocator()); }
526 size_type
527 max_size() const noexcept
528 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
530 // Observers
531 key_equal
532 key_eq() const
533 { return this->_M_eq(); }
535 // hash_function, if present, comes from _Hash_code_base.
537 // Bucket operations
538 size_type
539 bucket_count() const noexcept
540 { return _M_bucket_count; }
542 size_type
543 max_bucket_count() const noexcept
544 { return max_size(); }
546 size_type
547 bucket_size(size_type __n) const
548 { return std::distance(begin(__n), end(__n)); }
550 size_type
551 bucket(const key_type& __k) const
552 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
554 local_iterator
555 begin(size_type __n)
557 return local_iterator(*this, _M_bucket_begin(__n),
558 __n, _M_bucket_count);
561 local_iterator
562 end(size_type __n)
563 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
565 const_local_iterator
566 begin(size_type __n) const
568 return const_local_iterator(*this, _M_bucket_begin(__n),
569 __n, _M_bucket_count);
572 const_local_iterator
573 end(size_type __n) const
574 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
576 // DR 691.
577 const_local_iterator
578 cbegin(size_type __n) const
580 return const_local_iterator(*this, _M_bucket_begin(__n),
581 __n, _M_bucket_count);
584 const_local_iterator
585 cend(size_type __n) const
586 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
588 float
589 load_factor() const noexcept
591 return static_cast<float>(size()) / static_cast<float>(bucket_count());
594 // max_load_factor, if present, comes from _Rehash_base.
596 // Generalization of max_load_factor. Extension, not found in
597 // TR1. Only useful if _RehashPolicy is something other than
598 // the default.
599 const _RehashPolicy&
600 __rehash_policy() const
601 { return _M_rehash_policy; }
603 void
604 __rehash_policy(const _RehashPolicy& __pol)
605 { _M_rehash_policy = __pol; }
607 // Lookup.
608 iterator
609 find(const key_type& __k);
611 const_iterator
612 find(const key_type& __k) const;
614 size_type
615 count(const key_type& __k) const;
617 std::pair<iterator, iterator>
618 equal_range(const key_type& __k);
620 std::pair<const_iterator, const_iterator>
621 equal_range(const key_type& __k) const;
623 protected:
624 // Bucket index computation helpers.
625 size_type
626 _M_bucket_index(__node_type* __n) const noexcept
627 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
629 size_type
630 _M_bucket_index(const key_type& __k, __hash_code __c) const
631 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
633 // Find and insert helper functions and types
634 // Find the node before the one matching the criteria.
635 __node_base*
636 _M_find_before_node(size_type, const key_type&, __hash_code) const;
638 __node_type*
639 _M_find_node(size_type __bkt, const key_type& __key,
640 __hash_code __c) const
642 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
643 if (__before_n)
644 return static_cast<__node_type*>(__before_n->_M_nxt);
645 return nullptr;
648 // Insert a node at the beginning of a bucket.
649 void
650 _M_insert_bucket_begin(size_type, __node_type*);
652 // Remove the bucket first node
653 void
654 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
655 size_type __next_bkt);
657 // Get the node before __n in the bucket __bkt
658 __node_base*
659 _M_get_previous_node(size_type __bkt, __node_base* __n);
661 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
662 // no element with its key already present). Take ownership of the node,
663 // deallocate it on exception.
664 iterator
665 _M_insert_unique_node(size_type __bkt, __hash_code __code,
666 __node_type* __n);
668 // Insert node with hash code __code. Take ownership of the node,
669 // deallocate it on exception.
670 iterator
671 _M_insert_multi_node(__node_type* __hint,
672 __hash_code __code, __node_type* __n);
674 template<typename... _Args>
675 std::pair<iterator, bool>
676 _M_emplace(std::true_type, _Args&&... __args);
678 template<typename... _Args>
679 iterator
680 _M_emplace(std::false_type __uk, _Args&&... __args)
681 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
683 // Emplace with hint, useless when keys are unique.
684 template<typename... _Args>
685 iterator
686 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
687 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
689 template<typename... _Args>
690 iterator
691 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
693 template<typename _Arg, typename _NodeGenerator>
694 std::pair<iterator, bool>
695 _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
697 template<typename _Arg, typename _NodeGenerator>
698 iterator
699 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
700 std::false_type __uk)
702 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
703 __uk);
706 // Insert with hint, not used when keys are unique.
707 template<typename _Arg, typename _NodeGenerator>
708 iterator
709 _M_insert(const_iterator, _Arg&& __arg,
710 const _NodeGenerator& __node_gen, std::true_type __uk)
712 return
713 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
716 // Insert with hint when keys are not unique.
717 template<typename _Arg, typename _NodeGenerator>
718 iterator
719 _M_insert(const_iterator, _Arg&&,
720 const _NodeGenerator&, std::false_type);
722 size_type
723 _M_erase(std::true_type, const key_type&);
725 size_type
726 _M_erase(std::false_type, const key_type&);
728 iterator
729 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
731 public:
732 // Emplace
733 template<typename... _Args>
734 __ireturn_type
735 emplace(_Args&&... __args)
736 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
738 template<typename... _Args>
739 iterator
740 emplace_hint(const_iterator __hint, _Args&&... __args)
742 return _M_emplace(__hint, __unique_keys(),
743 std::forward<_Args>(__args)...);
746 // Insert member functions via inheritance.
748 // Erase
749 iterator
750 erase(const_iterator);
752 // LWG 2059.
753 iterator
754 erase(iterator __it)
755 { return erase(const_iterator(__it)); }
757 size_type
758 erase(const key_type& __k)
759 { return _M_erase(__unique_keys(), __k); }
761 iterator
762 erase(const_iterator, const_iterator);
764 void
765 clear() noexcept;
767 // Set number of buckets to be appropriate for container of n element.
768 void rehash(size_type __n);
770 // DR 1189.
771 // reserve, if present, comes from _Rehash_base.
