re PR testsuite/60672 (FAIL: g++.dg/cpp1y/auto-fn25.C -std=gnu++1y (test for errors...
[official-gcc.git] / gcc / tree-vect-loop.c
blobdf6ab6fcb9ee2993b7f7023f591c5ed0b2b1f9fd
1 /* Loop Vectorization
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "optabs.h"
52 #include "params.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
57 #include "target.h"
59 /* Loop Vectorization Pass.
61 This pass tries to vectorize loops.
63 For example, the vectorizer transforms the following simple loop:
65 short a[N]; short b[N]; short c[N]; int i;
67 for (i=0; i<N; i++){
68 a[i] = b[i] + c[i];
71 as if it was manually vectorized by rewriting the source code into:
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
76 v8hi va, vb, vc;
78 for (i=0; i<N/8; i++){
79 vb = pb[i];
80 vc = pc[i];
81 va = vb + vc;
82 pa[i] = va;
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
97 Analysis phase:
98 ===============
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
119 For example, say stmt S1 was vectorized into stmt VS1:
121 VS1: vb = px[i];
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
123 S2: a = b;
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
130 VS1: vb = px[i];
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 VS2: va = vb;
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
138 Target modeling:
139 =================
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
157 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
159 /* Function vect_determine_vectorization_factor
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
170 in the loop.
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
173 original loop:
174 for (i=0; i<N; i++){
175 a[i] = b[i] + c[i];
178 vectorized loop:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
184 static bool
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
187 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
188 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
189 int nbbs = loop->num_nodes;
190 gimple_stmt_iterator si;
191 unsigned int vectorization_factor = 0;
192 tree scalar_type;
193 gimple phi;
194 tree vectype;
195 unsigned int nunits;
196 stmt_vec_info stmt_info;
197 int i;
198 HOST_WIDE_INT dummy;
199 gimple stmt, pattern_stmt = NULL;
200 gimple_seq pattern_def_seq = NULL;
201 gimple_stmt_iterator pattern_def_si = gsi_none ();
202 bool analyze_pattern_stmt = false;
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE, vect_location,
206 "=== vect_determine_vectorization_factor ===\n");
208 for (i = 0; i < nbbs; i++)
210 basic_block bb = bbs[i];
212 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
214 phi = gsi_stmt (si);
215 stmt_info = vinfo_for_stmt (phi);
216 if (dump_enabled_p ())
218 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
220 dump_printf (MSG_NOTE, "\n");
223 gcc_assert (stmt_info);
225 if (STMT_VINFO_RELEVANT_P (stmt_info))
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
228 scalar_type = TREE_TYPE (PHI_RESULT (phi));
230 if (dump_enabled_p ())
232 dump_printf_loc (MSG_NOTE, vect_location,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
235 dump_printf (MSG_NOTE, "\n");
238 vectype = get_vectype_for_scalar_type (scalar_type);
239 if (!vectype)
241 if (dump_enabled_p ())
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
244 "not vectorized: unsupported "
245 "data-type ");
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
247 scalar_type);
248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
250 return false;
252 STMT_VINFO_VECTYPE (stmt_info) = vectype;
254 if (dump_enabled_p ())
256 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
257 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
258 dump_printf (MSG_NOTE, "\n");
261 nunits = TYPE_VECTOR_SUBPARTS (vectype);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
264 nunits);
266 if (!vectorization_factor
267 || (nunits > vectorization_factor))
268 vectorization_factor = nunits;
272 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
274 tree vf_vectype;
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
281 stmt_info = vinfo_for_stmt (stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 dump_printf (MSG_NOTE, "\n");
291 gcc_assert (stmt_info);
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
295 && !STMT_VINFO_LIVE_P (stmt_info))
296 || gimple_clobber_p (stmt))
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
303 stmt = pattern_stmt;
304 stmt_info = vinfo_for_stmt (pattern_stmt);
305 if (dump_enabled_p ())
307 dump_printf_loc (MSG_NOTE, vect_location,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
310 dump_printf (MSG_NOTE, "\n");
313 else
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
317 gsi_next (&si);
318 continue;
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
322 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
325 analyze_pattern_stmt = true;
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info))
330 if (pattern_def_seq == NULL)
332 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
333 pattern_def_si = gsi_start (pattern_def_seq);
335 else if (!gsi_end_p (pattern_def_si))
336 gsi_next (&pattern_def_si);
337 if (pattern_def_seq != NULL)
339 gimple pattern_def_stmt = NULL;
340 stmt_vec_info pattern_def_stmt_info = NULL;
342 while (!gsi_end_p (pattern_def_si))
344 pattern_def_stmt = gsi_stmt (pattern_def_si);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
349 break;
350 gsi_next (&pattern_def_si);
353 if (!gsi_end_p (pattern_def_si))
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_NOTE, vect_location,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
360 pattern_def_stmt, 0);
361 dump_printf (MSG_NOTE, "\n");
364 stmt = pattern_def_stmt;
365 stmt_info = pattern_def_stmt_info;
367 else
369 pattern_def_si = gsi_none ();
370 analyze_pattern_stmt = false;
373 else
374 analyze_pattern_stmt = false;
377 if (gimple_get_lhs (stmt) == NULL_TREE
378 /* MASK_STORE has no lhs, but is ok. */
379 && (!is_gimple_call (stmt)
380 || !gimple_call_internal_p (stmt)
381 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
383 if (is_gimple_call (stmt))
385 /* Ignore calls with no lhs. These must be calls to
386 #pragma omp simd functions, and what vectorization factor
387 it really needs can't be determined until
388 vectorizable_simd_clone_call. */
389 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
391 pattern_def_seq = NULL;
392 gsi_next (&si);
394 continue;
396 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
399 "not vectorized: irregular stmt.");
400 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
402 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
404 return false;
407 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
409 if (dump_enabled_p ())
411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
412 "not vectorized: vector stmt in loop:");
413 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
414 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
416 return false;
419 if (STMT_VINFO_VECTYPE (stmt_info))
421 /* The only case when a vectype had been already set is for stmts
422 that contain a dataref, or for "pattern-stmts" (stmts
423 generated by the vectorizer to represent/replace a certain
424 idiom). */
425 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
426 || is_pattern_stmt_p (stmt_info)
427 || !gsi_end_p (pattern_def_si));
428 vectype = STMT_VINFO_VECTYPE (stmt_info);
430 else
432 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
433 if (is_gimple_call (stmt)
434 && gimple_call_internal_p (stmt)
435 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
436 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
437 else
438 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
439 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
444 dump_printf (MSG_NOTE, "\n");
446 vectype = get_vectype_for_scalar_type (scalar_type);
447 if (!vectype)
449 if (dump_enabled_p ())
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
452 "not vectorized: unsupported "
453 "data-type ");
454 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
455 scalar_type);
456 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
458 return false;
461 STMT_VINFO_VECTYPE (stmt_info) = vectype;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
466 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
467 dump_printf (MSG_NOTE, "\n");
471 /* The vectorization factor is according to the smallest
472 scalar type (or the largest vector size, but we only
473 support one vector size per loop). */
474 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
475 &dummy);
476 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location,
479 "get vectype for scalar type: ");
480 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
481 dump_printf (MSG_NOTE, "\n");
483 vf_vectype = get_vectype_for_scalar_type (scalar_type);
484 if (!vf_vectype)
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
489 "not vectorized: unsupported data-type ");
490 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
491 scalar_type);
492 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
494 return false;
497 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
498 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
500 if (dump_enabled_p ())
502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
503 "not vectorized: different sized vector "
504 "types in statement, ");
505 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
506 vectype);
507 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
508 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
509 vf_vectype);
510 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
512 return false;
515 if (dump_enabled_p ())
517 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
518 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
519 dump_printf (MSG_NOTE, "\n");
522 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
525 if (!vectorization_factor
526 || (nunits > vectorization_factor))
527 vectorization_factor = nunits;
529 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
531 pattern_def_seq = NULL;
532 gsi_next (&si);
537 /* TODO: Analyze cost. Decide if worth while to vectorize. */
538 if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
540 vectorization_factor);
541 if (vectorization_factor <= 1)
543 if (dump_enabled_p ())
544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
545 "not vectorized: unsupported data-type\n");
546 return false;
548 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
550 return true;
554 /* Function vect_is_simple_iv_evolution.
556 FORNOW: A simple evolution of an induction variables in the loop is
557 considered a polynomial evolution. */
559 static bool
560 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
561 tree * step)
563 tree init_expr;
564 tree step_expr;
565 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
566 basic_block bb;
568 /* When there is no evolution in this loop, the evolution function
569 is not "simple". */
570 if (evolution_part == NULL_TREE)
571 return false;
573 /* When the evolution is a polynomial of degree >= 2
574 the evolution function is not "simple". */
575 if (tree_is_chrec (evolution_part))
576 return false;
578 step_expr = evolution_part;
579 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
581 if (dump_enabled_p ())
583 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
584 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
585 dump_printf (MSG_NOTE, ", init: ");
586 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
587 dump_printf (MSG_NOTE, "\n");
590 *init = init_expr;
591 *step = step_expr;
593 if (TREE_CODE (step_expr) != INTEGER_CST
594 && (TREE_CODE (step_expr) != SSA_NAME
595 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
596 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
597 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
598 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
599 || !flag_associative_math)))
600 && (TREE_CODE (step_expr) != REAL_CST
601 || !flag_associative_math))
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
605 "step unknown.\n");
606 return false;
609 return true;
612 /* Function vect_analyze_scalar_cycles_1.
614 Examine the cross iteration def-use cycles of scalar variables
615 in LOOP. LOOP_VINFO represents the loop that is now being
616 considered for vectorization (can be LOOP, or an outer-loop
617 enclosing LOOP). */
619 static void
620 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
622 basic_block bb = loop->header;
623 tree init, step;
624 auto_vec<gimple, 64> worklist;
625 gimple_stmt_iterator gsi;
626 bool double_reduc;
628 if (dump_enabled_p ())
629 dump_printf_loc (MSG_NOTE, vect_location,
630 "=== vect_analyze_scalar_cycles ===\n");
632 /* First - identify all inductions. Reduction detection assumes that all the
633 inductions have been identified, therefore, this order must not be
634 changed. */
635 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
637 gimple phi = gsi_stmt (gsi);
638 tree access_fn = NULL;
639 tree def = PHI_RESULT (phi);
640 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
642 if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
645 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
646 dump_printf (MSG_NOTE, "\n");
649 /* Skip virtual phi's. The data dependences that are associated with
650 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
651 if (virtual_operand_p (def))
652 continue;
654 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
656 /* Analyze the evolution function. */
657 access_fn = analyze_scalar_evolution (loop, def);
658 if (access_fn)
660 STRIP_NOPS (access_fn);
661 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Access function of PHI: ");
665 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
666 dump_printf (MSG_NOTE, "\n");
668 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
669 = evolution_part_in_loop_num (access_fn, loop->num);
672 if (!access_fn
673 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
674 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
675 && TREE_CODE (step) != INTEGER_CST))
677 worklist.safe_push (phi);
678 continue;
681 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
685 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
689 /* Second - identify all reductions and nested cycles. */
690 while (worklist.length () > 0)
692 gimple phi = worklist.pop ();
693 tree def = PHI_RESULT (phi);
694 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
695 gimple reduc_stmt;
696 bool nested_cycle;
698 if (dump_enabled_p ())
700 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
701 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
702 dump_printf (MSG_NOTE, "\n");
705 gcc_assert (!virtual_operand_p (def)
706 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
708 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
709 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
710 &double_reduc);
711 if (reduc_stmt)
713 if (double_reduc)
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE, vect_location,
717 "Detected double reduction.\n");
719 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
720 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
721 vect_double_reduction_def;
723 else
725 if (nested_cycle)
727 if (dump_enabled_p ())
728 dump_printf_loc (MSG_NOTE, vect_location,
729 "Detected vectorizable nested cycle.\n");
731 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
732 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
733 vect_nested_cycle;
735 else
737 if (dump_enabled_p ())
738 dump_printf_loc (MSG_NOTE, vect_location,
739 "Detected reduction.\n");
741 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
742 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
743 vect_reduction_def;
744 /* Store the reduction cycles for possible vectorization in
745 loop-aware SLP. */
746 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
750 else
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "Unknown def-use cycle pattern.\n");
758 /* Function vect_analyze_scalar_cycles.
760 Examine the cross iteration def-use cycles of scalar variables, by
761 analyzing the loop-header PHIs of scalar variables. Classify each
762 cycle as one of the following: invariant, induction, reduction, unknown.
763 We do that for the loop represented by LOOP_VINFO, and also to its
764 inner-loop, if exists.
765 Examples for scalar cycles:
767 Example1: reduction:
769 loop1:
770 for (i=0; i<N; i++)
771 sum += a[i];
773 Example2: induction:
775 loop2:
776 for (i=0; i<N; i++)
777 a[i] = i; */
779 static void
780 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
782 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
784 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
786 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
787 Reductions in such inner-loop therefore have different properties than
788 the reductions in the nest that gets vectorized:
789 1. When vectorized, they are executed in the same order as in the original
790 scalar loop, so we can't change the order of computation when
791 vectorizing them.
792 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
793 current checks are too strict. */
795 if (loop->inner)
796 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
800 /* Function vect_get_loop_niters.
802 Determine how many iterations the loop is executed and place it
803 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
804 in NUMBER_OF_ITERATIONSM1.
806 Return the loop exit condition. */
808 static gimple
809 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
810 tree *number_of_iterationsm1)
812 tree niters;
814 if (dump_enabled_p ())
815 dump_printf_loc (MSG_NOTE, vect_location,
816 "=== get_loop_niters ===\n");
818 niters = number_of_latch_executions (loop);
819 *number_of_iterationsm1 = niters;
821 /* We want the number of loop header executions which is the number
822 of latch executions plus one.
823 ??? For UINT_MAX latch executions this number overflows to zero
824 for loops like do { n++; } while (n != 0); */
825 if (niters && !chrec_contains_undetermined (niters))
826 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
827 build_int_cst (TREE_TYPE (niters), 1));
828 *number_of_iterations = niters;
830 return get_loop_exit_condition (loop);
834 /* Function bb_in_loop_p
836 Used as predicate for dfs order traversal of the loop bbs. */
838 static bool
839 bb_in_loop_p (const_basic_block bb, const void *data)
841 const struct loop *const loop = (const struct loop *)data;
842 if (flow_bb_inside_loop_p (loop, bb))
843 return true;
844 return false;
848 /* Function new_loop_vec_info.
850 Create and initialize a new loop_vec_info struct for LOOP, as well as
851 stmt_vec_info structs for all the stmts in LOOP. */
853 static loop_vec_info
854 new_loop_vec_info (struct loop *loop)
856 loop_vec_info res;
857 basic_block *bbs;
858 gimple_stmt_iterator si;
859 unsigned int i, nbbs;
861 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
862 LOOP_VINFO_LOOP (res) = loop;
864 bbs = get_loop_body (loop);
866 /* Create/Update stmt_info for all stmts in the loop. */
867 for (i = 0; i < loop->num_nodes; i++)
869 basic_block bb = bbs[i];
871 /* BBs in a nested inner-loop will have been already processed (because
872 we will have called vect_analyze_loop_form for any nested inner-loop).
873 Therefore, for stmts in an inner-loop we just want to update the
874 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
875 loop_info of the outer-loop we are currently considering to vectorize
876 (instead of the loop_info of the inner-loop).
877 For stmts in other BBs we need to create a stmt_info from scratch. */
878 if (bb->loop_father != loop)
880 /* Inner-loop bb. */
881 gcc_assert (loop->inner && bb->loop_father == loop->inner);
882 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
884 gimple phi = gsi_stmt (si);
885 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
886 loop_vec_info inner_loop_vinfo =
887 STMT_VINFO_LOOP_VINFO (stmt_info);
888 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
889 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
891 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
893 gimple stmt = gsi_stmt (si);
894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
895 loop_vec_info inner_loop_vinfo =
896 STMT_VINFO_LOOP_VINFO (stmt_info);
897 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
898 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
901 else
903 /* bb in current nest. */
904 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
906 gimple phi = gsi_stmt (si);
907 gimple_set_uid (phi, 0);
908 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
911 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
913 gimple stmt = gsi_stmt (si);
914 gimple_set_uid (stmt, 0);
915 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
920 /* CHECKME: We want to visit all BBs before their successors (except for
921 latch blocks, for which this assertion wouldn't hold). In the simple
922 case of the loop forms we allow, a dfs order of the BBs would the same
923 as reversed postorder traversal, so we are safe. */
925 free (bbs);
926 bbs = XCNEWVEC (basic_block, loop->num_nodes);
927 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
928 bbs, loop->num_nodes, loop);
929 gcc_assert (nbbs == loop->num_nodes);
931 LOOP_VINFO_BBS (res) = bbs;
932 LOOP_VINFO_NITERSM1 (res) = NULL;
933 LOOP_VINFO_NITERS (res) = NULL;
934 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
935 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
936 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
937 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
938 LOOP_VINFO_VECT_FACTOR (res) = 0;
939 LOOP_VINFO_LOOP_NEST (res).create (3);
940 LOOP_VINFO_DATAREFS (res).create (10);
941 LOOP_VINFO_DDRS (res).create (10 * 10);
942 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
943 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
944 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
945 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
946 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
947 LOOP_VINFO_GROUPED_STORES (res).create (10);
948 LOOP_VINFO_REDUCTIONS (res).create (10);
949 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
950 LOOP_VINFO_SLP_INSTANCES (res).create (10);
951 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
952 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
953 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
954 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
955 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
957 return res;
961 /* Function destroy_loop_vec_info.
963 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
964 stmts in the loop. */
966 void
967 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
969 struct loop *loop;
970 basic_block *bbs;
971 int nbbs;
972 gimple_stmt_iterator si;
973 int j;
974 vec<slp_instance> slp_instances;
975 slp_instance instance;
976 bool swapped;
978 if (!loop_vinfo)
979 return;
981 loop = LOOP_VINFO_LOOP (loop_vinfo);
983 bbs = LOOP_VINFO_BBS (loop_vinfo);
984 nbbs = clean_stmts ? loop->num_nodes : 0;
985 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
987 for (j = 0; j < nbbs; j++)
989 basic_block bb = bbs[j];
990 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
991 free_stmt_vec_info (gsi_stmt (si));
993 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
995 gimple stmt = gsi_stmt (si);
997 /* We may have broken canonical form by moving a constant
998 into RHS1 of a commutative op. Fix such occurrences. */
999 if (swapped && is_gimple_assign (stmt))
1001 enum tree_code code = gimple_assign_rhs_code (stmt);
1003 if ((code == PLUS_EXPR
1004 || code == POINTER_PLUS_EXPR
1005 || code == MULT_EXPR)
1006 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1007 swap_ssa_operands (stmt,
1008 gimple_assign_rhs1_ptr (stmt),
1009 gimple_assign_rhs2_ptr (stmt));
1012 /* Free stmt_vec_info. */
1013 free_stmt_vec_info (stmt);
1014 gsi_next (&si);
1018 free (LOOP_VINFO_BBS (loop_vinfo));
1019 vect_destroy_datarefs (loop_vinfo, NULL);
1020 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1021 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1022 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1023 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1024 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1025 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1026 vect_free_slp_instance (instance);
1028 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1029 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1030 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1031 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1033 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
1034 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
1036 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1038 free (loop_vinfo);
1039 loop->aux = NULL;
1043 /* Function vect_analyze_loop_1.
