c++/coroutines: only defer expanding co_{await,return,yield} if dependent [PR112341]
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable.h
blob361da2b3b4d4105902875cda85ee35032bd22e6f
1 // hashtable.h header -*- C++ -*-
3 // Copyright (C) 2007-2024 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
33 #pragma GCC system_header
35 #include <bits/hashtable_policy.h>
36 #include <bits/enable_special_members.h>
37 #include <bits/stl_algobase.h> // fill_n
38 #include <bits/stl_function.h> // __has_is_transparent_t
39 #if __cplusplus > 201402L
40 # include <bits/node_handle.h>
41 #endif
43 namespace std _GLIBCXX_VISIBILITY(default)
45 _GLIBCXX_BEGIN_NAMESPACE_VERSION
46 /// @cond undocumented
48 template<typename _Tp, typename _Hash>
49 using __cache_default
50 = __not_<__and_<// Do not cache for fast hasher.
51 __is_fast_hash<_Hash>,
52 // Mandatory to have erase not throwing.
53 __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
55 // Helper to conditionally delete the default constructor.
56 // The _Hash_node_base type is used to distinguish this specialization
57 // from any other potentially-overlapping subobjects of the hashtable.
58 template<typename _Equal, typename _Hash, typename _Allocator>
59 using _Hashtable_enable_default_ctor
60 = _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
61 is_default_constructible<_Hash>,
62 is_default_constructible<_Allocator>>{},
63 __detail::_Hash_node_base>;
65 /**
66 * Primary class template _Hashtable.
68 * @ingroup hashtable-detail
70 * @tparam _Value CopyConstructible type.
72 * @tparam _Key CopyConstructible type.
74 * @tparam _Alloc An allocator type
75 * ([lib.allocator.requirements]) whose _Alloc::value_type is
76 * _Value. As a conforming extension, we allow for
77 * _Alloc::value_type != _Value.
79 * @tparam _ExtractKey Function object that takes an object of type
80 * _Value and returns a value of type _Key.
82 * @tparam _Equal Function object that takes two objects of type k
83 * and returns a bool-like value that is true if the two objects
84 * are considered equal.
86 * @tparam _Hash The hash function. A unary function object with
87 * argument type _Key and result type size_t. Return values should
88 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
90 * @tparam _RangeHash The range-hashing function (in the terminology of
91 * Tavori and Dreizin). A binary function object whose argument
92 * types and result type are all size_t. Given arguments r and N,
93 * the return value is in the range [0, N).
95 * @tparam _Unused Not used.
97 * @tparam _RehashPolicy Policy class with three members, all of
98 * which govern the bucket count. _M_next_bkt(n) returns a bucket
99 * count no smaller than n. _M_bkt_for_elements(n) returns a
100 * bucket count appropriate for an element count of n.
101 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
102 * current bucket count is n_bkt and the current element count is
103 * n_elt, we need to increase the bucket count for n_ins insertions.
104 * If so, returns make_pair(true, n), where n is the new bucket count. If
105 * not, returns make_pair(false, <anything>)
107 * @tparam _Traits Compile-time class with three boolean
108 * std::integral_constant members: __cache_hash_code, __constant_iterators,
109 * __unique_keys.
111 * Each _Hashtable data structure has:
113 * - _Bucket[] _M_buckets
114 * - _Hash_node_base _M_before_begin
115 * - size_type _M_bucket_count
116 * - size_type _M_element_count
118 * with _Bucket being _Hash_node_base* and _Hash_node containing:
120 * - _Hash_node* _M_next
121 * - Tp _M_value
122 * - size_t _M_hash_code if cache_hash_code is true
124 * In terms of Standard containers the hashtable is like the aggregation of:
126 * - std::forward_list<_Node> containing the elements
127 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
129 * The non-empty buckets contain the node before the first node in the
130 * bucket. This design makes it possible to implement something like a
131 * std::forward_list::insert_after on container insertion and
132 * std::forward_list::erase_after on container erase
133 * calls. _M_before_begin is equivalent to
134 * std::forward_list::before_begin. Empty buckets contain
135 * nullptr. Note that one of the non-empty buckets contains
136 * &_M_before_begin which is not a dereferenceable node so the
137 * node pointer in a bucket shall never be dereferenced, only its
138 * next node can be.
140 * Walking through a bucket's nodes requires a check on the hash code to
141 * see if each node is still in the bucket. Such a design assumes a
142 * quite efficient hash functor and is one of the reasons it is
143 * highly advisable to set __cache_hash_code to true.
145 * The container iterators are simply built from nodes. This way
146 * incrementing the iterator is perfectly efficient independent of
147 * how many empty buckets there are in the container.
149 * On insert we compute the element's hash code and use it to find the
150 * bucket index. If the element must be inserted in an empty bucket
151 * we add it at the beginning of the singly linked list and make the
152 * bucket point to _M_before_begin. The bucket that used to point to
153 * _M_before_begin, if any, is updated to point to its new before
154 * begin node.
156 * Note that all equivalent values, if any, are next to each other, if
157 * we find a non-equivalent value after an equivalent one it means that
158 * we won't find any new equivalent value.
160 * On erase, the simple iterator design requires using the hash
161 * functor to get the index of the bucket to update. For this
162 * reason, when __cache_hash_code is set to false the hash functor must
163 * not throw and this is enforced by a static assertion.
165 * Functionality is implemented by decomposition into base classes,
166 * where the derived _Hashtable class is used in _Map_base,
167 * _Insert, _Rehash_base, and _Equality base classes to access the
168 * "this" pointer. _Hashtable_base is used in the base classes as a
169 * non-recursive, fully-completed-type so that detailed nested type
170 * information, such as iterator type and node type, can be
171 * used. This is similar to the "Curiously Recurring Template
172 * Pattern" (CRTP) technique, but uses a reconstructed, not
173 * explicitly passed, template pattern.
175 * Base class templates are:
176 * - __detail::_Hashtable_base
177 * - __detail::_Map_base
178 * - __detail::_Insert
179 * - __detail::_Rehash_base
180 * - __detail::_Equality
182 template<typename _Key, typename _Value, typename _Alloc,
183 typename _ExtractKey, typename _Equal,
184 typename _Hash, typename _RangeHash, typename _Unused,
185 typename _RehashPolicy, typename _Traits>
186 class _Hashtable
187 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
188 _Hash, _RangeHash, _Unused, _Traits>,
189 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
190 _Hash, _RangeHash, _Unused,
191 _RehashPolicy, _Traits>,
192 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
193 _Hash, _RangeHash, _Unused,
194 _RehashPolicy, _Traits>,
195 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
196 _Hash, _RangeHash, _Unused,
197 _RehashPolicy, _Traits>,
198 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
199 _Hash, _RangeHash, _Unused,
200 _RehashPolicy, _Traits>,
201 private __detail::_Hashtable_alloc<
202 __alloc_rebind<_Alloc,
203 __detail::_Hash_node<_Value,
204 _Traits::__hash_cached::value>>>,
205 private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>
207 static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
208 "unordered container must have a non-const, non-volatile value_type");
209 #if __cplusplus > 201703L || defined __STRICT_ANSI__
210 static_assert(is_same<typename _Alloc::value_type, _Value>{},
211 "unordered container must have the same value_type as its allocator");
212 #endif
213 static_assert(is_copy_constructible<_Hash>::value,
214 "hash function must be copy constructible");
216 using __traits_type = _Traits;
217 using __hash_cached = typename __traits_type::__hash_cached;
218 using __constant_iterators = typename __traits_type::__constant_iterators;
219 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
220 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
222 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
224 using __node_value_type =
225 __detail::_Hash_node_value<_Value, __hash_cached::value>;
226 using __node_ptr = typename __hashtable_alloc::__node_ptr;
227 using __value_alloc_traits =
228 typename __hashtable_alloc::__value_alloc_traits;
229 using __node_alloc_traits =
230 typename __hashtable_alloc::__node_alloc_traits;
231 using __node_base = typename __hashtable_alloc::__node_base;
232 using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr;
233 using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr;
235 using __insert_base = __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey,
236 _Equal, _Hash,
237 _RangeHash, _Unused,
238 _RehashPolicy, _Traits>;
239 using __enable_default_ctor
240 = _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>;
241 using __rehash_guard_t
242 = __detail::_RehashStateGuard<_RehashPolicy>;
244 public:
245 typedef _Key key_type;
246 typedef _Value value_type;
247 typedef _Alloc allocator_type;
248 typedef _Equal key_equal;
250 // mapped_type, if present, comes from _Map_base.
251 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
252 typedef typename __value_alloc_traits::pointer pointer;
253 typedef typename __value_alloc_traits::const_pointer const_pointer;
254 typedef value_type& reference;
255 typedef const value_type& const_reference;
257 using iterator = typename __insert_base::iterator;
259 using const_iterator = typename __insert_base::const_iterator;
261 using local_iterator = __detail::_Local_iterator<key_type, _Value,
262 _ExtractKey, _Hash, _RangeHash, _Unused,
263 __constant_iterators::value,
264 __hash_cached::value>;
266 using const_local_iterator = __detail::_Local_const_iterator<
267 key_type, _Value,
268 _ExtractKey, _Hash, _RangeHash, _Unused,
269 __constant_iterators::value, __hash_cached::value>;
271 private:
272 using __rehash_type = _RehashPolicy;
274 using __unique_keys = typename __traits_type::__unique_keys;
276 using __hashtable_base = __detail::
277 _Hashtable_base<_Key, _Value, _ExtractKey,
278 _Equal, _Hash, _RangeHash, _Unused, _Traits>;
280 using __hash_code_base = typename __hashtable_base::__hash_code_base;
281 using __hash_code = typename __hashtable_base::__hash_code;
282 using __ireturn_type = typename __insert_base::__ireturn_type;
284 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
285 _Equal, _Hash, _RangeHash, _Unused,
286 _RehashPolicy, _Traits>;
288 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
289 _ExtractKey, _Equal,
290 _Hash, _RangeHash, _Unused,
291 _RehashPolicy, _Traits>;
293 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
294 _Equal, _Hash, _RangeHash, _Unused,
295 _RehashPolicy, _Traits>;
297 using __reuse_or_alloc_node_gen_t =
298 __detail::_ReuseOrAllocNode<__node_alloc_type>;
299 using __alloc_node_gen_t =
300 __detail::_AllocNode<__node_alloc_type>;
301 using __node_builder_t =
302 __detail::_NodeBuilder<_ExtractKey>;
304 // Simple RAII type for managing a node containing an element
305 struct _Scoped_node
307 // Take ownership of a node with a constructed element.
308 _Scoped_node(__node_ptr __n, __hashtable_alloc* __h)
309 : _M_h(__h), _M_node(__n) { }
311 // Allocate a node and construct an element within it.
312 template<typename... _Args>
313 _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
314 : _M_h(__h),
315 _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
318 // Destroy element and deallocate node.
