Fix typo in t-dimode
[official-gcc.git] / gcc / ada / sem_util.ads
blobabc18ec8d63f000bdd72d6aa3f49aec209b7941a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
40 package Sem_Util is
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
47 type Accessibility_Level_Kind is
48 (Dynamic_Level,
49 Object_Decl_Level,
50 Zero_On_Dynamic_Level);
51 -- Accessibility_Level_Kind is an enumerated type which captures the
52 -- different modes in which an accessibility level could be obtained for
53 -- a given expression.
55 -- When in the context of the function Accessibility_Level,
56 -- Accessibility_Level_Kind signals what type of accessibility level to
57 -- obtain. For example, when Level is Dynamic_Level, a defining identifier
58 -- associated with a SAOOAAT may be returned or an N_Integer_Literal node.
59 -- When the level is Object_Decl_Level, an N_Integer_Literal node is
60 -- returned containing the level of the declaration of the object if
61 -- relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level
62 -- returns library level for all cases where the accessibility level is
63 -- dynamic (used to bypass static accessibility checks in dynamic cases).
65 function Accessibility_Level
66 (Expr : Node_Id;
67 Level : Accessibility_Level_Kind;
68 In_Return_Context : Boolean := False;
69 Allow_Alt_Model : Boolean := True) return Node_Id;
70 -- Centralized accessibility level calculation routine for finding the
71 -- accessibility level of a given expression Expr.
73 -- In_Return_Context forces the Accessibility_Level calculations to be
74 -- carried out "as if" Expr existed in a return value. This is useful for
75 -- calculating the accessibility levels for discriminant associations
76 -- and return aggregates.
78 -- The Allow_Alt_Model parameter allows the alternative level calculation
79 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
81 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
82 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
83 -- the given string argument, adding leading and trailing asterisks if they
84 -- are not already present. Str_Lit is the static value of the pragma
85 -- argument.
87 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
88 -- Add A to the list of access types to process when expanding the
89 -- freeze node of E.
91 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
92 -- Given a block statement N, generate an internal E_Block label and make
93 -- it the identifier of the block. Id denotes the generated entity. If the
94 -- block already has an identifier, Id returns the entity of its label.
96 procedure Add_Global_Declaration (N : Node_Id);
97 -- These procedures adds a declaration N at the library level, to be
98 -- elaborated before any other code in the unit. It is used for example
99 -- for the entity that marks whether a unit has been elaborated. The
100 -- declaration is added to the Declarations list of the Aux_Decls_Node
101 -- for the current unit. The declarations are added in the current scope,
102 -- so the caller should push a new scope as required before the call.
104 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
105 -- Returns the name of E adding Suffix
107 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
108 -- Given two types, returns True if we are in Allow_Integer_Address mode
109 -- and one of the types is (a descendant of) System.Address (and this type
110 -- is private), and the other type is any integer type.
112 function Address_Value (N : Node_Id) return Node_Id;
113 -- Return the underlying value of the expression N of an address clause
115 function Addressable (V : Uint) return Boolean;
116 function Addressable (V : Int) return Boolean;
117 pragma Inline (Addressable);
118 -- Returns True if the value of V is the word size or an addressable factor
119 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
121 procedure Aggregate_Constraint_Checks
122 (Exp : Node_Id;
123 Check_Typ : Entity_Id);
124 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
125 -- and Check_Typ a constrained record type with discriminants, we generate
126 -- the appropriate discriminant checks. If Exp is an array aggregate then
127 -- emit the appropriate length checks. If Exp is a scalar type, or a string
128 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
129 -- are performed at run time. Also used for expressions in the argument of
130 -- 'Update, which shares some of the features of an aggregate.
132 function Alignment_In_Bits (E : Entity_Id) return Uint;
133 -- If the alignment of the type or object E is currently known to the
134 -- compiler, then this function returns the alignment value in bits.
135 -- Otherwise Uint_0 is returned, indicating that the alignment of the
136 -- entity is not yet known to the compiler.
138 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
139 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
140 -- Given a constraint or subtree of a constraint on a composite
141 -- subtype/object, returns True if there are no nonstatic constraints,
142 -- which might cause objects to be created with dynamic size.
143 -- Called for subtype declarations (including implicit ones created for
144 -- subtype indications in object declarations, as well as discriminated
145 -- record aggregate cases). For record aggregates, only records containing
146 -- discriminant-dependent arrays matter, because the discriminants must be
147 -- static when governing a variant part. Access discriminants are
148 -- irrelevant. Also called for array aggregates, but only named notation,
149 -- because those are the only dynamic cases.
151 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
152 -- Recursive procedure to construct string for qualified name of enclosing
153 -- program unit. The qualification stops at an enclosing scope has no
154 -- source name (block or loop). If entity is a subprogram instance, skip
155 -- enclosing wrapper package. The name is appended to Buf.
157 procedure Append_Inherited_Subprogram (S : Entity_Id);
158 -- If the parent of the operation is declared in the visible part of
159 -- the current scope, the inherited operation is visible even though the
160 -- derived type that inherits the operation may be completed in the private
161 -- part of the current package.
163 procedure Apply_Compile_Time_Constraint_Error
164 (N : Node_Id;
165 Msg : String;
166 Reason : RT_Exception_Code;
167 Ent : Entity_Id := Empty;
168 Typ : Entity_Id := Empty;
169 Loc : Source_Ptr := No_Location;
170 Warn : Boolean := False;
171 Emit_Message : Boolean := True);
172 -- N is a subexpression that will raise Constraint_Error when evaluated
173 -- at run time. Msg is a message that explains the reason for raising the
174 -- exception. The last character is ? if the message is always a warning,
175 -- even in Ada 95, and is not a ? if the message represents an illegality
176 -- (because of violation of static expression rules) in Ada 95 (but not
177 -- in Ada 83). Typically this routine posts all messages at the Sloc of
178 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
179 -- the message. After posting the appropriate message, this routine
180 -- replaces the expression with an appropriate N_Raise_Constraint_Error
181 -- node using the given Reason code. This node is then marked as being
182 -- static if the original node is static, but sets the flag
183 -- Raises_Constraint_Error, preventing further evaluation. The error
184 -- message may contain a } or & insertion character. This normally
185 -- references Etype (N), unless the Ent argument is given explicitly, in
186 -- which case it is used instead. The type of the raise node that is built
187 -- is normally Etype (N), but if the Typ parameter is present, this is used
188 -- instead. Warn is normally False. If it is True then the message is
189 -- treated as a warning even though it does not end with a ? (this is used
190 -- when the caller wants to parameterize whether an error or warning is
191 -- given), or when the message should be treated as a warning even when
192 -- SPARK_Mode is On (which otherwise would force an error).
193 -- If Emit_Message is False, then do not emit any message.
195 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
196 -- Id should be the entity of a state abstraction, an object, or a type.
197 -- Returns True iff Id is subject to external property Async_Readers.
199 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
200 -- Id should be the entity of a state abstraction, an object, or a type.
201 -- Returns True iff Id is subject to external property Async_Writers.
203 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
204 -- If at the point of declaration an array type has a private or limited
205 -- component, several array operations are not available on the type, and
206 -- the array type is flagged accordingly. If in the immediate scope of
207 -- the array type the component becomes non-private or non-limited, these
208 -- operations become available. This can happen if the scopes of both types
209 -- are open, and the scope of the array is not outside the scope of the
210 -- component.
212 procedure Bad_Aspect
213 (N : Node_Id;
214 Nam : Name_Id;
215 Warn : Boolean := False);
216 -- Called when node N is expected to contain a valid aspect name, and
217 -- Nam is found instead. If Warn is set True this is a warning, else this
218 -- is an error.
220 procedure Bad_Attribute
221 (N : Node_Id;
222 Nam : Name_Id;
223 Warn : Boolean := False);
224 -- Called when node N is expected to contain a valid attribute name, and
225 -- Nam is found instead. If Warn is set True this is a warning, else this
226 -- is an error.
228 procedure Bad_Predicated_Subtype_Use
229 (Msg : String;
230 N : Node_Id;
231 Typ : Entity_Id;
232 Suggest_Static : Boolean := False);
233 -- This is called when Typ, a predicated subtype, is used in a context
234 -- which does not allow the use of a predicated subtype. Msg is passed to
235 -- Error_Msg_FE to output an appropriate message using N as the location,
236 -- and Typ as the entity. The caller must set up any insertions other than
237 -- the & for the type itself. Note that if Typ is a generic actual type,
238 -- then the message will be output as a warning, and a raise Program_Error
239 -- is inserted using Insert_Action with node N as the insertion point. Node
240 -- N also supplies the source location for construction of the raise node.
241 -- If Typ does not have any predicates, the call has no effect. Set flag
242 -- Suggest_Static when the context warrants an advice on how to avoid the
243 -- use error.
245 function Bad_Unordered_Enumeration_Reference
246 (N : Node_Id;
247 T : Entity_Id) return Boolean;
248 -- Node N contains a potentially dubious reference to type T, either an
249 -- explicit comparison, or an explicit range. This function returns True
250 -- if the type T is an enumeration type for which No pragma Order has been
251 -- given, and the reference N is not in the same extended source unit as
252 -- the declaration of T.
254 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
255 -- Given block statement, entry body, package body, subprogram body, or
256 -- task body N, return the closest source location to the "begin" keyword.
258 function Build_Actual_Subtype
259 (T : Entity_Id;
260 N : Node_Or_Entity_Id) return Node_Id;
261 -- Build an anonymous subtype for an entity or expression, using the
262 -- bounds of the entity or the discriminants of the enclosing record.
263 -- T is the type for which the actual subtype is required, and N is either
264 -- a defining identifier, or any subexpression.
266 function Build_Actual_Subtype_Of_Component
267 (T : Entity_Id;
268 N : Node_Id) return Node_Id;
269 -- Determine whether a selected component has a type that depends on
270 -- discriminants, and build actual subtype for it if so.
272 -- Handling of inherited primitives whose ancestors have class-wide
273 -- pre/postconditions.
275 -- If a primitive operation of a parent type has a class-wide pre/post-
276 -- condition that includes calls to other primitives, and that operation
277 -- is inherited by a descendant type that also overrides some of these
278 -- other primitives, the condition that applies to the inherited
279 -- operation has a modified condition in which the overridden primitives
280 -- have been replaced by the primitives of the descendent type. A call
281 -- to the inherited operation cannot be simply a call to the parent
282 -- operation (with an appropriate conversion) as is the case for other
283 -- inherited operations, but must appear with a wrapper subprogram to which
284 -- the modified conditions apply. Furthermore the call to the parent
285 -- operation must not be subject to the original class-wide condition,
286 -- given that modified conditions apply. To implement these semantics
287 -- economically we create a subprogram body (a "class-wide clone") to
288 -- which no pre/postconditions apply, and we create bodies for the
289 -- original and the inherited operation that have their respective
290 -- pre/postconditions and simply call the clone. The following operations
291 -- take care of constructing declaration and body of the clone, and
292 -- building the calls to it within the appropriate wrappers.
294 procedure Build_Constrained_Itype
295 (N : Node_Id;
296 Typ : Entity_Id;
297 New_Assoc_List : List_Id);
298 -- Build a constrained itype for the newly created record aggregate N and
299 -- set it as a type of N. The itype will have Typ as its base type and
300 -- will be constrained by the values of discriminants from the component
301 -- association list New_Assoc_List.
303 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
304 -- those two routines behave differently for types with unknown
305 -- discriminants. They are both exported in from this package in the hope
306 -- to eventually unify them (a not duplicate them even more until then).
308 -- ??? Performance WARNING. The current implementation creates a new itype
309 -- for all aggregates whose base type is discriminated. This means that
310 -- for record aggregates nested inside an array aggregate we will create
311 -- a new itype for each record aggregate if the array component type has
312 -- discriminants. For large aggregates this may be a problem. What should
313 -- be done in this case is to reuse itypes as much as possible.
315 function Build_Default_Subtype
316 (T : Entity_Id;
317 N : Node_Id) return Entity_Id;
318 -- If T is an unconstrained type with defaulted discriminants, build a
319 -- subtype constrained by the default values, insert the subtype
320 -- declaration in the tree before N, and return the entity of that
321 -- subtype. Otherwise, simply return T.
323 function Build_Discriminal_Subtype_Of_Component
324 (T : Entity_Id) return Node_Id;
325 -- Determine whether a record component has a type that depends on
326 -- discriminants, and build actual subtype for it if so.
328 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
329 -- Given a compilation unit node N, allocate an elaboration counter for
330 -- the compilation unit, and install it in the Elaboration_Entity field
331 -- of Spec_Id, the entity for the compilation unit.
333 procedure Build_Explicit_Dereference
334 (Expr : Node_Id;
335 Disc : Entity_Id);
336 -- AI05-139: Names with implicit dereference. If the expression N is a
337 -- reference type and the context imposes the corresponding designated
338 -- type, convert N into N.Disc.all. Such expressions are always over-
339 -- loaded with both interpretations, and the dereference interpretation
340 -- carries the name of the reference discriminant.
342 function Build_Overriding_Spec
343 (Op : Entity_Id;
344 Typ : Entity_Id) return Node_Id;
345 -- Build a subprogram specification for the wrapper of an inherited
346 -- operation with a modified pre- or postcondition (See AI12-0113).
347 -- Op is the parent operation, and Typ is the descendant type that
348 -- inherits the operation.
350 function Build_Subtype
351 (Related_Node : Node_Id;
352 Loc : Source_Ptr;
353 Typ : Entity_Id;
354 Constraints : List_Id)
355 return Entity_Id;
356 -- Typ is an array or discriminated type, Constraints is a list of
357 -- constraints that apply to Typ. This routine builds the constrained
358 -- subtype using Loc as the source location and attached this subtype
359 -- declaration to Related_Node. The returned subtype inherits predicates
360 -- from Typ.
362 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
363 -- careful which of the two better suits your needs (and certainly do not
364 -- duplicate their code).
366 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
367 -- Returns True if the expression cannot possibly raise Constraint_Error.
368 -- The response is conservative in the sense that a result of False does
369 -- not necessarily mean that CE could be raised, but a response of True
370 -- means that for sure CE cannot be raised.
372 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
373 -- Additional information on an ambiguous call in Ada_2022 when a
374 -- subprogram call has an actual that is an aggregate, and the
375 -- presence of container aggregates (or types with the correwponding
376 -- aspect) provides an additional interpretation. Message indicates
377 -- that an aggregate actual should carry a type qualification.
379 procedure Check_Dynamically_Tagged_Expression
380 (Expr : Node_Id;
381 Typ : Entity_Id;
382 Related_Nod : Node_Id);
383 -- Check wrong use of dynamically tagged expression
385 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
386 -- Verify that the full declaration of type T has been seen. If not, place
387 -- error message on node N. Used in object declarations, type conversions
388 -- and qualified expressions.
390 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
391 -- A subprogram that has an Address parameter and is declared in a Pure
392 -- package is not considered Pure, because the parameter may be used as a
393 -- pointer and the referenced data may change even if the address value
394 -- itself does not.
395 -- If the programmer gave an explicit Pure_Function pragma, then we respect
396 -- the pragma and leave the subprogram Pure.
398 procedure Check_Function_Writable_Actuals (N : Node_Id);
399 -- (Ada 2012): If the construct N has two or more direct constituents that
400 -- are names or expressions whose evaluation may occur in an arbitrary
401 -- order, at least one of which contains a function call with an in out or
402 -- out parameter, then the construct is legal only if: for each name that
403 -- is passed as a parameter of mode in out or out to some inner function
404 -- call C2 (not including the construct N itself), there is no other name
405 -- anywhere within a direct constituent of the construct C other than
406 -- the one containing C2, that is known to refer to the same object (RM
407 -- 6.4.1(6.17/3)).
409 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
410 -- AI05-139-2: Accessors and iterators for containers. This procedure
411 -- checks whether T is a reference type, and if so it adds an interprettion
412 -- to N whose type is the designated type of the reference_discriminant.
413 -- If N is a generalized indexing operation, the interpretation is added
414 -- both to the corresponding function call, and to the indexing node.
416 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
417 -- Within a protected function, the current object is a constant, and
418 -- internal calls to a procedure or entry are illegal. Similarly, other
419 -- uses of a protected procedure in a renaming or a generic instantiation
420 -- in the context of a protected function are illegal (AI05-0225).
422 procedure Check_Later_Vs_Basic_Declarations
423 (Decls : List_Id;
424 During_Parsing : Boolean);
425 -- If During_Parsing is True, check for misplacement of later vs basic
426 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
427 -- restriction is set, do the same: although SPARK 95 removes the
428 -- distinction between initial and later declarative items, the distinction
429 -- remains in the Examiner (JB01-005). Note that the Examiner does not
430 -- count package declarations in later declarative items.
432 procedure Check_No_Hidden_State (Id : Entity_Id);
433 -- Determine whether object or state Id introduces a hidden state. If this
434 -- is the case, emit an error.
436 procedure Check_Inherited_Nonoverridable_Aspects
437 (Inheritor : Entity_Id;
438 Interface_List : List_Id;
439 Parent_Type : Entity_Id);
440 -- Verify consistency of inherited nonoverridable aspects
441 -- when aspects are inherited from more than one source.