1045 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1046 for it. The different analyses will record information in the
1047 loop_vec_info struct. This is a subset of the analyses applied in
1048 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1049 that is now considered for (outer-loop) vectorization. */
1051 static loop_vec_info
1052 vect_analyze_loop_1 (struct loop *loop)
1054 loop_vec_info loop_vinfo;
1056 if (dump_enabled_p ())
1057 dump_printf_loc (MSG_NOTE, vect_location,
1058 "===== analyze_loop_nest_1 =====\n");
1060 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1062 loop_vinfo = vect_analyze_loop_form (loop);
1063 if (!loop_vinfo)
1065 if (dump_enabled_p ())
1066 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1067 "bad inner-loop form.\n");
1068 return NULL;
1071 return loop_vinfo;
1075 /* Function vect_analyze_loop_form.
1077 Verify that certain CFG restrictions hold, including:
1078 - the loop has a pre-header
1079 - the loop has a single entry and exit
1080 - the loop exit condition is simple enough, and the number of iterations
1081 can be analyzed (a countable loop). */
1083 loop_vec_info
1084 vect_analyze_loop_form (struct loop *loop)
1086 loop_vec_info loop_vinfo;
1087 gimple loop_cond;
1088 tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
1089 loop_vec_info inner_loop_vinfo = NULL;
1091 if (dump_enabled_p ())
1092 dump_printf_loc (MSG_NOTE, vect_location,
1093 "=== vect_analyze_loop_form ===\n");
1095 /* Different restrictions apply when we are considering an inner-most loop,
1096 vs. an outer (nested) loop.
1097 (FORNOW. May want to relax some of these restrictions in the future). */
1099 if (!loop->inner)
1101 /* Inner-most loop. We currently require that the number of BBs is
1102 exactly 2 (the header and latch). Vectorizable inner-most loops
1103 look like this:
1105 (pre-header)
1107 header <--------+
1108 | | |
1109 | +--> latch --+
1111 (exit-bb) */
1113 if (loop->num_nodes != 2)
1115 if (dump_enabled_p ())
1116 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1117 "not vectorized: control flow in loop.\n");
1118 return NULL;
1121 if (empty_block_p (loop->header))
1123 if (dump_enabled_p ())
1124 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1125 "not vectorized: empty loop.\n");
1126 return NULL;
1129 else
1131 struct loop *innerloop = loop->inner;
1132 edge entryedge;
1134 /* Nested loop. We currently require that the loop is doubly-nested,
1135 contains a single inner loop, and the number of BBs is exactly 5.
1136 Vectorizable outer-loops look like this:
1138 (pre-header)
1140 header <---+
1142 inner-loop |
1144 tail ------+
1146 (exit-bb)
1148 The inner-loop has the properties expected of inner-most loops
1149 as described above. */
1151 if ((loop->inner)->inner || (loop->inner)->next)
1153 if (dump_enabled_p ())
1154 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1155 "not vectorized: multiple nested loops.\n");
1156 return NULL;
1159 /* Analyze the inner-loop. */
1160 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1161 if (!inner_loop_vinfo)
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1165 "not vectorized: Bad inner loop.\n");
1166 return NULL;
1169 if (!expr_invariant_in_loop_p (loop,
1170 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1172 if (dump_enabled_p ())
1173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1174 "not vectorized: inner-loop count not"
1175 " invariant.\n");
1176 destroy_loop_vec_info (inner_loop_vinfo, true);
1177 return NULL;
1180 if (loop->num_nodes != 5)
1182 if (dump_enabled_p ())
1183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1184 "not vectorized: control flow in loop.\n");
1185 destroy_loop_vec_info (inner_loop_vinfo, true);
1186 return NULL;
1189 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1190 entryedge = EDGE_PRED (innerloop->header, 0);
1191 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1192 entryedge = EDGE_PRED (innerloop->header, 1);
1194 if (entryedge->src != loop->header
1195 || !single_exit (innerloop)
1196 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1198 if (dump_enabled_p ())
1199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1200 "not vectorized: unsupported outerloop form.\n");
1201 destroy_loop_vec_info (inner_loop_vinfo, true);
1202 return NULL;
1205 if (dump_enabled_p ())
1206 dump_printf_loc (MSG_NOTE, vect_location,
1207 "Considering outer-loop vectorization.\n");
1210 if (!single_exit (loop)
1211 || EDGE_COUNT (loop->header->preds) != 2)
1213 if (dump_enabled_p ())
1215 if (!single_exit (loop))
1216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1217 "not vectorized: multiple exits.\n");
1218 else if (EDGE_COUNT (loop->header->preds) != 2)
1219 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1220 "not vectorized: too many incoming edges.\n");
1222 if (inner_loop_vinfo)
1223 destroy_loop_vec_info (inner_loop_vinfo, true);
1224 return NULL;
1227 /* We assume that the loop exit condition is at the end of the loop. i.e,
1228 that the loop is represented as a do-while (with a proper if-guard
1229 before the loop if needed), where the loop header contains all the
1230 executable statements, and the latch is empty. */
1231 if (!empty_block_p (loop->latch)
1232 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1234 if (dump_enabled_p ())
1235 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1236 "not vectorized: latch block not empty.\n");
1237 if (inner_loop_vinfo)
1238 destroy_loop_vec_info (inner_loop_vinfo, true);
1239 return NULL;
1242 /* Make sure there exists a single-predecessor exit bb: */
1243 if (!single_pred_p (single_exit (loop)->dest))
1245 edge e = single_exit (loop);
1246 if (!(e->flags & EDGE_ABNORMAL))
1248 split_loop_exit_edge (e);
1249 if (dump_enabled_p ())
1250 dump_printf (MSG_NOTE, "split exit edge.\n");
1252 else
1254 if (dump_enabled_p ())
1255 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1256 "not vectorized: abnormal loop exit edge.\n");
1257 if (inner_loop_vinfo)
1258 destroy_loop_vec_info (inner_loop_vinfo, true);
1259 return NULL;
1263 loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
1264 &number_of_iterationsm1);
1265 if (!loop_cond)
1267 if (dump_enabled_p ())
1268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1269 "not vectorized: complicated exit condition.\n");
1270 if (inner_loop_vinfo)
1271 destroy_loop_vec_info (inner_loop_vinfo, true);
1272 return NULL;
1275 if (!number_of_iterations
1276 || chrec_contains_undetermined (number_of_iterations))
1278 if (dump_enabled_p ())
1279 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1280 "not vectorized: number of iterations cannot be "
1281 "computed.\n");
1282 if (inner_loop_vinfo)
1283 destroy_loop_vec_info (inner_loop_vinfo, true);
1284 return NULL;
1287 if (integer_zerop (number_of_iterations))
1289 if (dump_enabled_p ())
1290 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1291 "not vectorized: number of iterations = 0.\n");
1292 if (inner_loop_vinfo)
1293 destroy_loop_vec_info (inner_loop_vinfo, true);
1294 return NULL;
1297 loop_vinfo = new_loop_vec_info (loop);
1298 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1299 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1300 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1302 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1304 if (dump_enabled_p ())
1306 dump_printf_loc (MSG_NOTE, vect_location,
1307 "Symbolic number of iterations is ");
1308 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1309 dump_printf (MSG_NOTE, "\n");
1313 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1315 /* CHECKME: May want to keep it around it in the future. */
1316 if (inner_loop_vinfo)
1317 destroy_loop_vec_info (inner_loop_vinfo, false);
1319 gcc_assert (!loop->aux);
1320 loop->aux = loop_vinfo;
1321 return loop_vinfo;
1325 /* Function vect_analyze_loop_operations.
1327 Scan the loop stmts and make sure they are all vectorizable. */
1329 static bool
1330 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1332 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1333 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1334 int nbbs = loop->num_nodes;
1335 gimple_stmt_iterator si;
1336 unsigned int vectorization_factor = 0;
1337 int i;
1338 gimple phi;
1339 stmt_vec_info stmt_info;
1340 bool need_to_vectorize = false;
1341 int min_profitable_iters;
1342 int min_scalar_loop_bound;
1343 unsigned int th;
1344 bool only_slp_in_loop = true, ok;
1345 HOST_WIDE_INT max_niter;
1346 HOST_WIDE_INT estimated_niter;
1347 int min_profitable_estimate;
1349 if (dump_enabled_p ())
1350 dump_printf_loc (MSG_NOTE, vect_location,
1351 "=== vect_analyze_loop_operations ===\n");
1353 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1354 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1355 if (slp)
1357 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1358 vectorization factor of the loop is the unrolling factor required by
1359 the SLP instances. If that unrolling factor is 1, we say, that we
1360 perform pure SLP on loop - cross iteration parallelism is not
1361 exploited. */
1362 for (i = 0; i < nbbs; i++)
1364 basic_block bb = bbs[i];
1365 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1367 gimple stmt = gsi_stmt (si);
1368 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1369 gcc_assert (stmt_info);
1370 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1371 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1372 && !PURE_SLP_STMT (stmt_info))
1373 /* STMT needs both SLP and loop-based vectorization. */
1374 only_slp_in_loop = false;
1378 if (only_slp_in_loop)
1379 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1380 else
1381 vectorization_factor = least_common_multiple (vectorization_factor,
1382 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1385 if (dump_enabled_p ())
1386 dump_printf_loc (MSG_NOTE, vect_location,
1387 "Updating vectorization factor to %d\n",
1388 vectorization_factor);
1391 for (i = 0; i < nbbs; i++)
1393 basic_block bb = bbs[i];
1395 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1397 phi = gsi_stmt (si);
1398 ok = true;
1400 stmt_info = vinfo_for_stmt (phi);
1401 if (dump_enabled_p ())
1403 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1404 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1405 dump_printf (MSG_NOTE, "\n");
1408 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1409 (i.e., a phi in the tail of the outer-loop). */
1410 if (! is_loop_header_bb_p (bb))
1412 /* FORNOW: we currently don't support the case that these phis
1413 are not used in the outerloop (unless it is double reduction,
1414 i.e., this phi is vect_reduction_def), cause this case
1415 requires to actually do something here. */
1416 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1417 || STMT_VINFO_LIVE_P (stmt_info))
1418 && STMT_VINFO_DEF_TYPE (stmt_info)
1419 != vect_double_reduction_def)
1421 if (dump_enabled_p ())
1422 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1423 "Unsupported loop-closed phi in "
1424 "outer-loop.\n");
1425 return false;
1428 /* If PHI is used in the outer loop, we check that its operand
1429 is defined in the inner loop. */
1430 if (STMT_VINFO_RELEVANT_P (stmt_info))
1432 tree phi_op;
1433 gimple op_def_stmt;
1435 if (gimple_phi_num_args (phi) != 1)
1436 return false;
1438 phi_op = PHI_ARG_DEF (phi, 0);
1439 if (TREE_CODE (phi_op) != SSA_NAME)
1440 return false;
1442 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1443 if (gimple_nop_p (op_def_stmt)
1444 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1445 || !vinfo_for_stmt (op_def_stmt))
1446 return false;
1448 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1449 != vect_used_in_outer
1450 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1451 != vect_used_in_outer_by_reduction)
1452 return false;
1455 continue;
1458 gcc_assert (stmt_info);
1460 if (STMT_VINFO_LIVE_P (stmt_info))
1462 /* FORNOW: not yet supported. */
1463 if (dump_enabled_p ())
1464 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1465 "not vectorized: value used after loop.\n");
1466 return false;
1469 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1470 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1472 /* A scalar-dependence cycle that we don't support. */
1473 if (dump_enabled_p ())
1474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1475 "not vectorized: scalar dependence cycle.\n");
1476 return false;
1479 if (STMT_VINFO_RELEVANT_P (stmt_info))
1481 need_to_vectorize = true;
1482 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1483 ok = vectorizable_induction (phi, NULL, NULL);
1486 if (!ok)
1488 if (dump_enabled_p ())
1490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1491 "not vectorized: relevant phi not "
1492 "supported: ");
1493 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1494 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1496 return false;
1500 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1502 gimple stmt = gsi_stmt (si);
1503 if (!gimple_clobber_p (stmt)
1504 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1505 return false;
1507 } /* bbs */
1509 /* All operations in the loop are either irrelevant (deal with loop
1510 control, or dead), or only used outside the loop and can be moved
1511 out of the loop (e.g. invariants, inductions). The loop can be
1512 optimized away by scalar optimizations. We're better off not
1513 touching this loop. */
1514 if (!need_to_vectorize)
1516 if (dump_enabled_p ())
1517 dump_printf_loc (MSG_NOTE, vect_location,
1518 "All the computation can be taken out of the loop.\n");
1519 if (dump_enabled_p ())
1520 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1521 "not vectorized: redundant loop. no profit to "
1522 "vectorize.\n");
1523 return false;
1526 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1527 dump_printf_loc (MSG_NOTE, vect_location,
1528 "vectorization_factor = %d, niters = "
1529 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1530 LOOP_VINFO_INT_NITERS (loop_vinfo));
1532 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1533 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1534 || ((max_niter = max_stmt_executions_int (loop)) != -1
1535 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1537 if (dump_enabled_p ())
1538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1539 "not vectorized: iteration count too small.\n");
1540 if (dump_enabled_p ())
1541 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1542 "not vectorized: iteration count smaller than "
1543 "vectorization factor.\n");
1544 return false;
1547 /* Analyze cost. Decide if worth while to vectorize. */
1549 /* Once VF is set, SLP costs should be updated since the number of created
1550 vector stmts depends on VF. */
1551 vect_update_slp_costs_according_to_vf (loop_vinfo);
1553 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1554 &min_profitable_estimate);
1555 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1557 if (min_profitable_iters < 0)
1559 if (dump_enabled_p ())
1560 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1561 "not vectorized: vectorization not profitable.\n");
1562 if (dump_enabled_p ())
1563 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1564 "not vectorized: vector version will never be "
1565 "profitable.\n");
1566 return false;
1569 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1570 * vectorization_factor) - 1);
1573 /* Use the cost model only if it is more conservative than user specified
1574 threshold. */
1576 th = (unsigned) min_scalar_loop_bound;
1577 if (min_profitable_iters
1578 && (!min_scalar_loop_bound
1579 || min_profitable_iters > min_scalar_loop_bound))
1580 th = (unsigned) min_profitable_iters;
1582 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1583 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1585 if (dump_enabled_p ())
1586 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1587 "not vectorized: vectorization not profitable.\n");
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_NOTE, vect_location,
1590 "not vectorized: iteration count smaller than user "
1591 "specified loop bound parameter or minimum profitable "
1592 "iterations (whichever is more conservative).\n");
1593 return false;
1596 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1597 && ((unsigned HOST_WIDE_INT) estimated_niter
1598 <= MAX (th, (unsigned)min_profitable_estimate)))
1600 if (dump_enabled_p ())
1601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1602 "not vectorized: estimated iteration count too "
1603 "small.\n");
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_NOTE, vect_location,
1606 "not vectorized: estimated iteration count smaller "
1607 "than specified loop bound parameter or minimum "
1608 "profitable iterations (whichever is more "
1609 "conservative).\n");
1610 return false;
1613 return true;
1617 /* Function vect_analyze_loop_2.
1619 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1620 for it. The different analyses will record information in the
1621 loop_vec_info struct. */
1622 static bool
1623 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1625 bool ok, slp = false;
1626 int max_vf = MAX_VECTORIZATION_FACTOR;
1627 int min_vf = 2;
1629 /* Find all data references in the loop (which correspond to vdefs/vuses)
1630 and analyze their evolution in the loop. Also adjust the minimal
1631 vectorization factor according to the loads and stores.
1633 FORNOW: Handle only simple, array references, which
1634 alignment can be forced, and aligned pointer-references. */
1636 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1637 if (!ok)
1639 if (dump_enabled_p ())
1640 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1641 "bad data references.\n");
1642 return false;
1645 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1646 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1648 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1649 if (!ok)
1651 if (dump_enabled_p ())
1652 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1653 "bad data access.\n");
1654 return false;
1657 /* Classify all cross-iteration scalar data-flow cycles.
1658 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1660 vect_analyze_scalar_cycles (loop_vinfo);
1662 vect_pattern_recog (loop_vinfo, NULL);
1664 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1666 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1667 if (!ok)
1669 if (dump_enabled_p ())
1670 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1671 "unexpected pattern.\n");
1672 return false;
1675 /* Analyze data dependences between the data-refs in the loop
1676 and adjust the maximum vectorization factor according to
1677 the dependences.
1678 FORNOW: fail at the first data dependence that we encounter. */
1680 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1681 if (!ok
1682 || max_vf < min_vf)
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data dependence.\n");
1687 return false;
1690 ok = vect_determine_vectorization_factor (loop_vinfo);
1691 if (!ok)
1693 if (dump_enabled_p ())
1694 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1695 "can't determine vectorization factor.\n");
1696 return false;
1698 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1700 if (dump_enabled_p ())
1701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1702 "bad data dependence.\n");
1703 return false;
1706 /* Analyze the alignment of the data-refs in the loop.
1707 Fail if a data reference is found that cannot be vectorized. */
1709 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1710 if (!ok)
1712 if (dump_enabled_p ())
1713 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1714 "bad data alignment.\n");
1715 return false;
1718 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1719 It is important to call pruning after vect_analyze_data_ref_accesses,
1720 since we use grouping information gathered by interleaving analysis. */
1721 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1722 if (!ok)
1724 if (dump_enabled_p ())
1725 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1726 "number of versioning for alias "
1727 "run-time tests exceeds %d "
1728 "(--param vect-max-version-for-alias-checks)\n",
1729 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1730 return false;
1733 /* This pass will decide on using loop versioning and/or loop peeling in
1734 order to enhance the alignment of data references in the loop. */
1736 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1737 if (!ok)
1739 if (dump_enabled_p ())
1740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1741 "bad data alignment.\n");
1742 return false;
1745 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1746 ok = vect_analyze_slp (loop_vinfo, NULL);
1747 if (ok)
1749 /* Decide which possible SLP instances to SLP. */
1750 slp = vect_make_slp_decision (loop_vinfo);
1752 /* Find stmts that need to be both vectorized and SLPed. */
1753 vect_detect_hybrid_slp (loop_vinfo);
1755 else
1756 return false;
1758 /* Scan all the operations in the loop and make sure they are
1759 vectorizable. */
1761 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1762 if (!ok)
1764 if (dump_enabled_p ())
1765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1766 "bad operation or unsupported loop bound.\n");
1767 return false;
1770 /* Decide whether we need to create an epilogue loop to handle
1771 remaining scalar iterations. */
1772 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1773 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1775 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1776 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1777 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1778 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1780 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1781 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1782 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))))
1783 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1785 /* If an epilogue loop is required make sure we can create one. */
1786 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1787 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1789 if (dump_enabled_p ())
1790 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1791 if (!vect_can_advance_ivs_p (loop_vinfo)
1792 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1793 single_exit (LOOP_VINFO_LOOP
1794 (loop_vinfo))))
1796 if (dump_enabled_p ())
1797 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1798 "not vectorized: can't create required "
1799 "epilog loop\n");
1800 return false;
1804 return true;
1807 /* Function vect_analyze_loop.