773 #if __cplusplus > 201402L
774 /// Re-insert an extracted node into a container with unique keys.
775 insert_return_type
776 _M_reinsert_node(node_type&& __nh)
778 insert_return_type __ret;
779 if (__nh.empty())
780 __ret.position = end();
781 else
783 __glibcxx_assert(get_allocator() == __nh.get_allocator());
785 const key_type& __k = __nh._M_key();
786 __hash_code __code = this->_M_hash_code(__k);
787 size_type __bkt = _M_bucket_index(__k, __code);
788 if (__node_type* __n = _M_find_node(__bkt, __k, __code))
790 __ret.node = std::move(__nh);
791 __ret.position = iterator(__n);
792 __ret.inserted = false;
794 else
796 __ret.position
797 = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
798 __nh._M_ptr = nullptr;
799 __ret.inserted = true;
802 return __ret;
805 /// Re-insert an extracted node into a container with equivalent keys.
806 iterator
807 _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
809 iterator __ret;
810 if (__nh.empty())
811 __ret = end();
812 else
814 __glibcxx_assert(get_allocator() == __nh.get_allocator());
816 auto __code = this->_M_hash_code(__nh._M_key());
817 auto __node = std::exchange(__nh._M_ptr, nullptr);
818 // FIXME: this deallocates the node on exception.
819 __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
821 return __ret;
824 /// Extract a node.
825 node_type
826 extract(const_iterator __pos)
828 __node_type* __n = __pos._M_cur;
829 size_t __bkt = _M_bucket_index(__n);
831 // Look for previous node to unlink it from the erased one, this
832 // is why we need buckets to contain the before begin to make
833 // this search fast.
834 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
836 if (__prev_n == _M_buckets[__bkt])
837 _M_remove_bucket_begin(__bkt, __n->_M_next(),
838 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
839 else if (__n->_M_nxt)
841 size_type __next_bkt = _M_bucket_index(__n->_M_next());
842 if (__next_bkt != __bkt)
843 _M_buckets[__next_bkt] = __prev_n;
846 __prev_n->_M_nxt = __n->_M_nxt;
847 __n->_M_nxt = nullptr;
848 --_M_element_count;
849 return { __n, this->_M_node_allocator() };
852 /// Extract a node.
853 node_type
854 extract(const _Key& __k)
856 node_type __nh;
857 auto __pos = find(__k);
858 if (__pos != end())
859 __nh = extract(const_iterator(__pos));
860 return __nh;
863 /// Merge from a compatible container into one with unique keys.
864 template<typename _Compatible_Hashtable>
865 void
866 _M_merge_unique(_Compatible_Hashtable& __src) noexcept
868 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
869 node_type>, "Node types are compatible");
870 __glibcxx_assert(get_allocator() == __src.get_allocator());
872 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
874 auto __pos = __i++;
875 const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
876 __hash_code __code = this->_M_hash_code(__k);
877 size_type __bkt = _M_bucket_index(__k, __code);
878 if (_M_find_node(__bkt, __k, __code) == nullptr)
880 auto __nh = __src.extract(__pos);
881 _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
882 __nh._M_ptr = nullptr;
887 /// Merge from a compatible container into one with equivalent keys.
888 template<typename _Compatible_Hashtable>
889 void
890 _M_merge_multi(_Compatible_Hashtable& __src) noexcept
892 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
893 node_type>, "Node types are compatible");
894 __glibcxx_assert(get_allocator() == __src.get_allocator());
896 this->reserve(size() + __src.size());
897 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
898 _M_reinsert_node_multi(cend(), __src.extract(__i++));
900 #endif // C++17
902 private:
903 // Helper rehash method used when keys are unique.
904 void _M_rehash_aux(size_type __n, std::true_type);
906 // Helper rehash method used when keys can be non-unique.
907 void _M_rehash_aux(size_type __n, std::false_type);
909 // Unconditionally change size of bucket array to n, restore
910 // hash policy state to __state on exception.
911 void _M_rehash(size_type __n, const __rehash_state& __state);
915 // Definitions of class template _Hashtable's out-of-line member functions.
916 template<typename _Key, typename _Value,
917 typename _Alloc, typename _ExtractKey, typename _Equal,
918 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
919 typename _Traits>
920 auto
921 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
922 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
923 _M_bucket_begin(size_type __bkt) const
924 -> __node_type*
926 __node_base* __n = _M_buckets[__bkt];
927 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
930 template<typename _Key, typename _Value,
931 typename _Alloc, typename _ExtractKey, typename _Equal,
932 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
933 typename _Traits>
934 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
935 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
936 _Hashtable(size_type __bucket_hint,
937 const _H1& __h1, const _H2& __h2, const _Hash& __h,
938 const _Equal& __eq, const _ExtractKey& __exk,
939 const allocator_type& __a)
940 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
942 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
943 if (__bkt > _M_bucket_count)
945 _M_buckets = _M_allocate_buckets(__bkt);
946 _M_bucket_count = __bkt;
950 template<typename _Key, typename _Value,
951 typename _Alloc, typename _ExtractKey, typename _Equal,
952 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
953 typename _Traits>
954 template<typename _InputIterator>
955 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
956 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
957 _Hashtable(_InputIterator __f, _InputIterator __l,
958 size_type __bucket_hint,
959 const _H1& __h1, const _H2& __h2, const _Hash& __h,
960 const _Equal& __eq, const _ExtractKey& __exk,
961 const allocator_type& __a)
962 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
964 auto __nb_elems = __detail::__distance_fw(__f, __l);
965 auto __bkt_count =
966 _M_rehash_policy._M_next_bkt(
967 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
968 __bucket_hint));
970 if (__bkt_count > _M_bucket_count)
972 _M_buckets = _M_allocate_buckets(__bkt_count);
973 _M_bucket_count = __bkt_count;
976 __try
978 for (; __f != __l; ++__f)
979 this->insert(*__f);
981 __catch(...)