442 -- Parent_Type may be void (e.g., for a tagged task/protected type
443 -- whose declaration includes a non-empty interface list).
444 -- In the error case, error message is associate with Inheritor;
445 -- Inheritor parameter is otherwise unused.
447 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
448 -- Verify that the profile of nonvolatile function Func_Id does not contain
449 -- effectively volatile parameters or return type for reading.
451 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
452 -- Verify the legality of reference Ref to variable Var_Id when the
453 -- variable is a constituent of a single protected/task type.
455 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
456 -- N is one of the statement forms that is a potentially blocking
457 -- operation. If it appears within a protected action, emit warning.
459 procedure Check_Previous_Null_Procedure
460 (Decl : Node_Id;
461 Prev : Entity_Id);
462 -- A null procedure or a subprogram renaming can complete a previous
463 -- declaration, unless that previous declaration is itself a null
464 -- procedure. This must be treated specially because the analysis of
465 -- the null procedure leaves the corresponding entity as having no
466 -- completion, because its completion is provided by a generated body
467 -- inserted after all other declarations.
469 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
470 -- Determine whether the contract of subprogram Subp_Id mentions attribute
471 -- 'Result and it contains an expression that evaluates differently in pre-
472 -- and post-state.
474 procedure Check_State_Refinements
475 (Context : Node_Id;
476 Is_Main_Unit : Boolean := False);
477 -- Verify that all abstract states declared in a block statement, entry
478 -- body, package body, protected body, subprogram body, task body, or a
479 -- package declaration denoted by Context have proper refinement. Emit an
480 -- error if this is not the case. Flag Is_Main_Unit should be set when
481 -- Context denotes the main compilation unit.
483 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
484 -- Verify that all abstract states and objects declared in the state space
485 -- of package body Body_Id are used as constituents. Emit an error if this
486 -- is not the case.
488 procedure Check_Unprotected_Access
489 (Context : Node_Id;
490 Expr : Node_Id);
491 -- Check whether the expression is a pointer to a protected component,
492 -- and the context is external to the protected operation, to warn against
493 -- a possible unlocked access to data.
495 procedure Check_Volatility_Compatibility
496 (Id1, Id2 : Entity_Id;
497 Description_1, Description_2 : String;
498 Srcpos_Bearer : Node_Id);
499 -- Id1 and Id2 should each be the entity of a state abstraction, a
500 -- variable, or a type (i.e., something suitable for passing to
501 -- Async_Readers_Enabled and similar functions).
502 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
503 -- if one or more of the four volatility-related aspects is False for Id1
504 -- and True for Id2. The two descriptions are included in the error message
505 -- text; the source position for the generated message is determined by
506 -- Srcpos_Bearer.
508 function Choice_List (N : Node_Id) return List_Id;
509 -- Utility to retrieve the choices of a Component_Association or the
510 -- Discrete_Choices of an Iterated_Component_Association. For various
511 -- reasons these nodes have a different structure even though they play
512 -- similar roles in array aggregates.
514 type Condition_Kind is
515 (Ignored_Class_Precondition,
516 Ignored_Class_Postcondition,
517 Class_Precondition,
518 Class_Postcondition);
519 -- Kind of class-wide conditions
521 function Class_Condition
522 (Kind : Condition_Kind;
523 Subp : Entity_Id) return Node_Id;
524 -- Class-wide Kind condition of Subp
526 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
527 -- Gather the entities of all abstract states and objects declared in the
528 -- body state space of package body Body_Id.
530 procedure Collect_Interfaces
531 (T : Entity_Id;
532 Ifaces_List : out Elist_Id;
533 Exclude_Parents : Boolean := False;
534 Use_Full_View : Boolean := True);
535 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
536 -- directly or indirectly implemented by T. Exclude_Parents is used to
537 -- avoid the addition of inherited interfaces to the generated list.
538 -- Use_Full_View is used to collect the interfaces using the full-view
539 -- (if available).
541 procedure Collect_Interface_Components
542 (Tagged_Type : Entity_Id;
543 Components_List : out Elist_Id);
544 -- Ada 2005 (AI-251): Collect all the tag components associated with the
545 -- secondary dispatch tables of a tagged type.
547 procedure Collect_Interfaces_Info
548 (T : Entity_Id;
549 Ifaces_List : out Elist_Id;
550 Components_List : out Elist_Id;
551 Tags_List : out Elist_Id);
552 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
553 -- the record component and tag associated with each of these interfaces.
554 -- On exit Ifaces_List, Components_List and Tags_List have the same number
555 -- of elements, and elements at the same position on these tables provide
556 -- information on the same interface type.
558 procedure Collect_Parents
559 (T : Entity_Id;
560 List : out Elist_Id;
561 Use_Full_View : Boolean := True);
562 -- Collect all the parents of Typ. Use_Full_View is used to collect them
563 -- using the full-view of private parents (if available).
565 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
566 -- Called upon type derivation and extension. We scan the declarative part
567 -- in which the type appears, and collect subprograms that have one
568 -- subsidiary subtype of the type. These subprograms can only appear after
569 -- the type itself.
571 function Compile_Time_Constraint_Error
572 (N : Node_Id;
573 Msg : String;
574 Ent : Entity_Id := Empty;
575 Loc : Source_Ptr := No_Location;
576 Warn : Boolean := False;
577 Extra_Msg : String := "") return Node_Id;
578 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
579 -- generates a warning (or error) message in the same manner, but it does
580 -- not replace any nodes. For convenience, the function always returns its
581 -- first argument. The message is a warning if the message ends with ?, or
582 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
583 -- If Extra_Msg is not a null string, then it's associated with N and
584 -- emitted immediately after the main message (and before output of any
585 -- message indicating that Constraint_Error will be raised).
587 procedure Compute_Returns_By_Ref (Func : Entity_Id);
588 -- Set the Returns_By_Ref flag on Func if appropriate
590 generic
591 with function Predicate (Typ : Entity_Id) return Boolean;
592 function Collect_Types_In_Hierarchy
593 (Typ : Entity_Id;
594 Examine_Components : Boolean := False) return Elist_Id;
595 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
596 -- collecting those for which function Predicate is True. The resulting
597 -- list is ordered in a type-to-ultimate-ancestor fashion.
599 -- When Examine_Components is True, components types in the hierarchy also
600 -- get collected.
602 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
603 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
604 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
605 -- False).
607 function Copy_Component_List
608 (R_Typ : Entity_Id;
609 Loc : Source_Ptr) return List_Id;
610 -- Copy components from record type R_Typ that come from source. Used to
611 -- create a new compatible record type. Loc is the source location assigned
612 -- to the created nodes.
614 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
615 -- Utility to create a parameter profile for a new subprogram spec, when
616 -- the subprogram has a body that acts as spec. This is done for some cases
617 -- of inlining, and for private protected ops. Also used to create bodies
618 -- for stubbed subprograms.
620 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
621 -- Copy the SPARK_Mode aspect if present in the aspect specifications
622 -- of node From to node To. On entry it is assumed that To does not have
623 -- aspect specifications. If From has no aspects, the routine has no
624 -- effect.
626 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
627 -- Replicate a function or a procedure specification denoted by Spec. The
628 -- resulting tree is an exact duplicate of the original tree. New entities
629 -- are created for the unit name and the formal parameters.
631 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
632 -- If a type is a generic actual type, return the corresponding formal in
633 -- the generic parent unit. There is no direct link in the tree for this
634 -- attribute, except in the case of formal private and derived types.
635 -- Possible optimization???
637 function Corresponding_Primitive_Op
638 (Ancestor_Op : Entity_Id;
639 Descendant_Type : Entity_Id) return Entity_Id;
640 -- Given a primitive subprogram of a tagged type and a (distinct)
641 -- descendant type of that type, find the corresponding primitive
642 -- subprogram of the descendant type.
644 function Current_Entity (N : Node_Id) return Entity_Id;
645 pragma Inline (Current_Entity);
646 -- Find the currently visible definition for a given identifier, that is to
647 -- say the first entry in the visibility chain for the Chars of N.
649 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
650 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
651 -- Find whether there is a previous definition for name or identifier N in
652 -- the current scope. Because declarations for a scope are not necessarily
653 -- contiguous (e.g. for packages) the first entry on the visibility chain
654 -- for N is not necessarily in the current scope.
656 function Current_Scope return Entity_Id;
657 -- Get entity representing current scope
659 function Current_Scope_No_Loops return Entity_Id;
660 -- Return the current scope ignoring internally generated loops
662 function Current_Subprogram return Entity_Id;
663 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
664 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
665 -- Current_Scope is returned. The returned value is Empty if this is called
666 -- from a library package which is not within any subprogram.
668 function CW_Or_Has_Controlled_Part (T : Entity_Id) return Boolean;
669 -- True if T is a class-wide type, or if it has controlled parts ("part"
670 -- means T or any of its subcomponents). Same as Needs_Finalization, except
671 -- when pragma Restrictions (No_Finalization) applies, in which case we
672 -- know that class-wide objects do not contain controlled parts.
674 function Deepest_Type_Access_Level
675 (Typ : Entity_Id;
676 Allow_Alt_Model : Boolean := True) return Uint;
678 -- Same as Type_Access_Level, except that if the type is the type of an Ada
679 -- 2012 stand-alone object of an anonymous access type, then return the
680 -- static accessibility level of the object. In that case, the dynamic
681 -- accessibility level of the object may take on values in a range. The low
682 -- bound of that range is returned by Type_Access_Level; this function
683 -- yields the high bound of that range. Also differs from Type_Access_Level
684 -- in the case of a descendant of a generic formal type (returns Int'Last
685 -- instead of 0).
687 -- The Allow_Alt_Model parameter allows the alternative level calculation
688 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
690 function Defining_Entity (N : Node_Id) return Entity_Id;
691 -- Given a declaration N, returns the associated defining entity. If the
692 -- declaration has a specification, the entity is obtained from the
693 -- specification. If the declaration has a defining unit name, then the
694 -- defining entity is obtained from the defining unit name ignoring any
695 -- child unit prefixes.
697 -- Iterator loops also have a defining entity, which holds the list of
698 -- local entities declared during loop expansion. These entities need
699 -- debugging information, generated through Qualify_Entity_Names, and
700 -- the loop declaration must be placed in the table Name_Qualify_Units.
702 -- WARNING: There is a matching C declaration of this subprogram in fe.h
704 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
705 -- This is equivalent to Defining_Entity but it returns Empty for nodes
706 -- without an entity instead of raising Program_Error.
708 function Denotes_Discriminant
709 (N : Node_Id;
710 Check_Concurrent : Boolean := False) return Boolean;
711 -- Returns True if node N is an Entity_Name node for a discriminant. If the
712 -- flag Check_Concurrent is true, function also returns true when N denotes
713 -- the discriminal of the discriminant of a concurrent type. This is needed
714 -- to disable some optimizations on private components of protected types,
715 -- and constraint checks on entry families constrained by discriminants.
717 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
718 -- Detect suspicious overlapping between actuals in a call, when both are
719 -- writable (RM 2012 6.4.1(6.4/3)).
721 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
722 -- Functions to detect suspicious overlapping between actuals in a call,
723 -- when one of them is writable. The predicates are those proposed in
724 -- AI05-0144, to detect dangerous order dependence in complex calls.
725 -- I would add a parameter Warn which enables more extensive testing of
726 -- cases as we find appropriate when we are only warning ??? Or perhaps
727 -- return an indication of (Error, Warn, OK) ???
729 function Denotes_Variable (N : Node_Id) return Boolean;
730 -- Returns True if node N denotes a single variable without parentheses
732 function Depends_On_Discriminant (N : Node_Id) return Boolean;
733 -- Returns True if N denotes a discriminant or if N is a range, a subtype
734 -- indication or a scalar subtype where one of the bounds is a
735 -- discriminant.
737 function Derivation_Too_Early_To_Inherit
738 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
739 -- Returns True if Typ is a derived type, the given Streaming_Op
740 -- (one of Read, Write, Input, or Output) is explicitly specified
741 -- for Typ's parent type, and that attribute specification is *not*
742 -- inherited by Typ because the declaration of Typ precedes that
743 -- of the attribute specification.
745 function Designate_Same_Unit
746 (Name1 : Node_Id;
747 Name2 : Node_Id) return Boolean;
748 -- Returns True if Name1 and Name2 designate the same unit name; each of
749 -- these names is supposed to be a selected component name, an expanded
750 -- name, a defining program unit name or an identifier.
752 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
753 -- Emit an error if iterated component association N is actually an illegal
754 -- quantified expression lacking a quantifier.
756 function Discriminated_Size (Comp : Entity_Id) return Boolean;
757 -- If a component size is not static then a warning will be emitted
758 -- in Ravenscar or other restricted contexts. When a component is non-
759 -- static because of a discriminant constraint we can specialize the
760 -- warning by mentioning discriminants explicitly. This was created for
761 -- private components of protected objects, but is generally useful when
762 -- restriction No_Implicit_Heap_Allocation is active.
764 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
765 -- Same as Einfo.Extra_Accessibility except thtat object renames
766 -- are looked through.
768 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
769 -- Id should be the entity of a state abstraction, an object, or a type.
770 -- Returns True iff Id is subject to external property Effective_Reads.
772 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
773 -- Id should be the entity of a state abstraction, an object, or a type.
774 -- Returns True iff Id is subject to external property Effective_Writes.
776 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
777 -- Returns the enclosing N_Compilation_Unit node that is the root of a
778 -- subtree containing N.
780 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
781 -- Returns the closest ancestor of Typ that is a CPP type.
783 function Enclosing_Declaration (N : Node_Id) return Node_Id;
784 -- Returns the declaration node enclosing N (including possibly N itself),
785 -- if any, or Empty otherwise.
787 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
788 -- Returns the Node_Id associated with the innermost enclosing generic
789 -- body, if any. If none, then returns Empty.
791 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
792 -- Returns the Node_Id associated with the innermost enclosing generic
793 -- unit, if any. If none, then returns Empty.
795 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
796 -- Returns the nearest handled sequence of statements that encloses a given
797 -- statement, or Empty.
799 function Enclosing_Lib_Unit_Entity
800 (E : Entity_Id := Current_Scope) return Entity_Id;
801 -- Returns the entity of enclosing library unit node which is the root of
802 -- the current scope (which must not be Standard_Standard, and the caller
803 -- is responsible for ensuring this condition) or other specified entity.
805 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
806 -- Returns the N_Compilation_Unit node of the library unit that is directly
807 -- or indirectly (through a subunit) at the root of a subtree containing
808 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
809 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
810 -- library unit. If no such item is found, returns Empty.
812 function Enclosing_Package (E : Entity_Id) return Entity_Id;
813 -- Utility function to return the Ada entity of the package enclosing
814 -- the entity E, if any. Returns Empty if no enclosing package.
816 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
817 -- Returns the entity of the package or subprogram enclosing E, if any.
818 -- Returns Empty if no enclosing package or subprogram.
820 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
821 -- Utility function to return the Ada entity of the subprogram enclosing
822 -- the entity E, if any. Returns Empty if no enclosing subprogram.
824 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
825 -- Given block statement, entry body, package body, package declaration,
826 -- protected body, [single] protected type declaration, subprogram body,
827 -- task body, or [single] task type declaration N, return the closest
828 -- source location of the "end" keyword.
830 procedure Ensure_Freeze_Node (E : Entity_Id);
831 -- Make sure a freeze node is allocated for entity E. If necessary, build
832 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
834 procedure Enter_Name (Def_Id : Entity_Id);
835 -- Insert new name in symbol table of current scope with check for
836 -- duplications (error message is issued if a conflict is found).
837 -- Note: Enter_Name is not used for overloadable entities, instead these
838 -- are entered using Sem_Ch6.Enter_Overloaded_Entity.
840 function Entity_Of (N : Node_Id) return Entity_Id;
841 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
842 -- entity of the earliest renamed source abstract state or whole object.
843 -- If no suitable entity is available, return Empty. This routine carries
844 -- out actions that are tied to SPARK semantics.
846 function Exceptions_OK return Boolean;
847 -- Determine whether exceptions are allowed to be caught, propagated, or
848 -- raised.
850 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
851 -- This procedure is called after issuing a message complaining about an
852 -- inappropriate use of limited type T. If useful, it adds additional
853 -- continuation lines to the message explaining why type T is limited.
854 -- Messages are placed at node N.
856 function Expression_Of_Expression_Function
857 (Subp : Entity_Id) return Node_Id;
858 -- Return the expression of expression function Subp
860 type Extensions_Visible_Mode is
861 (Extensions_Visible_None,
862 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
863 -- value acts as a default in a non-SPARK compilation.
865 Extensions_Visible_False,
866 -- A value of "False" signifies that Extensions_Visible is either
867 -- missing or the pragma is present and the value of its Boolean
868 -- expression is False.
870 Extensions_Visible_True);
871 -- A value of "True" signifies that Extensions_Visible is present and
872 -- the value of its Boolean expression is True.
874 function Extensions_Visible_Status
875 (Id : Entity_Id) return Extensions_Visible_Mode;
876 -- Given the entity of a subprogram or formal parameter subject to pragma
877 -- Extensions_Visible, return the Boolean value denoted by the expression
878 -- of the pragma.
