re PR testsuite/60672 (FAIL: g++.dg/cpp1y/auto-fn25.C -std=gnu++1y (test for errors...
[official-gcc.git] / gcc / ira-costs.c
blob648806bc1829bf1fe6b1bd5482ccc94c74808c61
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
108 /* Execution frequency of the current insn. */
109 static int frequency;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
135 /* Helper for cost_classes hashing. */
137 struct cost_classes_hasher
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
157 return (hv1->num == hv2->num
158 && memcmp (hv1->classes, hv2->classes,
159 sizeof (enum reg_class) * hv1->num) == 0);
162 /* Delete cost classes info V from the hash table. */
163 inline void
164 cost_classes_hasher::remove (value_type *v)
166 ira_free (v);
169 /* Hash table of unique cost classes. */
170 static hash_table <cost_classes_hasher> cost_classes_htab;
172 /* Map allocno class -> cost classes for pseudo of given allocno
173 class. */
174 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
176 /* Map mode -> cost classes for pseudo of give mode. */
177 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
179 /* Initialize info about the cost classes for each pseudo. */
180 static void
181 initiate_regno_cost_classes (void)
183 int size = sizeof (cost_classes_t) * max_reg_num ();
185 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
186 memset (regno_cost_classes, 0, size);
187 memset (cost_classes_aclass_cache, 0,
188 sizeof (cost_classes_t) * N_REG_CLASSES);
189 memset (cost_classes_mode_cache, 0,
190 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
191 cost_classes_htab.create (200);
194 /* Create new cost classes from cost classes FROM and set up members
195 index and hard_regno_index. Return the new classes. The function
196 implements some common code of two functions
197 setup_regno_cost_classes_by_aclass and
198 setup_regno_cost_classes_by_mode. */
199 static cost_classes_t
200 setup_cost_classes (cost_classes_t from)
202 cost_classes_t classes_ptr;
203 enum reg_class cl;
204 int i, j, hard_regno;
206 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
207 classes_ptr->num = from->num;
208 for (i = 0; i < N_REG_CLASSES; i++)
209 classes_ptr->index[i] = -1;
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 classes_ptr->hard_regno_index[i] = -1;
212 for (i = 0; i < from->num; i++)
214 cl = classes_ptr->classes[i] = from->classes[i];
215 classes_ptr->index[cl] = i;
216 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
218 hard_regno = ira_class_hard_regs[cl][j];
219 if (classes_ptr->hard_regno_index[hard_regno] < 0)
220 classes_ptr->hard_regno_index[hard_regno] = i;
223 return classes_ptr;
226 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
227 This function is used when we know an initial approximation of
228 allocno class of the pseudo already, e.g. on the second iteration
229 of class cost calculation or after class cost calculation in
230 register-pressure sensitive insn scheduling or register-pressure
231 sensitive loop-invariant motion. */
232 static void
233 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
235 static struct cost_classes classes;
236 cost_classes_t classes_ptr;
237 enum reg_class cl;
238 int i;
239 cost_classes **slot;
240 HARD_REG_SET temp, temp2;
241 bool exclude_p;
243 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
245 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
246 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
247 /* We exclude classes from consideration which are subsets of
248 ACLASS only if ACLASS is an uniform class. */
249 exclude_p = ira_uniform_class_p[aclass];
250 classes.num = 0;
251 for (i = 0; i < ira_important_classes_num; i++)
253 cl = ira_important_classes[i];
254 if (exclude_p)
256 /* Exclude non-uniform classes which are subsets of
257 ACLASS. */
258 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
259 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
260 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
261 continue;
263 classes.classes[classes.num++] = cl;
265 slot = cost_classes_htab.find_slot (&classes, INSERT);
266 if (*slot == NULL)
268 classes_ptr = setup_cost_classes (&classes);
269 *slot = classes_ptr;
271 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
273 regno_cost_classes[regno] = classes_ptr;
276 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
277 decrease number of cost classes for the pseudo, if hard registers
278 of some important classes can not hold a value of MODE. So the
279 pseudo can not get hard register of some important classes and cost
280 calculation for such important classes is only waisting CPU
281 time. */
282 static void
283 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
285 static struct cost_classes classes;
286 cost_classes_t classes_ptr;
287 enum reg_class cl;
288 int i;
289 cost_classes **slot;
290 HARD_REG_SET temp;
292 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
294 classes.num = 0;
295 for (i = 0; i < ira_important_classes_num; i++)