319 ~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
321 _Scoped_node(const _Scoped_node&) = delete;
322 _Scoped_node& operator=(const _Scoped_node&) = delete;
324 __hashtable_alloc* _M_h;
325 __node_ptr _M_node;
328 template<typename _Ht>
329 static constexpr
330 __conditional_t<std::is_lvalue_reference<_Ht>::value,
331 const value_type&, value_type&&>
332 __fwd_value_for(value_type& __val) noexcept
333 { return std::move(__val); }
335 // Compile-time diagnostics.
337 // _Hash_code_base has everything protected, so use this derived type to
338 // access it.
339 struct __hash_code_base_access : __hash_code_base
340 { using __hash_code_base::_M_bucket_index; };
342 // To get bucket index we need _RangeHash not to throw.
343 static_assert(is_nothrow_default_constructible<_RangeHash>::value,
344 "Functor used to map hash code to bucket index"
345 " must be nothrow default constructible");
346 static_assert(noexcept(
347 std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)),
348 "Functor used to map hash code to bucket index must be"
349 " noexcept");
351 // To compute bucket index we also need _ExtratKey not to throw.
352 static_assert(is_nothrow_default_constructible<_ExtractKey>::value,
353 "_ExtractKey must be nothrow default constructible");
354 static_assert(noexcept(
355 std::declval<const _ExtractKey&>()(std::declval<_Value>())),
356 "_ExtractKey functor must be noexcept invocable");
358 template<typename _Keya, typename _Valuea, typename _Alloca,
359 typename _ExtractKeya, typename _Equala,
360 typename _Hasha, typename _RangeHasha, typename _Unuseda,
361 typename _RehashPolicya, typename _Traitsa,
362 bool _Unique_keysa>
363 friend struct __detail::_Map_base;
365 template<typename _Keya, typename _Valuea, typename _Alloca,
366 typename _ExtractKeya, typename _Equala,
367 typename _Hasha, typename _RangeHasha, typename _Unuseda,
368 typename _RehashPolicya, typename _Traitsa>
369 friend struct __detail::_Insert_base;
371 template<typename _Keya, typename _Valuea, typename _Alloca,
372 typename _ExtractKeya, typename _Equala,
373 typename _Hasha, typename _RangeHasha, typename _Unuseda,
374 typename _RehashPolicya, typename _Traitsa,
375 bool _Constant_iteratorsa>
376 friend struct __detail::_Insert;
378 template<typename _Keya, typename _Valuea, typename _Alloca,
379 typename _ExtractKeya, typename _Equala,
380 typename _Hasha, typename _RangeHasha, typename _Unuseda,
381 typename _RehashPolicya, typename _Traitsa,
382 bool _Unique_keysa>
383 friend struct __detail::_Equality;
385 public:
386 using size_type = typename __hashtable_base::size_type;
387 using difference_type = typename __hashtable_base::difference_type;
389 #if __cplusplus > 201402L
390 using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
391 using insert_return_type = _Node_insert_return<iterator, node_type>;
392 #endif
394 private:
395 __buckets_ptr _M_buckets = &_M_single_bucket;
396 size_type _M_bucket_count = 1;
397 __node_base _M_before_begin;
398 size_type _M_element_count = 0;
399 _RehashPolicy _M_rehash_policy;
401 // A single bucket used when only need for 1 bucket. Especially
402 // interesting in move semantic to leave hashtable with only 1 bucket
403 // which is not allocated so that we can have those operations noexcept
404 // qualified.
405 // Note that we can't leave hashtable with 0 bucket without adding
406 // numerous checks in the code to avoid 0 modulus.
407 __node_base_ptr _M_single_bucket = nullptr;
409 void
410 _M_update_bbegin()
412 if (auto __begin = _M_begin())
413 _M_buckets[_M_bucket_index(*__begin)] = &_M_before_begin;
416 void
417 _M_update_bbegin(__node_ptr __n)
419 _M_before_begin._M_nxt = __n;
420 _M_update_bbegin();
423 bool
424 _M_uses_single_bucket(__buckets_ptr __bkts) const
425 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
427 bool
428 _M_uses_single_bucket() const
429 { return _M_uses_single_bucket(_M_buckets); }
431 static constexpr size_t
432 __small_size_threshold() noexcept
434 return
435 __detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold();
438 __hashtable_alloc&
439 _M_base_alloc() { return *this; }
441 __buckets_ptr
442 _M_allocate_buckets(size_type __bkt_count)
444 if (__builtin_expect(__bkt_count == 1, false))
446 _M_single_bucket = nullptr;
447 return &_M_single_bucket;
450 return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
453 void
454 _M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count)
456 if (_M_uses_single_bucket(__bkts))
457 return;
459 __hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
462 void
463 _M_deallocate_buckets()
464 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
466 // Gets bucket begin, deals with the fact that non-empty buckets contain
467 // their before begin node.
468 __node_ptr
469 _M_bucket_begin(size_type __bkt) const
471 __node_base_ptr __n = _M_buckets[__bkt];
472 return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr;
475 __node_ptr
476 _M_begin() const
477 { return static_cast<__node_ptr>(_M_before_begin._M_nxt); }
479 // Assign *this using another _Hashtable instance. Whether elements
480 // are copied or moved depends on the _Ht reference.
481 template<typename _Ht>
482 void
483 _M_assign_elements(_Ht&&);
485 template<typename _Ht, typename _NodeGenerator>
486 void
487 _M_assign(_Ht&&, const _NodeGenerator&);
489 void
490 _M_move_assign(_Hashtable&&, true_type);
492 void
493 _M_move_assign(_Hashtable&&, false_type);
495 void
496 _M_reset() noexcept;
498 _Hashtable(const _Hash& __h, const _Equal& __eq,
499 const allocator_type& __a)
500 : __hashtable_base(__h, __eq),
501 __hashtable_alloc(__node_alloc_type(__a)),
502 __enable_default_ctor(_Enable_default_constructor_tag{})
505 template<bool _No_realloc = true>
506 static constexpr bool
507 _S_nothrow_move()
509 #if __cplusplus <= 201402L
510 return __and_<__bool_constant<_No_realloc>,
511 is_nothrow_copy_constructible<_Hash>,
512 is_nothrow_copy_constructible<_Equal>>::value;
513 #else
514 if constexpr (_No_realloc)
515 if constexpr (is_nothrow_copy_constructible<_Hash>())
516 return is_nothrow_copy_constructible<_Equal>();
517 return false;
518 #endif
521 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
522 true_type /* alloc always equal */)
523 noexcept(_S_nothrow_move());
525 _Hashtable(_Hashtable&&, __node_alloc_type&&,
526 false_type /* alloc always equal */);
528 template<typename _InputIterator>
529 _Hashtable(_InputIterator __first, _InputIterator __last,
530 size_type __bkt_count_hint,
531 const _Hash&, const _Equal&, const allocator_type&,
532 true_type __uks);
534 template<typename _InputIterator>
535 _Hashtable(_InputIterator __first, _InputIterator __last,
536 size_type __bkt_count_hint,
537 const _Hash&, const _Equal&, const allocator_type&,
538 false_type __uks);
540 public:
541 // Constructor, destructor, assignment, swap
542 _Hashtable() = default;
544 _Hashtable(const _Hashtable&);
546 _Hashtable(const _Hashtable&, const allocator_type&);
548 explicit
549 _Hashtable(size_type __bkt_count_hint,
550 const _Hash& __hf = _Hash(),
551 const key_equal& __eql = key_equal(),
552 const allocator_type& __a = allocator_type());
554 // Use delegating constructors.
555 _Hashtable(_Hashtable&& __ht)
556 noexcept(_S_nothrow_move())
557 : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
558 true_type{})
561 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
562 noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
563 : _Hashtable(std::move(__ht), __node_alloc_type(__a),
564 typename __node_alloc_traits::is_always_equal{})
567 explicit
568 _Hashtable(const allocator_type& __a)
569 : __hashtable_alloc(__node_alloc_type(__a)),
570 __enable_default_ctor(_Enable_default_constructor_tag{})
573 template<typename _InputIterator>
574 _Hashtable(_InputIterator __f, _InputIterator __l,
575 size_type __bkt_count_hint = 0,
576 const _Hash& __hf = _Hash(),
577 const key_equal& __eql = key_equal(),
578 const allocator_type& __a = allocator_type())
579 : _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a,
580 __unique_keys{})
583 _Hashtable(initializer_list<value_type> __l,
584 size_type __bkt_count_hint = 0,
585 const _Hash& __hf = _Hash(),
586 const key_equal& __eql = key_equal(),
587 const allocator_type& __a = allocator_type())
588 : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
589 __hf, __eql, __a, __unique_keys{})
592 _Hashtable&
593 operator=(const _Hashtable& __ht);
595 _Hashtable&
596 operator=(_Hashtable&& __ht)
597 noexcept(__node_alloc_traits::_S_nothrow_move()
598 && is_nothrow_move_assignable<_Hash>::value
599 && is_nothrow_move_assignable<_Equal>::value)
601 constexpr bool __move_storage =
602 __node_alloc_traits::_S_propagate_on_move_assign()
603 || __node_alloc_traits::_S_always_equal();
604 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
605 return *this;
608 _Hashtable&
609 operator=(initializer_list<value_type> __l)
611 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
612 _M_before_begin._M_nxt = nullptr;
613 clear();
615 // We consider that all elements of __l are going to be inserted.
616 auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size());
618 // Do not shrink to keep potential user reservation.
619 if (_M_bucket_count < __l_bkt_count)
620 rehash(__l_bkt_count);
622 this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys{});
623 return *this;
626 ~_Hashtable() noexcept;
628 void
629 swap(_Hashtable&)
630 noexcept(__and_<__is_nothrow_swappable<_Hash>,
631 __is_nothrow_swappable<_Equal>>::value);
633 // Basic container operations
634 iterator
635 begin() noexcept
636 { return iterator(_M_begin()); }
638 const_iterator
639 begin() const noexcept
640 { return const_iterator(_M_begin()); }
642 iterator
643 end() noexcept
644 { return iterator(nullptr); }
646 const_iterator
647 end() const noexcept
648 { return const_iterator(nullptr); }
650 const_iterator
651 cbegin() const noexcept
652 { return const_iterator(_M_begin()); }
654 const_iterator
655 cend() const noexcept
656 { return const_iterator(nullptr); }
658 size_type
659 size() const noexcept
660 { return _M_element_count; }
662 _GLIBCXX_NODISCARD bool
663 empty() const noexcept
664 { return size() == 0; }
666 allocator_type
667 get_allocator() const noexcept
668 { return allocator_type(this->_M_node_allocator()); }
670 size_type
671 max_size() const noexcept
672 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
674 // Observers
675 key_equal
676 key_eq() const
677 { return this->_M_eq(); }
679 // hash_function, if present, comes from _Hash_code_base.