880 procedure Find_Actual
881 (N : Node_Id;
882 Formal : out Entity_Id;
883 Call : out Node_Id);
884 -- Determines if the node N is an actual parameter of a function or a
885 -- procedure call. If so, then Formal points to the entity for the formal
886 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
887 -- Call is set to the node for the corresponding call. If the node N is not
888 -- an actual parameter then Formal and Call are set to Empty.
890 function Find_Body_Discriminal
891 (Spec_Discriminant : Entity_Id) return Entity_Id;
892 -- Given a discriminant of the record type that implements a task or
893 -- protected type, return the discriminal of the corresponding discriminant
894 -- of the actual concurrent type.
896 function Find_Corresponding_Discriminant
897 (Id : Node_Id;
898 Typ : Entity_Id) return Entity_Id;
899 -- Because discriminants may have different names in a generic unit and in
900 -- an instance, they are resolved positionally when possible. A reference
901 -- to a discriminant carries the discriminant that it denotes when it is
902 -- analyzed. Subsequent uses of this id on a different type denotes the
903 -- discriminant at the same position in this new type.
905 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
906 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
907 -- defines the Default_Initial_Condition pragma of type Typ. This is either
908 -- Typ itself or a parent type when the pragma is inherited.
910 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
911 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
912 -- such a loop exists, return the entity of its identifier (E_Loop scope),
913 -- otherwise return Empty.
915 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
916 -- Find the nearest scope which encloses arbitrary node N
918 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
919 -- Find the nested loop statement in a conditional block. Loops subject to
920 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
921 -- loop are nested within the block.
923 procedure Find_Overlaid_Entity
924 (N : Node_Id;
925 Ent : out Entity_Id;
926 Off : out Boolean);
927 -- The node N should be an address representation clause. Determines if the
928 -- target expression is the address of an entity with an optional offset.
929 -- If so, set Ent to the entity and, if there is an offset, set Off to
930 -- True, otherwise to False. If it is not possible to determine that the
931 -- address is of this form, then set Ent to Empty.
933 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
934 -- Return the type of formal parameter Param as determined by its
935 -- specification.
937 -- The following type describes the placement of an arbitrary entity with
938 -- respect to SPARK visible / hidden state space.
940 type State_Space_Kind is
941 (Not_In_Package,
942 -- An entity is not in the visible, private or body state space when
943 -- the immediate enclosing construct is not a package.
945 Visible_State_Space,
946 -- An entity is in the visible state space when it appears immediately
947 -- within the visible declarations of a package or when it appears in
948 -- the visible state space of a nested package which in turn is declared
949 -- in the visible declarations of an enclosing package:
951 -- package Pack is
952 -- Visible_Variable : ...
953 -- package Nested
954 -- with Abstract_State => Visible_State
955 -- is
956 -- Visible_Nested_Variable : ...
957 -- end Nested;
958 -- end Pack;
960 -- Entities associated with a package instantiation inherit the state
961 -- space from the instance placement:
963 -- generic
964 -- package Gen is
965 -- Generic_Variable : ...
966 -- end Gen;
968 -- with Gen;
969 -- package Pack is
970 -- package Inst is new Gen;
971 -- -- Generic_Variable is in the visible state space of Pack
972 -- end Pack;
974 Private_State_Space,
975 -- An entity is in the private state space when it appears immediately
976 -- within the private declarations of a package or when it appears in
977 -- the visible state space of a nested package which in turn is declared
978 -- in the private declarations of an enclosing package:
980 -- package Pack is
981 -- private
982 -- Private_Variable : ...
983 -- package Nested
984 -- with Abstract_State => Private_State
985 -- is
986 -- Private_Nested_Variable : ...
987 -- end Nested;
988 -- end Pack;
990 -- The same placement principle applies to package instantiations
992 Body_State_Space);
993 -- An entity is in the body state space when it appears immediately
994 -- within the declarations of a package body or when it appears in the
995 -- visible state space of a nested package which in turn is declared in
996 -- the declarations of an enclosing package body:
998 -- package body Pack is
999 -- Body_Variable : ...
1000 -- package Nested
1001 -- with Abstract_State => Body_State
1002 -- is
1003 -- Body_Nested_Variable : ...
1004 -- end Nested;
1005 -- end Pack;
1007 -- The same placement principle applies to package instantiations
1009 procedure Find_Placement_In_State_Space
1010 (Item_Id : Entity_Id;
1011 Placement : out State_Space_Kind;
1012 Pack_Id : out Entity_Id);
1013 -- Determine the state space placement of an item. Item_Id denotes the
1014 -- entity of an abstract state, object, or package instantiation. Placement
1015 -- captures the precise placement of the item in the enclosing state space.
1016 -- If the state space is that of a package, Pack_Id denotes its entity,
1017 -- otherwise Pack_Id is Empty.
1019 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
1020 -- Locate primitive equality for type if it exists. Return Empty if it is
1021 -- not available.
1023 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
1024 -- Find specific type of a class-wide type, and handle the case of an
1025 -- incomplete type coming either from a limited_with clause or from an
1026 -- incomplete type declaration. If resulting type is private return its
1027 -- full view.
1029 function Find_Static_Alternative (N : Node_Id) return Node_Id;
1030 -- N is a case statement whose expression is a compile-time value.
1031 -- Determine the alternative chosen, so that the code of non-selected
1032 -- alternatives, and the warnings that may apply to them, are removed.
1034 function First_Actual (Node : Node_Id) return Node_Id;
1035 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
1036 -- N_Entry_Call_Statement node. The result returned is the first actual
1037 -- parameter in declaration order (not the order of parameters as they
1038 -- appeared in the source, which can be quite different as a result of the
1039 -- use of named parameters). Empty is returned for a call with no
1040 -- parameters. The procedure for iterating through the actuals in
1041 -- declaration order is to use this function to find the first actual, and
1042 -- then use Next_Actual to obtain the next actual in declaration order.
1043 -- Note that the value returned is always the expression (not the
1044 -- N_Parameter_Association nodes, even if named association is used).
1046 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1048 function First_Global
1049 (Subp : Entity_Id;
1050 Global_Mode : Name_Id;
1051 Refined : Boolean := False) return Node_Id;
1052 -- Returns the first global item of mode Global_Mode (which can be
1053 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1054 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1055 -- is retrieved from the Refined_Global aspect/pragma associated to the
1056 -- body of Subp if present. Next_Global can be used to get the next global
1057 -- item with the same mode.
1059 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1060 -- Replace all occurrences of a particular word in string Msg depending on
1061 -- the Ekind of Id as follows:
1062 -- * Replace "subprogram" with
1063 -- - "entry" when Id is an entry [family]
1064 -- - "task type" when Id is a single task object, task type or task
1065 -- body.
1066 -- * Replace "protected" with
1067 -- - "task" when Id is a single task object, task type or task body
1068 -- All other non-matching words remain as is
1070 function From_Nested_Package (T : Entity_Id) return Boolean;
1071 -- A type declared in a nested package may be frozen by a declaration
1072 -- appearing after the package but before the package is frozen. If the
1073 -- type has aspects that generate subprograms, these may contain references
1074 -- to entities local to the nested package. In that case the package must
1075 -- be installed on the scope stack to prevent spurious visibility errors.
1077 procedure Gather_Components
1078 (Typ : Entity_Id;
1079 Comp_List : Node_Id;
1080 Governed_By : List_Id;
1081 Into : Elist_Id;
1082 Report_Errors : out Boolean;
1083 Allow_Compile_Time : Boolean := False;
1084 Include_Interface_Tag : Boolean := False);
1085 -- The purpose of this procedure is to gather the valid components in a
1086 -- record type according to the values of its discriminants, in order to
1087 -- validate the components of a record aggregate.
1089 -- Typ is the type of the aggregate when its constrained discriminants
1090 -- need to be collected, otherwise it is Empty.
1092 -- Comp_List is an N_Component_List node.
1094 -- Governed_By is a list of N_Component_Association nodes, where each
1095 -- choice list contains the name of a discriminant and the expression
1096 -- field gives its value. The values of the discriminants governing
1097 -- the (possibly nested) variant parts in Comp_List are found in this
1098 -- Component_Association List.
1100 -- Into is the list where the valid components are appended. Note that
1101 -- Into need not be an Empty list. If it's not, components are attached
1102 -- to its tail.
1104 -- Report_Errors is set to True if the values of the discriminants are
1105 -- insufficiently static (see body for details of what that means).
1108 -- Allow_Compile_Time if set to True, allows compile time known values in
1109 -- Governed_By expressions in addition to static expressions.
1111 -- Include_Interface_Tag if set to True, gather any interface tag
1112 -- component, otherwise exclude them.
1114 -- This procedure is also used when building a record subtype. If the
1115 -- discriminant constraint of the subtype is static, the components of the
1116 -- subtype are only those of the variants selected by the values of the
1117 -- discriminants. Otherwise all components of the parent must be included
1118 -- in the subtype for semantic analysis.
1120 function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id;
1121 -- Obtain the accessibility level for a given entity formal taking into
1122 -- account both extra and minimum accessibility.
1124 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1125 -- Given a node for an expression, obtain the actual subtype of the
1126 -- expression. In the case of a parameter where the formal is an
1127 -- unconstrained array or discriminated type, this will be the previously
1128 -- constructed subtype of the actual. Note that this is not quite the
1129 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1130 -- it is the subtype of the value of the actual. The actual subtype is also
1131 -- returned in other cases where it has already been constructed for an
1132 -- object. Otherwise the expression type is returned unchanged, except for
1133 -- the case of an unconstrained array type, where an actual subtype is
1134 -- created, using Insert_Actions if necessary to insert any associated
1135 -- actions.
1137 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1138 -- This is like Get_Actual_Subtype, except that it never constructs an
1139 -- actual subtype. If an actual subtype is already available, i.e. the
1140 -- Actual_Subtype field of the corresponding entity is set, then it is
1141 -- returned. Otherwise the Etype of the node is returned.
1143 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1144 -- Return the body node for a stub
1146 function Get_Cursor_Type
1147 (Aspect : Node_Id;
1148 Typ : Entity_Id) return Entity_Id;
1149 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1150 -- primitive operation First. For use in resolving the other primitive
1151 -- operations of an Iterable type and expanding loops and quantified
1152 -- expressions over formal containers.
1154 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1155 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1156 -- primitive operation First. For use after resolving the primitive
1157 -- operations of an Iterable type.
1159 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1160 -- This is used to construct the string literal node representing a
1161 -- default external name, i.e. one that is constructed from the name of an
1162 -- entity, or (in the case of extended DEC import/export pragmas) an
1163 -- identifier provided as the external name. Letters in the name are
1164 -- according to the setting of Opt.External_Name_Default_Casing.
1166 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1167 -- If expression N references a part of an object, return this object.
1168 -- Otherwise return Empty. Expression N should have been resolved already.
1170 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1171 -- Returns the true generic entity in an instantiation. If the name in the
1172 -- instantiation is a renaming, the function returns the renamed generic.
1174 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1175 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1176 -- in a child unit a derived type is within the derivation class of an
1177 -- ancestor declared in a parent unit, even if there is an intermediate
1178 -- derivation that does not see the full view of that ancestor.
1180 procedure Get_Index_Bounds
1181 (N : Node_Id;
1182 L : out Node_Id;
1183 H : out Node_Id;
1184 Use_Full_View : Boolean := False);
1185 -- This procedure assigns to L and H respectively the values of the low and
1186 -- high bounds of node N, which must be a range, subtype indication, or the
1187 -- name of a scalar subtype. The result in L, H may be set to Error if
1188 -- there was an earlier error in the range.
1189 -- Use_Full_View is intended for use by clients other than the compiler
1190 -- (specifically, gnat2scil) to indicate that we want the full view if
1191 -- the index type turns out to be a partial view; this case should not
1192 -- arise during normal compilation of semantically correct programs.
1194 type Range_Nodes is record
1195 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1196 end record;
1198 type Range_Values is record
1199 First, Last : Uint; -- First and Last values of a discrete_range
1200 end record;
1202 function Get_Index_Bounds
1203 (N : Node_Id;
1204 Use_Full_View : Boolean := False) return Range_Nodes;
1205 -- Same as the above procedure, but returns the result as a record.
1206 -- ???This should probably replace the procedure.
1208 function Get_Index_Bounds
1209 (N : Node_Id;
1210 Use_Full_View : Boolean := False) return Range_Values;
1211 -- Same as the above function, but returns the values, which must be known
1212 -- at compile time.
1214 procedure Get_Interfacing_Aspects
1215 (Iface_Asp : Node_Id;
1216 Conv_Asp : out Node_Id;
1217 EN_Asp : out Node_Id;
1218 Expo_Asp : out Node_Id;
1219 Imp_Asp : out Node_Id;
1220 LN_Asp : out Node_Id;
1221 Do_Checks : Boolean := False);
1222 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1223 -- aspects that apply to the same related entity. The aspects considered by
1224 -- this routine are as follows:
1226 -- Conv_Asp - aspect Convention
1227 -- EN_Asp - aspect External_Name
1228 -- Expo_Asp - aspect Export
1229 -- Imp_Asp - aspect Import
1230 -- LN_Asp - aspect Link_Name
1232 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1233 -- aspects.
1235 function Get_Enum_Lit_From_Pos
1236 (T : Entity_Id;
1237 Pos : Uint;
1238 Loc : Source_Ptr) return Node_Id;
1239 -- This function returns an identifier denoting the E_Enumeration_Literal
1240 -- entity for the specified value from the enumeration type or subtype T.
1241 -- The second argument is the Pos value. Constraint_Error is raised if
1242 -- argument Pos is not in range. The third argument supplies a source
1243 -- location for constructed nodes returned by this function. If No_Location
1244 -- is supplied as source location, the location of the returned node is
1245 -- copied from the original source location for the enumeration literal,
1246 -- when available.
1248 function Get_Iterable_Type_Primitive
1249 (Typ : Entity_Id;
1250 Nam : Name_Id) return Entity_Id;
1251 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1252 -- Element from the value of the Iterable aspect of a type.
1254 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1255 -- Retrieve the fully expanded name of the library unit declared by
1256 -- Decl_Node into the name buffer.
1258 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1259 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1260 -- is not present. It is assumed that Id denotes an entry.
1262 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1263 pragma Inline (Get_Name_Entity_Id);
1264 -- An entity value is associated with each name in the name table. The
1265 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1266 -- is the innermost visible entity with the given name. See the body of
1267 -- Sem_Ch8 for further details on handling of entity visibility.
1269 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1270 -- Return the Name component of Test_Case pragma N
1271 -- Bad name now that this no longer applies to Contract_Case ???
1273 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1274 -- Get defining entity of parent unit of a child unit. In most cases this
1275 -- is the defining entity of the unit, but for a child instance whose
1276 -- parent needs a body for inlining, the instantiation node of the parent
1277 -- has not yet been rewritten as a package declaration, and the entity has
1278 -- to be retrieved from the Instance_Spec of the unit.
1280 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1281 pragma Inline (Get_Pragma_Id);
1282 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1284 function Get_Qualified_Name
1285 (Id : Entity_Id;
1286 Suffix : Entity_Id := Empty) return Name_Id;
1287 -- Obtain the fully qualified form of entity Id. The format is:
1288 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1290 function Get_Qualified_Name
1291 (Nam : Name_Id;
1292 Suffix : Name_Id := No_Name;
1293 Scop : Entity_Id := Current_Scope) return Name_Id;
1294 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1295 -- Scop. The format is:
1296 -- scop-1__scop__nam__suffix
1298 procedure Get_Reason_String (N : Node_Id);
1299 -- Recursive routine to analyze reason argument for pragma Warnings. The
1300 -- value of the reason argument is appended to the current string using
1301 -- Store_String_Chars. The reason argument is expected to be a string
1302 -- literal or concatenation of string literals. An error is given for
1303 -- any other form.
1305 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1306 -- If Typ has Implicit_Dereference, return discriminant specified in the
1307 -- corresponding aspect.
1309 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1310 -- Given an arbitrary node, return the renamed object if the node
1311 -- represents a renamed object; otherwise return the node unchanged.
1312 -- The node can represent an arbitrary expression or any other kind of
1313 -- node (such as the name of a type).
1315 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1316 -- Given an entity for an exception, package, subprogram or generic unit,
1317 -- returns the ultimately renamed entity if this is a renaming. If this is
1318 -- not a renamed entity, returns its argument. It is an error to call this
1319 -- with any other kind of entity.
1321 function Get_Return_Object (N : Node_Id) return Entity_Id;
1322 -- Given an extended return statement, return the corresponding return
1323 -- object, identified as the one for which Is_Return_Object = True.
1325 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1326 -- Nod is either a procedure call statement, or a function call, or an
1327 -- accept statement node. This procedure finds the Entity_Id of the related
1328 -- subprogram or entry and returns it, or if no subprogram can be found,
1329 -- returns Empty.
1331 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1332 -- Given an entity for a task type or subtype, retrieves the
1333 -- Task_Body_Procedure field from the corresponding task type declaration.
1335 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1336 -- For a type entity, return the entity of the primitive equality function
1337 -- for the type if it exists, otherwise return Empty.