297 cl = ira_important_classes[i];
298 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
299 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
300 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
301 continue;
302 classes.classes[classes.num++] = cl;
304 slot = cost_classes_htab.find_slot (&classes, INSERT);
305 if (*slot == NULL)
307 classes_ptr = setup_cost_classes (&classes);
308 *slot = classes_ptr;
310 else
311 classes_ptr = (cost_classes_t) *slot;
312 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
314 regno_cost_classes[regno] = classes_ptr;
317 /* Finilize info about the cost classes for each pseudo. */
318 static void
319 finish_regno_cost_classes (void)
321 ira_free (regno_cost_classes);
322 cost_classes_htab.dispose ();
327 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
328 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
329 be a pseudo register. */
330 static int
331 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
332 secondary_reload_info *prev_sri)
334 secondary_reload_info sri;
335 reg_class_t secondary_class = NO_REGS;
337 /* If X is a SCRATCH, there is actually nothing to move since we are
338 assuming optimal allocation. */
339 if (GET_CODE (x) == SCRATCH)
340 return 0;
342 /* Get the class we will actually use for a reload. */
343 rclass = targetm.preferred_reload_class (x, rclass);
345 /* If we need a secondary reload for an intermediate, the cost is
346 that to load the input into the intermediate register, then to
347 copy it. */
348 sri.prev_sri = prev_sri;
349 sri.extra_cost = 0;
350 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
352 if (secondary_class != NO_REGS)
354 ira_init_register_move_cost_if_necessary (mode);
355 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
356 + sri.extra_cost
357 + copy_cost (x, mode, secondary_class, to_p, &sri));
360 /* For memory, use the memory move cost, for (hard) registers, use
361 the cost to move between the register classes, and use 2 for
362 everything else (constants). */
363 if (MEM_P (x) || rclass == NO_REGS)
364 return sri.extra_cost
365 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
366 else if (REG_P (x))
368 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
370 ira_init_register_move_cost_if_necessary (mode);
371 return (sri.extra_cost
372 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
374 else
375 /* If this is a constant, we may eventually want to call rtx_cost
376 here. */
377 return sri.extra_cost + COSTS_N_INSNS (1);
382 /* Record the cost of using memory or hard registers of various
383 classes for the operands in INSN.
385 N_ALTS is the number of alternatives.
386 N_OPS is the number of operands.
387 OPS is an array of the operands.
388 MODES are the modes of the operands, in case any are VOIDmode.
389 CONSTRAINTS are the constraints to use for the operands. This array
390 is modified by this procedure.
392 This procedure works alternative by alternative. For each
393 alternative we assume that we will be able to allocate all allocnos
394 to their ideal register class and calculate the cost of using that
395 alternative. Then we compute, for each operand that is a
396 pseudo-register, the cost of having the allocno allocated to each
397 register class and using it in that alternative. To this cost is
398 added the cost of the alternative.
400 The cost of each class for this insn is its lowest cost among all
401 the alternatives. */
402 static void
403 record_reg_classes (int n_alts, int n_ops, rtx *ops,
404 enum machine_mode *modes, const char **constraints,
405 rtx insn, enum reg_class *pref)
407 int alt;
408 int i, j, k;
409 int insn_allows_mem[MAX_RECOG_OPERANDS];
411 for (i = 0; i < n_ops; i++)
412 insn_allows_mem[i] = 0;
414 /* Process each alternative, each time minimizing an operand's cost
415 with the cost for each operand in that alternative. */
416 for (alt = 0; alt < n_alts; alt++)
418 enum reg_class classes[MAX_RECOG_OPERANDS];
419 int allows_mem[MAX_RECOG_OPERANDS];
420 enum reg_class rclass;
421 int alt_fail = 0;
422 int alt_cost = 0, op_cost_add;
424 if (!recog_data.alternative_enabled_p[alt])
426 for (i = 0; i < recog_data.n_operands; i++)
427 constraints[i] = skip_alternative (constraints[i]);
429 continue;
432 for (i = 0; i < n_ops; i++)
434 unsigned char c;
435 const char *p = constraints[i];
436 rtx op = ops[i];
437 enum machine_mode mode = modes[i];
438 int allows_addr = 0;
439 int win = 0;
441 /* Initially show we know nothing about the register class. */
442 classes[i] = NO_REGS;
443 allows_mem[i] = 0;
445 /* If this operand has no constraints at all, we can
446 conclude nothing about it since anything is valid. */
447 if (*p == 0)
449 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
450 memset (this_op_costs[i], 0, struct_costs_size);
451 continue;
454 /* If this alternative is only relevant when this operand
455 matches a previous operand, we do different things
456 depending on whether this operand is a allocno-reg or not.