983 clear();
984 _M_deallocate_buckets();
985 __throw_exception_again;
989 template<typename _Key, typename _Value,
990 typename _Alloc, typename _ExtractKey, typename _Equal,
991 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
992 typename _Traits>
993 auto
994 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
995 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
996 operator=(const _Hashtable& __ht)
997 -> _Hashtable&
999 if (&__ht == this)
1000 return *this;
1002 if (__node_alloc_traits::_S_propagate_on_copy_assign())
1004 auto& __this_alloc = this->_M_node_allocator();
1005 auto& __that_alloc = __ht._M_node_allocator();
1006 if (!__node_alloc_traits::_S_always_equal()
1007 && __this_alloc != __that_alloc)
1009 // Replacement allocator cannot free existing storage.
1010 this->_M_deallocate_nodes(_M_begin());
1011 _M_before_begin._M_nxt = nullptr;
1012 _M_deallocate_buckets();
1013 _M_buckets = nullptr;
1014 std::__alloc_on_copy(__this_alloc, __that_alloc);
1015 __hashtable_base::operator=(__ht);
1016 _M_bucket_count = __ht._M_bucket_count;
1017 _M_element_count = __ht._M_element_count;
1018 _M_rehash_policy = __ht._M_rehash_policy;
1019 __try
1021 _M_assign(__ht,
1022 [this](const __node_type* __n)
1023 { return this->_M_allocate_node(__n->_M_v()); });
1025 __catch(...)
1027 // _M_assign took care of deallocating all memory. Now we
1028 // must make sure this instance remains in a usable state.
1029 _M_reset();
1030 __throw_exception_again;
1032 return *this;
1034 std::__alloc_on_copy(__this_alloc, __that_alloc);
1037 // Reuse allocated buckets and nodes.
1038 __bucket_type* __former_buckets = nullptr;
1039 std::size_t __former_bucket_count = _M_bucket_count;
1040 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1042 if (_M_bucket_count != __ht._M_bucket_count)
1044 __former_buckets = _M_buckets;
1045 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1046 _M_bucket_count = __ht._M_bucket_count;
1048 else
1049 __builtin_memset(_M_buckets, 0,
1050 _M_bucket_count * sizeof(__bucket_type));
1052 __try
1054 __hashtable_base::operator=(__ht);
1055 _M_element_count = __ht._M_element_count;
1056 _M_rehash_policy = __ht._M_rehash_policy;
1057 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1058 _M_before_begin._M_nxt = nullptr;
1059 _M_assign(__ht,
1060 [&__roan](const __node_type* __n)
1061 { return __roan(__n->_M_v()); });
1062 if (__former_buckets)
1063 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1065 __catch(...)
1067 if (__former_buckets)
1069 // Restore previous buckets.
1070 _M_deallocate_buckets();
1071 _M_rehash_policy._M_reset(__former_state);
1072 _M_buckets = __former_buckets;
1073 _M_bucket_count = __former_bucket_count;
1075 __builtin_memset(_M_buckets, 0,
1076 _M_bucket_count * sizeof(__bucket_type));
1077 __throw_exception_again;
1079 return *this;
1082 template<typename _Key, typename _Value,
1083 typename _Alloc, typename _ExtractKey, typename _Equal,
1084 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1085 typename _Traits>
1086 template<typename _NodeGenerator>
1087 void
1088 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1089 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1090 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1092 __bucket_type* __buckets = nullptr;
1093 if (!_M_buckets)
1094 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1096 __try
1098 if (!__ht._M_before_begin._M_nxt)
1099 return;
1101 // First deal with the special first node pointed to by
1102 // _M_before_begin.
1103 __node_type* __ht_n = __ht._M_begin();
1104 __node_type* __this_n = __node_gen(__ht_n);
1105 this->_M_copy_code(__this_n, __ht_n);
1106 _M_before_begin._M_nxt = __this_n;
1107 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1109 // Then deal with other nodes.
1110 __node_base* __prev_n = __this_n;
1111 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1113 __this_n = __node_gen(__ht_n);
1114 __prev_n->_M_nxt = __this_n;
1115 this->_M_copy_code(__this_n, __ht_n);
1116 size_type __bkt = _M_bucket_index(__this_n);
1117 if (!_M_buckets[__bkt])
1118 _M_buckets[__bkt] = __prev_n;
1119 __prev_n = __this_n;
1122 __catch(...)
1124 clear();
1125 if (__buckets)
1126 _M_deallocate_buckets();
1127 __throw_exception_again;
1131 template<typename _Key, typename _Value,
1132 typename _Alloc, typename _ExtractKey, typename _Equal,
1133 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1134 typename _Traits>
1135 void
1136 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1137 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1138 _M_reset() noexcept
1140 _M_rehash_policy._M_reset();
1141 _M_bucket_count = 1;
1142 _M_single_bucket = nullptr;
1143 _M_buckets = &_M_single_bucket;
1144 _M_before_begin._M_nxt = nullptr;
1145 _M_element_count = 0;
1148 template<typename _Key, typename _Value,
1149 typename _Alloc, typename _ExtractKey, typename _Equal,
1150 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1151 typename _Traits>
1152 void
1153 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1154 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1155 _M_move_assign(_Hashtable&& __ht, std::true_type)
1157 this->_M_deallocate_nodes(_M_begin());
1158 _M_deallocate_buckets();
1159 __hashtable_base::operator=(std::move(__ht));
1160 _M_rehash_policy = __ht._M_rehash_policy;
1161 if (!__ht._M_uses_single_bucket())
1162 _M_buckets = __ht._M_buckets;
1163 else
1165 _M_buckets = &_M_single_bucket;
1166 _M_single_bucket = __ht._M_single_bucket;
1168 _M_bucket_count = __ht._M_bucket_count;
1169 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1170 _M_element_count = __ht._M_element_count;
1171 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1173 // Fix buckets containing the _M_before_begin pointers that can't be
1174 // moved.