1809 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1810 for it. The different analyses will record information in the
1811 loop_vec_info struct. */
1812 loop_vec_info
1813 vect_analyze_loop (struct loop *loop)
1815 loop_vec_info loop_vinfo;
1816 unsigned int vector_sizes;
1818 /* Autodetect first vector size we try. */
1819 current_vector_size = 0;
1820 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1822 if (dump_enabled_p ())
1823 dump_printf_loc (MSG_NOTE, vect_location,
1824 "===== analyze_loop_nest =====\n");
1826 if (loop_outer (loop)
1827 && loop_vec_info_for_loop (loop_outer (loop))
1828 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1830 if (dump_enabled_p ())
1831 dump_printf_loc (MSG_NOTE, vect_location,
1832 "outer-loop already vectorized.\n");
1833 return NULL;
1836 while (1)
1838 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1839 loop_vinfo = vect_analyze_loop_form (loop);
1840 if (!loop_vinfo)
1842 if (dump_enabled_p ())
1843 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1844 "bad loop form.\n");
1845 return NULL;
1848 if (vect_analyze_loop_2 (loop_vinfo))
1850 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1852 return loop_vinfo;
1855 destroy_loop_vec_info (loop_vinfo, true);
1857 vector_sizes &= ~current_vector_size;
1858 if (vector_sizes == 0
1859 || current_vector_size == 0)
1860 return NULL;
1862 /* Try the next biggest vector size. */
1863 current_vector_size = 1 << floor_log2 (vector_sizes);
1864 if (dump_enabled_p ())
1865 dump_printf_loc (MSG_NOTE, vect_location,
1866 "***** Re-trying analysis with "
1867 "vector size %d\n", current_vector_size);
1872 /* Function reduction_code_for_scalar_code
1874 Input:
1875 CODE - tree_code of a reduction operations.
1877 Output:
1878 REDUC_CODE - the corresponding tree-code to be used to reduce the
1879 vector of partial results into a single scalar result (which
1880 will also reside in a vector) or ERROR_MARK if the operation is
1881 a supported reduction operation, but does not have such tree-code.
1883 Return FALSE if CODE currently cannot be vectorized as reduction. */
1885 static bool
1886 reduction_code_for_scalar_code (enum tree_code code,
1887 enum tree_code *reduc_code)
1889 switch (code)
1891 case MAX_EXPR:
1892 *reduc_code = REDUC_MAX_EXPR;
1893 return true;
1895 case MIN_EXPR:
1896 *reduc_code = REDUC_MIN_EXPR;
1897 return true;
1899 case PLUS_EXPR:
1900 *reduc_code = REDUC_PLUS_EXPR;
1901 return true;
1903 case MULT_EXPR:
1904 case MINUS_EXPR:
1905 case BIT_IOR_EXPR:
1906 case BIT_XOR_EXPR:
1907 case BIT_AND_EXPR:
1908 *reduc_code = ERROR_MARK;
1909 return true;
1911 default:
1912 return false;
1917 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1918 STMT is printed with a message MSG. */
1920 static void
1921 report_vect_op (int msg_type, gimple stmt, const char *msg)
1923 dump_printf_loc (msg_type, vect_location, "%s", msg);
1924 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1925 dump_printf (msg_type, "\n");
1929 /* Detect SLP reduction of the form:
1931 #a1 = phi <a5, a0>
1932 a2 = operation (a1)
1933 a3 = operation (a2)
1934 a4 = operation (a3)
1935 a5 = operation (a4)
1937 #a = phi <a5>
1939 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1940 FIRST_STMT is the first reduction stmt in the chain
1941 (a2 = operation (a1)).
1943 Return TRUE if a reduction chain was detected. */
1945 static bool
1946 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1948 struct loop *loop = (gimple_bb (phi))->loop_father;
1949 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1950 enum tree_code code;
1951 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1952 stmt_vec_info use_stmt_info, current_stmt_info;
1953 tree lhs;
1954 imm_use_iterator imm_iter;
1955 use_operand_p use_p;
1956 int nloop_uses, size = 0, n_out_of_loop_uses;
1957 bool found = false;
1959 if (loop != vect_loop)
1960 return false;
1962 lhs = PHI_RESULT (phi);
1963 code = gimple_assign_rhs_code (first_stmt);
1964 while (1)
1966 nloop_uses = 0;
1967 n_out_of_loop_uses = 0;
1968 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1970 gimple use_stmt = USE_STMT (use_p);
1971 if (is_gimple_debug (use_stmt))
1972 continue;
1974 /* Check if we got back to the reduction phi. */
1975 if (use_stmt == phi)
1977 loop_use_stmt = use_stmt;
1978 found = true;
1979 break;
1982 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1984 if (vinfo_for_stmt (use_stmt)
1985 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1987 loop_use_stmt = use_stmt;
1988 nloop_uses++;
1991 else
1992 n_out_of_loop_uses++;
1994 /* There are can be either a single use in the loop or two uses in
1995 phi nodes. */
1996 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1997 return false;
2000 if (found)
2001 break;
2003 /* We reached a statement with no loop uses. */
2004 if (nloop_uses == 0)
2005 return false;
2007 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2008 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2009 return false;
2011 if (!is_gimple_assign (loop_use_stmt)
2012 || code != gimple_assign_rhs_code (loop_use_stmt)
2013 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2014 return false;
2016 /* Insert USE_STMT into reduction chain. */
2017 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2018 if (current_stmt)
2020 current_stmt_info = vinfo_for_stmt (current_stmt);
2021 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2022 GROUP_FIRST_ELEMENT (use_stmt_info)
2023 = GROUP_FIRST_ELEMENT (current_stmt_info);
2025 else
2026 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2028 lhs = gimple_assign_lhs (loop_use_stmt);
2029 current_stmt = loop_use_stmt;
2030 size++;
2033 if (!found || loop_use_stmt != phi || size < 2)
2034 return false;
2036 /* Swap the operands, if needed, to make the reduction operand be the second
2037 operand. */
2038 lhs = PHI_RESULT (phi);
2039 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2040 while (next_stmt)
2042 if (gimple_assign_rhs2 (next_stmt) == lhs)
2044 tree op = gimple_assign_rhs1 (next_stmt);
2045 gimple def_stmt = NULL;
2047 if (TREE_CODE (op) == SSA_NAME)
2048 def_stmt = SSA_NAME_DEF_STMT (op);
2050 /* Check that the other def is either defined in the loop
2051 ("vect_internal_def"), or it's an induction (defined by a
2052 loop-header phi-node). */
2053 if (def_stmt
2054 && gimple_bb (def_stmt)
2055 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2056 && (is_gimple_assign (def_stmt)
2057 || is_gimple_call (def_stmt)
2058 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2059 == vect_induction_def
2060 || (gimple_code (def_stmt) == GIMPLE_PHI
2061 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2062 == vect_internal_def
2063 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2065 lhs = gimple_assign_lhs (next_stmt);
2066 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2067 continue;
2070 return false;
2072 else
2074 tree op = gimple_assign_rhs2 (next_stmt);
2075 gimple def_stmt = NULL;
2077 if (TREE_CODE (op) == SSA_NAME)
2078 def_stmt = SSA_NAME_DEF_STMT (op);
2080 /* Check that the other def is either defined in the loop
2081 ("vect_internal_def"), or it's an induction (defined by a
2082 loop-header phi-node). */
2083 if (def_stmt
2084 && gimple_bb (def_stmt)
2085 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2086 && (is_gimple_assign (def_stmt)
2087 || is_gimple_call (def_stmt)
2088 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2089 == vect_induction_def
2090 || (gimple_code (def_stmt) == GIMPLE_PHI
2091 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2092 == vect_internal_def
2093 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2095 if (dump_enabled_p ())
2097 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2098 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2099 dump_printf (MSG_NOTE, "\n");
2102 swap_ssa_operands (next_stmt,
2103 gimple_assign_rhs1_ptr (next_stmt),
2104 gimple_assign_rhs2_ptr (next_stmt));
2105 update_stmt (next_stmt);
2107 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2108 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2110 else
2111 return false;
2114 lhs = gimple_assign_lhs (next_stmt);
2115 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2118 /* Save the chain for further analysis in SLP detection. */
2119 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2120 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2121 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2123 return true;
2127 /* Function vect_is_simple_reduction_1
2129 (1) Detect a cross-iteration def-use cycle that represents a simple
2130 reduction computation. We look for the following pattern:
2132 loop_header:
2133 a1 = phi < a0, a2 >
2134 a3 = ...
2135 a2 = operation (a3, a1)
2139 a3 = ...
2140 loop_header:
2141 a1 = phi < a0, a2 >
2142 a2 = operation (a3, a1)
2144 such that:
2145 1. operation is commutative and associative and it is safe to
2146 change the order of the computation (if CHECK_REDUCTION is true)
2147 2. no uses for a2 in the loop (a2 is used out of the loop)
2148 3. no uses of a1 in the loop besides the reduction operation
2149 4. no uses of a1 outside the loop.
2151 Conditions 1,4 are tested here.
2152 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2154 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2155 nested cycles, if CHECK_REDUCTION is false.
2157 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2158 reductions:
2160 a1 = phi < a0, a2 >
2161 inner loop (def of a3)
2162 a2 = phi < a3 >
2164 If MODIFY is true it tries also to rework the code in-place to enable
2165 detection of more reduction patterns. For the time being we rewrite
2166 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2169 static gimple
2170 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2171 bool check_reduction, bool *double_reduc,
2172 bool modify)
2174 struct loop *loop = (gimple_bb (phi))->loop_father;
2175 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2176 edge latch_e = loop_latch_edge (loop);
2177 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2178 gimple def_stmt, def1 = NULL, def2 = NULL;
2179 enum tree_code orig_code, code;
2180 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2181 tree type;
2182 int nloop_uses;
2183 tree name;
2184 imm_use_iterator imm_iter;
2185 use_operand_p use_p;
2186 bool phi_def;
2188 *double_reduc = false;
2190 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2191 otherwise, we assume outer loop vectorization. */
2192 gcc_assert ((check_reduction && loop == vect_loop)
2193 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2195 name = PHI_RESULT (phi);
2196 /* ??? If there are no uses of the PHI result the inner loop reduction
2197 won't be detected as possibly double-reduction by vectorizable_reduction
2198 because that tries to walk the PHI arg from the preheader edge which
2199 can be constant. See PR60382. */
2200 if (has_zero_uses (name))
2201 return NULL;
2202 nloop_uses = 0;
2203 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2205 gimple use_stmt = USE_STMT (use_p);
2206 if (is_gimple_debug (use_stmt))
2207 continue;
2209 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2211 if (dump_enabled_p ())
2212 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2213 "intermediate value used outside loop.\n");
2215 return NULL;
2218 if (vinfo_for_stmt (use_stmt)
2219 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2220 nloop_uses++;
2221 if (nloop_uses > 1)
2223 if (dump_enabled_p ())
2224 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2225 "reduction used in loop.\n");
2226 return NULL;
2230 if (TREE_CODE (loop_arg) != SSA_NAME)
2232 if (dump_enabled_p ())
2234 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2235 "reduction: not ssa_name: ");
2236 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2237 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2239 return NULL;
2242 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2243 if (!def_stmt)
2245 if (dump_enabled_p ())
2246 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2247 "reduction: no def_stmt.\n");
2248 return NULL;
2251 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2253 if (dump_enabled_p ())
2255 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2256 dump_printf (MSG_NOTE, "\n");
2258 return NULL;
2261 if (is_gimple_assign (def_stmt))
2263 name = gimple_assign_lhs (def_stmt);
2264 phi_def = false;
2266 else
2268 name = PHI_RESULT (def_stmt);
2269 phi_def = true;
2272 nloop_uses = 0;
2273 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2275 gimple use_stmt = USE_STMT (use_p);
2276 if (is_gimple_debug (use_stmt))
2277 continue;
2278 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2279 && vinfo_for_stmt (use_stmt)
2280 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2281 nloop_uses++;
2282 if (nloop_uses > 1)
2284 if (dump_enabled_p ())
2285 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2286 "reduction used in loop.\n");
2287 return NULL;
2291 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2292 defined in the inner loop. */
2293 if (phi_def)
2295 op1 = PHI_ARG_DEF (def_stmt, 0);
2297 if (gimple_phi_num_args (def_stmt) != 1
2298 || TREE_CODE (op1) != SSA_NAME)
2300 if (dump_enabled_p ())
2301 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2302 "unsupported phi node definition.\n");
2304 return NULL;
2307 def1 = SSA_NAME_DEF_STMT (op1);
2308 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2309 && loop->inner
2310 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2311 && is_gimple_assign (def1))
2313 if (dump_enabled_p ())
2314 report_vect_op (MSG_NOTE, def_stmt,
2315 "detected double reduction: ");
2317 *double_reduc = true;
2318 return def_stmt;
2321 return NULL;
2324 code = orig_code = gimple_assign_rhs_code (def_stmt);
2326 /* We can handle "res -= x[i]", which is non-associative by
2327 simply rewriting this into "res += -x[i]". Avoid changing
2328 gimple instruction for the first simple tests and only do this
2329 if we're allowed to change code at all. */
2330 if (code == MINUS_EXPR
2331 && modify
2332 && (op1 = gimple_assign_rhs1 (def_stmt))
2333 && TREE_CODE (op1) == SSA_NAME
2334 && SSA_NAME_DEF_STMT (op1) == phi)
2335 code = PLUS_EXPR;
2337 if (check_reduction
2338 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2340 if (dump_enabled_p ())
2341 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2342 "reduction: not commutative/associative: ");
2343 return NULL;
2346 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2348 if (code != COND_EXPR)
2350 if (dump_enabled_p ())
2351 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2352 "reduction: not binary operation: ");
2354 return NULL;
2357 op3 = gimple_assign_rhs1 (def_stmt);
2358 if (COMPARISON_CLASS_P (op3))
2360 op4 = TREE_OPERAND (op3, 1);
2361 op3 = TREE_OPERAND (op3, 0);
2364 op1 = gimple_assign_rhs2 (def_stmt);
2365 op2 = gimple_assign_rhs3 (def_stmt);
2367 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2369 if (dump_enabled_p ())
2370 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2371 "reduction: uses not ssa_names: ");
2373 return NULL;
2376 else
2378 op1 = gimple_assign_rhs1 (def_stmt);
2379 op2 = gimple_assign_rhs2 (def_stmt);
2381 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2383 if (dump_enabled_p ())
2384 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2385 "reduction: uses not ssa_names: ");
2387 return NULL;
2391 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2392 if ((TREE_CODE (op1) == SSA_NAME
2393 && !types_compatible_p (type,TREE_TYPE (op1)))
2394 || (TREE_CODE (op2) == SSA_NAME
2395 && !types_compatible_p (type, TREE_TYPE (op2)))
2396 || (op3 && TREE_CODE (op3) == SSA_NAME
2397 && !types_compatible_p (type, TREE_TYPE (op3)))
2398 || (op4 && TREE_CODE (op4) == SSA_NAME
2399 && !types_compatible_p (type, TREE_TYPE (op4))))
2401 if (dump_enabled_p ())
2403 dump_printf_loc (MSG_NOTE, vect_location,
2404 "reduction: multiple types: operation type: ");
2405 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2406 dump_printf (MSG_NOTE, ", operands types: ");
2407 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2408 TREE_TYPE (op1));
2409 dump_printf (MSG_NOTE, ",");
2410 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2411 TREE_TYPE (op2));
2412 if (op3)
2414 dump_printf (MSG_NOTE, ",");
2415 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2416 TREE_TYPE (op3));
2419 if (op4)
2421 dump_printf (MSG_NOTE, ",");
2422 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2423 TREE_TYPE (op4));
2425 dump_printf (MSG_NOTE, "\n");
2428 return NULL;
2431 /* Check that it's ok to change the order of the computation.
2432 Generally, when vectorizing a reduction we change the order of the
2433 computation. This may change the behavior of the program in some
2434 cases, so we need to check that this is ok. One exception is when
2435 vectorizing an outer-loop: the inner-loop is executed sequentially,
2436 and therefore vectorizing reductions in the inner-loop during
2437 outer-loop vectorization is safe. */
2439 /* CHECKME: check for !flag_finite_math_only too? */
2440 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2441 && check_reduction)
2443 /* Changing the order of operations changes the semantics. */
2444 if (dump_enabled_p ())
2445 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2446 "reduction: unsafe fp math optimization: ");
2447 return NULL;
2449 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2450 && check_reduction)
2452 /* Changing the order of operations changes the semantics. */
2453 if (dump_enabled_p ())
2454 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2455 "reduction: unsafe int math optimization: ");
2456 return NULL;
2458 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2460 /* Changing the order of operations changes the semantics. */
2461 if (dump_enabled_p ())
2462 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2463 "reduction: unsafe fixed-point math optimization: ");
2464 return NULL;
2467 /* If we detected "res -= x[i]" earlier, rewrite it into
2468 "res += -x[i]" now. If this turns out to be useless reassoc
2469 will clean it up again. */
2470 if (orig_code == MINUS_EXPR)
2472 tree rhs = gimple_assign_rhs2 (def_stmt);
2473 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2474 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2475 rhs, NULL);
2476 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2477 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2478 loop_info, NULL));
2479 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2480 gimple_assign_set_rhs2 (def_stmt, negrhs);
2481 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2482 update_stmt (def_stmt);
2485 /* Reduction is safe. We're dealing with one of the following:
2486 1) integer arithmetic and no trapv
2487 2) floating point arithmetic, and special flags permit this optimization
2488 3) nested cycle (i.e., outer loop vectorization). */
2489 if (TREE_CODE (op1) == SSA_NAME)
2490 def1 = SSA_NAME_DEF_STMT (op1);
2492 if (TREE_CODE (op2) == SSA_NAME)
2493 def2 = SSA_NAME_DEF_STMT (op2);
2495 if (code != COND_EXPR
2496 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2498 if (dump_enabled_p ())
2499 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2500 return NULL;
2503 /* Check that one def is the reduction def, defined by PHI,
2504 the other def is either defined in the loop ("vect_internal_def"),
2505 or it's an induction (defined by a loop-header phi-node). */
2507 if (def2 && def2 == phi
2508 && (code == COND_EXPR
2509 || !def1 || gimple_nop_p (def1)
2510 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2511 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2512 && (is_gimple_assign (def1)
2513 || is_gimple_call (def1)
2514 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2515 == vect_induction_def
2516 || (gimple_code (def1) == GIMPLE_PHI
2517 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2518 == vect_internal_def
2519 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2521 if (dump_enabled_p ())
2522 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2523 return def_stmt;
2526 if (def1 && def1 == phi
2527 && (code == COND_EXPR
2528 || !def2 || gimple_nop_p (def2)
2529 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2530 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2531 && (is_gimple_assign (def2)
2532 || is_gimple_call (def2)
2533 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2534 == vect_induction_def
2535 || (gimple_code (def2) == GIMPLE_PHI
2536 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2537 == vect_internal_def
2538 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2540 if (check_reduction)
2542 /* Swap operands (just for simplicity - so that the rest of the code
2543 can assume that the reduction variable is always the last (second)
2544 argument). */
2545 if (dump_enabled_p ())
2546 report_vect_op (MSG_NOTE, def_stmt,
2547 "detected reduction: need to swap operands: ");
2549 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2550 gimple_assign_rhs2_ptr (def_stmt));
2552 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2553 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2555 else
2557 if (dump_enabled_p ())
2558 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2561 return def_stmt;
2564 /* Try to find SLP reduction chain. */
2565 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2567 if (dump_enabled_p ())
2568 report_vect_op (MSG_NOTE, def_stmt,
2569 "reduction: detected reduction chain: ");
2571 return def_stmt;
2574 if (dump_enabled_p ())
2575 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2576 "reduction: unknown pattern: ");
2578 return NULL;
2581 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2582 in-place. Arguments as there. */
2584 static gimple
2585 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2586 bool check_reduction, bool *double_reduc)
2588 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2589 double_reduc, false);
2592 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2593 in-place if it enables detection of more reductions. Arguments
2594 as there. */
2596 gimple
2597 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2598 bool check_reduction, bool *double_reduc)
2600 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2601 double_reduc, true);
2604 /* Calculate the cost of one scalar iteration of the loop. */
2606 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2608 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2609 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2610 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2611 int innerloop_iters, i, stmt_cost;
2613 /* Count statements in scalar loop. Using this as scalar cost for a single
2614 iteration for now.
