PR27116, Spelling errors found by Debian style checker
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob0d1f1fb1c3b2547c2e2d27f4c5ecb5cc1bd7b35e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Atree; use Atree;
28 with Aspects; use Aspects;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Errout; use Errout;
35 with Elists; use Elists;
36 with Expander; use Expander;
37 with Exp_Aggr; use Exp_Aggr;
38 with Exp_Atag; use Exp_Atag;
39 with Exp_Ch3; use Exp_Ch3;
40 with Exp_Ch4; use Exp_Ch4;
41 with Exp_Ch7; use Exp_Ch7;
42 with Exp_Ch9; use Exp_Ch9;
43 with Exp_Dbug; use Exp_Dbug;
44 with Exp_Disp; use Exp_Disp;
45 with Exp_Dist; use Exp_Dist;
46 with Exp_Intr; use Exp_Intr;
47 with Exp_Pakd; use Exp_Pakd;
48 with Exp_Tss; use Exp_Tss;
49 with Exp_Util; use Exp_Util;
50 with Freeze; use Freeze;
51 with Inline; use Inline;
52 with Itypes; use Itypes;
53 with Lib; use Lib;
54 with Namet; use Namet;
55 with Nlists; use Nlists;
56 with Nmake; use Nmake;
57 with Opt; use Opt;
58 with Restrict; use Restrict;
59 with Rident; use Rident;
60 with Rtsfind; use Rtsfind;
61 with Sem; use Sem;
62 with Sem_Aux; use Sem_Aux;
63 with Sem_Ch6; use Sem_Ch6;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Mech; use Sem_Mech;
71 with Sem_Res; use Sem_Res;
72 with Sem_SCIL; use Sem_SCIL;
73 with Sem_Util; use Sem_Util;
74 use Sem_Util.Storage_Model_Support;
75 with Sinfo; use Sinfo;
76 with Sinfo.Nodes; use Sinfo.Nodes;
77 with Sinfo.Utils; use Sinfo.Utils;
78 with Sinput; use Sinput;
79 with Snames; use Snames;
80 with Stand; use Stand;
81 with Stringt; use Stringt;
82 with Tbuild; use Tbuild;
83 with Uintp; use Uintp;
84 with Validsw; use Validsw;
86 package body Exp_Ch6 is
88 --------------------------------
89 -- Function return mechanisms --
90 --------------------------------
92 -- This is a summary of the various function return mechanisms implemented
93 -- in GNAT for Ada 2005 and later versions of the language. In the below
94 -- table, the first column must be read as an if expression: if the result
95 -- type of the function is limited, then the return mechanism is and ...;
96 -- elsif the result type is indefinite or large definite, then ...; elsif
97 -- ...; else ... The different mechanisms are implemented either in the
98 -- front end, or in the back end, or partly in both ends, depending on the
99 -- result type.
101 -- Result type | Return mechanism | Front end | Back end
102 -- --------------------------------------------------------------------
104 -- Limited Build In Place All
106 -- Indefinite/ Secondary Stack Needs Fin. Others
107 -- Large definite
109 -- Needs Fin. Secondary Stack All
110 -- (BERS False)
112 -- Needs Fin. Invisible Parameter All All
113 -- (BERS True) (return) (call)
115 -- By Reference Invisible Parameter All
117 -- Others Primary stack/ All
118 -- Registers
120 -- Needs Fin.: type needs finalization [RM 7.6(9.1/2-9.6/2)]
121 -- BERS: Opt.Back_End_Return_Slot setting
123 -- The table is valid for all calls except for those dispatching on result;
124 -- the latter calls are considered as returning a class-wide type and thus
125 -- always return on the secondary stack, with the help of a small wrapper
126 -- function (thunk) if the original result type is not itself returned on
127 -- the secondary stack as per the above table.
129 -- Suffixes for Build-In-Place extra formals
131 BIP_Alloc_Suffix : constant String := "BIPalloc";
132 BIP_Storage_Pool_Suffix : constant String := "BIPstoragepool";
133 BIP_Finalization_Master_Suffix : constant String := "BIPfinalizationmaster";
134 BIP_Task_Master_Suffix : constant String := "BIPtaskmaster";
135 BIP_Activation_Chain_Suffix : constant String := "BIPactivationchain";
136 BIP_Object_Access_Suffix : constant String := "BIPaccess";
138 -----------------------
139 -- Local Subprograms --
140 -----------------------
142 procedure Add_Access_Actual_To_Build_In_Place_Call
143 (Function_Call : Node_Id;
144 Function_Id : Entity_Id;
145 Return_Object : Node_Id;
146 Is_Access : Boolean := False);
147 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
148 -- object name given by Return_Object and add the attribute to the end of
149 -- the actual parameter list associated with the build-in-place function
150 -- call denoted by Function_Call. However, if Is_Access is True, then
151 -- Return_Object is already an access expression, in which case it's passed
152 -- along directly to the build-in-place function. Finally, if Return_Object
153 -- is empty, then pass a null literal as the actual.
155 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
156 (Function_Call : Node_Id;
157 Function_Id : Entity_Id;
158 Alloc_Form : BIP_Allocation_Form := Unspecified;
159 Alloc_Form_Exp : Node_Id := Empty;
160 Pool_Actual : Node_Id := Make_Null (No_Location));
161 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
162 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
163 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
164 -- otherwise pass a literal corresponding to the Alloc_Form parameter
165 -- (which must not be Unspecified in that case). Pool_Actual is the
166 -- parameter to pass to BIP_Storage_Pool.
168 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
169 (Func_Call : Node_Id;
170 Func_Id : Entity_Id;
171 Ptr_Typ : Entity_Id := Empty;
172 Master_Exp : Node_Id := Empty);
173 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
174 -- finalization actions, add an actual parameter which is a pointer to the
175 -- finalization master of the caller. If Master_Exp is not Empty, then that
176 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
177 -- will result in an automatic "null" value for the actual.
179 procedure Add_Task_Actuals_To_Build_In_Place_Call
180 (Function_Call : Node_Id;
181 Function_Id : Entity_Id;
182 Master_Actual : Node_Id;
183 Chain : Node_Id := Empty);
184 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
185 -- contains tasks, add two actual parameters: the master, and a pointer to
186 -- the caller's activation chain. Master_Actual is the actual parameter
187 -- expression to pass for the master. In most cases, this is the current
188 -- master (_master). The two exceptions are: If the function call is the
189 -- initialization expression for an allocator, we pass the master of the
190 -- access type. If the function call is the initialization expression for a
191 -- return object, we pass along the master passed in by the caller. In most
192 -- contexts, the activation chain to pass is the local one, which is
193 -- indicated by No (Chain). However, in an allocator, the caller passes in
194 -- the activation Chain. Note: Master_Actual can be Empty, but only if
195 -- there are no tasks.
197 function Caller_Known_Size
198 (Func_Call : Node_Id;
199 Result_Subt : Entity_Id) return Boolean;
200 -- True if result subtype is definite or has a size that does not require
201 -- secondary stack usage (i.e. no variant part or components whose type
202 -- depends on discriminants). In particular, untagged types with only
203 -- access discriminants do not require secondary stack use. Note we must
204 -- always use the secondary stack for dispatching-on-result calls.
206 function Check_BIP_Actuals
207 (Subp_Call : Node_Id;
208 Subp_Id : Entity_Id) return Boolean;
209 -- Given a subprogram call to the given subprogram return True if the
210 -- names of BIP extra actual and formal parameters match, and the number
211 -- of actuals (including extra actuals) matches the number of formals.
213 function Check_Number_Of_Actuals
214 (Subp_Call : Node_Id;
215 Subp_Id : Entity_Id) return Boolean;
216 -- Given a subprogram call to the given subprogram return True if the
217 -- number of actual parameters (including extra actuals) is correct.
219 procedure Check_Overriding_Operation (Subp : Entity_Id);
220 -- Subp is a dispatching operation. Check whether it may override an
221 -- inherited private operation, in which case its DT entry is that of
222 -- the hidden operation, not the one it may have received earlier.
223 -- This must be done before emitting the code to set the corresponding
224 -- DT to the address of the subprogram. The actual placement of Subp in
225 -- the proper place in the list of primitive operations is done in
226 -- Declare_Inherited_Private_Subprograms, which also has to deal with
227 -- implicit operations. This duplication is unavoidable for now???
229 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
230 -- This procedure is called only if the subprogram body N, whose spec
231 -- has the given entity Spec, contains a parameterless recursive call.
232 -- It attempts to generate runtime code to detect if this a case of
233 -- infinite recursion.
235 -- The body is scanned to determine dependencies. If the only external
236 -- dependencies are on a small set of scalar variables, then the values
237 -- of these variables are captured on entry to the subprogram, and if
238 -- the values are not changed for the call, we know immediately that
239 -- we have an infinite recursion.
241 procedure Expand_Actuals
242 (N : Node_Id;
243 Subp : Entity_Id;
244 Post_Call : out List_Id);
245 -- Return a list of actions to take place after the call in Post_Call. The
246 -- call will later be rewritten as an Expression_With_Actions, with the
247 -- Post_Call actions inserted, and the call inside.
249 -- For each actual of an in-out or out parameter which is a numeric (view)
250 -- conversion of the form T (A), where A denotes a variable, we insert the
251 -- declaration:
253 -- Temp : T[ := T (A)];
255 -- prior to the call. Then we replace the actual with a reference to Temp,
256 -- and append the assignment:
258 -- A := TypeA (Temp);
260 -- after the call. Here TypeA is the actual type of variable A. For out
261 -- parameters, the initial declaration has no expression. If A is not an
262 -- entity name, we generate instead:
264 -- Var : TypeA renames A;
265 -- Temp : T := Var; -- omitting expression for out parameter.
266 -- ...
267 -- Var := TypeA (Temp);
269 -- For other in-out parameters, we emit the required constraint checks
270 -- before and/or after the call.
272 -- For all parameter modes, actuals that denote components and slices of
273 -- packed arrays are expanded into suitable temporaries.
275 -- For nonscalar objects that are possibly unaligned, add call by copy code
276 -- (copy in for IN and IN OUT, copy out for OUT and IN OUT).
278 -- For OUT and IN OUT parameters, add predicate checks after the call
279 -- based on the predicates of the actual type.
281 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
282 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
284 procedure Expand_Ctrl_Function_Call (N : Node_Id; Use_Sec_Stack : Boolean);
285 -- N is a function call which returns a controlled object. Transform the
286 -- call into a temporary which retrieves the returned object from the
287 -- primary or secondary stack (Use_Sec_Stack says which) using 'reference.
289 procedure Expand_Non_Function_Return (N : Node_Id);
290 -- Expand a simple return statement found in a procedure body, entry body,
291 -- accept statement, or an extended return statement. Note that all non-
292 -- function returns are simple return statements.
294 function Expand_Protected_Object_Reference
295 (N : Node_Id;
296 Scop : Entity_Id) return Node_Id;
298 procedure Expand_Protected_Subprogram_Call
299 (N : Node_Id;
300 Subp : Entity_Id;
301 Scop : Entity_Id);
302 -- A call to a protected subprogram within the protected object may appear
303 -- as a regular call. The list of actuals must be expanded to contain a
304 -- reference to the object itself, and the call becomes a call to the
305 -- corresponding protected subprogram.
307 procedure Expand_Simple_Function_Return (N : Node_Id);
308 -- Expand simple return from function. In the case where we are returning
309 -- from a function body this is called by Expand_N_Simple_Return_Statement.
311 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
312 -- Insert the Post_Call list previously produced by routine Expand_Actuals
313 -- or Expand_Call_Helper into the tree.
315 function Is_True_Build_In_Place_Function_Call (N : Node_Id) return Boolean;
316 -- Ada 2005 (AI-318-02): Returns True if N denotes a call to a function
317 -- that requires handling as a build-in-place call; returns False for
318 -- non-BIP function calls and also for calls to functions with inherited
319 -- BIP formals that do not require BIP formals. For example:
321 -- type Iface is limited interface;
322 -- function Get_Object return Iface;
323 -- -- This function has BIP extra formals
325 -- type Root1 is limited tagged record ...
326 -- type T1 is new Root1 and Iface with ...
327 -- function Get_Object return T1;
328 -- -- This primitive requires the BIP formals, and the evaluation of
329 -- -- Is_True_Build_In_Place_Function_Call returns True.
331 -- type Root2 is tagged record ...
332 -- type T2 is new Root2 and Iface with ...
333 -- function Get_Object return T2;
334 -- -- This primitive inherits the BIP formals of the interface primitive
335 -- -- but, given that T2 is not a limited type, it does not require such
336 -- -- formals; therefore Is_True_Build_In_Place_Function_Call returns
337 -- -- False.
339 procedure Replace_Renaming_Declaration_Id
340 (New_Decl : Node_Id;
341 Orig_Decl : Node_Id);
342 -- Replace the internal identifier of the new renaming declaration New_Decl
343 -- with the identifier of its original declaration Orig_Decl exchanging the
344 -- entities containing their defining identifiers to ensure the correct
345 -- replacement of the object declaration by the object renaming declaration
346 -- to avoid homograph conflicts (since the object declaration's defining
347 -- identifier was already entered in the current scope). The Next_Entity
348 -- links of the two entities are also swapped since the entities are part
349 -- of the return scope's entity list and the list structure would otherwise
350 -- be corrupted. The homonym chain is preserved as well.
352 procedure Rewrite_Function_Call_For_C (N : Node_Id);
353 -- When generating C code, replace a call to a function that returns an
354 -- array into the generated procedure with an additional out parameter.
356 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
357 -- N is a return statement for a function that returns its result on the
358 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
359 -- function and all blocks and loops that the return statement is jumping
360 -- out of. This ensures that the secondary stack is not released; otherwise
361 -- the function result would be reclaimed before returning to the caller.
363 procedure Warn_BIP (Func_Call : Node_Id);
364 -- Give a warning on a build-in-place function call if the -gnatd_B switch
365 -- was given.
367 ----------------------------------------------
368 -- Add_Access_Actual_To_Build_In_Place_Call --
369 ----------------------------------------------
371 procedure Add_Access_Actual_To_Build_In_Place_Call
372 (Function_Call : Node_Id;
373 Function_Id : Entity_Id;
374 Return_Object : Node_Id;
375 Is_Access : Boolean := False)
377 Loc : constant Source_Ptr := Sloc (Function_Call);
378 Obj_Address : Node_Id;
379 Obj_Acc_Formal : Entity_Id;
381 begin
382 -- Locate the implicit access parameter in the called function
384 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
386 -- If no return object is provided, then pass null
388 if No (Return_Object) then
389 Obj_Address := Make_Null (Loc);
390 Set_Parent (Obj_Address, Function_Call);
392 -- If Return_Object is already an expression of an access type, then use
393 -- it directly, since it must be an access value denoting the return
394 -- object, and couldn't possibly be the return object itself.
396 elsif Is_Access then
397 Obj_Address := Return_Object;
398 Set_Parent (Obj_Address, Function_Call);
400 -- Apply Unrestricted_Access to caller's return object
402 else
403 Obj_Address :=
404 Make_Attribute_Reference (Loc,
405 Prefix => Return_Object,
406 Attribute_Name => Name_Unrestricted_Access);
408 Set_Parent (Return_Object, Obj_Address);
409 Set_Parent (Obj_Address, Function_Call);
410 end if;
412 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
414 -- Build the parameter association for the new actual and add it to the
415 -- end of the function's actuals.
417 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
418 end Add_Access_Actual_To_Build_In_Place_Call;
420 ------------------------------------------------------
421 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
422 ------------------------------------------------------
424 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
425 (Function_Call : Node_Id;
426 Function_Id : Entity_Id;
427 Alloc_Form : BIP_Allocation_Form := Unspecified;
428 Alloc_Form_Exp : Node_Id := Empty;
429 Pool_Actual : Node_Id := Make_Null (No_Location))
431 Loc : constant Source_Ptr := Sloc (Function_Call);
433 Alloc_Form_Actual : Node_Id;
434 Alloc_Form_Formal : Node_Id;
435 Pool_Formal : Node_Id;
437 begin
438 -- Nothing to do when the size of the object is known, and the caller is
439 -- in charge of allocating it, and the callee doesn't unconditionally
440 -- require an allocation form (such as due to having a tagged result).
442 if not Needs_BIP_Alloc_Form (Function_Id) then
443 return;
444 end if;
446 -- Locate the implicit allocation form parameter in the called function.
447 -- Maybe it would be better for each implicit formal of a build-in-place
448 -- function to have a flag or a Uint attribute to identify it. ???
450 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
452 if Present (Alloc_Form_Exp) then
453 pragma Assert (Alloc_Form = Unspecified);
455 Alloc_Form_Actual := Alloc_Form_Exp;
457 else
458 pragma Assert (Alloc_Form /= Unspecified);
460 Alloc_Form_Actual :=
461 Make_Integer_Literal (Loc,
462 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
463 end if;
465 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
467 -- Build the parameter association for the new actual and add it to the
468 -- end of the function's actuals.
470 Add_Extra_Actual_To_Call
471 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
473 -- Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
474 -- those targets do not support pools.
476 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
477 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
478 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
479 Add_Extra_Actual_To_Call
480 (Function_Call, Pool_Formal, Pool_Actual);
481 end if;
482 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
484 -----------------------------------------------------------
485 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
486 -----------------------------------------------------------
488 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
489 (Func_Call : Node_Id;
490 Func_Id : Entity_Id;
491 Ptr_Typ : Entity_Id := Empty;
492 Master_Exp : Node_Id := Empty)
494 begin
495 if not Needs_BIP_Finalization_Master (Func_Id) then
496 return;
497 end if;
499 declare
500 Formal : constant Entity_Id :=
501 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
502 Loc : constant Source_Ptr := Sloc (Func_Call);
504 Actual : Node_Id;
505 Desig_Typ : Entity_Id;
507 begin
508 pragma Assert (Present (Formal));
510 -- If there is a finalization master actual, such as the implicit
511 -- finalization master of an enclosing build-in-place function,
512 -- then this must be added as an extra actual of the call.
514 if Present (Master_Exp) then
515 Actual := Master_Exp;
517 -- Case where the context does not require an actual master
519 elsif No (Ptr_Typ) then
520 Actual := Make_Null (Loc);
522 else
523 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
525 -- Check for a library-level access type whose designated type has
526 -- suppressed finalization or the access type is subject to pragma
527 -- No_Heap_Finalization. Such an access type lacks a master. Pass
528 -- a null actual to callee in order to signal a missing master.
530 if Is_Library_Level_Entity (Ptr_Typ)
531 and then (Finalize_Storage_Only (Desig_Typ)
532 or else No_Heap_Finalization (Ptr_Typ))
533 then
534 Actual := Make_Null (Loc);
536 -- Types in need of finalization actions
538 elsif Needs_Finalization (Desig_Typ) then
540 -- The general mechanism of creating finalization masters for
541 -- anonymous access types is disabled by default, otherwise
542 -- finalization masters will pop all over the place. Such types
543 -- use context-specific masters.
545 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
546 and then No (Finalization_Master (Ptr_Typ))
547 then
548 Build_Anonymous_Master (Ptr_Typ);
549 end if;
551 -- Access-to-controlled types should always have a master
553 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
555 Actual :=
556 Make_Attribute_Reference (Loc,
557 Prefix =>
558 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
559 Attribute_Name => Name_Unrestricted_Access);
561 -- Tagged types
563 else
564 Actual := Make_Null (Loc);
565 end if;
566 end if;
568 Analyze_And_Resolve (Actual, Etype (Formal));
570 -- Build the parameter association for the new actual and add it to
571 -- the end of the function's actuals.
573 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
574 end;
575 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
577 ------------------------------
578 -- Add_Extra_Actual_To_Call --
579 ------------------------------
581 procedure Add_Extra_Actual_To_Call
582 (Subprogram_Call : Node_Id;
583 Extra_Formal : Entity_Id;
584 Extra_Actual : Node_Id)
586 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
587 Param_Assoc : Node_Id;
589 begin
590 Param_Assoc :=
591 Make_Parameter_Association (Loc,
592 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
593 Explicit_Actual_Parameter => Extra_Actual);
595 Set_Parent (Param_Assoc, Subprogram_Call);
596 Set_Parent (Extra_Actual, Param_Assoc);
598 if Present (Parameter_Associations (Subprogram_Call)) then
599 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
600 N_Parameter_Association
601 then
603 -- Find last named actual, and append
605 declare
606 L : Node_Id;
607 begin
608 L := First_Actual (Subprogram_Call);
609 while Present (L) loop
610 if No (Next_Actual (L)) then
611 Set_Next_Named_Actual (Parent (L), Extra_Actual);
612 exit;
613 end if;
614 Next_Actual (L);
615 end loop;
616 end;
618 else
619 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
620 end if;
622 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
624 else
625 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
626 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
627 end if;
628 end Add_Extra_Actual_To_Call;
630 ---------------------------------------------
631 -- Add_Task_Actuals_To_Build_In_Place_Call --
632 ---------------------------------------------
634 procedure Add_Task_Actuals_To_Build_In_Place_Call
635 (Function_Call : Node_Id;
636 Function_Id : Entity_Id;
637 Master_Actual : Node_Id;
638 Chain : Node_Id := Empty)
640 Loc : constant Source_Ptr := Sloc (Function_Call);
641 Actual : Node_Id;
642 Chain_Actual : Node_Id;
643 Chain_Formal : Node_Id;
644 Master_Formal : Node_Id;
646 begin
647 -- No such extra parameters are needed if there are no tasks
649 if not Needs_BIP_Task_Actuals (Function_Id) then
651 -- However we must add dummy extra actuals if the function is
652 -- a dispatching operation that inherited these extra formals.
654 if Is_Dispatching_Operation (Function_Id)
655 and then Has_BIP_Extra_Formal (Function_Id, BIP_Task_Master)
656 then
657 Master_Formal :=
658 Build_In_Place_Formal (Function_Id, BIP_Task_Master);
659 Actual := Make_Integer_Literal (Loc, Uint_0);
660 Analyze_And_Resolve (Actual, Etype (Master_Formal));
661 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
663 Chain_Formal :=
664 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
665 Chain_Actual := Make_Null (Loc);
666 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
667 Add_Extra_Actual_To_Call
668 (Function_Call, Chain_Formal, Chain_Actual);
669 end if;
671 return;
672 end if;
674 Actual := Master_Actual;
676 -- Use a dummy _master actual in case of No_Task_Hierarchy
678 if Restriction_Active (No_Task_Hierarchy) then
679 Actual := Make_Integer_Literal (Loc, Library_Task_Level);
681 -- In the case where we use the master associated with an access type,
682 -- the actual is an entity and requires an explicit reference.
684 elsif Nkind (Actual) = N_Defining_Identifier then
685 Actual := New_Occurrence_Of (Actual, Loc);
686 end if;
688 -- Locate the implicit master parameter in the called function
690 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
691 Analyze_And_Resolve (Actual, Etype (Master_Formal));
693 -- Build the parameter association for the new actual and add it to the
694 -- end of the function's actuals.
696 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
698 -- Locate the implicit activation chain parameter in the called function
700 Chain_Formal :=
701 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
703 -- Create the actual which is a pointer to the current activation chain
705 if Restriction_Active (No_Task_Hierarchy) then
706 Chain_Actual := Make_Null (Loc);
708 elsif No (Chain) then
709 Chain_Actual :=
710 Make_Attribute_Reference (Loc,
711 Prefix => Make_Identifier (Loc, Name_uChain),
712 Attribute_Name => Name_Unrestricted_Access);
714 -- Allocator case; make a reference to the Chain passed in by the caller
716 else
717 Chain_Actual :=
718 Make_Attribute_Reference (Loc,
719 Prefix => New_Occurrence_Of (Chain, Loc),
720 Attribute_Name => Name_Unrestricted_Access);
721 end if;
723 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
725 -- Build the parameter association for the new actual and add it to the
726 -- end of the function's actuals.
728 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
729 end Add_Task_Actuals_To_Build_In_Place_Call;
731 ----------------------------------
732 -- Apply_CW_Accessibility_Check --
733 ----------------------------------
735 procedure Apply_CW_Accessibility_Check (Exp : Node_Id; Func : Entity_Id) is
736 Loc : constant Source_Ptr := Sloc (Exp);
738 begin
739 -- CodePeer does not do anything useful on Ada.Tags.Type_Specific_Data
740 -- components.
742 if Ada_Version >= Ada_2005
743 and then not CodePeer_Mode
744 and then Tagged_Type_Expansion
745 and then not Scope_Suppress.Suppress (Accessibility_Check)
746 and then
747 (Is_Class_Wide_Type (Etype (Exp))
748 or else Nkind (Exp) in
749 N_Type_Conversion | N_Unchecked_Type_Conversion
750 or else (Is_Entity_Name (Exp)
751 and then Is_Formal (Entity (Exp)))
752 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
753 Scope_Depth (Enclosing_Dynamic_Scope (Func)))
754 then
755 declare
756 Tag_Node : Node_Id;
758 begin
759 -- Ada 2005 (AI-251): In class-wide interface objects we displace
760 -- "this" to reference the base of the object. This is required to
761 -- get access to the TSD of the object.
763 if Is_Class_Wide_Type (Etype (Exp))
764 and then Is_Interface (Etype (Exp))
765 then
766 -- If the expression is an explicit dereference then we can
767 -- directly displace the pointer to reference the base of
768 -- the object.
770 if Nkind (Exp) = N_Explicit_Dereference then
771 Tag_Node :=
772 Make_Explicit_Dereference (Loc,
773 Prefix =>
774 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
775 Make_Function_Call (Loc,
776 Name =>
777 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
778 Parameter_Associations => New_List (
779 Unchecked_Convert_To (RTE (RE_Address),
780 Duplicate_Subexpr (Prefix (Exp)))))));
782 -- Similar case to the previous one but the expression is a
783 -- renaming of an explicit dereference.
785 elsif Nkind (Exp) = N_Identifier
786 and then Present (Renamed_Object (Entity (Exp)))
787 and then Nkind (Renamed_Object (Entity (Exp)))
788 = N_Explicit_Dereference
789 then
790 Tag_Node :=
791 Make_Explicit_Dereference (Loc,
792 Prefix =>
793 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
794 Make_Function_Call (Loc,
795 Name =>
796 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
797 Parameter_Associations => New_List (
798 Unchecked_Convert_To (RTE (RE_Address),
799 Duplicate_Subexpr
800 (Prefix
801 (Renamed_Object (Entity (Exp)))))))));
803 -- Common case: obtain the address of the actual object and
804 -- displace the pointer to reference the base of the object.
806 else
807 Tag_Node :=
808 Make_Explicit_Dereference (Loc,
809 Prefix =>
810 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
811 Make_Function_Call (Loc,
812 Name =>
813 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
814 Parameter_Associations => New_List (
815 Make_Attribute_Reference (Loc,
816 Prefix => Duplicate_Subexpr (Exp),
817 Attribute_Name => Name_Address)))));
818 end if;
819 else
820 Tag_Node :=
821 Make_Attribute_Reference (Loc,
822 Prefix => Duplicate_Subexpr (Exp),
823 Attribute_Name => Name_Tag);
824 end if;
826 -- Suppress junk access chacks on RE_Tag_Ptr
828 Insert_Action (Exp,
829 Make_Raise_Program_Error (Loc,
830 Condition =>
831 Make_Op_Gt (Loc,
832 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
833 Right_Opnd =>
834 Make_Integer_Literal (Loc,
835 Scope_Depth (Enclosing_Dynamic_Scope (Func)))),
836 Reason => PE_Accessibility_Check_Failed),
837 Suppress => Access_Check);
838 end;
839 end if;
840 end Apply_CW_Accessibility_Check;
842 -----------------------
843 -- BIP_Formal_Suffix --
844 -----------------------
846 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
847 begin
848 case Kind is
849 when BIP_Alloc_Form =>
850 return BIP_Alloc_Suffix;
852 when BIP_Storage_Pool =>
853 return BIP_Storage_Pool_Suffix;
855 when BIP_Finalization_Master =>
856 return BIP_Finalization_Master_Suffix;
858 when BIP_Task_Master =>
859 return BIP_Task_Master_Suffix;
861 when BIP_Activation_Chain =>
862 return BIP_Activation_Chain_Suffix;
864 when BIP_Object_Access =>
865 return BIP_Object_Access_Suffix;
866 end case;
867 end BIP_Formal_Suffix;
869 ---------------------
870 -- BIP_Suffix_Kind --
871 ---------------------
873 function BIP_Suffix_Kind (E : Entity_Id) return BIP_Formal_Kind is
874 Nam : constant String := Get_Name_String (Chars (E));
876 function Has_Suffix (Suffix : String) return Boolean;
877 -- Return True if Nam has suffix Suffix
879 function Has_Suffix (Suffix : String) return Boolean is
880 Len : constant Natural := Suffix'Length;
881 begin
882 return Nam'Length > Len
883 and then Nam (Nam'Last - Len + 1 .. Nam'Last) = Suffix;
884 end Has_Suffix;
886 -- Start of processing for BIP_Suffix_Kind
888 begin
889 if Has_Suffix (BIP_Alloc_Suffix) then
890 return BIP_Alloc_Form;
892 elsif Has_Suffix (BIP_Storage_Pool_Suffix) then
893 return BIP_Storage_Pool;
895 elsif Has_Suffix (BIP_Finalization_Master_Suffix) then
896 return BIP_Finalization_Master;
898 elsif Has_Suffix (BIP_Task_Master_Suffix) then
899 return BIP_Task_Master;
901 elsif Has_Suffix (BIP_Activation_Chain_Suffix) then
902 return BIP_Activation_Chain;
904 elsif Has_Suffix (BIP_Object_Access_Suffix) then
905 return BIP_Object_Access;
907 else
908 raise Program_Error;
909 end if;
910 end BIP_Suffix_Kind;
912 ---------------------------
913 -- Build_In_Place_Formal --
914 ---------------------------
916 function Build_In_Place_Formal
917 (Func : Entity_Id;
918 Kind : BIP_Formal_Kind) return Entity_Id
920 Extra_Formal : Entity_Id := Extra_Formals (Func);
921 Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
923 begin
924 -- Maybe it would be better for each implicit formal of a build-in-place
925 -- function to have a flag or a Uint attribute to identify it. ???
927 -- The return type in the function declaration may have been a limited
928 -- view, and the extra formals for the function were not generated at
929 -- that point. At the point of call the full view must be available and
930 -- the extra formals can be created and Returns_By_Ref computed.
932 if No (Extra_Formal) then
933 Create_Extra_Formals (Func);
934 Extra_Formal := Extra_Formals (Func);
935 Compute_Returns_By_Ref (Func);
936 end if;
938 -- We search for a formal with a matching suffix. We can't search
939 -- for the full name, because of the code at the end of Sem_Ch6.-
940 -- Create_Extra_Formals, which copies the Extra_Formals over to
941 -- the Alias of an instance, which will cause the formals to have
942 -- "incorrect" names.
944 while Present (Extra_Formal) loop
945 declare
946 Name : constant String := Get_Name_String (Chars (Extra_Formal));
947 begin
948 exit when Name'Length >= Formal_Suffix'Length
949 and then Formal_Suffix =
950 Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
951 end;
953 Next_Formal_With_Extras (Extra_Formal);
954 end loop;
956 if No (Extra_Formal) then
957 raise Program_Error;
958 end if;
960 return Extra_Formal;
961 end Build_In_Place_Formal;
963 -------------------------------
964 -- Build_Procedure_Body_Form --
965 -------------------------------
967 function Build_Procedure_Body_Form
968 (Func_Id : Entity_Id;
969 Func_Body : Node_Id) return Node_Id
971 Loc : constant Source_Ptr := Sloc (Func_Body);
973 Proc_Decl : constant Node_Id := Prev (Unit_Declaration_Node (Func_Id));
974 -- It is assumed that the node before the declaration of the
975 -- corresponding subprogram spec is the declaration of the procedure
976 -- form.
978 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
980 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
981 -- Replace each return statement found in the list Stmts with an
982 -- assignment of the return expression to parameter Param_Id.
984 ---------------------
985 -- Replace_Returns --
986 ---------------------
988 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
989 Stmt : Node_Id;
991 begin
992 Stmt := First (Stmts);
993 while Present (Stmt) loop
994 if Nkind (Stmt) = N_Block_Statement then
995 Replace_Returns (Param_Id,
996 Statements (Handled_Statement_Sequence (Stmt)));
998 elsif Nkind (Stmt) = N_Case_Statement then
999 declare
1000 Alt : Node_Id;
1001 begin
1002 Alt := First (Alternatives (Stmt));
1003 while Present (Alt) loop
1004 Replace_Returns (Param_Id, Statements (Alt));
1005 Next (Alt);
1006 end loop;
1007 end;
1009 elsif Nkind (Stmt) = N_Extended_Return_Statement then
1010 declare
1011 Ret_Obj : constant Entity_Id :=
1012 Defining_Entity
1013 (First (Return_Object_Declarations (Stmt)));
1014 Assign : constant Node_Id :=
1015 Make_Assignment_Statement (Sloc (Stmt),
1016 Name =>
1017 New_Occurrence_Of (Param_Id, Loc),
1018 Expression =>
1019 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
1020 Stmts : List_Id;
1022 begin
1023 -- The extended return may just contain the declaration
1025 if Present (Handled_Statement_Sequence (Stmt)) then
1026 Stmts := Statements (Handled_Statement_Sequence (Stmt));
1027 else
1028 Stmts := New_List;
1029 end if;
1031 Set_Assignment_OK (Name (Assign));
1033 Rewrite (Stmt,
1034 Make_Block_Statement (Sloc (Stmt),
1035 Declarations =>
1036 Return_Object_Declarations (Stmt),
1037 Handled_Statement_Sequence =>
1038 Make_Handled_Sequence_Of_Statements (Loc,
1039 Statements => Stmts)));
1041 Replace_Returns (Param_Id, Stmts);
1043 Append_To (Stmts, Assign);
1044 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
1045 end;
1047 elsif Nkind (Stmt) = N_If_Statement then
1048 Replace_Returns (Param_Id, Then_Statements (Stmt));
1049 Replace_Returns (Param_Id, Else_Statements (Stmt));
1051 declare
1052 Part : Node_Id;
1053 begin
1054 Part := First (Elsif_Parts (Stmt));
1055 while Present (Part) loop
1056 Replace_Returns (Param_Id, Then_Statements (Part));
1057 Next (Part);
1058 end loop;
1059 end;
1061 elsif Nkind (Stmt) = N_Loop_Statement then
1062 Replace_Returns (Param_Id, Statements (Stmt));
1064 elsif Nkind (Stmt) = N_Simple_Return_Statement then
1066 -- Generate:
1067 -- Param := Expr;
1068 -- return;
1070 Rewrite (Stmt,
1071 Make_Assignment_Statement (Sloc (Stmt),
1072 Name => New_Occurrence_Of (Param_Id, Loc),
1073 Expression => Relocate_Node (Expression (Stmt))));
1075 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
1077 -- Skip the added return
1079 Next (Stmt);
1080 end if;
1082 Next (Stmt);
1083 end loop;
1084 end Replace_Returns;
1086 -- Local variables
1088 Stmts : List_Id;
1089 New_Body : Node_Id;
1091 -- Start of processing for Build_Procedure_Body_Form
1093 begin
1094 -- This routine replaces the original function body:
1096 -- function F (...) return Array_Typ is
1097 -- begin
1098 -- ...
1099 -- return Something;
1100 -- end F;
1102 -- with the following:
1104 -- procedure P (..., Result : out Array_Typ) is
1105 -- begin
1106 -- ...
1107 -- Result := Something;
1108 -- end P;
1110 Stmts :=
1111 Statements (Handled_Statement_Sequence (Func_Body));
1112 Replace_Returns (Last_Entity (Proc_Id), Stmts);
1114 New_Body :=
1115 Make_Subprogram_Body (Loc,
1116 Specification =>
1117 Copy_Subprogram_Spec (Specification (Proc_Decl)),
1118 Declarations => Declarations (Func_Body),
1119 Handled_Statement_Sequence =>
1120 Make_Handled_Sequence_Of_Statements (Loc,
1121 Statements => Stmts));
1123 -- If the function is a generic instance, so is the new procedure.
1124 -- Set flag accordingly so that the proper renaming declarations are
1125 -- generated.
1127 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
1128 return New_Body;
1129 end Build_Procedure_Body_Form;
1131 -----------------------
1132 -- Caller_Known_Size --
1133 -----------------------
1135 function Caller_Known_Size
1136 (Func_Call : Node_Id;
1137 Result_Subt : Entity_Id) return Boolean
1139 Utyp : constant Entity_Id := Underlying_Type (Result_Subt);
1141 begin
1142 return not Needs_Secondary_Stack (Utyp)
1143 and then not (Is_Tagged_Type (Utyp)
1144 and then Present (Controlling_Argument (Func_Call)));
1145 end Caller_Known_Size;
1147 -----------------------
1148 -- Check_BIP_Actuals --
1149 -----------------------
1151 function Check_BIP_Actuals
1152 (Subp_Call : Node_Id;
1153 Subp_Id : Entity_Id) return Boolean
1155 Formal : Entity_Id;
1156 Actual : Node_Id;
1158 begin
1159 pragma Assert (Nkind (Subp_Call) in N_Entry_Call_Statement
1160 | N_Function_Call
1161 | N_Procedure_Call_Statement);
1163 -- In CodePeer_Mode, the tree for `'Elab_Spec` procedures will be
1164 -- malformed because GNAT does not perform the usual expansion that
1165 -- results in the importation of external elaboration procedure symbols.
1166 -- This is expected: the CodePeer backend has special handling for this
1167 -- malformed tree.
1168 -- Thus, we do not need to check the tree (and in fact can't, because
1169 -- it's malformed).
1171 if CodePeer_Mode
1172 and then Nkind (Name (Subp_Call)) = N_Attribute_Reference
1173 and then Attribute_Name (Name (Subp_Call)) in Name_Elab_Spec
1174 | Name_Elab_Body
1175 | Name_Elab_Subp_Body
1176 then
1177 return True;
1178 end if;
1180 Formal := First_Formal_With_Extras (Subp_Id);
1181 Actual := First_Actual (Subp_Call);
1183 while Present (Formal) and then Present (Actual) loop
1184 if Is_Build_In_Place_Entity (Formal)
1185 and then Nkind (Actual) = N_Identifier
1186 and then Is_Build_In_Place_Entity (Entity (Actual))
1187 and then BIP_Suffix_Kind (Formal)
1188 /= BIP_Suffix_Kind (Entity (Actual))
1189 then
1190 return False;
1191 end if;
1193 Next_Formal_With_Extras (Formal);
1194 Next_Actual (Actual);
1195 end loop;
1197 return No (Formal) and then No (Actual);
1198 end Check_BIP_Actuals;
1200 -----------------------------
1201 -- Check_Number_Of_Actuals --
1202 -----------------------------
1204 function Check_Number_Of_Actuals
1205 (Subp_Call : Node_Id;
1206 Subp_Id : Entity_Id) return Boolean
1208 Formal : Entity_Id;
1209 Actual : Node_Id;
1211 begin
1212 pragma Assert (Nkind (Subp_Call) in N_Entry_Call_Statement
1213 | N_Function_Call
1214 | N_Procedure_Call_Statement);
1216 Formal := First_Formal_With_Extras (Subp_Id);
1217 Actual := First_Actual (Subp_Call);
1219 while Present (Formal) and then Present (Actual) loop
1220 Next_Formal_With_Extras (Formal);
1221 Next_Actual (Actual);
1222 end loop;
1224 return No (Formal) and then No (Actual);
1225 end Check_Number_Of_Actuals;
1227 --------------------------------
1228 -- Check_Overriding_Operation --
1229 --------------------------------
1231 procedure Check_Overriding_Operation (Subp : Entity_Id) is
1232 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
1233 Op_List : constant Elist_Id := Primitive_Operations (Typ);
1234 Op_Elmt : Elmt_Id;
1235 Prim_Op : Entity_Id;
1236 Par_Op : Entity_Id;
1238 begin
1239 if Is_Derived_Type (Typ)
1240 and then not Is_Private_Type (Typ)
1241 and then In_Open_Scopes (Scope (Etype (Typ)))
1242 and then Is_Base_Type (Typ)
1243 then
1244 -- Subp overrides an inherited private operation if there is an
1245 -- inherited operation with a different name than Subp (see
1246 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
1247 -- same name as Subp.
1249 Op_Elmt := First_Elmt (Op_List);
1250 while Present (Op_Elmt) loop
1251 Prim_Op := Node (Op_Elmt);
1252 Par_Op := Alias (Prim_Op);
1254 if Present (Par_Op)
1255 and then not Comes_From_Source (Prim_Op)
1256 and then Chars (Prim_Op) /= Chars (Par_Op)
1257 and then Chars (Par_Op) = Chars (Subp)
1258 and then Is_Hidden (Par_Op)
1259 and then Type_Conformant (Prim_Op, Subp)
1260 then
1261 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
1262 end if;
1264 Next_Elmt (Op_Elmt);
1265 end loop;
1266 end if;
1267 end Check_Overriding_Operation;
1269 -------------------------------
1270 -- Detect_Infinite_Recursion --
1271 -------------------------------
1273 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
1274 Loc : constant Source_Ptr := Sloc (N);
1276 Var_List : constant Elist_Id := New_Elmt_List;
1277 -- List of globals referenced by body of procedure
1279 Call_List : constant Elist_Id := New_Elmt_List;
1280 -- List of recursive calls in body of procedure
1282 Shad_List : constant Elist_Id := New_Elmt_List;
1283 -- List of entity id's for entities created to capture the value of
1284 -- referenced globals on entry to the procedure.
1286 Scop : constant Uint := Scope_Depth (Spec);
1287 -- This is used to record the scope depth of the current procedure, so
1288 -- that we can identify global references.