1175 if (_M_begin())
1176 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1177 __ht._M_reset();
1180 template<typename _Key, typename _Value,
1181 typename _Alloc, typename _ExtractKey, typename _Equal,
1182 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1183 typename _Traits>
1184 void
1185 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1186 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1187 _M_move_assign(_Hashtable&& __ht, std::false_type)
1189 if (__ht._M_node_allocator() == this->_M_node_allocator())
1190 _M_move_assign(std::move(__ht), std::true_type());
1191 else
1193 // Can't move memory, move elements then.
1194 __bucket_type* __former_buckets = nullptr;
1195 size_type __former_bucket_count = _M_bucket_count;
1196 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1198 if (_M_bucket_count != __ht._M_bucket_count)
1200 __former_buckets = _M_buckets;
1201 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1202 _M_bucket_count = __ht._M_bucket_count;
1204 else
1205 __builtin_memset(_M_buckets, 0,
1206 _M_bucket_count * sizeof(__bucket_type));
1208 __try
1210 __hashtable_base::operator=(std::move(__ht));
1211 _M_element_count = __ht._M_element_count;
1212 _M_rehash_policy = __ht._M_rehash_policy;
1213 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1214 _M_before_begin._M_nxt = nullptr;
1215 _M_assign(__ht,
1216 [&__roan](__node_type* __n)
1217 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1218 __ht.clear();
1220 __catch(...)
1222 if (__former_buckets)
1224 _M_deallocate_buckets();
1225 _M_rehash_policy._M_reset(__former_state);
1226 _M_buckets = __former_buckets;
1227 _M_bucket_count = __former_bucket_count;
1229 __builtin_memset(_M_buckets, 0,
1230 _M_bucket_count * sizeof(__bucket_type));
1231 __throw_exception_again;
1236 template<typename _Key, typename _Value,
1237 typename _Alloc, typename _ExtractKey, typename _Equal,
1238 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1239 typename _Traits>
1240 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1241 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1242 _Hashtable(const _Hashtable& __ht)
1243 : __hashtable_base(__ht),
1244 __map_base(__ht),
1245 __rehash_base(__ht),
1246 __hashtable_alloc(
1247 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1248 _M_buckets(nullptr),
1249 _M_bucket_count(__ht._M_bucket_count),
1250 _M_element_count(__ht._M_element_count),
1251 _M_rehash_policy(__ht._M_rehash_policy)
1253 _M_assign(__ht,
1254 [this](const __node_type* __n)
1255 { return this->_M_allocate_node(__n->_M_v()); });
1258 template<typename _Key, typename _Value,
1259 typename _Alloc, typename _ExtractKey, typename _Equal,
1260 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1261 typename _Traits>
1262 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1263 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1264 _Hashtable(_Hashtable&& __ht) noexcept
1265 : __hashtable_base(__ht),
1266 __map_base(__ht),
1267 __rehash_base(__ht),
1268 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1269 _M_buckets(__ht._M_buckets),
1270 _M_bucket_count(__ht._M_bucket_count),
1271 _M_before_begin(__ht._M_before_begin._M_nxt),
1272 _M_element_count(__ht._M_element_count),
1273 _M_rehash_policy(__ht._M_rehash_policy)
1275 // Update, if necessary, buckets if __ht is using its single bucket.
1276 if (__ht._M_uses_single_bucket())
1278 _M_buckets = &_M_single_bucket;
1279 _M_single_bucket = __ht._M_single_bucket;
1282 // Update, if necessary, bucket pointing to before begin that hasn't
1283 // moved.
1284 if (_M_begin())
1285 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1287 __ht._M_reset();
1290 template<typename _Key, typename _Value,
1291 typename _Alloc, typename _ExtractKey, typename _Equal,
1292 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1293 typename _Traits>
1294 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1297 : __hashtable_base(__ht),
1298 __map_base(__ht),
1299 __rehash_base(__ht),
1300 __hashtable_alloc(__node_alloc_type(__a)),
1301 _M_buckets(),
1302 _M_bucket_count(__ht._M_bucket_count),
1303 _M_element_count(__ht._M_element_count),
1304 _M_rehash_policy(__ht._M_rehash_policy)
1306 _M_assign(__ht,
1307 [this](const __node_type* __n)
1308 { return this->_M_allocate_node(__n->_M_v()); });
1311 template<typename _Key, typename _Value,
1312 typename _Alloc, typename _ExtractKey, typename _Equal,
1313 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1314 typename _Traits>
1315 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1316 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1317 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1318 : __hashtable_base(__ht),
1319 __map_base(__ht),
1320 __rehash_base(__ht),
1321 __hashtable_alloc(__node_alloc_type(__a)),
1322 _M_buckets(nullptr),
1323 _M_bucket_count(__ht._M_bucket_count),
1324 _M_element_count(__ht._M_element_count),
1325 _M_rehash_policy(__ht._M_rehash_policy)
1327 if (__ht._M_node_allocator() == this->_M_node_allocator())
1329 if (__ht._M_uses_single_bucket())
1331 _M_buckets = &_M_single_bucket;
1332 _M_single_bucket = __ht._M_single_bucket;
1334 else
1335 _M_buckets = __ht._M_buckets;
1337 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1338 // Update, if necessary, bucket pointing to before begin that hasn't
1339 // moved.
1340 if (_M_begin())
1341 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1342 __ht._M_reset();
1344 else
1346 _M_assign(__ht,
1347 [this](__node_type* __n)
1349 return this->_M_allocate_node(
1350 std::move_if_noexcept(__n->_M_v()));
1352 __ht.clear();
1356 template<typename _Key, typename _Value,
1357 typename _Alloc, typename _ExtractKey, typename _Equal,
1358 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1359 typename _Traits>
1360 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1361 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1362 ~_Hashtable() noexcept
1364 clear();
1365 _M_deallocate_buckets();
1368 template<typename _Key, typename _Value,
1369 typename _Alloc, typename _ExtractKey, typename _Equal,
1370 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1371 typename _Traits>
1372 void
1373 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1374 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1375 swap(_Hashtable& __x)
1376 noexcept(__and_<__is_nothrow_swappable<_H1>,
1377 __is_nothrow_swappable<_Equal>>::value)
1379 // The only base class with member variables is hash_code_base.