681 // Bucket operations
682 size_type
683 bucket_count() const noexcept
684 { return _M_bucket_count; }
686 size_type
687 max_bucket_count() const noexcept
688 { return max_size(); }
690 size_type
691 bucket_size(size_type __bkt) const
692 { return std::distance(begin(__bkt), end(__bkt)); }
694 size_type
695 bucket(const key_type& __k) const
696 { return _M_bucket_index(this->_M_hash_code(__k)); }
698 local_iterator
699 begin(size_type __bkt)
701 return local_iterator(*this, _M_bucket_begin(__bkt),
702 __bkt, _M_bucket_count);
705 local_iterator
706 end(size_type __bkt)
707 { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
709 const_local_iterator
710 begin(size_type __bkt) const
712 return const_local_iterator(*this, _M_bucket_begin(__bkt),
713 __bkt, _M_bucket_count);
716 const_local_iterator
717 end(size_type __bkt) const
718 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
720 // DR 691.
721 const_local_iterator
722 cbegin(size_type __bkt) const
724 return const_local_iterator(*this, _M_bucket_begin(__bkt),
725 __bkt, _M_bucket_count);
728 const_local_iterator
729 cend(size_type __bkt) const
730 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
732 float
733 load_factor() const noexcept
735 return static_cast<float>(size()) / static_cast<float>(bucket_count());
738 // max_load_factor, if present, comes from _Rehash_base.
740 // Generalization of max_load_factor. Extension, not found in
741 // TR1. Only useful if _RehashPolicy is something other than
742 // the default.
743 const _RehashPolicy&
744 __rehash_policy() const
745 { return _M_rehash_policy; }
747 void
748 __rehash_policy(const _RehashPolicy& __pol)
749 { _M_rehash_policy = __pol; }
751 // Lookup.
752 iterator
753 find(const key_type& __k);
755 const_iterator
756 find(const key_type& __k) const;
758 size_type
759 count(const key_type& __k) const;
761 std::pair<iterator, iterator>
762 equal_range(const key_type& __k);
764 std::pair<const_iterator, const_iterator>
765 equal_range(const key_type& __k) const;
767 #ifdef __glibcxx_generic_unordered_lookup // C++ >= 20 && HOSTED
768 template<typename _Kt,
769 typename = __has_is_transparent_t<_Hash, _Kt>,
770 typename = __has_is_transparent_t<_Equal, _Kt>>
771 iterator
772 _M_find_tr(const _Kt& __k);
774 template<typename _Kt,
775 typename = __has_is_transparent_t<_Hash, _Kt>,
776 typename = __has_is_transparent_t<_Equal, _Kt>>
777 const_iterator
778 _M_find_tr(const _Kt& __k) const;
780 template<typename _Kt,
781 typename = __has_is_transparent_t<_Hash, _Kt>,
782 typename = __has_is_transparent_t<_Equal, _Kt>>
783 size_type
784 _M_count_tr(const _Kt& __k) const;
786 template<typename _Kt,
787 typename = __has_is_transparent_t<_Hash, _Kt>,
788 typename = __has_is_transparent_t<_Equal, _Kt>>
789 pair<iterator, iterator>
790 _M_equal_range_tr(const _Kt& __k);
792 template<typename _Kt,
793 typename = __has_is_transparent_t<_Hash, _Kt>,
794 typename = __has_is_transparent_t<_Equal, _Kt>>
795 pair<const_iterator, const_iterator>
796 _M_equal_range_tr(const _Kt& __k) const;
797 #endif // __glibcxx_generic_unordered_lookup
799 private:
800 // Bucket index computation helpers.
801 size_type
802 _M_bucket_index(const __node_value_type& __n) const noexcept
803 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
805 size_type
806 _M_bucket_index(__hash_code __c) const
807 { return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); }
809 __node_base_ptr
810 _M_find_before_node(const key_type&);
812 // Find and insert helper functions and types
813 // Find the node before the one matching the criteria.
814 __node_base_ptr
815 _M_find_before_node(size_type, const key_type&, __hash_code) const;
817 template<typename _Kt>
818 __node_base_ptr
819 _M_find_before_node_tr(size_type, const _Kt&, __hash_code) const;
821 __node_ptr
822 _M_find_node(size_type __bkt, const key_type& __key,
823 __hash_code __c) const
825 __node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c);
826 if (__before_n)
827 return static_cast<__node_ptr>(__before_n->_M_nxt);
828 return nullptr;
831 template<typename _Kt>
832 __node_ptr
833 _M_find_node_tr(size_type __bkt, const _Kt& __key,
834 __hash_code __c) const
836 auto __before_n = _M_find_before_node_tr(__bkt, __key, __c);
837 if (__before_n)
838 return static_cast<__node_ptr>(__before_n->_M_nxt);
839 return nullptr;
842 // Insert a node at the beginning of a bucket.
843 void
844 _M_insert_bucket_begin(size_type __bkt, __node_ptr __node)
846 if (_M_buckets[__bkt])
848 // Bucket is not empty, we just need to insert the new node
849 // after the bucket before begin.
850 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
851 _M_buckets[__bkt]->_M_nxt = __node;
853 else
855 // The bucket is empty, the new node is inserted at the
856 // beginning of the singly-linked list and the bucket will
857 // contain _M_before_begin pointer.
858 __node->_M_nxt = _M_before_begin._M_nxt;
859 _M_before_begin._M_nxt = __node;
861 if (__node->_M_nxt)
862 // We must update former begin bucket that is pointing to
863 // _M_before_begin.
864 _M_buckets[_M_bucket_index(*__node->_M_next())] = __node;
866 _M_buckets[__bkt] = &_M_before_begin;
870 // Remove the bucket first node
871 void
872 _M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n,
873 size_type __next_bkt)
875 if (!__next_n)
876 _M_buckets[__bkt] = nullptr;
877 else if (__next_bkt != __bkt)
879 _M_buckets[__next_bkt] = _M_buckets[__bkt];
880 _M_buckets[__bkt] = nullptr;
884 // Get the node before __n in the bucket __bkt
885 __node_base_ptr
886 _M_get_previous_node(size_type __bkt, __node_ptr __n);
888 pair<__node_ptr, __hash_code>
889 _M_compute_hash_code(__node_ptr __hint, const key_type& __k) const;
891 // Insert node __n with hash code __code, in bucket __bkt if no
892 // rehash (assumes no element with same key already present).
893 // Takes ownership of __n if insertion succeeds, throws otherwise.
894 iterator
895 _M_insert_unique_node(size_type __bkt, __hash_code,
896 __node_ptr __n, size_type __n_elt = 1);
898 // Insert node __n with key __k and hash code __code.
899 // Takes ownership of __n if insertion succeeds, throws otherwise.
900 iterator
901 _M_insert_multi_node(__node_ptr __hint,
902 __hash_code __code, __node_ptr __n);
904 template<typename... _Args>
905 std::pair<iterator, bool>
906 _M_emplace(true_type __uks, _Args&&... __args);
908 template<typename... _Args>
909 iterator
910 _M_emplace(false_type __uks, _Args&&... __args)
911 { return _M_emplace(cend(), __uks, std::forward<_Args>(__args)...); }
913 // Emplace with hint, useless when keys are unique.
914 template<typename... _Args>
915 iterator
916 _M_emplace(const_iterator, true_type __uks, _Args&&... __args)
917 { return _M_emplace(__uks, std::forward<_Args>(__args)...).first; }
919 template<typename... _Args>
920 iterator
921 _M_emplace(const_iterator, false_type __uks, _Args&&... __args);
923 template<typename _Kt, typename _Arg, typename _NodeGenerator>
924 std::pair<iterator, bool>
925 _M_insert_unique(_Kt&&, _Arg&&, const _NodeGenerator&);
927 template<typename _Kt>
928 static __conditional_t<
929 __and_<__is_nothrow_invocable<_Hash&, const key_type&>,
930 __not_<__is_nothrow_invocable<_Hash&, _Kt>>>::value,
931 key_type, _Kt&&>
932 _S_forward_key(_Kt&& __k)
933 { return std::forward<_Kt>(__k); }
935 static const key_type&
936 _S_forward_key(const key_type& __k)
937 { return __k; }
939 static key_type&&
940 _S_forward_key(key_type&& __k)
941 { return std::move(__k); }
943 template<typename _Arg, typename _NodeGenerator>
944 std::pair<iterator, bool>
945 _M_insert_unique_aux(_Arg&& __arg, const _NodeGenerator& __node_gen)
947 return _M_insert_unique(
948 _S_forward_key(_ExtractKey{}(std::forward<_Arg>(__arg))),
949 std::forward<_Arg>(__arg), __node_gen);
952 template<typename _Arg, typename _NodeGenerator>
953 std::pair<iterator, bool>
954 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
955 true_type /* __uks */)
957 using __to_value
958 = __detail::_ConvertToValueType<_ExtractKey, value_type>;
959 return _M_insert_unique_aux(
960 __to_value{}(std::forward<_Arg>(__arg)), __node_gen);
963 template<typename _Arg, typename _NodeGenerator>
964 iterator
965 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
966 false_type __uks)
968 using __to_value
969 = __detail::_ConvertToValueType<_ExtractKey, value_type>;
970 return _M_insert(cend(),
971 __to_value{}(std::forward<_Arg>(__arg)), __node_gen, __uks);
974 // Insert with hint, not used when keys are unique.
975 template<typename _Arg, typename _NodeGenerator>
976 iterator
977 _M_insert(const_iterator, _Arg&& __arg,
978 const _NodeGenerator& __node_gen, true_type __uks)
980 return
981 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uks).first;
984 // Insert with hint when keys are not unique.
985 template<typename _Arg, typename _NodeGenerator>
986 iterator
987 _M_insert(const_iterator, _Arg&&,
988 const _NodeGenerator&, false_type __uks);
990 size_type
991 _M_erase(true_type __uks, const key_type&);
993 size_type
994 _M_erase(false_type __uks, const key_type&);
996 iterator
997 _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n);
999 public:
1000 // Emplace
1001 template<typename... _Args>
1002 __ireturn_type
1003 emplace(_Args&&... __args)
1004 { return _M_emplace(__unique_keys{}, std::forward<_Args>(__args)...); }
1006 template<typename... _Args>
1007 iterator
1008 emplace_hint(const_iterator __hint, _Args&&... __args)
1010 return _M_emplace(__hint, __unique_keys{},
1011 std::forward<_Args>(__args)...);
1014 // Insert member functions via inheritance.
1016 // Erase
1017 iterator
1018 erase(const_iterator);
1020 // LWG 2059.
1021 iterator
1022 erase(iterator __it)
1023 { return erase(const_iterator(__it)); }
1025 size_type
1026 erase(const key_type& __k)
1027 { return _M_erase(__unique_keys{}, __k); }
1029 iterator
1030 erase(const_iterator, const_iterator);
1032 void
1033 clear() noexcept;
1035 // Set number of buckets keeping it appropriate for container's number
1036 // of elements.
1037 void rehash(size_type __bkt_count);
1039 // DR 1189.
1040 // reserve, if present, comes from _Rehash_base.
1042 #if __glibcxx_node_extract // >= C++17
1043 /// Re-insert an extracted node into a container with unique keys.