2616 TODO: Add outer loop support.
2618 TODO: Consider assigning different costs to different scalar
2619 statements. */
2621 /* FORNOW. */
2622 innerloop_iters = 1;
2623 if (loop->inner)
2624 innerloop_iters = 50; /* FIXME */
2626 for (i = 0; i < nbbs; i++)
2628 gimple_stmt_iterator si;
2629 basic_block bb = bbs[i];
2631 if (bb->loop_father == loop->inner)
2632 factor = innerloop_iters;
2633 else
2634 factor = 1;
2636 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2638 gimple stmt = gsi_stmt (si);
2639 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2641 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2642 continue;
2644 /* Skip stmts that are not vectorized inside the loop. */
2645 if (stmt_info
2646 && !STMT_VINFO_RELEVANT_P (stmt_info)
2647 && (!STMT_VINFO_LIVE_P (stmt_info)
2648 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2649 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2650 continue;
2652 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2654 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2655 stmt_cost = vect_get_stmt_cost (scalar_load);
2656 else
2657 stmt_cost = vect_get_stmt_cost (scalar_store);
2659 else
2660 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2662 scalar_single_iter_cost += stmt_cost * factor;
2665 return scalar_single_iter_cost;
2668 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2670 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2671 int *peel_iters_epilogue,
2672 int scalar_single_iter_cost,
2673 stmt_vector_for_cost *prologue_cost_vec,
2674 stmt_vector_for_cost *epilogue_cost_vec)
2676 int retval = 0;
2677 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2679 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2681 *peel_iters_epilogue = vf/2;
2682 if (dump_enabled_p ())
2683 dump_printf_loc (MSG_NOTE, vect_location,
2684 "cost model: epilogue peel iters set to vf/2 "
2685 "because loop iterations are unknown .\n");
2687 /* If peeled iterations are known but number of scalar loop
2688 iterations are unknown, count a taken branch per peeled loop. */
2689 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2690 NULL, 0, vect_prologue);
2692 else
2694 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2695 peel_iters_prologue = niters < peel_iters_prologue ?
2696 niters : peel_iters_prologue;
2697 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2698 /* If we need to peel for gaps, but no peeling is required, we have to
2699 peel VF iterations. */
2700 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2701 *peel_iters_epilogue = vf;
2704 if (peel_iters_prologue)
2705 retval += record_stmt_cost (prologue_cost_vec,
2706 peel_iters_prologue * scalar_single_iter_cost,
2707 scalar_stmt, NULL, 0, vect_prologue);
2708 if (*peel_iters_epilogue)
2709 retval += record_stmt_cost (epilogue_cost_vec,
2710 *peel_iters_epilogue * scalar_single_iter_cost,
2711 scalar_stmt, NULL, 0, vect_epilogue);
2712 return retval;
2715 /* Function vect_estimate_min_profitable_iters
2717 Return the number of iterations required for the vector version of the
2718 loop to be profitable relative to the cost of the scalar version of the
2719 loop. */
2721 static void
2722 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2723 int *ret_min_profitable_niters,
2724 int *ret_min_profitable_estimate)
2726 int min_profitable_iters;
2727 int min_profitable_estimate;
2728 int peel_iters_prologue;
2729 int peel_iters_epilogue;
2730 unsigned vec_inside_cost = 0;
2731 int vec_outside_cost = 0;
2732 unsigned vec_prologue_cost = 0;
2733 unsigned vec_epilogue_cost = 0;
2734 int scalar_single_iter_cost = 0;
2735 int scalar_outside_cost = 0;
2736 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2737 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2738 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2740 /* Cost model disabled. */
2741 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2743 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2744 *ret_min_profitable_niters = 0;
2745 *ret_min_profitable_estimate = 0;
2746 return;
2749 /* Requires loop versioning tests to handle misalignment. */
2750 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2752 /* FIXME: Make cost depend on complexity of individual check. */
2753 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2754 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2755 vect_prologue);
2756 dump_printf (MSG_NOTE,
2757 "cost model: Adding cost of checks for loop "
2758 "versioning to treat misalignment.\n");
2761 /* Requires loop versioning with alias checks. */
2762 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2764 /* FIXME: Make cost depend on complexity of individual check. */
2765 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2766 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2767 vect_prologue);
2768 dump_printf (MSG_NOTE,
2769 "cost model: Adding cost of checks for loop "
2770 "versioning aliasing.\n");
2773 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2774 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2775 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2776 vect_prologue);
2778 /* Count statements in scalar loop. Using this as scalar cost for a single
2779 iteration for now.
2781 TODO: Add outer loop support.
2783 TODO: Consider assigning different costs to different scalar
2784 statements. */
2786 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2788 /* Add additional cost for the peeled instructions in prologue and epilogue
2789 loop.
2791 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2792 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2794 TODO: Build an expression that represents peel_iters for prologue and
2795 epilogue to be used in a run-time test. */
2797 if (npeel < 0)
2799 peel_iters_prologue = vf/2;
2800 dump_printf (MSG_NOTE, "cost model: "
2801 "prologue peel iters set to vf/2.\n");
2803 /* If peeling for alignment is unknown, loop bound of main loop becomes
2804 unknown. */
2805 peel_iters_epilogue = vf/2;
2806 dump_printf (MSG_NOTE, "cost model: "
2807 "epilogue peel iters set to vf/2 because "
2808 "peeling for alignment is unknown.\n");
2810 /* If peeled iterations are unknown, count a taken branch and a not taken
2811 branch per peeled loop. Even if scalar loop iterations are known,
2812 vector iterations are not known since peeled prologue iterations are
2813 not known. Hence guards remain the same. */
2814 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2815 NULL, 0, vect_prologue);
2816 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2817 NULL, 0, vect_prologue);
2818 /* FORNOW: Don't attempt to pass individual scalar instructions to
2819 the model; just assume linear cost for scalar iterations. */
2820 (void) add_stmt_cost (target_cost_data,
2821 peel_iters_prologue * scalar_single_iter_cost,
2822 scalar_stmt, NULL, 0, vect_prologue);
2823 (void) add_stmt_cost (target_cost_data,
2824 peel_iters_epilogue * scalar_single_iter_cost,
2825 scalar_stmt, NULL, 0, vect_epilogue);
2827 else
2829 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2830 stmt_info_for_cost *si;
2831 int j;
2832 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2834 prologue_cost_vec.create (2);
2835 epilogue_cost_vec.create (2);
2836 peel_iters_prologue = npeel;
2838 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2839 &peel_iters_epilogue,
2840 scalar_single_iter_cost,
2841 &prologue_cost_vec,
2842 &epilogue_cost_vec);
2844 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2846 struct _stmt_vec_info *stmt_info
2847 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2848 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2849 si->misalign, vect_prologue);
2852 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2854 struct _stmt_vec_info *stmt_info
2855 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2856 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2857 si->misalign, vect_epilogue);
2860 prologue_cost_vec.release ();
2861 epilogue_cost_vec.release ();
2864 /* FORNOW: The scalar outside cost is incremented in one of the
2865 following ways:
2867 1. The vectorizer checks for alignment and aliasing and generates
2868 a condition that allows dynamic vectorization. A cost model
2869 check is ANDED with the versioning condition. Hence scalar code
2870 path now has the added cost of the versioning check.
2872 if (cost > th & versioning_check)
2873 jmp to vector code
2875 Hence run-time scalar is incremented by not-taken branch cost.
2877 2. The vectorizer then checks if a prologue is required. If the
2878 cost model check was not done before during versioning, it has to
2879 be done before the prologue check.
2881 if (cost <= th)
2882 prologue = scalar_iters
2883 if (prologue == 0)
2884 jmp to vector code
2885 else
2886 execute prologue
2887 if (prologue == num_iters)
2888 go to exit
2890 Hence the run-time scalar cost is incremented by a taken branch,
2891 plus a not-taken branch, plus a taken branch cost.
2893 3. The vectorizer then checks if an epilogue is required. If the
2894 cost model check was not done before during prologue check, it
2895 has to be done with the epilogue check.
2897 if (prologue == 0)
2898 jmp to vector code
2899 else
2900 execute prologue
2901 if (prologue == num_iters)
2902 go to exit
2903 vector code:
2904 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2905 jmp to epilogue
2907 Hence the run-time scalar cost should be incremented by 2 taken
2908 branches.
2910 TODO: The back end may reorder the BBS's differently and reverse
2911 conditions/branch directions. Change the estimates below to
2912 something more reasonable. */
2914 /* If the number of iterations is known and we do not do versioning, we can
2915 decide whether to vectorize at compile time. Hence the scalar version
2916 do not carry cost model guard costs. */
2917 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2918 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2919 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2921 /* Cost model check occurs at versioning. */
2922 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2923 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2924 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2925 else
2927 /* Cost model check occurs at prologue generation. */
2928 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2929 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2930 + vect_get_stmt_cost (cond_branch_not_taken);
2931 /* Cost model check occurs at epilogue generation. */
2932 else
2933 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2937 /* Complete the target-specific cost calculations. */
2938 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2939 &vec_inside_cost, &vec_epilogue_cost);
2941 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2943 /* Calculate number of iterations required to make the vector version
2944 profitable, relative to the loop bodies only. The following condition
2945 must hold true:
2946 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2947 where
2948 SIC = scalar iteration cost, VIC = vector iteration cost,
2949 VOC = vector outside cost, VF = vectorization factor,
2950 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2951 SOC = scalar outside cost for run time cost model check. */
2953 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2955 if (vec_outside_cost <= 0)
2956 min_profitable_iters = 1;
2957 else
2959 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2960 - vec_inside_cost * peel_iters_prologue
2961 - vec_inside_cost * peel_iters_epilogue)
2962 / ((scalar_single_iter_cost * vf)
2963 - vec_inside_cost);
2965 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2966 <= (((int) vec_inside_cost * min_profitable_iters)
2967 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2968 min_profitable_iters++;
2971 /* vector version will never be profitable. */
2972 else
2974 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vect)
2975 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
2976 "did not happen for a simd loop");
2978 if (dump_enabled_p ())
2979 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2980 "cost model: the vector iteration cost = %d "
2981 "divided by the scalar iteration cost = %d "
2982 "is greater or equal to the vectorization factor = %d"
2983 ".\n",
2984 vec_inside_cost, scalar_single_iter_cost, vf);
2985 *ret_min_profitable_niters = -1;
2986 *ret_min_profitable_estimate = -1;
2987 return;
2990 if (dump_enabled_p ())
2992 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2993 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2994 vec_inside_cost);
2995 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2996 vec_prologue_cost);
2997 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2998 vec_epilogue_cost);
2999 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3000 scalar_single_iter_cost);
3001 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3002 scalar_outside_cost);
3003 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3004 vec_outside_cost);
3005 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3006 peel_iters_prologue);
3007 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3008 peel_iters_epilogue);
3009 dump_printf (MSG_NOTE,
3010 " Calculated minimum iters for profitability: %d\n",
3011 min_profitable_iters);
3012 dump_printf (MSG_NOTE, "\n");
3015 min_profitable_iters =
3016 min_profitable_iters < vf ? vf : min_profitable_iters;
3018 /* Because the condition we create is:
3019 if (niters <= min_profitable_iters)
3020 then skip the vectorized loop. */
3021 min_profitable_iters--;
3023 if (dump_enabled_p ())
3024 dump_printf_loc (MSG_NOTE, vect_location,
3025 " Runtime profitability threshold = %d\n",
3026 min_profitable_iters);
3028 *ret_min_profitable_niters = min_profitable_iters;
3030 /* Calculate number of iterations required to make the vector version
3031 profitable, relative to the loop bodies only.
3033 Non-vectorized variant is SIC * niters and it must win over vector
3034 variant on the expected loop trip count. The following condition must hold true:
3035 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3037 if (vec_outside_cost <= 0)
3038 min_profitable_estimate = 1;
3039 else
3041 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3042 - vec_inside_cost * peel_iters_prologue
3043 - vec_inside_cost * peel_iters_epilogue)
3044 / ((scalar_single_iter_cost * vf)
3045 - vec_inside_cost);
3047 min_profitable_estimate --;
3048 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3049 if (dump_enabled_p ())
3050 dump_printf_loc (MSG_NOTE, vect_location,
3051 " Static estimate profitability threshold = %d\n",
3052 min_profitable_iters);
3054 *ret_min_profitable_estimate = min_profitable_estimate;
3058 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3059 functions. Design better to avoid maintenance issues. */
3061 /* Function vect_model_reduction_cost.
3063 Models cost for a reduction operation, including the vector ops
3064 generated within the strip-mine loop, the initial definition before
3065 the loop, and the epilogue code that must be generated. */
3067 static bool
3068 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3069 int ncopies)
3071 int prologue_cost = 0, epilogue_cost = 0;
3072 enum tree_code code;
3073 optab optab;
3074 tree vectype;
3075 gimple stmt, orig_stmt;
3076 tree reduction_op;
3077 enum machine_mode mode;
3078 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3079 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3080 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3082 /* Cost of reduction op inside loop. */
3083 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3084 stmt_info, 0, vect_body);
3085 stmt = STMT_VINFO_STMT (stmt_info);
3087 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3089 case GIMPLE_SINGLE_RHS:
3090 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3091 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3092 break;
3093 case GIMPLE_UNARY_RHS:
3094 reduction_op = gimple_assign_rhs1 (stmt);
3095 break;
3096 case GIMPLE_BINARY_RHS:
3097 reduction_op = gimple_assign_rhs2 (stmt);
3098 break;
3099 case GIMPLE_TERNARY_RHS:
3100 reduction_op = gimple_assign_rhs3 (stmt);
3101 break;
3102 default:
3103 gcc_unreachable ();
3106 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3107 if (!vectype)
3109 if (dump_enabled_p ())
3111 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3112 "unsupported data-type ");
3113 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3114 TREE_TYPE (reduction_op));
3115 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3117 return false;
3120 mode = TYPE_MODE (vectype);
3121 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3123 if (!orig_stmt)
3124 orig_stmt = STMT_VINFO_STMT (stmt_info);
3126 code = gimple_assign_rhs_code (orig_stmt);
3128 /* Add in cost for initial definition. */
3129 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3130 stmt_info, 0, vect_prologue);
3132 /* Determine cost of epilogue code.
3134 We have a reduction operator that will reduce the vector in one statement.
3135 Also requires scalar extract. */
3137 if (!nested_in_vect_loop_p (loop, orig_stmt))
3139 if (reduc_code != ERROR_MARK)
3141 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3142 stmt_info, 0, vect_epilogue);
3143 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3144 stmt_info, 0, vect_epilogue);
3146 else
3148 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3149 tree bitsize =
3150 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3151 int element_bitsize = tree_to_uhwi (bitsize);
3152 int nelements = vec_size_in_bits / element_bitsize;
3154 optab = optab_for_tree_code (code, vectype, optab_default);
3156 /* We have a whole vector shift available. */
3157 if (VECTOR_MODE_P (mode)
3158 && optab_handler (optab, mode) != CODE_FOR_nothing
3159 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3161 /* Final reduction via vector shifts and the reduction operator.
3162 Also requires scalar extract. */
3163 epilogue_cost += add_stmt_cost (target_cost_data,
3164 exact_log2 (nelements) * 2,
3165 vector_stmt, stmt_info, 0,
3166 vect_epilogue);
3167 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3168 vec_to_scalar, stmt_info, 0,
3169 vect_epilogue);
3171 else
3172 /* Use extracts and reduction op for final reduction. For N
3173 elements, we have N extracts and N-1 reduction ops. */
3174 epilogue_cost += add_stmt_cost (target_cost_data,
3175 nelements + nelements - 1,
3176 vector_stmt, stmt_info, 0,
3177 vect_epilogue);
3181 if (dump_enabled_p ())
3182 dump_printf (MSG_NOTE,
3183 "vect_model_reduction_cost: inside_cost = %d, "
3184 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3185 prologue_cost, epilogue_cost);
3187 return true;
3191 /* Function vect_model_induction_cost.