1380 // We define _Hash_code_base::_M_swap because different
1381 // specializations have different members.
1382 this->_M_swap(__x);
1384 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1385 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1387 // Deal properly with potentially moved instances.
1388 if (this->_M_uses_single_bucket())
1390 if (!__x._M_uses_single_bucket())
1392 _M_buckets = __x._M_buckets;
1393 __x._M_buckets = &__x._M_single_bucket;
1396 else if (__x._M_uses_single_bucket())
1398 __x._M_buckets = _M_buckets;
1399 _M_buckets = &_M_single_bucket;
1401 else
1402 std::swap(_M_buckets, __x._M_buckets);
1404 std::swap(_M_bucket_count, __x._M_bucket_count);
1405 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1406 std::swap(_M_element_count, __x._M_element_count);
1407 std::swap(_M_single_bucket, __x._M_single_bucket);
1409 // Fix buckets containing the _M_before_begin pointers that can't be
1410 // swapped.
1411 if (_M_begin())
1412 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1414 if (__x._M_begin())
1415 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1416 = &__x._M_before_begin;
1419 template<typename _Key, typename _Value,
1420 typename _Alloc, typename _ExtractKey, typename _Equal,
1421 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1422 typename _Traits>
1423 auto
1424 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1425 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1426 find(const key_type& __k)
1427 -> iterator
1429 __hash_code __code = this->_M_hash_code(__k);
1430 std::size_t __n = _M_bucket_index(__k, __code);
1431 __node_type* __p = _M_find_node(__n, __k, __code);
1432 return __p ? iterator(__p) : end();
1435 template<typename _Key, typename _Value,
1436 typename _Alloc, typename _ExtractKey, typename _Equal,
1437 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1438 typename _Traits>
1439 auto
1440 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1441 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1442 find(const key_type& __k) const
1443 -> const_iterator
1445 __hash_code __code = this->_M_hash_code(__k);
1446 std::size_t __n = _M_bucket_index(__k, __code);
1447 __node_type* __p = _M_find_node(__n, __k, __code);
1448 return __p ? const_iterator(__p) : end();
1451 template<typename _Key, typename _Value,
1452 typename _Alloc, typename _ExtractKey, typename _Equal,
1453 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1454 typename _Traits>
1455 auto
1456 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1457 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1458 count(const key_type& __k) const
1459 -> size_type
1461 __hash_code __code = this->_M_hash_code(__k);
1462 std::size_t __n = _M_bucket_index(__k, __code);
1463 __node_type* __p = _M_bucket_begin(__n);
1464 if (!__p)
1465 return 0;
1467 std::size_t __result = 0;
1468 for (;; __p = __p->_M_next())
1470 if (this->_M_equals(__k, __code, __p))
1471 ++__result;
1472 else if (__result)
1473 // All equivalent values are next to each other, if we
1474 // found a non-equivalent value after an equivalent one it
1475 // means that we won't find any new equivalent value.
1476 break;
1477 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1478 break;
1480 return __result;
1483 template<typename _Key, typename _Value,
1484 typename _Alloc, typename _ExtractKey, typename _Equal,
1485 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1486 typename _Traits>
1487 auto
1488 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1489 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1490 equal_range(const key_type& __k)
1491 -> pair<iterator, iterator>
1493 __hash_code __code = this->_M_hash_code(__k);
1494 std::size_t __n = _M_bucket_index(__k, __code);
1495 __node_type* __p = _M_find_node(__n, __k, __code);
1497 if (__p)
1499 __node_type* __p1 = __p->_M_next();
1500 while (__p1 && _M_bucket_index(__p1) == __n
1501 && this->_M_equals(__k, __code, __p1))
1502 __p1 = __p1->_M_next();
1504 return std::make_pair(iterator(__p), iterator(__p1));
1506 else
1507 return std::make_pair(end(), end());
1510 template<typename _Key, typename _Value,
1511 typename _Alloc, typename _ExtractKey, typename _Equal,
1512 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1513 typename _Traits>
1514 auto
1515 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1516 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1517 equal_range(const key_type& __k) const
1518 -> pair<const_iterator, const_iterator>
1520 __hash_code __code = this->_M_hash_code(__k);
1521 std::size_t __n = _M_bucket_index(__k, __code);
1522 __node_type* __p = _M_find_node(__n, __k, __code);
1524 if (__p)
1526 __node_type* __p1 = __p->_M_next();
1527 while (__p1 && _M_bucket_index(__p1) == __n
1528 && this->_M_equals(__k, __code, __p1))
1529 __p1 = __p1->_M_next();
1531 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1533 else
1534 return std::make_pair(end(), end());
1537 // Find the node whose key compares equal to k in the bucket n.
1538 // Return nullptr if no node is found.
1539 template<typename _Key, typename _Value,
1540 typename _Alloc, typename _ExtractKey, typename _Equal,
1541 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1542 typename _Traits>
1543 auto
1544 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1545 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1546 _M_find_before_node(size_type __n, const key_type& __k,
1547 __hash_code __code) const
1548 -> __node_base*
1550 __node_base* __prev_p = _M_buckets[__n];
1551 if (!__prev_p)
1552 return nullptr;
1554 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1555 __p = __p->_M_next())
1557 if (this->_M_equals(__k, __code, __p))
1558 return __prev_p;
1560 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1561 break;
1562 __prev_p = __p;
1564 return nullptr;
1567 template<typename _Key, typename _Value,
1568 typename _Alloc, typename _ExtractKey, typename _Equal,
1569 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1570 typename _Traits>
1571 void
1572 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1573 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1574 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1576 if (_M_buckets[__bkt])
1578 // Bucket is not empty, we just need to insert the new node
1579 // after the bucket before begin.