1044 insert_return_type
1045 _M_reinsert_node(node_type&& __nh)
1047 insert_return_type __ret;
1048 if (__nh.empty())
1049 __ret.position = end();
1050 else
1052 __glibcxx_assert(get_allocator() == __nh.get_allocator());
1054 __node_ptr __n = nullptr;
1055 const key_type& __k = __nh._M_key();
1056 const size_type __size = size();
1057 if (__size <= __small_size_threshold())
1059 for (__n = _M_begin(); __n; __n = __n->_M_next())
1060 if (this->_M_key_equals(__k, *__n))
1061 break;
1064 __hash_code __code;
1065 size_type __bkt;
1066 if (!__n)
1068 __code = this->_M_hash_code(__k);
1069 __bkt = _M_bucket_index(__code);
1070 if (__size > __small_size_threshold())
1071 __n = _M_find_node(__bkt, __k, __code);
1074 if (__n)
1076 __ret.node = std::move(__nh);
1077 __ret.position = iterator(__n);
1078 __ret.inserted = false;
1080 else
1082 __ret.position
1083 = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
1084 __nh.release();
1085 __ret.inserted = true;
1088 return __ret;
1091 /// Re-insert an extracted node into a container with equivalent keys.
1092 iterator
1093 _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
1095 if (__nh.empty())
1096 return end();
1098 __glibcxx_assert(get_allocator() == __nh.get_allocator());
1100 const key_type& __k = __nh._M_key();
1101 auto __code = this->_M_hash_code(__k);
1102 auto __ret
1103 = _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr);
1104 __nh.release();
1105 return __ret;
1108 private:
1109 node_type
1110 _M_extract_node(size_t __bkt, __node_base_ptr __prev_n)
1112 __node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
1113 if (__prev_n == _M_buckets[__bkt])
1114 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1115 __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
1116 else if (__n->_M_nxt)
1118 size_type __next_bkt = _M_bucket_index(*__n->_M_next());
1119 if (__next_bkt != __bkt)
1120 _M_buckets[__next_bkt] = __prev_n;
1123 __prev_n->_M_nxt = __n->_M_nxt;
1124 __n->_M_nxt = nullptr;
1125 --_M_element_count;
1126 return { __n, this->_M_node_allocator() };
1129 // Only use the possibly cached node's hash code if its hash function
1130 // _H2 matches _Hash and is stateless. Otherwise recompute it using _Hash.
1131 template<typename _H2>
1132 __hash_code
1133 _M_src_hash_code(const _H2&, const key_type& __k,
1134 const __node_value_type& __src_n) const
1136 if constexpr (std::is_same_v<_H2, _Hash>)
1137 if constexpr (std::is_empty_v<_Hash>)
1138 return this->_M_hash_code(__src_n);
1140 return this->_M_hash_code(__k);
1143 public:
1144 // Extract a node.
1145 node_type
1146 extract(const_iterator __pos)
1148 size_t __bkt = _M_bucket_index(*__pos._M_cur);
1149 return _M_extract_node(__bkt,
1150 _M_get_previous_node(__bkt, __pos._M_cur));
1153 /// Extract a node.
1154 node_type
1155 extract(const _Key& __k)
1157 node_type __nh;
1158 __hash_code __code = this->_M_hash_code(__k);
1159 std::size_t __bkt = _M_bucket_index(__code);
1160 if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code))
1161 __nh = _M_extract_node(__bkt, __prev_node);
1162 return __nh;
1165 /// Merge from a compatible container into one with unique keys.
1166 template<typename _Compatible_Hashtable>
1167 void
1168 _M_merge_unique(_Compatible_Hashtable& __src)
1170 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1171 node_type>, "Node types are compatible");
1172 __glibcxx_assert(get_allocator() == __src.get_allocator());
1174 auto __n_elt = __src.size();
1175 for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1177 auto __pos = __i++;
1178 const size_type __size = size();
1179 const key_type& __k = _ExtractKey{}(*__pos);
1180 if (__size <= __small_size_threshold())
1182 bool __found = false;
1183 for (auto __n = _M_begin(); __n; __n = __n->_M_next())
1184 if (this->_M_key_equals(__k, *__n))
1186 __found = true;
1187 break;
1190 if (__found)
1192 if (__n_elt != 1)
1193 --__n_elt;
1194 continue;
1198 __hash_code __code
1199 = _M_src_hash_code(__src.hash_function(), __k, *__pos._M_cur);
1200 size_type __bkt = _M_bucket_index(__code);
1201 if (__size <= __small_size_threshold()
1202 || _M_find_node(__bkt, __k, __code) == nullptr)
1204 auto __nh = __src.extract(__pos);
1205 _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
1206 __nh.release();
1207 __n_elt = 1;
1209 else if (__n_elt != 1)
1210 --__n_elt;
1214 /// Merge from a compatible container into one with equivalent keys.
1215 template<typename _Compatible_Hashtable>
1216 void
1217 _M_merge_multi(_Compatible_Hashtable& __src)
1219 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1220 node_type>, "Node types are compatible");
1221 __glibcxx_assert(get_allocator() == __src.get_allocator());
1223 __node_ptr __hint = nullptr;
1224 this->reserve(size() + __src.size());
1225 for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1227 auto __pos = __i++;
1228 const key_type& __k = _ExtractKey{}(*__pos);
1229 __hash_code __code
1230 = _M_src_hash_code(__src.hash_function(), __k, *__pos._M_cur);
1231 auto __nh = __src.extract(__pos);
1232 __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur;
1233 __nh.release();
1236 #endif // C++17 __glibcxx_node_extract
1238 private:
1239 // Helper rehash method used when keys are unique.
1240 void _M_rehash(size_type __bkt_count, true_type __uks);
1242 // Helper rehash method used when keys can be non-unique.
1243 void _M_rehash(size_type __bkt_count, false_type __uks);
1246 // Definitions of class template _Hashtable's out-of-line member functions.
1247 template<typename _Key, typename _Value, typename _Alloc,
1248 typename _ExtractKey, typename _Equal,
1249 typename _Hash, typename _RangeHash, typename _Unused,
1250 typename _RehashPolicy, typename _Traits>
1251 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1252 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1253 _Hashtable(size_type __bkt_count_hint,
1254 const _Hash& __h, const _Equal& __eq, const allocator_type& __a)
1255 : _Hashtable(__h, __eq, __a)
1257 auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1258 if (__bkt_count > _M_bucket_count)
1260 _M_buckets = _M_allocate_buckets(__bkt_count);
1261 _M_bucket_count = __bkt_count;
1265 template<typename _Key, typename _Value, typename _Alloc,
1266 typename _ExtractKey, typename _Equal,
1267 typename _Hash, typename _RangeHash, typename _Unused,
1268 typename _RehashPolicy, typename _Traits>
1269 template<typename _InputIterator>
1270 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1271 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1272 _Hashtable(_InputIterator __f, _InputIterator __l,
1273 size_type __bkt_count_hint,
1274 const _Hash& __h, const _Equal& __eq,
1275 const allocator_type& __a, true_type /* __uks */)
1276 : _Hashtable(__bkt_count_hint, __h, __eq, __a)
1277 { this->insert(__f, __l); }
1279 template<typename _Key, typename _Value, typename _Alloc,
1280 typename _ExtractKey, typename _Equal,
1281 typename _Hash, typename _RangeHash, typename _Unused,
1282 typename _RehashPolicy, typename _Traits>
1283 template<typename _InputIterator>
1284 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1285 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1286 _Hashtable(_InputIterator __f, _InputIterator __l,
1287 size_type __bkt_count_hint,
1288 const _Hash& __h, const _Equal& __eq,
1289 const allocator_type& __a, false_type __uks)
1290 : _Hashtable(__h, __eq, __a)
1292 auto __nb_elems = __detail::__distance_fw(__f, __l);
1293 auto __bkt_count =
1294 _M_rehash_policy._M_next_bkt(
1295 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1296 __bkt_count_hint));
1298 if (__bkt_count > _M_bucket_count)
1300 _M_buckets = _M_allocate_buckets(__bkt_count);
1301 _M_bucket_count = __bkt_count;
1304 __alloc_node_gen_t __node_gen(*this);
1305 for (; __f != __l; ++__f)
1306 _M_insert(*__f, __node_gen, __uks);
1309 template<typename _Key, typename _Value, typename _Alloc,
1310 typename _ExtractKey, typename _Equal,
1311 typename _Hash, typename _RangeHash, typename _Unused,
1312 typename _RehashPolicy, typename _Traits>
1313 auto
1314 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1315 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1316 operator=(const _Hashtable& __ht)
1317 -> _Hashtable&
1319 if (&__ht == this)
1320 return *this;
1322 if (__node_alloc_traits::_S_propagate_on_copy_assign())
1324 auto& __this_alloc = this->_M_node_allocator();
1325 auto& __that_alloc = __ht._M_node_allocator();
1326 if (!__node_alloc_traits::_S_always_equal()
1327 && __this_alloc != __that_alloc)
1329 // Replacement allocator cannot free existing storage.
1330 this->_M_deallocate_nodes(_M_begin());
1331 _M_before_begin._M_nxt = nullptr;
1332 _M_deallocate_buckets();
1333 _M_buckets = nullptr;
1334 std::__alloc_on_copy(__this_alloc, __that_alloc);
1335 __hashtable_base::operator=(__ht);
1336 _M_bucket_count = __ht._M_bucket_count;
1337 _M_element_count = __ht._M_element_count;
1338 _M_rehash_policy = __ht._M_rehash_policy;
1339 __alloc_node_gen_t __alloc_node_gen(*this);
1340 __try
1342 _M_assign(__ht, __alloc_node_gen);
1344 __catch(...)
1346 // _M_assign took care of deallocating all memory. Now we
1347 // must make sure this instance remains in a usable state.
1348 _M_reset();
1349 __throw_exception_again;
1351 return *this;
1353 std::__alloc_on_copy(__this_alloc, __that_alloc);
1356 // Reuse allocated buckets and nodes.
1357 _M_assign_elements(__ht);
1358 return *this;
1361 template<typename _Key, typename _Value, typename _Alloc,
1362 typename _ExtractKey, typename _Equal,
1363 typename _Hash, typename _RangeHash, typename _Unused,
1364 typename _RehashPolicy, typename _Traits>
1365 template<typename _Ht>
1366 void
1367 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1368 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1369 _M_assign_elements(_Ht&& __ht)
1371 __buckets_ptr __former_buckets = nullptr;
1372 std::size_t __former_bucket_count = _M_bucket_count;
1373 __rehash_guard_t __rehash_guard(_M_rehash_policy);
1375 if (_M_bucket_count != __ht._M_bucket_count)
1377 __former_buckets = _M_buckets;
1378 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1379 _M_bucket_count = __ht._M_bucket_count;
1381 else
1382 std::fill_n(_M_buckets, _M_bucket_count, nullptr);
1384 __try
1386 __hashtable_base::operator=(std::forward<_Ht>(__ht));
1387 _M_element_count = __ht._M_element_count;
1388 _M_rehash_policy = __ht._M_rehash_policy;
1389 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1390 _M_before_begin._M_nxt = nullptr;
1391 _M_assign(std::forward<_Ht>(__ht), __roan);
1392 if (__former_buckets)
1393 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1394 __rehash_guard._M_guarded_obj = nullptr;
1396 __catch(...)