457 We must process any modifiers for the operand before we
458 can make this test. */
459 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
460 p++;
462 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
464 /* Copy class and whether memory is allowed from the
465 matching alternative. Then perform any needed cost
466 computations and/or adjustments. */
467 j = p[0] - '0';
468 classes[i] = classes[j];
469 allows_mem[i] = allows_mem[j];
470 if (allows_mem[i])
471 insn_allows_mem[i] = 1;
473 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
475 /* If this matches the other operand, we have no
476 added cost and we win. */
477 if (rtx_equal_p (ops[j], op))
478 win = 1;
479 /* If we can put the other operand into a register,
480 add to the cost of this alternative the cost to
481 copy this operand to the register used for the
482 other operand. */
483 else if (classes[j] != NO_REGS)
485 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
486 win = 1;
489 else if (! REG_P (ops[j])
490 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
492 /* This op is an allocno but the one it matches is
493 not. */
495 /* If we can't put the other operand into a
496 register, this alternative can't be used. */
498 if (classes[j] == NO_REGS)
499 alt_fail = 1;
500 /* Otherwise, add to the cost of this alternative
501 the cost to copy the other operand to the hard
502 register used for this operand. */
503 else
504 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
506 else
508 /* The costs of this operand are not the same as the
509 other operand since move costs are not symmetric.
510 Moreover, if we cannot tie them, this alternative
511 needs to do a copy, which is one insn. */
512 struct costs *pp = this_op_costs[i];
513 int *pp_costs = pp->cost;
514 cost_classes_t cost_classes_ptr
515 = regno_cost_classes[REGNO (op)];
516 enum reg_class *cost_classes = cost_classes_ptr->classes;
517 bool in_p = recog_data.operand_type[i] != OP_OUT;
518 bool out_p = recog_data.operand_type[i] != OP_IN;
519 enum reg_class op_class = classes[i];
520 move_table *move_in_cost, *move_out_cost;
522 ira_init_register_move_cost_if_necessary (mode);
523 if (! in_p)
525 ira_assert (out_p);
526 move_out_cost = ira_may_move_out_cost[mode];
527 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
529 rclass = cost_classes[k];
530 pp_costs[k]
531 = move_out_cost[op_class][rclass] * frequency;
534 else if (! out_p)
536 ira_assert (in_p);
537 move_in_cost = ira_may_move_in_cost[mode];
538 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
540 rclass = cost_classes[k];
541 pp_costs[k]
542 = move_in_cost[rclass][op_class] * frequency;
545 else
547 move_in_cost = ira_may_move_in_cost[mode];
548 move_out_cost = ira_may_move_out_cost[mode];
549 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
551 rclass = cost_classes[k];
552 pp_costs[k] = ((move_in_cost[rclass][op_class]
553 + move_out_cost[op_class][rclass])
554 * frequency);
558 /* If the alternative actually allows memory, make
559 things a bit cheaper since we won't need an extra
560 insn to load it. */
561 pp->mem_cost
562 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
563 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
564 - allows_mem[i]) * frequency;
566 /* If we have assigned a class to this allocno in
567 our first pass, add a cost to this alternative
568 corresponding to what we would add if this
569 allocno were not in the appropriate class. */
570 if (pref)
572 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
574 if (pref_class == NO_REGS)
575 alt_cost
576 += ((out_p
577 ? ira_memory_move_cost[mode][op_class][0] : 0)
578 + (in_p
579 ? ira_memory_move_cost[mode][op_class][1]
580 : 0));
581 else if (ira_reg_class_intersect
582 [pref_class][op_class] == NO_REGS)
583 alt_cost
584 += ira_register_move_cost[mode][pref_class][op_class];
586 if (REGNO (ops[i]) != REGNO (ops[j])
587 && ! find_reg_note (insn, REG_DEAD, op))
588 alt_cost += 2;
590 /* This is in place of ordinary cost computation for
591 this operand, so skip to the end of the
592 alternative (should be just one character). */
593 while (*p && *p++ != ',')