1290 Max_Vars : constant := 4;
1291 -- Do not test more than four global variables
1293 Count_Vars : Natural := 0;
1294 -- Count variables found so far
1296 Var : Entity_Id;
1297 Elm : Elmt_Id;
1298 Ent : Entity_Id;
1299 Call : Elmt_Id;
1300 Decl : Node_Id;
1301 Test : Node_Id;
1302 Elm1 : Elmt_Id;
1303 Elm2 : Elmt_Id;
1304 Last : Node_Id;
1306 function Process (Nod : Node_Id) return Traverse_Result;
1307 -- Function to traverse the subprogram body (using Traverse_Func)
1309 -------------
1310 -- Process --
1311 -------------
1313 function Process (Nod : Node_Id) return Traverse_Result is
1314 begin
1315 -- Procedure call
1317 if Nkind (Nod) = N_Procedure_Call_Statement then
1319 -- Case of one of the detected recursive calls
1321 if Is_Entity_Name (Name (Nod))
1322 and then Has_Recursive_Call (Entity (Name (Nod)))
1323 and then Entity (Name (Nod)) = Spec
1324 then
1325 Append_Elmt (Nod, Call_List);
1326 return Skip;
1328 -- Any other procedure call may have side effects
1330 else
1331 return Abandon;
1332 end if;
1334 -- A call to a pure function can always be ignored
1336 elsif Nkind (Nod) = N_Function_Call
1337 and then Is_Entity_Name (Name (Nod))
1338 and then Is_Pure (Entity (Name (Nod)))
1339 then
1340 return Skip;
1342 -- Case of an identifier reference
1344 elsif Nkind (Nod) = N_Identifier then
1345 Ent := Entity (Nod);
1347 -- If no entity, then ignore the reference
1349 -- Not clear why this can happen. To investigate, remove this
1350 -- test and look at the crash that occurs here in 3401-004 ???
1352 if No (Ent) then
1353 return Skip;
1355 -- Ignore entities with no Scope, again not clear how this
1356 -- can happen, to investigate, look at 4108-008 ???
1358 elsif No (Scope (Ent)) then
1359 return Skip;
1361 -- Ignore the reference if not to a more global object
1363 elsif Scope_Depth (Scope (Ent)) >= Scop then
1364 return Skip;
1366 -- References to types, exceptions and constants are always OK
1368 elsif Is_Type (Ent)
1369 or else Ekind (Ent) = E_Exception
1370 or else Ekind (Ent) = E_Constant
1371 then
1372 return Skip;
1374 -- If other than a non-volatile scalar variable, we have some
1375 -- kind of global reference (e.g. to a function) that we cannot
1376 -- deal with so we forget the attempt.
1378 elsif Ekind (Ent) /= E_Variable
1379 or else not Is_Scalar_Type (Etype (Ent))
1380 or else Treat_As_Volatile (Ent)
1381 then
1382 return Abandon;
1384 -- Otherwise we have a reference to a global scalar
1386 else
1387 -- Loop through global entities already detected
1389 Elm := First_Elmt (Var_List);
1390 loop
1391 -- If not detected before, record this new global reference
1393 if No (Elm) then
1394 Count_Vars := Count_Vars + 1;
1396 if Count_Vars <= Max_Vars then
1397 Append_Elmt (Entity (Nod), Var_List);
1398 else
1399 return Abandon;
1400 end if;
1402 exit;
1404 -- If recorded before, ignore
1406 elsif Node (Elm) = Entity (Nod) then
1407 return Skip;
1409 -- Otherwise keep looking
1411 else
1412 Next_Elmt (Elm);
1413 end if;
1414 end loop;
1416 return Skip;
1417 end if;
1419 -- For all other node kinds, recursively visit syntactic children
1421 else
1422 return OK;
1423 end if;
1424 end Process;
1426 function Traverse_Body is new Traverse_Func (Process);
1428 -- Start of processing for Detect_Infinite_Recursion
1430 begin
1431 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1432 -- won't be able to generate the code to handle the recursion in any
1433 -- case.
1435 if Restriction_Active (No_Implicit_Conditionals) then
1436 return;
1437 end if;
1439 -- Otherwise do traversal and quit if we get abandon signal
1441 if Traverse_Body (N) = Abandon then
1442 return;
1444 -- We must have a call, since Has_Recursive_Call was set. If not just
1445 -- ignore (this is only an error check, so if we have a funny situation,
1446 -- due to bugs or errors, we do not want to bomb).
1448 elsif Is_Empty_Elmt_List (Call_List) then
1449 return;
1450 end if;
1452 -- Here is the case where we detect recursion at compile time
1454 -- Push our current scope for analyzing the declarations and code that
1455 -- we will insert for the checking.
1457 Push_Scope (Spec);
1459 -- This loop builds temporary variables for each of the referenced
1460 -- globals, so that at the end of the loop the list Shad_List contains
1461 -- these temporaries in one-to-one correspondence with the elements in
1462 -- Var_List.
1464 Last := Empty;
1465 Elm := First_Elmt (Var_List);
1466 while Present (Elm) loop
1467 Var := Node (Elm);
1468 Ent := Make_Temporary (Loc, 'S');
1469 Append_Elmt (Ent, Shad_List);
1471 -- Insert a declaration for this temporary at the start of the
1472 -- declarations for the procedure. The temporaries are declared as
1473 -- constant objects initialized to the current values of the
1474 -- corresponding temporaries.
1476 Decl :=
1477 Make_Object_Declaration (Loc,
1478 Defining_Identifier => Ent,
1479 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1480 Constant_Present => True,
1481 Expression => New_Occurrence_Of (Var, Loc));
1483 if No (Last) then
1484 Prepend (Decl, Declarations (N));
1485 else
1486 Insert_After (Last, Decl);
1487 end if;
1489 Last := Decl;
1490 Analyze (Decl);
1491 Next_Elmt (Elm);
1492 end loop;
1494 -- Loop through calls
1496 Call := First_Elmt (Call_List);
1497 while Present (Call) loop
1499 -- Build a predicate expression of the form
1501 -- True
1502 -- and then global1 = temp1
1503 -- and then global2 = temp2
1504 -- ...
1506 -- This predicate determines if any of the global values
1507 -- referenced by the procedure have changed since the
1508 -- current call, if not an infinite recursion is assured.
1510 Test := New_Occurrence_Of (Standard_True, Loc);
1512 Elm1 := First_Elmt (Var_List);
1513 Elm2 := First_Elmt (Shad_List);
1514 while Present (Elm1) loop
1515 Test :=
1516 Make_And_Then (Loc,
1517 Left_Opnd => Test,
1518 Right_Opnd =>
1519 Make_Op_Eq (Loc,
1520 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1521 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1523 Next_Elmt (Elm1);
1524 Next_Elmt (Elm2);
1525 end loop;
1527 -- Now we replace the call with the sequence
1529 -- if no-changes (see above) then
1530 -- raise Storage_Error;
1531 -- else
1532 -- original-call
1533 -- end if;
1535 Rewrite (Node (Call),
1536 Make_If_Statement (Loc,
1537 Condition => Test,
1538 Then_Statements => New_List (
1539 Make_Raise_Storage_Error (Loc,
1540 Reason => SE_Infinite_Recursion)),
1542 Else_Statements => New_List (
1543 Relocate_Node (Node (Call)))));
1545 Analyze (Node (Call));
1547 Next_Elmt (Call);
1548 end loop;
1550 -- Remove temporary scope stack entry used for analysis
1552 Pop_Scope;
1553 end Detect_Infinite_Recursion;
1555 --------------------
1556 -- Expand_Actuals --
1557 --------------------
1559 procedure Expand_Actuals
1560 (N : Node_Id;
1561 Subp : Entity_Id;
1562 Post_Call : out List_Id)
1564 Loc : constant Source_Ptr := Sloc (N);
1565 Actual : Node_Id;
1566 Formal : Entity_Id;
1567 N_Node : Node_Id;
1568 E_Actual : Entity_Id;
1569 E_Formal : Entity_Id;
1571 procedure Add_Call_By_Copy_Code;
1572 -- For cases where the parameter must be passed by copy, this routine
1573 -- generates a temporary variable into which the actual is copied and
1574 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1575 -- an assignment is also generated to copy the result back. The call
1576 -- also takes care of any constraint checks required for the type
1577 -- conversion case (on both the way in and the way out).
1579 procedure Add_Simple_Call_By_Copy_Code (Force : Boolean);
1580 -- This is similar to the above, but is used in cases where we know
1581 -- that all that is needed is to simply create a temporary and copy
1582 -- the value in and out of the temporary. If Force is True, then the
1583 -- procedure may disregard legality considerations.
1585 -- ??? We need to do the copy for a bit-packed array because this is
1586 -- where the rewriting into a mask-and-shift sequence is done. But of
1587 -- course this may break the program if it expects bits to be really
1588 -- passed by reference. That's what we have done historically though.
1590 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1591 -- Perform copy-back for actual parameter Act which denotes a validation
1592 -- variable.
1594 procedure Check_Fortran_Logical;
1595 -- A value of type Logical that is passed through a formal parameter
1596 -- must be normalized because .TRUE. usually does not have the same
1597 -- representation as True. We assume that .FALSE. = False = 0.
1598 -- What about functions that return a logical type ???
1600 function Is_Legal_Copy return Boolean;
1601 -- Check that an actual can be copied before generating the temporary
1602 -- to be used in the call. If the formal is of a by_reference type or
1603 -- is aliased, then the program is illegal (this can only happen in
1604 -- the presence of representation clauses that force a misalignment)
1605 -- If the formal is a by_reference parameter imposed by a DEC pragma,
1606 -- emit a warning that this might lead to unaligned arguments.
1608 function Make_Var (Actual : Node_Id) return Entity_Id;
1609 -- Returns an entity that refers to the given actual parameter, Actual
1610 -- (not including any type conversion). If Actual is an entity name,
1611 -- then this entity is returned unchanged, otherwise a renaming is
1612 -- created to provide an entity for the actual.
1614 procedure Reset_Packed_Prefix;
1615 -- The expansion of a packed array component reference is delayed in
1616 -- the context of a call. Now we need to complete the expansion, so we
1617 -- unmark the analyzed bits in all prefixes.
1619 function Requires_Atomic_Or_Volatile_Copy return Boolean;
1620 -- Returns whether a copy is required as per RM C.6(19) and gives a
1621 -- warning in this case.
1623 ---------------------------
1624 -- Add_Call_By_Copy_Code --
1625 ---------------------------
1627 procedure Add_Call_By_Copy_Code is
1628 Crep : Boolean;
1629 Expr : Node_Id;
1630 F_Typ : Entity_Id := Etype (Formal);
1631 Indic : Node_Id;
1632 Init : Node_Id;
1633 Temp : Entity_Id;
1634 V_Typ : Entity_Id;
1635 Var : Entity_Id;
1637 begin
1638 if not Is_Legal_Copy then
1639 return;
1640 end if;
1642 Temp := Make_Temporary (Loc, 'T', Actual);
1644 -- Handle formals whose type comes from the limited view
1646 if From_Limited_With (F_Typ)
1647 and then Has_Non_Limited_View (F_Typ)
1648 then
1649 F_Typ := Non_Limited_View (F_Typ);
1650 end if;
1652 -- Use formal type for temp, unless formal type is an unconstrained
1653 -- array, in which case we don't have to worry about bounds checks,
1654 -- and we use the actual type, since that has appropriate bounds.
1656 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1657 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1658 else
1659 Indic := New_Occurrence_Of (F_Typ, Loc);
1660 end if;
1662 -- The new code will be properly analyzed below and the setting of
1663 -- the Do_Range_Check flag recomputed so remove the obsolete one.
1665 Set_Do_Range_Check (Actual, False);
1667 if Nkind (Actual) = N_Type_Conversion then
1668 Set_Do_Range_Check (Expression (Actual), False);
1670 V_Typ := Etype (Expression (Actual));
1672 -- If the formal is an (in-)out parameter, capture the name
1673 -- of the variable in order to build the post-call assignment.
1675 Var := Make_Var (Expression (Actual));
1677 Crep := not Has_Compatible_Representation
1678 (Target_Typ => F_Typ,
1679 Operand_Typ => Etype (Expression (Actual)));
1681 else
1682 V_Typ := Etype (Actual);
1683 Var := Make_Var (Actual);
1684 Crep := False;
1685 end if;
1687 -- If the actual denotes a variable which captures the value of an
1688 -- object for validation purposes, we propagate the link with this
1689 -- object to the new variable made from the actual just above.
1691 if Ekind (Formal) /= E_In_Parameter
1692 and then Is_Validation_Variable_Reference (Actual)
1693 then
1694 declare
1695 Ref : constant Node_Id := Unqual_Conv (Actual);
1697 begin
1698 if Is_Entity_Name (Ref) then
1699 Set_Validated_Object (Var, Validated_Object (Entity (Ref)));
1701 else
1702 pragma Assert (False);
1703 null;
1704 end if;
1705 end;
1706 end if;
1708 -- Setup initialization for case of in out parameter, or an out
1709 -- parameter where the formal is an unconstrained array (in the
1710 -- latter case, we have to pass in an object with bounds).
1712 -- If this is an out parameter, the initial copy is wasteful, so as
1713 -- an optimization for the one-dimensional case we extract the
1714 -- bounds of the actual and build an uninitialized temporary of the
1715 -- right size.
1717 -- If the formal is an out parameter with discriminants, the
1718 -- discriminants must be captured even if the rest of the object
1719 -- is in principle uninitialized, because the discriminants may
1720 -- be read by the called subprogram.
1722 if Ekind (Formal) = E_In_Out_Parameter
1723 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1724 or else Has_Discriminants (F_Typ)
1725 then
1726 if Nkind (Actual) = N_Type_Conversion then
1727 if Conversion_OK (Actual) then
1728 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1729 else
1730 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1731 end if;
1733 elsif Ekind (Formal) = E_Out_Parameter
1734 and then Is_Array_Type (F_Typ)
1735 and then Number_Dimensions (F_Typ) = 1
1736 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1737 then
1738 -- Actual is a one-dimensional array or slice, and the type
1739 -- requires no initialization. Create a temporary of the
1740 -- right size, but do not copy actual into it (optimization).
1742 Init := Empty;
1743 Indic :=
1744 Make_Subtype_Indication (Loc,
1745 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1746 Constraint =>
1747 Make_Index_Or_Discriminant_Constraint (Loc,
1748 Constraints => New_List (
1749 Make_Range (Loc,
1750 Low_Bound =>
1751 Make_Attribute_Reference (Loc,
1752 Prefix => New_Occurrence_Of (Var, Loc),
1753 Attribute_Name => Name_First),
1754 High_Bound =>
1755 Make_Attribute_Reference (Loc,
1756 Prefix => New_Occurrence_Of (Var, Loc),
1757 Attribute_Name => Name_Last)))));
1759 else
1760 Init := New_Occurrence_Of (Var, Loc);
1761 end if;
1763 -- An initialization is created for packed conversions as
1764 -- actuals for out parameters to enable Make_Object_Declaration
1765 -- to determine the proper subtype for N_Node. Note that this
1766 -- is wasteful because the extra copying on the call side is
1767 -- not required for such out parameters. ???
1769 elsif Ekind (Formal) = E_Out_Parameter
1770 and then Nkind (Actual) = N_Type_Conversion
1771 and then (Is_Bit_Packed_Array (F_Typ)
1772 or else
1773 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1774 then
1775 if Conversion_OK (Actual) then
1776 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1777 else
1778 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1779 end if;
1781 elsif Ekind (Formal) = E_In_Parameter then
1783 -- Handle the case in which the actual is a type conversion
1785 if Nkind (Actual) = N_Type_Conversion then
1786 if Conversion_OK (Actual) then
1787 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1788 else
1789 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1790 end if;
1791 else
1792 Init := New_Occurrence_Of (Var, Loc);
1793 end if;
1795 -- Access types are passed in without checks, but if a copy-back is
1796 -- required for a null-excluding check on an in-out or out parameter,
1797 -- then the initial value is that of the actual.
1799 elsif Is_Access_Type (E_Formal)
1800 and then Can_Never_Be_Null (Etype (Actual))
1801 and then not Can_Never_Be_Null (E_Formal)
1802 then
1803 Init := New_Occurrence_Of (Var, Loc);
1805 -- View conversions when the formal type has the Default_Value aspect
1806 -- require passing in the value of the conversion's operand. The type
1807 -- of that operand also has Default_Value, as required by AI12-0074
1808 -- (RM 6.4.1(5.3/4)). The subtype denoted by the subtype_indication
1809 -- is changed to the base type of the formal subtype, to ensure that
1810 -- the actual's value can be assigned without a constraint check
1811 -- (note that no check is done on passing to an out parameter). Also
1812 -- note that the two types necessarily share the same ancestor type,
1813 -- as required by 6.4.1(5.2/4), so underlying base types will match.
1815 elsif Ekind (Formal) = E_Out_Parameter
1816 and then Is_Scalar_Type (Etype (F_Typ))
1817 and then Nkind (Actual) = N_Type_Conversion
1818 and then Present (Default_Aspect_Value (Etype (F_Typ)))
1819 then
1820 Indic := New_Occurrence_Of (Base_Type (F_Typ), Loc);
1821 Init := Convert_To
1822 (Base_Type (F_Typ), New_Occurrence_Of (Var, Loc));
1824 else
1825 Init := Empty;
1826 end if;
1828 N_Node :=
1829 Make_Object_Declaration (Loc,
1830 Defining_Identifier => Temp,
1831 Object_Definition => Indic,
1832 Expression => Init);
1833 Set_Assignment_OK (N_Node);
1834 Insert_Action (N, N_Node);
1836 -- Now, normally the deal here is that we use the defining
1837 -- identifier created by that object declaration. There is
1838 -- one exception to this. In the change of representation case
1839 -- the above declaration will end up looking like:
1841 -- temp : type := identifier;
1843 -- And in this case we might as well use the identifier directly
1844 -- and eliminate the temporary. Note that the analysis of the
1845 -- declaration was not a waste of time in that case, since it is
1846 -- what generated the necessary change of representation code. If
1847 -- the change of representation introduced additional code, as in
1848 -- a fixed-integer conversion, the expression is not an identifier
1849 -- and must be kept.
1851 if Crep
1852 and then Present (Expression (N_Node))
1853 and then Is_Entity_Name (Expression (N_Node))
1854 then
1855 Temp := Entity (Expression (N_Node));
1856 Rewrite (N_Node, Make_Null_Statement (Loc));
1857 end if;
1859 -- For IN parameter, all we do is to replace the actual
1861 if Ekind (Formal) = E_In_Parameter then
1862 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1863 Analyze (Actual);
1865 -- Processing for OUT or IN OUT parameter
1867 else
1868 -- Kill current value indications for the temporary variable we
1869 -- created, since we just passed it as an OUT parameter.
1871 Kill_Current_Values (Temp);
1872 Set_Is_Known_Valid (Temp, False);
1873 Set_Is_True_Constant (Temp, False);
1875 -- If type conversion, use reverse conversion on exit
1877 if Nkind (Actual) = N_Type_Conversion then
1878 if Conversion_OK (Actual) then
1879 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1880 else
1881 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1882 end if;
1883 else
1884 Expr := New_Occurrence_Of (Temp, Loc);
1885 end if;
1887 Rewrite (Actual, New_Occurrence_Of (Temp, Sloc (Actual)));
1888 Analyze (Actual);
1890 -- If the actual is a conversion of a packed reference, it may
1891 -- already have been expanded by Remove_Side_Effects, and the
1892 -- resulting variable is a temporary which does not designate
1893 -- the proper out-parameter, which may not be addressable. In
1894 -- that case, generate an assignment to the original expression
1895 -- (before expansion of the packed reference) so that the proper
1896 -- expansion of assignment to a packed component can take place.
1898 declare
1899 Obj : Node_Id;
1900 Lhs : Node_Id;
1902 begin
1903 if Is_Renaming_Of_Object (Var)
1904 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1905 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1906 = N_Indexed_Component
1907 and then
1908 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1909 then
1910 Obj := Renamed_Object (Var);
1911 Lhs :=
1912 Make_Selected_Component (Loc,
1913 Prefix =>
1914 New_Copy_Tree (Original_Node (Prefix (Obj))),
1915 Selector_Name => New_Copy (Selector_Name (Obj)));
1916 Reset_Analyzed_Flags (Lhs);
1918 else
1919 Lhs := New_Occurrence_Of (Var, Loc);
1920 end if;
1922 Set_Assignment_OK (Lhs);
1924 if Is_Access_Type (E_Formal)
1925 and then Is_Entity_Name (Lhs)
1926 and then
1927 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1928 and then not No_Dynamic_Accessibility_Checks_Enabled (Lhs)
1929 then
1930 -- Copyback target is an Ada 2012 stand-alone object of an
1931 -- anonymous access type.
1933 pragma Assert (Ada_Version >= Ada_2012);
1935 Apply_Accessibility_Check (Lhs, E_Formal, N);
1937 Append_To (Post_Call,
1938 Make_Assignment_Statement (Loc,
1939 Name => Lhs,
1940 Expression => Expr));
1942 -- We would like to somehow suppress generation of the
1943 -- extra_accessibility assignment generated by the expansion
1944 -- of the above assignment statement. It's not a correctness
1945 -- issue because the following assignment renders it dead,
1946 -- but generating back-to-back assignments to the same
1947 -- target is undesirable. ???
1949 Append_To (Post_Call,
1950 Make_Assignment_Statement (Loc,
1951 Name => New_Occurrence_Of (
1952 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1953 Expression => Make_Integer_Literal (Loc,
1954 Type_Access_Level (E_Formal))));
1956 else
1957 if Is_Access_Type (E_Formal)
1958 and then Can_Never_Be_Null (Etype (Actual))
1959 and then not Can_Never_Be_Null (E_Formal)
1960 then
1961 Append_To (Post_Call,
1962 Make_Raise_Constraint_Error (Loc,
1963 Condition =>
1964 Make_Op_Eq (Loc,
1965 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1966 Right_Opnd => Make_Null (Loc)),
1967 Reason => CE_Access_Check_Failed));
1968 end if;
1970 Append_To (Post_Call,
1971 Make_Assignment_Statement (Loc,
1972 Name => Lhs,
1973 Expression => Expr));
1974 end if;
1976 -- Add a copy-back to reflect any potential changes in value
1977 -- back into the original object, if any.
1979 if Is_Validation_Variable_Reference (Lhs) then
1980 Add_Validation_Call_By_Copy_Code (Lhs);
1981 end if;
1982 end;
1983 end if;
1984 end Add_Call_By_Copy_Code;
1986 ----------------------------------
1987 -- Add_Simple_Call_By_Copy_Code --
1988 ----------------------------------
1990 procedure Add_Simple_Call_By_Copy_Code (Force : Boolean) is
1991 With_Storage_Model : constant Boolean :=
1992 Nkind (Actual) = N_Explicit_Dereference
1993 and then
1994 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)));
1996 Cpcod : List_Id;
1997 Decl : Node_Id;
1998 F_Typ : Entity_Id;
1999 Incod : Node_Id;
2000 Indic : Node_Id;
2001 Lhs : Node_Id;
2002 Outcod : Node_Id;
2003 Rhs : Node_Id;
2004 Temp : Entity_Id;
2006 begin
2007 -- Unless forced not to, check the legality of the copy operation
2009 if not Force and then not Is_Legal_Copy then
2010 return;
2011 end if;
2013 F_Typ := Etype (Formal);
2015 -- Handle formals whose type comes from the limited view
2017 if From_Limited_With (F_Typ)
2018 and then Has_Non_Limited_View (F_Typ)
2019 then
2020 F_Typ := Non_Limited_View (F_Typ);
2021 end if;
2023 -- Use formal type for temp, unless formal type is an unconstrained
2024 -- composite, in which case we don't have to worry about checks and
2025 -- we can use the actual type, since that has appropriate bounds.
2027 if Is_Composite_Type (F_Typ) and then not Is_Constrained (F_Typ) then
2028 Indic := New_Occurrence_Of (Get_Actual_Subtype (Actual), Loc);
2029 else
2030 Indic := New_Occurrence_Of (F_Typ, Loc);
2031 end if;
2033 -- Prepare to generate code
2035 Reset_Packed_Prefix;
2037 Incod := Relocate_Node (Actual);
2038 Outcod := New_Copy_Tree (Incod);
2040 -- Generate declaration of temporary variable, initializing it
2041 -- with the input parameter unless we have an OUT formal or
2042 -- this is an initialization call.
2044 if Ekind (Formal) = E_Out_Parameter then
2045 Incod := Empty;
2047 elsif Inside_Init_Proc then
2049 -- Skip using the actual as the expression in Decl if we are in
2050 -- an init proc and it is not a component which depends on a
2051 -- discriminant, because, in this case, we need to use the actual
2052 -- type of the component instead.
2054 if Nkind (Actual) /= N_Selected_Component
2055 or else
2056 not Has_Discriminant_Dependent_Constraint
2057 (Entity (Selector_Name (Actual)))
2058 then
2059 Incod := Empty;
2061 -- Otherwise, keep the component so we can generate the proper
2062 -- actual subtype - since the subtype depends on enclosing
2063 -- discriminants.
2065 else
2066 null;
2067 end if;
2068 end if;
2070 Cpcod := New_List;
2072 if With_Storage_Model then
2073 Temp :=
2074 Build_Temporary_On_Secondary_Stack (Loc, Entity (Indic), Cpcod);
2076 if Present (Incod) then
2077 Append_To (Cpcod,
2078 Make_Assignment_Statement (Loc,
2079 Name =>
2080 Make_Explicit_Dereference (Loc,
2081 Prefix => New_Occurrence_Of (Temp, Loc)),
2082 Expression => Incod));
2083 Set_Suppress_Assignment_Checks (Last (Cpcod));
2084 end if;
2086 else
2087 Temp := Make_Temporary (Loc, 'T', Actual);
2089 Decl :=
2090 Make_Object_Declaration (Loc,
2091 Defining_Identifier => Temp,
2092 Object_Definition => Indic,
2093 Expression => Incod);
2095 -- If the call is to initialize a component of a composite type,
2096 -- and the component does not depend on discriminants, use the
2097 -- actual type of the component. This is required in case the
2098 -- component is constrained, because in general the formal of the
2099 -- initialization procedure will be unconstrained. Note that if
2100 -- the component being initialized is constrained by an enclosing
2101 -- discriminant, the presence of the initialization in the
2102 -- declaration will generate an expression for the actual subtype.
2104 if Inside_Init_Proc and then No (Incod) then
2105 Set_No_Initialization (Decl);
2106 Set_Object_Definition (Decl,
2107 New_Occurrence_Of (Etype (Actual), Loc));
2108 end if;
2110 Append_To (Cpcod, Decl);
2111 end if;
2113 Insert_Actions (N, Cpcod);
2115 -- The actual is simply a reference to the temporary
2117 if With_Storage_Model then
2118 Rewrite (Actual,
2119 Make_Explicit_Dereference (Loc,
2120 Prefix => New_Occurrence_Of (Temp, Loc)));
2121 else
2122 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
2123 end if;
2125 Analyze (Actual);
2127 -- Generate copy out if OUT or IN OUT parameter
2129 if Ekind (Formal) /= E_In_Parameter then
2130 Lhs := Outcod;
2132 if With_Storage_Model then
2133 Rhs :=
2134 Make_Explicit_Dereference (Loc,
2135 Prefix => New_Occurrence_Of (Temp, Loc));
2136 else
2137 Rhs := New_Occurrence_Of (Temp, Loc);
2138 Set_Is_True_Constant (Temp, False);
2139 end if;
2141 -- Deal with conversion
2143 if Nkind (Lhs) = N_Type_Conversion then
2144 Lhs := Expression (Lhs);
2145 Rhs := Convert_To (Etype (Actual), Rhs);
2146 end if;
2148 Append_To (Post_Call,
2149 Make_Assignment_Statement (Loc,
2150 Name => Lhs,
2151 Expression => Rhs));
2152 Set_Suppress_Assignment_Checks (Last (Post_Call));
2153 Set_Assignment_OK (Name (Last (Post_Call)));
2154 end if;
2155 end Add_Simple_Call_By_Copy_Code;
2157 --------------------------------------
2158 -- Add_Validation_Call_By_Copy_Code --
2159 --------------------------------------
2161 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
2162 Var : constant Node_Id := Unqual_Conv (Act);
2164 Expr : Node_Id;
2165 Obj : Node_Id;
2166 Obj_Typ : Entity_Id;
2167 Var_Id : Entity_Id;
2169 begin
2170 -- Generate range check if required
2172 if Do_Range_Check (Actual) then
2173 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2174 end if;
2176 -- If there is a type conversion in the actual, it will be reinstated
2177 -- below, the new instance will be properly analyzed and the setting
2178 -- of the Do_Range_Check flag recomputed so remove the obsolete one.
2180 if Nkind (Actual) = N_Type_Conversion then
2181 Set_Do_Range_Check (Expression (Actual), False);
2182 end if;
2184 -- Copy the value of the validation variable back into the object
2185 -- being validated.
2187 if Is_Entity_Name (Var) then
2188 Var_Id := Entity (Var);
2189 Obj := Validated_Object (Var_Id);
2190 Obj_Typ := Etype (Obj);
2192 Expr := New_Occurrence_Of (Var_Id, Loc);
2194 -- A type conversion is needed when the validation variable and
2195 -- the validated object carry different types. This case occurs
2196 -- when the actual is qualified in some fashion.
2198 -- Common:
2199 -- subtype Int is Integer range ...;
2200 -- procedure Call (Val : in out Integer);
2202 -- Original:
2203 -- Object : Int;
2204 -- Call (Integer (Object));
2206 -- Expanded:
2207 -- Object : Int;
2208 -- Var : Integer := Object; -- conversion to base type
2209 -- if not Var'Valid then -- validity check
2210 -- Call (Var); -- modify Var
2211 -- Object := Int (Var); -- conversion to subtype
2213 if Etype (Var_Id) /= Obj_Typ then
2214 Expr :=
2215 Make_Type_Conversion (Loc,
2216 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
2217 Expression => Expr);
2218 end if;
2220 -- Generate:
2221 -- Object := Var;
2222 -- <or>
2223 -- Object := Object_Type (Var);
2225 Append_To (Post_Call,
2226 Make_Assignment_Statement (Loc,
2227 Name => Obj,
2228 Expression => Expr));
2230 -- If the flow reaches this point, then this routine was invoked with
2231 -- an actual which does not denote a validation variable.
2233 else
2234 pragma Assert (False);
2235 null;
2236 end if;
2237 end Add_Validation_Call_By_Copy_Code;
2239 ---------------------------
2240 -- Check_Fortran_Logical --
2241 ---------------------------
2243 procedure Check_Fortran_Logical is
2244 Logical : constant Entity_Id := Etype (Formal);
2245 Var : Entity_Id;
2247 -- Note: this is very incomplete, e.g. it does not handle arrays
2248 -- of logical values. This is really not the right approach at all???)
2250 begin
2251 if Convention (Subp) = Convention_Fortran
2252 and then Root_Type (Etype (Formal)) = Standard_Boolean
2253 and then Ekind (Formal) /= E_In_Parameter
2254 then
2255 Var := Make_Var (Actual);
2256 Append_To (Post_Call,
2257 Make_Assignment_Statement (Loc,
2258 Name => New_Occurrence_Of (Var, Loc),
2259 Expression =>
2260 Unchecked_Convert_To (
2261 Logical,
2262 Make_Op_Ne (Loc,
2263 Left_Opnd => New_Occurrence_Of (Var, Loc),
2264 Right_Opnd =>
2265 Unchecked_Convert_To (
2266 Logical,
2267 New_Occurrence_Of (Standard_False, Loc))))));
2268 end if;
2269 end Check_Fortran_Logical;
2271 -------------------
2272 -- Is_Legal_Copy --
2273 -------------------
2275 function Is_Legal_Copy return Boolean is
2276 begin
2277 -- An attempt to copy a value of such a type can only occur if
2278 -- representation clauses give the actual a misaligned address.
2280 if Is_By_Reference_Type (Etype (Formal))
2281 or else Is_Aliased (Formal)
2282 or else (Mechanism (Formal) = By_Reference
2283 and then not Has_Foreign_Convention (Subp))
2284 then
2286 -- The actual may in fact be properly aligned but there is not
2287 -- enough front-end information to determine this. In that case
2288 -- gigi will emit an error or a warning if a copy is not legal,
2289 -- or generate the proper code.
2291 return False;
2293 -- For users of Starlet, we assume that the specification of by-
2294 -- reference mechanism is mandatory. This may lead to unaligned
2295 -- objects but at least for DEC legacy code it is known to work.
2296 -- The warning will alert users of this code that a problem may
2297 -- be lurking.
2299 elsif Mechanism (Formal) = By_Reference
2300 and then Ekind (Scope (Formal)) = E_Procedure
2301 and then Is_Valued_Procedure (Scope (Formal))
2302 then
2303 Error_Msg_N
2304 ("by_reference actual may be misaligned??", Actual);
2305 return False;
2307 else
2308 return True;
2309 end if;
2310 end Is_Legal_Copy;
2312 --------------
2313 -- Make_Var --
2314 --------------
2316 function Make_Var (Actual : Node_Id) return Entity_Id is
2317 Var : Entity_Id;
2319 begin
2320 if Is_Entity_Name (Actual) then
2321 return Entity (Actual);
2323 else
2324 Var := Make_Temporary (Loc, 'T', Actual);
2326 N_Node :=
2327 Make_Object_Renaming_Declaration (Loc,
2328 Defining_Identifier => Var,
2329 Subtype_Mark =>
2330 New_Occurrence_Of (Etype (Actual), Loc),
2331 Name => Relocate_Node (Actual));
2333 Insert_Action (N, N_Node);
2334 return Var;
2335 end if;
2336 end Make_Var;
2338 -------------------------
2339 -- Reset_Packed_Prefix --
2340 -------------------------
2342 procedure Reset_Packed_Prefix is
2343 Pfx : Node_Id := Actual;
2344 begin
2345 loop
2346 Set_Analyzed (Pfx, False);
2347 exit when
2348 Nkind (Pfx) not in N_Selected_Component | N_Indexed_Component;
2349 Pfx := Prefix (Pfx);
2350 end loop;
2351 end Reset_Packed_Prefix;
2353 ----------------------------------------
2354 -- Requires_Atomic_Or_Volatile_Copy --
2355 ----------------------------------------
2357 function Requires_Atomic_Or_Volatile_Copy return Boolean is
2358 begin
2359 -- If the formal is already passed by copy, no need to do anything
2361 if Is_By_Copy_Type (E_Formal) then
2362 return False;
2363 end if;
2365 -- There is no requirement inside initialization procedures and this
2366 -- would generate copies for atomic or volatile composite components.
2368 if Inside_Init_Proc then
2369 return False;
2370 end if;
2372 -- Check for atomicity mismatch
2374 if Is_Atomic_Object (Actual) and then not Is_Atomic (E_Formal)
2375 then
2376 if Comes_From_Source (N) then
2377 Error_Msg_N
2378 ("??atomic actual passed by copy (RM C.6(19))", Actual);
2379 end if;
2380 return True;
2381 end if;
2383 -- Check for volatility mismatch
2385 if Is_Volatile_Object_Ref (Actual) and then not Is_Volatile (E_Formal)
2386 then
2387 if Comes_From_Source (N) then
2388 Error_Msg_N
2389 ("??volatile actual passed by copy (RM C.6(19))", Actual);
2390 end if;
2391 return True;
2392 end if;
2394 return False;
2395 end Requires_Atomic_Or_Volatile_Copy;
2397 -- Start of processing for Expand_Actuals
2399 begin
2400 Post_Call := New_List;
2402 Formal := First_Formal (Subp);
2403 Actual := First_Actual (N);
2404 while Present (Formal) loop
2405 E_Formal := Etype (Formal);
2406 E_Actual := Etype (Actual);
2408 -- Handle formals whose type comes from the limited view
2410 if From_Limited_With (E_Formal)
2411 and then Has_Non_Limited_View (E_Formal)
2412 then
2413 E_Formal := Non_Limited_View (E_Formal);
2414 end if;
2416 if Is_Scalar_Type (E_Formal)
2417 or else Nkind (Actual) = N_Slice
2418 then
2419 Check_Fortran_Logical;
2421 -- RM 6.4.1 (11)
2423 elsif Ekind (Formal) /= E_Out_Parameter then
2425 -- The unusual case of the current instance of a protected type
2426 -- requires special handling. This can only occur in the context
2427 -- of a call within the body of a protected operation.
2429 if Is_Entity_Name (Actual)
2430 and then Ekind (Entity (Actual)) = E_Protected_Type
2431 and then In_Open_Scopes (Entity (Actual))
2432 then
2433 if Scope (Subp) /= Entity (Actual) then
2434 Error_Msg_N
2435 ("operation outside protected type may not "
2436 & "call back its protected operations??", Actual);
2437 end if;
2439 Rewrite (Actual,
2440 Expand_Protected_Object_Reference (N, Entity (Actual)));
2441 end if;
2443 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
2444 -- build-in-place function, then a temporary return object needs
2445 -- to be created and access to it must be passed to the function
2446 -- (and ensure that we have an activation chain defined for tasks
2447 -- and a Master variable).
2449 -- Currently we limit such functions to those with inherently
2450 -- limited result subtypes, but eventually we plan to expand the
2451 -- functions that are treated as build-in-place to include other
2452 -- composite result types.
2454 -- But do not do it here for intrinsic subprograms since this will
2455 -- be done properly after the subprogram is expanded.
2457 if Is_Intrinsic_Subprogram (Subp) then
2458 null;
2460 elsif Is_Build_In_Place_Function_Call (Actual) then
2461 if Might_Have_Tasks (Etype (Actual)) then
2462 Build_Activation_Chain_Entity (N);
2463 Build_Master_Entity (Etype (Actual));
2464 end if;
2466 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
2468 -- Ada 2005 (AI-318-02): Specialization of the previous case for
2469 -- actuals containing build-in-place function calls whose returned
2470 -- object covers interface types.
2472 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
2473 Build_Activation_Chain_Entity (N);
2474 Build_Master_Entity (Etype (Actual));
2475 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
2476 end if;
2478 Apply_Constraint_Check (Actual, E_Formal);
2480 -- Out parameter case. No constraint checks on access type
2481 -- RM 6.4.1 (13), but on return a null-excluding check may be
2482 -- required (see below).
2484 elsif Is_Access_Type (E_Formal) then
2485 null;
2487 -- RM 6.4.1 (14)
2489 elsif Has_Discriminants (Base_Type (E_Formal))
2490 or else Has_Non_Null_Base_Init_Proc (E_Formal)
2491 then
2492 Apply_Constraint_Check (Actual, E_Formal);
2494 -- RM 6.4.1 (15)
2496 else
2497 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
2498 end if;
2500 -- Processing for IN-OUT and OUT parameters
2502 if Ekind (Formal) /= E_In_Parameter then
2504 -- For type conversions of arrays, apply length/range checks
2506 if Is_Array_Type (E_Formal)
2507 and then Nkind (Actual) = N_Type_Conversion
2508 then
2509 if Is_Constrained (E_Formal) then
2510 Apply_Length_Check (Expression (Actual), E_Formal);
2511 else
2512 Apply_Range_Check (Expression (Actual), E_Formal);
2513 end if;
2514 end if;
2516 -- If argument is a type conversion for a type that is passed by
2517 -- copy, then we must pass the parameter by copy.
2519 if Nkind (Actual) = N_Type_Conversion
2520 and then
2521 (Is_Elementary_Type (E_Formal)
2522 or else Is_Bit_Packed_Array (Etype (Formal))
2523 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
2525 -- Also pass by copy if change of representation
2527 or else not Has_Compatible_Representation
2528 (Target_Typ => Etype (Formal),
2529 Operand_Typ => Etype (Expression (Actual))))
2530 then
2531 Add_Call_By_Copy_Code;
2533 -- References to components of bit-packed arrays are expanded
2534 -- at this point, rather than at the point of analysis of the
2535 -- actuals, to handle the expansion of the assignment to
2536 -- [in] out parameters.
2538 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2539 Add_Simple_Call_By_Copy_Code (Force => True);
2541 -- If the actual has a nonnative storage model, we need a copy
2543 elsif Nkind (Actual) = N_Explicit_Dereference
2544 and then
2545 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)))
2546 and then
2547 (Present (Storage_Model_Copy_To
2548 (Storage_Model_Object (Etype (Prefix (Actual)))))
2549 or else
2550 (Ekind (Formal) = E_In_Out_Parameter
2551 and then
2552 Present (Storage_Model_Copy_From
2553 (Storage_Model_Object (Etype (Prefix (Actual)))))))
2554 then
2555 Add_Simple_Call_By_Copy_Code (Force => True);
2557 -- If a nonscalar actual is possibly bit-aligned, we need a copy
2558 -- because the back-end cannot cope with such objects. In other
2559 -- cases where alignment forces a copy, the back-end generates
2560 -- it properly. It should not be generated unconditionally in the
2561 -- front-end because it does not know precisely the alignment
2562 -- requirements of the target, and makes too conservative an
2563 -- estimate, leading to superfluous copies or spurious errors
2564 -- on by-reference parameters.
2566 elsif Nkind (Actual) = N_Selected_Component
2567 and then
2568 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2569 and then not Represented_As_Scalar (Etype (Formal))
2570 then
2571 Add_Simple_Call_By_Copy_Code (Force => False);
2573 -- References to slices of bit-packed arrays are expanded
2575 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2576 Add_Call_By_Copy_Code;
2578 -- References to possibly unaligned slices of arrays are expanded
2580 elsif Is_Possibly_Unaligned_Slice (Actual) then
2581 Add_Call_By_Copy_Code;
2583 -- Deal with access types where the actual subtype and the
2584 -- formal subtype are not the same, requiring a check.
2586 -- It is necessary to exclude tagged types because of "downward
2587 -- conversion" errors, but null-excluding checks on return may be
2588 -- required.