1580 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1581 _M_buckets[__bkt]->_M_nxt = __node;
1583 else
1585 // The bucket is empty, the new node is inserted at the
1586 // beginning of the singly-linked list and the bucket will
1587 // contain _M_before_begin pointer.
1588 __node->_M_nxt = _M_before_begin._M_nxt;
1589 _M_before_begin._M_nxt = __node;
1590 if (__node->_M_nxt)
1591 // We must update former begin bucket that is pointing to
1592 // _M_before_begin.
1593 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1594 _M_buckets[__bkt] = &_M_before_begin;
1598 template<typename _Key, typename _Value,
1599 typename _Alloc, typename _ExtractKey, typename _Equal,
1600 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1601 typename _Traits>
1602 void
1603 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1604 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1605 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1606 size_type __next_bkt)
1608 if (!__next || __next_bkt != __bkt)
1610 // Bucket is now empty
1611 // First update next bucket if any
1612 if (__next)
1613 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1615 // Second update before begin node if necessary
1616 if (&_M_before_begin == _M_buckets[__bkt])
1617 _M_before_begin._M_nxt = __next;
1618 _M_buckets[__bkt] = nullptr;
1622 template<typename _Key, typename _Value,
1623 typename _Alloc, typename _ExtractKey, typename _Equal,
1624 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1625 typename _Traits>
1626 auto
1627 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1628 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1629 _M_get_previous_node(size_type __bkt, __node_base* __n)
1630 -> __node_base*
1632 __node_base* __prev_n = _M_buckets[__bkt];
1633 while (__prev_n->_M_nxt != __n)
1634 __prev_n = __prev_n->_M_nxt;
1635 return __prev_n;
1638 template<typename _Key, typename _Value,
1639 typename _Alloc, typename _ExtractKey, typename _Equal,
1640 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1641 typename _Traits>
1642 template<typename... _Args>
1643 auto
1644 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1645 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1646 _M_emplace(std::true_type, _Args&&... __args)
1647 -> pair<iterator, bool>
1649 // First build the node to get access to the hash code
1650 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1651 const key_type& __k = this->_M_extract()(__node->_M_v());
1652 __hash_code __code;
1653 __try
1655 __code = this->_M_hash_code(__k);
1657 __catch(...)
1659 this->_M_deallocate_node(__node);
1660 __throw_exception_again;
1663 size_type __bkt = _M_bucket_index(__k, __code);
1664 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1666 // There is already an equivalent node, no insertion
1667 this->_M_deallocate_node(__node);
1668 return std::make_pair(iterator(__p), false);
1671 // Insert the node
1672 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1673 true);
1676 template<typename _Key, typename _Value,
1677 typename _Alloc, typename _ExtractKey, typename _Equal,
1678 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1679 typename _Traits>
1680 template<typename... _Args>
1681 auto
1682 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1683 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1684 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1685 -> iterator
1687 // First build the node to get its hash code.
1688 __node_type* __node =
1689 this->_M_allocate_node(std::forward<_Args>(__args)...);
1691 __hash_code __code;
1692 __try
1694 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1696 __catch(...)
1698 this->_M_deallocate_node(__node);
1699 __throw_exception_again;
1702 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1705 template<typename _Key, typename _Value,
1706 typename _Alloc, typename _ExtractKey, typename _Equal,
1707 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1708 typename _Traits>
1709 auto
1710 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1711 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1712 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1713 __node_type* __node)
1714 -> iterator
1716 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1717 std::pair<bool, std::size_t> __do_rehash
1718 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1720 __try
1722 if (__do_rehash.first)
1724 _M_rehash(__do_rehash.second, __saved_state);
1725 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1728 this->_M_store_code(__node, __code);
1730 // Always insert at the beginning of the bucket.
1731 _M_insert_bucket_begin(__bkt, __node);
1732 ++_M_element_count;
1733 return iterator(__node);
1735 __catch(...)
1737 this->_M_deallocate_node(__node);
1738 __throw_exception_again;
1742 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1743 // already present). Take ownership of the node, deallocate it on exception.
1744 template<typename _Key, typename _Value,
1745 typename _Alloc, typename _ExtractKey, typename _Equal,
1746 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1747 typename _Traits>
1748 auto
1749 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1750 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1751 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1752 __node_type* __node)
1753 -> iterator
1755 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1756 std::pair<bool, std::size_t> __do_rehash
1757 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1759 __try
1761 if (__do_rehash.first)
1762 _M_rehash(__do_rehash.second, __saved_state);
1764 this->_M_store_code(__node, __code);
1765 const key_type& __k = this->_M_extract()(__node->_M_v());
1766 size_type __bkt = _M_bucket_index(__k, __code);
1768 // Find the node before an equivalent one or use hint if it exists and
1769 // if it is equivalent.
1770 __node_base* __prev
1771 = __builtin_expect(__hint != nullptr, false)
1772 && this->_M_equals(__k, __code, __hint)
1773 ? __hint
1774 : _M_find_before_node(__bkt, __k, __code);
1775 if (__prev)
1777 // Insert after the node before the equivalent one.
1778 __node->_M_nxt = __prev->_M_nxt;
1779 __prev->_M_nxt = __node;
1780 if (__builtin_expect(__prev == __hint, false))
1781 // hint might be the last bucket node, in this case we need to
1782 // update next bucket.
1783 if (__node->_M_nxt
1784 && !this->_M_equals(__k, __code, __node->_M_next()))
1786 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1787 if (__next_bkt != __bkt)
1788 _M_buckets[__next_bkt] = __node;
1791 else
1792 // The inserted node has no equivalent in the
1793 // hashtable. We must insert the new node at the
1794 // beginning of the bucket to preserve equivalent
1795 // elements' relative positions.
1796 _M_insert_bucket_begin(__bkt, __node);
1797 ++_M_element_count;
1798 return iterator(__node);
1800 __catch(...)