596 constraints[i] = p;
597 continue;
601 /* Scan all the constraint letters. See if the operand
602 matches any of the constraints. Collect the valid
603 register classes and see if this operand accepts
604 memory. */
605 while ((c = *p))
607 switch (c)
609 case ',':
610 break;
611 case '*':
612 /* Ignore the next letter for this pass. */
613 c = *++p;
614 break;
616 case '?':
617 alt_cost += 2;
618 case '!': case '#': case '&':
619 case '0': case '1': case '2': case '3': case '4':
620 case '5': case '6': case '7': case '8': case '9':
621 break;
623 case 'p':
624 allows_addr = 1;
625 win = address_operand (op, GET_MODE (op));
626 /* We know this operand is an address, so we want it
627 to be allocated to a register that can be the
628 base of an address, i.e. BASE_REG_CLASS. */
629 classes[i]
630 = ira_reg_class_subunion[classes[i]]
631 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
632 ADDRESS, SCRATCH)];
633 break;
635 case 'm': case 'o': case 'V':
636 /* It doesn't seem worth distinguishing between
637 offsettable and non-offsettable addresses
638 here. */
639 insn_allows_mem[i] = allows_mem[i] = 1;
640 if (MEM_P (op))
641 win = 1;
642 break;
644 case '<':
645 if (MEM_P (op)
646 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
647 || GET_CODE (XEXP (op, 0)) == POST_DEC))
648 win = 1;
649 break;
651 case '>':
652 if (MEM_P (op)
653 && (GET_CODE (XEXP (op, 0)) == PRE_INC
654 || GET_CODE (XEXP (op, 0)) == POST_INC))
655 win = 1;
656 break;
658 case 'E':
659 case 'F':
660 if (CONST_DOUBLE_AS_FLOAT_P (op)
661 || (GET_CODE (op) == CONST_VECTOR
662 && (GET_MODE_CLASS (GET_MODE (op))
663 == MODE_VECTOR_FLOAT)))
664 win = 1;
665 break;
667 case 'G':
668 case 'H':
669 if (CONST_DOUBLE_AS_FLOAT_P (op)
670 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
671 win = 1;
672 break;
674 case 's':
675 if (CONST_SCALAR_INT_P (op))
676 break;
678 case 'i':
679 if (CONSTANT_P (op)
680 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
681 win = 1;
682 break;
684 case 'n':
685 if (CONST_SCALAR_INT_P (op))
686 win = 1;
687 break;
689 case 'I':
690 case 'J':
691 case 'K':
692 case 'L':
693 case 'M':
694 case 'N':
695 case 'O':
696 case 'P':
697 if (CONST_INT_P (op)
698 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
699 win = 1;
700 break;
702 case 'X':
703 win = 1;
704 break;
706 case 'g':
707 if (MEM_P (op)
708 || (CONSTANT_P (op)
709 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
710 win = 1;
711 insn_allows_mem[i] = allows_mem[i] = 1;
712 case 'r':
713 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
714 break;
716 default:
717 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
718 classes[i] = ira_reg_class_subunion[classes[i]]
719 [REG_CLASS_FROM_CONSTRAINT (c, p)];
720 #ifdef EXTRA_CONSTRAINT_STR
721 else if (EXTRA_CONSTRAINT_STR (op, c, p))
722 win = 1;
724 if (EXTRA_MEMORY_CONSTRAINT (c, p))
726 /* Every MEM can be reloaded to fit. */
727 insn_allows_mem[i] = allows_mem[i] = 1;
728 if (MEM_P (op))
729 win = 1;
731 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
733 /* Every address can be reloaded to fit. */
734 allows_addr = 1;
735 if (address_operand (op, GET_MODE (op)))
736 win = 1;
737 /* We know this operand is an address, so we
738 want it to be allocated to a hard register
739 that can be the base of an address,
740 i.e. BASE_REG_CLASS. */
741 classes[i]
742 = ira_reg_class_subunion[classes[i]]
743 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
744 ADDRESS, SCRATCH)];
746 #endif
747 break;
749 p += CONSTRAINT_LEN (c, p);
750 if (c == ',')
751 break;
754 constraints[i] = p;
756 /* How we account for this operand now depends on whether it
757 is a pseudo register or not. If it is, we first check if
758 any register classes are valid. If not, we ignore this
759 alternative, since we want to assume that all allocnos get
760 allocated for register preferencing. If some register
761 class is valid, compute the costs of moving the allocno
762 into that class. */
763 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
765 if (classes[i] == NO_REGS)
767 /* We must always fail if the operand is a REG, but
768 we did not find a suitable class.