3193 Models cost for induction operations. */
3195 static void
3196 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3198 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3199 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3200 unsigned inside_cost, prologue_cost;
3202 /* loop cost for vec_loop. */
3203 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3204 stmt_info, 0, vect_body);
3206 /* prologue cost for vec_init and vec_step. */
3207 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3208 stmt_info, 0, vect_prologue);
3210 if (dump_enabled_p ())
3211 dump_printf_loc (MSG_NOTE, vect_location,
3212 "vect_model_induction_cost: inside_cost = %d, "
3213 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3217 /* Function get_initial_def_for_induction
3219 Input:
3220 STMT - a stmt that performs an induction operation in the loop.
3221 IV_PHI - the initial value of the induction variable
3223 Output:
3224 Return a vector variable, initialized with the first VF values of
3225 the induction variable. E.g., for an iv with IV_PHI='X' and
3226 evolution S, for a vector of 4 units, we want to return:
3227 [X, X + S, X + 2*S, X + 3*S]. */
3229 static tree
3230 get_initial_def_for_induction (gimple iv_phi)
3232 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3233 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3234 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3235 tree vectype;
3236 int nunits;
3237 edge pe = loop_preheader_edge (loop);
3238 struct loop *iv_loop;
3239 basic_block new_bb;
3240 tree new_vec, vec_init, vec_step, t;
3241 tree new_var;
3242 tree new_name;
3243 gimple init_stmt, induction_phi, new_stmt;
3244 tree induc_def, vec_def, vec_dest;
3245 tree init_expr, step_expr;
3246 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3247 int i;
3248 int ncopies;
3249 tree expr;
3250 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3251 bool nested_in_vect_loop = false;
3252 gimple_seq stmts = NULL;
3253 imm_use_iterator imm_iter;
3254 use_operand_p use_p;
3255 gimple exit_phi;
3256 edge latch_e;
3257 tree loop_arg;
3258 gimple_stmt_iterator si;
3259 basic_block bb = gimple_bb (iv_phi);
3260 tree stepvectype;
3261 tree resvectype;
3263 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3264 if (nested_in_vect_loop_p (loop, iv_phi))
3266 nested_in_vect_loop = true;
3267 iv_loop = loop->inner;
3269 else
3270 iv_loop = loop;
3271 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3273 latch_e = loop_latch_edge (iv_loop);
3274 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3276 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3277 gcc_assert (step_expr != NULL_TREE);
3279 pe = loop_preheader_edge (iv_loop);
3280 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3281 loop_preheader_edge (iv_loop));
3283 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3284 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3285 gcc_assert (vectype);
3286 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3287 ncopies = vf / nunits;
3289 gcc_assert (phi_info);
3290 gcc_assert (ncopies >= 1);
3292 /* Convert the step to the desired type. */
3293 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3294 step_expr),
3295 &stmts, true, NULL_TREE);
3296 if (stmts)
3298 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3299 gcc_assert (!new_bb);
3302 /* Find the first insertion point in the BB. */
3303 si = gsi_after_labels (bb);
3305 /* Create the vector that holds the initial_value of the induction. */
3306 if (nested_in_vect_loop)
3308 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3309 been created during vectorization of previous stmts. We obtain it
3310 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3311 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3312 /* If the initial value is not of proper type, convert it. */
3313 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3315 new_stmt = gimple_build_assign_with_ops
3316 (VIEW_CONVERT_EXPR,
3317 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3318 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3319 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3320 gimple_assign_set_lhs (new_stmt, vec_init);
3321 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3322 new_stmt);
3323 gcc_assert (!new_bb);
3324 set_vinfo_for_stmt (new_stmt,
3325 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3328 else
3330 vec<constructor_elt, va_gc> *v;
3332 /* iv_loop is the loop to be vectorized. Create:
3333 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3334 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3335 vect_scalar_var, "var_");
3336 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3337 init_expr),
3338 &stmts, false, new_var);
3339 if (stmts)
3341 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3342 gcc_assert (!new_bb);
3345 vec_alloc (v, nunits);
3346 bool constant_p = is_gimple_min_invariant (new_name);
3347 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3348 for (i = 1; i < nunits; i++)
3350 /* Create: new_name_i = new_name + step_expr */
3351 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3352 new_name, step_expr);
3353 if (!is_gimple_min_invariant (new_name))
3355 init_stmt = gimple_build_assign (new_var, new_name);
3356 new_name = make_ssa_name (new_var, init_stmt);
3357 gimple_assign_set_lhs (init_stmt, new_name);
3358 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3359 gcc_assert (!new_bb);
3360 if (dump_enabled_p ())
3362 dump_printf_loc (MSG_NOTE, vect_location,
3363 "created new init_stmt: ");
3364 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3365 dump_printf (MSG_NOTE, "\n");
3367 constant_p = false;
3369 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3371 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3372 if (constant_p)
3373 new_vec = build_vector_from_ctor (vectype, v);
3374 else
3375 new_vec = build_constructor (vectype, v);
3376 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3380 /* Create the vector that holds the step of the induction. */
3381 if (nested_in_vect_loop)
3382 /* iv_loop is nested in the loop to be vectorized. Generate:
3383 vec_step = [S, S, S, S] */
3384 new_name = step_expr;
3385 else
3387 /* iv_loop is the loop to be vectorized. Generate:
3388 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3389 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3391 expr = build_int_cst (integer_type_node, vf);
3392 expr = fold_convert (TREE_TYPE (step_expr), expr);
3394 else
3395 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3396 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3397 expr, step_expr);
3398 if (TREE_CODE (step_expr) == SSA_NAME)
3399 new_name = vect_init_vector (iv_phi, new_name,
3400 TREE_TYPE (step_expr), NULL);
3403 t = unshare_expr (new_name);
3404 gcc_assert (CONSTANT_CLASS_P (new_name)
3405 || TREE_CODE (new_name) == SSA_NAME);
3406 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3407 gcc_assert (stepvectype);
3408 new_vec = build_vector_from_val (stepvectype, t);
3409 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3412 /* Create the following def-use cycle:
3413 loop prolog:
3414 vec_init = ...
3415 vec_step = ...
3416 loop:
3417 vec_iv = PHI <vec_init, vec_loop>
3419 STMT
3421 vec_loop = vec_iv + vec_step; */
3423 /* Create the induction-phi that defines the induction-operand. */
3424 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3425 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3426 set_vinfo_for_stmt (induction_phi,
3427 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3428 induc_def = PHI_RESULT (induction_phi);
3430 /* Create the iv update inside the loop */
3431 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3432 induc_def, vec_step);
3433 vec_def = make_ssa_name (vec_dest, new_stmt);
3434 gimple_assign_set_lhs (new_stmt, vec_def);
3435 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3436 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3437 NULL));
3439 /* Set the arguments of the phi node: */
3440 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3441 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3442 UNKNOWN_LOCATION);
3445 /* In case that vectorization factor (VF) is bigger than the number
3446 of elements that we can fit in a vectype (nunits), we have to generate
3447 more than one vector stmt - i.e - we need to "unroll" the
3448 vector stmt by a factor VF/nunits. For more details see documentation
3449 in vectorizable_operation. */
3451 if (ncopies > 1)
3453 stmt_vec_info prev_stmt_vinfo;
3454 /* FORNOW. This restriction should be relaxed. */
3455 gcc_assert (!nested_in_vect_loop);
3457 /* Create the vector that holds the step of the induction. */
3458 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3460 expr = build_int_cst (integer_type_node, nunits);
3461 expr = fold_convert (TREE_TYPE (step_expr), expr);
3463 else
3464 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3465 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3466 expr, step_expr);
3467 if (TREE_CODE (step_expr) == SSA_NAME)
3468 new_name = vect_init_vector (iv_phi, new_name,
3469 TREE_TYPE (step_expr), NULL);
3470 t = unshare_expr (new_name);
3471 gcc_assert (CONSTANT_CLASS_P (new_name)
3472 || TREE_CODE (new_name) == SSA_NAME);
3473 new_vec = build_vector_from_val (stepvectype, t);
3474 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3476 vec_def = induc_def;
3477 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3478 for (i = 1; i < ncopies; i++)
3480 /* vec_i = vec_prev + vec_step */
3481 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3482 vec_def, vec_step);
3483 vec_def = make_ssa_name (vec_dest, new_stmt);
3484 gimple_assign_set_lhs (new_stmt, vec_def);
3486 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3487 if (!useless_type_conversion_p (resvectype, vectype))
3489 new_stmt = gimple_build_assign_with_ops
3490 (VIEW_CONVERT_EXPR,
3491 vect_get_new_vect_var (resvectype, vect_simple_var,
3492 "vec_iv_"),
3493 build1 (VIEW_CONVERT_EXPR, resvectype,
3494 gimple_assign_lhs (new_stmt)), NULL_TREE);
3495 gimple_assign_set_lhs (new_stmt,
3496 make_ssa_name
3497 (gimple_assign_lhs (new_stmt), new_stmt));
3498 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3500 set_vinfo_for_stmt (new_stmt,
3501 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3502 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3503 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3507 if (nested_in_vect_loop)
3509 /* Find the loop-closed exit-phi of the induction, and record
3510 the final vector of induction results: */
3511 exit_phi = NULL;
3512 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3514 gimple use_stmt = USE_STMT (use_p);
3515 if (is_gimple_debug (use_stmt))
3516 continue;
3518 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3520 exit_phi = use_stmt;
3521 break;
3524 if (exit_phi)
3526 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3527 /* FORNOW. Currently not supporting the case that an inner-loop induction
3528 is not used in the outer-loop (i.e. only outside the outer-loop). */
3529 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3530 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3532 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3533 if (dump_enabled_p ())
3535 dump_printf_loc (MSG_NOTE, vect_location,
3536 "vector of inductions after inner-loop:");
3537 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3538 dump_printf (MSG_NOTE, "\n");
3544 if (dump_enabled_p ())
3546 dump_printf_loc (MSG_NOTE, vect_location,
3547 "transform induction: created def-use cycle: ");
3548 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3549 dump_printf (MSG_NOTE, "\n");
3550 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3551 SSA_NAME_DEF_STMT (vec_def), 0);
3552 dump_printf (MSG_NOTE, "\n");
3555 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3556 if (!useless_type_conversion_p (resvectype, vectype))
3558 new_stmt = gimple_build_assign_with_ops
3559 (VIEW_CONVERT_EXPR,
3560 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3561 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3562 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3563 gimple_assign_set_lhs (new_stmt, induc_def);
3564 si = gsi_after_labels (bb);
3565 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3566 set_vinfo_for_stmt (new_stmt,
3567 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3568 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3569 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3572 return induc_def;
3576 /* Function get_initial_def_for_reduction
3578 Input:
3579 STMT - a stmt that performs a reduction operation in the loop.
3580 INIT_VAL - the initial value of the reduction variable
3582 Output:
3583 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3584 of the reduction (used for adjusting the epilog - see below).
3585 Return a vector variable, initialized according to the operation that STMT
3586 performs. This vector will be used as the initial value of the
3587 vector of partial results.
3589 Option1 (adjust in epilog): Initialize the vector as follows:
3590 add/bit or/xor: [0,0,...,0,0]
3591 mult/bit and: [1,1,...,1,1]
3592 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3593 and when necessary (e.g. add/mult case) let the caller know
3594 that it needs to adjust the result by init_val.
3596 Option2: Initialize the vector as follows:
3597 add/bit or/xor: [init_val,0,0,...,0]
3598 mult/bit and: [init_val,1,1,...,1]
3599 min/max/cond_expr: [init_val,init_val,...,init_val]
3600 and no adjustments are needed.
3602 For example, for the following code:
3604 s = init_val;
3605 for (i=0;i<n;i++)
3606 s = s + a[i];
3608 STMT is 's = s + a[i]', and the reduction variable is 's'.
3609 For a vector of 4 units, we want to return either [0,0,0,init_val],
3610 or [0,0,0,0] and let the caller know that it needs to adjust
3611 the result at the end by 'init_val'.
3613 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3614 initialization vector is simpler (same element in all entries), if
3615 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3617 A cost model should help decide between these two schemes. */
3619 tree
3620 get_initial_def_for_reduction (gimple stmt, tree init_val,
3621 tree *adjustment_def)
3623 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3624 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3625 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3626 tree scalar_type = TREE_TYPE (init_val);
3627 tree vectype = get_vectype_for_scalar_type (scalar_type);
3628 int nunits;
3629 enum tree_code code = gimple_assign_rhs_code (stmt);
3630 tree def_for_init;
3631 tree init_def;
3632 tree *elts;
3633 int i;
3634 bool nested_in_vect_loop = false;
3635 tree init_value;
3636 REAL_VALUE_TYPE real_init_val = dconst0;
3637 int int_init_val = 0;
3638 gimple def_stmt = NULL;
3640 gcc_assert (vectype);
3641 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3643 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3644 || SCALAR_FLOAT_TYPE_P (scalar_type));
3646 if (nested_in_vect_loop_p (loop, stmt))
3647 nested_in_vect_loop = true;
3648 else
3649 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3651 /* In case of double reduction we only create a vector variable to be put
3652 in the reduction phi node. The actual statement creation is done in
3653 vect_create_epilog_for_reduction. */
3654 if (adjustment_def && nested_in_vect_loop
3655 && TREE_CODE (init_val) == SSA_NAME
3656 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3657 && gimple_code (def_stmt) == GIMPLE_PHI
3658 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3659 && vinfo_for_stmt (def_stmt)
3660 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3661 == vect_double_reduction_def)
3663 *adjustment_def = NULL;
3664 return vect_create_destination_var (init_val, vectype);
3667 if (TREE_CONSTANT (init_val))
3669 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3670 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3671 else
3672 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3674 else
3675 init_value = init_val;
3677 switch (code)
3679 case WIDEN_SUM_EXPR:
3680 case DOT_PROD_EXPR:
3681 case PLUS_EXPR:
3682 case MINUS_EXPR:
3683 case BIT_IOR_EXPR:
3684 case BIT_XOR_EXPR:
3685 case MULT_EXPR:
3686 case BIT_AND_EXPR:
3687 /* ADJUSMENT_DEF is NULL when called from
3688 vect_create_epilog_for_reduction to vectorize double reduction. */
3689 if (adjustment_def)
3691 if (nested_in_vect_loop)
3692 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3693 NULL);
3694 else
3695 *adjustment_def = init_val;
3698 if (code == MULT_EXPR)
3700 real_init_val = dconst1;
3701 int_init_val = 1;
3704 if (code == BIT_AND_EXPR)
3705 int_init_val = -1;
3707 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3708 def_for_init = build_real (scalar_type, real_init_val);
3709 else
3710 def_for_init = build_int_cst (scalar_type, int_init_val);
3712 /* Create a vector of '0' or '1' except the first element. */
3713 elts = XALLOCAVEC (tree, nunits);
3714 for (i = nunits - 2; i >= 0; --i)
3715 elts[i + 1] = def_for_init;
3717 /* Option1: the first element is '0' or '1' as well. */
3718 if (adjustment_def)
3720 elts[0] = def_for_init;
3721 init_def = build_vector (vectype, elts);
3722 break;
3725 /* Option2: the first element is INIT_VAL. */
3726 elts[0] = init_val;
3727 if (TREE_CONSTANT (init_val))
3728 init_def = build_vector (vectype, elts);
3729 else
3731 vec<constructor_elt, va_gc> *v;
3732 vec_alloc (v, nunits);
3733 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3734 for (i = 1; i < nunits; ++i)
3735 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3736 init_def = build_constructor (vectype, v);
3739 break;
3741 case MIN_EXPR:
3742 case MAX_EXPR:
3743 case COND_EXPR:
3744 if (adjustment_def)
3746 *adjustment_def = NULL_TREE;
3747 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3748 break;
3751 init_def = build_vector_from_val (vectype, init_value);
3752 break;
3754 default:
3755 gcc_unreachable ();
3758 return init_def;
3762 /* Function vect_create_epilog_for_reduction
3764 Create code at the loop-epilog to finalize the result of a reduction
3765 computation.
3767 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3768 reduction statements.
3769 STMT is the scalar reduction stmt that is being vectorized.
3770 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3771 number of elements that we can fit in a vectype (nunits). In this case
3772 we have to generate more than one vector stmt - i.e - we need to "unroll"
3773 the vector stmt by a factor VF/nunits. For more details see documentation
3774 in vectorizable_operation.
3775 REDUC_CODE is the tree-code for the epilog reduction.
3776 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3777 computation.
3778 REDUC_INDEX is the index of the operand in the right hand side of the
3779 statement that is defined by REDUCTION_PHI.
3780 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3781 SLP_NODE is an SLP node containing a group of reduction statements. The
3782 first one in this group is STMT.
3784 This function:
3785 1. Creates the reduction def-use cycles: sets the arguments for
3786 REDUCTION_PHIS:
3787 The loop-entry argument is the vectorized initial-value of the reduction.
3788 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3789 sums.
3790 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3791 by applying the operation specified by REDUC_CODE if available, or by
3792 other means (whole-vector shifts or a scalar loop).
3793 The function also creates a new phi node at the loop exit to preserve
3794 loop-closed form, as illustrated below.
3796 The flow at the entry to this function:
3798 loop:
3799 vec_def = phi <null, null> # REDUCTION_PHI
3800 VECT_DEF = vector_stmt # vectorized form of STMT
3801 s_loop = scalar_stmt # (scalar) STMT
3802 loop_exit:
3803 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3804 use <s_out0>
3805 use <s_out0>
3807 The above is transformed by this function into:
3809 loop:
3810 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3811 VECT_DEF = vector_stmt # vectorized form of STMT
3812 s_loop = scalar_stmt # (scalar) STMT
3813 loop_exit:
3814 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3815 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3816 v_out2 = reduce <v_out1>
3817 s_out3 = extract_field <v_out2, 0>
3818 s_out4 = adjust_result <s_out3>
3819 use <s_out4>
3820 use <s_out4>
3823 static void
3824 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3825 int ncopies, enum tree_code reduc_code,
3826 vec<gimple> reduction_phis,
3827 int reduc_index, bool double_reduc,
3828 slp_tree slp_node)
3830 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3831 stmt_vec_info prev_phi_info;
3832 tree vectype;
3833 enum machine_mode mode;
3834 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3835 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3836 basic_block exit_bb;
3837 tree scalar_dest;
3838 tree scalar_type;
3839 gimple new_phi = NULL, phi;
3840 gimple_stmt_iterator exit_gsi;
3841 tree vec_dest;
3842 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3843 gimple epilog_stmt = NULL;
3844 enum tree_code code = gimple_assign_rhs_code (stmt);
3845 gimple exit_phi;
3846 tree bitsize, bitpos;
3847 tree adjustment_def = NULL;
3848 tree vec_initial_def = NULL;
3849 tree reduction_op, expr, def;
3850 tree orig_name, scalar_result;
3851 imm_use_iterator imm_iter, phi_imm_iter;
3852 use_operand_p use_p, phi_use_p;
3853 bool extract_scalar_result = false;
3854 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3855 bool nested_in_vect_loop = false;
3856 auto_vec<gimple> new_phis;
3857 auto_vec<gimple> inner_phis;
3858 enum vect_def_type dt = vect_unknown_def_type;
3859 int j, i;
3860 auto_vec<tree> scalar_results;
3861 unsigned int group_size = 1, k, ratio;
3862 auto_vec<tree> vec_initial_defs;
3863 auto_vec<gimple> phis;
3864 bool slp_reduc = false;
3865 tree new_phi_result;
3866 gimple inner_phi = NULL;
3868 if (slp_node)
3869 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3871 if (nested_in_vect_loop_p (loop, stmt))
3873 outer_loop = loop;
3874 loop = loop->inner;
3875 nested_in_vect_loop = true;
3876 gcc_assert (!slp_node);
3879 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3881 case GIMPLE_SINGLE_RHS:
3882 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3883 == ternary_op);
3884 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3885 break;
3886 case GIMPLE_UNARY_RHS:
3887 reduction_op = gimple_assign_rhs1 (stmt);
3888 break;
3889 case GIMPLE_BINARY_RHS:
3890 reduction_op = reduc_index ?
3891 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3892 break;
3893 case GIMPLE_TERNARY_RHS:
3894 reduction_op = gimple_op (stmt, reduc_index + 1);
3895 break;
3896 default:
3897 gcc_unreachable ();
3900 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3901 gcc_assert (vectype);
3902 mode = TYPE_MODE (vectype);
3904 /* 1. Create the reduction def-use cycle:
3905 Set the arguments of REDUCTION_PHIS, i.e., transform
3907 loop:
3908 vec_def = phi <null, null> # REDUCTION_PHI
3909 VECT_DEF = vector_stmt # vectorized form of STMT
3912 into:
3914 loop:
3915 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3916 VECT_DEF = vector_stmt # vectorized form of STMT
3919 (in case of SLP, do it for all the phis). */
3921 /* Get the loop-entry arguments. */
3922 if (slp_node)
3923 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3924 NULL, slp_node, reduc_index);
3925 else
3927 vec_initial_defs.create (1);
3928 /* For the case of reduction, vect_get_vec_def_for_operand returns
3929 the scalar def before the loop, that defines the initial value
3930 of the reduction variable. */
3931 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3932 &adjustment_def);
3933 vec_initial_defs.quick_push (vec_initial_def);
3936 /* Set phi nodes arguments. */
3937 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3939 tree vec_init_def = vec_initial_defs[i];
3940 tree def = vect_defs[i];
3941 for (j = 0; j < ncopies; j++)
3943 /* Set the loop-entry arg of the reduction-phi. */
3944 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3945 UNKNOWN_LOCATION);
3947 /* Set the loop-latch arg for the reduction-phi. */
3948 if (j > 0)
3949 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3951 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3953 if (dump_enabled_p ())
3955 dump_printf_loc (MSG_NOTE, vect_location,
3956 "transform reduction: created def-use cycle: ");
3957 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3958 dump_printf (MSG_NOTE, "\n");
3959 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3960 dump_printf (MSG_NOTE, "\n");
3963 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3967 /* 2. Create epilog code.