1398 if (__former_buckets)
1400 // Restore previous buckets.
1401 _M_deallocate_buckets();
1402 _M_buckets = __former_buckets;
1403 _M_bucket_count = __former_bucket_count;
1405 std::fill_n(_M_buckets, _M_bucket_count, nullptr);
1406 __throw_exception_again;
1410 template<typename _Key, typename _Value, typename _Alloc,
1411 typename _ExtractKey, typename _Equal,
1412 typename _Hash, typename _RangeHash, typename _Unused,
1413 typename _RehashPolicy, typename _Traits>
1414 template<typename _Ht, typename _NodeGenerator>
1415 void
1416 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1417 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1418 _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1420 __buckets_ptr __buckets = nullptr;
1421 if (!_M_buckets)
1422 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1424 __try
1426 if (!__ht._M_before_begin._M_nxt)
1427 return;
1429 // First deal with the special first node pointed to by
1430 // _M_before_begin.
1431 __node_ptr __ht_n = __ht._M_begin();
1432 __node_ptr __this_n
1433 = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1434 this->_M_copy_code(*__this_n, *__ht_n);
1435 _M_update_bbegin(__this_n);
1437 // Then deal with other nodes.
1438 __node_ptr __prev_n = __this_n;
1439 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1441 __this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1442 __prev_n->_M_nxt = __this_n;
1443 this->_M_copy_code(*__this_n, *__ht_n);
1444 size_type __bkt = _M_bucket_index(*__this_n);
1445 if (!_M_buckets[__bkt])
1446 _M_buckets[__bkt] = __prev_n;
1447 __prev_n = __this_n;
1450 __catch(...)
1452 clear();
1453 if (__buckets)
1454 _M_deallocate_buckets();
1455 __throw_exception_again;
1459 template<typename _Key, typename _Value, typename _Alloc,
1460 typename _ExtractKey, typename _Equal,
1461 typename _Hash, typename _RangeHash, typename _Unused,
1462 typename _RehashPolicy, typename _Traits>
1463 void
1464 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1465 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1466 _M_reset() noexcept
1468 _M_rehash_policy._M_reset();
1469 _M_bucket_count = 1;
1470 _M_single_bucket = nullptr;
1471 _M_buckets = &_M_single_bucket;
1472 _M_before_begin._M_nxt = nullptr;
1473 _M_element_count = 0;
1476 template<typename _Key, typename _Value, typename _Alloc,
1477 typename _ExtractKey, typename _Equal,
1478 typename _Hash, typename _RangeHash, typename _Unused,
1479 typename _RehashPolicy, typename _Traits>
1480 void
1481 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1482 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1483 _M_move_assign(_Hashtable&& __ht, true_type)
1485 if (__builtin_expect(std::__addressof(__ht) == this, false))
1486 return;
1488 this->_M_deallocate_nodes(_M_begin());
1489 _M_deallocate_buckets();
1490 __hashtable_base::operator=(std::move(__ht));
1491 _M_rehash_policy = __ht._M_rehash_policy;
1492 if (!__ht._M_uses_single_bucket())
1493 _M_buckets = __ht._M_buckets;
1494 else
1496 _M_buckets = &_M_single_bucket;
1497 _M_single_bucket = __ht._M_single_bucket;
1500 _M_bucket_count = __ht._M_bucket_count;
1501 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1502 _M_element_count = __ht._M_element_count;
1503 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1505 // Fix bucket containing the _M_before_begin pointer that can't be moved.
1506 _M_update_bbegin();
1507 __ht._M_reset();
1510 template<typename _Key, typename _Value, typename _Alloc,
1511 typename _ExtractKey, typename _Equal,
1512 typename _Hash, typename _RangeHash, typename _Unused,
1513 typename _RehashPolicy, typename _Traits>
1514 void
1515 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1516 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1517 _M_move_assign(_Hashtable&& __ht, false_type)
1519 if (__ht._M_node_allocator() == this->_M_node_allocator())
1520 _M_move_assign(std::move(__ht), true_type{});
1521 else
1523 // Can't move memory, move elements then.
1524 _M_assign_elements(std::move(__ht));
1525 __ht.clear();
1529 template<typename _Key, typename _Value, typename _Alloc,
1530 typename _ExtractKey, typename _Equal,
1531 typename _Hash, typename _RangeHash, typename _Unused,
1532 typename _RehashPolicy, typename _Traits>
1533 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1534 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1535 _Hashtable(const _Hashtable& __ht)
1536 : __hashtable_base(__ht),
1537 __map_base(__ht),
1538 __rehash_base(__ht),
1539 __hashtable_alloc(
1540 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1541 __enable_default_ctor(__ht),
1542 _M_buckets(nullptr),
1543 _M_bucket_count(__ht._M_bucket_count),
1544 _M_element_count(__ht._M_element_count),
1545 _M_rehash_policy(__ht._M_rehash_policy)
1547 __alloc_node_gen_t __alloc_node_gen(*this);
1548 _M_assign(__ht, __alloc_node_gen);
1551 template<typename _Key, typename _Value, typename _Alloc,
1552 typename _ExtractKey, typename _Equal,
1553 typename _Hash, typename _RangeHash, typename _Unused,
1554 typename _RehashPolicy, typename _Traits>
1555 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1556 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1557 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1558 true_type /* alloc always equal */)
1559 noexcept(_S_nothrow_move())
1560 : __hashtable_base(__ht),
1561 __map_base(__ht),
1562 __rehash_base(__ht),
1563 __hashtable_alloc(std::move(__a)),
1564 __enable_default_ctor(__ht),
1565 _M_buckets(__ht._M_buckets),
1566 _M_bucket_count(__ht._M_bucket_count),
1567 _M_before_begin(__ht._M_before_begin._M_nxt),
1568 _M_element_count(__ht._M_element_count),
1569 _M_rehash_policy(__ht._M_rehash_policy)
1571 // Update buckets if __ht is using its single bucket.
1572 if (__ht._M_uses_single_bucket())
1574 _M_buckets = &_M_single_bucket;
1575 _M_single_bucket = __ht._M_single_bucket;
1578 // Fix bucket containing the _M_before_begin pointer that can't be moved.
1579 _M_update_bbegin();
1581 __ht._M_reset();
1584 template<typename _Key, typename _Value, typename _Alloc,
1585 typename _ExtractKey, typename _Equal,
1586 typename _Hash, typename _RangeHash, typename _Unused,
1587 typename _RehashPolicy, typename _Traits>
1588 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1589 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1590 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1591 : __hashtable_base(__ht),
1592 __map_base(__ht),
1593 __rehash_base(__ht),
1594 __hashtable_alloc(__node_alloc_type(__a)),
1595 __enable_default_ctor(__ht),
1596 _M_buckets(),
1597 _M_bucket_count(__ht._M_bucket_count),
1598 _M_element_count(__ht._M_element_count),
1599 _M_rehash_policy(__ht._M_rehash_policy)
1601 __alloc_node_gen_t __alloc_node_gen(*this);
1602 _M_assign(__ht, __alloc_node_gen);
1605 template<typename _Key, typename _Value, typename _Alloc,
1606 typename _ExtractKey, typename _Equal,
1607 typename _Hash, typename _RangeHash, typename _Unused,
1608 typename _RehashPolicy, typename _Traits>
1609 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1610 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1611 _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1612 false_type /* alloc always equal */)
1613 : __hashtable_base(__ht),
1614 __map_base(__ht),
1615 __rehash_base(__ht),
1616 __hashtable_alloc(std::move(__a)),
1617 __enable_default_ctor(__ht),
1618 _M_buckets(nullptr),
1619 _M_bucket_count(__ht._M_bucket_count),
1620 _M_element_count(__ht._M_element_count),
1621 _M_rehash_policy(__ht._M_rehash_policy)
1623 if (__ht._M_node_allocator() == this->_M_node_allocator())
1625 if (__ht._M_uses_single_bucket())
1627 _M_buckets = &_M_single_bucket;
1628 _M_single_bucket = __ht._M_single_bucket;
1630 else
1631 _M_buckets = __ht._M_buckets;
1633 // Fix bucket containing the _M_before_begin pointer that can't be
1634 // moved.
1635 _M_update_bbegin(__ht._M_begin());
1637 __ht._M_reset();
1639 else
1641 __alloc_node_gen_t __alloc_gen(*this);
1643 using _Fwd_Ht = __conditional_t<
1644 __move_if_noexcept_cond<value_type>::value,
1645 const _Hashtable&, _Hashtable&&>;
1646 _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1647 __ht.clear();
1651 template<typename _Key, typename _Value, typename _Alloc,
1652 typename _ExtractKey, typename _Equal,
1653 typename _Hash, typename _RangeHash, typename _Unused,
1654 typename _RehashPolicy, typename _Traits>
1655 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1656 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1657 ~_Hashtable() noexcept
1659 // Getting a bucket index from a node shall not throw because it is used
1660 // in methods (erase, swap...) that shall not throw. Need a complete
1661 // type to check this, so do it in the destructor not at class scope.
1662 static_assert(noexcept(declval<const __hash_code_base_access&>()
1663 ._M_bucket_index(declval<const __node_value_type&>(),
1664 (std::size_t)0)),
1665 "Cache the hash code or qualify your functors involved"
1666 " in hash code and bucket index computation with noexcept");
1668 this->_M_deallocate_nodes(_M_begin());
1669 _M_deallocate_buckets();
1672 template<typename _Key, typename _Value, typename _Alloc,
1673 typename _ExtractKey, typename _Equal,
1674 typename _Hash, typename _RangeHash, typename _Unused,
1675 typename _RehashPolicy, typename _Traits>
1676 void
1677 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1678 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1679 swap(_Hashtable& __x)
1680 noexcept(__and_<__is_nothrow_swappable<_Hash>,
1681 __is_nothrow_swappable<_Equal>>::value)
1683 // The only base class with member variables is hash_code_base.
1684 // We define _Hash_code_base::_M_swap because different
1685 // specializations have different members.
1686 this->_M_swap(__x);
1688 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1689 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1691 // Deal properly with potentially moved instances.
1692 if (this->_M_uses_single_bucket())
1694 if (!__x._M_uses_single_bucket())
1696 _M_buckets = __x._M_buckets;
1697 __x._M_buckets = &__x._M_single_bucket;
1700 else if (__x._M_uses_single_bucket())
1702 __x._M_buckets = _M_buckets;
1703 _M_buckets = &_M_single_bucket;
1705 else
1706 std::swap(_M_buckets, __x._M_buckets);
1708 std::swap(_M_bucket_count, __x._M_bucket_count);
1709 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1710 std::swap(_M_element_count, __x._M_element_count);
1711 std::swap(_M_single_bucket, __x._M_single_bucket);
1713 // Fix buckets containing the _M_before_begin pointers that can't be
1714 // swapped.