770 Otherwise we may perform an uninitialized read
771 from this_op_costs after the `continue' statement
772 below. */
773 alt_fail = 1;
775 else
777 unsigned int regno = REGNO (op);
778 struct costs *pp = this_op_costs[i];
779 int *pp_costs = pp->cost;
780 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
781 enum reg_class *cost_classes = cost_classes_ptr->classes;
782 bool in_p = recog_data.operand_type[i] != OP_OUT;
783 bool out_p = recog_data.operand_type[i] != OP_IN;
784 enum reg_class op_class = classes[i];
785 move_table *move_in_cost, *move_out_cost;
787 ira_init_register_move_cost_if_necessary (mode);
788 if (! in_p)
790 ira_assert (out_p);
791 move_out_cost = ira_may_move_out_cost[mode];
792 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
794 rclass = cost_classes[k];
795 pp_costs[k]
796 = move_out_cost[op_class][rclass] * frequency;
799 else if (! out_p)
801 ira_assert (in_p);
802 move_in_cost = ira_may_move_in_cost[mode];
803 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
805 rclass = cost_classes[k];
806 pp_costs[k]
807 = move_in_cost[rclass][op_class] * frequency;
810 else
812 move_in_cost = ira_may_move_in_cost[mode];
813 move_out_cost = ira_may_move_out_cost[mode];
814 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
816 rclass = cost_classes[k];
817 pp_costs[k] = ((move_in_cost[rclass][op_class]
818 + move_out_cost[op_class][rclass])
819 * frequency);
823 /* If the alternative actually allows memory, make
824 things a bit cheaper since we won't need an extra
825 insn to load it. */
826 pp->mem_cost
827 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
828 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
829 - allows_mem[i]) * frequency;
830 /* If we have assigned a class to this allocno in
831 our first pass, add a cost to this alternative
832 corresponding to what we would add if this
833 allocno were not in the appropriate class. */
834 if (pref)
836 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
838 if (pref_class == NO_REGS)
839 alt_cost
840 += ((out_p
841 ? ira_memory_move_cost[mode][op_class][0] : 0)
842 + (in_p
843 ? ira_memory_move_cost[mode][op_class][1]
844 : 0));
845 else if (ira_reg_class_intersect[pref_class][op_class]
846 == NO_REGS)
847 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
852 /* Otherwise, if this alternative wins, either because we
853 have already determined that or if we have a hard
854 register of the proper class, there is no cost for this
855 alternative. */
856 else if (win || (REG_P (op)
857 && reg_fits_class_p (op, classes[i],
858 0, GET_MODE (op))))
861 /* If registers are valid, the cost of this alternative
862 includes copying the object to and/or from a
863 register. */
864 else if (classes[i] != NO_REGS)
866 if (recog_data.operand_type[i] != OP_OUT)
867 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
869 if (recog_data.operand_type[i] != OP_IN)
870 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
872 /* The only other way this alternative can be used is if
873 this is a constant that could be placed into memory. */
874 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
875 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
876 else
877 alt_fail = 1;
880 if (alt_fail)
881 continue;
883 op_cost_add = alt_cost * frequency;
884 /* Finally, update the costs with the information we've
885 calculated about this alternative. */
886 for (i = 0; i < n_ops; i++)
887 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
889 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
890 int *pp_costs = pp->cost, *qq_costs = qq->cost;
891 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
892 cost_classes_t cost_classes_ptr
893 = regno_cost_classes[REGNO (ops[i])];
895 pp->mem_cost = MIN (pp->mem_cost,
896 (qq->mem_cost + op_cost_add) * scale);
898 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
899 pp_costs[k]
900 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
904 if (allocno_p)
905 for (i = 0; i < n_ops; i++)
907 ira_allocno_t a;
908 rtx op = ops[i];
910 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
911 continue;
912 a = ira_curr_regno_allocno_map [REGNO (op)];
913 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
914 ALLOCNO_BAD_SPILL_P (a) = true;
921 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
922 static inline bool
923 ok_for_index_p_nonstrict (rtx reg)
925 unsigned regno = REGNO (reg);
927 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
930 /* A version of regno_ok_for_base_p for use here, when all
931 pseudo-registers should count as OK. Arguments as for
932 regno_ok_for_base_p. */
933 static inline bool
934 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
935 enum rtx_code outer_code, enum rtx_code index_code)
937 unsigned regno = REGNO (reg);
939 if (regno >= FIRST_PSEUDO_REGISTER)
940 return true;
941 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
944 /* Record the pseudo registers we must reload into hard registers in a
945 subexpression of a memory address, X.
947 If CONTEXT is 0, we are looking at the base part of an address,
948 otherwise we are looking at the index part.
950 MODE and AS are the mode and address space of the memory reference;
951 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
952 These four arguments are passed down to base_reg_class.
954 SCALE is twice the amount to multiply the cost by (it is twice so
955 we can represent half-cost adjustments). */
956 static void
957 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
958 int context, enum rtx_code outer_code,
959 enum rtx_code index_code, int scale)
961 enum rtx_code code = GET_CODE (x);
962 enum reg_class rclass;
964 if (context == 1)
965 rclass = INDEX_REG_CLASS;
966 else
967 rclass = base_reg_class (mode, as, outer_code, index_code);
969 switch (code)
971 case CONST_INT:
972 case CONST:
973 case CC0:
974 case PC:
975 case SYMBOL_REF:
976 case LABEL_REF:
977 return;
979 case PLUS:
980 /* When we have an address that is a sum, we must determine
981 whether registers are "base" or "index" regs. If there is a
982 sum of two registers, we must choose one to be the "base".