2590 elsif Is_Access_Type (E_Formal)
2591 and then not Is_Tagged_Type (Designated_Type (E_Formal))
2592 and then (not Same_Type (E_Formal, E_Actual)
2593 or else (Can_Never_Be_Null (E_Actual)
2594 and then not Can_Never_Be_Null (E_Formal)))
2595 then
2596 Add_Call_By_Copy_Code;
2598 -- We may need to force a copy because of atomicity or volatility
2599 -- considerations.
2601 elsif Requires_Atomic_Or_Volatile_Copy then
2602 Add_Call_By_Copy_Code;
2604 -- Add call-by-copy code for the case of scalar out parameters
2605 -- when it is not known at compile time that the subtype of the
2606 -- formal is a subrange of the subtype of the actual (or vice
2607 -- versa for in out parameters), in order to get range checks
2608 -- on such actuals. (Maybe this case should be handled earlier
2609 -- in the if statement???)
2611 elsif Is_Scalar_Type (E_Formal)
2612 and then
2613 (not In_Subrange_Of (E_Formal, E_Actual)
2614 or else
2615 (Ekind (Formal) = E_In_Out_Parameter
2616 and then not In_Subrange_Of (E_Actual, E_Formal)))
2617 then
2618 Add_Call_By_Copy_Code;
2620 -- The actual denotes a variable which captures the value of an
2621 -- object for validation purposes. Add a copy-back to reflect any
2622 -- potential changes in value back into the original object.
2624 -- Var : ... := Object;
2625 -- if not Var'Valid then -- validity check
2626 -- Call (Var); -- modify var
2627 -- Object := Var; -- update Object
2629 elsif Is_Validation_Variable_Reference (Actual) then
2630 Add_Validation_Call_By_Copy_Code (Actual);
2631 end if;
2633 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2634 -- by-reference parameters on exit from the call. If the actual
2635 -- is a derived type and the operation is inherited, the body
2636 -- of the operation will not contain a call to the predicate
2637 -- function, so it must be done explicitly after the call. Ditto
2638 -- if the actual is an entity of a predicated subtype.
2640 -- The rule refers to by-reference types, but a check is needed
2641 -- for by-copy types as well. That check is subsumed by the rule
2642 -- for subtype conversion on assignment, but we can generate the
2643 -- required check now.
2645 -- Note also that Subp may be either a subprogram entity for
2646 -- direct calls, or a type entity for indirect calls, which must
2647 -- be handled separately because the name does not denote an
2648 -- overloadable entity.
2650 By_Ref_Predicate_Check : declare
2651 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2652 Atyp : Entity_Id;
2654 begin
2655 if No (Aund) then
2656 Atyp := E_Actual;
2657 else
2658 Atyp := Aund;
2659 end if;
2661 if Predicate_Enabled (Atyp)
2663 -- Skip predicate checks for special cases
2665 and then Predicate_Tests_On_Arguments (Subp)
2666 then
2667 Append_To (Post_Call,
2668 Make_Predicate_Check (Atyp, Actual));
2669 end if;
2670 end By_Ref_Predicate_Check;
2672 -- Processing for IN parameters
2674 else
2675 -- Generate range check if required
2677 if Do_Range_Check (Actual) then
2678 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2679 end if;
2681 -- For IN parameters in the bit-packed array case, we expand an
2682 -- indexed component (the circuit in Exp_Ch4 deliberately left
2683 -- indexed components appearing as actuals untouched, so that
2684 -- the special processing above for the OUT and IN OUT cases
2685 -- could be performed. We could make the test in Exp_Ch4 more
2686 -- complex and have it detect the parameter mode, but it is
2687 -- easier simply to handle all cases here.)
2689 if Nkind (Actual) = N_Indexed_Component
2690 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2691 then
2692 Reset_Packed_Prefix;
2693 Expand_Packed_Element_Reference (Actual);
2695 -- If we have a reference to a bit-packed array, we copy it, since
2696 -- the actual must be byte aligned.
2698 -- Is this really necessary in all cases???
2700 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2701 Add_Simple_Call_By_Copy_Code (Force => True);
2703 -- If the actual has a nonnative storage model, we need a copy
2705 elsif Nkind (Actual) = N_Explicit_Dereference
2706 and then
2707 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)))
2708 and then
2709 Present (Storage_Model_Copy_From
2710 (Storage_Model_Object (Etype (Prefix (Actual)))))
2711 then
2712 Add_Simple_Call_By_Copy_Code (Force => True);
2714 -- If we have a C++ constructor call, we need to create the object
2716 elsif Is_CPP_Constructor_Call (Actual) then
2717 Add_Simple_Call_By_Copy_Code (Force => True);
2719 -- If a nonscalar actual is possibly unaligned, we need a copy
2721 elsif Is_Possibly_Unaligned_Object (Actual)
2722 and then not Represented_As_Scalar (Etype (Formal))
2723 then
2724 Add_Simple_Call_By_Copy_Code (Force => False);
2726 -- Similarly, we have to expand slices of packed arrays here
2727 -- because the result must be byte aligned.
2729 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2730 Add_Call_By_Copy_Code;
2732 -- Only processing remaining is to pass by copy if this is a
2733 -- reference to a possibly unaligned slice, since the caller
2734 -- expects an appropriately aligned argument.
2736 elsif Is_Possibly_Unaligned_Slice (Actual) then
2737 Add_Call_By_Copy_Code;
2739 -- We may need to force a copy because of atomicity or volatility
2740 -- considerations.
2742 elsif Requires_Atomic_Or_Volatile_Copy then
2743 Add_Call_By_Copy_Code;
2745 -- An unusual case: a current instance of an enclosing task can be
2746 -- an actual, and must be replaced by a reference to self.
2748 elsif Is_Entity_Name (Actual)
2749 and then Is_Task_Type (Entity (Actual))
2750 then
2751 if In_Open_Scopes (Entity (Actual)) then
2752 Rewrite (Actual,
2753 (Make_Function_Call (Loc,
2754 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2755 Analyze (Actual);
2757 -- A task type cannot otherwise appear as an actual
2759 else
2760 raise Program_Error;
2761 end if;
2762 end if;
2763 end if;
2765 -- Type-invariant checks for in-out and out parameters, as well as
2766 -- for in parameters of procedures (AI05-0289 and AI12-0044).
2768 if Ekind (Formal) /= E_In_Parameter
2769 or else Ekind (Subp) = E_Procedure
2770 then
2771 Caller_Side_Invariant_Checks : declare
2773 function Is_Public_Subp return Boolean;
2774 -- Check whether the subprogram being called is a visible
2775 -- operation of the type of the actual. Used to determine
2776 -- whether an invariant check must be generated on the
2777 -- caller side.
2779 ---------------------
2780 -- Is_Public_Subp --
2781 ---------------------
2783 function Is_Public_Subp return Boolean is
2784 Pack : constant Entity_Id := Scope (Subp);
2785 Subp_Decl : Node_Id;
2787 begin
2788 if not Is_Subprogram (Subp) then
2789 return False;
2791 -- The operation may be inherited, or a primitive of the
2792 -- root type.
2794 elsif
2795 Nkind (Parent (Subp)) in N_Private_Extension_Declaration
2796 | N_Full_Type_Declaration
2797 then
2798 Subp_Decl := Parent (Subp);
2800 else
2801 Subp_Decl := Unit_Declaration_Node (Subp);
2802 end if;
2804 return Ekind (Pack) = E_Package
2805 and then
2806 List_Containing (Subp_Decl) =
2807 Visible_Declarations
2808 (Specification (Unit_Declaration_Node (Pack)));
2809 end Is_Public_Subp;
2811 -- Start of processing for Caller_Side_Invariant_Checks
2813 begin
2814 -- We generate caller-side invariant checks in two cases:
2816 -- a) when calling an inherited operation, where there is an
2817 -- implicit view conversion of the actual to the parent type.
2819 -- b) When the conversion is explicit
2821 -- We treat these cases separately because the required
2822 -- conversion for a) is added later when expanding the call.
2824 if Has_Invariants (Etype (Actual))
2825 and then
2826 Nkind (Parent (Etype (Actual)))
2827 = N_Private_Extension_Declaration
2828 then
2829 if Comes_From_Source (N) and then Is_Public_Subp then
2830 Append_To (Post_Call, Make_Invariant_Call (Actual));
2831 end if;
2833 elsif Nkind (Actual) = N_Type_Conversion
2834 and then Has_Invariants (Etype (Expression (Actual)))
2835 then
2836 if Comes_From_Source (N) and then Is_Public_Subp then
2837 Append_To
2838 (Post_Call, Make_Invariant_Call (Expression (Actual)));
2839 end if;
2840 end if;
2841 end Caller_Side_Invariant_Checks;
2842 end if;
2844 Next_Formal (Formal);
2845 Next_Actual (Actual);
2846 end loop;
2847 end Expand_Actuals;
2849 -----------------
2850 -- Expand_Call --
2851 -----------------
2853 procedure Expand_Call (N : Node_Id) is
2854 function Is_Unchecked_Union_Equality (N : Node_Id) return Boolean;
2855 -- Return True if N is a call to the predefined equality operator of an
2856 -- unchecked union type, or a renaming thereof.
2858 ---------------------------------
2859 -- Is_Unchecked_Union_Equality --
2860 ---------------------------------
2862 function Is_Unchecked_Union_Equality (N : Node_Id) return Boolean is
2863 begin
2864 if Is_Entity_Name (Name (N))
2865 and then Ekind (Entity (Name (N))) = E_Function
2866 and then Present (First_Formal (Entity (Name (N))))
2867 and then
2868 Is_Unchecked_Union (Etype (First_Formal (Entity (Name (N)))))
2869 then
2870 declare
2871 Func : constant Entity_Id := Entity (Name (N));
2872 Typ : constant Entity_Id := Etype (First_Formal (Func));
2873 Decl : constant Node_Id :=
2874 Original_Node (Parent (Declaration_Node (Func)));
2876 begin
2877 return Func = TSS (Typ, TSS_Composite_Equality)
2878 or else (Nkind (Decl) = N_Subprogram_Renaming_Declaration
2879 and then Nkind (Name (Decl)) = N_Operator_Symbol
2880 and then Chars (Name (Decl)) = Name_Op_Eq
2881 and then Ekind (Entity (Name (Decl))) = E_Operator);
2882 end;
2884 else
2885 return False;
2886 end if;
2887 end Is_Unchecked_Union_Equality;
2889 -- If this is an indirect call through an Access_To_Subprogram
2890 -- with contract specifications, it is rewritten as a call to
2891 -- the corresponding Access_Subprogram_Wrapper with the same
2892 -- actuals, whose body contains a naked indirect call (which
2893 -- itself must not be rewritten, to prevent infinite recursion).
2895 Must_Rewrite_Indirect_Call : constant Boolean :=
2896 Ada_Version >= Ada_2022
2897 and then Nkind (Name (N)) = N_Explicit_Dereference
2898 and then Ekind (Etype (Name (N))) = E_Subprogram_Type
2899 and then Present
2900 (Access_Subprogram_Wrapper (Etype (Name (N))));
2902 Post_Call : List_Id;
2904 -- Start of processing for Expand_Call
2906 begin
2907 pragma Assert (Nkind (N) in N_Entry_Call_Statement
2908 | N_Function_Call
2909 | N_Procedure_Call_Statement);
2911 -- Check that this is not the call in the body of the access
2912 -- subprogram wrapper or the postconditions wrapper.
2914 if Must_Rewrite_Indirect_Call
2915 and then (not Is_Overloadable (Current_Scope)
2916 or else not (Is_Access_Subprogram_Wrapper (Current_Scope)
2917 or else
2918 (Chars (Current_Scope) = Name_uWrapped_Statements
2919 and then Is_Access_Subprogram_Wrapper
2920 (Scope (Current_Scope)))))
2921 then
2922 declare
2923 Loc : constant Source_Ptr := Sloc (N);
2924 Wrapper : constant Entity_Id :=
2925 Access_Subprogram_Wrapper (Etype (Name (N)));
2926 Ptr : constant Node_Id := Prefix (Name (N));
2927 Ptr_Type : constant Entity_Id := Etype (Ptr);
2928 Typ : constant Entity_Id := Etype (N);
2930 New_N : Node_Id;
2931 Parms : List_Id := Parameter_Associations (N);
2932 Ptr_Act : Node_Id;
2934 begin
2935 -- The last actual in the call is the pointer itself.
2936 -- If the aspect is inherited, convert the pointer to the
2937 -- parent type that specifies the contract.
2938 -- If the original access_to_subprogram has defaults for
2939 -- in_parameters, the call may include named associations, so
2940 -- we create one for the pointer as well.
2942 if Is_Derived_Type (Ptr_Type)
2943 and then Ptr_Type /= Etype (Last_Formal (Wrapper))
2944 then
2945 Ptr_Act :=
2946 Make_Type_Conversion (Loc,
2947 New_Occurrence_Of
2948 (Etype (Last_Formal (Wrapper)), Loc), Ptr);
2950 else
2951 Ptr_Act := Ptr;
2952 end if;
2954 -- Handle parameterless subprogram.
2956 if No (Parms) then
2957 Parms := New_List;
2958 end if;
2960 Append
2961 (Make_Parameter_Association (Loc,
2962 Selector_Name => Make_Identifier (Loc,
2963 Chars (Last_Formal (Wrapper))),
2964 Explicit_Actual_Parameter => Ptr_Act),
2965 Parms);
2967 if Nkind (N) = N_Procedure_Call_Statement then
2968 New_N := Make_Procedure_Call_Statement (Loc,
2969 Name => New_Occurrence_Of (Wrapper, Loc),
2970 Parameter_Associations => Parms);
2971 else
2972 New_N := Make_Function_Call (Loc,
2973 Name => New_Occurrence_Of (Wrapper, Loc),
2974 Parameter_Associations => Parms);
2975 end if;
2977 Rewrite (N, New_N);
2978 Analyze_And_Resolve (N, Typ);
2979 end;
2981 -- Case of a call to the predefined equality operator of an unchecked
2982 -- union type, which requires specific processing.
2984 elsif Is_Unchecked_Union_Equality (N) then
2985 declare
2986 Eq : constant Entity_Id := Entity (Name (N));
2988 begin
2989 Expand_Unchecked_Union_Equality (N);
2991 -- If the call was not rewritten as a raise, expand the actuals
2993 if Nkind (N) = N_Function_Call then
2994 pragma Assert (Check_Number_Of_Actuals (N, Eq));
2995 Expand_Actuals (N, Eq, Post_Call);
2996 pragma Assert (Is_Empty_List (Post_Call));
2997 end if;
2998 end;
3000 -- Normal case
3002 else
3003 Expand_Call_Helper (N, Post_Call);
3004 Insert_Post_Call_Actions (N, Post_Call);
3005 end if;
3006 end Expand_Call;
3008 ------------------------
3009 -- Expand_Call_Helper --
3010 ------------------------
3012 -- This procedure handles expansion of function calls and procedure call
3013 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
3014 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
3016 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
3017 -- Provide values of actuals for all formals in Extra_Formals list
3018 -- Replace "call" to enumeration literal function by literal itself
3019 -- Rewrite call to predefined operator as operator
3020 -- Replace actuals to in-out parameters that are numeric conversions,
3021 -- with explicit assignment to temporaries before and after the call.
3023 -- Note that the list of actuals has been filled with default expressions
3024 -- during semantic analysis of the call. Only the extra actuals required
3025 -- for the 'Constrained attribute and for accessibility checks are added
3026 -- at this point.
3028 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
3029 Loc : constant Source_Ptr := Sloc (N);
3030 Call_Node : Node_Id := N;
3031 Extra_Actuals : List_Id := No_List;
3032 Prev : Node_Id := Empty;
3034 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
3035 -- Adds one entry to the end of the actual parameter list. Used for
3036 -- default parameters and for extra actuals (for Extra_Formals). The
3037 -- argument is an N_Parameter_Association node.
3039 procedure Add_Cond_Expression_Extra_Actual (Formal : Entity_Id);
3040 -- Adds extra accessibility actuals in the case of a conditional
3041 -- expression corresponding to Formal.
3043 -- Note: Conditional expressions used as actuals for anonymous access
3044 -- formals complicate the process of propagating extra accessibility
3045 -- actuals and must be handled in a recursive fashion since they can
3046 -- be embedded within each other.
3048 procedure Add_Dummy_Build_In_Place_Actuals
3049 (Function_Id : Entity_Id;
3050 Num_Added_Extra_Actuals : Nat := 0);
3051 -- Adds dummy actuals for the BIP extra formals of the called function.
3052 -- Num_Added_Extra_Actuals is the number of non-BIP extra actuals added
3053 -- to the actuals immediately before calling this subprogram.
3055 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
3056 -- Adds an extra actual to the list of extra actuals. Expr is the
3057 -- expression for the value of the actual, EF is the entity for the
3058 -- extra formal.
3060 procedure Add_View_Conversion_Invariants
3061 (Formal : Entity_Id;
3062 Actual : Node_Id);
3063 -- Adds invariant checks for every intermediate type between the range
3064 -- of a view converted argument to its ancestor (from parent to child).
3066 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean;
3067 -- Try to constant-fold a predicate check, which often enough is a
3068 -- simple arithmetic expression that can be computed statically if
3069 -- its argument is static. This cleans up the output of CCG, even
3070 -- though useless predicate checks will be generally removed by
3071 -- back-end optimizations.
3073 procedure Check_Subprogram_Variant;
3074 -- Emit a call to the internally generated procedure with checks for
3075 -- aspect Subprogram_Variant, if present and enabled.
3077 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
3078 -- Within an instance, a type derived from an untagged formal derived
3079 -- type inherits from the original parent, not from the actual. The
3080 -- current derivation mechanism has the derived type inherit from the
3081 -- actual, which is only correct outside of the instance. If the
3082 -- subprogram is inherited, we test for this particular case through a
3083 -- convoluted tree traversal before setting the proper subprogram to be
3084 -- called.
3086 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
3087 -- Return true if E comes from an instance that is not yet frozen
3089 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean;
3090 -- Return True when E is a class-wide interface type or an access to
3091 -- a class-wide interface type.
3093 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
3094 -- Determine if Subp denotes a non-dispatching call to a Deep routine
3096 function New_Value (From : Node_Id) return Node_Id;
3097 -- From is the original Expression. New_Value is equivalent to a call
3098 -- to Duplicate_Subexpr with an explicit dereference when From is an
3099 -- access parameter.
3101 --------------------------
3102 -- Add_Actual_Parameter --
3103 --------------------------
3105 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
3106 Actual_Expr : constant Node_Id :=
3107 Explicit_Actual_Parameter (Insert_Param);
3109 begin
3110 -- Case of insertion is first named actual
3112 if No (Prev) or else
3113 Nkind (Parent (Prev)) /= N_Parameter_Association
3114 then
3115 Set_Next_Named_Actual
3116 (Insert_Param, First_Named_Actual (Call_Node));
3117 Set_First_Named_Actual (Call_Node, Actual_Expr);
3119 if No (Prev) then
3120 if No (Parameter_Associations (Call_Node)) then
3121 Set_Parameter_Associations (Call_Node, New_List);
3122 end if;
3124 Append (Insert_Param, Parameter_Associations (Call_Node));
3126 else
3127 Insert_After (Prev, Insert_Param);
3128 end if;
3130 -- Case of insertion is not first named actual
3132 else
3133 Set_Next_Named_Actual
3134 (Insert_Param, Next_Named_Actual (Parent (Prev)));
3135 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
3136 Append (Insert_Param, Parameter_Associations (Call_Node));
3137 end if;
3139 Prev := Actual_Expr;
3140 end Add_Actual_Parameter;
3142 --------------------------------------
3143 -- Add_Cond_Expression_Extra_Actual --
3144 --------------------------------------
3146 procedure Add_Cond_Expression_Extra_Actual
3147 (Formal : Entity_Id)
3149 Decl : Node_Id;
3150 Lvl : Entity_Id;
3152 procedure Insert_Level_Assign (Branch : Node_Id);
3153 -- Recursively add assignment of the level temporary on each branch
3154 -- while moving through nested conditional expressions.
3156 -------------------------
3157 -- Insert_Level_Assign --
3158 -------------------------
3160 procedure Insert_Level_Assign (Branch : Node_Id) is
3162 procedure Expand_Branch (Res_Assn : Node_Id);
3163 -- Perform expansion or iterate further within nested
3164 -- conditionals given the object declaration or assignment to
3165 -- result object created during expansion which represents a
3166 -- branch of the conditional expression.
3168 -------------------
3169 -- Expand_Branch --
3170 -------------------
3172 procedure Expand_Branch (Res_Assn : Node_Id) is
3173 begin
3174 pragma Assert (Nkind (Res_Assn) in
3175 N_Assignment_Statement |
3176 N_Object_Declaration);
3178 -- There are more nested conditional expressions so we must go
3179 -- deeper.
3181 if Nkind (Expression (Res_Assn)) = N_Expression_With_Actions
3182 and then
3183 Nkind (Original_Node (Expression (Res_Assn)))
3184 in N_Case_Expression | N_If_Expression
3185 then
3186 Insert_Level_Assign
3187 (Expression (Res_Assn));
3189 -- Add the level assignment
3191 else
3192 Insert_Before_And_Analyze (Res_Assn,
3193 Make_Assignment_Statement (Loc,
3194 Name => New_Occurrence_Of (Lvl, Loc),
3195 Expression =>
3196 Accessibility_Level
3197 (Expr => Expression (Res_Assn),
3198 Level => Dynamic_Level,
3199 Allow_Alt_Model => False)));
3200 end if;
3201 end Expand_Branch;
3203 Cond : Node_Id;
3204 Alt : Node_Id;
3206 -- Start of processing for Insert_Level_Assign
3208 begin
3209 -- Examine further nested conditionals
3211 pragma Assert (Nkind (Branch) =
3212 N_Expression_With_Actions);
3214 -- Find the relevant statement in the actions
3216 Cond := First (Actions (Branch));
3217 while Present (Cond) loop
3218 exit when Nkind (Cond) in N_Case_Statement | N_If_Statement;
3219 Next (Cond);
3220 end loop;
3222 -- The conditional expression may have been optimized away, so
3223 -- examine the actions in the branch.
3225 if No (Cond) then
3226 Expand_Branch (Last (Actions (Branch)));
3228 -- Iterate through if expression branches
3230 elsif Nkind (Cond) = N_If_Statement then
3231 Expand_Branch (Last (Then_Statements (Cond)));
3232 Expand_Branch (Last (Else_Statements (Cond)));
3234 -- Iterate through case alternatives
3236 elsif Nkind (Cond) = N_Case_Statement then
3238 Alt := First (Alternatives (Cond));
3239 while Present (Alt) loop
3240 Expand_Branch (Last (Statements (Alt)));
3241 Next (Alt);
3242 end loop;
3243 end if;
3244 end Insert_Level_Assign;
3246 -- Start of processing for cond expression case
3248 begin
3249 -- Create declaration of a temporary to store the accessibility
3250 -- level of each branch of the conditional expression.
3252 Lvl := Make_Temporary (Loc, 'L');
3253 Decl := Make_Object_Declaration (Loc,
3254 Defining_Identifier => Lvl,
3255 Object_Definition =>
3256 New_Occurrence_Of (Standard_Natural, Loc));
3258 -- Install the declaration and perform necessary expansion if we
3259 -- are dealing with a procedure call.
3261 if Nkind (Call_Node) = N_Procedure_Call_Statement then
3262 -- Generate:
3263 -- Lvl : Natural;
3264 -- Call (
3265 -- {do
3266 -- If_Exp_Res : Typ;
3267 -- if Cond then
3268 -- Lvl := 0; -- Access level
3269 -- If_Exp_Res := Exp;
3270 -- ...
3271 -- in If_Exp_Res end;},
3272 -- Lvl,
3273 -- ...
3274 -- )
3276 Insert_Before_And_Analyze (Call_Node, Decl);
3278 -- Ditto for a function call. Note that we do not wrap the function
3279 -- call into an expression with action to avoid bad interactions with
3280 -- Exp_Ch4.Process_Transient_In_Expression.
3282 else
3283 -- Generate:
3284 -- Lvl : Natural; -- placed above the function call
3285 -- ...
3286 -- Func_Call (
3287 -- {do
3288 -- If_Exp_Res : Typ
3289 -- if Cond then
3290 -- Lvl := 0; -- Access level
3291 -- If_Exp_Res := Exp;
3292 -- in If_Exp_Res end;},
3293 -- Lvl,
3294 -- ...
3295 -- )
3297 Insert_Action (Call_Node, Decl);
3298 Analyze (Call_Node);
3299 end if;
3301 -- Decorate the conditional expression with assignments to our level
3302 -- temporary.
3304 Insert_Level_Assign (Prev);
3306 -- Make our level temporary the passed actual
3308 Add_Extra_Actual
3309 (Expr => New_Occurrence_Of (Lvl, Loc),
3310 EF => Extra_Accessibility (Formal));
3311 end Add_Cond_Expression_Extra_Actual;
3313 --------------------------------------
3314 -- Add_Dummy_Build_In_Place_Actuals --
3315 --------------------------------------
3317 procedure Add_Dummy_Build_In_Place_Actuals
3318 (Function_Id : Entity_Id;
3319 Num_Added_Extra_Actuals : Nat := 0)
3321 Loc : constant Source_Ptr := Sloc (Call_Node);
3322 Formal : Entity_Id := Extra_Formals (Function_Id);
3323 Actual : Node_Id;
3324 Skip_Extra : Nat;
3326 begin
3327 -- We never generate extra formals if expansion is not active because
3328 -- we don't need them unless we are generating code. No action needed
3329 -- for thunks since they propagate all their extra actuals.
3331 if not Expander_Active
3332 or else Is_Thunk (Current_Scope)
3333 then
3334 return;
3335 end if;
3337 -- Skip already-added non-BIP extra actuals
3339 Skip_Extra := Num_Added_Extra_Actuals;
3340 while Skip_Extra > 0 loop
3341 pragma Assert (not Is_Build_In_Place_Entity (Formal));
3342 Formal := Extra_Formal (Formal);
3343 Skip_Extra := Skip_Extra - 1;
3344 end loop;
3346 -- Append the dummy BIP extra actuals
3348 while Present (Formal) loop
3349 pragma Assert (Is_Build_In_Place_Entity (Formal));
3351 -- BIPalloc
3353 if Etype (Formal) = Standard_Natural then
3354 Actual := Make_Integer_Literal (Loc, Uint_0);
3355 Analyze_And_Resolve (Actual, Standard_Natural);
3356 Add_Extra_Actual_To_Call (N, Formal, Actual);
3358 -- BIPtaskmaster
3360 elsif Etype (Formal) = Standard_Integer then
3361 Actual := Make_Integer_Literal (Loc, Uint_0);
3362 Analyze_And_Resolve (Actual, Standard_Integer);
3363 Add_Extra_Actual_To_Call (N, Formal, Actual);
3365 -- BIPstoragepool, BIPfinalizationmaster, BIPactivationchain,
3366 -- and BIPaccess.
3368 elsif Is_Access_Type (Etype (Formal)) then
3369 Actual := Make_Null (Loc);
3370 Analyze_And_Resolve (Actual, Etype (Formal));
3371 Add_Extra_Actual_To_Call (N, Formal, Actual);
3373 else
3374 pragma Assert (False);
3375 raise Program_Error;
3376 end if;
3378 Formal := Extra_Formal (Formal);
3379 end loop;
3381 -- Mark the call as processed build-in-place call; required
3382 -- to avoid adding the extra formals twice.
3384 Set_Is_Expanded_Build_In_Place_Call (Call_Node);
3386 pragma Assert (Check_Number_Of_Actuals (Call_Node, Function_Id));
3387 pragma Assert (Check_BIP_Actuals (Call_Node, Function_Id));
3388 end Add_Dummy_Build_In_Place_Actuals;
3390 ----------------------
3391 -- Add_Extra_Actual --
3392 ----------------------
3394 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
3395 Loc : constant Source_Ptr := Sloc (Expr);
3397 begin
3398 if Extra_Actuals = No_List then
3399 Extra_Actuals := New_List;
3400 Set_Parent (Extra_Actuals, Call_Node);
3401 end if;
3403 Append_To (Extra_Actuals,
3404 Make_Parameter_Association (Loc,
3405 Selector_Name => New_Occurrence_Of (EF, Loc),
3406 Explicit_Actual_Parameter => Expr));
3408 Analyze_And_Resolve (Expr, Etype (EF));
3410 if Nkind (Call_Node) = N_Function_Call then
3411 Set_Is_Accessibility_Actual (Parent (Expr));
3412 end if;
3413 end Add_Extra_Actual;
3415 ------------------------------------
3416 -- Add_View_Conversion_Invariants --
3417 ------------------------------------
3419 procedure Add_View_Conversion_Invariants
3420 (Formal : Entity_Id;
3421 Actual : Node_Id)
3423 Arg : Entity_Id;
3424 Curr_Typ : Entity_Id;
3425 Inv_Checks : List_Id;
3426 Par_Typ : Entity_Id;
3428 begin
3429 Inv_Checks := No_List;
3431 -- Extract the argument from a potentially nested set of view
3432 -- conversions.
3434 Arg := Actual;
3435 while Nkind (Arg) = N_Type_Conversion loop
3436 Arg := Expression (Arg);
3437 end loop;
3439 -- Move up the derivation chain starting with the type of the formal
3440 -- parameter down to the type of the actual object.
3442 Curr_Typ := Empty;
3443 Par_Typ := Etype (Arg);
3444 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
3445 Curr_Typ := Par_Typ;
3447 if Has_Invariants (Curr_Typ)
3448 and then Present (Invariant_Procedure (Curr_Typ))
3449 then
3450 -- Verify the invariant of the current type. Generate:
3452 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
3454 Prepend_New_To (Inv_Checks,
3455 Make_Procedure_Call_Statement (Loc,
3456 Name =>
3457 New_Occurrence_Of
3458 (Invariant_Procedure (Curr_Typ), Loc),
3459 Parameter_Associations => New_List (
3460 Make_Type_Conversion (Loc,
3461 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
3462 Expression => New_Copy_Tree (Arg)))));
3463 end if;
3465 Par_Typ := Base_Type (Etype (Curr_Typ));
3466 end loop;
3468 -- If the node is a function call the generated tests have been
3469 -- already handled in Insert_Post_Call_Actions.
3471 if not Is_Empty_List (Inv_Checks)
3472 and then Nkind (Call_Node) = N_Procedure_Call_Statement
3473 then
3474 Insert_Actions_After (Call_Node, Inv_Checks);
3475 end if;
3476 end Add_View_Conversion_Invariants;
3478 -----------------------------
3479 -- Can_Fold_Predicate_Call --
3480 -----------------------------
3482 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean is
3483 Actual : Node_Id;
3485 function Augments_Other_Dynamic_Predicate (DP_Aspect_Spec : Node_Id)
3486 return Boolean;
3487 -- Given a Dynamic_Predicate aspect aspecification for a
3488 -- discrete type, returns True iff another DP specification
3489 -- applies (indirectly, via a subtype type or a derived type)
3490 -- to the same entity that this aspect spec applies to.
3492 function May_Fold (N : Node_Id) return Traverse_Result;
3493 -- The predicate expression is foldable if it only contains operators
3494 -- and literals. During this check, we also replace occurrences of
3495 -- the formal of the constructed predicate function with the static
3496 -- value of the actual. This is done on a copy of the analyzed
3497 -- expression for the predicate.
3499 --------------------------------------
3500 -- Augments_Other_Dynamic_Predicate --
3501 --------------------------------------
3503 function Augments_Other_Dynamic_Predicate (DP_Aspect_Spec : Node_Id)
3504 return Boolean
3506 Aspect_Bearer : Entity_Id := Entity (DP_Aspect_Spec);
3507 begin
3508 loop
3509 Aspect_Bearer := Nearest_Ancestor (Aspect_Bearer);
3511 if No (Aspect_Bearer) then
3512 return False;
3513 end if;
3515 declare
3516 Aspect_Spec : constant Node_Id :=
3517 Find_Aspect (Aspect_Bearer, Aspect_Dynamic_Predicate);
3518 begin
3519 if Present (Aspect_Spec)
3520 and then Aspect_Spec /= DP_Aspect_Spec
3521 then
3522 -- Found another Dynamic_Predicate aspect spec
3523 return True;
3524 end if;
3525 end;
3526 end loop;
3527 end Augments_Other_Dynamic_Predicate;
3529 --------------
3530 -- May_Fold --
3531 --------------
3533 function May_Fold (N : Node_Id) return Traverse_Result is
3534 begin
3535 case Nkind (N) is
3536 when N_Op =>
3537 return OK;
3539 when N_Expanded_Name
3540 | N_Identifier
3542 if Ekind (Entity (N)) = E_In_Parameter
3543 and then Entity (N) = First_Entity (P)
3544 then
3545 Rewrite (N, New_Copy (Actual));
3546 Set_Is_Static_Expression (N);
3547 return OK;
3549 elsif Ekind (Entity (N)) = E_Enumeration_Literal then
3550 return OK;
3552 else
3553 return Abandon;
3554 end if;
3556 when N_Case_Expression
3557 | N_If_Expression
3559 return OK;
3561 when N_Integer_Literal =>
3562 return OK;
3564 when others =>
3565 return Abandon;
3566 end case;
3567 end May_Fold;
3569 function Try_Fold is new Traverse_Func (May_Fold);
3571 -- Other Local variables
3573 Subt : constant Entity_Id := Etype (First_Entity (P));
3574 Aspect : Node_Id;
3575 Pred : Node_Id;
3577 -- Start of processing for Can_Fold_Predicate_Call
3579 begin
3580 -- Folding is only interesting if the actual is static and its type
3581 -- has a Dynamic_Predicate aspect. For CodePeer we preserve the
3582 -- function call.
3584 Actual := First (Parameter_Associations (Call_Node));
3585 Aspect := Find_Aspect (Subt, Aspect_Dynamic_Predicate);
3587 -- If actual is a declared constant, retrieve its value
3589 if Is_Entity_Name (Actual)
3590 and then Ekind (Entity (Actual)) = E_Constant
3591 then
3592 Actual := Constant_Value (Entity (Actual));
3593 end if;
3595 if No (Actual)
3596 or else Nkind (Actual) /= N_Integer_Literal
3597 or else not Has_Dynamic_Predicate_Aspect (Subt)
3598 or else No (Aspect)
3600 -- Do not fold if multiple applicable predicate aspects
3601 or else Has_Ghost_Predicate_Aspect (Subt)
3602 or else Has_Aspect (Subt, Aspect_Static_Predicate)
3603 or else Has_Aspect (Subt, Aspect_Predicate)
3604 or else Augments_Other_Dynamic_Predicate (Aspect)
3605 or else CodePeer_Mode
3606 then
3607 return False;
3608 end if;
3610 -- Retrieve the analyzed expression for the predicate
3612 Pred := New_Copy_Tree (Expression (Aspect));
3614 if Try_Fold (Pred) = OK then
3615 Rewrite (Call_Node, Pred);
3616 Analyze_And_Resolve (Call_Node, Standard_Boolean);
3617 return True;
3619 -- Otherwise continue the expansion of the function call
3621 else
3622 return False;
3623 end if;
3624 end Can_Fold_Predicate_Call;
3626 ------------------------------
3627 -- Check_Subprogram_Variant --
3628 ------------------------------
3630 procedure Check_Subprogram_Variant is
3632 function Duplicate_Params_Without_Extra_Actuals
3633 (Call_Node : Node_Id) return List_Id;
3634 -- Duplicate actual parameters of Call_Node into New_Call without
3635 -- extra actuals.
3637 --------------------------------------------
3638 -- Duplicate_Params_Without_Extra_Actuals --
3639 --------------------------------------------
3641 function Duplicate_Params_Without_Extra_Actuals
3642 (Call_Node : Node_Id) return List_Id
3644 Proc_Id : constant Entity_Id := Entity (Name (Call_Node));
3645 Actuals : constant List_Id := Parameter_Associations (Call_Node);
3646 NL : List_Id;
3647 Actual : Node_Or_Entity_Id;
3648 Formal : Entity_Id;
3650 begin
3651 if Actuals = No_List then
3652 return No_List;
3654 else
3655 NL := New_List;
3656 Actual := First (Actuals);
3657 Formal := First_Formal (Proc_Id);
3659 while Present (Formal)
3660 and then Formal /= Extra_Formals (Proc_Id)
3661 loop
3662 Append (New_Copy (Actual), NL);
3663 Next (Actual);
3665 Next_Formal (Formal);
3666 end loop;
3668 return NL;
3669 end if;
3670 end Duplicate_Params_Without_Extra_Actuals;
3672 -- Local variables
3674 Variant_Prag : constant Node_Id :=
3675 Get_Pragma (Current_Scope, Pragma_Subprogram_Variant);
3677 New_Call : Node_Id;
3678 Pragma_Arg1 : Node_Id;
3679 Variant_Proc : Entity_Id;
3681 begin
3682 if Present (Variant_Prag) and then Is_Checked (Variant_Prag) then
3684 Pragma_Arg1 :=
3685 Expression (First (Pragma_Argument_Associations (Variant_Prag)));
3687 -- If pragma parameter is still an aggregate, it comes from a
3688 -- structural variant, which is not expanded and ignored for
3689 -- run-time execution.
3691 if Nkind (Pragma_Arg1) = N_Aggregate then
3692 pragma Assert
3693 (Chars
3694 (First
3695 (Choices
3696 (First (Component_Associations (Pragma_Arg1))))) =
3697 Name_Structural);
3698 return;
3699 end if;
3701 -- Otherwise, analysis of the pragma rewrites its argument with a
3702 -- reference to the internally generated procedure.
3704 Variant_Proc := Entity (Pragma_Arg1);
3706 New_Call :=
3707 Make_Procedure_Call_Statement (Loc,
3708 Name =>
3709 New_Occurrence_Of (Variant_Proc, Loc),
3710 Parameter_Associations =>
3711 Duplicate_Params_Without_Extra_Actuals (Call_Node));
3713 Insert_Action (Call_Node, New_Call);
3715 pragma Assert (Etype (New_Call) /= Any_Type
3716 or else Serious_Errors_Detected > 0);
3717 end if;
3718 end Check_Subprogram_Variant;
3720 ---------------------------
3721 -- Inherited_From_Formal --
3722 ---------------------------
3724 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
3725 Par : Entity_Id;
3726 Gen_Par : Entity_Id;
3727 Gen_Prim : Elist_Id;
3728 Elmt : Elmt_Id;
3729 Indic : Node_Id;
3731 begin
3732 -- If the operation is inherited, it is attached to the corresponding
3733 -- type derivation. If the parent in the derivation is a generic
3734 -- actual, it is a subtype of the actual, and we have to recover the
3735 -- original derived type declaration to find the proper parent.
3737 if Nkind (Parent (S)) /= N_Full_Type_Declaration
3738 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
3739 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
3740 N_Derived_Type_Definition
3741 or else not In_Instance
3742 then
3743 return Empty;
3745 else
3746 Indic :=
3747 Subtype_Indication
3748 (Type_Definition (Original_Node (Parent (S))));
3750 if Nkind (Indic) = N_Subtype_Indication then
3751 Par := Entity (Subtype_Mark (Indic));
3752 else
3753 Par := Entity (Indic);
3754 end if;
3755 end if;
3757 if not Is_Generic_Actual_Type (Par)
3758 or else Is_Tagged_Type (Par)
3759 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
3760 or else not In_Open_Scopes (Scope (Par))
3761 then
3762 return Empty;
3763 else
3764 Gen_Par := Generic_Parent_Type (Parent (Par));
3765 end if;
3767 -- If the actual has no generic parent type, the formal is not
3768 -- a formal derived type, so nothing to inherit.
3770 if No (Gen_Par) then
3771 return Empty;
3772 end if;
3774 -- If the generic parent type is still the generic type, this is a
3775 -- private formal, not a derived formal, and there are no operations
3776 -- inherited from the formal.