1339 procedure Get_Views
1340 (Typ : Entity_Id;
1341 Priv_Typ : out Entity_Id;
1342 Full_Typ : out Entity_Id;
1343 UFull_Typ : out Entity_Id;
1344 CRec_Typ : out Entity_Id);
1345 -- Obtain the partial and full views of type Typ and in addition any extra
1346 -- types the full views may have. The return entities are as follows:
1348 -- Priv_Typ - the partial view (a private type)
1349 -- Full_Typ - the full view
1350 -- UFull_Typ - the underlying full view, if the full view is private
1351 -- CRec_Typ - the corresponding record type of the full views
1353 function Get_Fullest_View
1354 (E : Entity_Id; Include_PAT : Boolean := True) return Entity_Id;
1355 -- Get the fullest possible view of E, looking through private, limited,
1356 -- packed array and other implementation types. If Include_PAT is False,
1357 -- don't look inside packed array types.
1359 function Has_Access_Values (T : Entity_Id) return Boolean;
1360 -- Returns true if the underlying type of T is an access type, or has a
1361 -- component (at any recursive level) that is an access type. This is a
1362 -- conservative predicate, if it is not known whether or not T contains
1363 -- access values (happens for generic formals in some cases), then False is
1364 -- returned. Note that tagged types return False. Even though the tag is
1365 -- implemented as an access type internally, this function tests only for
1366 -- access types known to the programmer. See also Has_Tagged_Component.
1368 function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean;
1369 -- Returns True if Typ has one or more anonymous access discriminants
1371 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1372 -- Result of Has_Compatible_Alignment test, description found below. Note
1373 -- that the values are arranged in increasing order of problematicness.
1375 function Has_Compatible_Alignment
1376 (Obj : Entity_Id;
1377 Expr : Node_Id;
1378 Layout_Done : Boolean) return Alignment_Result;
1379 -- Obj is an object entity, and expr is a node for an object reference. If
1380 -- the alignment of the object referenced by Expr is known to be compatible
1381 -- with the alignment of Obj (i.e. is larger or the same), then the result
1382 -- is Known_Compatible. If the alignment of the object referenced by Expr
1383 -- is known to be less than the alignment of Obj, then Known_Incompatible
1384 -- is returned. If neither condition can be reliably established at compile
1385 -- time, then Unknown is returned. If Layout_Done is True, the function can
1386 -- assume that the information on size and alignment of types and objects
1387 -- is present in the tree. This is used to determine if alignment checks
1388 -- are required for address clauses (Layout_Done is False in this case) as
1389 -- well as to issue appropriate warnings for them in the post compilation
1390 -- phase (Layout_Done is True in this case).
1392 -- Note: Known_Incompatible does not mean that at run time the alignment
1393 -- of Expr is known to be wrong for Obj, just that it can be determined
1394 -- that alignments have been explicitly or implicitly specified which are
1395 -- incompatible (whereas Unknown means that even this is not known). The
1396 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1397 -- Unknown, but issue a warning that there may be an alignment error.
1399 function Has_Declarations (N : Node_Id) return Boolean;
1400 -- Determines if the node can have declarations
1402 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1403 -- Simple predicate to test for defaulted discriminants
1405 function Has_Denormals (E : Entity_Id) return Boolean;
1406 -- Determines if the floating-point type E supports denormal numbers.
1407 -- Returns False if E is not a floating-point type.
1409 function Has_Discriminant_Dependent_Constraint
1410 (Comp : Entity_Id) return Boolean;
1411 -- Returns True if and only if Comp has a constrained subtype that depends
1412 -- on a discriminant.
1414 function Has_Effectively_Volatile_Profile
1415 (Subp_Id : Entity_Id) return Boolean;
1416 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1417 -- parameter for reading or returns an effectively volatile value for
1418 -- reading.
1420 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1421 -- Determine whether type Typ defines "full default initialization" as
1422 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1423 -- * A scalar type with specified Default_Value
1424 -- * An array-of-scalar type with specified Default_Component_Value
1425 -- * An array type whose element type defines full default initialization
1426 -- * A protected type, record type or type extension whose components
1427 -- either include a default expression or have a type which defines
1428 -- full default initialization. In the case of type extensions, the
1429 -- parent type defines full default initialization.
1430 -- * A task type
1431 -- * A private type with pragma Default_Initial_Condition that provides
1432 -- full default initialization.
1433 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1435 function Has_Fully_Default_Initializing_DIC_Pragma
1436 (Typ : Entity_Id) return Boolean;
1437 -- Determine whether type Typ has a suitable Default_Initial_Condition
1438 -- pragma which provides the full default initialization of the type.
1440 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1441 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1442 -- discriminants if it has a constrained nominal type, unless the object
1443 -- is a component of an enclosing Unchecked_Union object that is subject
1444 -- to a per-object constraint and the enclosing object lacks inferable
1445 -- discriminants.
1447 -- An expression of an Unchecked_Union type has inferable discriminants
1448 -- if it is either a name of an object with inferable discriminants or a
1449 -- qualified expression whose subtype mark denotes a constrained subtype.
1451 function Has_Infinities (E : Entity_Id) return Boolean;
1452 -- Determines if the range of the floating-point type E includes
1453 -- infinities. Returns False if E is not a floating-point type.
1455 function Has_Interfaces
1456 (T : Entity_Id;
1457 Use_Full_View : Boolean := True) return Boolean;
1458 -- Where T is a concurrent type or a record type, returns true if T covers
1459 -- any abstract interface types. In case of private types the argument
1460 -- Use_Full_View controls if the check is done using its full view (if
1461 -- available).
1463 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1464 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1465 -- assumed that Id denotes an entry.
1467 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1468 -- This is a simple minded function for determining whether an expression
1469 -- has no obvious side effects. It is used only for determining whether
1470 -- warnings are needed in certain situations, and is not guaranteed to
1471 -- be accurate in either direction. Exceptions may mean an expression
1472 -- does in fact have side effects, but this may be ignored and True is
1473 -- returned, or a complex expression may in fact be side effect free
1474 -- but we don't recognize it here and return False. The Side_Effect_Free
1475 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1476 -- be shared, so that this routine would be more accurate.
1478 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1479 -- Determine whether abstract state Id has at least one nonnull constituent
1480 -- as expressed in pragma Refined_State. This function does not take into
1481 -- account the visible refinement region of abstract state Id.
1483 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1484 -- Determine whether subprogram Subp has a class-wide precondition that is
1485 -- not statically True.
1487 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1488 -- Determine whether the body of procedure Proc_Id contains a sole null
1489 -- statement, possibly followed by an optional return. Used to optimize
1490 -- useless calls to assertion checks.
1492 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1493 -- Determine whether node N has a null exclusion
1495 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1496 -- Determine whether abstract state Id has a null refinement as expressed
1497 -- in pragma Refined_State. This function does not take into account the
1498 -- visible refinement region of abstract state Id.
1500 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1501 -- Return True if L has non-null statements
1503 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1504 -- Return True if L has no statements with side effects
1506 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1507 -- Return True if the loop has no side effect and can therefore be
1508 -- marked for removal. Return False if N is not a N_Loop_Statement.
1510 subtype Static_Accessibility_Level_Kind
1511 is Accessibility_Level_Kind range Object_Decl_Level
1512 .. Zero_On_Dynamic_Level;
1513 -- Restrict the reange of Accessibility_Level_Kind to be non-dynamic for
1514 -- use in the static version of Accessibility_Level below.
1516 function Static_Accessibility_Level
1517 (Expr : Node_Id;
1518 Level : Static_Accessibility_Level_Kind;
1519 In_Return_Context : Boolean := False) return Uint;
1520 -- Overloaded version of Accessibility_Level which returns a universal
1521 -- integer for use in compile-time checking. Note: Level is restricted to
1522 -- be non-dynamic.
1524 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1525 (Subp : Entity_Id) return Boolean;
1526 -- Return True if Subp is a primitive of an abstract type, where the
1527 -- primitive has a class-wide pre- or postcondition whose expression
1528 -- is nonstatic.
1530 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1531 -- Predicate to determine whether a controlled type has a user-defined
1532 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1533 -- non-null), which causes the type to not have preelaborable
1534 -- initialization.
1536 function Has_Preelaborable_Initialization
1537 (E : Entity_Id;
1538 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1539 -- Return True iff type E has preelaborable initialization as defined in
1540 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1541 -- If Preelab_Init_Expr is present, indicates that the function should
1542 -- presume that for any subcomponent of E that is of a formal private or
1543 -- derived type that is referenced by a Preelaborable_Initialization
1544 -- attribute within the expression Preelab_Init_Expr, the formal type has
1545 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1547 function Has_Prefix (N : Node_Id) return Boolean;
1548 -- Return True if N has attribute Prefix
1550 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1551 -- Check if a type has a (sub)component of a private type that has not
1552 -- yet received a full declaration.
1554 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1555 -- Returns True iff entity E is subject to the Relaxed_Initialization
1556 -- aspect. Entity E can be either type, variable, constant, subprogram,
1557 -- entry or an abstract state. For private types and deferred constants
1558 -- E should be the private view, because aspect can only be attached there.
1560 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1561 -- Determines if the floating-point type E supports signed zeros.
1562 -- Returns False if E is not a floating-point type.
1564 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1565 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1566 -- All subprograms have a N_Contract node, but this does not mean that the
1567 -- contract is useful.
1569 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1570 -- Return whether an array type has static bounds
1572 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1573 -- Determine whether array type Typ has static non-empty bounds
1575 function Has_Stream (T : Entity_Id) return Boolean;
1576 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1577 -- case of a composite type, has a component for which this predicate is
1578 -- True, and if so returns True. Otherwise a result of False means that
1579 -- there is no Stream type in sight. For a private type, the test is
1580 -- applied to the underlying type (or returns False if there is no
1581 -- underlying type).
1583 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1584 -- Returns true if the last character of E is Suffix. Used in Assertions.
1586 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1587 -- Returns True if Typ is a composite type (array or record) that is either
1588 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1589 -- noncomposite type, or if no tagged subcomponents are present.
1591 function Has_Unconstrained_Access_Discriminants
1592 (Subtyp : Entity_Id) return Boolean;
1593 -- Returns True if the given subtype is unconstrained and has one or more
1594 -- access discriminants.
1596 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1597 -- Given arbitrary expression Expr, determine whether it contains at
1598 -- least one name whose entity is Any_Id.
1600 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1601 -- Given arbitrary type Typ, determine whether it contains at least one
1602 -- volatile component.
1604 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1605 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1606 -- implementation requirement which the pragma imposes. The return value is
1607 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1609 function Implements_Interface
1610 (Typ_Ent : Entity_Id;
1611 Iface_Ent : Entity_Id;
1612 Exclude_Parents : Boolean := False) return Boolean;
1613 -- Returns true if the Typ_Ent implements interface Iface_Ent
1615 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1616 -- Called when Typ is the type of the prefix of an implicit dereference.
1617 -- Return the designated type of Typ, taking into account that this type
1618 -- may be a limited view, when the nonlimited view is visible.
1620 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1621 -- Returns True if node N appears within a pragma that acts as an assertion
1622 -- expression. See Sem_Prag for the list of qualifying pragmas.
1624 function In_Check_Node (N : Node_Id) return Boolean;
1625 -- Return True if N is part of a N_Raise_xxx_Error node
1627 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1628 -- Returns True if entity E is inside a generic formal package
1630 function In_Generic_Scope (E : Entity_Id) return Boolean;
1631 -- Returns True if entity E is inside a generic scope
1633 function In_Instance return Boolean;
1634 -- Returns True if the current scope is within a generic instance
1636 function In_Instance_Body return Boolean;
1637 -- Returns True if current scope is within the body of an instance, where
1638 -- several semantic checks (e.g. accessibility checks) are relaxed.
1640 function In_Instance_Not_Visible return Boolean;
1641 -- Returns True if current scope is with the private part or the body of
1642 -- an instance. Other semantic checks are suppressed in this context.
1644 function In_Instance_Visible_Part
1645 (Id : Entity_Id := Current_Scope) return Boolean;
1646 -- Returns True if arbitrary entity Id is within the visible part of a
1647 -- package instance, where several additional semantic checks apply.
1649 function In_Package_Body return Boolean;
1650 -- Returns True if current scope is within a package body
1652 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1653 -- Returns true if the expression N occurs within a pragma with name Nam
1655 function In_Pre_Post_Condition
1656 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1657 -- Returns True if node N appears within a pre/postcondition pragma. Note
1658 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1659 -- True, then tests for N appearing within a class-wide pre/postcondition.
1661 function In_Quantified_Expression (N : Node_Id) return Boolean;
1662 -- Returns true if the expression N occurs within a quantified expression
1664 function In_Return_Value (Expr : Node_Id) return Boolean;
1665 -- Returns true if the expression Expr occurs within a simple return
1666 -- statement or is part of an assignment to the return object in an
1667 -- extended return statement.
1669 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1670 -- Returns True if N denotes a component or subcomponent in a record or
1671 -- array that has Reverse_Storage_Order.
1673 function In_Same_Declarative_Part
1674 (Context : Node_Id;
1675 N : Node_Id) return Boolean;
1676 -- True if the node N appears within the same declarative part denoted by
1677 -- the node Context.
1679 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1680 -- Determines if the current scope is within a subprogram compilation unit
1681 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1682 -- declaration) or within a task or protected body. The test is for
1683 -- appearing anywhere within such a construct (that is it does not need
1684 -- to be directly within).
1686 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1687 -- Determine whether node N is within the subtree rooted at Root
1689 function In_Subtree
1690 (N : Node_Id;
1691 Root1 : Node_Id;
1692 Root2 : Node_Id) return Boolean;
1693 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1694 -- This version is more efficient than calling the single root version of
1695 -- Is_Subtree twice.
1697 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1698 -- Determine whether a declaration occurs within the visible part of a
1699 -- package specification. The package must be on the scope stack, and the
1700 -- corresponding private part must not.
1702 function In_While_Loop_Condition (N : Node_Id) return Boolean;
1703 -- Returns true if the expression N occurs within the condition of a while
1705 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1706 -- Given the entity of a constant or a type, retrieve the incomplete or
1707 -- partial view of the same entity. Note that Id may not have a partial
1708 -- view in which case the function returns Empty.
1710 function Incomplete_View_From_Limited_With
1711 (Typ : Entity_Id) return Entity_Id;
1712 -- Typ is a type entity. This normally returns Typ. However, if there is
1713 -- an incomplete view of this entity that comes from a limited-with'ed
1714 -- package, then this returns that incomplete view.
1716 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1717 -- Given an N_Indexed_Component node, return the first bit position of the
1718 -- component if it is known at compile time. A value of No_Uint means that
1719 -- either the value is not yet known before back-end processing or it is
1720 -- not known at compile time after back-end processing.
1722 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1723 -- Propagate static and dynamic predicate flags from a parent to the
1724 -- subtype in a subtype declaration with and without constraints.
1726 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1727 -- Inherit the rep item chain of type From_Typ without clobbering any
1728 -- existing rep items on Typ's chain. Typ is the destination type.
1730 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1731 pragma Inline (Inherits_From_Tagged_Full_View);
1732 -- Return True if Typ is an untagged private type completed with a
1733 -- derivation of an untagged private type declaration whose full view
1734 -- is a tagged type.
1736 procedure Insert_Explicit_Dereference (N : Node_Id);
1737 -- In a context that requires a composite or subprogram type and where a
1738 -- prefix is an access type, rewrite the access type node N (which is the
1739 -- prefix, e.g. of an indexed component) as an explicit dereference.
1741 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1742 -- Examine all deferred constants in the declaration list Decls and check
1743 -- whether they have been completed by a full constant declaration or an
1744 -- Import pragma. Emit the error message if that is not the case.
1746 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1747 -- Install the elaboration model specified by pragma Elaboration_Checks
1748 -- associated with compilation unit Unit_Id. No action is taken when the
1749 -- unit lacks such pragma.
1751 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1752 -- Install both the generic formal parameters and the formal parameters of
1753 -- generic subprogram Subp_Id into visibility.
1755 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1756 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1758 function Invalid_Scalar_Value
1759 (Loc : Source_Ptr;
1760 Scal_Typ : Scalar_Id) return Node_Id;
1761 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1762 -- pragma Initialize_Scalars or by the binder. Return an expression created
1763 -- at source location Loc, which denotes the invalid value.
1765 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1766 -- Determine if N is used as an actual for a call whose corresponding
1767 -- formal is of an anonymous access type.
1769 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1770 -- True if E is the constructed wrapper for an access_to_subprogram
1771 -- type with Pre/Postconditions.
1773 function Is_Access_Variable (E : Entity_Id) return Boolean;
1774 -- Determines if type E is an access-to-variable
1776 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1777 -- Determines if N is an actual parameter of in-out mode in a subprogram
1778 -- call.
1780 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1781 -- Determines if N is an actual parameter of out mode in a subprogram call
1783 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1784 -- Determines if N is an actual parameter of out or in out mode in a
1785 -- subprogram call.
1787 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1788 -- Determines if N is an actual parameter in a subprogram or entry call
1790 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1791 -- Determines if N is an actual parameter of a formal of tagged type in a
1792 -- subprogram call.
1794 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1795 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1796 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1797 -- rules of the language, it does not take into account the restriction
1798 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1799 -- and Obj violates the restriction. The caller is responsible for calling
1800 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1801 -- requirement for obeying the restriction in the call context.