983 Luckily, we can use the REG_POINTER to make a good choice
984 most of the time. We only need to do this on machines that
985 can have two registers in an address and where the base and
986 index register classes are different.
988 ??? This code used to set REGNO_POINTER_FLAG in some cases,
989 but that seems bogus since it should only be set when we are
990 sure the register is being used as a pointer. */
992 rtx arg0 = XEXP (x, 0);
993 rtx arg1 = XEXP (x, 1);
994 enum rtx_code code0 = GET_CODE (arg0);
995 enum rtx_code code1 = GET_CODE (arg1);
997 /* Look inside subregs. */
998 if (code0 == SUBREG)
999 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1000 if (code1 == SUBREG)
1001 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1003 /* If this machine only allows one register per address, it
1004 must be in the first operand. */
1005 if (MAX_REGS_PER_ADDRESS == 1)
1006 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1008 /* If index and base registers are the same on this machine,
1009 just record registers in any non-constant operands. We
1010 assume here, as well as in the tests below, that all
1011 addresses are in canonical form. */
1012 else if (INDEX_REG_CLASS
1013 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1015 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1016 if (! CONSTANT_P (arg1))
1017 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1020 /* If the second operand is a constant integer, it doesn't
1021 change what class the first operand must be. */
1022 else if (CONST_SCALAR_INT_P (arg1))
1023 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1024 /* If the second operand is a symbolic constant, the first
1025 operand must be an index register. */
1026 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1027 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1028 /* If both operands are registers but one is already a hard
1029 register of index or reg-base class, give the other the
1030 class that the hard register is not. */
1031 else if (code0 == REG && code1 == REG
1032 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1033 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1034 || ok_for_index_p_nonstrict (arg0)))
1035 record_address_regs (mode, as, arg1,
1036 ok_for_base_p_nonstrict (arg0, mode, as,
1037 PLUS, REG) ? 1 : 0,
1038 PLUS, REG, scale);
1039 else if (code0 == REG && code1 == REG
1040 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1041 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1042 || ok_for_index_p_nonstrict (arg1)))
1043 record_address_regs (mode, as, arg0,
1044 ok_for_base_p_nonstrict (arg1, mode, as,
1045 PLUS, REG) ? 1 : 0,
1046 PLUS, REG, scale);
1047 /* If one operand is known to be a pointer, it must be the
1048 base with the other operand the index. Likewise if the
1049 other operand is a MULT. */
1050 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1052 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1053 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1055 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1057 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1058 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1060 /* Otherwise, count equal chances that each might be a base or
1061 index register. This case should be rare. */
1062 else
1064 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1065 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1066 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1067 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1070 break;
1072 /* Double the importance of an allocno that is incremented or
1073 decremented, since it would take two extra insns if it ends
1074 up in the wrong place. */
1075 case POST_MODIFY:
1076 case PRE_MODIFY:
1077 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1078 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1079 if (REG_P (XEXP (XEXP (x, 1), 1)))
1080 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1081 2 * scale);
1082 break;
1084 case POST_INC:
1085 case PRE_INC:
1086 case POST_DEC:
1087 case PRE_DEC:
1088 /* Double the importance of an allocno that is incremented or
1089 decremented, since it would take two extra insns if it ends
1090 up in the wrong place. */
1091 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1092 break;
1094 case REG:
1096 struct costs *pp;
1097 int *pp_costs;
1098 enum reg_class i;
1099 int k, regno, add_cost;
1100 cost_classes_t cost_classes_ptr;
1101 enum reg_class *cost_classes;
1102 move_table *move_in_cost;
1104 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1105 break;
1107 regno = REGNO (x);
1108 if (allocno_p)
1109 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1110 pp = COSTS (costs, COST_INDEX (regno));
1111 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1112 if (INT_MAX - add_cost < pp->mem_cost)
1113 pp->mem_cost = INT_MAX;
1114 else
1115 pp->mem_cost += add_cost;
1116 cost_classes_ptr = regno_cost_classes[regno];
1117 cost_classes = cost_classes_ptr->classes;
1118 pp_costs = pp->cost;
1119 ira_init_register_move_cost_if_necessary (Pmode);
1120 move_in_cost = ira_may_move_in_cost[Pmode];
1121 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1123 i = cost_classes[k];
1124 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1125 if (INT_MAX - add_cost < pp_costs[k])
1126 pp_costs[k] = INT_MAX;
1127 else
1128 pp_costs[k] += add_cost;
1131 break;
1133 default:
1135 const char *fmt = GET_RTX_FORMAT (code);
1136 int i;
1137 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1138 if (fmt[i] == 'e')
1139 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1140 scale);
1147 /* Calculate the costs of insn operands. */