3968 The reduction epilog code operates across the elements of the vector
3969 of partial results computed by the vectorized loop.
3970 The reduction epilog code consists of:
3972 step 1: compute the scalar result in a vector (v_out2)
3973 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3974 step 3: adjust the scalar result (s_out3) if needed.
3976 Step 1 can be accomplished using one the following three schemes:
3977 (scheme 1) using reduc_code, if available.
3978 (scheme 2) using whole-vector shifts, if available.
3979 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3980 combined.
3982 The overall epilog code looks like this:
3984 s_out0 = phi <s_loop> # original EXIT_PHI
3985 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3986 v_out2 = reduce <v_out1> # step 1
3987 s_out3 = extract_field <v_out2, 0> # step 2
3988 s_out4 = adjust_result <s_out3> # step 3
3990 (step 3 is optional, and steps 1 and 2 may be combined).
3991 Lastly, the uses of s_out0 are replaced by s_out4. */
3994 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3995 v_out1 = phi <VECT_DEF>
3996 Store them in NEW_PHIS. */
3998 exit_bb = single_exit (loop)->dest;
3999 prev_phi_info = NULL;
4000 new_phis.create (vect_defs.length ());
4001 FOR_EACH_VEC_ELT (vect_defs, i, def)
4003 for (j = 0; j < ncopies; j++)
4005 tree new_def = copy_ssa_name (def, NULL);
4006 phi = create_phi_node (new_def, exit_bb);
4007 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
4008 if (j == 0)
4009 new_phis.quick_push (phi);
4010 else
4012 def = vect_get_vec_def_for_stmt_copy (dt, def);
4013 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4016 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4017 prev_phi_info = vinfo_for_stmt (phi);
4021 /* The epilogue is created for the outer-loop, i.e., for the loop being
4022 vectorized. Create exit phis for the outer loop. */
4023 if (double_reduc)
4025 loop = outer_loop;
4026 exit_bb = single_exit (loop)->dest;
4027 inner_phis.create (vect_defs.length ());
4028 FOR_EACH_VEC_ELT (new_phis, i, phi)
4030 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4031 gimple outer_phi = create_phi_node (new_result, exit_bb);
4032 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4033 PHI_RESULT (phi));
4034 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4035 loop_vinfo, NULL));
4036 inner_phis.quick_push (phi);
4037 new_phis[i] = outer_phi;
4038 prev_phi_info = vinfo_for_stmt (outer_phi);
4039 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4041 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4042 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4043 outer_phi = create_phi_node (new_result, exit_bb);
4044 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4045 PHI_RESULT (phi));
4046 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4047 loop_vinfo, NULL));
4048 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4049 prev_phi_info = vinfo_for_stmt (outer_phi);
4054 exit_gsi = gsi_after_labels (exit_bb);
4056 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4057 (i.e. when reduc_code is not available) and in the final adjustment
4058 code (if needed). Also get the original scalar reduction variable as
4059 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4060 represents a reduction pattern), the tree-code and scalar-def are
4061 taken from the original stmt that the pattern-stmt (STMT) replaces.
4062 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4063 are taken from STMT. */
4065 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4066 if (!orig_stmt)
4068 /* Regular reduction */
4069 orig_stmt = stmt;
4071 else
4073 /* Reduction pattern */
4074 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4075 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4076 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4079 code = gimple_assign_rhs_code (orig_stmt);
4080 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4081 partial results are added and not subtracted. */
4082 if (code == MINUS_EXPR)
4083 code = PLUS_EXPR;
4085 scalar_dest = gimple_assign_lhs (orig_stmt);
4086 scalar_type = TREE_TYPE (scalar_dest);
4087 scalar_results.create (group_size);
4088 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4089 bitsize = TYPE_SIZE (scalar_type);
4091 /* In case this is a reduction in an inner-loop while vectorizing an outer
4092 loop - we don't need to extract a single scalar result at the end of the
4093 inner-loop (unless it is double reduction, i.e., the use of reduction is
4094 outside the outer-loop). The final vector of partial results will be used
4095 in the vectorized outer-loop, or reduced to a scalar result at the end of
4096 the outer-loop. */
4097 if (nested_in_vect_loop && !double_reduc)
4098 goto vect_finalize_reduction;
4100 /* SLP reduction without reduction chain, e.g.,
4101 # a1 = phi <a2, a0>
4102 # b1 = phi <b2, b0>
4103 a2 = operation (a1)
4104 b2 = operation (b1) */
4105 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4107 /* In case of reduction chain, e.g.,
4108 # a1 = phi <a3, a0>
4109 a2 = operation (a1)
4110 a3 = operation (a2),
4112 we may end up with more than one vector result. Here we reduce them to
4113 one vector. */
4114 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4116 tree first_vect = PHI_RESULT (new_phis[0]);
4117 tree tmp;
4118 gimple new_vec_stmt = NULL;
4120 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4121 for (k = 1; k < new_phis.length (); k++)
4123 gimple next_phi = new_phis[k];
4124 tree second_vect = PHI_RESULT (next_phi);
4126 tmp = build2 (code, vectype, first_vect, second_vect);
4127 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4128 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4129 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4130 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4133 new_phi_result = first_vect;
4134 if (new_vec_stmt)
4136 new_phis.truncate (0);
4137 new_phis.safe_push (new_vec_stmt);
4140 else
4141 new_phi_result = PHI_RESULT (new_phis[0]);
4143 /* 2.3 Create the reduction code, using one of the three schemes described
4144 above. In SLP we simply need to extract all the elements from the
4145 vector (without reducing them), so we use scalar shifts. */
4146 if (reduc_code != ERROR_MARK && !slp_reduc)
4148 tree tmp;
4150 /*** Case 1: Create:
4151 v_out2 = reduc_expr <v_out1> */
4153 if (dump_enabled_p ())
4154 dump_printf_loc (MSG_NOTE, vect_location,
4155 "Reduce using direct vector reduction.\n");
4157 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4158 tmp = build1 (reduc_code, vectype, new_phi_result);
4159 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4160 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4161 gimple_assign_set_lhs (epilog_stmt, new_temp);
4162 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4164 extract_scalar_result = true;
4166 else
4168 enum tree_code shift_code = ERROR_MARK;
4169 bool have_whole_vector_shift = true;
4170 int bit_offset;
4171 int element_bitsize = tree_to_uhwi (bitsize);
4172 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4173 tree vec_temp;
4175 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4176 shift_code = VEC_RSHIFT_EXPR;
4177 else
4178 have_whole_vector_shift = false;
4180 /* Regardless of whether we have a whole vector shift, if we're
4181 emulating the operation via tree-vect-generic, we don't want
4182 to use it. Only the first round of the reduction is likely
4183 to still be profitable via emulation. */
4184 /* ??? It might be better to emit a reduction tree code here, so that
4185 tree-vect-generic can expand the first round via bit tricks. */
4186 if (!VECTOR_MODE_P (mode))
4187 have_whole_vector_shift = false;
4188 else
4190 optab optab = optab_for_tree_code (code, vectype, optab_default);
4191 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4192 have_whole_vector_shift = false;
4195 if (have_whole_vector_shift && !slp_reduc)
4197 /*** Case 2: Create:
4198 for (offset = VS/2; offset >= element_size; offset/=2)
4200 Create: va' = vec_shift <va, offset>
4201 Create: va = vop <va, va'>
4202 } */
4204 if (dump_enabled_p ())
4205 dump_printf_loc (MSG_NOTE, vect_location,
4206 "Reduce using vector shifts\n");
4208 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4209 new_temp = new_phi_result;
4210 for (bit_offset = vec_size_in_bits/2;
4211 bit_offset >= element_bitsize;
4212 bit_offset /= 2)
4214 tree bitpos = size_int (bit_offset);
4216 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4217 vec_dest, new_temp, bitpos);
4218 new_name = make_ssa_name (vec_dest, epilog_stmt);
4219 gimple_assign_set_lhs (epilog_stmt, new_name);
4220 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4222 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4223 new_name, new_temp);
4224 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4225 gimple_assign_set_lhs (epilog_stmt, new_temp);
4226 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4229 extract_scalar_result = true;
4231 else
4233 tree rhs;
4235 /*** Case 3: Create:
4236 s = extract_field <v_out2, 0>
4237 for (offset = element_size;
4238 offset < vector_size;
4239 offset += element_size;)
4241 Create: s' = extract_field <v_out2, offset>
4242 Create: s = op <s, s'> // For non SLP cases
4243 } */
4245 if (dump_enabled_p ())
4246 dump_printf_loc (MSG_NOTE, vect_location,
4247 "Reduce using scalar code.\n");
4249 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4250 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4252 if (gimple_code (new_phi) == GIMPLE_PHI)
4253 vec_temp = PHI_RESULT (new_phi);
4254 else
4255 vec_temp = gimple_assign_lhs (new_phi);
4256 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4257 bitsize_zero_node);
4258 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4259 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4260 gimple_assign_set_lhs (epilog_stmt, new_temp);
4261 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4263 /* In SLP we don't need to apply reduction operation, so we just
4264 collect s' values in SCALAR_RESULTS. */
4265 if (slp_reduc)
4266 scalar_results.safe_push (new_temp);
4268 for (bit_offset = element_bitsize;
4269 bit_offset < vec_size_in_bits;
4270 bit_offset += element_bitsize)
4272 tree bitpos = bitsize_int (bit_offset);
4273 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4274 bitsize, bitpos);
4276 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4277 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4278 gimple_assign_set_lhs (epilog_stmt, new_name);
4279 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4281 if (slp_reduc)
4283 /* In SLP we don't need to apply reduction operation, so
4284 we just collect s' values in SCALAR_RESULTS. */
4285 new_temp = new_name;
4286 scalar_results.safe_push (new_name);
4288 else
4290 epilog_stmt = gimple_build_assign_with_ops (code,
4291 new_scalar_dest, new_name, new_temp);
4292 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4293 gimple_assign_set_lhs (epilog_stmt, new_temp);
4294 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4299 /* The only case where we need to reduce scalar results in SLP, is
4300 unrolling. If the size of SCALAR_RESULTS is greater than
4301 GROUP_SIZE, we reduce them combining elements modulo
4302 GROUP_SIZE. */
4303 if (slp_reduc)
4305 tree res, first_res, new_res;
4306 gimple new_stmt;
4308 /* Reduce multiple scalar results in case of SLP unrolling. */
4309 for (j = group_size; scalar_results.iterate (j, &res);
4310 j++)
4312 first_res = scalar_results[j % group_size];
4313 new_stmt = gimple_build_assign_with_ops (code,
4314 new_scalar_dest, first_res, res);
4315 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4316 gimple_assign_set_lhs (new_stmt, new_res);
4317 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4318 scalar_results[j % group_size] = new_res;
4321 else
4322 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4323 scalar_results.safe_push (new_temp);
4325 extract_scalar_result = false;
4329 /* 2.4 Extract the final scalar result. Create:
4330 s_out3 = extract_field <v_out2, bitpos> */
4332 if (extract_scalar_result)
4334 tree rhs;
4336 if (dump_enabled_p ())
4337 dump_printf_loc (MSG_NOTE, vect_location,
4338 "extract scalar result\n");
4340 if (BYTES_BIG_ENDIAN)
4341 bitpos = size_binop (MULT_EXPR,
4342 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4343 TYPE_SIZE (scalar_type));
4344 else
4345 bitpos = bitsize_zero_node;
4347 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4348 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4349 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4350 gimple_assign_set_lhs (epilog_stmt, new_temp);
4351 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4352 scalar_results.safe_push (new_temp);
4355 vect_finalize_reduction:
4357 if (double_reduc)
4358 loop = loop->inner;
4360 /* 2.5 Adjust the final result by the initial value of the reduction
4361 variable. (When such adjustment is not needed, then
4362 'adjustment_def' is zero). For example, if code is PLUS we create:
4363 new_temp = loop_exit_def + adjustment_def */
4365 if (adjustment_def)
4367 gcc_assert (!slp_reduc);
4368 if (nested_in_vect_loop)
4370 new_phi = new_phis[0];
4371 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4372 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4373 new_dest = vect_create_destination_var (scalar_dest, vectype);
4375 else
4377 new_temp = scalar_results[0];
4378 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4379 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4380 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4383 epilog_stmt = gimple_build_assign (new_dest, expr);
4384 new_temp = make_ssa_name (new_dest, epilog_stmt);
4385 gimple_assign_set_lhs (epilog_stmt, new_temp);
4386 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4387 if (nested_in_vect_loop)
4389 set_vinfo_for_stmt (epilog_stmt,
4390 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4391 NULL));
4392 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4393 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4395 if (!double_reduc)
4396 scalar_results.quick_push (new_temp);
4397 else
4398 scalar_results[0] = new_temp;
4400 else
4401 scalar_results[0] = new_temp;
4403 new_phis[0] = epilog_stmt;
4406 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4407 phis with new adjusted scalar results, i.e., replace use <s_out0>
4408 with use <s_out4>.
4410 Transform:
4411 loop_exit:
4412 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4413 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4414 v_out2 = reduce <v_out1>
4415 s_out3 = extract_field <v_out2, 0>
4416 s_out4 = adjust_result <s_out3>
4417 use <s_out0>
4418 use <s_out0>
4420 into:
4422 loop_exit:
4423 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4424 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4425 v_out2 = reduce <v_out1>
4426 s_out3 = extract_field <v_out2, 0>
4427 s_out4 = adjust_result <s_out3>
4428 use <s_out4>
4429 use <s_out4> */
4432 /* In SLP reduction chain we reduce vector results into one vector if
4433 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4434 the last stmt in the reduction chain, since we are looking for the loop
4435 exit phi node. */
4436 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4438 scalar_dest = gimple_assign_lhs (
4439 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4440 group_size = 1;
4443 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4444 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4445 need to match SCALAR_RESULTS with corresponding statements. The first
4446 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4447 the first vector stmt, etc.
4448 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4449 if (group_size > new_phis.length ())
4451 ratio = group_size / new_phis.length ();
4452 gcc_assert (!(group_size % new_phis.length ()));
4454 else
4455 ratio = 1;
4457 for (k = 0; k < group_size; k++)
4459 if (k % ratio == 0)
4461 epilog_stmt = new_phis[k / ratio];
4462 reduction_phi = reduction_phis[k / ratio];
4463 if (double_reduc)
4464 inner_phi = inner_phis[k / ratio];
4467 if (slp_reduc)
4469 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4471 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4472 /* SLP statements can't participate in patterns. */
4473 gcc_assert (!orig_stmt);
4474 scalar_dest = gimple_assign_lhs (current_stmt);
4477 phis.create (3);
4478 /* Find the loop-closed-use at the loop exit of the original scalar
4479 result. (The reduction result is expected to have two immediate uses -
4480 one at the latch block, and one at the loop exit). */
4481 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4482 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4483 && !is_gimple_debug (USE_STMT (use_p)))
4484 phis.safe_push (USE_STMT (use_p));
4486 /* While we expect to have found an exit_phi because of loop-closed-ssa
4487 form we can end up without one if the scalar cycle is dead. */
4489 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4491 if (outer_loop)
4493 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4494 gimple vect_phi;
4496 /* FORNOW. Currently not supporting the case that an inner-loop
4497 reduction is not used in the outer-loop (but only outside the
4498 outer-loop), unless it is double reduction. */
4499 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4500 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4501 || double_reduc);
4503 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4504 if (!double_reduc
4505 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4506 != vect_double_reduction_def)
4507 continue;
4509 /* Handle double reduction:
4511 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4512 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4513 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4514 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4516 At that point the regular reduction (stmt2 and stmt3) is
4517 already vectorized, as well as the exit phi node, stmt4.
4518 Here we vectorize the phi node of double reduction, stmt1, and
4519 update all relevant statements. */
4521 /* Go through all the uses of s2 to find double reduction phi
4522 node, i.e., stmt1 above. */
4523 orig_name = PHI_RESULT (exit_phi);
4524 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4526 stmt_vec_info use_stmt_vinfo;
4527 stmt_vec_info new_phi_vinfo;
4528 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4529 basic_block bb = gimple_bb (use_stmt);
4530 gimple use;
4532 /* Check that USE_STMT is really double reduction phi
4533 node. */
4534 if (gimple_code (use_stmt) != GIMPLE_PHI
4535 || gimple_phi_num_args (use_stmt) != 2
4536 || bb->loop_father != outer_loop)
4537 continue;
4538 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4539 if (!use_stmt_vinfo
4540 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4541 != vect_double_reduction_def)
4542 continue;
4544 /* Create vector phi node for double reduction:
4545 vs1 = phi <vs0, vs2>
4546 vs1 was created previously in this function by a call to
4547 vect_get_vec_def_for_operand and is stored in
4548 vec_initial_def;
4549 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4550 vs0 is created here. */
4552 /* Create vector phi node. */
4553 vect_phi = create_phi_node (vec_initial_def, bb);
4554 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4555 loop_vec_info_for_loop (outer_loop), NULL);
4556 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4558 /* Create vs0 - initial def of the double reduction phi. */
4559 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4560 loop_preheader_edge (outer_loop));
4561 init_def = get_initial_def_for_reduction (stmt,
4562 preheader_arg, NULL);
4563 vect_phi_init = vect_init_vector (use_stmt, init_def,
4564 vectype, NULL);
4566 /* Update phi node arguments with vs0 and vs2. */
4567 add_phi_arg (vect_phi, vect_phi_init,
4568 loop_preheader_edge (outer_loop),
4569 UNKNOWN_LOCATION);
4570 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4571 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4572 if (dump_enabled_p ())
4574 dump_printf_loc (MSG_NOTE, vect_location,
4575 "created double reduction phi node: ");
4576 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4577 dump_printf (MSG_NOTE, "\n");
4580 vect_phi_res = PHI_RESULT (vect_phi);
4582 /* Replace the use, i.e., set the correct vs1 in the regular
4583 reduction phi node. FORNOW, NCOPIES is always 1, so the
4584 loop is redundant. */
4585 use = reduction_phi;
4586 for (j = 0; j < ncopies; j++)
4588 edge pr_edge = loop_preheader_edge (loop);
4589 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4590 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4596 phis.release ();
4597 if (nested_in_vect_loop)
4599 if (double_reduc)
4600 loop = outer_loop;
4601 else
4602 continue;
4605 phis.create (3);
4606 /* Find the loop-closed-use at the loop exit of the original scalar
4607 result. (The reduction result is expected to have two immediate uses,
4608 one at the latch block, and one at the loop exit). For double
4609 reductions we are looking for exit phis of the outer loop. */
4610 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4612 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4614 if (!is_gimple_debug (USE_STMT (use_p)))
4615 phis.safe_push (USE_STMT (use_p));
4617 else
4619 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4621 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4623 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4625 if (!flow_bb_inside_loop_p (loop,
4626 gimple_bb (USE_STMT (phi_use_p)))
4627 && !is_gimple_debug (USE_STMT (phi_use_p)))
4628 phis.safe_push (USE_STMT (phi_use_p));
4634 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4636 /* Replace the uses: */
4637 orig_name = PHI_RESULT (exit_phi);
4638 scalar_result = scalar_results[k];
4639 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4640 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4641 SET_USE (use_p, scalar_result);
4644 phis.release ();
4649 /* Function vectorizable_reduction.