3778 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
3779 return Empty;
3780 end if;
3782 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
3784 Elmt := First_Elmt (Gen_Prim);
3785 while Present (Elmt) loop
3786 if Chars (Node (Elmt)) = Chars (S) then
3787 declare
3788 F1 : Entity_Id;
3789 F2 : Entity_Id;
3791 begin
3792 F1 := First_Formal (S);
3793 F2 := First_Formal (Node (Elmt));
3794 while Present (F1)
3795 and then Present (F2)
3796 loop
3797 if Etype (F1) = Etype (F2)
3798 or else Etype (F2) = Gen_Par
3799 then
3800 Next_Formal (F1);
3801 Next_Formal (F2);
3802 else
3803 Next_Elmt (Elmt);
3804 exit; -- not the right subprogram
3805 end if;
3807 return Node (Elmt);
3808 end loop;
3809 end;
3811 else
3812 Next_Elmt (Elmt);
3813 end if;
3814 end loop;
3816 raise Program_Error;
3817 end Inherited_From_Formal;
3819 --------------------------
3820 -- In_Unfrozen_Instance --
3821 --------------------------
3823 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
3824 S : Entity_Id;
3826 begin
3827 S := E;
3828 while Present (S) and then S /= Standard_Standard loop
3829 if Is_Generic_Instance (S)
3830 and then Present (Freeze_Node (S))
3831 and then not Analyzed (Freeze_Node (S))
3832 then
3833 return True;
3834 end if;
3836 S := Scope (S);
3837 end loop;
3839 return False;
3840 end In_Unfrozen_Instance;
3842 ----------------------------------
3843 -- Is_Class_Wide_Interface_Type --
3844 ----------------------------------
3846 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean is
3847 DDT : Entity_Id;
3848 Typ : Entity_Id := E;
3850 begin
3851 if Has_Non_Limited_View (Typ) then
3852 Typ := Non_Limited_View (Typ);
3853 end if;
3855 if Ekind (Typ) = E_Anonymous_Access_Type then
3856 DDT := Directly_Designated_Type (Typ);
3858 if Has_Non_Limited_View (DDT) then
3859 DDT := Non_Limited_View (DDT);
3860 end if;
3862 return Is_Class_Wide_Type (DDT) and then Is_Interface (DDT);
3863 else
3864 return Is_Class_Wide_Type (Typ) and then Is_Interface (Typ);
3865 end if;
3866 end Is_Class_Wide_Interface_Type;
3868 -------------------------
3869 -- Is_Direct_Deep_Call --
3870 -------------------------
3872 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
3873 begin
3874 if Is_TSS (Subp, TSS_Deep_Adjust)
3875 or else Is_TSS (Subp, TSS_Deep_Finalize)
3876 or else Is_TSS (Subp, TSS_Deep_Initialize)
3877 then
3878 declare
3879 Actual : Node_Id;
3880 Formal : Entity_Id;
3882 begin
3883 Actual := First (Parameter_Associations (Call_Node));
3884 Formal := First_Formal (Subp);
3885 while Present (Actual)
3886 and then Present (Formal)
3887 loop
3888 if Nkind (Actual) = N_Identifier
3889 and then Is_Controlling_Actual (Actual)
3890 and then Etype (Actual) = Etype (Formal)
3891 then
3892 return True;
3893 end if;
3895 Next (Actual);
3896 Next_Formal (Formal);
3897 end loop;
3898 end;
3899 end if;
3901 return False;
3902 end Is_Direct_Deep_Call;
3904 ---------------
3905 -- New_Value --
3906 ---------------
3908 function New_Value (From : Node_Id) return Node_Id is
3909 Res : constant Node_Id := Duplicate_Subexpr (From);
3910 begin
3911 if Is_Access_Type (Etype (From)) then
3912 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
3913 else
3914 return Res;
3915 end if;
3916 end New_Value;
3918 -- Local variables
3920 Remote : constant Boolean := Is_Remote_Call (Call_Node);
3921 Actual : Node_Id;
3922 Formal : Entity_Id;
3923 Orig_Subp : Entity_Id := Empty;
3924 Param_Count : Positive;
3925 Parent_Formal : Entity_Id;
3926 Parent_Subp : Entity_Id;
3927 Scop : Entity_Id;
3928 Subp : Entity_Id;
3930 CW_Interface_Formals_Present : Boolean := False;
3932 -- Start of processing for Expand_Call_Helper
3934 begin
3935 Post_Call := New_List;
3937 -- Expand the function or procedure call if the first actual has a
3938 -- declared dimension aspect, and the subprogram is declared in one
3939 -- of the dimension I/O packages.
3941 if Ada_Version >= Ada_2012
3942 and then Nkind (Call_Node) in N_Subprogram_Call
3943 and then Present (Parameter_Associations (Call_Node))
3944 then
3945 Expand_Put_Call_With_Symbol (Call_Node);
3946 end if;
3948 -- Ignore if previous error
3950 if Nkind (Call_Node) in N_Has_Etype
3951 and then Etype (Call_Node) = Any_Type
3952 then
3953 return;
3954 end if;
3956 -- Call using access to subprogram with explicit dereference
3958 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3959 Subp := Etype (Name (Call_Node));
3960 Parent_Subp := Empty;
3962 -- Case of call to simple entry, where the Name is a selected component
3963 -- whose prefix is the task, and whose selector name is the entry name
3965 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
3966 Subp := Entity (Selector_Name (Name (Call_Node)));
3967 Parent_Subp := Empty;
3969 -- Case of call to member of entry family, where Name is an indexed
3970 -- component, with the prefix being a selected component giving the
3971 -- task and entry family name, and the index being the entry index.
3973 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
3974 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
3975 Parent_Subp := Empty;
3977 -- Normal case
3979 else
3980 Subp := Entity (Name (Call_Node));
3981 Parent_Subp := Alias (Subp);
3983 -- Replace call to Raise_Exception by call to Raise_Exception_Always
3984 -- if we can tell that the first parameter cannot possibly be null.
3985 -- This improves efficiency by avoiding a run-time test.
3987 -- We do not do this if Raise_Exception_Always does not exist, which
3988 -- can happen in configurable run time profiles which provide only a
3989 -- Raise_Exception.
3991 if Is_RTE (Subp, RE_Raise_Exception)
3992 and then RTE_Available (RE_Raise_Exception_Always)
3993 then
3994 declare
3995 FA : constant Node_Id :=
3996 Original_Node (First_Actual (Call_Node));
3998 begin
3999 -- The case we catch is where the first argument is obtained
4000 -- using the Identity attribute (which must always be
4001 -- non-null).
4003 if Nkind (FA) = N_Attribute_Reference
4004 and then Attribute_Name (FA) = Name_Identity
4005 then
4006 Subp := RTE (RE_Raise_Exception_Always);
4007 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
4008 end if;
4009 end;
4010 end if;
4012 if Ekind (Subp) = E_Entry then
4013 Parent_Subp := Empty;
4014 end if;
4015 end if;
4017 -- Ensure that the called subprogram has all its formals
4019 if not Is_Frozen (Subp) then
4020 Create_Extra_Formals (Subp);
4021 end if;
4023 -- Ada 2005 (AI-345): We have a procedure call as a triggering
4024 -- alternative in an asynchronous select or as an entry call in
4025 -- a conditional or timed select. Check whether the procedure call
4026 -- is a renaming of an entry and rewrite it as an entry call.
4028 if Ada_Version >= Ada_2005
4029 and then Nkind (Call_Node) = N_Procedure_Call_Statement
4030 and then
4031 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
4032 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
4033 or else
4034 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
4035 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
4036 then
4037 declare
4038 Ren_Decl : Node_Id;
4039 Ren_Root : Entity_Id := Subp;
4041 begin
4042 -- This may be a chain of renamings, find the root
4044 if Present (Alias (Ren_Root)) then
4045 Ren_Root := Alias (Ren_Root);
4046 end if;
4048 if Present (Parent (Ren_Root))
4049 and then Present (Original_Node (Parent (Parent (Ren_Root))))
4050 then
4051 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
4053 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
4054 Rewrite (Call_Node,
4055 Make_Entry_Call_Statement (Loc,
4056 Name =>
4057 New_Copy_Tree (Name (Ren_Decl)),
4058 Parameter_Associations =>
4059 New_Copy_List_Tree
4060 (Parameter_Associations (Call_Node))));
4062 return;
4063 end if;
4064 end if;
4065 end;
4066 end if;
4068 -- If this is a call to a predicate function, try to constant fold it
4070 if Nkind (Call_Node) = N_Function_Call
4071 and then Is_Entity_Name (Name (Call_Node))
4072 and then Is_Predicate_Function (Subp)
4073 and then Can_Fold_Predicate_Call (Subp)
4074 then
4075 return;
4076 end if;
4078 if Transform_Function_Array
4079 and then Nkind (Call_Node) = N_Function_Call
4080 and then Is_Entity_Name (Name (Call_Node))
4081 then
4082 declare
4083 Func_Id : constant Entity_Id :=
4084 Ultimate_Alias (Entity (Name (Call_Node)));
4085 begin
4086 -- When generating C code, transform a function call that returns
4087 -- a constrained array type into procedure form.
4089 if Rewritten_For_C (Func_Id) then
4091 -- For internally generated calls ensure that they reference
4092 -- the entity of the spec of the called function (needed since
4093 -- the expander may generate calls using the entity of their
4094 -- body).
4096 if not Comes_From_Source (Call_Node)
4097 and then Nkind (Unit_Declaration_Node (Func_Id)) =
4098 N_Subprogram_Body
4099 then
4100 Set_Entity (Name (Call_Node),
4101 Corresponding_Function
4102 (Corresponding_Procedure (Func_Id)));
4103 end if;
4105 Rewrite_Function_Call_For_C (Call_Node);
4106 return;
4108 -- Also introduce a temporary for functions that return a record
4109 -- called within another procedure or function call, since records
4110 -- are passed by pointer in the generated C code, and we cannot
4111 -- take a pointer from a subprogram call.
4113 elsif Modify_Tree_For_C
4114 and then Nkind (Parent (Call_Node)) in N_Subprogram_Call
4115 and then Is_Record_Type (Etype (Func_Id))
4116 then
4117 declare
4118 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
4119 Decl : Node_Id;
4121 begin
4122 -- Generate:
4123 -- Temp : ... := Func_Call (...);
4125 Decl :=
4126 Make_Object_Declaration (Loc,
4127 Defining_Identifier => Temp_Id,
4128 Object_Definition =>
4129 New_Occurrence_Of (Etype (Func_Id), Loc),
4130 Expression =>
4131 Make_Function_Call (Loc,
4132 Name =>
4133 New_Occurrence_Of (Func_Id, Loc),
4134 Parameter_Associations =>
4135 Parameter_Associations (Call_Node)));
4137 Insert_Action (Parent (Call_Node), Decl);
4138 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
4139 return;
4140 end;
4141 end if;
4142 end;
4143 end if;
4145 -- First step, compute extra actuals, corresponding to any Extra_Formals
4146 -- present. Note that we do not access Extra_Formals directly, instead
4147 -- we simply note the presence of the extra formals as we process the
4148 -- regular formals collecting corresponding actuals in Extra_Actuals.
4150 -- We also generate any required range checks for actuals for in formals
4151 -- as we go through the loop, since this is a convenient place to do it.
4152 -- (Though it seems that this would be better done in Expand_Actuals???)
4154 -- Special case: Thunks must not compute the extra actuals; they must
4155 -- just propagate to the target primitive their extra actuals.
4157 if Is_Thunk (Current_Scope)
4158 and then Thunk_Entity (Current_Scope) = Subp
4159 and then Present (Extra_Formals (Subp))
4160 then
4161 pragma Assert (Extra_Formals_Match_OK (Current_Scope, Subp));
4163 declare
4164 Target_Formal : Entity_Id;
4165 Thunk_Formal : Entity_Id;
4167 begin
4168 Target_Formal := Extra_Formals (Subp);
4169 Thunk_Formal := Extra_Formals (Current_Scope);
4170 while Present (Target_Formal) loop
4171 Add_Extra_Actual
4172 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
4173 EF => Thunk_Formal);
4175 Target_Formal := Extra_Formal (Target_Formal);
4176 Thunk_Formal := Extra_Formal (Thunk_Formal);
4177 end loop;
4179 while Is_Non_Empty_List (Extra_Actuals) loop
4180 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4181 end loop;
4183 -- Mark the call as processed build-in-place call; required
4184 -- to avoid adding the extra formals twice.
4186 if Nkind (Call_Node) = N_Function_Call then
4187 Set_Is_Expanded_Build_In_Place_Call (Call_Node);
4188 end if;
4190 Expand_Actuals (Call_Node, Subp, Post_Call);
4191 pragma Assert (Is_Empty_List (Post_Call));
4192 pragma Assert (Check_Number_Of_Actuals (Call_Node, Subp));
4193 pragma Assert (Check_BIP_Actuals (Call_Node, Subp));
4194 return;
4195 end;
4196 end if;
4198 Formal := First_Formal (Subp);
4199 Actual := First_Actual (Call_Node);
4200 Param_Count := 1;
4201 while Present (Formal) loop
4202 -- Prepare to examine current entry
4204 Prev := Actual;
4206 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
4207 -- to expand it in a further round.
4209 CW_Interface_Formals_Present :=
4210 CW_Interface_Formals_Present
4211 or else Is_Class_Wide_Interface_Type (Etype (Formal));
4213 -- Create possible extra actual for constrained case. Usually, the
4214 -- extra actual is of the form actual'constrained, but since this
4215 -- attribute is only available for unconstrained records, TRUE is
4216 -- expanded if the type of the formal happens to be constrained (for
4217 -- instance when this procedure is inherited from an unconstrained
4218 -- record to a constrained one) or if the actual has no discriminant
4219 -- (its type is constrained). An exception to this is the case of a
4220 -- private type without discriminants. In this case we pass FALSE
4221 -- because the object has underlying discriminants with defaults.
4223 if Present (Extra_Constrained (Formal)) then
4224 if Is_Private_Type (Etype (Prev))
4225 and then not Has_Discriminants (Base_Type (Etype (Prev)))
4226 then
4227 Add_Extra_Actual
4228 (Expr => New_Occurrence_Of (Standard_False, Loc),
4229 EF => Extra_Constrained (Formal));
4231 elsif Is_Constrained (Etype (Formal))
4232 or else not Has_Discriminants (Etype (Prev))
4233 then
4234 Add_Extra_Actual
4235 (Expr => New_Occurrence_Of (Standard_True, Loc),
4236 EF => Extra_Constrained (Formal));
4238 -- Do not produce extra actuals for Unchecked_Union parameters.
4239 -- Jump directly to the end of the loop.
4241 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
4242 goto Skip_Extra_Actual_Generation;
4244 else
4245 -- If the actual is a type conversion, then the constrained
4246 -- test applies to the actual, not the target type.
4248 declare
4249 Act_Prev : Node_Id;
4251 begin
4252 -- Test for unchecked conversions as well, which can occur
4253 -- as out parameter actuals on calls to stream procedures.
4255 Act_Prev := Prev;
4256 while Nkind (Act_Prev) in N_Type_Conversion
4257 | N_Unchecked_Type_Conversion
4258 loop
4259 Act_Prev := Expression (Act_Prev);
4260 end loop;
4262 -- If the expression is a conversion of a dereference, this
4263 -- is internally generated code that manipulates addresses,
4264 -- e.g. when building interface tables. No check should
4265 -- occur in this case, and the discriminated object is not
4266 -- directly at hand.
4268 if not Comes_From_Source (Actual)
4269 and then Nkind (Actual) = N_Unchecked_Type_Conversion
4270 and then Nkind (Act_Prev) = N_Explicit_Dereference
4271 then
4272 Add_Extra_Actual
4273 (Expr => New_Occurrence_Of (Standard_False, Loc),
4274 EF => Extra_Constrained (Formal));
4276 else
4277 Add_Extra_Actual
4278 (Expr =>
4279 Make_Attribute_Reference (Sloc (Prev),
4280 Prefix =>
4281 Duplicate_Subexpr_No_Checks
4282 (Act_Prev, Name_Req => True),
4283 Attribute_Name => Name_Constrained),
4284 EF => Extra_Constrained (Formal));
4285 end if;
4286 end;
4287 end if;
4288 end if;
4290 -- Create possible extra actual for accessibility level
4292 if Present (Extra_Accessibility (Formal)) then
4293 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
4294 -- accessibility levels.
4296 if Is_Thunk (Current_Scope) then
4297 declare
4298 Parm_Ent : Entity_Id;
4300 begin
4301 if Is_Controlling_Actual (Actual) then
4303 -- Find the corresponding actual of the thunk
4305 Parm_Ent := First_Entity (Current_Scope);
4306 for J in 2 .. Param_Count loop
4307 Next_Entity (Parm_Ent);
4308 end loop;
4310 -- Handle unchecked conversion of access types generated
4311 -- in thunks (cf. Expand_Interface_Thunk).
4313 elsif Is_Access_Type (Etype (Actual))
4314 and then Nkind (Actual) = N_Unchecked_Type_Conversion
4315 then
4316 Parm_Ent := Entity (Expression (Actual));
4318 else pragma Assert (Is_Entity_Name (Actual));
4319 Parm_Ent := Entity (Actual);
4320 end if;
4322 Add_Extra_Actual
4323 (Expr => Accessibility_Level
4324 (Expr => Parm_Ent,
4325 Level => Dynamic_Level,
4326 Allow_Alt_Model => False),
4327 EF => Extra_Accessibility (Formal));
4328 end;
4330 -- Conditional expressions
4332 elsif Nkind (Prev) = N_Expression_With_Actions
4333 and then Nkind (Original_Node (Prev)) in
4334 N_If_Expression | N_Case_Expression
4335 then
4336 Add_Cond_Expression_Extra_Actual (Formal);
4338 -- Internal constant generated to remove side effects (normally
4339 -- from the expansion of dispatching calls).
4341 -- First verify the actual is internal
4343 elsif not Comes_From_Source (Prev)
4344 and then not Is_Rewrite_Substitution (Prev)
4346 -- Next check that the actual is a constant
4348 and then Nkind (Prev) = N_Identifier
4349 and then Ekind (Entity (Prev)) = E_Constant
4350 and then Nkind (Parent (Entity (Prev))) = N_Object_Declaration
4351 then
4352 -- Generate the accessibility level based on the expression in
4353 -- the constant's declaration.
4355 Add_Extra_Actual
4356 (Expr => Accessibility_Level
4357 (Expr => Expression
4358 (Parent (Entity (Prev))),
4359 Level => Dynamic_Level,
4360 Allow_Alt_Model => False),
4361 EF => Extra_Accessibility (Formal));
4363 -- Normal case
4365 else
4366 Add_Extra_Actual
4367 (Expr => Accessibility_Level
4368 (Expr => Prev,
4369 Level => Dynamic_Level,
4370 Allow_Alt_Model => False),
4371 EF => Extra_Accessibility (Formal));
4372 end if;
4373 end if;
4375 -- Perform the check of 4.6(49) that prevents a null value from being
4376 -- passed as an actual to an access parameter. Note that the check
4377 -- is elided in the common cases of passing an access attribute or
4378 -- access parameter as an actual. Also, we currently don't enforce
4379 -- this check for expander-generated actuals and when -gnatdj is set.
4381 if Ada_Version >= Ada_2005 then
4383 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
4384 -- the intent of 6.4.1(13) is that null-exclusion checks should
4385 -- not be done for 'out' parameters, even though it refers only
4386 -- to constraint checks, and a null_exclusion is not a constraint.
4387 -- Note that AI05-0196-1 corrects this mistake in the RM.
4389 if Is_Access_Type (Etype (Formal))
4390 and then Can_Never_Be_Null (Etype (Formal))
4391 and then Ekind (Formal) /= E_Out_Parameter
4392 and then Nkind (Prev) /= N_Raise_Constraint_Error
4393 and then (Known_Null (Prev)
4394 or else not Can_Never_Be_Null (Etype (Prev)))
4395 then
4396 Install_Null_Excluding_Check (Prev);
4397 end if;
4399 -- Ada_Version < Ada_2005
4401 else
4402 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
4403 or else Access_Checks_Suppressed (Subp)
4404 then
4405 null;
4407 elsif Debug_Flag_J then
4408 null;
4410 elsif not Comes_From_Source (Prev) then
4411 null;
4413 elsif Is_Entity_Name (Prev)
4414 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
4415 then
4416 null;
4418 elsif Nkind (Prev) in N_Allocator | N_Attribute_Reference then
4419 null;
4421 else
4422 Install_Null_Excluding_Check (Prev);
4423 end if;
4424 end if;
4426 -- Perform appropriate validity checks on parameters that
4427 -- are entities.
4429 if Validity_Checks_On then
4430 if (Ekind (Formal) = E_In_Parameter
4431 and then Validity_Check_In_Params)
4432 or else
4433 (Ekind (Formal) = E_In_Out_Parameter
4434 and then Validity_Check_In_Out_Params)
4435 then
4436 -- If the actual is an indexed component of a packed type (or
4437 -- is an indexed or selected component whose prefix recursively
4438 -- meets this condition), it has not been expanded yet. It will
4439 -- be copied in the validity code that follows, and has to be
4440 -- expanded appropriately, so reanalyze it.
4442 -- What we do is just to unset analyzed bits on prefixes till
4443 -- we reach something that does not have a prefix.
4445 declare
4446 Nod : Node_Id;
4448 begin
4449 Nod := Actual;
4450 while Nkind (Nod) in
4451 N_Indexed_Component | N_Selected_Component
4452 loop
4453 Set_Analyzed (Nod, False);
4454 Nod := Prefix (Nod);
4455 end loop;
4456 end;
4458 Ensure_Valid (Actual);
4459 end if;
4460 end if;
4462 -- For IN OUT and OUT parameters, ensure that subscripts are valid
4463 -- since this is a left side reference. We only do this for calls
4464 -- from the source program since we assume that compiler generated
4465 -- calls explicitly generate any required checks. We also need it
4466 -- only if we are doing standard validity checks, since clearly it is
4467 -- not needed if validity checks are off, and in subscript validity
4468 -- checking mode, all indexed components are checked with a call
4469 -- directly from Expand_N_Indexed_Component.
4471 if Comes_From_Source (Call_Node)
4472 and then Ekind (Formal) /= E_In_Parameter
4473 and then Validity_Checks_On
4474 and then Validity_Check_Default
4475 and then not Validity_Check_Subscripts
4476 then
4477 Check_Valid_Lvalue_Subscripts (Actual);
4478 end if;
4480 -- Mark any scalar OUT parameter that is a simple variable as no
4481 -- longer known to be valid (unless the type is always valid). This
4482 -- reflects the fact that if an OUT parameter is never set in a
4483 -- procedure, then it can become invalid on the procedure return.
4485 if Ekind (Formal) = E_Out_Parameter
4486 and then Is_Entity_Name (Actual)
4487 and then Ekind (Entity (Actual)) = E_Variable
4488 and then not Is_Known_Valid (Etype (Actual))
4489 then
4490 Set_Is_Known_Valid (Entity (Actual), False);
4491 end if;
4493 -- For an OUT or IN OUT parameter, if the actual is an entity, then
4494 -- clear current values, since they can be clobbered. We are probably
4495 -- doing this in more places than we need to, but better safe than
4496 -- sorry when it comes to retaining bad current values.
4498 if Ekind (Formal) /= E_In_Parameter
4499 and then Is_Entity_Name (Actual)
4500 and then Present (Entity (Actual))
4501 then
4502 declare
4503 Ent : constant Entity_Id := Entity (Actual);
4504 Sav : Node_Id;
4506 begin
4507 -- For an OUT or IN OUT parameter that is an assignable entity,
4508 -- we do not want to clobber the Last_Assignment field, since
4509 -- if it is set, it was precisely because it is indeed an OUT
4510 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
4511 -- since the subprogram could have returned in invalid value.
4513 if Is_Assignable (Ent) then
4514 Sav := Last_Assignment (Ent);
4515 Kill_Current_Values (Ent);
4516 Set_Last_Assignment (Ent, Sav);
4517 Set_Is_Known_Valid (Ent, False);
4518 Set_Is_True_Constant (Ent, False);
4520 -- For all other cases, just kill the current values
4522 else
4523 Kill_Current_Values (Ent);
4524 end if;
4525 end;
4526 end if;
4528 -- If the formal is class-wide and the actual is an aggregate, force
4529 -- evaluation so that the back end who does not know about class-wide
4530 -- type, does not generate a temporary of the wrong size.
4532 if not Is_Class_Wide_Type (Etype (Formal)) then
4533 null;
4535 elsif Nkind (Actual) = N_Aggregate
4536 or else (Nkind (Actual) = N_Qualified_Expression
4537 and then Nkind (Expression (Actual)) = N_Aggregate)
4538 then
4539 Force_Evaluation (Actual);
4540 end if;
4542 -- In a remote call, if the formal is of a class-wide type, check
4543 -- that the actual meets the requirements described in E.4(18).
4545 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
4546 Insert_Action (Actual,
4547 Make_Transportable_Check (Loc,
4548 Duplicate_Subexpr_Move_Checks (Actual)));
4549 end if;
4551 -- Perform invariant checks for all intermediate types in a view
4552 -- conversion after successful return from a call that passes the
4553 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
4554 -- 13/3, 14/3)). Consider only source conversion in order to avoid
4555 -- generating spurious checks on complex expansion such as object
4556 -- initialization through an extension aggregate.
4558 if Comes_From_Source (Call_Node)
4559 and then Ekind (Formal) /= E_In_Parameter
4560 and then Nkind (Actual) = N_Type_Conversion
4561 then
4562 Add_View_Conversion_Invariants (Formal, Actual);
4563 end if;
4565 -- Generating C the initialization of an allocator is performed by
4566 -- means of individual statements, and hence it must be done before
4567 -- the call.
4569 if Modify_Tree_For_C
4570 and then Nkind (Actual) = N_Allocator
4571 and then Nkind (Expression (Actual)) = N_Qualified_Expression
4572 then
4573 Remove_Side_Effects (Actual);
4574 end if;
4576 -- This label is required when skipping extra actual generation for
4577 -- Unchecked_Union parameters.
4579 <<Skip_Extra_Actual_Generation>>
4581 Param_Count := Param_Count + 1;
4582 Next_Actual (Actual);
4583 Next_Formal (Formal);
4584 end loop;
4586 -- If we are calling an Ada 2012 function which needs to have the
4587 -- "accessibility level determined by the point of call" (AI05-0234)
4588 -- passed in to it, then pass it in.
4590 if Ekind (Subp) in E_Function | E_Operator | E_Subprogram_Type
4591 and then
4592 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
4593 then
4594 declare
4595 Extra_Form : Node_Id := Empty;
4596 Level : Node_Id := Empty;
4598 begin
4599 -- Detect cases where the function call has been internally
4600 -- generated by examining the original node and return library
4601 -- level - taking care to avoid ignoring function calls expanded
4602 -- in prefix notation.
4604 if Nkind (Original_Node (Call_Node)) not in N_Function_Call
4605 | N_Selected_Component
4606 | N_Indexed_Component
4607 then
4608 Level := Make_Integer_Literal
4609 (Loc, Scope_Depth (Standard_Standard));
4611 -- Otherwise get the level normally based on the call node
4613 else
4614 Level := Accessibility_Level
4615 (Expr => Call_Node,
4616 Level => Dynamic_Level,
4617 Allow_Alt_Model => False);
4618 end if;
4620 -- It may be possible that we are re-expanding an already
4621 -- expanded call when are are dealing with dispatching ???
4623 if not Present (Parameter_Associations (Call_Node))
4624 or else Nkind (Last (Parameter_Associations (Call_Node)))
4625 /= N_Parameter_Association
4626 or else not Is_Accessibility_Actual
4627 (Last (Parameter_Associations (Call_Node)))
4628 then
4629 Extra_Form := Extra_Accessibility_Of_Result
4630 (Ultimate_Alias (Subp));
4632 Add_Extra_Actual
4633 (Expr => Level,
4634 EF => Extra_Form);
4635 end if;
4636 end;
4637 end if;
4639 -- If we are expanding the RHS of an assignment we need to check if tag
4640 -- propagation is needed. You might expect this processing to be in
4641 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
4642 -- assignment might be transformed to a declaration for an unconstrained
4643 -- value if the expression is classwide.
4645 if Nkind (Call_Node) = N_Function_Call
4646 and then Is_Tag_Indeterminate (Call_Node)
4647 and then Is_Entity_Name (Name (Call_Node))
4648 then
4649 declare
4650 Ass : Node_Id := Empty;
4652 begin
4653 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
4654 Ass := Parent (Call_Node);
4656 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
4657 and then Nkind (Parent (Parent (Call_Node))) =
4658 N_Assignment_Statement
4659 then
4660 Ass := Parent (Parent (Call_Node));
4662 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
4663 and then Nkind (Parent (Parent (Call_Node))) =
4664 N_Assignment_Statement
4665 then
4666 Ass := Parent (Parent (Call_Node));
4667 end if;
4669 if Present (Ass)
4670 and then Is_Class_Wide_Type (Etype (Name (Ass)))
4671 then
4672 -- Move the error messages below to sem???
4674 if Is_Access_Type (Etype (Call_Node)) then
4675 if Designated_Type (Etype (Call_Node)) /=
4676 Root_Type (Etype (Name (Ass)))
4677 then
4678 Error_Msg_NE
4679 ("tag-indeterminate expression must have designated "
4680 & "type& (RM 5.2 (6))",
4681 Call_Node, Root_Type (Etype (Name (Ass))));
4682 else
4683 Propagate_Tag (Name (Ass), Call_Node);
4684 end if;
4686 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
4687 Error_Msg_NE
4688 ("tag-indeterminate expression must have type & "
4689 & "(RM 5.2 (6))",
4690 Call_Node, Root_Type (Etype (Name (Ass))));
4692 else
4693 Propagate_Tag (Name (Ass), Call_Node);
4694 end if;
4696 -- The call will be rewritten as a dispatching call, and
4697 -- expanded as such.
4699 return;
4700 end if;
4701 end;
4702 end if;
4704 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
4705 -- it to point to the correct secondary virtual table.
4707 if Nkind (Call_Node) in N_Subprogram_Call
4708 and then CW_Interface_Formals_Present
4709 then
4710 Expand_Interface_Actuals (Call_Node);
4711 end if;
4713 -- Install class-wide preconditions runtime check when this is a
4714 -- dispatching primitive that has or inherits class-wide preconditions;
4715 -- otherwise no runtime check is installed.
4717 if Nkind (Call_Node) in N_Subprogram_Call
4718 and then Is_Dispatching_Operation (Subp)
4719 then
4720 Install_Class_Preconditions_Check (Call_Node);
4721 end if;
4723 -- Deals with Dispatch_Call if we still have a call, before expanding
4724 -- extra actuals since this will be done on the re-analysis of the
4725 -- dispatching call. Note that we do not try to shorten the actual list
4726 -- for a dispatching call, it would not make sense to do so. Expansion
4727 -- of dispatching calls is suppressed for VM targets, because the VM
4728 -- back-ends directly handle the generation of dispatching calls and
4729 -- would have to undo any expansion to an indirect call.
4731 if Nkind (Call_Node) in N_Subprogram_Call
4732 and then Present (Controlling_Argument (Call_Node))
4733 then
4734 if Tagged_Type_Expansion then
4735 Expand_Dispatching_Call (Call_Node);
4737 -- Expand_Dispatching_Call takes care of all the needed processing
4739 return;
4740 end if;
4742 -- VM targets
4744 declare
4745 Call_Typ : constant Entity_Id := Etype (Call_Node);
4746 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
4747 Eq_Prim_Op : Entity_Id := Empty;
4748 New_Call : Node_Id;
4749 Param : Node_Id;
4750 Prev_Call : Node_Id;
4752 begin
4753 Apply_Tag_Checks (Call_Node);
4755 if not Is_Limited_Type (Typ) then
4756 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
4757 end if;
4759 -- If this is a dispatching "=", we must first compare the
4760 -- tags so we generate: x.tag = y.tag and then x = y
4762 if Subp = Eq_Prim_Op then
4764 -- Mark the node as analyzed to avoid reanalyzing this
4765 -- dispatching call (which would cause a never-ending loop)
4767 Prev_Call := Relocate_Node (Call_Node);
4768 Set_Analyzed (Prev_Call);
4770 Param := First_Actual (Call_Node);
4771 New_Call :=
4772 Make_And_Then (Loc,
4773 Left_Opnd =>
4774 Make_Op_Eq (Loc,
4775 Left_Opnd =>
4776 Make_Selected_Component (Loc,
4777 Prefix => New_Value (Param),
4778 Selector_Name =>
4779 New_Occurrence_Of
4780 (First_Tag_Component (Typ), Loc)),
4782 Right_Opnd =>
4783 Make_Selected_Component (Loc,
4784 Prefix =>
4785 Unchecked_Convert_To (Typ,
4786 New_Value (Next_Actual (Param))),
4787 Selector_Name =>
4788 New_Occurrence_Of
4789 (First_Tag_Component (Typ), Loc))),
4790 Right_Opnd => Prev_Call);
4792 Rewrite (Call_Node, New_Call);
4793 Analyze_And_Resolve
4794 (Call_Node, Call_Typ, Suppress => All_Checks);
4795 end if;
4797 -- Expansion of a dispatching call results in an indirect call,
4798 -- which in turn causes current values to be killed (see
4799 -- Resolve_Call), so on VM targets we do the call here to
4800 -- ensure consistent warnings between VM and non-VM targets.
4802 Kill_Current_Values;
4804 -- If this is a dispatching "=" then we must update the reference
4805 -- to the call node because we generated:
4806 -- x.tag = y.tag and then x = y
4808 if Subp = Eq_Prim_Op then
4809 Call_Node := Right_Opnd (Call_Node);
4810 end if;
4811 end;
4812 end if;
4814 -- Similarly, expand calls to RCI subprograms on which pragma
4815 -- All_Calls_Remote applies. The rewriting will be reanalyzed
4816 -- later. Do this only when the call comes from source since we
4817 -- do not want such a rewriting to occur in expanded code.
4819 if Is_All_Remote_Call (Call_Node) then
4820 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
4822 -- Similarly, do not add extra actuals for an entry call whose entity
4823 -- is a protected procedure, or for an internal protected subprogram
4824 -- call, because it will be rewritten as a protected subprogram call
4825 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
4827 elsif Is_Protected_Type (Scope (Subp))
4828 and then Ekind (Subp) in E_Procedure | E_Function
4829 then
4830 null;
4832 -- During that loop we gathered the extra actuals (the ones that
4833 -- correspond to Extra_Formals), so now they can be appended.
4835 elsif Is_Non_Empty_List (Extra_Actuals) then
4836 declare
4837 Num_Extra_Actuals : constant Nat := List_Length (Extra_Actuals);
4839 begin
4840 while Is_Non_Empty_List (Extra_Actuals) loop
4841 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4842 end loop;
4844 -- Add dummy extra BIP actuals if we are calling a function that
4845 -- inherited the BIP extra actuals but does not require them.
4847 if Nkind (Call_Node) = N_Function_Call
4848 and then Is_Build_In_Place_Function_Call (Call_Node)
4849 and then not Is_True_Build_In_Place_Function_Call (Call_Node)
4850 then
4851 Add_Dummy_Build_In_Place_Actuals (Subp,
4852 Num_Added_Extra_Actuals => Num_Extra_Actuals);
4853 end if;
4854 end;
4856 -- Add dummy extra BIP actuals if we are calling a function that
4857 -- inherited the BIP extra actuals but does not require them.
4859 elsif Nkind (Call_Node) = N_Function_Call
4860 and then Is_Build_In_Place_Function_Call (Call_Node)
4861 and then not Is_True_Build_In_Place_Function_Call (Call_Node)
4862 then
4863 Add_Dummy_Build_In_Place_Actuals (Subp);
4864 end if;
4866 -- At this point we have all the actuals, so this is the point at which
4867 -- the various expansion activities for actuals is carried out.
4869 Expand_Actuals (Call_Node, Subp, Post_Call);
4871 -- If it is a recursive call then call the internal procedure that
4872 -- verifies Subprogram_Variant contract (if present and enabled).
4873 -- Detecting calls to subprogram aliases is necessary for recursive
4874 -- calls in instances of generic subprograms, where the renaming of
4875 -- the current subprogram is called.
4877 if Is_Subprogram (Subp)
4878 and then not Is_Ignored_Ghost_Entity (Subp)
4879 and then Same_Or_Aliased_Subprograms (Subp, Current_Scope)
4880 then
4881 Check_Subprogram_Variant;
4882 end if;
4884 -- Verify that the actuals do not share storage. This check must be done
4885 -- on the caller side rather that inside the subprogram to avoid issues
4886 -- of parameter passing.
4888 if Check_Aliasing_Of_Parameters then
4889 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
4890 end if;
4892 -- If the subprogram is a renaming, or if it is inherited, replace it in
4893 -- the call with the name of the actual subprogram being called. If this
4894 -- is a dispatching call, the run-time decides what to call. The Alias
4895 -- attribute does not apply to entries.
4897 if Nkind (Call_Node) /= N_Entry_Call_Statement
4898 and then No (Controlling_Argument (Call_Node))
4899 and then Present (Parent_Subp)
4900 and then not Is_Direct_Deep_Call (Subp)
4901 then
4902 if Present (Inherited_From_Formal (Subp)) then
4903 Parent_Subp := Inherited_From_Formal (Subp);
4904 else
4905 Parent_Subp := Ultimate_Alias (Parent_Subp);
4906 end if;
4908 -- The below setting of Entity is suspect, see F109-018 discussion???
4910 Set_Entity (Name (Call_Node), Parent_Subp);
4912 -- Inspect all formals of derived subprogram Subp. Compare parameter
4913 -- types with the parent subprogram and check whether an actual may
4914 -- need a type conversion to the corresponding formal of the parent
4915 -- subprogram.
4917 -- Not clear whether intrinsic subprograms need such conversions. ???
4919 if not Is_Intrinsic_Subprogram (Parent_Subp)
4920 or else Is_Generic_Instance (Parent_Subp)
4921 then
4922 declare
4923 procedure Convert (Act : Node_Id; Typ : Entity_Id);
4924 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
4925 -- and resolve the newly generated construct.
4927 -------------
4928 -- Convert --
4929 -------------
4931 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
4932 begin
4933 Rewrite (Act, OK_Convert_To (Typ, Act));
4934 Analyze_And_Resolve (Act, Typ);
4935 end Convert;
4937 -- Local variables
4939 Actual_Typ : Entity_Id;
4940 Formal_Typ : Entity_Id;
4941 Parent_Typ : Entity_Id;
4943 begin
4944 Actual := First_Actual (Call_Node);
4945 Formal := First_Formal (Subp);
4946 Parent_Formal := First_Formal (Parent_Subp);
4947 while Present (Formal) loop
4948 Actual_Typ := Etype (Actual);
4949 Formal_Typ := Etype (Formal);
4950 Parent_Typ := Etype (Parent_Formal);
4952 -- For an IN parameter of a scalar type, the derived formal
4953 -- type and parent formal type differ, and the parent formal
4954 -- type and actual type do not match statically.
4956 if Is_Scalar_Type (Formal_Typ)
4957 and then Ekind (Formal) = E_In_Parameter
4958 and then Formal_Typ /= Parent_Typ
4959 and then
4960 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
4961 and then not Raises_Constraint_Error (Actual)
4962 then
4963 Convert (Actual, Parent_Typ);
4965 -- For access types, the parent formal type and actual type
4966 -- differ.
4968 elsif Is_Access_Type (Formal_Typ)
4969 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
4970 then
4971 if Ekind (Formal) /= E_In_Parameter then
4972 Convert (Actual, Parent_Typ);
4974 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
4975 and then Designated_Type (Parent_Typ) /=
4976 Designated_Type (Actual_Typ)
4977 and then not Is_Controlling_Formal (Formal)
4978 then
4979 -- This unchecked conversion is not necessary unless
4980 -- inlining is enabled, because in that case the type
4981 -- mismatch may become visible in the body about to be
4982 -- inlined.
4984 Rewrite (Actual,
4985 Unchecked_Convert_To (Parent_Typ, Actual));
4986 Analyze_And_Resolve (Actual, Parent_Typ);
4987 end if;
4989 -- If there is a change of representation, then generate a
4990 -- warning, and do the change of representation.
4992 elsif not Has_Compatible_Representation
4993 (Target_Typ => Formal_Typ,
4994 Operand_Typ => Parent_Typ)
4995 then
4996 Error_Msg_N
4997 ("??change of representation required", Actual);
4998 Convert (Actual, Parent_Typ);
5000 -- For array and record types, the parent formal type and
5001 -- derived formal type have different sizes or pragma Pack
5002 -- status.
5004 elsif ((Is_Array_Type (Formal_Typ)
5005 and then Is_Array_Type (Parent_Typ))
5006 or else
5007 (Is_Record_Type (Formal_Typ)
5008 and then Is_Record_Type (Parent_Typ)))
5009 and then Known_Esize (Formal_Typ)
5010 and then Known_Esize (Parent_Typ)
5011 and then
5012 (Esize (Formal_Typ) /= Esize (Parent_Typ)
5013 or else Has_Pragma_Pack (Formal_Typ) /=
5014 Has_Pragma_Pack (Parent_Typ))
5015 then
5016 Convert (Actual, Parent_Typ);
5017 end if;
5019 Next_Actual (Actual);
5020 Next_Formal (Formal);
5021 Next_Formal (Parent_Formal);
5022 end loop;
5023 end;
5024 end if;
5026 Orig_Subp := Subp;
5027 Subp := Parent_Subp;
5028 end if;
5030 -- Deal with case where call is an explicit dereference
5032 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
5034 -- Handle case of access to protected subprogram type
5036 if Is_Access_Protected_Subprogram_Type
5037 (Base_Type (Etype (Prefix (Name (Call_Node)))))
5038 then
5039 -- If this is a call through an access to protected operation, the
5040 -- prefix has the form (object'address, operation'access). Rewrite
5041 -- as a for other protected calls: the object is the 1st parameter
5042 -- of the list of actuals.
5044 declare
5045 Call : Node_Id;
5046 Parm : List_Id;
5047 Nam : Node_Id;
5048 Obj : Node_Id;
5049 Ptr : constant Node_Id := Prefix (Name (Call_Node));
5051 T : constant Entity_Id :=
5052 Equivalent_Type (Base_Type (Etype (Ptr)));
5054 D_T : constant Entity_Id :=
5055 Designated_Type (Base_Type (Etype (Ptr)));
5057 begin
5058 Obj :=
5059 Make_Selected_Component (Loc,
5060 Prefix => Unchecked_Convert_To (T, Ptr),
5061 Selector_Name =>
5062 New_Occurrence_Of (First_Entity (T), Loc));
5064 Nam :=
5065 Make_Selected_Component (Loc,
5066 Prefix => Unchecked_Convert_To (T, Ptr),
5067 Selector_Name =>
5068 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
5070 Nam :=
5071 Make_Explicit_Dereference (Loc,
5072 Prefix => Nam);
5074 if Present (Parameter_Associations (Call_Node)) then
5075 Parm := Parameter_Associations (Call_Node);
5076 else
5077 Parm := New_List;
5078 end if;
5080 Prepend (Obj, Parm);
5082 if Etype (D_T) = Standard_Void_Type then
5083 Call :=
5084 Make_Procedure_Call_Statement (Loc,
5085 Name => Nam,
5086 Parameter_Associations => Parm);
5087 else
5088 Call :=
5089 Make_Function_Call (Loc,
5090 Name => Nam,
5091 Parameter_Associations => Parm);
5092 end if;
5094 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
5095 Set_Etype (Call, Etype (D_T));
5097 -- We do not re-analyze the call to avoid infinite recursion.
5098 -- We analyze separately the prefix and the object, and set
5099 -- the checks on the prefix that would otherwise be emitted
5100 -- when resolving a call.
5102 Rewrite (Call_Node, Call);
5103 Analyze (Nam);
5104 Apply_Access_Check (Nam);
5105 Analyze (Obj);
5106 return;
5107 end;
5108 end if;
5109 end if;
5111 -- If this is a call to an intrinsic subprogram, then perform the
5112 -- appropriate expansion to the corresponding tree node and we
5113 -- are all done (since after that the call is gone).