1148 static void
1149 record_operand_costs (rtx insn, enum reg_class *pref)
1151 const char *constraints[MAX_RECOG_OPERANDS];
1152 enum machine_mode modes[MAX_RECOG_OPERANDS];
1153 rtx ops[MAX_RECOG_OPERANDS];
1154 rtx set;
1155 int i;
1157 for (i = 0; i < recog_data.n_operands; i++)
1159 constraints[i] = recog_data.constraints[i];
1160 modes[i] = recog_data.operand_mode[i];
1163 /* If we get here, we are set up to record the costs of all the
1164 operands for this insn. Start by initializing the costs. Then
1165 handle any address registers. Finally record the desired classes
1166 for any allocnos, doing it twice if some pair of operands are
1167 commutative. */
1168 for (i = 0; i < recog_data.n_operands; i++)
1170 memcpy (op_costs[i], init_cost, struct_costs_size);
1172 ops[i] = recog_data.operand[i];
1173 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1174 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1176 if (MEM_P (recog_data.operand[i]))
1177 record_address_regs (GET_MODE (recog_data.operand[i]),
1178 MEM_ADDR_SPACE (recog_data.operand[i]),
1179 XEXP (recog_data.operand[i], 0),
1180 0, MEM, SCRATCH, frequency * 2);
1181 else if (constraints[i][0] == 'p'
1182 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1183 constraints[i]))
1184 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1185 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1186 frequency * 2);
1189 /* Check for commutative in a separate loop so everything will have
1190 been initialized. We must do this even if one operand is a
1191 constant--see addsi3 in m68k.md. */
1192 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1193 if (constraints[i][0] == '%')
1195 const char *xconstraints[MAX_RECOG_OPERANDS];
1196 int j;
1198 /* Handle commutative operands by swapping the constraints.
1199 We assume the modes are the same. */
1200 for (j = 0; j < recog_data.n_operands; j++)
1201 xconstraints[j] = constraints[j];
1203 xconstraints[i] = constraints[i+1];
1204 xconstraints[i+1] = constraints[i];
1205 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1206 recog_data.operand, modes,
1207 xconstraints, insn, pref);
1209 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1210 recog_data.operand, modes,
1211 constraints, insn, pref);
1213 /* If this insn is a single set copying operand 1 to operand 0 and
1214 one operand is an allocno with the other a hard reg or an allocno
1215 that prefers a hard register that is in its own register class
1216 then we may want to adjust the cost of that register class to -1.
1218 Avoid the adjustment if the source does not die to avoid
1219 stressing of register allocator by preferrencing two colliding
1220 registers into single class.
1222 Also avoid the adjustment if a copy between hard registers of the
1223 class is expensive (ten times the cost of a default copy is
1224 considered arbitrarily expensive). This avoids losing when the
1225 preferred class is very expensive as the source of a copy
1226 instruction. */
1227 if ((set = single_set (insn)) != NULL_RTX
1228 /* In rare cases the single set insn might have less 2 operands
1229 as the source can be a fixed special reg. */
1230 && recog_data.n_operands > 1
1231 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1233 int regno, other_regno;
1234 rtx dest = SET_DEST (set);
1235 rtx src = SET_SRC (set);
1237 dest = SET_DEST (set);
1238 src = SET_SRC (set);
1239 if (GET_CODE (dest) == SUBREG
1240 && (GET_MODE_SIZE (GET_MODE (dest))
1241 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1242 dest = SUBREG_REG (dest);
1243 if (GET_CODE (src) == SUBREG
1244 && (GET_MODE_SIZE (GET_MODE (src))
1245 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1246 src = SUBREG_REG (src);
1247 if (REG_P (src) && REG_P (dest)
1248 && find_regno_note (insn, REG_DEAD, REGNO (src))
1249 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1250 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1251 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1252 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1254 enum machine_mode mode = GET_MODE (src);
1255 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1256 enum reg_class *cost_classes = cost_classes_ptr->classes;
1257 reg_class_t rclass;
1258 int k, nr;
1260 i = regno == (int) REGNO (src) ? 1 : 0;
1261 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1263 rclass = cost_classes[k];
1264 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1265 && (reg_class_size[(int) rclass]
1266 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1268 if (reg_class_size[rclass] == 1)
1269 op_costs[i]->cost[k] = -frequency;
1270 else
1272 for (nr = 0;
1273 nr < hard_regno_nregs[other_regno][mode];
1274 nr++)
1275 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1276 other_regno + nr))
1277 break;
1279 if (nr == hard_regno_nregs[other_regno][mode])
1280 op_costs[i]->cost[k] = -frequency;
1290 /* Process one insn INSN. Scan it and record each time it would save
1291 code to put a certain allocnos in a certain class. Return the last
1292 insn processed, so that the scan can be continued from there. */
1293 static rtx
1294 scan_one_insn (rtx insn)
1296 enum rtx_code pat_code;
1297 rtx set, note;
1298 int i, k;
1299 bool counted_mem;
1301 if (!NONDEBUG_INSN_P (insn))
1302 return insn;
1304 pat_code = GET_CODE (PATTERN (insn));
1305 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1306 return insn;
1308 counted_mem = false;
1309 set = single_set (insn);
1310 extract_insn (insn);
1312 /* If this insn loads a parameter from its stack slot, then it
1313 represents a savings, rather than a cost, if the parameter is
1314 stored in memory. Record this fact.