1803 function Is_Ancestor_Package
1804 (E1 : Entity_Id;
1805 E2 : Entity_Id) return Boolean;
1806 -- Determine whether package E1 is an ancestor of E2
1808 function Is_Atomic_Object (N : Node_Id) return Boolean;
1809 -- Determine whether arbitrary node N denotes a reference to an atomic
1810 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1812 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1813 -- Determine whether node N denotes attribute 'Loop_Entry
1815 function Is_Attribute_Old (N : Node_Id) return Boolean;
1816 -- Determine whether node N denotes attribute 'Old
1818 function Is_Attribute_Result (N : Node_Id) return Boolean;
1819 -- Determine whether node N denotes attribute 'Result
1821 function Is_Attribute_Update (N : Node_Id) return Boolean;
1822 -- Determine whether node N denotes attribute 'Update
1824 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1825 -- Determine whether node N denotes a body or a package declaration
1827 function Is_Bounded_String (T : Entity_Id) return Boolean;
1828 -- True if T is a bounded string type. Used to make sure "=" composes
1829 -- properly for bounded string types.
1831 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1832 -- Determine whether entity Id denotes a procedure with synchronization
1833 -- kind By_Protected_Procedure.
1835 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1836 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1837 return Boolean;
1838 -- Returns true if the two specifications of the given
1839 -- nonoverridable aspect are compatible.
1841 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1842 (Expr : Node_Id) return Boolean;
1843 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1844 -- to a formal type, or a sequence of two or more such attributes connected
1845 -- by "and" operators, or if the Original_Node of Expr or its constituents
1846 -- is such an attribute.
1848 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1849 -- Exp is the expression for an array bound. Determines whether the
1850 -- bound is a compile-time known value, or a constant entity, or an
1851 -- enumeration literal, or an expression composed of constant-bound
1852 -- subexpressions which are evaluated by means of standard operators.
1854 function Is_Container_Element (Exp : Node_Id) return Boolean;
1855 -- This routine recognizes expressions that denote an element of one of
1856 -- the predefined containers, when the source only contains an indexing
1857 -- operation and an implicit dereference is inserted by the compiler.
1858 -- In the absence of this optimization, the indexing creates a temporary
1859 -- controlled cursor that sets the tampering bit of the container, and
1860 -- restricts the use of the convenient notation C (X) to contexts that
1861 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1862 -- explicit dereference. The transformation applies when it has the form
1863 -- F (X).Discr.all.
1865 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1866 -- Determine whether aspect specification or pragma Item is a contract
1867 -- annotation.
1869 function Is_Controlling_Limited_Procedure
1870 (Proc_Nam : Entity_Id) return Boolean;
1871 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1872 -- of a limited interface with a controlling first parameter.
1874 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1875 -- Returns True if N is a call to a CPP constructor
1877 function Is_CCT_Instance
1878 (Ref_Id : Entity_Id;
1879 Context_Id : Entity_Id) return Boolean;
1880 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1881 -- Global; also used when analyzing default expressions of protected and
1882 -- record components. Determine whether entity Ref_Id (which must represent
1883 -- either a protected type or a task type) denotes the current instance of
1884 -- a concurrent type. Context_Id denotes the associated context where the
1885 -- pragma appears.
1887 function Is_Child_Or_Sibling
1888 (Pack_1 : Entity_Id;
1889 Pack_2 : Entity_Id) return Boolean;
1890 -- Determine the following relations between two arbitrary packages:
1891 -- 1) One package is the parent of a child package
1892 -- 2) Both packages are siblings and share a common parent
1894 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1895 -- First determine whether type T is an interface and then check whether
1896 -- it is of protected, synchronized or task kind.
1898 function Is_Current_Instance (N : Node_Id) return Boolean;
1899 -- Predicate is true if N legally denotes a type name within its own
1900 -- declaration. Prior to Ada 2012 this covered only synchronized type
1901 -- declarations. In Ada 2012 it also covers type and subtype declarations
1902 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1904 function Is_Current_Instance_Reference_In_Type_Aspect
1905 (N : Node_Id) return Boolean;
1906 -- True if N is a reference to a current instance object that occurs within
1907 -- an aspect_specification for a type or subtype. In this case N will be
1908 -- a formal parameter of a subprogram created for a predicate, invariant,
1909 -- or Default_Initial_Condition aspect.
1911 function Is_Declaration
1912 (N : Node_Id;
1913 Body_OK : Boolean := True;
1914 Concurrent_OK : Boolean := True;
1915 Formal_OK : Boolean := True;
1916 Generic_OK : Boolean := True;
1917 Instantiation_OK : Boolean := True;
1918 Renaming_OK : Boolean := True;
1919 Stub_OK : Boolean := True;
1920 Subprogram_OK : Boolean := True;
1921 Type_OK : Boolean := True) return Boolean;
1922 -- Determine whether arbitrary node N denotes a declaration depending
1923 -- on the allowed subsets of declarations. Set the following flags to
1924 -- consider specific subsets of declarations:
1926 -- * Body_OK - body declarations
1928 -- * Concurrent_OK - concurrent type declarations
1930 -- * Formal_OK - formal declarations
1932 -- * Generic_OK - generic declarations, including generic renamings
1934 -- * Instantiation_OK - generic instantiations
1936 -- * Renaming_OK - renaming declarations, including generic renamings
1938 -- * Stub_OK - stub declarations
1940 -- * Subprogram_OK - entry, expression function, and subprogram
1941 -- declarations.
1943 -- * Type_OK - type declarations, including concurrent types
1945 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1946 -- Returns True iff component Comp is declared within a variant part
1948 function Is_Dependent_Component_Of_Mutable_Object
1949 (Object : Node_Id) return Boolean;
1950 -- Returns True if Object is the name of a subcomponent that depends on
1951 -- discriminants of a variable whose nominal subtype is unconstrained and
1952 -- not indefinite, and the variable is not aliased. Otherwise returns
1953 -- False. The nodes passed to this function are assumed to denote objects.
1955 function Is_Dereferenced (N : Node_Id) return Boolean;
1956 -- N is a subexpression node of an access type. This function returns true
1957 -- if N appears as the prefix of a node that does a dereference of the
1958 -- access value (selected/indexed component, explicit dereference or a
1959 -- slice), and false otherwise.
1961 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1962 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1963 -- This is the RM definition, a type is a descendant of another type if it
1964 -- is the same type or is derived from a descendant of the other type.
1966 function Is_Descendant_Of_Suspension_Object
1967 (Typ : Entity_Id) return Boolean;
1968 -- Determine whether type Typ is a descendant of type Suspension_Object
1969 -- defined in Ada.Synchronous_Task_Control. This version is different from
1970 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1971 -- an entity and by extension a call to RTSfind.
1973 function Is_Double_Precision_Floating_Point_Type
1974 (E : Entity_Id) return Boolean;
1975 -- Return whether E is a double precision floating point type,
1976 -- characterized by:
1977 -- . machine_radix = 2
1978 -- . machine_mantissa = 53
1979 -- . machine_emax = 2**10
1980 -- . machine_emin = 3 - machine_emax
1982 function Is_Effectively_Volatile
1983 (Id : Entity_Id;
1984 Ignore_Protected : Boolean := False) return Boolean;
1985 -- Determine whether a type or object denoted by entity Id is effectively
1986 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1987 -- * Volatile without No_Caching
1988 -- * An array type subject to aspect Volatile_Components
1989 -- * An array type whose component type is effectively volatile
1990 -- * A protected type
1991 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1993 -- If Ignore_Protected is True, then a protected object/type is treated
1994 -- like a non-protected record object/type for computing the result of
1995 -- this query.
1997 function Is_Effectively_Volatile_For_Reading
1998 (Id : Entity_Id;
1999 Ignore_Protected : Boolean := False) return Boolean;
2000 -- Determine whether a type or object denoted by entity Id is effectively
2001 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
2002 -- must be either
2003 -- * Volatile without No_Caching and have Async_Writers or
2004 -- Effective_Reads set to True
2005 -- * An array type subject to aspect Volatile_Components, unless it has
2006 -- Async_Writers and Effective_Reads set to False
2007 -- * An array type whose component type is effectively volatile for
2008 -- reading
2009 -- * A protected type
2010 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2012 -- If Ignore_Protected is True, then a protected object/type is treated
2013 -- like a non-protected record object/type for computing the result of
2014 -- this query.
2016 function Is_Effectively_Volatile_Object
2017 (N : Node_Id) return Boolean;
2018 -- Determine whether an arbitrary node denotes an effectively volatile
2019 -- object (SPARK RM 7.1.2).
2021 function Is_Effectively_Volatile_Object_For_Reading
2022 (N : Node_Id) return Boolean;
2023 -- Determine whether an arbitrary node denotes an effectively volatile
2024 -- object for reading (SPARK RM 7.1.2).
2026 function Is_Entry_Body (Id : Entity_Id) return Boolean;
2027 -- Determine whether entity Id is the body entity of an entry [family]
2029 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2030 -- Determine whether entity Id is the spec entity of an entry [family]
2032 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2033 -- Determine if a given node N is an explicitly aliased formal parameter.
2035 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2036 -- Check whether a function in a call is an expanded priority attribute,
2037 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2038 -- does not take place in a configurable runtime.
2040 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2041 -- Determine whether subprogram [body] Subp denotes an expression function
2043 function Is_Expression_Function_Or_Completion
2044 (Subp : Entity_Id) return Boolean;
2045 -- Determine whether subprogram [body] Subp denotes an expression function
2046 -- or is completed by an expression function body.
2048 function Is_EVF_Expression (N : Node_Id) return Boolean;
2049 -- Determine whether node N denotes a reference to a formal parameter of
2050 -- a specific tagged type whose related subprogram is subject to pragma
2051 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2052 -- constructs fall under this category:
2053 -- 1) A qualified expression whose operand is EVF
2054 -- 2) A type conversion whose operand is EVF
2055 -- 3) An if expression with at least one EVF dependent_expression
2056 -- 4) A case expression with at least one EVF dependent_expression
2058 function Is_False (U : Opt_Ubool) return Boolean;
2059 pragma Inline (Is_False);
2060 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2062 function Is_True (U : Opt_Ubool) return Boolean;
2063 pragma Inline (Is_True);
2064 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2065 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2066 -- case of error. It doesn't really matter whether the error case is
2067 -- considered True or False, but we don't want this to blow up in that
2068 -- case.
2070 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2071 -- Returns True iff the number U is a model number of the fixed-point type
2072 -- T, i.e. if it is an exact multiple of Small.
2074 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2075 -- Determine whether arbitrary node N denotes a reference to a full access
2076 -- object as per Ada 2022 RM C.6(8.2).
2078 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2079 -- Typ is a type entity. This function returns true if this type is fully
2080 -- initialized, meaning that an object of the type is fully initialized.
2081 -- Note that initialization resulting from use of pragma Normalize_Scalars
2082 -- does not count. Note that this is only used for the purpose of issuing
2083 -- warnings for objects that are potentially referenced uninitialized. This
2084 -- means that the result returned is not crucial, but should err on the
2085 -- side of thinking things are fully initialized if it does not know.
2087 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2088 -- Determine whether arbitrary declaration Decl denotes a generic package,
2089 -- a generic subprogram or a generic body.
2091 function Is_Independent_Object (N : Node_Id) return Boolean;
2092 -- Determine whether arbitrary node N denotes a reference to an independent
2093 -- object as per RM C.6(8).
2095 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2096 -- E is a subprogram. Return True is E is an implicit operation inherited
2097 -- by a derived type declaration.
2099 function Is_Inherited_Operation_For_Type
2100 (E : Entity_Id;
2101 Typ : Entity_Id) return Boolean;
2102 -- E is a subprogram. Return True is E is an implicit operation inherited
2103 -- by the derived type declaration for type Typ.
2105 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2106 -- Return True if Subp is an expression function that fulfills all the
2107 -- following requirements for inlining:
2108 -- 1. pragma/aspect Inline_Always
2109 -- 2. No formals
2110 -- 3. No contracts
2111 -- 4. No dispatching primitive
2112 -- 5. Result subtype controlled (or with controlled components)
2113 -- 6. Result subtype not subject to type-invariant checks
2114 -- 7. Result subtype not a class-wide type
2115 -- 8. Return expression naming an object global to the function
2116 -- 9. Nominal subtype of the returned object statically compatible
2117 -- with the result subtype of the expression function.
2119 function Is_Iterator (Typ : Entity_Id) return Boolean;
2120 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2121 -- Ada.Iterator_Interfaces, or it is derived from one.
2123 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2124 -- N is an iterator specification. Returns True iff N is an iterator over
2125 -- an array, either inside a loop of the form 'for X of A' or a quantified
2126 -- expression of the form 'for all/some X of A' where A is of array type.
2128 type Is_LHS_Result is (Yes, No, Unknown);
2129 function Is_LHS (N : Node_Id) return Is_LHS_Result;
2130 -- Returns Yes if N is definitely used as Name in an assignment statement.
2131 -- Returns No if N is definitely NOT used as a Name in an assignment
2132 -- statement. Returns Unknown if we can't tell at this stage (happens in
2133 -- the case where we don't know the type of N yet, and we have something
2134 -- like N.A := 3, where this counts as N being used on the left side of
2135 -- an assignment only if N is not an access type. If it is an access type
2136 -- then it is N.all.A that is assigned, not N.
2138 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2139 -- A library-level declaration is one that is accessible from Standard,
2140 -- i.e. a library unit or an entity declared in a library package.
2142 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2143 -- Determine whether a given type is a limited class-wide type, in which
2144 -- case it needs a Master_Id, because extensions of its designated type
2145 -- may include task components. A class-wide type that comes from a
2146 -- limited view must be treated in the same way.
2148 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2149 -- Determines whether Expr is a reference to a variable or formal parameter
2150 -- of mode OUT or IN OUT of the current enclosing subprogram.
2152 function Is_Master (N : Node_Id) return Boolean;
2153 -- Determine if the given node N constitutes a finalization master
2155 function Is_Name_Reference (N : Node_Id) return Boolean;
2156 -- Determine whether arbitrary node N is a reference to a name. This is
2157 -- similar to Is_Object_Reference but returns True only if N can be renamed
2158 -- without the need for a temporary, the typical example of an object not
2159 -- in this category being a function call.
2161 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2162 -- Determine whether arbitrary construct N violates preelaborability as
2163 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2164 -- syntactic and semantic properties of the construct.
2166 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2167 -- Determine whether entity Id denotes the procedure that verifies the
2168 -- assertion expression of pragma Default_Initial_Condition and if it does,
2169 -- the encapsulated expression is nontrivial.
2171 function Is_Null_Extension
2172 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2173 -- Given a tagged type, returns True if argument is a type extension
2174 -- that introduces no new components (discriminant or nondiscriminant).
2175 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2177 function Is_Null_Extension_Of
2178 (Descendant, Ancestor : Entity_Id) return Boolean;
2179 -- Given two tagged types, the first a descendant of the second,
2180 -- returns True if every component of Descendant is inherited
2181 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2183 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2184 -- Returns True for an N_Record_Definition node that has no user-defined
2185 -- components (and no variant part).
2187 function Is_Null_Record_Type
2188 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2189 -- Determine whether T is declared with a null record definition, a
2190 -- null component list, or as a type derived from a null record type
2191 -- (with a null extension if tagged). Returns True for interface types,
2192 -- False for discriminated types.
2194 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2195 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2196 -- attribute is applied to an object.
2198 function Is_Object_Reference (N : Node_Id) return Boolean;
2199 -- Determines if the tree referenced by N represents an object. Both
2200 -- variable and constant objects return True (compare Is_Variable).
2202 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2203 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2204 -- Note that the Is_Variable function is not quite the right test because
2205 -- this is a case in which conversions whose expression is a variable (in
2206 -- the Is_Variable sense) with an untagged type target are considered view
2207 -- conversions and hence variables.
2209 function Is_OK_Volatile_Context
2210 (Context : Node_Id;
2211 Obj_Ref : Node_Id;
2212 Check_Actuals : Boolean) return Boolean;
2213 -- Determine whether node Context denotes a "non-interfering context" (as
2214 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2215 -- safely reside. When examining references that might be located within
2216 -- actual parameters of a subprogram call that has not been resolved yet,
2217 -- Check_Actuals should be False; such references will be assumed to be
2218 -- legal. They will need to be checked again after subprogram call has
2219 -- been resolved.
2221 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2222 -- Determine whether aspect specification or pragma Item is one of the
2223 -- following package contract annotations:
2224 -- Abstract_State
2225 -- Initial_Condition
2226 -- Initializes
2227 -- Refined_State
2229 function Is_Partially_Initialized_Type
2230 (Typ : Entity_Id;
2231 Include_Implicit : Boolean := True) return Boolean;
2232 -- Typ is a type entity. This function returns true if this type is partly
2233 -- initialized, meaning that an object of the type is at least partly
2234 -- initialized (in particular in the record case, that at least one
2235 -- component has an initialization expression, including via Default_Value
2236 -- and Default_Component_Value aspects). Note that initialization
2237 -- resulting from the use of pragma Normalize_Scalars does not count.