5115 -- In the case where the intrinsic is to be processed by the back end,
5116 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
5117 -- since the idea in this case is to pass the call unchanged. If the
5118 -- intrinsic is an inherited unchecked conversion, and the derived type
5119 -- is the target type of the conversion, we must retain it as the return
5120 -- type of the expression. Otherwise the expansion below, which uses the
5121 -- parent operation, will yield the wrong type.
5123 if Is_Intrinsic_Subprogram (Subp) then
5124 Expand_Intrinsic_Call (Call_Node, Subp);
5126 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
5127 and then Parent_Subp /= Orig_Subp
5128 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
5129 then
5130 Set_Etype (Call_Node, Etype (Orig_Subp));
5131 end if;
5133 return;
5134 end if;
5136 if Ekind (Subp) in E_Function | E_Procedure then
5138 -- We perform a simple optimization on calls for To_Address by
5139 -- replacing them with an unchecked conversion. Not only is this
5140 -- efficient, but it also avoids order of elaboration problems when
5141 -- address clauses are inlined (address expression elaborated at the
5142 -- wrong point).
5144 -- We perform this optimization regardless of whether we are in the
5145 -- main unit or in a unit in the context of the main unit, to ensure
5146 -- that the generated tree is the same in both cases, for CodePeer
5147 -- use.
5149 if Is_RTE (Subp, RE_To_Address) then
5150 Rewrite (Call_Node,
5151 Unchecked_Convert_To
5152 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
5153 return;
5155 -- A call to a null procedure is replaced by a null statement, but we
5156 -- are not allowed to ignore possible side effects of the call, so we
5157 -- make sure that actuals are evaluated.
5158 -- We also suppress this optimization for GNATcoverage.
5160 elsif Is_Null_Procedure (Subp)
5161 and then not Opt.Suppress_Control_Flow_Optimizations
5162 then
5163 Actual := First_Actual (Call_Node);
5164 while Present (Actual) loop
5165 Remove_Side_Effects (Actual);
5166 Next_Actual (Actual);
5167 end loop;
5169 Rewrite (Call_Node, Make_Null_Statement (Loc));
5170 return;
5171 end if;
5173 -- Handle inlining. No action needed if the subprogram is not inlined
5175 if not Is_Inlined (Subp) then
5176 null;
5178 -- Front-end inlining of expression functions (performed also when
5179 -- back-end inlining is enabled).
5181 elsif Is_Inlinable_Expression_Function (Subp) then
5182 Rewrite
5183 (Call_Node, New_Copy (Expression_Of_Expression_Function (Subp)));
5184 Analyze (Call_Node);
5185 return;
5187 -- Handle front-end inlining
5189 elsif not Back_End_Inlining then
5190 Inlined_Subprogram : declare
5191 Bod : Node_Id;
5192 Must_Inline : Boolean := False;
5193 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
5195 begin
5196 -- Verify that the body to inline has already been seen, and
5197 -- that if the body is in the current unit the inlining does
5198 -- not occur earlier. This avoids order-of-elaboration problems
5199 -- in the back end.
5201 -- This should be documented in sinfo/einfo ???
5203 if No (Spec)
5204 or else Nkind (Spec) /= N_Subprogram_Declaration
5205 or else No (Body_To_Inline (Spec))
5206 then
5207 Must_Inline := False;
5209 -- If this an inherited function that returns a private type,
5210 -- do not inline if the full view is an unconstrained array,
5211 -- because such calls cannot be inlined.
5213 elsif Present (Orig_Subp)
5214 and then Is_Array_Type (Etype (Orig_Subp))
5215 and then not Is_Constrained (Etype (Orig_Subp))
5216 then
5217 Must_Inline := False;
5219 elsif In_Unfrozen_Instance (Scope (Subp)) then
5220 Must_Inline := False;
5222 else
5223 Bod := Body_To_Inline (Spec);
5225 if (In_Extended_Main_Code_Unit (Call_Node)
5226 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
5227 or else Has_Pragma_Inline_Always (Subp))
5228 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
5229 or else
5230 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
5231 then
5232 Must_Inline := True;
5234 -- If we are compiling a package body that is not the main
5235 -- unit, it must be for inlining/instantiation purposes,
5236 -- in which case we inline the call to insure that the same
5237 -- temporaries are generated when compiling the body by
5238 -- itself. Otherwise link errors can occur.
5240 -- If the function being called is itself in the main unit,
5241 -- we cannot inline, because there is a risk of double
5242 -- elaboration and/or circularity: the inlining can make
5243 -- visible a private entity in the body of the main unit,
5244 -- that gigi will see before its sees its proper definition.
5246 elsif not In_Extended_Main_Code_Unit (Call_Node)
5247 and then In_Package_Body
5248 then
5249 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
5251 -- Inline calls to _Wrapped_Statements when generating C
5253 elsif Modify_Tree_For_C
5254 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
5255 and then Chars (Name (Call_Node))
5256 = Name_uWrapped_Statements
5257 then
5258 Must_Inline := True;
5259 end if;
5260 end if;
5262 if Must_Inline then
5263 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
5265 else
5266 -- Let the back end handle it
5268 Add_Inlined_Body (Subp, Call_Node);
5270 if Front_End_Inlining
5271 and then Nkind (Spec) = N_Subprogram_Declaration
5272 and then In_Extended_Main_Code_Unit (Call_Node)
5273 and then No (Body_To_Inline (Spec))
5274 and then not Has_Completion (Subp)
5275 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
5276 then
5277 Cannot_Inline
5278 ("cannot inline& (body not seen yet)?",
5279 Call_Node, Subp);
5280 end if;
5281 end if;
5282 end Inlined_Subprogram;
5284 -- Front-end expansion of simple functions returning unconstrained
5285 -- types (see Check_And_Split_Unconstrained_Function). Note that the
5286 -- case of a simple renaming (Body_To_Inline in N_Entity below, see
5287 -- also Build_Renamed_Body) cannot be expanded here because this may
5288 -- give rise to order-of-elaboration issues for the types of the
5289 -- parameters of the subprogram, if any.
5291 elsif Present (Unit_Declaration_Node (Subp))
5292 and then Nkind (Unit_Declaration_Node (Subp)) =
5293 N_Subprogram_Declaration
5294 and then Present (Body_To_Inline (Unit_Declaration_Node (Subp)))
5295 and then
5296 Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) not in
5297 N_Entity
5298 then
5299 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
5301 -- Back-end inlining either if optimization is enabled or the call is
5302 -- required to be inlined.
5304 elsif Optimization_Level > 0
5305 or else Has_Pragma_Inline_Always (Subp)
5306 then
5307 Add_Inlined_Body (Subp, Call_Node);
5308 end if;
5309 end if;
5311 -- Check for protected subprogram. This is either an intra-object call,
5312 -- or a protected function call. Protected procedure calls are rewritten
5313 -- as entry calls and handled accordingly.
5315 -- In Ada 2005, this may be an indirect call to an access parameter that
5316 -- is an access_to_subprogram. In that case the anonymous type has a
5317 -- scope that is a protected operation, but the call is a regular one.
5318 -- In either case do not expand call if subprogram is eliminated.
5320 Scop := Scope (Subp);
5322 if Nkind (Call_Node) /= N_Entry_Call_Statement
5323 and then Is_Protected_Type (Scop)
5324 and then Ekind (Subp) /= E_Subprogram_Type
5325 and then not Is_Eliminated (Subp)
5326 then
5327 -- If the call is an internal one, it is rewritten as a call to the
5328 -- corresponding unprotected subprogram.
5330 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
5331 end if;
5333 -- Functions returning controlled objects need special attention. If
5334 -- the return type is limited, then the context is initialization and
5335 -- different processing applies. If the call is to a protected function,
5336 -- the expansion above will call Expand_Call recursively. Otherwise the
5337 -- function call is transformed into a reference to the result that has
5338 -- been built either on the primary or the secondary stack.
5340 if Needs_Finalization (Etype (Subp)) then
5341 if not Is_Build_In_Place_Function_Call (Call_Node)
5342 and then
5343 (No (First_Formal (Subp))
5344 or else
5345 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
5346 then
5347 Expand_Ctrl_Function_Call
5348 (Call_Node, Needs_Secondary_Stack (Etype (Subp)));
5350 -- Build-in-place function calls which appear in anonymous contexts
5351 -- need a transient scope to ensure the proper finalization of the
5352 -- intermediate result after its use.
5354 elsif Is_Build_In_Place_Function_Call (Call_Node)
5355 and then Nkind (Parent (Unqual_Conv (Call_Node))) in
5356 N_Attribute_Reference
5357 | N_Function_Call
5358 | N_Indexed_Component
5359 | N_Object_Renaming_Declaration
5360 | N_Procedure_Call_Statement
5361 | N_Selected_Component
5362 | N_Slice
5363 and then
5364 (Ekind (Current_Scope) /= E_Loop
5365 or else Nkind (Parent (Call_Node)) /= N_Function_Call
5366 or else not
5367 Is_Build_In_Place_Function_Call (Parent (Call_Node)))
5368 then
5369 Establish_Transient_Scope
5370 (Call_Node, Needs_Secondary_Stack (Etype (Subp)));
5371 end if;
5372 end if;
5373 end Expand_Call_Helper;
5375 -------------------------------
5376 -- Expand_Ctrl_Function_Call --
5377 -------------------------------
5379 procedure Expand_Ctrl_Function_Call (N : Node_Id; Use_Sec_Stack : Boolean)
5381 Par : constant Node_Id := Parent (N);
5383 function Is_Element_Reference (N : Node_Id) return Boolean;
5384 -- Determine whether node N denotes a reference to an Ada 2012 container
5385 -- element.
5387 --------------------------
5388 -- Is_Element_Reference --
5389 --------------------------
5391 function Is_Element_Reference (N : Node_Id) return Boolean is
5392 Ref : constant Node_Id := Original_Node (N);
5394 begin
5395 -- Analysis marks an element reference by setting the generalized
5396 -- indexing attribute of an indexed component before the component
5397 -- is rewritten into a function call.
5399 return
5400 Nkind (Ref) = N_Indexed_Component
5401 and then Present (Generalized_Indexing (Ref));
5402 end Is_Element_Reference;
5404 -- Start of processing for Expand_Ctrl_Function_Call
5406 begin
5407 -- Optimization: if the returned value is returned again, then no need
5408 -- to copy/readjust/finalize, we can just pass the value through (see
5409 -- Expand_N_Simple_Return_Statement), and thus no attachment is needed.
5410 -- Note that simple return statements are distributed into conditional
5411 -- expressions but we may be invoked before this distribution is done.
5413 if Nkind (Par) = N_Simple_Return_Statement
5414 or else (Nkind (Par) = N_If_Expression
5415 and then Nkind (Parent (Par)) = N_Simple_Return_Statement)
5416 or else (Nkind (Par) = N_Case_Expression_Alternative
5417 and then
5418 Nkind (Parent (Parent (Par))) = N_Simple_Return_Statement)
5419 then
5420 return;
5421 end if;
5423 -- Another optimization: if the returned value is used to initialize an
5424 -- object, then no need to copy/readjust/finalize, we can initialize it
5425 -- in place. However, if the call returns on the secondary stack, then
5426 -- we need the expansion because we'll be renaming the temporary as the
5427 -- (permanent) object.
5429 if Nkind (Par) = N_Object_Declaration and then not Use_Sec_Stack then
5430 return;
5431 end if;
5433 -- Resolution is now finished, make sure we don't start analysis again
5434 -- because of the duplication.
5436 Set_Analyzed (N);
5438 -- Apply the transformation, unless it was already applied manually
5440 if Nkind (Par) /= N_Reference then
5441 Remove_Side_Effects (N);
5442 end if;
5444 -- The side effect removal of the function call produced a temporary.
5445 -- When the context is a case expression, if expression, or expression
5446 -- with actions, the lifetime of the temporary must be extended to match
5447 -- that of the context. Otherwise the function result will be finalized
5448 -- too early and affect the result of the expression. To prevent this
5449 -- unwanted effect, the temporary should not be considered for clean up
5450 -- actions by the general finalization machinery.
5452 -- Exception to this rule are references to Ada 2012 container elements.
5453 -- Such references must be finalized at the end of each iteration of the
5454 -- related quantified expression, otherwise the container will remain
5455 -- busy.
5457 if Nkind (N) = N_Explicit_Dereference
5458 and then Within_Case_Or_If_Expression (N)
5459 and then not Is_Element_Reference (N)
5460 then
5461 Set_Is_Ignored_Transient (Entity (Prefix (N)));
5462 end if;
5463 end Expand_Ctrl_Function_Call;
5465 ----------------------------------------
5466 -- Expand_N_Extended_Return_Statement --
5467 ----------------------------------------
5469 -- If there is a Handled_Statement_Sequence, we rewrite this:
5471 -- return Result : T := <expression> do
5472 -- <handled_seq_of_stms>
5473 -- end return;
5475 -- to be:
5477 -- declare
5478 -- Result : T := <expression>;
5479 -- begin
5480 -- <handled_seq_of_stms>
5481 -- return Result;
5482 -- end;
5484 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
5486 -- return Result : T := <expression>;
5488 -- to be:
5490 -- return <expression>;
5492 -- unless it's build-in-place or there's no <expression>, in which case
5493 -- we generate:
5495 -- declare
5496 -- Result : T := <expression>;
5497 -- begin
5498 -- return Result;
5499 -- end;
5501 -- Note that this case could have been written by the user as an extended
5502 -- return statement, or could have been transformed to this from a simple
5503 -- return statement.
5505 -- That is, we need to have a reified return object if there are statements
5506 -- (which might refer to it) or if we're doing build-in-place (so we can
5507 -- set its address to the final resting place or if there is no expression
5508 -- (in which case default initial values might need to be set)).
5510 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
5511 Loc : constant Source_Ptr := Sloc (N);
5512 Func_Id : constant Entity_Id :=
5513 Return_Applies_To (Return_Statement_Entity (N));
5514 Is_BIP_Func : constant Boolean :=
5515 Is_Build_In_Place_Function (Func_Id);
5516 Ret_Obj_Id : constant Entity_Id :=
5517 First_Entity (Return_Statement_Entity (N));
5518 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
5519 Ret_Typ : constant Entity_Id := Etype (Func_Id);
5521 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
5522 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
5523 -- with parameters:
5524 -- From current activation chain
5525 -- To activation chain passed in by the caller
5526 -- New_Master master passed in by the caller
5528 -- Func_Id is the entity of the function where the extended return
5529 -- statement appears.
5531 ---------------------------
5532 -- Move_Activation_Chain --
5533 ---------------------------
5535 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
5536 begin
5537 return
5538 Make_Procedure_Call_Statement (Loc,
5539 Name =>
5540 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
5542 Parameter_Associations => New_List (
5544 -- Source chain
5546 Make_Attribute_Reference (Loc,
5547 Prefix => Make_Identifier (Loc, Name_uChain),
5548 Attribute_Name => Name_Unrestricted_Access),
5550 -- Destination chain
5552 New_Occurrence_Of
5553 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
5555 -- New master
5557 New_Occurrence_Of
5558 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
5559 end Move_Activation_Chain;
5561 -- Local variables
5563 Exp : Node_Id;
5564 HSS : Node_Id;
5565 Result : Node_Id;
5566 Stmts : List_Id := No_List;
5568 Return_Stmt : Node_Id := Empty;
5569 -- Force initialization to facilitate static analysis
5571 -- Start of processing for Expand_N_Extended_Return_Statement
5573 begin
5574 -- Given that functionality of interface thunks is simple (just displace
5575 -- the pointer to the object) they are always handled by means of
5576 -- simple return statements.
5578 pragma Assert (not Is_Thunk (Current_Subprogram));
5580 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
5581 Exp := Expression (Ret_Obj_Decl);
5583 -- Assert that if F says "return R : T := G(...) do..."
5584 -- then F and G are both b-i-p, or neither b-i-p.
5586 if Present (Exp) and then Nkind (Exp) = N_Function_Call then
5587 pragma Assert (Ekind (Current_Subprogram) = E_Function);
5588 pragma Assert
5589 (Is_Build_In_Place_Function (Current_Subprogram) =
5590 Is_True_Build_In_Place_Function_Call (Exp));
5591 null;
5592 end if;
5594 else
5595 Exp := Empty;
5596 end if;
5598 HSS := Handled_Statement_Sequence (N);
5600 -- If the returned object needs finalization actions, the function must
5601 -- perform the appropriate cleanup should it fail to return. The state
5602 -- of the function itself is tracked through a flag which is coupled
5603 -- with the scope finalizer. There is one flag per each return object
5604 -- in case of multiple returns.
5606 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
5607 declare
5608 Flag_Decl : Node_Id;
5609 Flag_Id : Entity_Id;
5610 Func_Bod : Node_Id;
5612 begin
5613 -- Recover the function body
5615 Func_Bod := Unit_Declaration_Node (Func_Id);
5617 if Nkind (Func_Bod) = N_Subprogram_Declaration then
5618 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
5619 end if;
5621 if Nkind (Func_Bod) = N_Function_Specification then
5622 Func_Bod := Parent (Func_Bod); -- one more level for child units
5623 end if;
5625 pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
5627 -- Create a flag to track the function state
5629 Flag_Id := Make_Temporary (Loc, 'F');
5630 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
5632 -- Insert the flag at the beginning of the function declarations,
5633 -- generate:
5634 -- Fnn : Boolean := False;
5636 Flag_Decl :=
5637 Make_Object_Declaration (Loc,
5638 Defining_Identifier => Flag_Id,
5639 Object_Definition =>
5640 New_Occurrence_Of (Standard_Boolean, Loc),
5641 Expression =>
5642 New_Occurrence_Of (Standard_False, Loc));
5644 Prepend_To (Declarations (Func_Bod), Flag_Decl);
5645 Analyze (Flag_Decl);
5646 end;
5647 end if;
5649 -- Build a simple_return_statement that returns the return object when
5650 -- there is a statement sequence, or no expression, or the analysis of
5651 -- the return object declaration generated extra actions, or the result
5652 -- will be built in place. Note however that we currently do this for
5653 -- all composite cases, even though they are not built in place.
5655 if Present (HSS)
5656 or else No (Exp)
5657 or else List_Length (Return_Object_Declarations (N)) > 1
5658 or else Is_Composite_Type (Ret_Typ)
5659 then
5660 if No (HSS) then
5661 Stmts := New_List;
5663 -- If the extended return has a handled statement sequence, then wrap
5664 -- it in a block and use the block as the first statement.
5666 else
5667 Stmts := New_List (
5668 Make_Block_Statement (Loc,
5669 Declarations => New_List,
5670 Handled_Statement_Sequence => HSS));
5671 end if;
5673 -- If the result type contains tasks, we call Move_Activation_Chain.
5674 -- Later, the cleanup code will call Complete_Master, which will
5675 -- terminate any unactivated tasks belonging to the return statement
5676 -- master. But Move_Activation_Chain updates their master to be that
5677 -- of the caller, so they will not be terminated unless the return
5678 -- statement completes unsuccessfully due to exception, abort, goto,
5679 -- or exit. As a formality, we test whether the function requires the
5680 -- result to be built in place, though that's necessarily true for
5681 -- the case of result types with task parts.
5683 if Is_BIP_Func and then Has_Task (Ret_Typ) then
5685 -- The return expression is an aggregate for a complex type which
5686 -- contains tasks. This particular case is left unexpanded since
5687 -- the regular expansion would insert all temporaries and
5688 -- initialization code in the wrong block.
5690 if Nkind (Exp) = N_Aggregate then
5691 Expand_N_Aggregate (Exp);
5692 end if;
5694 -- Do not move the activation chain if the return object does not
5695 -- contain tasks.
5697 if Has_Task (Etype (Ret_Obj_Id)) then
5698 Append_To (Stmts, Move_Activation_Chain (Func_Id));
5699 end if;
5700 end if;
5702 -- Update the state of the function right before the object is
5703 -- returned.
5705 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
5706 declare
5707 Flag_Id : constant Entity_Id :=
5708 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
5710 begin
5711 -- Generate:
5712 -- Fnn := True;
5714 Append_To (Stmts,
5715 Make_Assignment_Statement (Loc,
5716 Name => New_Occurrence_Of (Flag_Id, Loc),
5717 Expression => New_Occurrence_Of (Standard_True, Loc)));
5718 end;
5719 end if;
5721 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
5722 end if;
5724 -- Case where we build a return statement block
5726 if Present (HSS) then
5727 Result :=
5728 Make_Block_Statement (Loc,
5729 Declarations => Return_Object_Declarations (N),
5730 Handled_Statement_Sequence => HSS);
5732 -- We set the entity of the new block statement to be that of the
5733 -- return statement. This is necessary so that various fields, such
5734 -- as Finalization_Chain_Entity carry over from the return statement
5735 -- to the block. Note that this block is unusual, in that its entity
5736 -- is an E_Return_Statement rather than an E_Block.
5738 Set_Identifier
5739 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
5741 -- Build a simple_return_statement that returns the return object
5743 Return_Stmt :=
5744 Make_Simple_Return_Statement (Loc,
5745 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
5746 Append_To (Stmts, Return_Stmt);
5748 -- Case where we do not need to build a block. But we're about to drop
5749 -- Return_Object_Declarations on the floor, so assert that it contains
5750 -- only the return object declaration.
5752 else pragma Assert (List_Length (Return_Object_Declarations (N)) = 1);
5754 -- Build simple_return_statement that returns the expression directly
5756 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5757 Result := Return_Stmt;
5758 end if;
5760 -- Set the flag to prevent infinite recursion
5762 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5763 Set_Return_Statement (Ret_Obj_Id, Return_Stmt);
5765 Rewrite (N, Result);
5767 -- AI12-043: The checks of 6.5(8.1/3) and 6.5(21/3) are made immediately
5768 -- before an object is returned. A predicate that applies to the return
5769 -- subtype is checked immediately before an object is returned.
5771 Analyze (N);
5772 end Expand_N_Extended_Return_Statement;
5774 ----------------------------
5775 -- Expand_N_Function_Call --
5776 ----------------------------
5778 procedure Expand_N_Function_Call (N : Node_Id) is
5779 begin
5780 Expand_Call (N);
5781 end Expand_N_Function_Call;
5783 ---------------------------------------
5784 -- Expand_N_Procedure_Call_Statement --
5785 ---------------------------------------
5787 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5788 begin
5789 Expand_Call (N);
5790 end Expand_N_Procedure_Call_Statement;
5792 ------------------------------------
5793 -- Expand_N_Return_When_Statement --
5794 ------------------------------------
5796 procedure Expand_N_Return_When_Statement (N : Node_Id) is
5797 Loc : constant Source_Ptr := Sloc (N);
5798 begin
5799 Rewrite (N,
5800 Make_If_Statement (Loc,
5801 Condition => Condition (N),
5802 Then_Statements => New_List (
5803 Make_Simple_Return_Statement (Loc,
5804 Expression => Expression (N)))));
5806 Analyze (N);
5807 end Expand_N_Return_When_Statement;
5809 --------------------------------------
5810 -- Expand_N_Simple_Return_Statement --
5811 --------------------------------------
5813 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5814 begin
5815 -- Defend against previous errors (i.e. the return statement calls a
5816 -- function that is not available in configurable runtime).
5818 if Present (Expression (N))
5819 and then Nkind (Expression (N)) = N_Empty
5820 then
5821 Check_Error_Detected;
5822 return;
5823 end if;
5825 -- Distinguish the function and non-function cases:
5827 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5828 when E_Function
5829 | E_Generic_Function
5831 Expand_Simple_Function_Return (N);
5833 when E_Entry
5834 | E_Entry_Family
5835 | E_Generic_Procedure
5836 | E_Procedure
5837 | E_Return_Statement
5839 Expand_Non_Function_Return (N);
5841 when others =>
5842 raise Program_Error;
5843 end case;
5845 exception
5846 when RE_Not_Available =>
5847 return;
5848 end Expand_N_Simple_Return_Statement;
5850 ------------------------------
5851 -- Expand_N_Subprogram_Body --
5852 ------------------------------
5854 -- Add dummy push/pop label nodes at start and end to clear any local
5855 -- exception indications if local-exception-to-goto optimization is active.
5857 -- Add return statement if last statement in body is not a return statement
5858 -- (this makes things easier on Gigi which does not want to have to handle
5859 -- a missing return).
5861 -- Add call to Activate_Tasks if body is a task activator
5863 -- Deal with possible detection of infinite recursion
5865 -- Eliminate body completely if convention stubbed
5867 -- Encode entity names within body, since we will not need to reference
5868 -- these entities any longer in the front end.
5870 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5872 -- Reset Pure indication if any parameter has root type System.Address
5873 -- or has any parameters of limited types, where limited means that the
5874 -- run-time view is limited (i.e. the full type is limited).
5876 -- Wrap thread body
5878 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5879 Body_Id : constant Entity_Id := Defining_Entity (N);
5880 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5881 Loc : constant Source_Ptr := Sloc (N);
5883 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5884 -- Append a return statement to the statement sequence Stmts if the last
5885 -- statement is not already a return or a goto statement. Note that the
5886 -- latter test is not critical, it does not matter if we add a few extra
5887 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5888 -- the corresponding spec of the subprogram body.
5890 ----------------
5891 -- Add_Return --
5892 ----------------
5894 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5895 Last_Stmt : Node_Id;
5896 Loc : Source_Ptr;
5897 Stmt : Node_Id;
5899 begin
5900 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5901 -- not relevant in this context since they are not executable.
5903 Last_Stmt := Last (Stmts);
5904 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5905 Prev (Last_Stmt);
5906 end loop;
5908 -- Now insert return unless last statement is a transfer
5910 if not Is_Transfer (Last_Stmt) then
5912 -- The source location for the return is the end label of the
5913 -- procedure if present. Otherwise use the sloc of the last
5914 -- statement in the list. If the list comes from a generated
5915 -- exception handler and we are not debugging generated code,
5916 -- all the statements within the handler are made invisible
5917 -- to the debugger.
5919 if Nkind (Parent (Stmts)) = N_Exception_Handler
5920 and then not Comes_From_Source (Parent (Stmts))
5921 then
5922 Loc := Sloc (Last_Stmt);
5923 elsif Present (End_Label (HSS)) then
5924 Loc := Sloc (End_Label (HSS));
5925 else
5926 Loc := Sloc (Last_Stmt);
5927 end if;
5929 -- Append return statement, and set analyzed manually. We can't
5930 -- call Analyze on this return since the scope is wrong.
5932 -- Note: it almost works to push the scope and then do the Analyze
5933 -- call, but something goes wrong in some weird cases and it is
5934 -- not worth worrying about ???
5936 Stmt := Make_Simple_Return_Statement (Loc);
5938 -- The return statement is handled properly, and the call to the
5939 -- postcondition, inserted below, does not require information
5940 -- from the body either. However, that call is analyzed in the
5941 -- enclosing scope, and an elaboration check might improperly be
5942 -- added to it. A guard in Sem_Elab is needed to prevent that
5943 -- spurious check, see Check_Elab_Call.
5945 Append_To (Stmts, Stmt);
5946 Set_Analyzed (Stmt);
5948 -- Ada 2022 (AI12-0279): append the call to 'Yield unless this is
5949 -- a generic subprogram (since in such case it will be added to
5950 -- the instantiations).
5952 if Has_Yield_Aspect (Spec_Id)
5953 and then Ekind (Spec_Id) /= E_Generic_Procedure
5954 and then RTE_Available (RE_Yield)
5955 then
5956 Insert_Action (Stmt,
5957 Make_Procedure_Call_Statement (Loc,
5958 New_Occurrence_Of (RTE (RE_Yield), Loc)));
5959 end if;
5960 end if;
5961 end Add_Return;
5963 -- Local variables
5965 Except_H : Node_Id;
5966 L : List_Id;
5967 Spec_Id : Entity_Id;
5969 -- Start of processing for Expand_N_Subprogram_Body
5971 begin
5972 if Present (Corresponding_Spec (N)) then
5973 Spec_Id := Corresponding_Spec (N);
5974 else
5975 Spec_Id := Body_Id;
5976 end if;
5978 -- If this is a Pure function which has any parameters whose root type
5979 -- is System.Address, reset the Pure indication.
5980 -- This check is also performed when the subprogram is frozen, but we
5981 -- repeat it on the body so that the indication is consistent, and so
5982 -- it applies as well to bodies without separate specifications.
5984 if Is_Pure (Spec_Id)
5985 and then Is_Subprogram (Spec_Id)
5986 and then not Has_Pragma_Pure_Function (Spec_Id)
5987 then
5988 Check_Function_With_Address_Parameter (Spec_Id);
5990 if Spec_Id /= Body_Id then
5991 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5992 end if;
5993 end if;
5995 -- Set L to either the list of declarations if present, or to the list
5996 -- of statements if no declarations are present. This is used to insert
5997 -- new stuff at the start.
5999 if Is_Non_Empty_List (Declarations (N)) then
6000 L := Declarations (N);
6001 else
6002 L := Statements (HSS);
6003 end if;
6005 -- If local-exception-to-goto optimization active, insert dummy push
6006 -- statements at start, and dummy pop statements at end, but inhibit
6007 -- this if we have No_Exception_Handlers, since they are useless and
6008 -- interfere with analysis, e.g. by CodePeer. We also don't need these
6009 -- if we're unnesting subprograms because the only purpose of these
6010 -- nodes is to ensure we don't set a label in one subprogram and branch
6011 -- to it in another.
6013 if (Debug_Flag_Dot_G
6014 or else Restriction_Active (No_Exception_Propagation))
6015 and then not Restriction_Active (No_Exception_Handlers)
6016 and then not CodePeer_Mode
6017 and then not Unnest_Subprogram_Mode
6018 and then Is_Non_Empty_List (L)
6019 then
6020 declare
6021 FS : constant Node_Id := First (L);
6022 FL : constant Source_Ptr := Sloc (FS);
6023 LS : Node_Id;
6024 LL : Source_Ptr;
6026 begin
6027 -- LS points to either last statement, if statements are present
6028 -- or to the last declaration if there are no statements present.
6029 -- It is the node after which the pop's are generated.
6031 if Is_Non_Empty_List (Statements (HSS)) then
6032 LS := Last (Statements (HSS));
6033 else
6034 LS := Last (L);
6035 end if;
6037 LL := Sloc (LS);
6039 Insert_List_Before_And_Analyze (FS, New_List (
6040 Make_Push_Constraint_Error_Label (FL),
6041 Make_Push_Program_Error_Label (FL),
6042 Make_Push_Storage_Error_Label (FL)));
6044 Insert_List_After_And_Analyze (LS, New_List (
6045 Make_Pop_Constraint_Error_Label (LL),
6046 Make_Pop_Program_Error_Label (LL),
6047 Make_Pop_Storage_Error_Label (LL)));
6048 end;
6049 end if;
6051 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
6053 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
6054 declare
6055 F : Entity_Id;
6056 A : Node_Id;
6058 begin
6059 -- Loop through formals
6061 F := First_Formal (Spec_Id);
6062 while Present (F) loop
6063 if Is_Scalar_Type (Etype (F))
6064 and then Ekind (F) = E_Out_Parameter
6065 then
6066 Check_Restriction (No_Default_Initialization, F);
6068 -- Insert the initialization. We turn off validity checks
6069 -- for this assignment, since we do not want any check on
6070 -- the initial value itself (which may well be invalid).
6071 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
6073 A :=
6074 Make_Assignment_Statement (Loc,
6075 Name => New_Occurrence_Of (F, Loc),
6076 Expression => Get_Simple_Init_Val (Etype (F), N));
6077 Set_Suppress_Assignment_Checks (A);
6079 Insert_Before_And_Analyze (First (L),
6080 A, Suppress => Validity_Check);
6081 end if;
6083 Next_Formal (F);
6084 end loop;
6085 end;
6086 end if;
6088 -- Clear out statement list for stubbed procedure
6090 if Present (Corresponding_Spec (N)) then
6091 Set_Elaboration_Flag (N, Spec_Id);
6093 if Convention (Spec_Id) = Convention_Stubbed
6094 or else Is_Eliminated (Spec_Id)
6095 then
6096 Set_Declarations (N, Empty_List);
6097 Set_Handled_Statement_Sequence (N,
6098 Make_Handled_Sequence_Of_Statements (Loc,
6099 Statements => New_List (Make_Null_Statement (Loc))));
6101 return;
6102 end if;
6103 end if;
6105 -- Create a set of discriminals for the next protected subprogram body
6107 if Is_List_Member (N)
6108 and then Present (Parent (List_Containing (N)))
6109 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6110 and then Present (Next_Protected_Operation (N))
6111 then
6112 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
6113 end if;
6115 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
6116 -- subprograms with no specs are not frozen.
6118 Compute_Returns_By_Ref (Spec_Id);
6120 -- For a procedure, we add a return for all possible syntactic ends of
6121 -- the subprogram.
6123 if Ekind (Spec_Id) in E_Procedure | E_Generic_Procedure then
6124 Add_Return (Spec_Id, Statements (HSS));
6126 if Present (Exception_Handlers (HSS)) then
6127 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
6128 while Present (Except_H) loop
6129 Add_Return (Spec_Id, Statements (Except_H));
6130 Next_Non_Pragma (Except_H);
6131 end loop;
6132 end if;
6134 -- For a function, we must deal with the case where there is at least
6135 -- one missing return. What we do is to wrap the entire body of the
6136 -- function in a block:
6138 -- begin
6139 -- ...
6140 -- end;
6142 -- becomes
6144 -- begin
6145 -- begin
6146 -- ...
6147 -- end;
6149 -- raise Program_Error;
6150 -- end;
6152 -- This approach is necessary because the raise must be signalled to the
6153 -- caller, not handled by any local handler (RM 6.4(11)).
6155 -- Note: we do not need to analyze the constructed sequence here, since
6156 -- it has no handler, and an attempt to analyze the handled statement
6157 -- sequence twice is risky in various ways (e.g. the issue of expanding
6158 -- cleanup actions twice).
6160 elsif Has_Missing_Return (Spec_Id) then
6161 declare
6162 Hloc : constant Source_Ptr := Sloc (HSS);
6163 Blok : constant Node_Id :=
6164 Make_Block_Statement (Hloc,
6165 Handled_Statement_Sequence => HSS);
6166 Rais : constant Node_Id :=
6167 Make_Raise_Program_Error (Hloc,
6168 Reason => PE_Missing_Return);
6170 begin
6171 Set_Handled_Statement_Sequence (N,
6172 Make_Handled_Sequence_Of_Statements (Hloc,
6173 Statements => New_List (Blok, Rais)));
6175 Push_Scope (Spec_Id);
6176 Analyze (Blok);
6177 Analyze (Rais);
6178 Pop_Scope;
6179 end;
6180 end if;
6182 -- If subprogram contains a parameterless recursive call, then we may
6183 -- have an infinite recursion, so see if we can generate code to check
6184 -- for this possibility if storage checks are not suppressed.
6186 if Ekind (Spec_Id) = E_Procedure
6187 and then Has_Recursive_Call (Spec_Id)
6188 and then not Storage_Checks_Suppressed (Spec_Id)
6189 then
6190 Detect_Infinite_Recursion (N, Spec_Id);
6191 end if;
6193 -- Set to encode entity names in package body before gigi is called
6195 Qualify_Entity_Names (N);
6197 -- If the body belongs to a nonabstract library-level source primitive
6198 -- of a tagged type, install an elaboration check which ensures that a
6199 -- dispatching call targeting the primitive will not execute the body
6200 -- without it being previously elaborated.
6202 Install_Primitive_Elaboration_Check (N);
6203 end Expand_N_Subprogram_Body;
6205 -----------------------------------
6206 -- Expand_N_Subprogram_Body_Stub --
6207 -----------------------------------
6209 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
6210 Bod : Node_Id;
6212 begin
6213 if Present (Corresponding_Body (N)) then
6214 Bod := Unit_Declaration_Node (Corresponding_Body (N));
6216 -- The body may have been expanded already when it is analyzed
6217 -- through the subunit node. Do no expand again: it interferes
6218 -- with the construction of unnesting tables when generating C.
6220 if not Analyzed (Bod) then
6221 Expand_N_Subprogram_Body (Bod);
6222 end if;
6224 -- Add full qualification to entities that may be created late
6225 -- during unnesting.
6227 Qualify_Entity_Names (N);
6228 end if;
6229 end Expand_N_Subprogram_Body_Stub;
6231 -------------------------------------
6232 -- Expand_N_Subprogram_Declaration --
6233 -------------------------------------
6235 -- If the declaration appears within a protected body, it is a private
6236 -- operation of the protected type. We must create the corresponding
6237 -- protected subprogram an associated formals. For a normal protected
6238 -- operation, this is done when expanding the protected type declaration.
6240 -- If the declaration is for a null procedure, emit null body
6242 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
6243 Loc : constant Source_Ptr := Sloc (N);
6244 Subp : constant Entity_Id := Defining_Entity (N);
6246 -- Local variables
6248 Scop : constant Entity_Id := Scope (Subp);
6249 Prot_Bod : Node_Id;
6250 Prot_Decl : Node_Id;
6251 Prot_Id : Entity_Id;
6252 Typ : Entity_Id;
6254 begin
6255 -- Deal with case of protected subprogram. Do not generate protected
6256 -- operation if operation is flagged as eliminated.
6258 if Is_List_Member (N)
6259 and then Present (Parent (List_Containing (N)))
6260 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6261 and then Is_Protected_Type (Scop)
6262 then
6263 if No (Protected_Body_Subprogram (Subp))
6264 and then not Is_Eliminated (Subp)
6265 then
6266 Prot_Decl :=
6267 Make_Subprogram_Declaration (Loc,
6268 Specification =>
6269 Build_Protected_Sub_Specification
6270 (N, Scop, Unprotected_Mode));
6272 -- The protected subprogram is declared outside of the protected
6273 -- body. Given that the body has frozen all entities so far, we
6274 -- analyze the subprogram and perform freezing actions explicitly.
6275 -- including the generation of an explicit freeze node, to ensure
6276 -- that gigi has the proper order of elaboration.
6277 -- If the body is a subunit, the insertion point is before the
6278 -- stub in the parent.
6280 Prot_Bod := Parent (List_Containing (N));
6282 if Nkind (Parent (Prot_Bod)) = N_Subunit then
6283 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6284 end if;
6286 Insert_Before (Prot_Bod, Prot_Decl);
6287 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
6288 Set_Has_Delayed_Freeze (Prot_Id);
6290 Push_Scope (Scope (Scop));
6291 Analyze (Prot_Decl);
6292 Freeze_Before (N, Prot_Id);
6293 Set_Protected_Body_Subprogram (Subp, Prot_Id);
6294 Pop_Scope;
6295 end if;
6297 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6298 -- cases this is superfluous because calls to it will be automatically
6299 -- inlined, but we definitely need the body if preconditions for the
6300 -- procedure are present, or if performing coverage analysis.
6302 elsif Nkind (Specification (N)) = N_Procedure_Specification
6303 and then Null_Present (Specification (N))
6304 then
6305 declare
6306 Bod : constant Node_Id := Body_To_Inline (N);
6308 begin
6309 Set_Has_Completion (Subp, False);
6310 Append_Freeze_Action (Subp, Bod);
6312 -- The body now contains raise statements, so calls to it will
6313 -- not be inlined.
6315 Set_Is_Inlined (Subp, False);
6316 end;
6317 end if;
6319 -- When generating C code, transform a function that returns a
6320 -- constrained array type into a procedure with an out parameter
6321 -- that carries the return value.
6323 -- We skip this transformation for unchecked conversions, since they
6324 -- are not needed by the C generator (and this also produces cleaner
6325 -- output).
6327 Typ := Get_Fullest_View (Etype (Subp));
6329 if Transform_Function_Array
6330 and then Nkind (Specification (N)) = N_Function_Specification
6331 and then Is_Array_Type (Typ)
6332 and then Is_Constrained (Typ)
6333 and then not Is_Unchecked_Conversion_Instance (Subp)
6334 then
6335 Build_Procedure_Form (N);
6336 end if;
6337 end Expand_N_Subprogram_Declaration;
6339 --------------------------------
6340 -- Expand_Non_Function_Return --
6341 --------------------------------
6343 procedure Expand_Non_Function_Return (N : Node_Id) is
6344 pragma Assert (No (Expression (N)));
6346 Loc : constant Source_Ptr := Sloc (N);
6347 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6348 Kind : constant Entity_Kind := Ekind (Scope_Id);
6349 Call : Node_Id;
6350 Acc_Stat : Node_Id;
6351 Goto_Stat : Node_Id;
6352 Lab_Node : Node_Id;
6354 begin
6355 -- Ada 2022 (AI12-0279)
6357 if Has_Yield_Aspect (Scope_Id)
6358 and then RTE_Available (RE_Yield)
6359 then
6360 Insert_Action (N,
6361 Make_Procedure_Call_Statement (Loc,
6362 New_Occurrence_Of (RTE (RE_Yield), Loc)));
6363 end if;
6365 -- If it is a return from a procedure do no extra steps
6367 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6368 return;
6370 -- If it is a nested return within an extended one, replace it with a
6371 -- return of the previously declared return object.
6373 elsif Kind = E_Return_Statement then
6374 Rewrite (N,
6375 Make_Simple_Return_Statement (Loc,
6376 Expression =>
6377 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6378 Set_Comes_From_Extended_Return_Statement (N);
6379 Set_Return_Statement_Entity (N, Scope_Id);
6380 Expand_Simple_Function_Return (N);
6381 return;
6382 end if;
6384 pragma Assert (Is_Entry (Scope_Id));
6386 -- Look at the enclosing block to see whether the return is from an
6387 -- accept statement or an entry body.