1802 this->_M_deallocate_node(__node);
1803 __throw_exception_again;
1807 // Insert v if no element with its key is already present.
1808 template<typename _Key, typename _Value,
1809 typename _Alloc, typename _ExtractKey, typename _Equal,
1810 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1811 typename _Traits>
1812 template<typename _Arg, typename _NodeGenerator>
1813 auto
1814 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1815 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1816 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1817 -> pair<iterator, bool>
1819 const key_type& __k = this->_M_extract()(__v);
1820 __hash_code __code = this->_M_hash_code(__k);
1821 size_type __bkt = _M_bucket_index(__k, __code);
1823 __node_type* __n = _M_find_node(__bkt, __k, __code);
1824 if (__n)
1825 return std::make_pair(iterator(__n), false);
1827 __n = __node_gen(std::forward<_Arg>(__v));
1828 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1831 // Insert v unconditionally.
1832 template<typename _Key, typename _Value,
1833 typename _Alloc, typename _ExtractKey, typename _Equal,
1834 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1835 typename _Traits>
1836 template<typename _Arg, typename _NodeGenerator>
1837 auto
1838 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1839 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1840 _M_insert(const_iterator __hint, _Arg&& __v,
1841 const _NodeGenerator& __node_gen, std::false_type)
1842 -> iterator
1844 // First compute the hash code so that we don't do anything if it
1845 // throws.
1846 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1848 // Second allocate new node so that we don't rehash if it throws.
1849 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1851 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1854 template<typename _Key, typename _Value,
1855 typename _Alloc, typename _ExtractKey, typename _Equal,
1856 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1857 typename _Traits>
1858 auto
1859 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1860 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1861 erase(const_iterator __it)
1862 -> iterator
1864 __node_type* __n = __it._M_cur;
1865 std::size_t __bkt = _M_bucket_index(__n);
1867 // Look for previous node to unlink it from the erased one, this
1868 // is why we need buckets to contain the before begin to make
1869 // this search fast.
1870 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1871 return _M_erase(__bkt, __prev_n, __n);
1874 template<typename _Key, typename _Value,
1875 typename _Alloc, typename _ExtractKey, typename _Equal,
1876 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1877 typename _Traits>
1878 auto
1879 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1880 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1881 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1882 -> iterator
1884 if (__prev_n == _M_buckets[__bkt])
1885 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1886 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1887 else if (__n->_M_nxt)
1889 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1890 if (__next_bkt != __bkt)
1891 _M_buckets[__next_bkt] = __prev_n;
1894 __prev_n->_M_nxt = __n->_M_nxt;
1895 iterator __result(__n->_M_next());
1896 this->_M_deallocate_node(__n);
1897 --_M_element_count;
1899 return __result;
1902 template<typename _Key, typename _Value,
1903 typename _Alloc, typename _ExtractKey, typename _Equal,
1904 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1905 typename _Traits>
1906 auto
1907 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1908 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1909 _M_erase(std::true_type, const key_type& __k)
1910 -> size_type
1912 __hash_code __code = this->_M_hash_code(__k);
1913 std::size_t __bkt = _M_bucket_index(__k, __code);
1915 // Look for the node before the first matching node.
1916 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1917 if (!__prev_n)
1918 return 0;
1920 // We found a matching node, erase it.
1921 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1922 _M_erase(__bkt, __prev_n, __n);
1923 return 1;
1926 template<typename _Key, typename _Value,
1927 typename _Alloc, typename _ExtractKey, typename _Equal,
1928 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1929 typename _Traits>
1930 auto
1931 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1932 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1933 _M_erase(std::false_type, const key_type& __k)
1934 -> size_type
1936 __hash_code __code = this->_M_hash_code(__k);
1937 std::size_t __bkt = _M_bucket_index(__k, __code);
1939 // Look for the node before the first matching node.
1940 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1941 if (!__prev_n)
1942 return 0;
1944 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1945 // 526. Is it undefined if a function in the standard changes
1946 // in parameters?
1947 // We use one loop to find all matching nodes and another to deallocate
1948 // them so that the key stays valid during the first loop. It might be
1949 // invalidated indirectly when destroying nodes.
1950 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1951 __node_type* __n_last = __n;
1952 std::size_t __n_last_bkt = __bkt;
1955 __n_last = __n_last->_M_next();
1956 if (!__n_last)
1957 break;
1958 __n_last_bkt = _M_bucket_index(__n_last);
1960 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1962 // Deallocate nodes.
1963 size_type __result = 0;
1966 __node_type* __p = __n->_M_next();
1967 this->_M_deallocate_node(__n);
1968 __n = __p;
1969 ++__result;
1970 --_M_element_count;
1972 while (__n != __n_last);
1974 if (__prev_n == _M_buckets[__bkt])
1975 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1976 else if (__n_last && __n_last_bkt != __bkt)
1977 _M_buckets[__n_last_bkt] = __prev_n;
1978 __prev_n->_M_nxt = __n_last;
1979 return __result;
1982 template<typename _Key, typename _Value,
1983 typename _Alloc, typename _ExtractKey, typename _Equal,
1984 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1985 typename _Traits>
1986 auto
1987 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1988 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1989 erase(const_iterator __first, const_iterator __last)
1990 -> iterator
1992 __node_type* __n = __first._M_cur;
1993 __node_type* __last_n = __last._M_cur;
1994 if (__n == __last_n)
1995 return iterator(__n);
1997 std::size_t __bkt = _M_bucket_index(__n);
1999 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
2000 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2001 std::size_t __n_bkt = __bkt;
2002 for (;;)
2006 __node_type* __tmp = __n;
2007 __n = __n->_M_next();
2008 this->_M_deallocate_node(__tmp);
2009 --_M_element_count;
2010 if (!__n)
2011 break;
2012 __n_bkt = _M_bucket_index(__n);
2014 while (__n != __last_n && __n_bkt == __bkt);
2015 if (__is_bucket_begin)
2016 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2017 if (__n == __last_n)
2018 break;
2019 __is_bucket_begin = true;
2020 __bkt = __n_bkt;
2023 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2024 _M_buckets[__n_bkt] = __prev_n;
2025 __prev_n->_M_nxt = __n;
2026 return iterator(__n);
2029 template<typename _Key, typename _Value,
2030 typename _Alloc, typename _ExtractKey, typename _Equal,
2031 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2032 typename _Traits>
2033 void
2034 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2035 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2036 clear() noexcept
2038 this->_M_deallocate_nodes(_M_begin());
2039 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2040 _M_element_count = 0;
2041 _M_before_begin._M_nxt = nullptr;
2044 template<typename _Key, typename _Value,
2045 typename _Alloc, typename _ExtractKey, typename _Equal,
2046 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2047 typename _Traits>
2048 void
2049 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2050 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2051 rehash(size_type __n)
2053 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2054 std::size_t __buckets
2055 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2056 __n);
2057 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2059 if (__buckets != _M_bucket_count)
2060 _M_rehash(__buckets, __saved_state);
2061 else
2062 // No rehash, restore previous state to keep a consistent state.