2238 -- Include_Implicit controls whether implicit initialization of access
2239 -- values to null, and of discriminant values, is counted as making the
2240 -- type be partially initialized. For the default setting of True, these
2241 -- implicit cases do count, and discriminated types or types containing
2242 -- access values not explicitly initialized will return True. Otherwise
2243 -- if Include_Implicit is False, these cases do not count as making the
2244 -- type be partially initialized.
2246 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2247 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2249 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2250 -- Determines if type T is a potentially persistent type. A potentially
2251 -- persistent type is defined (recursively) as a scalar type, an untagged
2252 -- record whose components are all of a potentially persistent type, or an
2253 -- array with all static constraints whose component type is potentially
2254 -- persistent. A private type is potentially persistent if the full type
2255 -- is potentially persistent.
2257 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2258 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2260 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2261 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2262 -- required to implement interfaces.
2264 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2265 -- Similar to the previous one, but excludes stream operations, because
2266 -- these may be overridden, and need extra formals, like user-defined
2267 -- operations.
2269 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2270 -- Determine whether aggregate Aggr violates the restrictions of
2271 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2273 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2274 -- Determine whether arbitrary node N violates the restrictions of
2275 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2276 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2277 -- and semantic properties of N for a more accurate diagnostic.
2279 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2280 -- Return True if node N denotes a protected type name which represents
2281 -- the current instance of a protected object according to RM 9.4(21/2).
2283 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2284 -- Return True if a compilation unit is the specification or the
2285 -- body of a remote call interface package.
2287 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2288 -- Return True if E is a remote access-to-class-wide type
2290 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2291 -- Return True if E is a remote access to subprogram type
2293 function Is_Remote_Call (N : Node_Id) return Boolean;
2294 -- Return True if N denotes a potentially remote call
2296 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2297 -- Return True if Proc_Nam is a procedure renaming of an entry
2299 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2300 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2301 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2303 function Is_Selector_Name (N : Node_Id) return Boolean;
2304 -- Given an N_Identifier node N, determines if it is a Selector_Name.
2305 -- As described in Sinfo, Selector_Names are special because they
2306 -- represent use of the N_Identifier node for a true identifier, when
2307 -- normally such nodes represent a direct name.
2309 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2310 -- Determine whether arbitrary entity Id denotes the anonymous object
2311 -- created for a single protected or single task type.
2313 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2314 -- Determine whether arbitrary entity Id denotes a single protected or
2315 -- single task type.
2317 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2318 -- Determine whether arbitrary node N denotes the declaration of a single
2319 -- protected type or single task type.
2321 function Is_Single_Precision_Floating_Point_Type
2322 (E : Entity_Id) return Boolean;
2323 -- Return whether E is a single precision floating point type,
2324 -- characterized by:
2325 -- . machine_radix = 2
2326 -- . machine_mantissa = 24
2327 -- . machine_emax = 2**7
2328 -- . machine_emin = 3 - machine_emax
2330 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2331 -- Determine whether arbitrary entity Id denotes the anonymous object
2332 -- created for a single protected type.
2334 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2335 -- Determine whether arbitrary entity Id denotes the anonymous object
2336 -- created for a single task type.
2338 function Is_Special_Aliased_Formal_Access
2339 (Exp : Node_Id;
2340 In_Return_Context : Boolean := False) return Boolean;
2341 -- Determines whether a dynamic check must be generated for explicitly
2342 -- aliased formals within a function Scop for the expression Exp.
2344 -- In_Return_Context forces Is_Special_Aliased_Formal_Access to assume
2345 -- that Exp is within a return value which is useful for checking
2346 -- expressions within discriminant associations of return objects.
2348 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2349 -- 'Access attribute reference within a return statement where the ultimate
2350 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2351 -- access type. See RM 3.10.2 for more details.
2353 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2354 -- Determine whether an arbitrary [private] type is specifically tagged
2356 function Is_Statement (N : Node_Id) return Boolean;
2357 pragma Inline (Is_Statement);
2358 -- Check if the node N is a statement node. Note that this includes
2359 -- the case of procedure call statements (unlike the direct use of
2360 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2361 -- Note that a label is *not* a statement, and will return False.
2363 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2364 -- Return True if N is guaranteed to a selected component containing a
2365 -- statically known discriminant.
2366 -- Note that this routine takes a conservative view and may return False
2367 -- in some cases where N would match the criteria. In other words this
2368 -- routine should be used to simplify or optimize the expanded code.
2370 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2371 -- Determine whether subprogram Subp denotes a static function,
2372 -- which is a function with the aspect Static with value True.
2374 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2375 -- Determine whether Call is a static call to a static function,
2376 -- meaning that the name of the call denotes a static function
2377 -- and all of the call's actual parameters are given by static expressions.
2379 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2380 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2381 -- of a full access object as per RM C.6(7).
2383 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2384 -- Determine whether aspect specification or pragma Item is one of the
2385 -- following subprogram contract annotations:
2386 -- Contract_Cases
2387 -- Depends
2388 -- Extensions_Visible
2389 -- Global
2390 -- Post
2391 -- Post_Class
2392 -- Postcondition
2393 -- Pre
2394 -- Pre_Class
2395 -- Precondition
2396 -- Refined_Depends
2397 -- Refined_Global
2398 -- Refined_Post
2399 -- Subprogram_Variant
2400 -- Test_Case
2402 function Is_Subprogram_Stub_Without_Prior_Declaration
2403 (N : Node_Id) return Boolean;
2404 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2405 -- stub with no prior subprogram declaration.
2407 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2408 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2409 -- an arbitrary tagged type.
2411 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2412 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
2413 -- in Ada.Synchronous_Task_Control.
2415 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2416 -- Determine whether entity Id denotes an object and if it does, whether
2417 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2418 -- such, the object must be
2419 -- * Of a type that yields a synchronized object
2420 -- * An atomic object with enabled Async_Writers
2421 -- * A constant not of access-to-variable type
2422 -- * A variable subject to pragma Constant_After_Elaboration
2424 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2425 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2427 function Is_Transfer (N : Node_Id) return Boolean;
2428 -- Returns True if the node N is a statement which is known to cause an
2429 -- unconditional transfer of control at run time, i.e. the following
2430 -- statement definitely will not be executed.
2432 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2433 -- Determine whether an arbitrary entity denotes an instance of function
2434 -- Ada.Unchecked_Conversion.
2436 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2437 pragma Inline (Is_Universal_Numeric_Type);
2438 -- True if T is Universal_Integer or Universal_Real
2440 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2441 -- Determine whether an entity denotes a user-defined equality
2443 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2444 -- Determine whether N denotes a reference to a variable which captures the
2445 -- value of an object for validation purposes.
2447 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2448 -- Returns true if E has variable size components
2450 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2451 -- Returns true if E has variable size components
2453 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2455 function Is_Variable
2456 (N : Node_Id;
2457 Use_Original_Node : Boolean := True) return Boolean;
2458 -- Determines if the tree referenced by N represents a variable, i.e. can
2459 -- appear on the left side of an assignment. There is one situation (formal
2460 -- parameters) in which untagged type conversions are also considered
2461 -- variables, but Is_Variable returns False for such cases, since it has
2462 -- no knowledge of the context. Note that this is the point at which
2463 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2464 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2465 -- default is True since this routine is commonly invoked as part of the
2466 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2468 function Is_View_Conversion (N : Node_Id) return Boolean;
2469 -- Returns True if N is a type_conversion whose operand is the name of an
2470 -- object and both its target type and operand type are tagged, or it
2471 -- appears in a call as an actual parameter of mode out or in out
2472 -- (RM 4.6(5/2)).
2474 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2475 -- Check whether T is derived from a visibly controlled type. This is true
2476 -- if the root type is declared in Ada.Finalization. If T is derived
2477 -- instead from a private type whose full view is controlled, an explicit
2478 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2479 -- one.
2481 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2482 -- Determine whether arbitrary node N denotes a reference to an object
2483 -- which is Volatile_Full_Access.
2485 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2486 -- Determine whether [generic] function Func_Id is subject to enabled
2487 -- pragma Volatile_Function. Protected functions are treated as volatile
2488 -- (SPARK RM 7.1.2).
2490 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2491 -- Determine whether arbitrary node N denotes a reference to a volatile
2492 -- object as per RM C.6(8). Note that the test here is for something that
2493 -- is actually declared as volatile, not for an object that gets treated
2494 -- as volatile (see Einfo.Treat_As_Volatile).
2496 generic
2497 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2498 procedure Iterate_Call_Parameters (Call : Node_Id);
2499 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2500 -- a function, procedure, or entry call.
2502 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2503 -- Applies to Itypes. True if the Itype is attached to a declaration for
2504 -- the type through its Parent field, which may or not be present in the
2505 -- tree.
2507 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2508 -- This procedure is called to clear all constant indications from all
2509 -- entities in the current scope and in any parent scopes if the current
2510 -- scope is a block or a package (and that recursion continues to the top
2511 -- scope that is not a block or a package). This is used when the
2512 -- sequential flow-of-control assumption is violated (occurrence of a
2513 -- label, head of a loop, or start of an exception handler). The effect of
2514 -- the call is to clear the Current_Value field (but we do not need to
2515 -- clear the Is_True_Constant flag, since that only gets reset if there
2516 -- really is an assignment somewhere in the entity scope). This procedure
2517 -- also calls Kill_All_Checks, since this is a special case of needing to
2518 -- forget saved values. This procedure also clears the Is_Known_Null and
2519 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2520 -- parameters since these are also not known to be trustable any more.
2522 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2523 -- fields and leave other fields unchanged. This is used when we encounter
2524 -- an unconditional flow of control change (return, goto, raise). In such
2525 -- cases we don't need to clear the current values, since it may be that
2526 -- the flow of control change occurs in a conditional context, and if it
2527 -- is not taken, then it is just fine to keep the current values. But the
2528 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2529 -- conditional-return, assign-to-v, we do not want to complain that the
2530 -- second assignment clobbers the first.
2532 procedure Kill_Current_Values
2533 (Ent : Entity_Id;
2534 Last_Assignment_Only : Boolean := False);
2535 -- This performs the same processing as described above for the form with
2536 -- no argument, but for the specific entity given. The call has no effect
2537 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2538 -- same meaning as for the call with no Ent.
2540 procedure Kill_Size_Check_Code (E : Entity_Id);
2541 -- Called when an address clause or pragma Import is applied to an entity.
2542 -- If the entity is a variable or a constant, and size check code is
2543 -- present, this size check code is killed, since the object will not be
2544 -- allocated by the program.
2546 function Known_Non_Null (N : Node_Id) return Boolean;
2547 -- Given a node N for a subexpression of an access type, determines if
2548 -- this subexpression yields a value that is known at compile time to
2549 -- be non-null and returns True if so. Returns False otherwise. It is
2550 -- an error to call this function if N is not of an access type.
2552 function Known_Null (N : Node_Id) return Boolean;
2553 -- Given a node N for a subexpression of an access type, determines if this
2554 -- subexpression yields a value that is known at compile time to be null
2555 -- and returns True if so. Returns False otherwise. It is an error to call
2556 -- this function if N is not of an access type.
2558 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2559 -- The node N is an entity reference. This function determines whether the
2560 -- reference is for sure an assignment of the entity, returning True if
2561 -- so. This differs from May_Be_Lvalue in that it defaults in the other
2562 -- direction. Cases which may possibly be assignments but are not known to
2563 -- be may return True from May_Be_Lvalue, but False from this function.
2565 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2566 -- HSS is a handled statement sequence. This function returns the last
2567 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2568 -- such statement exists, Empty is returned.
2570 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2571 -- Given a node which designates the context of analysis and an origin in
2572 -- the tree, traverse from Root_Nod and mark all allocators as either
2573 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2574 -- cleaned up during resolution.
2576 procedure Mark_Elaboration_Attributes
2577 (N_Id : Node_Or_Entity_Id;
2578 Checks : Boolean := False;
2579 Level : Boolean := False;
2580 Modes : Boolean := False;
2581 Warnings : Boolean := False);
2582 -- Preserve relevant elaboration-related properties of the context in
2583 -- arbitrary entity or node N_Id. The flags control the properties as
2584 -- follows:
2586 -- Checks - Save the status of Elaboration_Check
2587 -- Level - Save the declaration level of N_Id (if appicable)
2588 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2589 -- Warnings - Save the status of Elab_Warnings
2591 procedure Mark_Save_Invocation_Graph_Of_Body;
2592 -- Notify the body of the main unit that the invocation constructs and
2593 -- relations expressed within it must be recorded by the ABE mechanism.
2595 function Matching_Static_Array_Bounds
2596 (L_Typ : Node_Id;
2597 R_Typ : Node_Id) return Boolean;
2598 -- L_Typ and R_Typ are two array types. Returns True when they have the
2599 -- same number of dimensions, and the same static bounds for each index
2600 -- position.
2602 function May_Be_Lvalue (N : Node_Id) return Boolean;
2603 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
2604 -- An lvalue is defined as any expression which appears in a context where
2605 -- a name is required by the syntax, and the identity, rather than merely
2606 -- the value of the node is needed (for example, the prefix of an Access
2607 -- attribute is in this category). Note that, as implied by the name, this
2608 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
2609 -- it returns True. It tries hard to get the answer right, but it is hard
2610 -- to guarantee this in all cases. Note that it is more possible to give
2611 -- correct answer if the tree is fully analyzed.
2613 function Might_Raise (N : Node_Id) return Boolean;
2614 -- True if evaluation of N might raise an exception. This is conservative;
2615 -- if we're not sure, we return True. If N is a subprogram body, this is
2616 -- about whether execution of that body can raise.
2618 function Nearest_Class_Condition_Subprogram
2619 (Kind : Condition_Kind;
2620 Spec_Id : Entity_Id) return Entity_Id;
2621 -- Return the nearest ancestor containing the merged class-wide conditions
2622 -- that statically apply to Spec_Id; return Empty otherwise.
2624 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2625 -- Return the entity of the nearest enclosing instance which encapsulates
2626 -- entity E. If no such instance exits, return Empty.
2628 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2629 -- True if Typ requires finalization actions
2631 function Needs_One_Actual (E : Entity_Id) return Boolean;
2632 -- Returns True if a function has defaults for all but its first formal,
2633 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2634 -- syntactic ambiguity that results from an indexing of a function call
2635 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2637 function Needs_Result_Accessibility_Level
2638 (Func_Id : Entity_Id) return Boolean;
2639 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit
2640 -- parameter to identify the accessibility level of the function result
2641 -- "determined by the point of call".
2643 function Needs_Simple_Initialization
2644 (Typ : Entity_Id;
2645 Consider_IS : Boolean := True) return Boolean;
2646 -- Certain types need initialization even though there is no specific
2647 -- initialization routine:
2648 -- Access types (which need initializing to null)
2649 -- All scalar types if Normalize_Scalars mode set
2650 -- Descendants of standard string types if Normalize_Scalars mode set
2651 -- Scalar types having a Default_Value attribute
2652 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2653 -- set to False, but if Consider_IS is set to True, then the cases above
2654 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2656 function Needs_Variable_Reference_Marker
2657 (N : Node_Id;
2658 Calls_OK : Boolean) return Boolean;
2659 -- Determine whether arbitrary node N denotes a reference to a variable
2660 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2661 -- be set when the reference is allowed to appear within calls.
2663 function New_Copy_List_Tree (List : List_Id) return List_Id;
2664 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2665 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2666 -- nodes (entities) either directly or indirectly using this function.
2668 function New_Copy_Separate_List (List : List_Id) return List_Id;
2669 -- Copy recursively a list of nodes using New_Copy_Separate_Tree
2671 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2672 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2673 -- replacing entities of local declarations by new entities. This behavior
2674 -- is required by the backend to ensure entities uniqueness when a copy of
2675 -- a subtree is attached to the tree. The new entities keep their original
2676 -- names to facilitate debugging the tree copy.
2678 function New_Copy_Tree
2679 (Source : Node_Id;
2680 Map : Elist_Id := No_Elist;
2681 New_Sloc : Source_Ptr := No_Location;
2682 New_Scope : Entity_Id := Empty;
2683 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2684 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2685 -- and nodes are handled separately as follows:
2687 -- * A node is replicated by first creating a shallow copy, then copying
2688 -- its syntactic fields, where all Parent pointers of the fields are
2689 -- updated to refer to the copy. In addition, the following semantic
2690 -- fields are recreated after the replication takes place.
2692 -- First_Named_Actual
2693 -- First_Real_Statement
2694 -- Next_Named_Actual
2696 -- If applicable, the Etype field (if any) is updated to refer to a
2697 -- local itype or type (see below).
2699 -- * An entity defined within an N_Expression_With_Actions node in the
2700 -- subtree is given a new entity, and all references to the original
2701 -- entity are updated to refer to the new entity. In addition, the
2702 -- following semantic fields are replicated and/or updated to refer
2703 -- to a local entity or itype.
2705 -- Discriminant_Constraint
2706 -- Etype
2707 -- First_Index
2708 -- Next_Entity
2709 -- Packed_Array_Impl_Type
2710 -- Scalar_Range
2711 -- Scope
2713 -- Note that currently no other expression can define entities.
2715 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2716 -- is given a new entity, and all references to the original itype
2717 -- are updated to refer to the new itype. In addition, the following
2718 -- semantic fields are replicated and/or updated to refer to a local
2719 -- entity or itype.