6389 for J in reverse 0 .. Scope_Stack.Last loop
6390 Scope_Id := Scope_Stack.Table (J).Entity;
6391 exit when Is_Concurrent_Type (Scope_Id);
6392 end loop;
6394 -- If it is a return from accept statement it is expanded as call to
6395 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6397 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6398 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6400 if Is_Task_Type (Scope_Id) then
6402 Call :=
6403 Make_Procedure_Call_Statement (Loc,
6404 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6405 Insert_Before (N, Call);
6406 -- why not insert actions here???
6407 Analyze (Call);
6409 Acc_Stat := Parent (N);
6410 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6411 Acc_Stat := Parent (Acc_Stat);
6412 end loop;
6414 Lab_Node := Last (Statements
6415 (Handled_Statement_Sequence (Acc_Stat)));
6417 Goto_Stat := Make_Goto_Statement (Loc,
6418 Name => New_Occurrence_Of
6419 (Entity (Identifier (Lab_Node)), Loc));
6421 Set_Analyzed (Goto_Stat);
6423 Rewrite (N, Goto_Stat);
6424 Analyze (N);
6426 -- If it is a return from an entry body, put a Complete_Entry_Body call
6427 -- in front of the return.
6429 elsif Is_Protected_Type (Scope_Id) then
6430 Call :=
6431 Make_Procedure_Call_Statement (Loc,
6432 Name =>
6433 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6434 Parameter_Associations => New_List (
6435 Make_Attribute_Reference (Loc,
6436 Prefix =>
6437 New_Occurrence_Of
6438 (Find_Protection_Object (Current_Scope), Loc),
6439 Attribute_Name => Name_Unchecked_Access)));
6441 Insert_Before (N, Call);
6442 Analyze (Call);
6443 end if;
6444 end Expand_Non_Function_Return;
6446 ---------------------------------------
6447 -- Expand_Protected_Object_Reference --
6448 ---------------------------------------
6450 function Expand_Protected_Object_Reference
6451 (N : Node_Id;
6452 Scop : Entity_Id) return Node_Id
6454 Loc : constant Source_Ptr := Sloc (N);
6455 Corr : Entity_Id;
6456 Rec : Node_Id;
6457 Param : Entity_Id;
6458 Proc : Entity_Id;
6460 begin
6461 Rec := Make_Identifier (Loc, Name_uObject);
6462 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6464 -- Find enclosing protected operation, and retrieve its first parameter,
6465 -- which denotes the enclosing protected object. If the enclosing
6466 -- operation is an entry, we are immediately within the protected body,
6467 -- and we can retrieve the object from the service entries procedure. A
6468 -- barrier function has the same signature as an entry. A barrier
6469 -- function is compiled within the protected object, but unlike
6470 -- protected operations its never needs locks, so that its protected
6471 -- body subprogram points to itself.
6473 Proc := Current_Scope;
6474 while Present (Proc) and then Scope (Proc) /= Scop loop
6475 Proc := Scope (Proc);
6476 if Is_Subprogram (Proc)
6477 and then Present (Protected_Subprogram (Proc))
6478 then
6479 Proc := Protected_Subprogram (Proc);
6480 end if;
6481 end loop;
6483 Corr := Protected_Body_Subprogram (Proc);
6485 if No (Corr) then
6487 -- Previous error left expansion incomplete.
6488 -- Nothing to do on this call.
6490 return Empty;
6491 end if;
6493 Param :=
6494 Defining_Identifier
6495 (First (Parameter_Specifications (Parent (Corr))));
6497 if Is_Subprogram (Proc) and then Proc /= Corr then
6499 -- Protected function or procedure
6501 Set_Entity (Rec, Param);
6503 -- Rec is a reference to an entity which will not be in scope when
6504 -- the call is reanalyzed, and needs no further analysis.
6506 Set_Analyzed (Rec);
6508 else
6509 -- Entry or barrier function for entry body. The first parameter of
6510 -- the entry body procedure is pointer to the object. We create a
6511 -- local variable of the proper type, duplicating what is done to
6512 -- define _object later on.
6514 declare
6515 Decls : List_Id;
6516 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6518 begin
6519 Decls := New_List (
6520 Make_Full_Type_Declaration (Loc,
6521 Defining_Identifier => Obj_Ptr,
6522 Type_Definition =>
6523 Make_Access_To_Object_Definition (Loc,
6524 Subtype_Indication =>
6525 New_Occurrence_Of
6526 (Corresponding_Record_Type (Scop), Loc))));
6528 Insert_Actions (N, Decls);
6529 Freeze_Before (N, Obj_Ptr);
6531 Rec :=
6532 Make_Explicit_Dereference (Loc,
6533 Prefix =>
6534 Unchecked_Convert_To (Obj_Ptr,
6535 New_Occurrence_Of (Param, Loc)));
6537 -- Analyze new actual. Other actuals in calls are already analyzed
6538 -- and the list of actuals is not reanalyzed after rewriting.
6540 Set_Parent (Rec, N);
6541 Analyze (Rec);
6542 end;
6543 end if;
6545 return Rec;
6546 end Expand_Protected_Object_Reference;
6548 --------------------------------------
6549 -- Expand_Protected_Subprogram_Call --
6550 --------------------------------------
6552 procedure Expand_Protected_Subprogram_Call
6553 (N : Node_Id;
6554 Subp : Entity_Id;
6555 Scop : Entity_Id)
6557 Rec : Node_Id;
6559 procedure Expand_Internal_Init_Call;
6560 -- A call to an operation of the type may occur in the initialization
6561 -- of a private component. In that case the prefix of the call is an
6562 -- entity name and the call is treated as internal even though it
6563 -- appears in code outside of the protected type.
6565 procedure Freeze_Called_Function;
6566 -- If it is a function call it can appear in elaboration code and
6567 -- the called entity must be frozen before the call. This must be
6568 -- done before the call is expanded, as the expansion may rewrite it
6569 -- to something other than a call (e.g. a temporary initialized in a
6570 -- transient block).
6572 -------------------------------
6573 -- Expand_Internal_Init_Call --
6574 -------------------------------
6576 procedure Expand_Internal_Init_Call is
6577 begin
6578 -- If the context is a protected object (rather than a protected
6579 -- type) the call itself is bound to raise program_error because
6580 -- the protected body will not have been elaborated yet. This is
6581 -- diagnosed subsequently in Sem_Elab.
6583 Freeze_Called_Function;
6585 -- The target of the internal call is the first formal of the
6586 -- enclosing initialization procedure.
6588 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6589 Build_Protected_Subprogram_Call (N,
6590 Name => Name (N),
6591 Rec => Rec,
6592 External => False);
6593 Analyze (N);
6594 Resolve (N, Etype (Subp));
6595 end Expand_Internal_Init_Call;
6597 ----------------------------
6598 -- Freeze_Called_Function --
6599 ----------------------------
6601 procedure Freeze_Called_Function is
6602 begin
6603 if Ekind (Subp) = E_Function then
6604 Freeze_Expression (Name (N));
6605 end if;
6606 end Freeze_Called_Function;
6608 -- Start of processing for Expand_Protected_Subprogram_Call
6610 begin
6611 -- If the protected object is not an enclosing scope, this is an inter-
6612 -- object function call. Inter-object procedure calls are expanded by
6613 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6614 -- subprogram being called is in the protected body being compiled, and
6615 -- if the protected object in the call is statically the enclosing type.
6616 -- The object may be a component of some other data structure, in which
6617 -- case this must be handled as an inter-object call.
6619 if not Scope_Within_Or_Same (Inner => Current_Scope, Outer => Scop)
6620 or else Is_Entry_Wrapper (Current_Scope)
6621 or else not Is_Entity_Name (Name (N))
6622 then
6623 if Nkind (Name (N)) = N_Selected_Component then
6624 Rec := Prefix (Name (N));
6626 elsif Nkind (Name (N)) = N_Indexed_Component then
6627 Rec := Prefix (Prefix (Name (N)));
6629 -- If this is a call within an entry wrapper, it appears within a
6630 -- precondition that calls another primitive of the synchronized
6631 -- type. The target object of the call is the first actual on the
6632 -- wrapper. Note that this is an external call, because the wrapper
6633 -- is called outside of the synchronized object. This means that
6634 -- an entry call to an entry with preconditions involves two
6635 -- synchronized operations.
6637 elsif Ekind (Current_Scope) = E_Procedure
6638 and then Is_Entry_Wrapper (Current_Scope)
6639 then
6640 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6642 -- A default parameter of a protected operation may be a call to
6643 -- a protected function of the type. This appears as an internal
6644 -- call in the profile of the operation, but if the context is an
6645 -- external call we must convert the call into an external one,
6646 -- using the protected object that is the target, so that:
6648 -- Prot.P (F)
6649 -- is transformed into
6650 -- Prot.P (Prot.F)
6652 elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6653 and then Nkind (Name (Parent (N))) = N_Selected_Component
6654 and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6655 and then Is_Entity_Name (Name (N))
6656 and then Scope (Entity (Name (N))) =
6657 Etype (Prefix (Name (Parent (N))))
6658 then
6659 Rewrite (Name (N),
6660 Make_Selected_Component (Sloc (N),
6661 Prefix => New_Copy_Tree (Prefix (Name (Parent (N)))),
6662 Selector_Name => Relocate_Node (Name (N))));
6664 Analyze_And_Resolve (N);
6665 return;
6667 else
6668 -- If the context is the initialization procedure for a protected
6669 -- type, the call is legal because the called entity must be a
6670 -- function of that enclosing type, and this is treated as an
6671 -- internal call.
6673 pragma Assert
6674 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6676 Expand_Internal_Init_Call;
6677 return;
6678 end if;
6680 Freeze_Called_Function;
6681 Build_Protected_Subprogram_Call (N,
6682 Name => New_Occurrence_Of (Subp, Sloc (N)),
6683 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6684 External => True);
6686 else
6687 Rec := Expand_Protected_Object_Reference (N, Scop);
6689 if No (Rec) then
6690 return;
6691 end if;
6693 Freeze_Called_Function;
6694 Build_Protected_Subprogram_Call (N,
6695 Name => Name (N),
6696 Rec => Rec,
6697 External => False);
6698 end if;
6700 -- Analyze and resolve the new call. The actuals have already been
6701 -- resolved, but expansion of a function call will add extra actuals
6702 -- if needed. Analysis of a procedure call already includes resolution.
6704 Analyze (N);
6706 if Ekind (Subp) = E_Function then
6707 Resolve (N, Etype (Subp));
6708 end if;
6709 end Expand_Protected_Subprogram_Call;
6711 -----------------------------------
6712 -- Expand_Simple_Function_Return --
6713 -----------------------------------
6715 -- The "simple" comes from the syntax rule simple_return_statement. The
6716 -- semantics are not at all simple.
6718 procedure Expand_Simple_Function_Return (N : Node_Id) is
6719 Loc : constant Source_Ptr := Sloc (N);
6721 Scope_Id : constant Entity_Id :=
6722 Return_Applies_To (Return_Statement_Entity (N));
6723 -- The function we are returning from
6725 R_Type : constant Entity_Id := Etype (Scope_Id);
6726 -- The result type of the function
6728 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6729 -- The underlying result type of the function
6731 Exp : Node_Id := Expression (N);
6732 pragma Assert (Present (Exp));
6734 Exp_Is_Function_Call : constant Boolean :=
6735 Nkind (Exp) = N_Function_Call
6736 or else
6737 (Is_Captured_Function_Call (Exp)
6738 and then Is_Related_To_Func_Return (Entity (Prefix (Exp))));
6739 -- If the expression is a captured function call, then we need to make
6740 -- sure that the object doing the capture is properly recognized by the
6741 -- Is_Related_To_Func_Return predicate; otherwise, if it is of a type
6742 -- that needs finalization, Requires_Cleanup_Actions would return true
6743 -- because of this and Build_Finalizer would finalize it prematurely.
6745 Exp_Typ : constant Entity_Id := Etype (Exp);
6746 -- The type of the expression (not necessarily the same as R_Type)
6748 Subtype_Ind : Node_Id;
6749 -- If the result type of the function is class-wide and the expression
6750 -- has a specific type, then we use the expression's type as the type of
6751 -- the return object. In cases where the expression is an aggregate that
6752 -- is built in place, this avoids the need for an expensive conversion
6753 -- of the return object to the specific type on assignments to the
6754 -- individual components.
6756 -- Start of processing for Expand_Simple_Function_Return
6758 begin
6759 if Is_Class_Wide_Type (R_Type)
6760 and then not Is_Class_Wide_Type (Exp_Typ)
6761 and then Nkind (Exp) /= N_Type_Conversion
6762 then
6763 Subtype_Ind := New_Occurrence_Of (Exp_Typ, Loc);
6764 else
6765 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6767 -- If the result type is class-wide and the expression is a view
6768 -- conversion, the conversion plays no role in the expansion because
6769 -- it does not modify the tag of the object. Remove the conversion
6770 -- altogether to prevent tag overwriting.
6772 if Is_Class_Wide_Type (R_Type)
6773 and then not Is_Class_Wide_Type (Exp_Typ)
6774 and then Nkind (Exp) = N_Type_Conversion
6775 then
6776 Exp := Expression (Exp);
6777 end if;
6778 end if;
6780 -- Assert that if F says "return G(...);"
6781 -- then F and G are both b-i-p, or neither b-i-p.
6783 if Nkind (Exp) = N_Function_Call then
6784 pragma Assert (Ekind (Scope_Id) = E_Function);
6785 pragma Assert
6786 (Is_Build_In_Place_Function (Scope_Id) =
6787 Is_True_Build_In_Place_Function_Call (Exp));
6788 null;
6789 end if;
6791 -- For the case of a simple return that does not come from an
6792 -- extended return, in the case of build-in-place, we rewrite
6793 -- "return <expression>;" to be:
6795 -- return _anon_ : <return_subtype> := <expression>
6797 -- The expansion produced by Expand_N_Extended_Return_Statement will
6798 -- contain simple return statements (for example, a block containing
6799 -- simple return of the return object), which brings us back here with
6800 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6801 -- checking for a simple return that does not come from an extended
6802 -- return is to avoid this infinite recursion.
6804 -- The reason for this design is that for Ada 2005 limited returns, we
6805 -- need to reify the return object, so we can build it "in place", and
6806 -- we need a block statement to hang finalization and tasking stuff.
6808 pragma Assert
6809 (Comes_From_Extended_Return_Statement (N)
6810 or else not Is_True_Build_In_Place_Function_Call (Exp)
6811 or else Has_BIP_Formals (Scope_Id));
6813 if not Comes_From_Extended_Return_Statement (N)
6814 and then Is_Build_In_Place_Function (Scope_Id)
6816 -- The functionality of interface thunks is simple and it is always
6817 -- handled by means of simple return statements. This leaves their
6818 -- expansion simple and clean.
6820 and then not Is_Thunk (Scope_Id)
6821 then
6822 declare
6823 Return_Object_Entity : constant Entity_Id :=
6824 Make_Temporary (Loc, 'R', Exp);
6826 Obj_Decl : constant Node_Id :=
6827 Make_Object_Declaration (Loc,
6828 Defining_Identifier => Return_Object_Entity,
6829 Object_Definition => Subtype_Ind,
6830 Expression => Exp);
6832 Ext : constant Node_Id :=
6833 Make_Extended_Return_Statement (Loc,
6834 Return_Object_Declarations => New_List (Obj_Decl));
6835 -- Do not perform this high-level optimization if the result type
6836 -- is an interface because the "this" pointer must be displaced.
6838 begin
6839 Rewrite (N, Ext);
6840 Analyze (N);
6841 return;
6842 end;
6843 end if;
6845 -- Here we have a simple return statement that is part of the expansion
6846 -- of an extended return statement (either written by the user, or
6847 -- generated by the above code).
6849 -- Always normalize C/Fortran boolean result. This is not always needed,
6850 -- but it seems a good idea to minimize the passing around of non-
6851 -- normalized values, and in any case this handles the processing of
6852 -- barrier functions for protected types, which turn the condition into
6853 -- a return statement.
6855 if Is_Boolean_Type (Exp_Typ) and then Nonzero_Is_True (Exp_Typ) then
6856 Adjust_Condition (Exp);
6857 Adjust_Result_Type (Exp, Exp_Typ);
6859 -- The adjustment of the expression may have rewritten the return
6860 -- statement itself, e.g. when it is turned into an if expression.
6862 if Nkind (N) /= N_Simple_Return_Statement then
6863 return;
6864 end if;
6865 end if;
6867 -- Do validity check if enabled for returns
6869 if Validity_Checks_On and then Validity_Check_Returns then
6870 Ensure_Valid (Exp);
6871 end if;
6873 -- Check the result expression of a scalar function against the subtype
6874 -- of the function by inserting a conversion. This conversion must
6875 -- eventually be performed for other classes of types, but for now it's
6876 -- only done for scalars ???
6878 if Is_Scalar_Type (Exp_Typ) and then Exp_Typ /= R_Type then
6879 Rewrite (Exp, Convert_To (R_Type, Exp));
6881 -- The expression is resolved to ensure that the conversion gets
6882 -- expanded to generate a possible constraint check.
6884 Analyze_And_Resolve (Exp, R_Type);
6885 end if;
6887 -- Deal with returning variable length objects and controlled types
6889 -- Nothing to do if we are returning by reference
6891 if Is_Build_In_Place_Function (Scope_Id) then
6892 -- Prevent the reclamation of the secondary stack by all enclosing
6893 -- blocks and loops as well as the related function; otherwise the
6894 -- result would be reclaimed too early.
6896 if Needs_BIP_Alloc_Form (Scope_Id) then
6897 Set_Enclosing_Sec_Stack_Return (N);
6898 end if;
6900 elsif Is_Limited_View (R_Type) then
6901 null;
6903 -- No copy needed for thunks returning interface type objects since
6904 -- the object is returned by reference and the maximum functionality
6905 -- required is just to displace the pointer.
6907 elsif Is_Thunk (Scope_Id) and then Is_Interface (Exp_Typ) then
6908 null;
6910 -- If the call is within a thunk and the type is a limited view, the
6911 -- back end will eventually see the non-limited view of the type.
6913 elsif Is_Thunk (Scope_Id) and then Is_Incomplete_Type (Exp_Typ) then
6914 return;
6916 -- A return statement from an ignored Ghost function does not use the
6917 -- secondary stack (or any other one).
6919 elsif (not Needs_Secondary_Stack (R_Type)
6920 and then not Is_Secondary_Stack_Thunk (Scope_Id))
6921 or else Is_Ignored_Ghost_Entity (Scope_Id)
6922 then
6923 -- Mutable records with variable-length components are not returned
6924 -- on the sec-stack, so we need to make sure that the back end will
6925 -- only copy back the size of the actual value, and not the maximum
6926 -- size. We create an actual subtype for this purpose. However we
6927 -- need not do it if the expression is a function call since this
6928 -- will be done in the called function and doing it here too would
6929 -- cause a temporary with maximum size to be created. Likewise for
6930 -- a special return object, since there is no copy in this case.
6932 declare
6933 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exp_Typ));
6934 Decl : Node_Id;
6935 Ent : Entity_Id;
6937 begin
6938 if not Exp_Is_Function_Call
6939 and then not (Is_Entity_Name (Exp)
6940 and then Is_Special_Return_Object (Entity (Exp)))
6941 and then Has_Defaulted_Discriminants (Ubt)
6942 and then not Is_Constrained (Ubt)
6943 and then not Has_Unchecked_Union (Ubt)
6944 then
6945 Decl := Build_Actual_Subtype (Ubt, Exp);
6946 Ent := Defining_Identifier (Decl);
6947 Insert_Action (Exp, Decl);
6948 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6949 Analyze_And_Resolve (Exp);
6950 end if;
6951 end;
6953 -- For types which need finalization, do the allocation on the return
6954 -- stack manually in order to call Adjust at the right time:
6956 -- type Ann is access R_Type;
6957 -- for Ann'Storage_pool use rs_pool;
6958 -- Rnn : constant Ann := new Exp_Typ'(Exp);
6959 -- return Rnn.all;
6961 -- but optimize the case where the result is a function call that
6962 -- also needs finalization. In this case the result can directly be
6963 -- allocated on the return stack of the caller and no further
6964 -- processing is required. Likewise if this is a return object.
6966 if Comes_From_Extended_Return_Statement (N) then
6967 null;
6969 elsif Present (Utyp)
6970 and then Needs_Finalization (Utyp)
6971 and then not (Exp_Is_Function_Call
6972 and then Needs_Finalization (Exp_Typ))
6973 then
6974 declare
6975 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6977 Alloc_Node : Node_Id;
6978 Temp : Entity_Id;
6980 begin
6981 Mutate_Ekind (Acc_Typ, E_Access_Type);
6983 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_RS_Pool));
6985 -- This is an allocator for the return stack, and it's fine
6986 -- to have Comes_From_Source set False on it, as gigi knows not
6987 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6989 Alloc_Node :=
6990 Make_Allocator (Loc,
6991 Expression =>
6992 Make_Qualified_Expression (Loc,
6993 Subtype_Mark => New_Occurrence_Of (Exp_Typ, Loc),
6994 Expression => Relocate_Node (Exp)));
6996 -- We do not want discriminant checks on the declaration,
6997 -- given that it gets its value from the allocator.
6999 Set_No_Initialization (Alloc_Node);
7001 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
7003 Insert_Actions (Exp, New_List (
7004 Make_Full_Type_Declaration (Loc,
7005 Defining_Identifier => Acc_Typ,
7006 Type_Definition =>
7007 Make_Access_To_Object_Definition (Loc,
7008 Subtype_Indication => Subtype_Ind)),
7010 Make_Object_Declaration (Loc,
7011 Defining_Identifier => Temp,
7012 Constant_Present => True,
7013 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
7014 Expression => Alloc_Node)));
7016 Rewrite (Exp,
7017 Make_Explicit_Dereference (Loc,
7018 Prefix => New_Occurrence_Of (Temp, Loc)));
7020 Analyze_And_Resolve (Exp, R_Type);
7021 end;
7022 end if;
7024 -- Here if secondary stack is used
7026 else
7027 -- Prevent the reclamation of the secondary stack by all enclosing
7028 -- blocks and loops as well as the related function; otherwise the
7029 -- result would be reclaimed too early.
7031 Set_Enclosing_Sec_Stack_Return (N);
7033 -- Nothing else to do for a return object
7035 if Comes_From_Extended_Return_Statement (N) then
7036 null;
7038 -- Optimize the case where the result is a function call that also
7039 -- returns on the secondary stack; in this case the result is already
7040 -- on the secondary stack and no further processing is required.
7042 elsif Exp_Is_Function_Call
7043 and then Needs_Secondary_Stack (Exp_Typ)
7044 then
7045 -- Remove side effects from the expression now so that other parts
7046 -- of the expander do not have to reanalyze this node without this
7047 -- optimization
7049 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
7051 -- Ada 2005 (AI-251): If the type of the returned object is
7052 -- an interface then add an implicit type conversion to force
7053 -- displacement of the "this" pointer.
7055 if Is_Interface (R_Type) then
7056 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7057 end if;
7059 Analyze_And_Resolve (Exp, R_Type);
7061 -- For types which both need finalization and are returned on the
7062 -- secondary stack, do the allocation on secondary stack manually
7063 -- in order to call Adjust at the right time:
7065 -- type Ann is access R_Type;
7066 -- for Ann'Storage_pool use ss_pool;
7067 -- Rnn : constant Ann := new Exp_Typ'(Exp);
7068 -- return Rnn.all;
7070 -- And we do the same for class-wide types that are not potentially
7071 -- controlled (by the virtue of restriction No_Finalization) because
7072 -- gigi is not able to properly allocate class-wide types.
7074 -- But optimize the case where the result is a function call that
7075 -- also needs finalization; in this case the result can directly be
7076 -- allocated on the secondary stack and no further processing is
7077 -- required, unless the returned object is an interface.
7079 elsif CW_Or_Needs_Finalization (Utyp)
7080 and then (Is_Interface (R_Type)
7081 or else not (Exp_Is_Function_Call
7082 and then Needs_Finalization (Exp_Typ)))
7083 then
7084 declare
7085 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
7087 Alloc_Node : Node_Id;
7088 Temp : Entity_Id;
7090 begin
7091 Mutate_Ekind (Acc_Typ, E_Access_Type);
7092 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
7094 -- This is an allocator for the secondary stack, and it's fine
7095 -- to have Comes_From_Source set False on it, as gigi knows not
7096 -- to flag it as a violation of No_Implicit_Heap_Allocations.
7098 Alloc_Node :=
7099 Make_Allocator (Loc,
7100 Expression =>
7101 Make_Qualified_Expression (Loc,
7102 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
7103 Expression => Relocate_Node (Exp)));
7105 -- We do not want discriminant checks on the declaration,
7106 -- given that it gets its value from the allocator.
7108 Set_No_Initialization (Alloc_Node);
7110 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
7112 Insert_Actions (Exp, New_List (
7113 Make_Full_Type_Declaration (Loc,
7114 Defining_Identifier => Acc_Typ,
7115 Type_Definition =>
7116 Make_Access_To_Object_Definition (Loc,
7117 Subtype_Indication => Subtype_Ind)),
7119 Make_Object_Declaration (Loc,
7120 Defining_Identifier => Temp,
7121 Constant_Present => True,
7122 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
7123 Expression => Alloc_Node)));
7125 Rewrite (Exp,
7126 Make_Explicit_Dereference (Loc,
7127 Prefix => New_Occurrence_Of (Temp, Loc)));
7129 -- Ada 2005 (AI-251): If the type of the returned object is
7130 -- an interface then add an implicit type conversion to force
7131 -- displacement of the "this" pointer.
7133 if Is_Interface (R_Type) then
7134 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7135 end if;
7137 Analyze_And_Resolve (Exp, R_Type);
7138 end;
7140 -- Otherwise use the gigi mechanism to allocate result on the
7141 -- secondary stack.
7143 else
7144 Check_Restriction (No_Secondary_Stack, N);
7145 Set_Storage_Pool (N, RTE (RE_SS_Pool));
7146 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
7147 end if;
7148 end if;
7150 -- Implement the rules of 6.5(8-10), which require a tag check in
7151 -- the case of a limited tagged return type, and tag reassignment for
7152 -- nonlimited tagged results. These actions are needed when the return
7153 -- type is a specific tagged type and the result expression is a
7154 -- conversion or a formal parameter, because in that case the tag of
7155 -- the expression might differ from the tag of the specific result type.
7157 -- We must also verify an underlying type exists for the return type in
7158 -- case it is incomplete - in which case is not necessary to generate a
7159 -- check anyway since an incomplete limited tagged return type would
7160 -- qualify as a premature usage.
7162 if Present (Utyp)
7163 and then Is_Tagged_Type (Utyp)
7164 and then not Is_Class_Wide_Type (Utyp)
7165 and then (Nkind (Exp) in
7166 N_Type_Conversion | N_Unchecked_Type_Conversion
7167 or else (Nkind (Exp) = N_Explicit_Dereference
7168 and then Nkind (Prefix (Exp)) in
7169 N_Type_Conversion |
7170 N_Unchecked_Type_Conversion)
7171 or else (Is_Entity_Name (Exp)
7172 and then Is_Formal (Entity (Exp))))
7173 then
7174 -- When the return type is limited, perform a check that the tag of
7175 -- the result is the same as the tag of the return type.
7177 if Is_Limited_Type (R_Type) then
7178 Insert_Action (Exp,
7179 Make_Raise_Constraint_Error (Loc,
7180 Condition =>
7181 Make_Op_Ne (Loc,
7182 Left_Opnd =>
7183 Make_Selected_Component (Loc,
7184 Prefix => Duplicate_Subexpr (Exp),
7185 Selector_Name => Make_Identifier (Loc, Name_uTag)),
7186 Right_Opnd =>
7187 Make_Attribute_Reference (Loc,
7188 Prefix =>
7189 New_Occurrence_Of (Base_Type (Utyp), Loc),
7190 Attribute_Name => Name_Tag)),
7191 Reason => CE_Tag_Check_Failed));
7193 -- If the result type is a specific nonlimited tagged type, then we
7194 -- have to ensure that the tag of the result is that of the result
7195 -- type. This is handled by making a copy of the expression in
7196 -- the case where it might have a different tag, namely when the
7197 -- expression is a conversion or a formal parameter. We create a new
7198 -- object of the result type and initialize it from the expression,
7199 -- which will implicitly force the tag to be set appropriately.
7201 else
7202 declare
7203 ExpR : constant Node_Id := Relocate_Node (Exp);
7204 Result_Id : constant Entity_Id :=
7205 Make_Temporary (Loc, 'R', ExpR);
7206 Result_Exp : constant Node_Id :=
7207 New_Occurrence_Of (Result_Id, Loc);
7208 Result_Obj : constant Node_Id :=
7209 Make_Object_Declaration (Loc,
7210 Defining_Identifier => Result_Id,
7211 Object_Definition =>
7212 New_Occurrence_Of (R_Type, Loc),
7213 Constant_Present => True,
7214 Expression => ExpR);
7216 begin
7217 Set_Assignment_OK (Result_Obj);
7218 Insert_Action (Exp, Result_Obj);
7220 Rewrite (Exp, Result_Exp);
7221 Analyze_And_Resolve (Exp, R_Type);
7222 end;
7223 end if;
7225 -- Ada 2005 (AI95-344): If the result type is class-wide, then insert
7226 -- a check that the level of the return expression's underlying type
7227 -- is not deeper than the level of the master enclosing the function.
7229 -- AI12-043: The check is made immediately after the return object is
7230 -- created. This means that we do not apply it to the simple return
7231 -- generated by the expansion of an extended return statement.
7233 -- No runtime check needed in interface thunks since it is performed
7234 -- by the target primitive associated with the thunk.
7236 elsif Is_Class_Wide_Type (R_Type)
7237 and then not Comes_From_Extended_Return_Statement (N)
7238 and then not Is_Thunk (Scope_Id)
7239 then
7240 Apply_CW_Accessibility_Check (Exp, Scope_Id);
7242 -- Ada 2012 (AI05-0073): If the result subtype of the function is
7243 -- defined by an access_definition designating a specific tagged
7244 -- type T, a check is made that the result value is null or the tag
7245 -- of the object designated by the result value identifies T.
7247 -- The return expression is referenced twice in the code below, so it
7248 -- must be made free of side effects. Given that different compilers
7249 -- may evaluate these parameters in different order, both occurrences
7250 -- perform a copy.
7252 elsif Ekind (R_Type) = E_Anonymous_Access_Type
7253 and then Is_Tagged_Type (Designated_Type (R_Type))
7254 and then not Is_Class_Wide_Type (Designated_Type (R_Type))
7255 and then Nkind (Original_Node (Exp)) /= N_Null
7256 and then not Tag_Checks_Suppressed (Designated_Type (R_Type))
7257 then
7258 -- Generate:
7259 -- [Constraint_Error
7260 -- when Exp /= null
7261 -- and then Exp.all not in Designated_Type]
7263 Insert_Action (N,
7264 Make_Raise_Constraint_Error (Loc,
7265 Condition =>
7266 Make_And_Then (Loc,
7267 Left_Opnd =>
7268 Make_Op_Ne (Loc,
7269 Left_Opnd => Duplicate_Subexpr (Exp),
7270 Right_Opnd => Make_Null (Loc)),
7272 Right_Opnd =>
7273 Make_Not_In (Loc,
7274 Left_Opnd =>
7275 Make_Explicit_Dereference (Loc,
7276 Prefix => Duplicate_Subexpr (Exp)),
7277 Right_Opnd =>
7278 New_Occurrence_Of (Designated_Type (R_Type), Loc))),
7280 Reason => CE_Tag_Check_Failed),
7281 Suppress => All_Checks);
7282 end if;
7284 -- If the result is of an unconstrained array subtype with fixed lower
7285 -- bound, then sliding to that bound may be needed.
7287 if Is_Fixed_Lower_Bound_Array_Subtype (R_Type) then
7288 Expand_Sliding_Conversion (Exp, R_Type);
7289 end if;
7291 -- If we are returning a nonscalar object that is possibly unaligned,
7292 -- then copy the value into a temporary first. This copy may need to
7293 -- expand to a loop of component operations.
7295 if Is_Possibly_Unaligned_Slice (Exp)
7296 or else (Is_Possibly_Unaligned_Object (Exp)
7297 and then not Represented_As_Scalar (Etype (Exp)))
7298 then
7299 declare
7300 ExpR : constant Node_Id := Relocate_Node (Exp);
7301 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7302 begin
7303 Insert_Action (Exp,
7304 Make_Object_Declaration (Loc,
7305 Defining_Identifier => Tnn,
7306 Constant_Present => True,
7307 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7308 Expression => ExpR),
7309 Suppress => All_Checks);
7310 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7311 end;
7312 end if;
7314 -- Ada 2005 (AI-251): If this return statement corresponds with an
7315 -- simple return statement associated with an extended return statement
7316 -- and the type of the returned object is an interface then generate an
7317 -- implicit conversion to force displacement of the "this" pointer.
7319 if Ada_Version >= Ada_2005
7320 and then Comes_From_Extended_Return_Statement (N)
7321 and then Nkind (Expression (N)) = N_Identifier
7322 and then Is_Interface (Utyp)
7323 and then Utyp /= Underlying_Type (Exp_Typ)
7324 then
7325 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7326 Analyze_And_Resolve (Exp);
7327 end if;
7329 -- Ada 2022 (AI12-0279)
7331 if Has_Yield_Aspect (Scope_Id)
7332 and then RTE_Available (RE_Yield)
7333 then
7334 Insert_Action (N,
7335 Make_Procedure_Call_Statement (Loc,
7336 New_Occurrence_Of (RTE (RE_Yield), Loc)));
7337 end if;
7338 end Expand_Simple_Function_Return;
7340 -----------------------
7341 -- Freeze_Subprogram --
7342 -----------------------
7344 procedure Freeze_Subprogram (N : Node_Id) is
7345 Loc : constant Source_Ptr := Sloc (N);
7346 Subp : constant Entity_Id := Entity (N);
7348 begin
7349 -- We suppress the initialization of the dispatch table entry when
7350 -- not Tagged_Type_Expansion because the dispatching mechanism is
7351 -- handled internally by the target.
7353 if Is_Dispatching_Operation (Subp)
7354 and then not Is_Abstract_Subprogram (Subp)
7355 and then Present (DTC_Entity (Subp))
7356 and then Present (Scope (DTC_Entity (Subp)))
7357 and then Tagged_Type_Expansion
7358 and then not Restriction_Active (No_Dispatching_Calls)
7359 and then RTE_Available (RE_Tag)
7360 then
7361 declare
7362 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7364 L : List_Id;
7366 begin
7367 -- Handle private overridden primitives
7369 if not Is_CPP_Class (Typ) then
7370 Check_Overriding_Operation (Subp);
7371 end if;
7373 -- We assume that imported CPP primitives correspond with objects
7374 -- whose constructor is in the CPP side; therefore we don't need
7375 -- to generate code to register them in the dispatch table.
7377 if Is_CPP_Class (Typ) then
7378 null;
7380 -- Handle CPP primitives found in derivations of CPP_Class types.
7381 -- These primitives must have been inherited from some parent, and
7382 -- there is no need to register them in the dispatch table because
7383 -- Build_Inherit_Prims takes care of initializing these slots.
7385 elsif Is_Imported (Subp)
7386 and then Convention (Subp) in Convention_C_Family
7387 then
7388 null;
7390 -- Generate code to register the primitive in non statically
7391 -- allocated dispatch tables
7393 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7395 -- When a primitive is frozen, enter its name in its dispatch
7396 -- table slot.
7398 if not Is_Interface (Typ)
7399 or else Present (Interface_Alias (Subp))
7400 then
7401 if Is_Predefined_Dispatching_Operation (Subp) then
7402 L := Register_Predefined_Primitive (Loc, Subp);
7403 else
7404 L := New_List;
7405 end if;
7407 Append_List_To (L, Register_Primitive (Loc, Subp));
7409 if Is_Empty_List (L) then
7410 null;
7412 elsif No (Actions (N)) then
7413 Set_Actions (N, L);
7415 else
7416 Append_List (L, Actions (N));
7417 end if;
7418 end if;
7419 end if;
7420 end;
7421 end if;
7423 -- Mark functions that return by reference. Note that it cannot be part
7424 -- of the normal semantic analysis of the spec since the underlying
7425 -- returned type may not be known yet (for private types).
7427 Compute_Returns_By_Ref (Subp);
7428 end Freeze_Subprogram;
7430 --------------------------
7431 -- Has_BIP_Extra_Formal --
7432 --------------------------
7434 function Has_BIP_Extra_Formal
7435 (E : Entity_Id;
7436 Kind : BIP_Formal_Kind;
7437 Must_Be_Frozen : Boolean := True) return Boolean
7439 Extra_Formal : Entity_Id := Extra_Formals (E);
7441 begin
7442 -- We can only rely on the availability of the extra formals in frozen
7443 -- entities or in subprogram types of dispatching calls (since their
7444 -- extra formals are added when the target subprogram is frozen; see
7445 -- Expand_Dispatching_Call).
7447 pragma Assert ((Is_Frozen (E) or else not Must_Be_Frozen)
7448 or else (Ekind (E) = E_Subprogram_Type
7449 and then Is_Dispatch_Table_Entity (E))
7450 or else (Is_Dispatching_Operation (E)
7451 and then Is_Frozen (Find_Dispatching_Type (E))));
7453 while Present (Extra_Formal) loop
7454 if Is_Build_In_Place_Entity (Extra_Formal)
7455 and then BIP_Suffix_Kind (Extra_Formal) = Kind
7456 then
7457 return True;
7458 end if;
7460 Next_Formal_With_Extras (Extra_Formal);
7461 end loop;
7463 return False;
7464 end Has_BIP_Extra_Formal;
7466 ------------------------------
7467 -- Insert_Post_Call_Actions --
7468 ------------------------------
7470 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7471 Context : constant Node_Id := Parent (N);
7473 begin
7474 if Is_Empty_List (Post_Call) then
7475 return;
7476 end if;
7478 -- Cases where the call is not a member of a statement list. This also
7479 -- includes the cases where the call is an actual in another function
7480 -- call, or is an index, or is an operand of an if-expression, i.e. is
7481 -- in an expression context.
7483 if not Is_List_Member (N)
7484 or else Nkind (Context) in N_Function_Call
7485 | N_If_Expression
7486 | N_Indexed_Component
7487 then
7488 -- In Ada 2012 the call may be a function call in an expression
7489 -- (since OUT and IN OUT parameters are now allowed for such calls).
7490 -- The write-back of (in)-out parameters is handled by the back-end,
7491 -- but the constraint checks generated when subtypes of formal and
7492 -- actual don't match must be inserted in the form of assignments.
7493 -- Also do this in the case of explicit dereferences, which can occur
7494 -- due to rewritings of function calls with controlled results.
7496 if Nkind (N) = N_Function_Call
7497 or else Nkind (Original_Node (N)) = N_Function_Call
7498 or else Nkind (N) = N_Explicit_Dereference
7499 then
7500 pragma Assert (Ada_Version >= Ada_2012);
7501 -- Functions with '[in] out' parameters are only allowed in Ada
7502 -- 2012.
7504 -- We used to handle this by climbing up parents to a
7505 -- non-statement/declaration and then simply making a call to
7506 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7507 -- for Ada 2012. If we are in the middle of an expression, e.g.
7508 -- the condition of an IF, this call would insert after the IF
7509 -- statement, which is much too late to be doing the write back.
7510 -- For example:
7512 -- if Clobber (X) then
7513 -- Put_Line (X'Img);
7514 -- else
7515 -- goto Junk
7516 -- end if;
7518 -- Now assume Clobber changes X, if we put the write back after
7519 -- the IF, the Put_Line gets the wrong value and the goto causes
7520 -- the write back to be skipped completely.
7522 -- To deal with this, we replace the call by
7524 -- do
7525 -- Tnnn : constant function-result-type := function-call;
7526 -- Post_Call actions
7527 -- in
7528 -- Tnnn;
7529 -- end;
7531 -- However, that doesn't work if function-result-type requires
7532 -- finalization (because function-call's result never gets
7533 -- finalized). So in that case, we instead replace the call by
7535 -- do
7536 -- type Ref is access all function-result-type;
7537 -- Ptr : constant Ref := function-call'Reference;
7538 -- Tnnn : constant function-result-type := Ptr.all;
7539 -- Finalize (Ptr.all);
7540 -- Post_Call actions
7541 -- in
7542 -- Tnnn;
7543 -- end;
7546 declare
7547 Loc : constant Source_Ptr := Sloc (N);
7548 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7549 FRTyp : constant Entity_Id := Etype (N);
7550 Name : constant Node_Id := Relocate_Node (N);
7552 begin
7553 if Needs_Finalization (FRTyp) then
7554 declare
7555 Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
7557 Ptr_Typ_Decl : constant Node_Id :=
7558 Make_Full_Type_Declaration (Loc,
7559 Defining_Identifier => Ptr_Typ,
7560 Type_Definition =>
7561 Make_Access_To_Object_Definition (Loc,
7562 All_Present => True,
7563 Subtype_Indication =>
7564 New_Occurrence_Of (FRTyp, Loc)));
7566 Ptr_Obj : constant Entity_Id :=
7567 Make_Temporary (Loc, 'P');
7569 Ptr_Obj_Decl : constant Node_Id :=
7570 Make_Object_Declaration (Loc,
7571 Defining_Identifier => Ptr_Obj,
7572 Object_Definition =>
7573 New_Occurrence_Of (Ptr_Typ, Loc),
7574 Constant_Present => True,
7575 Expression =>
7576 Make_Attribute_Reference (Loc,
7577 Prefix => Name,
7578 Attribute_Name => Name_Unrestricted_Access));
7580 function Ptr_Dereference return Node_Id is
7581 (Make_Explicit_Dereference (Loc,
7582 Prefix => New_Occurrence_Of (Ptr_Obj, Loc)));
7584 Tnn_Decl : constant Node_Id :=
7585 Make_Object_Declaration (Loc,
7586 Defining_Identifier => Tnnn,
7587 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7588 Constant_Present => True,
7589 Expression => Ptr_Dereference);
7591 Finalize_Call : constant Node_Id :=
7592 Make_Final_Call
7593 (Obj_Ref => Ptr_Dereference, Typ => FRTyp);
7594 begin
7595 -- Prepend in reverse order
7597 Prepend_To (Post_Call, Finalize_Call);
7598 Prepend_To (Post_Call, Tnn_Decl);
7599 Prepend_To (Post_Call, Ptr_Obj_Decl);
7600 Prepend_To (Post_Call, Ptr_Typ_Decl);
7601 end;
7602 else
7603 Prepend_To (Post_Call,
7604 Make_Object_Declaration (Loc,
7605 Defining_Identifier => Tnnn,
7606 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7607 Constant_Present => True,
7608 Expression => Name));
7609 end if;
7611 Rewrite (N,
7612 Make_Expression_With_Actions (Loc,
7613 Actions => Post_Call,
7614 Expression => New_Occurrence_Of (Tnnn, Loc)));
7616 -- We don't want to just blindly call Analyze_And_Resolve
7617 -- because that would cause unwanted recursion on the call.