1715 _M_update_bbegin();
1716 __x._M_update_bbegin();
1719 template<typename _Key, typename _Value, typename _Alloc,
1720 typename _ExtractKey, typename _Equal,
1721 typename _Hash, typename _RangeHash, typename _Unused,
1722 typename _RehashPolicy, typename _Traits>
1723 auto
1724 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1725 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1726 find(const key_type& __k)
1727 -> iterator
1729 if (size() <= __small_size_threshold())
1731 for (auto __it = _M_begin(); __it; __it = __it->_M_next())
1732 if (this->_M_key_equals(__k, *__it))
1733 return iterator(__it);
1734 return end();
1737 __hash_code __code = this->_M_hash_code(__k);
1738 std::size_t __bkt = _M_bucket_index(__code);
1739 return iterator(_M_find_node(__bkt, __k, __code));
1742 template<typename _Key, typename _Value, typename _Alloc,
1743 typename _ExtractKey, typename _Equal,
1744 typename _Hash, typename _RangeHash, typename _Unused,
1745 typename _RehashPolicy, typename _Traits>
1746 auto
1747 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1748 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1749 find(const key_type& __k) const
1750 -> const_iterator
1752 if (size() <= __small_size_threshold())
1754 for (auto __it = _M_begin(); __it; __it = __it->_M_next())
1755 if (this->_M_key_equals(__k, *__it))
1756 return const_iterator(__it);
1757 return end();
1760 __hash_code __code = this->_M_hash_code(__k);
1761 std::size_t __bkt = _M_bucket_index(__code);
1762 return const_iterator(_M_find_node(__bkt, __k, __code));
1765 #if __cplusplus > 201703L
1766 template<typename _Key, typename _Value, typename _Alloc,
1767 typename _ExtractKey, typename _Equal,
1768 typename _Hash, typename _RangeHash, typename _Unused,
1769 typename _RehashPolicy, typename _Traits>
1770 template<typename _Kt, typename, typename>
1771 auto
1772 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1773 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1774 _M_find_tr(const _Kt& __k)
1775 -> iterator
1777 if (size() <= __small_size_threshold())
1779 for (auto __n = _M_begin(); __n; __n = __n->_M_next())
1780 if (this->_M_key_equals_tr(__k, *__n))
1781 return iterator(__n);
1782 return end();
1785 __hash_code __code = this->_M_hash_code_tr(__k);
1786 std::size_t __bkt = _M_bucket_index(__code);
1787 return iterator(_M_find_node_tr(__bkt, __k, __code));
1790 template<typename _Key, typename _Value, typename _Alloc,
1791 typename _ExtractKey, typename _Equal,
1792 typename _Hash, typename _RangeHash, typename _Unused,
1793 typename _RehashPolicy, typename _Traits>
1794 template<typename _Kt, typename, typename>
1795 auto
1796 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1797 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1798 _M_find_tr(const _Kt& __k) const
1799 -> const_iterator
1801 if (size() <= __small_size_threshold())
1803 for (auto __n = _M_begin(); __n; __n = __n->_M_next())
1804 if (this->_M_key_equals_tr(__k, *__n))
1805 return const_iterator(__n);
1806 return end();
1809 __hash_code __code = this->_M_hash_code_tr(__k);
1810 std::size_t __bkt = _M_bucket_index(__code);
1811 return const_iterator(_M_find_node_tr(__bkt, __k, __code));
1813 #endif
1815 template<typename _Key, typename _Value, typename _Alloc,
1816 typename _ExtractKey, typename _Equal,
1817 typename _Hash, typename _RangeHash, typename _Unused,
1818 typename _RehashPolicy, typename _Traits>
1819 auto
1820 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1821 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1822 count(const key_type& __k) const
1823 -> size_type
1825 auto __it = find(__k);
1826 if (!__it._M_cur)
1827 return 0;
1829 if (__unique_keys::value)
1830 return 1;
1832 size_type __result = 1;
1833 for (auto __ref = __it++;
1834 __it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur);
1835 ++__it)
1836 ++__result;
1838 return __result;
1841 #if __cplusplus > 201703L
1842 template<typename _Key, typename _Value, typename _Alloc,
1843 typename _ExtractKey, typename _Equal,
1844 typename _Hash, typename _RangeHash, typename _Unused,
1845 typename _RehashPolicy, typename _Traits>
1846 template<typename _Kt, typename, typename>
1847 auto
1848 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1849 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1850 _M_count_tr(const _Kt& __k) const
1851 -> size_type
1853 if (size() <= __small_size_threshold())
1855 size_type __result = 0;
1856 for (auto __n = _M_begin(); __n; __n = __n->_M_next())
1858 if (this->_M_key_equals_tr(__k, *__n))
1860 ++__result;
1861 continue;
1864 if (__result)
1865 break;
1868 return __result;
1871 __hash_code __code = this->_M_hash_code_tr(__k);
1872 std::size_t __bkt = _M_bucket_index(__code);
1873 auto __n = _M_find_node_tr(__bkt, __k, __code);
1874 if (!__n)
1875 return 0;
1877 iterator __it(__n);
1878 size_type __result = 1;
1879 for (++__it;
1880 __it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur);
1881 ++__it)
1882 ++__result;
1884 return __result;
1886 #endif
1888 template<typename _Key, typename _Value, typename _Alloc,
1889 typename _ExtractKey, typename _Equal,
1890 typename _Hash, typename _RangeHash, typename _Unused,
1891 typename _RehashPolicy, typename _Traits>
1892 auto
1893 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1894 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1895 equal_range(const key_type& __k)
1896 -> pair<iterator, iterator>
1898 auto __ite = find(__k);
1899 if (!__ite._M_cur)
1900 return { __ite, __ite };
1902 auto __beg = __ite++;
1903 if (__unique_keys::value)
1904 return { __beg, __ite };
1906 while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1907 ++__ite;
1909 return { __beg, __ite };
1912 template<typename _Key, typename _Value, typename _Alloc,
1913 typename _ExtractKey, typename _Equal,
1914 typename _Hash, typename _RangeHash, typename _Unused,
1915 typename _RehashPolicy, typename _Traits>
1916 auto
1917 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1918 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1919 equal_range(const key_type& __k) const
1920 -> pair<const_iterator, const_iterator>
1922 auto __ite = find(__k);
1923 if (!__ite._M_cur)
1924 return { __ite, __ite };
1926 auto __beg = __ite++;
1927 if (__unique_keys::value)
1928 return { __beg, __ite };
1930 while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1931 ++__ite;
1933 return { __beg, __ite };
1936 #if __cplusplus > 201703L
1937 template<typename _Key, typename _Value, typename _Alloc,
1938 typename _ExtractKey, typename _Equal,
1939 typename _Hash, typename _RangeHash, typename _Unused,
1940 typename _RehashPolicy, typename _Traits>
1941 template<typename _Kt, typename, typename>
1942 auto
1943 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1944 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1945 _M_equal_range_tr(const _Kt& __k)
1946 -> pair<iterator, iterator>
1948 if (size() <= __small_size_threshold())
1950 __node_ptr __n, __beg = nullptr;
1951 for (__n = _M_begin(); __n; __n = __n->_M_next())
1953 if (this->_M_key_equals_tr(__k, *__n))
1955 if (!__beg)
1956 __beg = __n;
1957 continue;
1960 if (__beg)
1961 break;
1964 return { iterator(__beg), iterator(__n) };
1967 __hash_code __code = this->_M_hash_code_tr(__k);
1968 std::size_t __bkt = _M_bucket_index(__code);
1969 auto __n = _M_find_node_tr(__bkt, __k, __code);
1970 iterator __ite(__n);
1971 if (!__n)
1972 return { __ite, __ite };
1974 auto __beg = __ite++;
1975 while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
1976 ++__ite;
1978 return { __beg, __ite };
1981 template<typename _Key, typename _Value, typename _Alloc,
1982 typename _ExtractKey, typename _Equal,
1983 typename _Hash, typename _RangeHash, typename _Unused,
1984 typename _RehashPolicy, typename _Traits>
1985 template<typename _Kt, typename, typename>
1986 auto
1987 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1988 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1989 _M_equal_range_tr(const _Kt& __k) const
1990 -> pair<const_iterator, const_iterator>
1992 if (size() <= __small_size_threshold())
1994 __node_ptr __n, __beg = nullptr;
1995 for (__n = _M_begin(); __n; __n = __n->_M_next())
1997 if (this->_M_key_equals_tr(__k, *__n))
1999 if (!__beg)
2000 __beg = __n;
2001 continue;
2004 if (__beg)
2005 break;
2008 return { const_iterator(__beg), const_iterator(__n) };
2011 __hash_code __code = this->_M_hash_code_tr(__k);
2012 std::size_t __bkt = _M_bucket_index(__code);
2013 auto __n = _M_find_node_tr(__bkt, __k, __code);
2014 const_iterator __ite(__n);
2015 if (!__n)
2016 return { __ite, __ite };
2018 auto __beg = __ite++;
2019 while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
2020 ++__ite;
2022 return { __beg, __ite };
2024 #endif
2026 // Find the node before the one whose key compares equal to k.
2027 // Return nullptr if no node is found.
2028 template<typename _Key, typename _Value, typename _Alloc,
2029 typename _ExtractKey, typename _Equal,
2030 typename _Hash, typename _RangeHash, typename _Unused,
2031 typename _RehashPolicy, typename _Traits>
2032 auto
2033 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2034 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2035 _M_find_before_node(const key_type& __k)
2036 -> __node_base_ptr
2038 __node_base_ptr __prev_p = &_M_before_begin;
2039 if (!__prev_p->_M_nxt)
2040 return nullptr;
2042 for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);
2043 __p != nullptr;
2044 __p = __p->_M_next())
2046 if (this->_M_key_equals(__k, *__p))
2047 return __prev_p;
2049 __prev_p = __p;
2052 return nullptr;
2055 // Find the node before the one whose key compares equal to k in the bucket
2056 // bkt. Return nullptr if no node is found.