2721 -- Discriminant_Constraint
2722 -- Etype
2723 -- First_Index
2724 -- Next_Entity
2725 -- Packed_Array_Impl_Type
2726 -- Scalar_Range
2727 -- Scope
2729 -- The Associated_Node_For_Itype is updated to refer to a replicated
2730 -- node.
2732 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2733 -- Empty or Error node yields the same node.
2735 -- Parameter Map may be used to specify a set of mappings between entities.
2736 -- These mappings are then taken into account when replicating entities.
2737 -- The format of Map must be as follows:
2739 -- old entity 1
2740 -- new entity to replace references to entity 1
2741 -- old entity 2
2742 -- new entity to replace references to entity 2
2743 -- ...
2745 -- Map and its contents are left unchanged.
2747 -- Parameter New_Sloc may be used to specify a new source location for all
2748 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2749 -- is defaulted if a new source location is provided.
2751 -- Parameter New_Scope may be used to specify a new scope for all copied
2752 -- entities and itypes.
2754 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2755 -- scoping entities and non-scoping entities found within expression with
2756 -- actions nodes.
2758 function New_External_Entity
2759 (Kind : Entity_Kind;
2760 Scope_Id : Entity_Id;
2761 Sloc_Value : Source_Ptr;
2762 Related_Id : Entity_Id;
2763 Suffix : Character;
2764 Suffix_Index : Int := 0;
2765 Prefix : Character := ' ') return Entity_Id;
2766 -- This function creates an N_Defining_Identifier node for an internal
2767 -- created entity, such as an implicit type or subtype, or a record
2768 -- initialization procedure. The entity name is constructed with a call
2769 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2770 -- that the generated name may be referenced as a public entry, and the
2771 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2772 -- entity is for a type or subtype, the size/align fields are initialized
2773 -- to unknown (Uint_0).
2775 function New_Internal_Entity
2776 (Kind : Entity_Kind;
2777 Scope_Id : Entity_Id;
2778 Sloc_Value : Source_Ptr;
2779 Id_Char : Character) return Entity_Id;
2780 -- This function is similar to New_External_Entity, except that the
2781 -- name is constructed by New_Internal_Name (Id_Char). This is used
2782 -- when the resulting entity does not have to be referenced as a
2783 -- public entity (and in this case Is_Public is not set).
2785 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2786 -- Find next actual parameter in declaration order. As described for
2787 -- First_Actual, this is the next actual in the declaration order, not
2788 -- the call order, so this does not correspond to simply taking the
2789 -- next entry of the Parameter_Associations list. The argument is an
2790 -- actual previously returned by a call to First_Actual or Next_Actual.
2791 -- Note that the result produced is always an expression, not a parameter
2792 -- association node, even if named notation was used.
2794 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2796 procedure Next_Actual (Actual_Id : in out Node_Id);
2797 pragma Inline (Next_Actual);
2798 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2799 -- inline this procedural form, but not the functional form above.
2801 function Next_Global (Node : Node_Id) return Node_Id;
2802 -- Node is a global item from a list, obtained through calling First_Global
2803 -- and possibly Next_Global a number of times. Returns the next global item
2804 -- with the same mode.
2806 procedure Next_Global (Node : in out Node_Id);
2807 pragma Inline (Next_Global);
2808 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2809 -- inline this procedural form, but not the functional form above.
2811 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2812 -- Given the entity of a variable, determine whether Id is subject to
2813 -- volatility property No_Caching and if it is, the related expression
2814 -- evaluates to True.
2816 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2817 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2819 procedure Normalize_Actuals
2820 (N : Node_Id;
2821 S : Entity_Id;
2822 Report : Boolean;
2823 Success : out Boolean);
2824 -- Reorders lists of actuals according to names of formals, value returned
2825 -- in Success indicates success of reordering. For more details, see body.
2826 -- Errors are reported only if Report is set to True.
2828 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2829 -- This routine is called if the sub-expression N maybe the target of
2830 -- an assignment (e.g. it is the left side of an assignment, used as
2831 -- an out parameters, or used as prefixes of access attributes). It
2832 -- sets May_Be_Modified in the associated entity if there is one,
2833 -- taking into account the rule that in the case of renamed objects,
2834 -- it is the flag in the renamed object that must be set.
2836 -- The parameter Sure is set True if the modification is sure to occur
2837 -- (e.g. target of assignment, or out parameter), and to False if the
2838 -- modification is only potential (e.g. address of entity taken).
2840 function Null_To_Null_Address_Convert_OK
2841 (N : Node_Id;
2842 Typ : Entity_Id := Empty) return Boolean;
2843 -- Return True if we are compiling in relaxed RM semantics mode and:
2844 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2845 -- 2) N is a comparison operator, one of the operands is null, and the
2846 -- type of the other operand is a descendant of System.Address.
2848 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2849 -- Returns the number of elements in the array T if the index bounds of T
2850 -- is known at compile time. If the bounds are not known at compile time,
2851 -- the function returns the value zero.
2853 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2854 -- Retrieve the name of aspect or pragma N, taking into account a possible
2855 -- rewrite and whether the pragma is generated from an aspect as the names
2856 -- may be different. The routine also deals with 'Class in which case it
2857 -- returns the following values:
2859 -- Invariant -> Name_uInvariant
2860 -- Post'Class -> Name_uPost
2861 -- Pre'Class -> Name_uPre
2862 -- Type_Invariant -> Name_uType_Invariant
2863 -- Type_Invariant'Class -> Name_uType_Invariant
2865 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2866 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2867 -- or overrides an inherited dispatching primitive S2, the original
2868 -- corresponding operation of S is the original corresponding operation of
2869 -- S2. Otherwise, it is S itself.
2871 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2872 -- Returns True if the type Typ has a private view or if the public view
2873 -- appears in the visible part of a package spec.
2875 procedure Output_Entity (Id : Entity_Id);
2876 -- Print entity Id to standard output. The name of the entity appears in
2877 -- fully qualified form.
2879 -- WARNING: this routine should be used in debugging scenarios such as
2880 -- tracking down undefined symbols as it is fairly low level.
2882 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2883 -- Print name Nam to standard output. The name appears in fully qualified
2884 -- form assuming it appears in scope Scop. Note that this may not reflect
2885 -- the final qualification as the entity which carries the name may be
2886 -- relocated to a different scope.
2888 -- WARNING: this routine should be used in debugging scenarios such as
2889 -- tracking down undefined symbols as it is fairly low level.
2891 function Param_Entity (N : Node_Id) return Entity_Id;
2892 -- Given an expression N, determines if the expression is a reference
2893 -- to a formal (of a subprogram or entry), and if so returns the Id
2894 -- of the corresponding formal entity, otherwise returns Empty. Also
2895 -- handles the case of references to renamings of formals.
2897 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2898 -- Given a policy, return the policy identifier associated with it. If no
2899 -- such policy is in effect, the value returned is No_Name.
2901 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2902 -- Return True if a predicate check should be emitted for the given type
2903 -- Typ, taking into account Predicates_Ignored and
2904 -- Predicate_Checks_Suppressed.
2906 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2907 -- Subp is the entity for a subprogram call. This function returns True if
2908 -- predicate tests are required for the arguments in this call (this is the
2909 -- normal case). It returns False for special cases where these predicate
2910 -- tests should be skipped (see body for details).
2912 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2913 -- Returns True if the names of both entities correspond with matching
2914 -- primitives. This routine includes support for the case in which one
2915 -- or both entities correspond with entities built by Derive_Subprogram
2916 -- with a special name to avoid being overridden (i.e. return true in case
2917 -- of entities with names "nameP" and "name" or vice versa).
2919 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2920 -- Returns some private component (if any) of the given Type_Id.
2921 -- Used to enforce the rules on visibility of operations on composite
2922 -- types, that depend on the full view of the component type. For a
2923 -- record type there may be several such components, we just return
2924 -- the first one.
2926 procedure Process_End_Label
2927 (N : Node_Id;
2928 Typ : Character;
2929 Ent : Entity_Id);
2930 -- N is a node whose End_Label is to be processed, generating all
2931 -- appropriate cross-reference entries, and performing style checks
2932 -- for any identifier references in the end label. Typ is either
2933 -- 'e' or 't indicating the type of the cross-reference entity
2934 -- (e for spec, t for body, see Lib.Xref spec for details). The
2935 -- parameter Ent gives the entity to which the End_Label refers,
2936 -- and to which cross-references are to be generated.
2938 procedure Propagate_Concurrent_Flags
2939 (Typ : Entity_Id;
2940 Comp_Typ : Entity_Id);
2941 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2942 -- are set on Comp_Typ. This follows the definition of these flags, which
2943 -- are set (recursively) on any composite type that has a component marked
2944 -- by one of these flags. This procedure can only set flags for Typ, and
2945 -- never clear them. Comp_Typ is the type of a component or a parent.
2947 procedure Propagate_DIC_Attributes
2948 (Typ : Entity_Id;
2949 From_Typ : Entity_Id);
2950 -- Inherit all Default_Initial_Condition-related attributes from type
2951 -- From_Typ. Typ is the destination type.
2953 procedure Propagate_Invariant_Attributes
2954 (Typ : Entity_Id;
2955 From_Typ : Entity_Id);
2956 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
2957 -- destination type.
2959 procedure Propagate_Predicate_Attributes
2960 (Typ : Entity_Id;
2961 From_Typ : Entity_Id);
2962 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
2963 -- Typ is the destination type.
2965 procedure Record_Possible_Part_Of_Reference
2966 (Var_Id : Entity_Id;
2967 Ref : Node_Id);
2968 -- Save reference Ref to variable Var_Id when the variable is subject to
2969 -- pragma Part_Of. If the variable is known to be a constituent of a single
2970 -- protected/task type, the legality of the reference is verified and the
2971 -- save does not take place.
2973 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2974 -- Determine whether entity Id is referenced within expression Expr
2976 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2977 -- Returns True if the expression Expr contains any references to a generic
2978 -- type. This can only happen within a generic template.
2980 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2981 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2982 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2983 -- performed by this routine does not affect the visibility of existing
2984 -- homonyms.
2986 procedure Remove_Homonym (Id : Entity_Id);
2987 -- Removes entity Id from the homonym chain
2989 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2990 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2991 -- the primitive operations list of the associated controlling type. Use
2992 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2993 -- by this routine does not affect the visibility of existing homonyms.
2995 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2996 -- Returns the name of E without Suffix
2998 procedure Replace_Null_By_Null_Address (N : Node_Id);
2999 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
3000 -- RM semantics mode, and one of the operands is null. Replace null with
3001 -- System.Null_Address.
3003 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
3004 -- This is used to construct the second argument in a call to Rep_To_Pos
3005 -- which is Standard_True if range checks are enabled (E is an entity to
3006 -- which the Range_Checks_Suppressed test is applied), and Standard_False
3007 -- if range checks are suppressed. Loc is the location for the node that
3008 -- is returned (which is a New_Occurrence of the appropriate entity).
3010 -- Note: one might think that it would be fine to always use True and
3011 -- to ignore the suppress in this case, but it is generally better to
3012 -- believe a request to suppress exceptions if possible, and further
3013 -- more there is at least one case in the generated code (the code for
3014 -- array assignment in a loop) that depends on this suppression.
3016 procedure Require_Entity (N : Node_Id);
3017 -- N is a node which should have an entity value if it is an entity name.
3018 -- If not, then check if there were previous errors. If so, just fill
3019 -- in with Any_Id and ignore. Otherwise signal a program error exception.
3020 -- This is used as a defense mechanism against ill-formed trees caused by
3021 -- previous errors (particularly in -gnatq mode).
3023 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
3024 -- Id is a type entity. The result is True when temporaries of this type
3025 -- need to be wrapped in a transient scope to be reclaimed properly when a
3026 -- secondary stack is in use. Examples of types requiring such wrapping are
3027 -- controlled types and variable-sized types including unconstrained
3028 -- arrays.
3030 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3032 procedure Reset_Analyzed_Flags (N : Node_Id);
3033 -- Reset the Analyzed flags in all nodes of the tree whose root is N
3035 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3036 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3037 -- routine must be used in tandem with Set_SPARK_Mode.
3039 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3040 -- Return true if Subp is a function that returns an unconstrained type
3042 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3043 -- Similar to attribute Root_Type, but this version always follows the
3044 -- Full_View of a private type (if available) while searching for the
3045 -- ultimate derivation ancestor.
3047 function Safe_To_Capture_Value
3048 (N : Node_Id;
3049 Ent : Entity_Id;
3050 Cond : Boolean := False) return Boolean;
3051 -- The caller is interested in capturing a value (either the current
3052 -- value, an indication that the value is [non-]null or an indication that
3053 -- the value is valid) for the given entity Ent. This value can only be
3054 -- captured if sequential execution semantics can be properly guaranteed so
3055 -- that a subsequent reference will indeed be sure that this current value
3056 -- indication is correct. The node N is the construct that resulted in the
3057 -- possible capture of the value (this is used to check if we are in a
3058 -- conditional).
3060 -- Cond is used to skip the test for being inside a conditional. It is used
3061 -- in the case of capturing values from if/while tests, which already do a
3062 -- proper job of handling scoping issues without this help.
3064 -- The only entities whose values can be captured are OUT and IN OUT formal
3065 -- parameters, and variables unless Cond is True, in which case we also
3066 -- allow IN formals, loop parameters and constants, where we cannot ever
3067 -- capture actual value information, but we can capture conditional tests.
3069 function Same_Name (N1, N2 : Node_Id) return Boolean;
3070 -- Determine if two (possibly expanded) names are the same name. This is
3071 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3073 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3074 -- Determine if Node1 and Node2 are known to designate the same object.
3075 -- This is a semantic test and both nodes must be fully analyzed. A result
3076 -- of True is decisively correct. A result of False does not necessarily
3077 -- mean that different objects are designated, just that this could not
3078 -- be reliably determined at compile time.
3080 function Same_Or_Aliased_Subprograms
3081 (S : Entity_Id;
3082 E : Entity_Id) return Boolean;
3083 -- Returns True if the subprogram entity S is the same as E or else S is an
3084 -- alias of E.
3086 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3087 -- Determines if T1 and T2 represent exactly the same type. Two types
3088 -- are the same if they are identical, or if one is an unconstrained
3089 -- subtype of the other, or they are both common subtypes of the same
3090 -- type with identical constraints. The result returned is conservative.
3091 -- It is True if the types are known to be the same, but a result of
3092 -- False is indecisive (e.g. the compiler may not be able to tell that
3093 -- two constraints are identical).
3095 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3096 -- Determines if Node1 and Node2 are known to be the same value, which is
3097 -- true if they are both compile time known values and have the same value,
3098 -- or if they are the same object (in the sense of function Same_Object).
3099 -- A result of False does not necessarily mean they have different values,
3100 -- just that it is not possible to determine they have the same value.
3102 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3103 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3104 -- least one scalar subcomponent.
3106 function Scope_Within
3107 (Inner : Entity_Id;
3108 Outer : Entity_Id) return Boolean;
3109 -- Determine whether scope Inner appears within scope Outer. Note that
3110 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3111 -- (B, A) may both return False.
3113 function Scope_Within_Or_Same
3114 (Inner : Entity_Id;
3115 Outer : Entity_Id) return Boolean;
3116 -- Determine whether scope Inner appears within scope Outer or both denote
3117 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3118 -- (A, B) and Scope_Within (B, A) may both return False.
3120 procedure Set_Current_Entity (E : Entity_Id);
3121 pragma Inline (Set_Current_Entity);
3122 -- Establish the entity E as the currently visible definition of its
3123 -- associated name (i.e. the Node_Id associated with its name).
3125 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3126 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
3127 -- from source.
3129 procedure Set_Debug_Info_Needed (T : Entity_Id);
3130 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3131 -- that are needed by T (for an object, the type of the object is needed,
3132 -- and for a type, various subsidiary types are needed -- see body for
3133 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3134 -- This routine should always be used instead of Set_Needs_Debug_Info to
3135 -- ensure that subsidiary entities are properly handled.
3137 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3138 -- This procedure has the same calling sequence as Set_Entity, but it
3139 -- performs additional checks as follows:
3141 -- If Style_Check is set, then it calls a style checking routine which
3142 -- can check identifier spelling style. This procedure also takes care
3143 -- of checking the restriction No_Implementation_Identifiers.
3145 -- If restriction No_Abort_Statements is set, then it checks that the
3146 -- entity is not Ada.Task_Identification.Abort_Task.
3148 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3149 -- entity is not one of the restricted names for this restriction.
3151 -- If restriction No_Long_Long_Integers is set, then it checks that the
3152 -- entity is not Standard.Long_Long_Integer.
3154 -- If restriction No_Implementation_Identifiers is set, then it checks
3155 -- that the entity is not implementation defined.
3157 procedure Set_Invalid_Scalar_Value
3158 (Scal_Typ : Float_Scalar_Id;
3159 Value : Ureal);
3160 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3161 -- pragma Initialize_Scalars.
3163 procedure Set_Invalid_Scalar_Value
3164 (Scal_Typ : Integer_Scalar_Id;
3165 Value : Uint);
3166 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3167 -- pragma Initialize_Scalars.