4651 Check if STMT performs a reduction operation that can be vectorized.
4652 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4653 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4654 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4656 This function also handles reduction idioms (patterns) that have been
4657 recognized in advance during vect_pattern_recog. In this case, STMT may be
4658 of this form:
4659 X = pattern_expr (arg0, arg1, ..., X)
4660 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4661 sequence that had been detected and replaced by the pattern-stmt (STMT).
4663 In some cases of reduction patterns, the type of the reduction variable X is
4664 different than the type of the other arguments of STMT.
4665 In such cases, the vectype that is used when transforming STMT into a vector
4666 stmt is different than the vectype that is used to determine the
4667 vectorization factor, because it consists of a different number of elements
4668 than the actual number of elements that are being operated upon in parallel.
4670 For example, consider an accumulation of shorts into an int accumulator.
4671 On some targets it's possible to vectorize this pattern operating on 8
4672 shorts at a time (hence, the vectype for purposes of determining the
4673 vectorization factor should be V8HI); on the other hand, the vectype that
4674 is used to create the vector form is actually V4SI (the type of the result).
4676 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4677 indicates what is the actual level of parallelism (V8HI in the example), so
4678 that the right vectorization factor would be derived. This vectype
4679 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4680 be used to create the vectorized stmt. The right vectype for the vectorized
4681 stmt is obtained from the type of the result X:
4682 get_vectype_for_scalar_type (TREE_TYPE (X))
4684 This means that, contrary to "regular" reductions (or "regular" stmts in
4685 general), the following equation:
4686 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4687 does *NOT* necessarily hold for reduction patterns. */
4689 bool
4690 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4691 gimple *vec_stmt, slp_tree slp_node)
4693 tree vec_dest;
4694 tree scalar_dest;
4695 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4696 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4697 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4698 tree vectype_in = NULL_TREE;
4699 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4700 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4701 enum tree_code code, orig_code, epilog_reduc_code;
4702 enum machine_mode vec_mode;
4703 int op_type;
4704 optab optab, reduc_optab;
4705 tree new_temp = NULL_TREE;
4706 tree def;
4707 gimple def_stmt;
4708 enum vect_def_type dt;
4709 gimple new_phi = NULL;
4710 tree scalar_type;
4711 bool is_simple_use;
4712 gimple orig_stmt;
4713 stmt_vec_info orig_stmt_info;
4714 tree expr = NULL_TREE;
4715 int i;
4716 int ncopies;
4717 int epilog_copies;
4718 stmt_vec_info prev_stmt_info, prev_phi_info;
4719 bool single_defuse_cycle = false;
4720 tree reduc_def = NULL_TREE;
4721 gimple new_stmt = NULL;
4722 int j;
4723 tree ops[3];
4724 bool nested_cycle = false, found_nested_cycle_def = false;
4725 gimple reduc_def_stmt = NULL;
4726 /* The default is that the reduction variable is the last in statement. */
4727 int reduc_index = 2;
4728 bool double_reduc = false, dummy;
4729 basic_block def_bb;
4730 struct loop * def_stmt_loop, *outer_loop = NULL;
4731 tree def_arg;
4732 gimple def_arg_stmt;
4733 auto_vec<tree> vec_oprnds0;
4734 auto_vec<tree> vec_oprnds1;
4735 auto_vec<tree> vect_defs;
4736 auto_vec<gimple> phis;
4737 int vec_num;
4738 tree def0, def1, tem, op0, op1 = NULL_TREE;
4740 /* In case of reduction chain we switch to the first stmt in the chain, but
4741 we don't update STMT_INFO, since only the last stmt is marked as reduction
4742 and has reduction properties. */
4743 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4744 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4746 if (nested_in_vect_loop_p (loop, stmt))
4748 outer_loop = loop;
4749 loop = loop->inner;
4750 nested_cycle = true;
4753 /* 1. Is vectorizable reduction? */
4754 /* Not supportable if the reduction variable is used in the loop, unless
4755 it's a reduction chain. */
4756 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4757 && !GROUP_FIRST_ELEMENT (stmt_info))
4758 return false;
4760 /* Reductions that are not used even in an enclosing outer-loop,
4761 are expected to be "live" (used out of the loop). */
4762 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4763 && !STMT_VINFO_LIVE_P (stmt_info))
4764 return false;
4766 /* Make sure it was already recognized as a reduction computation. */
4767 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4768 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4769 return false;
4771 /* 2. Has this been recognized as a reduction pattern?
4773 Check if STMT represents a pattern that has been recognized
4774 in earlier analysis stages. For stmts that represent a pattern,
4775 the STMT_VINFO_RELATED_STMT field records the last stmt in
4776 the original sequence that constitutes the pattern. */
4778 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4779 if (orig_stmt)
4781 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4782 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4783 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4786 /* 3. Check the operands of the operation. The first operands are defined
4787 inside the loop body. The last operand is the reduction variable,
4788 which is defined by the loop-header-phi. */
4790 gcc_assert (is_gimple_assign (stmt));
4792 /* Flatten RHS. */
4793 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4795 case GIMPLE_SINGLE_RHS:
4796 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4797 if (op_type == ternary_op)
4799 tree rhs = gimple_assign_rhs1 (stmt);
4800 ops[0] = TREE_OPERAND (rhs, 0);
4801 ops[1] = TREE_OPERAND (rhs, 1);
4802 ops[2] = TREE_OPERAND (rhs, 2);
4803 code = TREE_CODE (rhs);
4805 else
4806 return false;
4807 break;
4809 case GIMPLE_BINARY_RHS:
4810 code = gimple_assign_rhs_code (stmt);
4811 op_type = TREE_CODE_LENGTH (code);
4812 gcc_assert (op_type == binary_op);
4813 ops[0] = gimple_assign_rhs1 (stmt);
4814 ops[1] = gimple_assign_rhs2 (stmt);
4815 break;
4817 case GIMPLE_TERNARY_RHS:
4818 code = gimple_assign_rhs_code (stmt);
4819 op_type = TREE_CODE_LENGTH (code);
4820 gcc_assert (op_type == ternary_op);
4821 ops[0] = gimple_assign_rhs1 (stmt);
4822 ops[1] = gimple_assign_rhs2 (stmt);
4823 ops[2] = gimple_assign_rhs3 (stmt);
4824 break;
4826 case GIMPLE_UNARY_RHS:
4827 return false;
4829 default:
4830 gcc_unreachable ();
4833 if (code == COND_EXPR && slp_node)
4834 return false;
4836 scalar_dest = gimple_assign_lhs (stmt);
4837 scalar_type = TREE_TYPE (scalar_dest);
4838 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4839 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4840 return false;
4842 /* Do not try to vectorize bit-precision reductions. */
4843 if ((TYPE_PRECISION (scalar_type)
4844 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4845 return false;
4847 /* All uses but the last are expected to be defined in the loop.
4848 The last use is the reduction variable. In case of nested cycle this
4849 assumption is not true: we use reduc_index to record the index of the
4850 reduction variable. */
4851 for (i = 0; i < op_type - 1; i++)
4853 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4854 if (i == 0 && code == COND_EXPR)
4855 continue;
4857 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4858 &def_stmt, &def, &dt, &tem);
4859 if (!vectype_in)
4860 vectype_in = tem;
4861 gcc_assert (is_simple_use);
4863 if (dt != vect_internal_def
4864 && dt != vect_external_def
4865 && dt != vect_constant_def
4866 && dt != vect_induction_def
4867 && !(dt == vect_nested_cycle && nested_cycle))
4868 return false;
4870 if (dt == vect_nested_cycle)
4872 found_nested_cycle_def = true;
4873 reduc_def_stmt = def_stmt;
4874 reduc_index = i;
4878 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4879 &def_stmt, &def, &dt, &tem);
4880 if (!vectype_in)
4881 vectype_in = tem;
4882 gcc_assert (is_simple_use);
4883 if (!(dt == vect_reduction_def
4884 || dt == vect_nested_cycle
4885 || ((dt == vect_internal_def || dt == vect_external_def
4886 || dt == vect_constant_def || dt == vect_induction_def)
4887 && nested_cycle && found_nested_cycle_def)))
4889 /* For pattern recognized stmts, orig_stmt might be a reduction,
4890 but some helper statements for the pattern might not, or
4891 might be COND_EXPRs with reduction uses in the condition. */
4892 gcc_assert (orig_stmt);
4893 return false;
4895 if (!found_nested_cycle_def)
4896 reduc_def_stmt = def_stmt;
4898 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4899 if (orig_stmt)
4900 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4901 reduc_def_stmt,
4902 !nested_cycle,
4903 &dummy));
4904 else
4906 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4907 !nested_cycle, &dummy);
4908 /* We changed STMT to be the first stmt in reduction chain, hence we
4909 check that in this case the first element in the chain is STMT. */
4910 gcc_assert (stmt == tmp
4911 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4914 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4915 return false;
4917 if (slp_node || PURE_SLP_STMT (stmt_info))
4918 ncopies = 1;
4919 else
4920 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4921 / TYPE_VECTOR_SUBPARTS (vectype_in));
4923 gcc_assert (ncopies >= 1);
4925 vec_mode = TYPE_MODE (vectype_in);
4927 if (code == COND_EXPR)
4929 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4931 if (dump_enabled_p ())
4932 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4933 "unsupported condition in reduction\n");
4935 return false;
4938 else
4940 /* 4. Supportable by target? */
4942 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4943 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4945 /* Shifts and rotates are only supported by vectorizable_shifts,
4946 not vectorizable_reduction. */
4947 if (dump_enabled_p ())
4948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4949 "unsupported shift or rotation.\n");
4950 return false;
4953 /* 4.1. check support for the operation in the loop */
4954 optab = optab_for_tree_code (code, vectype_in, optab_default);
4955 if (!optab)
4957 if (dump_enabled_p ())
4958 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4959 "no optab.\n");
4961 return false;
4964 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4966 if (dump_enabled_p ())
4967 dump_printf (MSG_NOTE, "op not supported by target.\n");
4969 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4970 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4971 < vect_min_worthwhile_factor (code))
4972 return false;
4974 if (dump_enabled_p ())
4975 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
4978 /* Worthwhile without SIMD support? */
4979 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4980 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4981 < vect_min_worthwhile_factor (code))
4983 if (dump_enabled_p ())
4984 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4985 "not worthwhile without SIMD support.\n");
4987 return false;
4991 /* 4.2. Check support for the epilog operation.
4993 If STMT represents a reduction pattern, then the type of the
4994 reduction variable may be different than the type of the rest
4995 of the arguments. For example, consider the case of accumulation
4996 of shorts into an int accumulator; The original code:
4997 S1: int_a = (int) short_a;
4998 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5000 was replaced with:
5001 STMT: int_acc = widen_sum <short_a, int_acc>
5003 This means that:
5004 1. The tree-code that is used to create the vector operation in the
5005 epilog code (that reduces the partial results) is not the
5006 tree-code of STMT, but is rather the tree-code of the original
5007 stmt from the pattern that STMT is replacing. I.e, in the example
5008 above we want to use 'widen_sum' in the loop, but 'plus' in the
5009 epilog.
5010 2. The type (mode) we use to check available target support
5011 for the vector operation to be created in the *epilog*, is
5012 determined by the type of the reduction variable (in the example
5013 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5014 However the type (mode) we use to check available target support
5015 for the vector operation to be created *inside the loop*, is
5016 determined by the type of the other arguments to STMT (in the
5017 example we'd check this: optab_handler (widen_sum_optab,
5018 vect_short_mode)).
5020 This is contrary to "regular" reductions, in which the types of all
5021 the arguments are the same as the type of the reduction variable.
5022 For "regular" reductions we can therefore use the same vector type
5023 (and also the same tree-code) when generating the epilog code and
5024 when generating the code inside the loop. */
5026 if (orig_stmt)
5028 /* This is a reduction pattern: get the vectype from the type of the
5029 reduction variable, and get the tree-code from orig_stmt. */
5030 orig_code = gimple_assign_rhs_code (orig_stmt);
5031 gcc_assert (vectype_out);
5032 vec_mode = TYPE_MODE (vectype_out);
5034 else
5036 /* Regular reduction: use the same vectype and tree-code as used for
5037 the vector code inside the loop can be used for the epilog code. */
5038 orig_code = code;
5041 if (nested_cycle)
5043 def_bb = gimple_bb (reduc_def_stmt);
5044 def_stmt_loop = def_bb->loop_father;
5045 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5046 loop_preheader_edge (def_stmt_loop));
5047 if (TREE_CODE (def_arg) == SSA_NAME
5048 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5049 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5050 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5051 && vinfo_for_stmt (def_arg_stmt)
5052 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5053 == vect_double_reduction_def)
5054 double_reduc = true;
5057 epilog_reduc_code = ERROR_MARK;
5058 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5060 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5061 optab_default);
5062 if (!reduc_optab)
5064 if (dump_enabled_p ())
5065 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5066 "no optab for reduction.\n");
5068 epilog_reduc_code = ERROR_MARK;
5071 if (reduc_optab
5072 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5074 if (dump_enabled_p ())
5075 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5076 "reduc op not supported by target.\n");
5078 epilog_reduc_code = ERROR_MARK;
5081 else
5083 if (!nested_cycle || double_reduc)
5085 if (dump_enabled_p ())
5086 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5087 "no reduc code for scalar code.\n");
5089 return false;
5093 if (double_reduc && ncopies > 1)
5095 if (dump_enabled_p ())
5096 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5097 "multiple types in double reduction\n");
5099 return false;
5102 /* In case of widenning multiplication by a constant, we update the type
5103 of the constant to be the type of the other operand. We check that the
5104 constant fits the type in the pattern recognition pass. */
5105 if (code == DOT_PROD_EXPR
5106 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5108 if (TREE_CODE (ops[0]) == INTEGER_CST)
5109 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5110 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5111 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5112 else
5114 if (dump_enabled_p ())
5115 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5116 "invalid types in dot-prod\n");
5118 return false;
5122 if (!vec_stmt) /* transformation not required. */
5124 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5125 return false;
5126 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5127 return true;
5130 /** Transform. **/
5132 if (dump_enabled_p ())
5133 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5135 /* FORNOW: Multiple types are not supported for condition. */
5136 if (code == COND_EXPR)
5137 gcc_assert (ncopies == 1);
5139 /* Create the destination vector */
5140 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5142 /* In case the vectorization factor (VF) is bigger than the number
5143 of elements that we can fit in a vectype (nunits), we have to generate
5144 more than one vector stmt - i.e - we need to "unroll" the
5145 vector stmt by a factor VF/nunits. For more details see documentation
5146 in vectorizable_operation. */
5148 /* If the reduction is used in an outer loop we need to generate
5149 VF intermediate results, like so (e.g. for ncopies=2):
5150 r0 = phi (init, r0)
5151 r1 = phi (init, r1)
5152 r0 = x0 + r0;
5153 r1 = x1 + r1;
5154 (i.e. we generate VF results in 2 registers).
5155 In this case we have a separate def-use cycle for each copy, and therefore
5156 for each copy we get the vector def for the reduction variable from the
5157 respective phi node created for this copy.
5159 Otherwise (the reduction is unused in the loop nest), we can combine
5160 together intermediate results, like so (e.g. for ncopies=2):
5161 r = phi (init, r)
5162 r = x0 + r;
5163 r = x1 + r;
5164 (i.e. we generate VF/2 results in a single register).
5165 In this case for each copy we get the vector def for the reduction variable
5166 from the vectorized reduction operation generated in the previous iteration.
5169 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5171 single_defuse_cycle = true;
5172 epilog_copies = 1;
5174 else
5175 epilog_copies = ncopies;
5177 prev_stmt_info = NULL;
5178 prev_phi_info = NULL;
5179 if (slp_node)
5181 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5182 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5183 == TYPE_VECTOR_SUBPARTS (vectype_in));
5185 else
5187 vec_num = 1;
5188 vec_oprnds0.create (1);
5189 if (op_type == ternary_op)
5190 vec_oprnds1.create (1);
5193 phis.create (vec_num);
5194 vect_defs.create (vec_num);
5195 if (!slp_node)
5196 vect_defs.quick_push (NULL_TREE);
5198 for (j = 0; j < ncopies; j++)
5200 if (j == 0 || !single_defuse_cycle)
5202 for (i = 0; i < vec_num; i++)
5204 /* Create the reduction-phi that defines the reduction
5205 operand. */
5206 new_phi = create_phi_node (vec_dest, loop->header);
5207 set_vinfo_for_stmt (new_phi,
5208 new_stmt_vec_info (new_phi, loop_vinfo,
5209 NULL));
5210 if (j == 0 || slp_node)
5211 phis.quick_push (new_phi);
5215 if (code == COND_EXPR)
5217 gcc_assert (!slp_node);
5218 vectorizable_condition (stmt, gsi, vec_stmt,
5219 PHI_RESULT (phis[0]),
5220 reduc_index, NULL);
5221 /* Multiple types are not supported for condition. */
5222 break;
5225 /* Handle uses. */
5226 if (j == 0)
5228 op0 = ops[!reduc_index];
5229 if (op_type == ternary_op)
5231 if (reduc_index == 0)
5232 op1 = ops[2];
5233 else
5234 op1 = ops[1];
5237 if (slp_node)
5238 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5239 slp_node, -1);
5240 else
5242 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5243 stmt, NULL);
5244 vec_oprnds0.quick_push (loop_vec_def0);
5245 if (op_type == ternary_op)
5247 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5248 NULL);
5249 vec_oprnds1.quick_push (loop_vec_def1);
5253 else
5255 if (!slp_node)
5257 enum vect_def_type dt;
5258 gimple dummy_stmt;
5259 tree dummy;
5261 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5262 &dummy_stmt, &dummy, &dt);
5263 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5264 loop_vec_def0);
5265 vec_oprnds0[0] = loop_vec_def0;
5266 if (op_type == ternary_op)
5268 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5269 &dummy, &dt);
5270 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5271 loop_vec_def1);
5272 vec_oprnds1[0] = loop_vec_def1;
5276 if (single_defuse_cycle)
5277 reduc_def = gimple_assign_lhs (new_stmt);
5279 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5282 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5284 if (slp_node)
5285 reduc_def = PHI_RESULT (phis[i]);
5286 else
5288 if (!single_defuse_cycle || j == 0)
5289 reduc_def = PHI_RESULT (new_phi);
5292 def1 = ((op_type == ternary_op)
5293 ? vec_oprnds1[i] : NULL);
5294 if (op_type == binary_op)
5296 if (reduc_index == 0)
5297 expr = build2 (code, vectype_out, reduc_def, def0);
5298 else
5299 expr = build2 (code, vectype_out, def0, reduc_def);
5301 else
5303 if (reduc_index == 0)
5304 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5305 else
5307 if (reduc_index == 1)
5308 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5309 else
5310 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5314 new_stmt = gimple_build_assign (vec_dest, expr);
5315 new_temp = make_ssa_name (vec_dest, new_stmt);
5316 gimple_assign_set_lhs (new_stmt, new_temp);
5317 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5319 if (slp_node)
5321 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5322 vect_defs.quick_push (new_temp);
5324 else
5325 vect_defs[0] = new_temp;
5328 if (slp_node)
5329 continue;
5331 if (j == 0)
5332 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5333 else
5334 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5336 prev_stmt_info = vinfo_for_stmt (new_stmt);
5337 prev_phi_info = vinfo_for_stmt (new_phi);
5340 /* Finalize the reduction-phi (set its arguments) and create the
5341 epilog reduction code. */
5342 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5344 new_temp = gimple_assign_lhs (*vec_stmt);
5345 vect_defs[0] = new_temp;
5348 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5349 epilog_reduc_code, phis, reduc_index,
5350 double_reduc, slp_node);
5352 return true;
5355 /* Function vect_min_worthwhile_factor.