2057 template<typename _Key, typename _Value, typename _Alloc,
2058 typename _ExtractKey, typename _Equal,
2059 typename _Hash, typename _RangeHash, typename _Unused,
2060 typename _RehashPolicy, typename _Traits>
2061 auto
2062 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2063 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2064 _M_find_before_node(size_type __bkt, const key_type& __k,
2065 __hash_code __code) const
2066 -> __node_base_ptr
2068 __node_base_ptr __prev_p = _M_buckets[__bkt];
2069 if (!__prev_p)
2070 return nullptr;
2072 for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
2073 __p = __p->_M_next())
2075 if (this->_M_equals(__k, __code, *__p))
2076 return __prev_p;
2078 if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
2079 break;
2080 __prev_p = __p;
2083 return nullptr;
2086 template<typename _Key, typename _Value, typename _Alloc,
2087 typename _ExtractKey, typename _Equal,
2088 typename _Hash, typename _RangeHash, typename _Unused,
2089 typename _RehashPolicy, typename _Traits>
2090 template<typename _Kt>
2091 auto
2092 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2093 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2094 _M_find_before_node_tr(size_type __bkt, const _Kt& __k,
2095 __hash_code __code) const
2096 -> __node_base_ptr
2098 __node_base_ptr __prev_p = _M_buckets[__bkt];
2099 if (!__prev_p)
2100 return nullptr;
2102 for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
2103 __p = __p->_M_next())
2105 if (this->_M_equals_tr(__k, __code, *__p))
2106 return __prev_p;
2108 if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
2109 break;
2110 __prev_p = __p;
2113 return nullptr;
2116 template<typename _Key, typename _Value, typename _Alloc,
2117 typename _ExtractKey, typename _Equal,
2118 typename _Hash, typename _RangeHash, typename _Unused,
2119 typename _RehashPolicy, typename _Traits>
2120 auto
2121 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2122 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2123 _M_get_previous_node(size_type __bkt, __node_ptr __n)
2124 -> __node_base_ptr
2126 __node_base_ptr __prev_n = _M_buckets[__bkt];
2127 while (__prev_n->_M_nxt != __n)
2128 __prev_n = __prev_n->_M_nxt;
2129 return __prev_n;
2132 template<typename _Key, typename _Value, typename _Alloc,
2133 typename _ExtractKey, typename _Equal,
2134 typename _Hash, typename _RangeHash, typename _Unused,
2135 typename _RehashPolicy, typename _Traits>
2136 template<typename... _Args>
2137 auto
2138 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2139 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2140 _M_emplace(true_type /* __uks */, _Args&&... __args)
2141 -> pair<iterator, bool>
2143 // First build the node to get access to the hash code
2144 _Scoped_node __node { this, std::forward<_Args>(__args)... };
2145 const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2146 const size_type __size = size();
2147 if (__size <= __small_size_threshold())
2149 for (auto __it = _M_begin(); __it; __it = __it->_M_next())
2150 if (this->_M_key_equals(__k, *__it))
2151 // There is already an equivalent node, no insertion
2152 return { iterator(__it), false };
2155 __hash_code __code = this->_M_hash_code(__k);
2156 size_type __bkt = _M_bucket_index(__code);
2157 if (__size > __small_size_threshold())
2158 if (__node_ptr __p = _M_find_node(__bkt, __k, __code))
2159 // There is already an equivalent node, no insertion
2160 return { iterator(__p), false };
2162 // Insert the node
2163 auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node);
2164 __node._M_node = nullptr;
2165 return { __pos, true };
2168 template<typename _Key, typename _Value, typename _Alloc,
2169 typename _ExtractKey, typename _Equal,
2170 typename _Hash, typename _RangeHash, typename _Unused,
2171 typename _RehashPolicy, typename _Traits>
2172 template<typename... _Args>
2173 auto
2174 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2175 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2176 _M_emplace(const_iterator __hint, false_type /* __uks */,
2177 _Args&&... __args)
2178 -> iterator
2180 // First build the node to get its hash code.
2181 _Scoped_node __node { this, std::forward<_Args>(__args)... };
2182 const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2184 auto __res = this->_M_compute_hash_code(__hint._M_cur, __k);
2185 auto __pos
2186 = _M_insert_multi_node(__res.first, __res.second, __node._M_node);
2187 __node._M_node = nullptr;
2188 return __pos;
2191 template<typename _Key, typename _Value, typename _Alloc,
2192 typename _ExtractKey, typename _Equal,
2193 typename _Hash, typename _RangeHash, typename _Unused,
2194 typename _RehashPolicy, typename _Traits>
2195 auto
2196 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2197 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2198 _M_compute_hash_code(__node_ptr __hint, const key_type& __k) const
2199 -> pair<__node_ptr, __hash_code>
2201 if (size() <= __small_size_threshold())
2203 if (__hint)
2205 for (auto __it = __hint; __it; __it = __it->_M_next())
2206 if (this->_M_key_equals(__k, *__it))
2207 return { __it, this->_M_hash_code(*__it) };
2210 for (auto __it = _M_begin(); __it != __hint; __it = __it->_M_next())
2211 if (this->_M_key_equals(__k, *__it))
2212 return { __it, this->_M_hash_code(*__it) };
2214 __hint = nullptr;
2217 return { __hint, this->_M_hash_code(__k) };
2220 template<typename _Key, typename _Value, typename _Alloc,
2221 typename _ExtractKey, typename _Equal,
2222 typename _Hash, typename _RangeHash, typename _Unused,
2223 typename _RehashPolicy, typename _Traits>
2224 auto
2225 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2226 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2227 _M_insert_unique_node(size_type __bkt, __hash_code __code,
2228 __node_ptr __node, size_type __n_elt)
2229 -> iterator
2231 __rehash_guard_t __rehash_guard(_M_rehash_policy);
2232 std::pair<bool, std::size_t> __do_rehash
2233 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
2234 __n_elt);
2236 if (__do_rehash.first)
2238 _M_rehash(__do_rehash.second, true_type{});
2239 __bkt = _M_bucket_index(__code);
2242 __rehash_guard._M_guarded_obj = nullptr;
2243 this->_M_store_code(*__node, __code);
2245 // Always insert at the beginning of the bucket.
2246 _M_insert_bucket_begin(__bkt, __node);
2247 ++_M_element_count;
2248 return iterator(__node);
2251 template<typename _Key, typename _Value, typename _Alloc,
2252 typename _ExtractKey, typename _Equal,
2253 typename _Hash, typename _RangeHash, typename _Unused,
2254 typename _RehashPolicy, typename _Traits>
2255 auto
2256 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2257 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2258 _M_insert_multi_node(__node_ptr __hint,
2259 __hash_code __code, __node_ptr __node)
2260 -> iterator
2262 __rehash_guard_t __rehash_guard(_M_rehash_policy);
2263 std::pair<bool, std::size_t> __do_rehash
2264 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
2266 if (__do_rehash.first)
2267 _M_rehash(__do_rehash.second, false_type{});
2269 __rehash_guard._M_guarded_obj = nullptr;
2270 this->_M_store_code(*__node, __code);
2271 const key_type& __k = _ExtractKey{}(__node->_M_v());
2272 size_type __bkt = _M_bucket_index(__code);
2274 // Find the node before an equivalent one or use hint if it exists and
2275 // if it is equivalent.
2276 __node_base_ptr __prev
2277 = __builtin_expect(__hint != nullptr, false)
2278 && this->_M_equals(__k, __code, *__hint)
2279 ? __hint
2280 : _M_find_before_node(__bkt, __k, __code);
2282 if (__prev)
2284 // Insert after the node before the equivalent one.
2285 __node->_M_nxt = __prev->_M_nxt;
2286 __prev->_M_nxt = __node;
2287 if (__builtin_expect(__prev == __hint, false))
2288 // hint might be the last bucket node, in this case we need to
2289 // update next bucket.
2290 if (__node->_M_nxt
2291 && !this->_M_equals(__k, __code, *__node->_M_next()))
2293 size_type __next_bkt = _M_bucket_index(*__node->_M_next());
2294 if (__next_bkt != __bkt)
2295 _M_buckets[__next_bkt] = __node;
2298 else
2299 // The inserted node has no equivalent in the hashtable. We must
2300 // insert the new node at the beginning of the bucket to preserve
2301 // equivalent elements' relative positions.
2302 _M_insert_bucket_begin(__bkt, __node);
2303 ++_M_element_count;
2304 return iterator(__node);
2307 // Insert v if no element with its key is already present.
2308 template<typename _Key, typename _Value, typename _Alloc,
2309 typename _ExtractKey, typename _Equal,
2310 typename _Hash, typename _RangeHash, typename _Unused,
2311 typename _RehashPolicy, typename _Traits>
2312 template<typename _Kt, typename _Arg, typename _NodeGenerator>
2313 auto
2314 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2315 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2316 _M_insert_unique(_Kt&& __k, _Arg&& __v,
2317 const _NodeGenerator& __node_gen)
2318 -> pair<iterator, bool>
2320 const size_type __size = size();
2321 if (__size <= __small_size_threshold())
2322 for (auto __it = _M_begin(); __it; __it = __it->_M_next())
2323 if (this->_M_key_equals_tr(__k, *__it))
2324 return { iterator(__it), false };
2326 __hash_code __code = this->_M_hash_code_tr(__k);
2327 size_type __bkt = _M_bucket_index(__code);
2329 if (__size > __small_size_threshold())
2330 if (__node_ptr __node = _M_find_node_tr(__bkt, __k, __code))
2331 return { iterator(__node), false };
2333 _Scoped_node __node {
2334 __node_builder_t::_S_build(std::forward<_Kt>(__k),
2335 std::forward<_Arg>(__v),
2336 __node_gen),
2337 this
2339 auto __pos
2340 = _M_insert_unique_node(__bkt, __code, __node._M_node);
2341 __node._M_node = nullptr;
2342 return { __pos, true };
2345 // Insert v unconditionally.
2346 template<typename _Key, typename _Value, typename _Alloc,
2347 typename _ExtractKey, typename _Equal,
2348 typename _Hash, typename _RangeHash, typename _Unused,
2349 typename _RehashPolicy, typename _Traits>
2350 template<typename _Arg, typename _NodeGenerator>
2351 auto
2352 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2353 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2354 _M_insert(const_iterator __hint, _Arg&& __v,
2355 const _NodeGenerator& __node_gen,
2356 false_type /* __uks */)
2357 -> iterator
2359 // First allocate new node so that we don't do anything if it throws.
2360 _Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
2362 // Second compute the hash code so that we don't rehash if it throws.
2363 auto __res = this->_M_compute_hash_code(
2364 __hint._M_cur, _ExtractKey{}(__node._M_node->_M_v()));
2366 auto __pos
2367 = _M_insert_multi_node(__res.first, __res.second, __node._M_node);
2368 __node._M_node = nullptr;
2369 return __pos;
2372 template<typename _Key, typename _Value, typename _Alloc,
2373 typename _ExtractKey, typename _Equal,
2374 typename _Hash, typename _RangeHash, typename _Unused,
2375 typename _RehashPolicy, typename _Traits>
2376 auto
2377 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2378 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2379 erase(const_iterator __it)
2380 -> iterator
2382 __node_ptr __n = __it._M_cur;
2383 std::size_t __bkt = _M_bucket_index(*__n);
2385 // Look for previous node to unlink it from the erased one, this
2386 // is why we need buckets to contain the before begin to make
2387 // this search fast.