7618 -- So for a moment set the call as analyzed to prevent that
7619 -- recursion, and get the rest analyzed properly, then reset
7620 -- the analyzed flag, so our caller can continue.
7622 Set_Analyzed (Name, True);
7623 Analyze_And_Resolve (N, FRTyp);
7624 Set_Analyzed (Name, False);
7625 end;
7627 -- If not the special Ada 2012 case of a function call, then we must
7628 -- have the triggering statement of a triggering alternative or an
7629 -- entry call alternative, and we can add the post call stuff to the
7630 -- corresponding statement list.
7632 else
7633 pragma Assert (Nkind (Context) in N_Entry_Call_Alternative
7634 | N_Triggering_Alternative);
7636 if Is_Non_Empty_List (Statements (Context)) then
7637 Insert_List_Before_And_Analyze
7638 (First (Statements (Context)), Post_Call);
7639 else
7640 Set_Statements (Context, Post_Call);
7641 end if;
7642 end if;
7644 -- A procedure call is always part of a declarative or statement list,
7645 -- however a function call may appear nested within a construct. Most
7646 -- cases of function call nesting are handled in the special case above.
7647 -- The only exception is when the function call acts as an actual in a
7648 -- procedure call. In this case the function call is in a list, but the
7649 -- post-call actions must be inserted after the procedure call.
7650 -- What if the function call is an aggregate component ???
7652 elsif Nkind (Context) = N_Procedure_Call_Statement then
7653 Insert_Actions_After (Context, Post_Call);
7655 -- Otherwise, normal case where N is in a statement sequence, just put
7656 -- the post-call stuff after the call statement.
7658 else
7659 Insert_Actions_After (N, Post_Call);
7660 end if;
7661 end Insert_Post_Call_Actions;
7663 ---------------------------------------
7664 -- Install_Class_Preconditions_Check --
7665 ---------------------------------------
7667 procedure Install_Class_Preconditions_Check (Call_Node : Node_Id) is
7668 Loc : constant Source_Ptr := Sloc (Call_Node);
7670 function Build_Dynamic_Check_Helper_Call return Node_Id;
7671 -- Build call to the helper runtime function of the nearest ancestor
7672 -- of the target subprogram that dynamically evaluates the merged
7673 -- or-else preconditions.
7675 function Build_Error_Message (Subp_Id : Entity_Id) return Node_Id;
7676 -- Build message associated with the class-wide precondition of Subp_Id
7677 -- indicating the call that caused it.
7679 function Build_Static_Check_Helper_Call return Node_Id;
7680 -- Build call to the helper runtime function of the nearest ancestor
7681 -- of the target subprogram that dynamically evaluates the merged
7682 -- or-else preconditions.
7684 function Class_Preconditions_Subprogram
7685 (Spec_Id : Entity_Id;
7686 Dynamic : Boolean) return Node_Id;
7687 -- Return the nearest ancestor of Spec_Id defining a helper function
7688 -- that evaluates a combined or-else expression containing all the
7689 -- inherited class-wide preconditions; Dynamic enables searching for
7690 -- the helper that dynamically evaluates preconditions using dispatching
7691 -- calls; if False it searches for the helper that statically evaluates
7692 -- preconditions; return Empty when not available (which means that no
7693 -- preconditions check is required).
7695 -------------------------------------
7696 -- Build_Dynamic_Check_Helper_Call --
7697 -------------------------------------
7699 function Build_Dynamic_Check_Helper_Call return Node_Id is
7700 Spec_Id : constant Entity_Id := Entity (Name (Call_Node));
7701 CW_Subp : constant Entity_Id :=
7702 Class_Preconditions_Subprogram (Spec_Id,
7703 Dynamic => True);
7704 Helper_Id : constant Entity_Id :=
7705 Dynamic_Call_Helper (CW_Subp);
7706 Actuals : constant List_Id := New_List;
7707 A : Node_Id := First_Actual (Call_Node);
7708 F : Entity_Id := First_Formal (Helper_Id);
7710 begin
7711 while Present (A) loop
7713 -- Ensure that the evaluation of the actuals will not produce
7714 -- side effects.
7716 Remove_Side_Effects (A);
7718 Append_To (Actuals, New_Copy_Tree (A));
7719 Next_Formal (F);
7720 Next_Actual (A);
7721 end loop;
7723 return
7724 Make_Function_Call (Loc,
7725 Name => New_Occurrence_Of (Helper_Id, Loc),
7726 Parameter_Associations => Actuals);
7727 end Build_Dynamic_Check_Helper_Call;
7729 -------------------------
7730 -- Build_Error_Message --
7731 -------------------------
7733 function Build_Error_Message (Subp_Id : Entity_Id) return Node_Id is
7735 procedure Append_Message
7736 (Id : Entity_Id;
7737 Is_First : in out Boolean);
7738 -- Build the fragment of the message associated with subprogram Id;
7739 -- Is_First facilitates identifying continuation messages.
7741 --------------------
7742 -- Append_Message --
7743 --------------------
7745 procedure Append_Message
7746 (Id : Entity_Id;
7747 Is_First : in out Boolean)
7749 Prag : constant Node_Id := Get_Class_Wide_Pragma (Id,
7750 Pragma_Precondition);
7751 Msg : Node_Id;
7752 Str_Id : String_Id;
7754 begin
7755 if No (Prag) or else Is_Ignored (Prag) then
7756 return;
7757 end if;
7759 Msg := Expression (Last (Pragma_Argument_Associations (Prag)));
7760 Str_Id := Strval (Msg);
7762 if Is_First then
7763 Is_First := False;
7765 Append (Global_Name_Buffer, Strval (Msg));
7767 if Id /= Subp_Id
7768 and then Name_Buffer (1 .. 19) = "failed precondition"
7769 then
7770 Insert_Str_In_Name_Buffer ("inherited ", 8);
7771 end if;
7773 else
7774 declare
7775 Str : constant String := To_String (Str_Id);
7776 From_Idx : Integer;
7778 begin
7779 Append (Global_Name_Buffer, ASCII.LF);
7780 Append (Global_Name_Buffer, " or ");
7782 From_Idx := Name_Len;
7783 Append (Global_Name_Buffer, Str_Id);
7785 if Str (1 .. 19) = "failed precondition" then
7786 Insert_Str_In_Name_Buffer ("inherited ", From_Idx + 8);
7787 end if;
7788 end;
7789 end if;
7790 end Append_Message;
7792 -- Local variables
7794 Str_Loc : constant String := Build_Location_String (Loc);
7795 Subps : constant Subprogram_List :=
7796 Inherited_Subprograms (Subp_Id);
7797 Is_First : Boolean := True;
7799 -- Start of processing for Build_Error_Message
7801 begin
7802 Name_Len := 0;
7803 Append_Message (Subp_Id, Is_First);
7805 for Index in Subps'Range loop
7806 Append_Message (Subps (Index), Is_First);
7807 end loop;
7809 if Present (Controlling_Argument (Call_Node)) then
7810 Append (Global_Name_Buffer, " in dispatching call at ");
7811 else
7812 Append (Global_Name_Buffer, " in call at ");
7813 end if;
7815 Append (Global_Name_Buffer, Str_Loc);
7817 return Make_String_Literal (Loc, Name_Buffer (1 .. Name_Len));
7818 end Build_Error_Message;
7820 ------------------------------------
7821 -- Build_Static_Check_Helper_Call --
7822 ------------------------------------
7824 function Build_Static_Check_Helper_Call return Node_Id is
7825 Actuals : constant List_Id := New_List;
7826 A : Node_Id;
7827 Helper_Id : Entity_Id;
7828 F : Entity_Id;
7829 CW_Subp : Entity_Id;
7830 Spec_Id : constant Entity_Id := Entity (Name (Call_Node));
7832 begin
7833 -- The target is the wrapper built to support inheriting body but
7834 -- overriding pre/postconditions (AI12-0195).
7836 if Is_Dispatch_Table_Wrapper (Spec_Id) then
7837 CW_Subp := Spec_Id;
7839 -- Common case
7841 else
7842 CW_Subp := Class_Preconditions_Subprogram (Spec_Id,
7843 Dynamic => False);
7844 end if;
7846 Helper_Id := Static_Call_Helper (CW_Subp);
7848 F := First_Formal (Helper_Id);
7849 A := First_Actual (Call_Node);
7850 while Present (A) loop
7852 -- Ensure that the evaluation of the actuals will not produce
7853 -- side effects.
7855 Remove_Side_Effects (A);
7857 -- Ensure matching types to avoid reporting spurious errors since
7858 -- the called helper may have been built for a parent type.
7860 if Etype (F) /= Etype (A) then
7861 Append_To (Actuals,
7862 Unchecked_Convert_To (Etype (F), New_Copy_Tree (A)));
7863 else
7864 Append_To (Actuals, New_Copy_Tree (A));
7865 end if;
7867 Next_Formal (F);
7868 Next_Actual (A);
7869 end loop;
7871 return
7872 Make_Function_Call (Loc,
7873 Name => New_Occurrence_Of (Helper_Id, Loc),
7874 Parameter_Associations => Actuals);
7875 end Build_Static_Check_Helper_Call;
7877 ------------------------------------
7878 -- Class_Preconditions_Subprogram --
7879 ------------------------------------
7881 function Class_Preconditions_Subprogram
7882 (Spec_Id : Entity_Id;
7883 Dynamic : Boolean) return Node_Id
7885 Subp_Id : constant Entity_Id := Ultimate_Alias (Spec_Id);
7887 begin
7888 -- Prevent cascaded errors
7890 if not Is_Dispatching_Operation (Subp_Id) then
7891 return Empty;
7893 -- No need to search if this subprogram has the helper we are
7894 -- searching
7896 elsif Dynamic then
7897 if Present (Dynamic_Call_Helper (Subp_Id)) then
7898 return Subp_Id;
7899 end if;
7900 else
7901 if Present (Static_Call_Helper (Subp_Id)) then
7902 return Subp_Id;
7903 end if;
7904 end if;
7906 -- Process inherited subprograms looking for class-wide
7907 -- preconditions.
7909 declare
7910 Subps : constant Subprogram_List :=
7911 Inherited_Subprograms (Subp_Id);
7912 Subp_Id : Entity_Id;
7914 begin
7915 for Index in Subps'Range loop
7916 Subp_Id := Subps (Index);
7918 if Present (Alias (Subp_Id)) then
7919 Subp_Id := Ultimate_Alias (Subp_Id);
7920 end if;
7922 -- Wrappers of class-wide pre/postconditions reference the
7923 -- parent primitive that has the inherited contract.
7925 if Is_Wrapper (Subp_Id)
7926 and then Present (LSP_Subprogram (Subp_Id))
7927 then
7928 Subp_Id := LSP_Subprogram (Subp_Id);
7929 end if;
7931 if Dynamic then
7932 if Present (Dynamic_Call_Helper (Subp_Id)) then
7933 return Subp_Id;
7934 end if;
7935 else
7936 if Present (Static_Call_Helper (Subp_Id)) then
7937 return Subp_Id;
7938 end if;
7939 end if;
7940 end loop;
7941 end;
7943 return Empty;
7944 end Class_Preconditions_Subprogram;
7946 -- Local variables
7948 Dynamic_Check : constant Boolean :=
7949 Present (Controlling_Argument (Call_Node));
7950 Class_Subp : Entity_Id;
7951 Cond : Node_Id;
7952 Subp : Entity_Id;
7954 -- Start of processing for Install_Class_Preconditions_Check
7956 begin
7957 -- Do not expand the check if we are compiling under restriction
7958 -- No_Dispatching_Calls; the semantic analyzer has previously
7959 -- notified the violation of this restriction.
7961 if Dynamic_Check
7962 and then Restriction_Active (No_Dispatching_Calls)
7963 then
7964 return;
7966 -- Class-wide precondition check not needed in interface thunks since
7967 -- they are installed in the dispatching call that caused invoking the
7968 -- thunk.
7970 elsif Is_Thunk (Current_Scope) then
7971 return;
7972 end if;
7974 Subp := Entity (Name (Call_Node));
7976 -- No check needed for this subprogram call if no class-wide
7977 -- preconditions apply (or if the unique available preconditions
7978 -- are ignored preconditions).
7980 Class_Subp := Class_Preconditions_Subprogram (Subp, Dynamic_Check);
7982 if No (Class_Subp)
7983 or else No (Class_Preconditions (Class_Subp))
7984 then
7985 return;
7986 end if;
7988 -- Build and install the check
7990 if Dynamic_Check then
7991 Cond := Build_Dynamic_Check_Helper_Call;
7992 else
7993 Cond := Build_Static_Check_Helper_Call;
7994 end if;
7996 if Exception_Locations_Suppressed then
7997 Insert_Action (Call_Node,
7998 Make_If_Statement (Loc,
7999 Condition => Make_Op_Not (Loc, Cond),
8000 Then_Statements => New_List (
8001 Make_Raise_Statement (Loc,
8002 Name =>
8003 New_Occurrence_Of
8004 (RTE (RE_Assert_Failure), Loc)))));
8006 -- Failed check with message indicating the failed precondition and the
8007 -- call that caused it.
8009 else
8010 Insert_Action (Call_Node,
8011 Make_If_Statement (Loc,
8012 Condition => Make_Op_Not (Loc, Cond),
8013 Then_Statements => New_List (
8014 Make_Procedure_Call_Statement (Loc,
8015 Name =>
8016 New_Occurrence_Of
8017 (RTE (RE_Raise_Assert_Failure), Loc),
8018 Parameter_Associations =>
8019 New_List (Build_Error_Message (Subp))))));
8020 end if;
8021 end Install_Class_Preconditions_Check;
8023 ------------------------------
8024 -- Is_Build_In_Place_Entity --
8025 ------------------------------
8027 function Is_Build_In_Place_Entity (E : Entity_Id) return Boolean is
8028 Nam : constant String := Get_Name_String (Chars (E));
8030 function Has_Suffix (Suffix : String) return Boolean;
8031 -- Return True if Nam has suffix Suffix
8033 function Has_Suffix (Suffix : String) return Boolean is
8034 Len : constant Natural := Suffix'Length;
8035 begin
8036 return Nam'Length > Len
8037 and then Nam (Nam'Last - Len + 1 .. Nam'Last) = Suffix;
8038 end Has_Suffix;
8040 -- Start of processing for Is_Build_In_Place_Entity
8042 begin
8043 return Has_Suffix (BIP_Alloc_Suffix)
8044 or else Has_Suffix (BIP_Storage_Pool_Suffix)
8045 or else Has_Suffix (BIP_Finalization_Master_Suffix)
8046 or else Has_Suffix (BIP_Task_Master_Suffix)
8047 or else Has_Suffix (BIP_Activation_Chain_Suffix)
8048 or else Has_Suffix (BIP_Object_Access_Suffix);
8049 end Is_Build_In_Place_Entity;
8051 --------------------------------
8052 -- Is_Build_In_Place_Function --
8053 --------------------------------
8055 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
8056 Kind : constant Entity_Kind := Ekind (E);
8057 Typ : constant Entity_Id := Etype (E);
8059 begin
8060 -- This function is called from Expand_Subtype_From_Expr during
8061 -- semantic analysis, even when expansion is off. In those cases
8062 -- the build_in_place expansion will not take place.
8064 if not Expander_Active then
8065 return False;
8066 end if;
8068 -- We never use build-in-place if the convention is other than Ada,
8069 -- but note that it is OK for a build-in-place function to return a
8070 -- type with a foreign convention because the machinery ensures there
8071 -- is no copying.
8073 return (Kind in E_Function | E_Generic_Function
8074 or else
8075 (Kind = E_Subprogram_Type and then Typ /= Standard_Void_Type))
8076 and then Is_Build_In_Place_Result_Type (Typ)
8077 and then not Has_Foreign_Convention (E);
8078 end Is_Build_In_Place_Function;
8080 -------------------------------------
8081 -- Is_Build_In_Place_Function_Call --
8082 -------------------------------------
8084 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8085 Exp_Node : constant Node_Id := Unqual_Conv (N);
8086 Function_Id : Entity_Id;
8088 begin
8089 -- Return False if the expander is currently inactive, since awareness
8090 -- of build-in-place treatment is only relevant during expansion. Note
8091 -- that Is_Build_In_Place_Function, which is called as part of this
8092 -- function, is also conditioned this way, but we need to check here as
8093 -- well to avoid blowing up on processing protected calls when expansion
8094 -- is disabled (such as with -gnatc) since those would trip over the
8095 -- raise of Program_Error below.
8097 -- In SPARK mode, build-in-place calls are not expanded, so that we
8098 -- may end up with a call that is neither resolved to an entity, nor
8099 -- an indirect call.
8101 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
8102 return False;
8103 end if;
8105 if Is_Entity_Name (Name (Exp_Node)) then
8106 Function_Id := Entity (Name (Exp_Node));
8108 -- In the case of an explicitly dereferenced call, use the subprogram
8109 -- type generated for the dereference.
8111 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8112 Function_Id := Etype (Name (Exp_Node));
8114 -- This may be a call to a protected function.
8116 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8117 -- The selector in question might not have been analyzed due to a
8118 -- previous error, so analyze it here to output the appropriate
8119 -- error message instead of crashing when attempting to fetch its
8120 -- entity.
8122 if not Analyzed (Selector_Name (Name (Exp_Node))) then
8123 Analyze (Selector_Name (Name (Exp_Node)));
8124 end if;
8126 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8128 else
8129 raise Program_Error;
8130 end if;
8132 if Is_Build_In_Place_Function (Function_Id) then
8133 return True;
8135 -- True also if the function has BIP Formals
8137 else
8138 declare
8139 Kind : constant Entity_Kind := Ekind (Function_Id);
8141 begin
8142 if (Kind in E_Function | E_Generic_Function
8143 or else (Kind = E_Subprogram_Type
8144 and then
8145 Etype (Function_Id) /= Standard_Void_Type))
8146 and then Has_BIP_Formals (Function_Id)
8147 then
8148 -- So we can stop here in the debugger
8149 return True;
8150 else
8151 return False;
8152 end if;
8153 end;
8154 end if;
8155 end Is_Build_In_Place_Function_Call;
8157 ------------------------------------------
8158 -- Is_True_Build_In_Place_Function_Call --
8159 ------------------------------------------
8161 function Is_True_Build_In_Place_Function_Call (N : Node_Id) return Boolean
8163 Exp_Node : Node_Id;
8164 Function_Id : Entity_Id;
8166 begin
8167 -- No action needed if we know that this is not a BIP function call
8169 if not Is_Build_In_Place_Function_Call (N) then
8170 return False;
8171 end if;
8173 Exp_Node := Unqual_Conv (N);
8175 if Is_Entity_Name (Name (Exp_Node)) then
8176 Function_Id := Entity (Name (Exp_Node));
8178 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8179 Function_Id := Etype (Name (Exp_Node));
8181 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8182 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8184 else
8185 raise Program_Error;
8186 end if;
8188 return Is_Build_In_Place_Function (Function_Id);
8189 end Is_True_Build_In_Place_Function_Call;
8191 -----------------------------------
8192 -- Is_Build_In_Place_Result_Type --
8193 -----------------------------------
8195 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
8196 begin
8197 if not Expander_Active then
8198 return False;
8199 end if;
8201 -- In Ada 2005 all functions with an inherently limited return type
8202 -- must be handled using a build-in-place profile, including the case
8203 -- of a function with a limited interface result, where the function
8204 -- may return objects of nonlimited descendants.
8206 return Is_Limited_View (Typ)
8207 and then Ada_Version >= Ada_2005
8208 and then not Debug_Flag_Dot_L;
8209 end Is_Build_In_Place_Result_Type;
8211 -------------------------------------
8212 -- Is_Build_In_Place_Return_Object --
8213 -------------------------------------
8215 function Is_Build_In_Place_Return_Object (E : Entity_Id) return Boolean is
8216 begin
8217 return Is_Return_Object (E)
8218 and then Is_Build_In_Place_Function (Return_Applies_To (Scope (E)));
8219 end Is_Build_In_Place_Return_Object;
8221 -----------------------------------
8222 -- Is_By_Reference_Return_Object --
8223 -----------------------------------
8225 function Is_By_Reference_Return_Object (E : Entity_Id) return Boolean is
8226 begin
8227 return Is_Return_Object (E)
8228 and then Is_By_Reference_Type (Etype (Return_Applies_To (Scope (E))));
8229 end Is_By_Reference_Return_Object;
8231 -----------------------
8232 -- Is_Null_Procedure --
8233 -----------------------
8235 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8236 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8238 begin
8239 if Ekind (Subp) /= E_Procedure then
8240 return False;
8242 -- Check if this is a declared null procedure
8244 elsif Nkind (Decl) = N_Subprogram_Declaration then
8245 if not Null_Present (Specification (Decl)) then
8246 return False;
8248 elsif No (Body_To_Inline (Decl)) then
8249 return False;
8251 -- Check if the body contains only a null statement, followed by
8252 -- the return statement added during expansion.
8254 else
8255 declare
8256 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8258 Stat : Node_Id;
8259 Stat2 : Node_Id;
8261 begin
8262 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8263 return False;
8264 else
8265 -- We must skip SCIL nodes because they are currently
8266 -- implemented as special N_Null_Statement nodes.
8268 Stat :=
8269 First_Non_SCIL_Node
8270 (Statements (Handled_Statement_Sequence (Orig_Bod)));
8271 Stat2 := Next_Non_SCIL_Node (Stat);
8273 return
8274 Is_Empty_List (Declarations (Orig_Bod))
8275 and then Nkind (Stat) = N_Null_Statement
8276 and then
8277 (No (Stat2)
8278 or else
8279 (Nkind (Stat2) = N_Simple_Return_Statement
8280 and then No (Next (Stat2))));
8281 end if;
8282 end;
8283 end if;
8285 else
8286 return False;
8287 end if;
8288 end Is_Null_Procedure;
8290 --------------------------------------
8291 -- Is_Secondary_Stack_Return_Object --
8292 --------------------------------------
8294 function Is_Secondary_Stack_Return_Object (E : Entity_Id) return Boolean is
8295 begin
8296 return Is_Return_Object (E)
8297 and then Needs_Secondary_Stack (Etype (Return_Applies_To (Scope (E))));
8298 end Is_Secondary_Stack_Return_Object;
8300 ------------------------------
8301 -- Is_Special_Return_Object --
8302 ------------------------------
8304 function Is_Special_Return_Object (E : Entity_Id) return Boolean is
8305 begin
8306 return Is_Build_In_Place_Return_Object (E)
8307 or else Is_Secondary_Stack_Return_Object (E)
8308 or else (Back_End_Return_Slot
8309 and then Is_By_Reference_Return_Object (E));
8310 end Is_Special_Return_Object;
8312 -------------------------------------------
8313 -- Make_Build_In_Place_Call_In_Allocator --
8314 -------------------------------------------
8316 procedure Make_Build_In_Place_Call_In_Allocator
8317 (Allocator : Node_Id;
8318 Function_Call : Node_Id)
8320 Acc_Type : constant Entity_Id := Etype (Allocator);
8321 Loc : constant Source_Ptr := Sloc (Function_Call);
8322 Func_Call : Node_Id := Function_Call;
8323 Ref_Func_Call : Node_Id;
8324 Function_Id : Entity_Id;
8325 Result_Subt : Entity_Id;
8326 New_Allocator : Node_Id;
8327 Return_Obj_Access : Entity_Id; -- temp for function result
8328 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8329 Alloc_Form : BIP_Allocation_Form;
8330 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8331 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8332 Chain : Entity_Id; -- activation chain, in case of tasks
8334 begin
8335 -- Step past qualification or unchecked conversion (the latter can occur
8336 -- in cases of calls to 'Input).
8338 if Nkind (Func_Call) in N_Qualified_Expression
8339 | N_Type_Conversion
8340 | N_Unchecked_Type_Conversion
8341 then
8342 Func_Call := Expression (Func_Call);
8343 end if;
8345 -- No action needed if the called function inherited the BIP extra
8346 -- formals but it is not a true BIP function.
8348 if not Is_True_Build_In_Place_Function_Call (Func_Call) then
8349 pragma Assert (Is_Expanded_Build_In_Place_Call (Func_Call));
8350 return;
8351 end if;
8353 -- Mark the call as processed as a build-in-place call
8355 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8356 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8358 if Is_Entity_Name (Name (Func_Call)) then
8359 Function_Id := Entity (Name (Func_Call));
8361 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8362 Function_Id := Etype (Name (Func_Call));
8364 else
8365 raise Program_Error;
8366 end if;
8368 Warn_BIP (Func_Call);
8370 Result_Subt := Available_View (Etype (Function_Id));
8372 -- Create a temp for the function result. In the caller-allocates case,
8373 -- this will be initialized to the result of a new uninitialized
8374 -- allocator. Note: we do not use Allocator as the Related_Node of
8375 -- Return_Obj_Access in call to Make_Temporary below as this would
8376 -- create a sort of infinite "recursion".
8378 Return_Obj_Access := Make_Temporary (Loc, 'R');
8379 Set_Etype (Return_Obj_Access, Acc_Type);
8380 Set_Can_Never_Be_Null (Acc_Type, False);
8381 -- It gets initialized to null, so we can't have that
8383 -- When the result subtype is constrained, the return object is created
8384 -- on the caller side, and access to it is passed to the function. This
8385 -- optimization is disabled when the result subtype needs finalization
8386 -- actions because the caller side allocation may result in undesirable
8387 -- finalization. Consider the following example:
8389 -- function Make_Lim_Ctrl return Lim_Ctrl is
8390 -- begin
8391 -- return Result : Lim_Ctrl := raise Program_Error do
8392 -- null;
8393 -- end return;
8394 -- end Make_Lim_Ctrl;
8396 -- Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
8398 -- Even though the size of limited controlled type Lim_Ctrl is known,
8399 -- allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
8400 -- finalization master. The subsequent call to Make_Lim_Ctrl will fail
8401 -- during the initialization actions for Result, which implies that
8402 -- Result (and Obj by extension) should not be finalized. However Obj
8403 -- will be finalized when access type Lim_Ctrl_Ptr goes out of scope
8404 -- since it is already attached on the related finalization master.
8406 -- Here and in related routines, we must examine the full view of the
8407 -- type, because the view at the point of call may differ from the
8408 -- one in the function body, and the expansion mechanism depends on
8409 -- the characteristics of the full view.
8411 if Needs_BIP_Alloc_Form (Function_Id) then
8412 Temp_Init := Empty;
8414 -- Case of a user-defined storage pool. Pass an allocation parameter
8415 -- indicating that the function should allocate its result in the
8416 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8417 -- pool may not be aliased.
8419 if Present (Associated_Storage_Pool (Acc_Type)) then
8420 Alloc_Form := User_Storage_Pool;
8421 Pool :=
8422 Make_Attribute_Reference (Loc,
8423 Prefix =>
8424 New_Occurrence_Of
8425 (Associated_Storage_Pool (Acc_Type), Loc),
8426 Attribute_Name => Name_Unrestricted_Access);
8428 -- No user-defined pool; pass an allocation parameter indicating that
8429 -- the function should allocate its result on the heap.
8431 else
8432 Alloc_Form := Global_Heap;
8433 Pool := Make_Null (No_Location);
8434 end if;
8436 -- The caller does not provide the return object in this case, so we
8437 -- have to pass null for the object access actual.
8439 Return_Obj_Actual := Empty;
8441 else
8442 -- Replace the initialized allocator of form "new T'(Func (...))"
8443 -- with an uninitialized allocator of form "new T", where T is the
8444 -- result subtype of the called function. The call to the function
8445 -- is handled separately further below.
8447 New_Allocator :=
8448 Make_Allocator (Loc,
8449 Expression => New_Occurrence_Of (Result_Subt, Loc));
8450 Set_No_Initialization (New_Allocator);
8452 -- Copy attributes to new allocator. Note that the new allocator
8453 -- logically comes from source if the original one did, so copy the
8454 -- relevant flag. This ensures proper treatment of the restriction
8455 -- No_Implicit_Heap_Allocations in this case.
8457 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8458 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8459 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8461 Rewrite (Allocator, New_Allocator);
8463 -- Initial value of the temp is the result of the uninitialized
8464 -- allocator. Unchecked_Convert is needed for T'Input where T is
8465 -- derived from a controlled type.
8467 Temp_Init := Relocate_Node (Allocator);
8469 if Nkind (Function_Call) in
8470 N_Type_Conversion | N_Unchecked_Type_Conversion
8471 then
8472 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8473 end if;
8475 -- Indicate that caller allocates, and pass in the return object
8477 Alloc_Form := Caller_Allocation;
8478 Pool := Make_Null (No_Location);
8479 Return_Obj_Actual := Unchecked_Convert_To
8480 (Result_Subt,
8481 Make_Explicit_Dereference (Loc,
8482 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8484 -- When the result subtype is unconstrained, the function itself must
8485 -- perform the allocation of the return object, so we pass parameters
8486 -- indicating that.
8488 end if;
8490 -- Declare the temp object
8492 Insert_Action (Allocator,
8493 Make_Object_Declaration (Loc,
8494 Defining_Identifier => Return_Obj_Access,
8495 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8496 Expression => Temp_Init));
8498 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8500 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8501 -- then generate an implicit conversion to force displacement of the
8502 -- "this" pointer.
8504 if Is_Interface (Designated_Type (Acc_Type)) then
8505 Rewrite
8506 (Ref_Func_Call,
8507 OK_Convert_To (Acc_Type, Ref_Func_Call));
8509 -- If the types are incompatible, we need an unchecked conversion. Note
8510 -- that the full types will be compatible, but the types not visibly
8511 -- compatible.
8513 elsif Nkind (Function_Call)
8514 in N_Type_Conversion | N_Unchecked_Type_Conversion
8515 then
8516 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
8517 end if;
8519 declare
8520 Assign : constant Node_Id :=
8521 Make_Assignment_Statement (Loc,
8522 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8523 Expression => Ref_Func_Call);
8524 -- Assign the result of the function call into the temp. In the
8525 -- caller-allocates case, this is overwriting the temp with its
8526 -- initial value, which has no effect. In the callee-allocates case,
8527 -- this is setting the temp to point to the object allocated by the
8528 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8529 -- from a controlled type.
8531 Actions : List_Id;
8532 -- Actions to be inserted. If there are no tasks, this is just the
8533 -- assignment statement. If the allocated object has tasks, we need
8534 -- to wrap the assignment in a block that activates them. The
8535 -- activation chain of that block must be passed to the function,
8536 -- rather than some outer chain.
8538 begin
8539 if Might_Have_Tasks (Result_Subt) then
8540 Actions := New_List;
8541 Build_Task_Allocate_Block_With_Init_Stmts
8542 (Actions, Allocator, Init_Stmts => New_List (Assign));
8543 Chain := Activation_Chain_Entity (Last (Actions));
8544 else
8545 Actions := New_List (Assign);
8546 Chain := Empty;
8547 end if;
8549 Insert_Actions (Allocator, Actions);
8550 end;
8552 -- When the function has a controlling result, an allocation-form
8553 -- parameter must be passed indicating that the caller is allocating
8554 -- the result object. This is needed because such a function can be
8555 -- called as a dispatching operation and must be treated similarly
8556 -- to functions with unconstrained result subtypes.
8558 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8559 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8561 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8562 (Func_Call, Function_Id, Acc_Type);
8564 Add_Task_Actuals_To_Build_In_Place_Call
8565 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8566 Chain => Chain);
8568 -- Add an implicit actual to the function call that provides access
8569 -- to the allocated object. An unchecked conversion to the (specific)
8570 -- result subtype of the function is inserted to handle cases where
8571 -- the access type of the allocator has a class-wide designated type.
8573 Add_Access_Actual_To_Build_In_Place_Call
8574 (Func_Call, Function_Id, Return_Obj_Actual);
8576 -- Finally, replace the allocator node with a reference to the temp
8578 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8580 Analyze_And_Resolve (Allocator, Acc_Type);
8581 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8582 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8583 end Make_Build_In_Place_Call_In_Allocator;
8585 ---------------------------------------------------
8586 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8587 ---------------------------------------------------
8589 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8590 (Function_Call : Node_Id)
8592 Loc : constant Source_Ptr := Sloc (Function_Call);
8593 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8594 Function_Id : Entity_Id;
8595 Result_Subt : Entity_Id;
8596 Return_Obj_Id : Entity_Id;
8597 Return_Obj_Decl : Entity_Id;
8599 begin
8600 -- If the call has already been processed to add build-in-place actuals
8601 -- then return. One place this can occur is for calls to build-in-place
8602 -- functions that occur within a call to a protected operation, where
8603 -- due to rewriting and expansion of the protected call there can be
8604 -- more than one call to Expand_Actuals for the same set of actuals.
8606 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8607 return;
8608 end if;
8610 -- Mark the call as processed as a build-in-place call
8612 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8614 if Is_Entity_Name (Name (Func_Call)) then
8615 Function_Id := Entity (Name (Func_Call));
8617 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8618 Function_Id := Etype (Name (Func_Call));
8620 else
8621 raise Program_Error;
8622 end if;
8624 Warn_BIP (Func_Call);
8626 Result_Subt := Etype (Function_Id);
8628 -- If the build-in-place function returns a controlled object, then the
8629 -- object needs to be finalized immediately after the context. Since
8630 -- this case produces a transient scope, the servicing finalizer needs
8631 -- to name the returned object. Create a temporary which is initialized
8632 -- with the function call:
8634 -- Temp_Id : Func_Type := BIP_Func_Call;
8636 -- The initialization expression of the temporary will be rewritten by
8637 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8638 -- Call_In_Object_Declaration.
8640 if Needs_Finalization (Result_Subt) then
8641 declare
8642 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8643 Temp_Decl : Node_Id;
8645 begin
8646 -- Reset the guard on the function call since the following does
8647 -- not perform actual call expansion.
8649 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8651 Temp_Decl :=
8652 Make_Object_Declaration (Loc,
8653 Defining_Identifier => Temp_Id,
8654 Object_Definition =>
8655 New_Occurrence_Of (Result_Subt, Loc),
8656 Expression =>
8657 New_Copy_Tree (Function_Call));
8659 Insert_Action (Function_Call, Temp_Decl);
8661 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8662 Analyze (Function_Call);
8663 end;
8665 -- When the result subtype is definite, an object of the subtype is
8666 -- declared and an access value designating it is passed as an actual.
8668 elsif Caller_Known_Size (Func_Call, Result_Subt) then
8670 -- Create a temporary object to hold the function result
8672 Return_Obj_Id := Make_Temporary (Loc, 'R');
8673 Set_Etype (Return_Obj_Id, Result_Subt);
8675 Return_Obj_Decl :=
8676 Make_Object_Declaration (Loc,
8677 Defining_Identifier => Return_Obj_Id,
8678 Aliased_Present => True,
8679 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8681 Set_No_Initialization (Return_Obj_Decl);
8683 Insert_Action (Func_Call, Return_Obj_Decl);
8685 -- When the function has a controlling result, an allocation-form
8686 -- parameter must be passed indicating that the caller is allocating
8687 -- the result object. This is needed because such a function can be
8688 -- called as a dispatching operation and must be treated similarly
8689 -- to functions with unconstrained result subtypes.
8691 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8692 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8694 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8695 (Func_Call, Function_Id);
8697 Add_Task_Actuals_To_Build_In_Place_Call
8698 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8700 -- Add an implicit actual to the function call that provides access
8701 -- to the caller's return object.
8703 Add_Access_Actual_To_Build_In_Place_Call
8704 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8706 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8707 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8709 -- When the result subtype is unconstrained, the function must allocate
8710 -- the return object in the secondary stack, so appropriate implicit
8711 -- parameters are added to the call to indicate that. A transient
8712 -- scope is established to ensure eventual cleanup of the result.
8714 else
8715 -- Pass an allocation parameter indicating that the function should
8716 -- allocate its result on the secondary stack.
8718 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8719 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8721 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8722 (Func_Call, Function_Id);
8724 Add_Task_Actuals_To_Build_In_Place_Call
8725 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8727 -- Pass a null value to the function since no return object is
8728 -- available on the caller side.
8730 Add_Access_Actual_To_Build_In_Place_Call
8731 (Func_Call, Function_Id, Empty);
8733 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8734 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8735 end if;
8736 end Make_Build_In_Place_Call_In_Anonymous_Context;
8738 --------------------------------------------
8739 -- Make_Build_In_Place_Call_In_Assignment --
8740 --------------------------------------------
8742 procedure Make_Build_In_Place_Call_In_Assignment
8743 (Assign : Node_Id;
8744 Function_Call : Node_Id)
8746 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8747 Lhs : constant Node_Id := Name (Assign);
8748 Loc : constant Source_Ptr := Sloc (Function_Call);
8749 Func_Id : Entity_Id;
8750 Obj_Decl : Node_Id;
8751 Obj_Id : Entity_Id;
8752 Ptr_Typ : Entity_Id;
8753 Ptr_Typ_Decl : Node_Id;
8754 New_Expr : Node_Id;
8755 Result_Subt : Entity_Id;
8757 begin
8758 -- No action needed if the called function inherited the BIP extra
8759 -- formals but it is not a true BIP function.
8761 if not Is_True_Build_In_Place_Function_Call (Func_Call) then
8762 pragma Assert (Is_Expanded_Build_In_Place_Call (Func_Call));
8763 return;
8764 end if;
8766 -- Mark the call as processed as a build-in-place call
8768 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8769 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8771 if Is_Entity_Name (Name (Func_Call)) then
8772 Func_Id := Entity (Name (Func_Call));
8774 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8775 Func_Id := Etype (Name (Func_Call));
8777 else
8778 raise Program_Error;
8779 end if;
8781 Warn_BIP (Func_Call);
8783 Result_Subt := Etype (Func_Id);
8785 -- When the result subtype is unconstrained, an additional actual must
8786 -- be passed to indicate that the caller is providing the return object.
8787 -- This parameter must also be passed when the called function has a
8788 -- controlling result, because dispatching calls to the function needs
8789 -- to be treated effectively the same as calls to class-wide functions.
8791 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8792 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8794 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8795 (Func_Call, Func_Id);
8797 Add_Task_Actuals_To_Build_In_Place_Call
8798 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8800 -- Add an implicit actual to the function call that provides access to
8801 -- the caller's return object.
8803 Add_Access_Actual_To_Build_In_Place_Call
8804 (Func_Call, Func_Id, Unchecked_Convert_To (Result_Subt, Lhs));
8806 -- Create an access type designating the function's result subtype
8808 Ptr_Typ := Make_Temporary (Loc, 'A');
8810 Ptr_Typ_Decl :=
8811 Make_Full_Type_Declaration (Loc,
8812 Defining_Identifier => Ptr_Typ,
8813 Type_Definition =>
8814 Make_Access_To_Object_Definition (Loc,
8815 All_Present => True,
8816 Subtype_Indication =>
8817 New_Occurrence_Of (Result_Subt, Loc)));
8818 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8820 -- Finally, create an access object initialized to a reference to the
8821 -- function call. We know this access value is non-null, so mark the
8822 -- entity accordingly to suppress junk access checks.
8824 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8826 -- Add a conversion if it's the wrong type
8828 New_Expr := Unchecked_Convert_To (Ptr_Typ, New_Expr);
8830 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8831 Set_Etype (Obj_Id, Ptr_Typ);
8832 Set_Is_Known_Non_Null (Obj_Id);
8834 Obj_Decl :=
8835 Make_Object_Declaration (Loc,
8836 Defining_Identifier => Obj_Id,
8837 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8838 Expression => New_Expr);
8839 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8841 Rewrite (Assign, Make_Null_Statement (Loc));
8842 pragma Assert (Check_Number_Of_Actuals (Func_Call, Func_Id));
8843 pragma Assert (Check_BIP_Actuals (Func_Call, Func_Id));
8844 end Make_Build_In_Place_Call_In_Assignment;
8846 ----------------------------------------------------
8847 -- Make_Build_In_Place_Call_In_Object_Declaration --
8848 ----------------------------------------------------
8850 procedure Make_Build_In_Place_Call_In_Object_Declaration
8851 (Obj_Decl : Node_Id;
8852 Function_Call : Node_Id)
8854 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8855 -- Get the value of Function_Id, below
8857 ---------------------
8858 -- Get_Function_Id --
8859 ---------------------
8861 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8862 begin
8863 if Is_Entity_Name (Name (Func_Call)) then
8864 return Entity (Name (Func_Call));
8866 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8867 return Etype (Name (Func_Call));
8869 else
8870 raise Program_Error;
8871 end if;
8872 end Get_Function_Id;
8874 -- Local variables
8876 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8877 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8878 Loc : constant Source_Ptr := Sloc (Function_Call);
8879 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8880 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8881 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8882 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8883 Result_Subt : constant Entity_Id := Etype (Function_Id);
8885 Call_Deref : Node_Id;
8886 Caller_Object : Node_Id;
8887 Def_Id : Entity_Id;
8888 Designated_Type : Entity_Id;
8889 Fmaster_Actual : Node_Id := Empty;
8890 Pool_Actual : Node_Id;
8891 Ptr_Typ : Entity_Id;
8892 Ptr_Typ_Decl : Node_Id;
8893 Pass_Caller_Acc : Boolean := False;
8894 Res_Decl : Node_Id;
8896 Definite : constant Boolean :=
8897 Caller_Known_Size (Func_Call, Result_Subt)
8898 and then not Is_Class_Wide_Type (Obj_Typ);
8899 -- In the case of "X : T'Class := F(...);", where F returns a
8900 -- Caller_Known_Size (specific) tagged type, we treat it as
8901 -- indefinite, because the code for the Definite case below sets the
8902 -- initialization expression of the object to Empty, which would be
8903 -- illegal Ada, and would cause gigi to misallocate X.