2063 _M_rehash_policy._M_reset(__saved_state);
2066 template<typename _Key, typename _Value,
2067 typename _Alloc, typename _ExtractKey, typename _Equal,
2068 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2069 typename _Traits>
2070 void
2071 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2072 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2073 _M_rehash(size_type __n, const __rehash_state& __state)
2075 __try
2077 _M_rehash_aux(__n, __unique_keys());
2079 __catch(...)
2081 // A failure here means that buckets allocation failed. We only
2082 // have to restore hash policy previous state.
2083 _M_rehash_policy._M_reset(__state);
2084 __throw_exception_again;
2088 // Rehash when there is no equivalent elements.
2089 template<typename _Key, typename _Value,
2090 typename _Alloc, typename _ExtractKey, typename _Equal,
2091 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2092 typename _Traits>
2093 void
2094 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2095 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2096 _M_rehash_aux(size_type __n, std::true_type)
2098 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2099 __node_type* __p = _M_begin();
2100 _M_before_begin._M_nxt = nullptr;
2101 std::size_t __bbegin_bkt = 0;
2102 while (__p)
2104 __node_type* __next = __p->_M_next();
2105 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2106 if (!__new_buckets[__bkt])
2108 __p->_M_nxt = _M_before_begin._M_nxt;
2109 _M_before_begin._M_nxt = __p;
2110 __new_buckets[__bkt] = &_M_before_begin;
2111 if (__p->_M_nxt)
2112 __new_buckets[__bbegin_bkt] = __p;
2113 __bbegin_bkt = __bkt;
2115 else
2117 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2118 __new_buckets[__bkt]->_M_nxt = __p;
2120 __p = __next;
2123 _M_deallocate_buckets();
2124 _M_bucket_count = __n;
2125 _M_buckets = __new_buckets;
2128 // Rehash when there can be equivalent elements, preserve their relative
2129 // order.
2130 template<typename _Key, typename _Value,
2131 typename _Alloc, typename _ExtractKey, typename _Equal,
2132 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2133 typename _Traits>
2134 void
2135 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2136 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2137 _M_rehash_aux(size_type __n, std::false_type)
2139 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2141 __node_type* __p = _M_begin();
2142 _M_before_begin._M_nxt = nullptr;
2143 std::size_t __bbegin_bkt = 0;
2144 std::size_t __prev_bkt = 0;
2145 __node_type* __prev_p = nullptr;
2146 bool __check_bucket = false;
2148 while (__p)
2150 __node_type* __next = __p->_M_next();
2151 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2153 if (__prev_p && __prev_bkt == __bkt)
2155 // Previous insert was already in this bucket, we insert after
2156 // the previously inserted one to preserve equivalent elements
2157 // relative order.
2158 __p->_M_nxt = __prev_p->_M_nxt;
2159 __prev_p->_M_nxt = __p;
2161 // Inserting after a node in a bucket require to check that we
2162 // haven't change the bucket last node, in this case next
2163 // bucket containing its before begin node must be updated. We
2164 // schedule a check as soon as we move out of the sequence of
2165 // equivalent nodes to limit the number of checks.
2166 __check_bucket = true;
2168 else
2170 if (__check_bucket)
2172 // Check if we shall update the next bucket because of
2173 // insertions into __prev_bkt bucket.
2174 if (__prev_p->_M_nxt)
2176 std::size_t __next_bkt
2177 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2178 __n);
2179 if (__next_bkt != __prev_bkt)
2180 __new_buckets[__next_bkt] = __prev_p;
2182 __check_bucket = false;
2185 if (!__new_buckets[__bkt])
2187 __p->_M_nxt = _M_before_begin._M_nxt;
2188 _M_before_begin._M_nxt = __p;
2189 __new_buckets[__bkt] = &_M_before_begin;
2190 if (__p->_M_nxt)
2191 __new_buckets[__bbegin_bkt] = __p;
2192 __bbegin_bkt = __bkt;
2194 else
2196 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2197 __new_buckets[__bkt]->_M_nxt = __p;
2200 __prev_p = __p;
2201 __prev_bkt = __bkt;
2202 __p = __next;
2205 if (__check_bucket && __prev_p->_M_nxt)
2207 std::size_t __next_bkt
2208 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2209 if (__next_bkt != __prev_bkt)
2210 __new_buckets[__next_bkt] = __prev_p;
2213 _M_deallocate_buckets();
2214 _M_bucket_count = __n;
2215 _M_buckets = __new_buckets;
2218 #if __cplusplus > 201402L
2219 template<typename, typename, typename> class _Hash_merge_helper { };
2220 #endif // C++17
2222 _GLIBCXX_END_NAMESPACE_VERSION
2223 } // namespace std
2225 #endif // _HASHTABLE_H