5357 For a loop where we could vectorize the operation indicated by CODE,
5358 return the minimum vectorization factor that makes it worthwhile
5359 to use generic vectors. */
5361 vect_min_worthwhile_factor (enum tree_code code)
5363 switch (code)
5365 case PLUS_EXPR:
5366 case MINUS_EXPR:
5367 case NEGATE_EXPR:
5368 return 4;
5370 case BIT_AND_EXPR:
5371 case BIT_IOR_EXPR:
5372 case BIT_XOR_EXPR:
5373 case BIT_NOT_EXPR:
5374 return 2;
5376 default:
5377 return INT_MAX;
5382 /* Function vectorizable_induction
5384 Check if PHI performs an induction computation that can be vectorized.
5385 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5386 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5387 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5389 bool
5390 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5391 gimple *vec_stmt)
5393 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5394 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5395 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5396 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5397 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5398 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5399 tree vec_def;
5401 gcc_assert (ncopies >= 1);
5402 /* FORNOW. These restrictions should be relaxed. */
5403 if (nested_in_vect_loop_p (loop, phi))
5405 imm_use_iterator imm_iter;
5406 use_operand_p use_p;
5407 gimple exit_phi;
5408 edge latch_e;
5409 tree loop_arg;
5411 if (ncopies > 1)
5413 if (dump_enabled_p ())
5414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5415 "multiple types in nested loop.\n");
5416 return false;
5419 exit_phi = NULL;
5420 latch_e = loop_latch_edge (loop->inner);
5421 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5422 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5424 gimple use_stmt = USE_STMT (use_p);
5425 if (is_gimple_debug (use_stmt))
5426 continue;
5428 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
5430 exit_phi = use_stmt;
5431 break;
5434 if (exit_phi)
5436 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5437 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5438 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5440 if (dump_enabled_p ())
5441 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5442 "inner-loop induction only used outside "
5443 "of the outer vectorized loop.\n");
5444 return false;
5449 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5450 return false;
5452 /* FORNOW: SLP not supported. */
5453 if (STMT_SLP_TYPE (stmt_info))
5454 return false;
5456 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5458 if (gimple_code (phi) != GIMPLE_PHI)
5459 return false;
5461 if (!vec_stmt) /* transformation not required. */
5463 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5464 if (dump_enabled_p ())
5465 dump_printf_loc (MSG_NOTE, vect_location,
5466 "=== vectorizable_induction ===\n");
5467 vect_model_induction_cost (stmt_info, ncopies);
5468 return true;
5471 /** Transform. **/
5473 if (dump_enabled_p ())
5474 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5476 vec_def = get_initial_def_for_induction (phi);
5477 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5478 return true;
5481 /* Function vectorizable_live_operation.
5483 STMT computes a value that is used outside the loop. Check if
5484 it can be supported. */
5486 bool
5487 vectorizable_live_operation (gimple stmt,
5488 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5489 gimple *vec_stmt)
5491 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5492 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5493 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5494 int i;
5495 int op_type;
5496 tree op;
5497 tree def;
5498 gimple def_stmt;
5499 enum vect_def_type dt;
5500 enum tree_code code;
5501 enum gimple_rhs_class rhs_class;
5503 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5505 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5506 return false;
5508 if (!is_gimple_assign (stmt))
5510 if (gimple_call_internal_p (stmt)
5511 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5512 && gimple_call_lhs (stmt)
5513 && loop->simduid
5514 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5515 && loop->simduid
5516 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5518 edge e = single_exit (loop);
5519 basic_block merge_bb = e->dest;
5520 imm_use_iterator imm_iter;
5521 use_operand_p use_p;
5522 tree lhs = gimple_call_lhs (stmt);
5524 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5526 gimple use_stmt = USE_STMT (use_p);
5527 if (gimple_code (use_stmt) == GIMPLE_PHI
5528 && gimple_bb (use_stmt) == merge_bb)
5530 if (vec_stmt)
5532 tree vfm1
5533 = build_int_cst (unsigned_type_node,
5534 loop_vinfo->vectorization_factor - 1);
5535 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5537 return true;
5542 return false;
5545 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5546 return false;
5548 /* FORNOW. CHECKME. */
5549 if (nested_in_vect_loop_p (loop, stmt))
5550 return false;
5552 code = gimple_assign_rhs_code (stmt);
5553 op_type = TREE_CODE_LENGTH (code);
5554 rhs_class = get_gimple_rhs_class (code);
5555 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5556 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5558 /* FORNOW: support only if all uses are invariant. This means
5559 that the scalar operations can remain in place, unvectorized.
5560 The original last scalar value that they compute will be used. */
5562 for (i = 0; i < op_type; i++)
5564 if (rhs_class == GIMPLE_SINGLE_RHS)
5565 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5566 else
5567 op = gimple_op (stmt, i + 1);
5568 if (op
5569 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5570 &dt))
5572 if (dump_enabled_p ())
5573 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5574 "use not simple.\n");
5575 return false;
5578 if (dt != vect_external_def && dt != vect_constant_def)
5579 return false;
5582 /* No transformation is required for the cases we currently support. */
5583 return true;
5586 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5588 static void
5589 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5591 ssa_op_iter op_iter;
5592 imm_use_iterator imm_iter;
5593 def_operand_p def_p;
5594 gimple ustmt;
5596 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5598 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5600 basic_block bb;
5602 if (!is_gimple_debug (ustmt))
5603 continue;
5605 bb = gimple_bb (ustmt);
5607 if (!flow_bb_inside_loop_p (loop, bb))
5609 if (gimple_debug_bind_p (ustmt))
5611 if (dump_enabled_p ())
5612 dump_printf_loc (MSG_NOTE, vect_location,
5613 "killing debug use\n");
5615 gimple_debug_bind_reset_value (ustmt);
5616 update_stmt (ustmt);
5618 else
5619 gcc_unreachable ();
5626 /* This function builds ni_name = number of iterations. Statements
5627 are emitted on the loop preheader edge. */
5629 static tree
5630 vect_build_loop_niters (loop_vec_info loop_vinfo)
5632 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5633 if (TREE_CODE (ni) == INTEGER_CST)
5634 return ni;
5635 else
5637 tree ni_name, var;
5638 gimple_seq stmts = NULL;
5639 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5641 var = create_tmp_var (TREE_TYPE (ni), "niters");
5642 ni_name = force_gimple_operand (ni, &stmts, false, var);
5643 if (stmts)
5644 gsi_insert_seq_on_edge_immediate (pe, stmts);
5646 return ni_name;
5651 /* This function generates the following statements:
5653 ni_name = number of iterations loop executes
5654 ratio = ni_name / vf
5655 ratio_mult_vf_name = ratio * vf
5657 and places them on the loop preheader edge. */
5659 static void
5660 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5661 tree ni_name,
5662 tree *ratio_mult_vf_name_ptr,
5663 tree *ratio_name_ptr)
5665 tree ni_minus_gap_name;
5666 tree var;
5667 tree ratio_name;
5668 tree ratio_mult_vf_name;
5669 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5670 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5671 tree log_vf;
5673 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
5675 /* If epilogue loop is required because of data accesses with gaps, we
5676 subtract one iteration from the total number of iterations here for
5677 correct calculation of RATIO. */
5678 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5680 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5681 ni_name,
5682 build_one_cst (TREE_TYPE (ni_name)));
5683 if (!is_gimple_val (ni_minus_gap_name))
5685 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
5686 gimple stmts = NULL;
5687 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5688 true, var);
5689 gsi_insert_seq_on_edge_immediate (pe, stmts);
5692 else
5693 ni_minus_gap_name = ni_name;
5695 /* Create: ratio = ni >> log2(vf) */
5696 /* ??? As we have ni == number of latch executions + 1, ni could
5697 have overflown to zero. So avoid computing ratio based on ni
5698 but compute it using the fact that we know ratio will be at least
5699 one, thus via (ni - vf) >> log2(vf) + 1. */
5700 ratio_name
5701 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
5702 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
5703 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5704 ni_minus_gap_name,
5705 build_int_cst
5706 (TREE_TYPE (ni_name), vf)),
5707 log_vf),
5708 build_int_cst (TREE_TYPE (ni_name), 1));
5709 if (!is_gimple_val (ratio_name))
5711 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
5712 gimple stmts = NULL;
5713 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5714 gsi_insert_seq_on_edge_immediate (pe, stmts);
5716 *ratio_name_ptr = ratio_name;
5718 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5720 if (ratio_mult_vf_name_ptr)
5722 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5723 ratio_name, log_vf);
5724 if (!is_gimple_val (ratio_mult_vf_name))
5726 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
5727 gimple stmts = NULL;
5728 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5729 true, var);
5730 gsi_insert_seq_on_edge_immediate (pe, stmts);
5732 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5735 return;
5739 /* Function vect_transform_loop.
5741 The analysis phase has determined that the loop is vectorizable.
5742 Vectorize the loop - created vectorized stmts to replace the scalar
5743 stmts in the loop, and update the loop exit condition. */
5745 void
5746 vect_transform_loop (loop_vec_info loop_vinfo)
5748 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5749 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5750 int nbbs = loop->num_nodes;
5751 gimple_stmt_iterator si;
5752 int i;
5753 tree ratio = NULL;
5754 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5755 bool grouped_store;
5756 bool slp_scheduled = false;
5757 gimple stmt, pattern_stmt;
5758 gimple_seq pattern_def_seq = NULL;
5759 gimple_stmt_iterator pattern_def_si = gsi_none ();
5760 bool transform_pattern_stmt = false;
5761 bool check_profitability = false;
5762 int th;
5763 /* Record number of iterations before we started tampering with the profile. */
5764 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5766 if (dump_enabled_p ())
5767 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5769 /* If profile is inprecise, we have chance to fix it up. */
5770 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5771 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5773 /* Use the more conservative vectorization threshold. If the number
5774 of iterations is constant assume the cost check has been performed
5775 by our caller. If the threshold makes all loops profitable that
5776 run at least the vectorization factor number of times checking
5777 is pointless, too. */
5778 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5779 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5780 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5781 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5782 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5784 if (dump_enabled_p ())
5785 dump_printf_loc (MSG_NOTE, vect_location,
5786 "Profitability threshold is %d loop iterations.\n",
5787 th);
5788 check_profitability = true;
5791 /* Version the loop first, if required, so the profitability check
5792 comes first. */
5794 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5795 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5797 vect_loop_versioning (loop_vinfo, th, check_profitability);
5798 check_profitability = false;
5801 tree ni_name = vect_build_loop_niters (loop_vinfo);
5802 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5804 /* Peel the loop if there are data refs with unknown alignment.
5805 Only one data ref with unknown store is allowed. */
5807 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5809 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5810 th, check_profitability);
5811 check_profitability = false;
5812 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5813 be re-computed. */
5814 ni_name = NULL_TREE;
5817 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5818 compile time constant), or it is a constant that doesn't divide by the
5819 vectorization factor, then an epilog loop needs to be created.
5820 We therefore duplicate the loop: the original loop will be vectorized,
5821 and will compute the first (n/VF) iterations. The second copy of the loop
5822 will remain scalar and will compute the remaining (n%VF) iterations.
5823 (VF is the vectorization factor). */
5825 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5826 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5828 tree ratio_mult_vf;
5829 if (!ni_name)
5830 ni_name = vect_build_loop_niters (loop_vinfo);
5831 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5832 &ratio);
5833 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5834 th, check_profitability);
5836 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5837 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5838 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5839 else
5841 if (!ni_name)
5842 ni_name = vect_build_loop_niters (loop_vinfo);
5843 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5846 /* 1) Make sure the loop header has exactly two entries
5847 2) Make sure we have a preheader basic block. */
5849 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5851 split_edge (loop_preheader_edge (loop));
5853 /* FORNOW: the vectorizer supports only loops which body consist
5854 of one basic block (header + empty latch). When the vectorizer will
5855 support more involved loop forms, the order by which the BBs are
5856 traversed need to be reconsidered. */
5858 for (i = 0; i < nbbs; i++)
5860 basic_block bb = bbs[i];
5861 stmt_vec_info stmt_info;
5862 gimple phi;
5864 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5866 phi = gsi_stmt (si);
5867 if (dump_enabled_p ())
5869 dump_printf_loc (MSG_NOTE, vect_location,
5870 "------>vectorizing phi: ");
5871 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5872 dump_printf (MSG_NOTE, "\n");
5874 stmt_info = vinfo_for_stmt (phi);
5875 if (!stmt_info)
5876 continue;
5878 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5879 vect_loop_kill_debug_uses (loop, phi);
5881 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5882 && !STMT_VINFO_LIVE_P (stmt_info))
5883 continue;
5885 if (STMT_VINFO_VECTYPE (stmt_info)
5886 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5887 != (unsigned HOST_WIDE_INT) vectorization_factor)
5888 && dump_enabled_p ())
5889 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5891 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5893 if (dump_enabled_p ())
5894 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5895 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5899 pattern_stmt = NULL;
5900 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5902 bool is_store;
5904 if (transform_pattern_stmt)
5905 stmt = pattern_stmt;
5906 else
5908 stmt = gsi_stmt (si);
5909 /* During vectorization remove existing clobber stmts. */
5910 if (gimple_clobber_p (stmt))
5912 unlink_stmt_vdef (stmt);
5913 gsi_remove (&si, true);
5914 release_defs (stmt);
5915 continue;
5919 if (dump_enabled_p ())
5921 dump_printf_loc (MSG_NOTE, vect_location,
5922 "------>vectorizing statement: ");
5923 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5924 dump_printf (MSG_NOTE, "\n");
5927 stmt_info = vinfo_for_stmt (stmt);
5929 /* vector stmts created in the outer-loop during vectorization of
5930 stmts in an inner-loop may not have a stmt_info, and do not
5931 need to be vectorized. */
5932 if (!stmt_info)
5934 gsi_next (&si);
5935 continue;
5938 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5939 vect_loop_kill_debug_uses (loop, stmt);
5941 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5942 && !STMT_VINFO_LIVE_P (stmt_info))
5944 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5945 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5946 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5947 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5949 stmt = pattern_stmt;
5950 stmt_info = vinfo_for_stmt (stmt);
5952 else
5954 gsi_next (&si);
5955 continue;
5958 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5959 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5960 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5961 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5962 transform_pattern_stmt = true;
5964 /* If pattern statement has def stmts, vectorize them too. */
5965 if (is_pattern_stmt_p (stmt_info))
5967 if (pattern_def_seq == NULL)
5969 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5970 pattern_def_si = gsi_start (pattern_def_seq);
5972 else if (!gsi_end_p (pattern_def_si))
5973 gsi_next (&pattern_def_si);
5974 if (pattern_def_seq != NULL)
5976 gimple pattern_def_stmt = NULL;
5977 stmt_vec_info pattern_def_stmt_info = NULL;
5979 while (!gsi_end_p (pattern_def_si))
5981 pattern_def_stmt = gsi_stmt (pattern_def_si);
5982 pattern_def_stmt_info
5983 = vinfo_for_stmt (pattern_def_stmt);
5984 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5985 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5986 break;
5987 gsi_next (&pattern_def_si);
5990 if (!gsi_end_p (pattern_def_si))
5992 if (dump_enabled_p ())
5994 dump_printf_loc (MSG_NOTE, vect_location,
5995 "==> vectorizing pattern def "
5996 "stmt: ");
5997 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5998 pattern_def_stmt, 0);
5999 dump_printf (MSG_NOTE, "\n");
6002 stmt = pattern_def_stmt;
6003 stmt_info = pattern_def_stmt_info;
6005 else
6007 pattern_def_si = gsi_none ();
6008 transform_pattern_stmt = false;
6011 else
6012 transform_pattern_stmt = false;
6015 if (STMT_VINFO_VECTYPE (stmt_info))
6017 unsigned int nunits
6018 = (unsigned int)
6019 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6020 if (!STMT_SLP_TYPE (stmt_info)
6021 && nunits != (unsigned int) vectorization_factor
6022 && dump_enabled_p ())
6023 /* For SLP VF is set according to unrolling factor, and not
6024 to vector size, hence for SLP this print is not valid. */
6025 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6028 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6029 reached. */
6030 if (STMT_SLP_TYPE (stmt_info))
6032 if (!slp_scheduled)
6034 slp_scheduled = true;
6036 if (dump_enabled_p ())
6037 dump_printf_loc (MSG_NOTE, vect_location,
6038 "=== scheduling SLP instances ===\n");
6040 vect_schedule_slp (loop_vinfo, NULL);
6043 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6044 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6046 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6048 pattern_def_seq = NULL;
6049 gsi_next (&si);
6051 continue;
6055 /* -------- vectorize statement ------------ */
6056 if (dump_enabled_p ())
6057 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6059 grouped_store = false;
6060 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6061 if (is_store)
6063 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6065 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6066 interleaving chain was completed - free all the stores in
6067 the chain. */
6068 gsi_next (&si);
6069 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6071 else
6073 /* Free the attached stmt_vec_info and remove the stmt. */
6074 gimple store = gsi_stmt (si);
6075 free_stmt_vec_info (store);
6076 unlink_stmt_vdef (store);
6077 gsi_remove (&si, true);
6078 release_defs (store);
6081 /* Stores can only appear at the end of pattern statements. */
6082 gcc_assert (!transform_pattern_stmt);
6083 pattern_def_seq = NULL;
6085 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6087 pattern_def_seq = NULL;
6088 gsi_next (&si);
6090 } /* stmts in BB */
6091 } /* BBs in loop */
6093 slpeel_make_loop_iterate_ntimes (loop, ratio);
6095 /* Reduce loop iterations by the vectorization factor. */
6096 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6097 expected_iterations / vectorization_factor);
6098 loop->nb_iterations_upper_bound
6099 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
6100 FLOOR_DIV_EXPR);
6101 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6102 && loop->nb_iterations_upper_bound != double_int_zero)
6103 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
6104 if (loop->any_estimate)
6106 loop->nb_iterations_estimate
6107 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
6108 FLOOR_DIV_EXPR);
6109 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6110 && loop->nb_iterations_estimate != double_int_zero)
6111 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
6114 if (dump_enabled_p ())
6116 dump_printf_loc (MSG_NOTE, vect_location,
6117 "LOOP VECTORIZED\n");
6118 if (loop->inner)
6119 dump_printf_loc (MSG_NOTE, vect_location,
6120 "OUTER LOOP VECTORIZED\n");
6121 dump_printf (MSG_NOTE, "\n");