8905 Is_OK_Return_Object : constant Boolean :=
8906 Is_Return_Object (Obj_Def_Id)
8907 and then
8908 not Has_Foreign_Convention (Return_Applies_To (Scope (Obj_Def_Id)));
8910 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8912 begin
8913 -- If the call has already been processed to add build-in-place actuals
8914 -- then return.
8916 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8917 return;
8918 end if;
8920 -- Mark the call as processed as a build-in-place call
8922 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8924 Warn_BIP (Func_Call);
8926 -- Create an access type designating the function's result subtype.
8927 -- We use the type of the original call because it may be a call to an
8928 -- inherited operation, which the expansion has replaced with the parent
8929 -- operation that yields the parent type. Note that this access type
8930 -- must be declared before we establish a transient scope, so that it
8931 -- receives the proper accessibility level.
8933 if Is_Class_Wide_Type (Obj_Typ)
8934 and then not Is_Interface (Obj_Typ)
8935 and then not Is_Class_Wide_Type (Etype (Function_Call))
8936 then
8937 Designated_Type := Obj_Typ;
8938 else
8939 Designated_Type := Etype (Function_Call);
8940 end if;
8942 Ptr_Typ := Make_Temporary (Loc, 'A');
8943 Ptr_Typ_Decl :=
8944 Make_Full_Type_Declaration (Loc,
8945 Defining_Identifier => Ptr_Typ,
8946 Type_Definition =>
8947 Make_Access_To_Object_Definition (Loc,
8948 All_Present => True,
8949 Subtype_Indication =>
8950 New_Occurrence_Of (Designated_Type, Loc)));
8952 -- The access type and its accompanying object must be inserted after
8953 -- the object declaration in the constrained case, so that the function
8954 -- call can be passed access to the object. In the indefinite case, or
8955 -- if the object declaration is for a return object, the access type and
8956 -- object must be inserted before the object, since the object
8957 -- declaration is rewritten to be a renaming of a dereference of the
8958 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8959 -- the result object is in a different (transient) scope, so won't cause
8960 -- freezing.
8962 if Definite and then not Is_OK_Return_Object then
8964 -- The presence of an address clause complicates the build-in-place
8965 -- expansion because the indicated address must be processed before
8966 -- the indirect call is generated (including the definition of a
8967 -- local pointer to the object). The address clause may come from
8968 -- an aspect specification or from an explicit attribute
8969 -- specification appearing after the object declaration. These two
8970 -- cases require different processing.
8972 if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8974 -- Skip non-delayed pragmas that correspond to other aspects, if
8975 -- any, to find proper insertion point for freeze node of object.
8977 declare
8978 D : Node_Id := Obj_Decl;
8979 N : Node_Id := Next (D);
8981 begin
8982 while Present (N)
8983 and then Nkind (N) in N_Attribute_Reference | N_Pragma
8984 loop
8985 Analyze (N);
8986 D := N;
8987 Next (N);
8988 end loop;
8990 Insert_After (D, Ptr_Typ_Decl);
8992 -- Freeze object before pointer declaration, to ensure that
8993 -- generated attribute for address is inserted at the proper
8994 -- place.
8996 Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8997 end;
8999 Analyze (Ptr_Typ_Decl);
9001 elsif Present (Following_Address_Clause (Obj_Decl)) then
9003 -- Locate explicit address clause, which may also follow pragmas
9004 -- generated by other aspect specifications.
9006 declare
9007 Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
9008 D : Node_Id := Next (Obj_Decl);
9010 begin
9011 while Present (D) loop
9012 Analyze (D);
9013 exit when D = Addr;
9014 Next (D);
9015 end loop;
9017 Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
9018 end;
9020 else
9021 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
9022 end if;
9023 else
9024 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
9025 end if;
9027 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
9028 -- elaborated in an inner (transient) scope and thus won't cause
9029 -- freezing by itself. It's not an itype, but it needs to be frozen
9030 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
9032 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
9034 -- If the object is a return object of an enclosing build-in-place
9035 -- function, then the implicit build-in-place parameters of the
9036 -- enclosing function are simply passed along to the called function.
9037 -- (Unfortunately, this won't cover the case of extension aggregates
9038 -- where the ancestor part is a build-in-place indefinite function
9039 -- call that should be passed along the caller's parameters.
9040 -- Currently those get mishandled by reassigning the result of the
9041 -- call to the aggregate return object, when the call result should
9042 -- really be directly built in place in the aggregate and not in a
9043 -- temporary. ???)
9045 if Is_OK_Return_Object then
9046 Pass_Caller_Acc := True;
9048 -- When the enclosing function has a BIP_Alloc_Form formal then we
9049 -- pass it along to the callee (such as when the enclosing function
9050 -- has an unconstrained or tagged result type).
9052 if Needs_BIP_Alloc_Form (Encl_Func) then
9053 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
9054 Pool_Actual :=
9055 New_Occurrence_Of
9056 (Build_In_Place_Formal
9057 (Encl_Func, BIP_Storage_Pool), Loc);
9059 -- The build-in-place pool formal is not built on e.g. ZFP
9061 else
9062 Pool_Actual := Empty;
9063 end if;
9065 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9066 (Function_Call => Func_Call,
9067 Function_Id => Function_Id,
9068 Alloc_Form_Exp =>
9069 New_Occurrence_Of
9070 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
9071 Pool_Actual => Pool_Actual);
9073 -- Otherwise, if enclosing function has a definite result subtype,
9074 -- then caller allocation will be used.
9076 else
9077 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9078 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9079 end if;
9081 if Needs_BIP_Finalization_Master (Encl_Func) then
9082 Fmaster_Actual :=
9083 New_Occurrence_Of
9084 (Build_In_Place_Formal
9085 (Encl_Func, BIP_Finalization_Master), Loc);
9086 end if;
9088 -- Retrieve the BIPacc formal from the enclosing function and convert
9089 -- it to the access type of the callee's BIP_Object_Access formal.
9091 Caller_Object :=
9092 Unchecked_Convert_To
9093 (Etype (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
9094 New_Occurrence_Of
9095 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access), Loc));
9097 -- In the definite case, add an implicit actual to the function call
9098 -- that provides access to the declared object. An unchecked conversion
9099 -- to the (specific) result type of the function is inserted to handle
9100 -- the case where the object is declared with a class-wide type.
9102 elsif Definite then
9103 Caller_Object := Unchecked_Convert_To
9104 (Result_Subt, New_Occurrence_Of (Obj_Def_Id, Loc));
9106 -- When the function has a controlling result, an allocation-form
9107 -- parameter must be passed indicating that the caller is allocating
9108 -- the result object. This is needed because such a function can be
9109 -- called as a dispatching operation and must be treated similarly to
9110 -- functions with indefinite result subtypes.
9112 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9113 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9115 -- The allocation for indefinite library-level objects occurs on the
9116 -- heap as opposed to the secondary stack. This accommodates DLLs where
9117 -- the secondary stack is destroyed after each library unload. This is a
9118 -- hybrid mechanism where a stack-allocated object lives on the heap.
9120 elsif Is_Library_Level_Entity (Obj_Def_Id)
9121 and then not Restriction_Active (No_Implicit_Heap_Allocations)
9122 then
9123 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9124 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
9125 Caller_Object := Empty;
9127 -- Create a finalization master for the access result type to ensure
9128 -- that the heap allocation can properly chain the object and later
9129 -- finalize it when the library unit goes out of scope.
9131 if Needs_Finalization (Etype (Func_Call)) then
9132 Build_Finalization_Master
9133 (Typ => Ptr_Typ,
9134 For_Lib_Level => True,
9135 Insertion_Node => Ptr_Typ_Decl);
9137 Fmaster_Actual :=
9138 Make_Attribute_Reference (Loc,
9139 Prefix =>
9140 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
9141 Attribute_Name => Name_Unrestricted_Access);
9142 end if;
9144 -- In other indefinite cases, pass an indication to do the allocation
9145 -- on the secondary stack and set Caller_Object to Empty so that a null
9146 -- value will be passed for the caller's object address. A transient
9147 -- scope is established to ensure eventual cleanup of the result.
9149 else
9150 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9151 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
9152 Caller_Object := Empty;
9154 Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
9155 end if;
9157 -- Pass along any finalization master actual, which is needed in the
9158 -- case where the called function initializes a return object of an
9159 -- enclosing build-in-place function.
9161 Add_Finalization_Master_Actual_To_Build_In_Place_Call
9162 (Func_Call => Func_Call,
9163 Func_Id => Function_Id,
9164 Master_Exp => Fmaster_Actual);
9166 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
9167 and then Needs_BIP_Task_Actuals (Function_Id)
9168 then
9169 -- Here we're passing along the master that was passed in to this
9170 -- function.
9172 Add_Task_Actuals_To_Build_In_Place_Call
9173 (Func_Call, Function_Id,
9174 Master_Actual =>
9175 New_Occurrence_Of
9176 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
9178 else
9179 Add_Task_Actuals_To_Build_In_Place_Call
9180 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9181 end if;
9183 Add_Access_Actual_To_Build_In_Place_Call
9184 (Func_Call,
9185 Function_Id,
9186 Caller_Object,
9187 Is_Access => Pass_Caller_Acc);
9189 -- Finally, create an access object initialized to a reference to the
9190 -- function call. We know this access value cannot be null, so mark the
9191 -- entity accordingly to suppress the access check. We need to suppress
9192 -- warnings, because this can be part of the expansion of "for ... of"
9193 -- and similar constructs that generate finalization actions. Such
9194 -- finalization actions are safe, because they check a count that
9195 -- indicates which objects should be finalized, but the back end
9196 -- nonetheless warns about uninitialized objects.
9198 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9199 Set_Warnings_Off (Def_Id);
9200 Set_Etype (Def_Id, Ptr_Typ);
9201 Set_Is_Known_Non_Null (Def_Id);
9203 if Nkind (Function_Call) in N_Type_Conversion
9204 | N_Unchecked_Type_Conversion
9205 then
9206 Res_Decl :=
9207 Make_Object_Declaration (Loc,
9208 Defining_Identifier => Def_Id,
9209 Constant_Present => True,
9210 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9211 Expression =>
9212 Unchecked_Convert_To
9213 (Ptr_Typ, Make_Reference (Loc, Relocate_Node (Func_Call))));
9214 else
9215 Res_Decl :=
9216 Make_Object_Declaration (Loc,
9217 Defining_Identifier => Def_Id,
9218 Constant_Present => True,
9219 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9220 Expression =>
9221 Make_Reference (Loc, Relocate_Node (Func_Call)));
9222 end if;
9224 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
9226 -- If the result subtype of the called function is definite and is not
9227 -- itself the return expression of an enclosing BIP function, then mark
9228 -- the object as having no initialization.
9230 if Definite and then not Is_OK_Return_Object then
9232 -- The related object declaration is encased in a transient block
9233 -- because the build-in-place function call contains at least one
9234 -- nested function call that produces a controlled transient
9235 -- temporary:
9237 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9239 -- Since the build-in-place expansion decouples the call from the
9240 -- object declaration, the finalization machinery lacks the context
9241 -- which prompted the generation of the transient block. To resolve
9242 -- this scenario, store the build-in-place call.
9244 if Scope_Is_Transient then
9245 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9246 end if;
9248 Set_Expression (Obj_Decl, Empty);
9249 Set_No_Initialization (Obj_Decl);
9251 -- In case of an indefinite result subtype, or if the call is the
9252 -- return expression of an enclosing BIP function, rewrite the object
9253 -- declaration as an object renaming where the renamed object is a
9254 -- dereference of <function_Call>'reference:
9256 -- Obj : Subt renames <function_call>'Ref.all;
9258 else
9259 Call_Deref :=
9260 Make_Explicit_Dereference (Obj_Loc,
9261 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
9263 Rewrite (Obj_Decl,
9264 Make_Object_Renaming_Declaration (Obj_Loc,
9265 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
9266 Subtype_Mark =>
9267 New_Occurrence_Of (Designated_Type, Obj_Loc),
9268 Name => Call_Deref));
9270 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
9271 -- to Obj_Def_Id.
9273 pragma Assert (Ekind (Defining_Identifier (Obj_Decl)) = E_Void);
9274 Set_Renamed_Object_Of_Possibly_Void
9275 (Defining_Identifier (Obj_Decl), Call_Deref);
9277 -- If the original entity comes from source, then mark the new
9278 -- entity as needing debug information, even though it's defined
9279 -- by a generated renaming that does not come from source, so that
9280 -- the Materialize_Entity flag will be set on the entity when
9281 -- Debug_Renaming_Declaration is called during analysis.
9283 if Comes_From_Source (Obj_Def_Id) then
9284 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
9285 end if;
9287 Analyze (Obj_Decl);
9288 Replace_Renaming_Declaration_Id
9289 (Obj_Decl, Original_Node (Obj_Decl));
9290 end if;
9292 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
9293 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
9294 end Make_Build_In_Place_Call_In_Object_Declaration;
9296 -------------------------------------------------
9297 -- Make_Build_In_Place_Iface_Call_In_Allocator --
9298 -------------------------------------------------
9300 procedure Make_Build_In_Place_Iface_Call_In_Allocator
9301 (Allocator : Node_Id;
9302 Function_Call : Node_Id)
9304 BIP_Func_Call : constant Node_Id :=
9305 Unqual_BIP_Iface_Function_Call (Function_Call);
9306 Loc : constant Source_Ptr := Sloc (Function_Call);
9308 Anon_Type : Entity_Id;
9309 Tmp_Decl : Node_Id;
9310 Tmp_Id : Entity_Id;
9312 begin
9313 -- No action if the call has already been processed
9315 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9316 return;
9317 end if;
9319 Tmp_Id := Make_Temporary (Loc, 'D');
9321 -- Insert a temporary before N initialized with the BIP function call
9322 -- without its enclosing type conversions and analyze it without its
9323 -- expansion. This temporary facilitates us reusing the BIP machinery,
9324 -- which takes care of adding the extra build-in-place actuals and
9325 -- transforms this object declaration into an object renaming
9326 -- declaration.
9328 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
9329 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
9330 Set_Etype (Anon_Type, Anon_Type);
9331 Build_Class_Wide_Master (Anon_Type);
9333 Tmp_Decl :=
9334 Make_Object_Declaration (Loc,
9335 Defining_Identifier => Tmp_Id,
9336 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
9337 Expression =>
9338 Make_Allocator (Loc,
9339 Expression =>
9340 Make_Qualified_Expression (Loc,
9341 Subtype_Mark =>
9342 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9343 Expression => New_Copy_Tree (BIP_Func_Call))));
9345 -- Manually set the associated node for the anonymous access type to
9346 -- be its local declaration, to avoid confusing and complicating
9347 -- the accessibility machinery.
9349 Set_Associated_Node_For_Itype (Anon_Type, Tmp_Decl);
9351 Expander_Mode_Save_And_Set (False);
9352 Insert_Action (Allocator, Tmp_Decl);
9353 Expander_Mode_Restore;
9355 Make_Build_In_Place_Call_In_Allocator
9356 (Allocator => Expression (Tmp_Decl),
9357 Function_Call => Expression (Expression (Tmp_Decl)));
9359 -- Add a conversion to displace the pointer to the allocated object
9360 -- to reference the corresponding dispatch table.
9362 Rewrite (Allocator,
9363 Convert_To (Etype (Allocator),
9364 New_Occurrence_Of (Tmp_Id, Loc)));
9365 end Make_Build_In_Place_Iface_Call_In_Allocator;
9367 ---------------------------------------------------------
9368 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
9369 ---------------------------------------------------------
9371 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
9372 (Function_Call : Node_Id)
9374 BIP_Func_Call : constant Node_Id :=
9375 Unqual_BIP_Iface_Function_Call (Function_Call);
9376 Loc : constant Source_Ptr := Sloc (Function_Call);
9378 Tmp_Decl : Node_Id;
9379 Tmp_Id : Entity_Id;
9381 begin
9382 -- No action of the call has already been processed
9384 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9385 return;
9386 end if;
9388 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
9390 -- Insert a temporary before the call initialized with function call to
9391 -- reuse the BIP machinery which takes care of adding the extra build-in
9392 -- place actuals and transforms this object declaration into an object
9393 -- renaming declaration.
9395 Tmp_Id := Make_Temporary (Loc, 'D');
9397 Tmp_Decl :=
9398 Make_Object_Declaration (Loc,
9399 Defining_Identifier => Tmp_Id,
9400 Object_Definition =>
9401 New_Occurrence_Of (Etype (Function_Call), Loc),
9402 Expression => Relocate_Node (Function_Call));
9404 Expander_Mode_Save_And_Set (False);
9405 Insert_Action (Function_Call, Tmp_Decl);
9406 Expander_Mode_Restore;
9408 Make_Build_In_Place_Iface_Call_In_Object_Declaration
9409 (Obj_Decl => Tmp_Decl,
9410 Function_Call => Expression (Tmp_Decl));
9411 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
9413 ----------------------------------------------------------
9414 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
9415 ----------------------------------------------------------
9417 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
9418 (Obj_Decl : Node_Id;
9419 Function_Call : Node_Id)
9421 BIP_Func_Call : constant Node_Id :=
9422 Unqual_BIP_Iface_Function_Call (Function_Call);
9423 Loc : constant Source_Ptr := Sloc (Function_Call);
9424 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
9426 Tmp_Decl : Node_Id;
9427 Tmp_Id : Entity_Id;
9429 begin
9430 -- No action of the call has already been processed
9432 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9433 return;
9434 end if;
9436 Tmp_Id := Make_Temporary (Loc, 'D');
9438 -- Insert a temporary before N initialized with the BIP function call
9439 -- without its enclosing type conversions and analyze it without its
9440 -- expansion. This temporary facilitates us reusing the BIP machinery,
9441 -- which takes care of adding the extra build-in-place actuals and
9442 -- transforms this object declaration into an object renaming
9443 -- declaration.
9445 Tmp_Decl :=
9446 Make_Object_Declaration (Loc,
9447 Defining_Identifier => Tmp_Id,
9448 Object_Definition =>
9449 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9450 Expression => New_Copy_Tree (BIP_Func_Call));
9452 Expander_Mode_Save_And_Set (False);
9453 Insert_Action (Obj_Decl, Tmp_Decl);
9454 Expander_Mode_Restore;
9456 Make_Build_In_Place_Call_In_Object_Declaration
9457 (Obj_Decl => Tmp_Decl,
9458 Function_Call => Expression (Tmp_Decl));
9460 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
9462 -- Replace the original build-in-place function call by a reference to
9463 -- the resulting temporary object renaming declaration. In this way,
9464 -- all the interface conversions performed in the original Function_Call
9465 -- on the build-in-place object are preserved.
9467 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9469 -- Replace the original object declaration by an internal object
9470 -- renaming declaration. This leaves the generated code more clean (the
9471 -- build-in-place function call in an object renaming declaration and
9472 -- displacements of the pointer to the build-in-place object in another
9473 -- renaming declaration) and allows us to invoke the routine that takes
9474 -- care of replacing the identifier of the renaming declaration (routine
9475 -- originally developed for the regular build-in-place management).
9477 Rewrite (Obj_Decl,
9478 Make_Object_Renaming_Declaration (Loc,
9479 Defining_Identifier => Make_Temporary (Loc, 'D'),
9480 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
9481 Name => Function_Call));
9482 Analyze (Obj_Decl);
9484 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9485 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9487 --------------------------------------------
9488 -- Make_CPP_Constructor_Call_In_Allocator --
9489 --------------------------------------------
9491 procedure Make_CPP_Constructor_Call_In_Allocator
9492 (Allocator : Node_Id;
9493 Function_Call : Node_Id)
9495 Loc : constant Source_Ptr := Sloc (Function_Call);
9496 Acc_Type : constant Entity_Id := Etype (Allocator);
9497 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9498 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9500 New_Allocator : Node_Id;
9501 Return_Obj_Access : Entity_Id;
9502 Tmp_Obj : Node_Id;
9504 begin
9505 pragma Assert (Nkind (Allocator) = N_Allocator
9506 and then Nkind (Function_Call) = N_Function_Call);
9507 pragma Assert (Convention (Function_Id) = Convention_CPP
9508 and then Is_Constructor (Function_Id));
9509 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9511 -- Replace the initialized allocator of form "new T'(Func (...))" with
9512 -- an uninitialized allocator of form "new T", where T is the result
9513 -- subtype of the called function. The call to the function is handled
9514 -- separately further below.
9516 New_Allocator :=
9517 Make_Allocator (Loc,
9518 Expression => New_Occurrence_Of (Result_Subt, Loc));
9519 Set_No_Initialization (New_Allocator);
9521 -- Copy attributes to new allocator. Note that the new allocator
9522 -- logically comes from source if the original one did, so copy the
9523 -- relevant flag. This ensures proper treatment of the restriction
9524 -- No_Implicit_Heap_Allocations in this case.
9526 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9527 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9528 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9530 Rewrite (Allocator, New_Allocator);
9532 -- Create a new access object and initialize it to the result of the
9533 -- new uninitialized allocator. Note: we do not use Allocator as the
9534 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9535 -- as this would create a sort of infinite "recursion".
9537 Return_Obj_Access := Make_Temporary (Loc, 'R');
9538 Set_Etype (Return_Obj_Access, Acc_Type);
9540 -- Generate:
9541 -- Rnnn : constant ptr_T := new (T);
9542 -- Init (Rnn.all,...);
9544 Tmp_Obj :=
9545 Make_Object_Declaration (Loc,
9546 Defining_Identifier => Return_Obj_Access,
9547 Constant_Present => True,
9548 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9549 Expression => Relocate_Node (Allocator));
9550 Insert_Action (Allocator, Tmp_Obj);
9552 Insert_List_After_And_Analyze (Tmp_Obj,
9553 Build_Initialization_Call (Loc,
9554 Id_Ref =>
9555 Make_Explicit_Dereference (Loc,
9556 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9557 Typ => Etype (Function_Id),
9558 Constructor_Ref => Function_Call));
9560 -- Finally, replace the allocator node with a reference to the result of
9561 -- the function call itself (which will effectively be an access to the
9562 -- object created by the allocator).
9564 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9566 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9567 -- generate an implicit conversion to force displacement of the "this"
9568 -- pointer.
9570 if Is_Interface (Designated_Type (Acc_Type)) then
9571 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9572 end if;
9574 Analyze_And_Resolve (Allocator, Acc_Type);
9575 end Make_CPP_Constructor_Call_In_Allocator;
9577 ----------------------
9578 -- Might_Have_Tasks --
9579 ----------------------
9581 function Might_Have_Tasks (Typ : Entity_Id) return Boolean is
9582 begin
9583 return not Global_No_Tasking
9584 and then not No_Run_Time_Mode
9585 and then (Has_Task (Typ)
9586 or else (Is_Class_Wide_Type (Typ)
9587 and then Is_Limited_Record (Typ)
9588 and then not Has_Aspect
9589 (Etype (Typ), Aspect_No_Task_Parts)));
9590 end Might_Have_Tasks;
9592 ----------------------------
9593 -- Needs_BIP_Task_Actuals --
9594 ----------------------------
9596 function Needs_BIP_Task_Actuals (Func_Id : Entity_Id) return Boolean is
9597 Subp_Id : Entity_Id;
9598 Func_Typ : Entity_Id;
9600 begin
9601 if Global_No_Tasking or else No_Run_Time_Mode then
9602 return False;
9603 end if;
9605 -- For thunks we must rely on their target entity; otherwise, given that
9606 -- the profile of thunks for functions returning a limited interface
9607 -- type returns a class-wide type, we would erroneously add these extra
9608 -- formals.
9610 if Is_Thunk (Func_Id) then
9611 Subp_Id := Thunk_Target (Func_Id);
9613 -- Common case
9615 else
9616 Subp_Id := Func_Id;
9617 end if;
9619 Func_Typ := Underlying_Type (Etype (Subp_Id));
9621 -- Functions returning types with foreign convention don't have extra
9622 -- formals.
9624 if Has_Foreign_Convention (Func_Typ) then
9625 return False;
9627 -- At first sight, for all the following cases, we could add assertions
9628 -- to ensure that if Func_Id is frozen then the computed result matches
9629 -- with the availability of the task master extra formal; unfortunately
9630 -- this is not feasible because we may be precisely freezing this entity
9631 -- (that is, Is_Frozen has been set by Freeze_Entity but it has not
9632 -- completed its work).
9634 elsif Has_Task (Func_Typ) then
9635 return True;
9637 elsif Ekind (Func_Id) = E_Function then
9638 return Might_Have_Tasks (Func_Typ);
9640 -- Handle subprogram type internally generated for dispatching call. We
9641 -- cannot rely on the return type of the subprogram type of dispatching
9642 -- calls since it is always a class-wide type (cf. Expand_Dispatching_
9643 -- Call).
9645 elsif Ekind (Func_Id) = E_Subprogram_Type then
9646 if Is_Dispatch_Table_Entity (Func_Id) then
9647 return Has_BIP_Extra_Formal (Func_Id, BIP_Task_Master);
9648 else
9649 return Might_Have_Tasks (Func_Typ);
9650 end if;
9652 else
9653 raise Program_Error;
9654 end if;
9655 end Needs_BIP_Task_Actuals;
9657 -----------------------------------
9658 -- Needs_BIP_Finalization_Master --
9659 -----------------------------------
9661 function Needs_BIP_Finalization_Master (Func_Id : Entity_Id) return Boolean
9663 Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9665 begin
9666 -- A formal giving the finalization master is needed for build-in-place
9667 -- functions whose result type needs finalization or is a tagged type.
9668 -- Tagged primitive build-in-place functions need such a formal because
9669 -- they can be called by a dispatching call, and extensions may require
9670 -- finalization even if the root type doesn't. This means nonprimitive
9671 -- build-in-place functions with tagged results also need it, since such
9672 -- functions can be called via access-to-function types, and those can
9673 -- be used to call primitives, so the formal needs to be passed to all
9674 -- such build-in-place functions, primitive or not.
9676 return not Restriction_Active (No_Finalization)
9677 and then (Needs_Finalization (Typ) or else Is_Tagged_Type (Typ))
9678 and then not Has_Foreign_Convention (Typ);
9679 end Needs_BIP_Finalization_Master;
9681 --------------------------
9682 -- Needs_BIP_Alloc_Form --
9683 --------------------------
9685 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9686 Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9688 begin
9689 -- A formal giving the allocation method is needed for build-in-place
9690 -- functions whose result type is returned on the secondary stack or
9691 -- is a tagged type. Tagged primitive build-in-place functions need
9692 -- such a formal because they can be called by a dispatching call, and
9693 -- the secondary stack is always used for dispatching-on-result calls.
9694 -- This means nonprimitive build-in-place functions with tagged results
9695 -- also need it, as such functions can be called via access-to-function
9696 -- types, and those can be used to call primitives, so the formal needs
9697 -- to be passed to all such build-in-place functions, primitive or not.
9699 -- We never use build-in-place if the function has foreign convention,
9700 -- but note that it is OK for a build-in-place function to return a
9701 -- type with a foreign convention because the machinery ensures there
9702 -- is no copying.
9704 return not Restriction_Active (No_Secondary_Stack)
9705 and then (Needs_Secondary_Stack (Typ) or else Is_Tagged_Type (Typ))
9706 and then not Has_Foreign_Convention (Func_Id);
9707 end Needs_BIP_Alloc_Form;
9709 -------------------------------------
9710 -- Replace_Renaming_Declaration_Id --
9711 -------------------------------------
9713 procedure Replace_Renaming_Declaration_Id
9714 (New_Decl : Node_Id;
9715 Orig_Decl : Node_Id)
9717 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9718 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9720 begin
9721 Set_Chars (New_Id, Chars (Orig_Id));
9723 -- Swap next entity links in preparation for exchanging entities
9725 declare
9726 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9727 begin
9728 Link_Entities (New_Id, Next_Entity (Orig_Id));
9729 Link_Entities (Orig_Id, Next_Id);
9730 end;
9732 Set_Homonym (New_Id, Homonym (Orig_Id));
9733 Exchange_Entities (New_Id, Orig_Id);
9735 -- Preserve source indication of original declaration, so that xref
9736 -- information is properly generated for the right entity.
9738 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9739 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9741 Set_Comes_From_Source (New_Id, False);
9743 -- Preserve aliased indication
9745 Set_Is_Aliased (Orig_Id, Is_Aliased (New_Id));
9746 end Replace_Renaming_Declaration_Id;
9748 ---------------------------------
9749 -- Rewrite_Function_Call_For_C --
9750 ---------------------------------
9752 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9753 Orig_Func : constant Entity_Id := Entity (Name (N));
9754 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
9755 Par : constant Node_Id := Parent (N);
9756 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
9757 Loc : constant Source_Ptr := Sloc (Par);
9758 Actuals : List_Id;
9759 Last_Actual : Node_Id;
9760 Last_Formal : Entity_Id;
9762 -- Start of processing for Rewrite_Function_Call_For_C
9764 begin
9765 -- The actuals may be given by named associations, so the added actual
9766 -- that is the target of the return value of the call must be a named
9767 -- association as well, so we retrieve the name of the generated
9768 -- out_formal.
9770 Last_Formal := First_Formal (Proc_Id);
9771 while Present (Next_Formal (Last_Formal)) loop
9772 Next_Formal (Last_Formal);
9773 end loop;
9775 Actuals := Parameter_Associations (N);
9777 -- The original function may lack parameters
9779 if No (Actuals) then
9780 Actuals := New_List;
9781 end if;
9783 -- If the function call is the expression of an assignment statement,
9784 -- transform the assignment into a procedure call. Generate:
9786 -- LHS := Func_Call (...);
9788 -- Proc_Call (..., LHS);
9790 -- If function is inherited, a conversion may be necessary.
9792 if Nkind (Par) = N_Assignment_Statement then
9793 Last_Actual := Name (Par);
9795 if not Comes_From_Source (Orig_Func)
9796 and then Etype (Orig_Func) /= Etype (Func_Id)
9797 then
9798 Last_Actual :=
9799 Make_Type_Conversion (Loc,
9800 New_Occurrence_Of (Etype (Func_Id), Loc),
9801 Last_Actual);
9802 end if;
9804 Append_To (Actuals,
9805 Make_Parameter_Association (Loc,
9806 Selector_Name =>
9807 Make_Identifier (Loc, Chars (Last_Formal)),
9808 Explicit_Actual_Parameter => Last_Actual));
9810 Rewrite (Par,
9811 Make_Procedure_Call_Statement (Loc,
9812 Name => New_Occurrence_Of (Proc_Id, Loc),
9813 Parameter_Associations => Actuals));
9814 Analyze (Par);
9816 -- Otherwise the context is an expression. Generate a temporary and a
9817 -- procedure call to obtain the function result. Generate:
9819 -- ... Func_Call (...) ...
9821 -- Temp : ...;
9822 -- Proc_Call (..., Temp);
9823 -- ... Temp ...
9825 else
9826 declare
9827 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9828 Call : Node_Id;
9829 Decl : Node_Id;
9831 begin
9832 -- Generate:
9833 -- Temp : ...;
9835 Decl :=
9836 Make_Object_Declaration (Loc,
9837 Defining_Identifier => Temp_Id,
9838 Object_Definition =>
9839 New_Occurrence_Of (Etype (Func_Id), Loc));
9841 -- Generate:
9842 -- Proc_Call (..., Temp);
9844 Append_To (Actuals,
9845 Make_Parameter_Association (Loc,
9846 Selector_Name =>
9847 Make_Identifier (Loc, Chars (Last_Formal)),
9848 Explicit_Actual_Parameter =>
9849 New_Occurrence_Of (Temp_Id, Loc)));
9851 Call :=
9852 Make_Procedure_Call_Statement (Loc,
9853 Name => New_Occurrence_Of (Proc_Id, Loc),
9854 Parameter_Associations => Actuals);
9856 Insert_Actions (Par, New_List (Decl, Call));
9857 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9858 end;
9859 end if;
9860 end Rewrite_Function_Call_For_C;
9862 ------------------------------------
9863 -- Set_Enclosing_Sec_Stack_Return --
9864 ------------------------------------
9866 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9867 P : Node_Id := N;
9869 begin
9870 -- Due to a possible mix of internally generated blocks, source blocks
9871 -- and loops, the scope stack may not be contiguous as all labels are
9872 -- inserted at the top level within the related function. Instead,
9873 -- perform a parent-based traversal and mark all appropriate constructs.
9875 while Present (P) loop
9877 -- Mark the label of a source or internally generated block or
9878 -- loop.
9880 if Nkind (P) in N_Block_Statement | N_Loop_Statement then
9881 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9883 -- Mark the enclosing function
9885 elsif Nkind (P) = N_Subprogram_Body then
9886 if Present (Corresponding_Spec (P)) then
9887 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9888 else
9889 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9890 end if;
9892 -- Do not go beyond the enclosing function
9894 exit;
9895 end if;
9897 P := Parent (P);
9898 end loop;
9899 end Set_Enclosing_Sec_Stack_Return;
9901 ------------------------------------
9902 -- Unqual_BIP_Iface_Function_Call --
9903 ------------------------------------
9905 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9906 Has_Pointer_Displacement : Boolean := False;
9907 On_Object_Declaration : Boolean := False;
9908 -- Remember if processing the renaming expressions on recursion we have
9909 -- traversed an object declaration, since we can traverse many object
9910 -- declaration renamings but just one regular object declaration.
9912 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9913 -- Search for a build-in-place function call skipping any qualification
9914 -- including qualified expressions, type conversions, references, calls
9915 -- to displace the pointer to the object, and renamings. Return Empty if
9916 -- no build-in-place function call is found.
9918 ------------------------------
9919 -- Unqual_BIP_Function_Call --
9920 ------------------------------
9922 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9923 begin
9924 -- Recurse to handle case of multiple levels of qualification and/or
9925 -- conversion.
9927 if Nkind (Expr) in N_Qualified_Expression
9928 | N_Type_Conversion
9929 | N_Unchecked_Type_Conversion
9930 then
9931 return Unqual_BIP_Function_Call (Expression (Expr));
9933 -- Recurse to handle case of multiple levels of references and
9934 -- explicit dereferences.
9936 elsif Nkind (Expr) in N_Attribute_Reference
9937 | N_Explicit_Dereference
9938 | N_Reference
9939 then
9940 return Unqual_BIP_Function_Call (Prefix (Expr));
9942 -- Recurse on object renamings
9944 elsif Nkind (Expr) = N_Identifier
9945 and then Present (Entity (Expr))
9946 and then Ekind (Entity (Expr)) in E_Constant | E_Variable
9947 and then Nkind (Parent (Entity (Expr))) =
9948 N_Object_Renaming_Declaration
9949 and then Present (Renamed_Object (Entity (Expr)))
9950 then
9951 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9953 -- Recurse on the initializing expression of the first reference of
9954 -- an object declaration.
9956 elsif not On_Object_Declaration
9957 and then Nkind (Expr) = N_Identifier
9958 and then Present (Entity (Expr))
9959 and then Ekind (Entity (Expr)) in E_Constant | E_Variable
9960 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9961 and then Present (Expression (Parent (Entity (Expr))))
9962 then
9963 On_Object_Declaration := True;
9964 return
9965 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9967 -- Recurse to handle calls to displace the pointer to the object to
9968 -- reference a secondary dispatch table.
9970 elsif Nkind (Expr) = N_Function_Call
9971 and then Nkind (Name (Expr)) in N_Has_Entity
9972 and then Present (Entity (Name (Expr)))
9973 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9974 then
9975 Has_Pointer_Displacement := True;
9976 return
9977 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9979 -- Normal case: check if the inner expression is a BIP function call
9980 -- and the pointer to the object is displaced.
9982 elsif Has_Pointer_Displacement
9983 and then Is_Build_In_Place_Function_Call (Expr)
9984 then
9985 return Expr;
9987 else
9988 return Empty;
9989 end if;
9990 end Unqual_BIP_Function_Call;
9992 -- Start of processing for Unqual_BIP_Iface_Function_Call
9994 begin
9995 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9997 -- Can happen for X'Elab_Spec in the binder-generated file
9999 return Empty;
10000 end if;
10002 return Unqual_BIP_Function_Call (Expr);
10003 end Unqual_BIP_Iface_Function_Call;
10005 -------------------------------
10006 -- Validate_Subprogram_Calls --
10007 -------------------------------
10009 procedure Validate_Subprogram_Calls (N : Node_Id) is
10011 function Process_Node (Nod : Node_Id) return Traverse_Result;
10012 -- Function to traverse the subtree of N using Traverse_Proc.
10014 ------------------
10015 -- Process_Node --
10016 ------------------
10018 function Process_Node (Nod : Node_Id) return Traverse_Result is
10019 begin
10020 case Nkind (Nod) is
10021 when N_Entry_Call_Statement
10022 | N_Procedure_Call_Statement
10023 | N_Function_Call
10025 declare
10026 Call_Node : Node_Id renames Nod;
10027 Subp : Entity_Id;
10029 begin
10030 -- Call using access to subprogram with explicit dereference
10032 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
10033 Subp := Etype (Name (Call_Node));
10035 -- Prefix notation calls
10037 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
10038 Subp := Entity (Selector_Name (Name (Call_Node)));
10040 -- Call to member of entry family, where Name is an indexed
10041 -- component, with the prefix being a selected component
10042 -- giving the task and entry family name, and the index
10043 -- being the entry index.
10045 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
10046 Subp :=
10047 Entity (Selector_Name (Prefix (Name (Call_Node))));
10049 -- Normal case
10051 else
10052 Subp := Entity (Name (Call_Node));
10053 end if;
10055 pragma Assert (Check_BIP_Actuals (Call_Node, Subp));
10056 end;
10058 -- Skip generic bodies
10060 when N_Package_Body =>
10061 if Ekind (Unique_Defining_Entity (Nod)) = E_Generic_Package then
10062 return Skip;
10063 end if;
10065 when N_Subprogram_Body =>
10066 if Ekind (Unique_Defining_Entity (Nod)) in E_Generic_Function
10067 | E_Generic_Procedure
10068 then
10069 return Skip;
10070 end if;
10072 -- Nodes we want to ignore
10074 -- Skip calls placed in the full declaration of record types since
10075 -- the call will be performed by their Init Proc; for example,
10076 -- calls initializing default values of discriminants or calls
10077 -- providing the initial value of record type components. Other
10078 -- full type declarations are processed because they may have
10079 -- calls that must be checked. For example:
10081 -- type T is array (1 .. Some_Function_Call (...)) of Some_Type;
10083 -- ??? More work needed here to handle the following case:
10085 -- type Rec is record
10086 -- F : String (1 .. <some complicated expression>);
10087 -- end record;
10089 when N_Full_Type_Declaration =>
10090 if Is_Record_Type (Defining_Entity (Nod)) then
10091 return Skip;
10092 end if;
10094 -- Skip calls placed in subprogram specifications since function
10095 -- calls initializing default parameter values will be processed
10096 -- when the call to the subprogram is found (if the default actual
10097 -- parameter is required), and calls found in aspects will be
10098 -- processed when their corresponding pragma is found, or in the
10099 -- specific case of class-wide pre-/postconditions, when their
10100 -- helpers are found.
10102 when N_Procedure_Specification
10103 | N_Function_Specification
10105 return Skip;
10107 when N_Abstract_Subprogram_Declaration
10108 | N_At_Clause
10109 | N_Call_Marker
10110 | N_Empty
10111 | N_Enumeration_Representation_Clause
10112 | N_Enumeration_Type_Definition
10113 | N_Function_Instantiation
10114 | N_Freeze_Generic_Entity
10115 | N_Generic_Function_Renaming_Declaration
10116 | N_Generic_Package_Renaming_Declaration
10117 | N_Generic_Procedure_Renaming_Declaration
10118 | N_Generic_Package_Declaration
10119 | N_Generic_Subprogram_Declaration
10120 | N_Itype_Reference
10121 | N_Number_Declaration
10122 | N_Package_Instantiation
10123 | N_Package_Renaming_Declaration
10124 | N_Pragma
10125 | N_Procedure_Instantiation
10126 | N_Protected_Type_Declaration
10127 | N_Record_Representation_Clause
10128 | N_Validate_Unchecked_Conversion
10129 | N_Variable_Reference_Marker
10130 | N_Use_Package_Clause
10131 | N_Use_Type_Clause
10132 | N_With_Clause
10134 return Skip;
10136 when others =>
10137 null;
10138 end case;
10140 return OK;
10141 end Process_Node;
10143 procedure Check_Calls is new Traverse_Proc (Process_Node);
10145 -- Start of processing for Validate_Subprogram_Calls
10147 begin
10148 -- No action required if we are not generating code or compiling sources
10149 -- that have errors.
10151 if Serious_Errors_Detected > 0
10152 or else Operating_Mode /= Generate_Code
10153 then
10154 return;
10155 end if;
10157 Check_Calls (N);
10158 end Validate_Subprogram_Calls;
10160 --------------
10161 -- Warn_BIP --
10162 --------------
10164 procedure Warn_BIP (Func_Call : Node_Id) is
10165 begin
10166 if Debug_Flag_Underscore_BB then
10167 Error_Msg_N ("build-in-place function call??", Func_Call);
10168 end if;
10169 end Warn_BIP;
10171 end Exp_Ch6;