2388 __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2389 return _M_erase(__bkt, __prev_n, __n);
2392 template<typename _Key, typename _Value, typename _Alloc,
2393 typename _ExtractKey, typename _Equal,
2394 typename _Hash, typename _RangeHash, typename _Unused,
2395 typename _RehashPolicy, typename _Traits>
2396 auto
2397 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2398 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2399 _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n)
2400 -> iterator
2402 if (__prev_n == _M_buckets[__bkt])
2403 _M_remove_bucket_begin(__bkt, __n->_M_next(),
2404 __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
2405 else if (__n->_M_nxt)
2407 size_type __next_bkt = _M_bucket_index(*__n->_M_next());
2408 if (__next_bkt != __bkt)
2409 _M_buckets[__next_bkt] = __prev_n;
2412 __prev_n->_M_nxt = __n->_M_nxt;
2413 iterator __result(__n->_M_next());
2414 this->_M_deallocate_node(__n);
2415 --_M_element_count;
2417 return __result;
2420 template<typename _Key, typename _Value, typename _Alloc,
2421 typename _ExtractKey, typename _Equal,
2422 typename _Hash, typename _RangeHash, typename _Unused,
2423 typename _RehashPolicy, typename _Traits>
2424 auto
2425 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2426 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2427 _M_erase(true_type /* __uks */, const key_type& __k)
2428 -> size_type
2430 __node_base_ptr __prev_n;
2431 __node_ptr __n;
2432 std::size_t __bkt;
2433 if (size() <= __small_size_threshold())
2435 __prev_n = _M_find_before_node(__k);
2436 if (!__prev_n)
2437 return 0;
2439 // We found a matching node, erase it.
2440 __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2441 __bkt = _M_bucket_index(*__n);
2443 else
2445 __hash_code __code = this->_M_hash_code(__k);
2446 __bkt = _M_bucket_index(__code);
2448 // Look for the node before the first matching node.
2449 __prev_n = _M_find_before_node(__bkt, __k, __code);
2450 if (!__prev_n)
2451 return 0;
2453 // We found a matching node, erase it.
2454 __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2457 _M_erase(__bkt, __prev_n, __n);
2458 return 1;
2461 template<typename _Key, typename _Value, typename _Alloc,
2462 typename _ExtractKey, typename _Equal,
2463 typename _Hash, typename _RangeHash, typename _Unused,
2464 typename _RehashPolicy, typename _Traits>
2465 auto
2466 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2467 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2468 _M_erase(false_type /* __uks */, const key_type& __k)
2469 -> size_type
2471 std::size_t __bkt;
2472 __node_base_ptr __prev_n;
2473 __node_ptr __n;
2474 if (size() <= __small_size_threshold())
2476 __prev_n = _M_find_before_node(__k);
2477 if (!__prev_n)
2478 return 0;
2480 // We found a matching node, erase it.
2481 __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2482 __bkt = _M_bucket_index(*__n);
2484 else
2486 __hash_code __code = this->_M_hash_code(__k);
2487 __bkt = _M_bucket_index(__code);
2489 // Look for the node before the first matching node.
2490 __prev_n = _M_find_before_node(__bkt, __k, __code);
2491 if (!__prev_n)
2492 return 0;
2494 __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2497 // _GLIBCXX_RESOLVE_LIB_DEFECTS
2498 // 526. Is it undefined if a function in the standard changes
2499 // in parameters?
2500 // We use one loop to find all matching nodes and another to deallocate
2501 // them so that the key stays valid during the first loop. It might be
2502 // invalidated indirectly when destroying nodes.
2503 __node_ptr __n_last = __n->_M_next();
2504 while (__n_last && this->_M_node_equals(*__n, *__n_last))
2505 __n_last = __n_last->_M_next();
2507 std::size_t __n_last_bkt = __n_last ? _M_bucket_index(*__n_last) : __bkt;
2509 // Deallocate nodes.
2510 size_type __result = 0;
2513 __node_ptr __p = __n->_M_next();
2514 this->_M_deallocate_node(__n);
2515 __n = __p;
2516 ++__result;
2518 while (__n != __n_last);
2520 _M_element_count -= __result;
2521 if (__prev_n == _M_buckets[__bkt])
2522 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
2523 else if (__n_last_bkt != __bkt)
2524 _M_buckets[__n_last_bkt] = __prev_n;
2525 __prev_n->_M_nxt = __n_last;
2526 return __result;
2529 template<typename _Key, typename _Value, typename _Alloc,
2530 typename _ExtractKey, typename _Equal,
2531 typename _Hash, typename _RangeHash, typename _Unused,
2532 typename _RehashPolicy, typename _Traits>
2533 auto
2534 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2535 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2536 erase(const_iterator __first, const_iterator __last)
2537 -> iterator
2539 __node_ptr __n = __first._M_cur;
2540 __node_ptr __last_n = __last._M_cur;
2541 if (__n == __last_n)
2542 return iterator(__n);
2544 std::size_t __bkt = _M_bucket_index(*__n);
2546 __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2547 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2548 std::size_t __n_bkt = __bkt;
2549 for (;;)
2553 __node_ptr __tmp = __n;
2554 __n = __n->_M_next();
2555 this->_M_deallocate_node(__tmp);
2556 --_M_element_count;
2557 if (!__n)
2558 break;
2559 __n_bkt = _M_bucket_index(*__n);
2561 while (__n != __last_n && __n_bkt == __bkt);
2562 if (__is_bucket_begin)
2563 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2564 if (__n == __last_n)
2565 break;
2566 __is_bucket_begin = true;
2567 __bkt = __n_bkt;
2570 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2571 _M_buckets[__n_bkt] = __prev_n;
2572 __prev_n->_M_nxt = __n;
2573 return iterator(__n);
2576 template<typename _Key, typename _Value, typename _Alloc,
2577 typename _ExtractKey, typename _Equal,
2578 typename _Hash, typename _RangeHash, typename _Unused,
2579 typename _RehashPolicy, typename _Traits>
2580 void
2581 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2582 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2583 clear() noexcept
2585 this->_M_deallocate_nodes(_M_begin());
2586 std::fill_n(_M_buckets, _M_bucket_count, nullptr);
2587 _M_element_count = 0;
2588 _M_before_begin._M_nxt = nullptr;
2591 template<typename _Key, typename _Value, typename _Alloc,
2592 typename _ExtractKey, typename _Equal,
2593 typename _Hash, typename _RangeHash, typename _Unused,
2594 typename _RehashPolicy, typename _Traits>
2595 void
2596 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2597 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2598 rehash(size_type __bkt_count)
2600 __rehash_guard_t __rehash_guard(_M_rehash_policy);
2601 __bkt_count
2602 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2603 __bkt_count);
2604 __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2606 if (__bkt_count != _M_bucket_count)
2608 _M_rehash(__bkt_count, __unique_keys{});
2609 __rehash_guard._M_guarded_obj = nullptr;
2613 // Rehash when there is no equivalent elements.
2614 template<typename _Key, typename _Value, typename _Alloc,
2615 typename _ExtractKey, typename _Equal,
2616 typename _Hash, typename _RangeHash, typename _Unused,
2617 typename _RehashPolicy, typename _Traits>
2618 void
2619 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2620 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2621 _M_rehash(size_type __bkt_count, true_type /* __uks */)
2623 __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2624 __node_ptr __p = _M_begin();
2625 _M_before_begin._M_nxt = nullptr;
2626 std::size_t __bbegin_bkt = 0;
2627 while (__p)
2629 __node_ptr __next = __p->_M_next();
2630 std::size_t __bkt
2631 = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2632 if (!__new_buckets[__bkt])
2634 __p->_M_nxt = _M_before_begin._M_nxt;
2635 _M_before_begin._M_nxt = __p;
2636 __new_buckets[__bkt] = &_M_before_begin;
2637 if (__p->_M_nxt)
2638 __new_buckets[__bbegin_bkt] = __p;
2639 __bbegin_bkt = __bkt;
2641 else
2643 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2644 __new_buckets[__bkt]->_M_nxt = __p;
2647 __p = __next;
2650 _M_deallocate_buckets();
2651 _M_bucket_count = __bkt_count;
2652 _M_buckets = __new_buckets;
2655 // Rehash when there can be equivalent elements, preserve their relative
2656 // order.
2657 template<typename _Key, typename _Value, typename _Alloc,
2658 typename _ExtractKey, typename _Equal,
2659 typename _Hash, typename _RangeHash, typename _Unused,
2660 typename _RehashPolicy, typename _Traits>
2661 void
2662 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2663 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2664 _M_rehash(size_type __bkt_count, false_type /* __uks */)
2666 __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2667 __node_ptr __p = _M_begin();
2668 _M_before_begin._M_nxt = nullptr;
2669 std::size_t __bbegin_bkt = 0;
2670 std::size_t __prev_bkt = 0;
2671 __node_ptr __prev_p = nullptr;
2672 bool __check_bucket = false;
2674 while (__p)
2676 __node_ptr __next = __p->_M_next();
2677 std::size_t __bkt
2678 = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2680 if (__prev_p && __prev_bkt == __bkt)
2682 // Previous insert was already in this bucket, we insert after
2683 // the previously inserted one to preserve equivalent elements
2684 // relative order.
2685 __p->_M_nxt = __prev_p->_M_nxt;
2686 __prev_p->_M_nxt = __p;
2688 // Inserting after a node in a bucket require to check that we
2689 // haven't change the bucket last node, in this case next
2690 // bucket containing its before begin node must be updated. We
2691 // schedule a check as soon as we move out of the sequence of
2692 // equivalent nodes to limit the number of checks.
2693 __check_bucket = true;
2695 else
2697 if (__check_bucket)
2699 // Check if we shall update the next bucket because of
2700 // insertions into __prev_bkt bucket.
2701 if (__prev_p->_M_nxt)
2703 std::size_t __next_bkt
2704 = __hash_code_base::_M_bucket_index(
2705 *__prev_p->_M_next(), __bkt_count);
2706 if (__next_bkt != __prev_bkt)
2707 __new_buckets[__next_bkt] = __prev_p;
2709 __check_bucket = false;
2712 if (!__new_buckets[__bkt])
2714 __p->_M_nxt = _M_before_begin._M_nxt;
2715 _M_before_begin._M_nxt = __p;
2716 __new_buckets[__bkt] = &_M_before_begin;
2717 if (__p->_M_nxt)
2718 __new_buckets[__bbegin_bkt] = __p;
2719 __bbegin_bkt = __bkt;
2721 else
2723 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2724 __new_buckets[__bkt]->_M_nxt = __p;
2727 __prev_p = __p;
2728 __prev_bkt = __bkt;
2729 __p = __next;
2732 if (__check_bucket && __prev_p->_M_nxt)
2734 std::size_t __next_bkt
2735 = __hash_code_base::_M_bucket_index(*__prev_p->_M_next(),
2736 __bkt_count);
2737 if (__next_bkt != __prev_bkt)
2738 __new_buckets[__next_bkt] = __prev_p;
2741 _M_deallocate_buckets();
2742 _M_bucket_count = __bkt_count;
2743 _M_buckets = __new_buckets;
2746 #if __cplusplus > 201402L
2747 template<typename, typename, typename> class _Hash_merge_helper { };
2748 #endif // C++17
2750 #if __cpp_deduction_guides >= 201606
2751 // Used to constrain deduction guides
2752 template<typename _Hash>
2753 using _RequireNotAllocatorOrIntegral
2754 = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2755 #endif
2757 /// @endcond
2758 _GLIBCXX_END_NAMESPACE_VERSION
2759 } // namespace std
2761 #endif // _HASHTABLE_H