3169 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3170 pragma Inline (Set_Name_Entity_Id);
3171 -- Sets the Entity_Id value associated with the given name, which is the
3172 -- Id of the innermost visible entity with the given name. See the body
3173 -- of package Sem_Ch8 for further details on the handling of visibility.
3175 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3176 -- The arguments may be parameter associations, whose descendants
3177 -- are the optional formal name and the actual parameter. Positional
3178 -- parameters are already members of a list, and do not need to be
3179 -- chained separately. See also First_Actual and Next_Actual.
3181 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3182 pragma Inline (Set_Optimize_Alignment_Flags);
3183 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3185 procedure Set_Public_Status (Id : Entity_Id);
3186 -- If an entity (visible or otherwise) is defined in a library
3187 -- package, or a package that is itself public, then this subprogram
3188 -- labels the entity public as well.
3190 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3191 -- N is the node for either a left hand side (Out_Param set to False),
3192 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3193 -- an assignable entity being referenced, then the appropriate flag
3194 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3195 -- if Out_Param is True) is set True, and the other flag set False.
3197 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3198 pragma Inline (Set_Rep_Info);
3199 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3200 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3201 -- if T1 is a base type.
3203 procedure Set_Scope_Is_Transient (V : Boolean := True);
3204 -- Set the flag Is_Transient of the current scope
3206 procedure Set_Size_Info (T1, T2 : Entity_Id);
3207 pragma Inline (Set_Size_Info);
3208 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3209 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3210 -- in the fixed-point and discrete cases, and also copies the alignment
3211 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3212 -- separately set if this is required to be copied also.
3214 procedure Set_SPARK_Mode (Context : Entity_Id);
3215 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3216 -- a subprogram denoted by Context. This routine must be used in tandem
3217 -- with Restore_SPARK_Mode.
3219 function Scope_Is_Transient return Boolean;
3220 -- True if the current scope is transient
3222 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3223 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3224 -- True if we should ignore pragmas with the specified name. In particular,
3225 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3226 -- predefined unit. The _Par version should be called only from the parser;
3227 -- the _Sem version should be called only during semantic analysis.
3229 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3230 -- This function analyzes the given expression node and then resolves it
3231 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3232 -- returned corresponding to the value, otherwise an error message is
3233 -- output and No_Uint is returned.
3235 function Static_Integer (N : Node_Id) return Uint;
3236 -- This function analyzes the given expression node and then resolves it
3237 -- as any integer type. If the result is static, then the value of the
3238 -- universal expression is returned, otherwise an error message is output
3239 -- and a value of No_Uint is returned.
3241 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3242 -- Return True iff N is a name that "statically denotes" an entity.
3244 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3245 -- Return True iff N is a name that "statically denotes" an object.
3247 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3248 -- Return True if it can be statically determined that the Expressions
3249 -- E1 and E2 refer to different objects
3251 function Statically_Names_Object (N : Node_Id) return Boolean;
3252 -- Return True iff N is a name that "statically names" an object.
3254 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3255 -- Return the string that corresponds to the numeric literal N as it
3256 -- appears in the source.
3258 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3259 -- Determine whether node N is a loop statement subject to at least one
3260 -- 'Loop_Entry attribute.
3262 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
3263 -- Return the accessibility level of the view denoted by Subp
3265 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3266 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3267 -- Typ is properly sized and aligned).
3269 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3270 -- Print debugging information on entry to each unit being analyzed
3272 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3273 -- Move a list of entities from one scope to another, and recompute
3274 -- Is_Public based upon the new scope.
3276 generic
3277 with function Process (N : Node_Id) return Traverse_Result is <>;
3278 Process_Itypes : Boolean := False;
3279 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3280 -- This is a version of Atree.Traverse_Func that not only traverses
3281 -- syntactic children of nodes, but also semantic children which are
3282 -- logically children of the node. This concerns currently lists of
3283 -- action nodes and ranges under Itypes, both inserted by the compiler.
3284 -- Itypes are only traversed when Process_Itypes is True.
3286 generic
3287 with function Process (N : Node_Id) return Traverse_Result is <>;
3288 Process_Itypes : Boolean := False;
3289 procedure Traverse_More_Proc (Node : Node_Id);
3290 pragma Inline (Traverse_More_Proc);
3291 -- This is the same as Traverse_More_Func except that no result is
3292 -- returned, i.e. Traverse_More_Func is called and the result is simply
3293 -- discarded.
3295 function Type_Access_Level
3296 (Typ : Entity_Id;
3297 Allow_Alt_Model : Boolean := True;
3298 Assoc_Ent : Entity_Id := Empty) return Uint;
3299 -- Return the accessibility level of Typ
3301 -- The Allow_Alt_Model parameter allows the alternative level calculation
3302 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
3304 -- Assoc_Ent allows for the optional specification of the entity associated
3305 -- with Typ. This gets utilized mostly for anonymous access type
3306 -- processing, where context matters in interpreting Typ's level.
3308 function Type_Without_Stream_Operation
3309 (T : Entity_Id;
3310 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3311 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3312 -- is active then we cannot generate stream subprograms for composite types
3313 -- with elementary subcomponents that lack user-defined stream subprograms.
3314 -- This predicate determines whether a type has such an elementary
3315 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3316 -- prevents the construction of a composite stream operation. If Op is
3317 -- specified we check only for the given stream operation.
3319 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3320 -- If entity E is overlaying some other entity via an Address clause (which
3321 -- possibly overlays yet another entity via its own Address clause), then
3322 -- return the ultimate overlaid entity. If entity E is not overlaying any
3323 -- other entity (or the overlaid entity cannot be determined statically),
3324 -- then return Empty.
3326 -- Subsidiary to the analysis of object overlays in SPARK.
3328 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3329 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3330 -- prefix exists.
3332 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3333 -- Return the entity that represents declaration N, so that different
3334 -- views of the same entity have the same unique defining entity:
3335 -- * private view and full view of a deferred constant
3336 -- --> full view
3337 -- * entry spec and entry body
3338 -- --> entry spec
3339 -- * formal parameter on spec and body
3340 -- --> formal parameter on spec
3341 -- * package spec, body, and body stub
3342 -- --> package spec
3343 -- * protected type, protected body, and protected body stub
3344 -- --> protected type (full view if private)
3345 -- * subprogram spec, body, and body stub
3346 -- --> subprogram spec
3347 -- * task type, task body, and task body stub
3348 -- --> task type (full view if private)
3349 -- * private or incomplete view and full view of a type
3350 -- --> full view
3351 -- In other cases, return the defining entity for N.
3353 function Unique_Entity (E : Entity_Id) return Entity_Id;
3354 -- Return the unique entity for entity E, which would be returned by
3355 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3357 function Unique_Name (E : Entity_Id) return String;
3358 -- Return a unique name for entity E, which could be used to identify E
3359 -- across compilation units.
3361 Child_Prefix : constant String := "ada___";
3362 -- Prefix for child packages when building a unique name for an entity. It
3363 -- is included here to share between Unique_Name and gnatprove.
3365 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3366 -- Determine whether a compilation unit is visible in the current context,
3367 -- because there is a with_clause that makes the unit available. Used to
3368 -- provide better messages on common visiblity errors on operators.
3370 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3371 -- Yields Universal_Integer or Universal_Real if this is a candidate
3373 function Unqualify (Expr : Node_Id) return Node_Id;
3374 pragma Inline (Unqualify);
3375 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3376 -- returns X. If Expr is not a qualified expression, returns Expr.
3378 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3379 pragma Inline (Unqual_Conv);
3380 -- Similar to Unqualify, but removes qualified expressions, type
3381 -- conversions, and unchecked conversions.
3383 function Validated_View (Typ : Entity_Id) return Entity_Id;
3384 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3385 -- verification by attribute 'Valid_Scalars. This view is the type itself
3386 -- or its full view while stripping away concurrency, derivations, and
3387 -- privacy.
3389 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3390 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3391 -- of a type extension or private extension declaration. If the full-view
3392 -- of private parents and progenitors is available then it is used to
3393 -- generate the list of visible ancestors; otherwise their partial
3394 -- view is added to the resulting list.
3396 function Within_Init_Proc return Boolean;
3397 -- Determines if Current_Scope is within an init proc
3399 function Within_Protected_Type (E : Entity_Id) return Boolean;
3400 -- Returns True if entity E is declared within a protected type
3402 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3403 -- Returns True if entity E is declared within scope S
3405 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3406 -- Output error message for incorrectly typed expression. Expr is the node
3407 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3408 -- and Expected_Type is the entity for the expected type. Note that Expr
3409 -- does not have to be a subexpression, anything with an Etype field may
3410 -- be used.
3412 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3413 -- Determine whether type Typ "yields synchronized object" as specified by
3414 -- SPARK RM 9.1. To qualify as such, a type must be
3415 -- * An array type whose element type yields a synchronized object
3416 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3417 -- * A protected type
3418 -- * A record type or type extension without defaulted discriminants
3419 -- whose components are of a type that yields a synchronized object.
3420 -- * A synchronized interface type
3421 -- * A task type
3423 function Yields_Universal_Type (N : Node_Id) return Boolean;
3424 -- Determine whether unanalyzed node N yields a universal type
3426 procedure Preanalyze_Without_Errors (N : Node_Id);
3427 -- Preanalyze N without reporting errors
3429 package Interval_Lists is
3430 type Discrete_Interval is
3431 record
3432 Low, High : Uint;
3433 end record;
3435 type Discrete_Interval_List is
3436 array (Pos range <>) of Discrete_Interval;
3437 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3438 -- intervals, always with a gap of at least one value between
3439 -- successive intervals (i.e., mergeable intervals are merged).
3440 -- Low bound is one; high bound is nonnegative.
3442 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3443 -- Given an array aggregate N, returns the (unique) interval list
3444 -- representing the values of the aggregate choices; if all the array
3445 -- components are covered by the others choice then the length of the
3446 -- result is zero.
3448 function Choice_List_Intervals
3449 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3450 -- Given a discrete choice list, returns the (unique) interval
3451 -- list representing the chosen values.
3453 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3454 -- Given a static discrete type or subtype, returns the (unique)
3455 -- interval list representing the values of the type/subtype.
3456 -- If no static predicates are involved, the length of the result
3457 -- will be at most one.
3459 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3460 return Boolean;
3461 -- Returns True iff every value belonging to some interval of
3462 -- Subset also belongs to some interval of Of_Set.
3464 -- When we get around to implementing "is statically compatible"
3465 -- correctly for real types with static predicates, we may need
3466 -- an analogous Real_Interval_List type. Most of the language
3467 -- rules that reference "is statically compatible" pertain to
3468 -- discriminants and therefore do not require support for real types;
3469 -- the exception is 12.5.1(8).
3471 Intervals_Error : exception;
3472 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3473 -- be built.
3474 end Interval_Lists;
3476 package Old_Attr_Util is
3477 -- Operations related to 'Old attribute evaluation. This
3478 -- includes cases where a level of indirection is needed due to
3479 -- conditional evaluation as well as support for the
3480 -- "known on entry" rules.
3482 package Conditional_Evaluation is
3483 function Eligible_For_Conditional_Evaluation
3484 (Expr : Node_Id) return Boolean;
3485 -- Given a subexpression of a Postcondition expression
3486 -- (typically a 'Old attribute reference), returns True if
3487 -- - the expression is conditionally evaluated; and
3488 -- - its determining expressions are all known on entry; and
3489 -- - Ada_Version >= Ada_2022.
3490 -- See RM 6.1.1 for definitions of these terms.
3492 -- Also returns True if Expr is of an anonymous access type;
3493 -- this is just because we want the code that knows how to build
3494 -- 'Old temps in that case to reside in only one place.
3496 function Conditional_Evaluation_Condition
3497 (Expr : Node_Id) return Node_Id;
3498 -- Given an expression which is eligible for conditional evaluation,
3499 -- build a Boolean expression whose value indicates whether the
3500 -- expression should be evaluated.
3501 end Conditional_Evaluation;
3503 package Indirect_Temps is
3504 generic
3505 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3506 -- If Is_Eval_Stmt is True, then N is a statement that should
3507 -- only be executed in the case where the 'Old prefix is to be
3508 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3509 -- which should be elaborated unconditionally.
3510 -- Client is responsible for ensuring that any appended
3511 -- Eval_Stmt nodes are eventually analyzed.
3513 Append_Decls_In_Reverse_Order : Boolean := False;
3514 -- This parameter is for the convenience of exp_prag.adb, where we
3515 -- want to Prepend rather than Append so it is better to get the
3516 -- Append calls in reverse order.
3518 procedure Declare_Indirect_Temp
3519 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3520 Indirect_Temp : out Entity_Id);
3521 -- Indirect_Temp is of an access type; it is unconditionally
3522 -- declared but only conditionally initialized to reference the
3523 -- saved value of Attr_Prefix.
3525 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3526 -- Returns True for a specific tagged type because the temp must
3527 -- be of the class-wide type in order to preserve the underlying tag.
3529 -- Also returns True in the case of an anonymous access type
3530 -- because we want the code that knows how to deal with
3531 -- this case to reside in only one place.
3533 -- For an unconstrained-but-definite discriminated subtype, returns
3534 -- True if the potential difference in size between an
3535 -- unconstrained object and a constrained object is large.
3536 -- [This part is not implemented yet.]
3538 -- Otherwise, returns False if a declaration of the form
3539 -- Temp : Typ;
3540 -- is legal and side-effect-free (assuming that default
3541 -- initialization is suppressed). For example, returns True if Typ is
3542 -- indefinite, or if Typ has a controlled part.
3545 function Indirect_Temp_Value
3546 (Temp : Entity_Id;
3547 Typ : Entity_Id;
3548 Loc : Source_Ptr) return Node_Id;
3549 -- Evaluate a temp declared by Declare_Indirect_Temp.
3551 function Is_Access_Type_For_Indirect_Temp
3552 (T : Entity_Id) return Boolean;
3553 -- True for an access type that was declared via a call
3554 -- to Declare_Indirect_Temp.
3555 -- Indicates that the given access type should be treated
3556 -- the same with respect to finalization as a
3557 -- user-defined "comes from source" access type.
3559 end Indirect_Temps;
3560 end Old_Attr_Util;
3562 package Storage_Model_Support is
3564 -- This package provides a set of utility functions related to support
3565 -- for the Storage_Model feature. These functions provide an interface
3566 -- that the compiler (in particular back-end phases such as gigi and
3567 -- GNAT-LLVM) can use to easily obtain entities and operations that
3568 -- are specified for types in the aspects Storage_Model_Type and
3569 -- Designated_Storage_Model.
3571 function Get_Storage_Model_Type_Entity
3572 (Typ : Entity_Id;
3573 Nam : Name_Id) return Entity_Id;
3574 -- Given type Typ with aspect Storage_Model_Type, returns the Entity_Id
3575 -- corresponding to the entity associated with Nam in the aspect. If the
3576 -- type does not specify the aspect, or such an entity is not present,
3577 -- then returns Empty. (Note: This function is modeled on function
3578 -- Get_Iterable_Type_Primitive.)
3580 function Has_Designated_Storage_Model_Aspect
3581 (Typ : Entity_Id) return Boolean;
3582 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3584 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3585 -- Returns True iff Typ specifies aspect Storage_Model_Type
3587 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3588 -- Given an access type with aspect Designated_Storage_Model, returns
3589 -- the storage-model object associated with that type; returns Empty
3590 -- if there is no associated object.
3592 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3593 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3594 -- returns that type; otherwise returns Empty.
3596 function Storage_Model_Address_Type (Typ : Entity_Id) return Entity_Id;
3597 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3598 -- the type specified for the Address_Type choice in that aspect;
3599 -- returns Empty if the aspect or the type isn't specified.
3601 function Storage_Model_Null_Address (Typ : Entity_Id) return Entity_Id;
3602 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3603 -- constant specified for Null_Address choice in that aspect; returns
3604 -- Empty if the aspect or the constant object isn't specified.
3606 function Storage_Model_Allocate (Typ : Entity_Id) return Entity_Id;
3607 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3608 -- procedure specified for the Allocate choice in that aspect; returns
3609 -- Empty if the aspect or the procedure isn't specified.
3611 function Storage_Model_Deallocate (Typ : Entity_Id) return Entity_Id;
3612 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3613 -- procedure specified for the Deallocate choice in that aspect; returns
3614 -- Empty if the aspect or the procedure isn't specified.
3616 function Storage_Model_Copy_From (Typ : Entity_Id) return Entity_Id;
3617 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3618 -- procedure specified for the Copy_From choice in that aspect; returns
3619 -- Empty if the aspect or the procedure isn't specified.
3621 function Storage_Model_Copy_To (Typ : Entity_Id) return Entity_Id;
3622 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3623 -- procedure specified for the Copy_To choice in that aspect; returns
3624 -- Empty if the aspect or the procedure isn't specified.
3626 function Storage_Model_Storage_Size (Typ : Entity_Id) return Entity_Id;
3627 -- Given a type Typ that specifies aspect Storage_Model_Type, returns
3628 -- function specified for Storage_Size choice in that aspect; returns
3629 -- Empty if the aspect or the procedure isn't specified.
3631 end Storage_Model_Support;
3633 end Sem_Util;