1316 Similarly if we're loading other constants from memory (constant
1317 pool, TOC references, small data areas, etc) and this is the only
1318 assignment to the destination pseudo.
1320 Don't do this if SET_SRC (set) isn't a general operand, if it is
1321 a memory requiring special instructions to load it, decreasing
1322 mem_cost might result in it being loaded using the specialized
1323 instruction into a register, then stored into stack and loaded
1324 again from the stack. See PR52208.
1326 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1327 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1328 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1329 && ((MEM_P (XEXP (note, 0))
1330 && !side_effects_p (SET_SRC (set)))
1331 || (CONSTANT_P (XEXP (note, 0))
1332 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1333 XEXP (note, 0))
1334 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1335 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1337 enum reg_class cl = GENERAL_REGS;
1338 rtx reg = SET_DEST (set);
1339 int num = COST_INDEX (REGNO (reg));
1341 COSTS (costs, num)->mem_cost
1342 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1343 record_address_regs (GET_MODE (SET_SRC (set)),
1344 MEM_ADDR_SPACE (SET_SRC (set)),
1345 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1346 frequency * 2);
1347 counted_mem = true;
1350 record_operand_costs (insn, pref);
1352 /* Now add the cost for each operand to the total costs for its
1353 allocno. */
1354 for (i = 0; i < recog_data.n_operands; i++)
1355 if (REG_P (recog_data.operand[i])
1356 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1358 int regno = REGNO (recog_data.operand[i]);
1359 struct costs *p = COSTS (costs, COST_INDEX (regno));
1360 struct costs *q = op_costs[i];
1361 int *p_costs = p->cost, *q_costs = q->cost;
1362 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1363 int add_cost;
1365 /* If the already accounted for the memory "cost" above, don't
1366 do so again. */
1367 if (!counted_mem)
1369 add_cost = q->mem_cost;
1370 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1371 p->mem_cost = INT_MAX;
1372 else
1373 p->mem_cost += add_cost;
1375 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1377 add_cost = q_costs[k];
1378 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1379 p_costs[k] = INT_MAX;
1380 else
1381 p_costs[k] += add_cost;
1385 return insn;
1390 /* Print allocnos costs to file F. */
1391 static void
1392 print_allocno_costs (FILE *f)
1394 int k;
1395 ira_allocno_t a;
1396 ira_allocno_iterator ai;
1398 ira_assert (allocno_p);
1399 fprintf (f, "\n");
1400 FOR_EACH_ALLOCNO (a, ai)
1402 int i, rclass;
1403 basic_block bb;
1404 int regno = ALLOCNO_REGNO (a);
1405 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1406 enum reg_class *cost_classes = cost_classes_ptr->classes;
1408 i = ALLOCNO_NUM (a);
1409 fprintf (f, " a%d(r%d,", i, regno);
1410 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1411 fprintf (f, "b%d", bb->index);
1412 else
1413 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1414 fprintf (f, ") costs:");
1415 for (k = 0; k < cost_classes_ptr->num; k++)
1417 rclass = cost_classes[k];
1418 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1419 #ifdef CANNOT_CHANGE_MODE_CLASS
1420 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1421 #endif
1424 fprintf (f, " %s:%d", reg_class_names[rclass],
1425 COSTS (costs, i)->cost[k]);
1426 if (flag_ira_region == IRA_REGION_ALL
1427 || flag_ira_region == IRA_REGION_MIXED)
1428 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1431 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1432 if (flag_ira_region == IRA_REGION_ALL
1433 || flag_ira_region == IRA_REGION_MIXED)
1434 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1435 fprintf (f, "\n");
1439 /* Print pseudo costs to file F. */
1440 static void
1441 print_pseudo_costs (FILE *f)
1443 int regno, k;
1444 int rclass;
1445 cost_classes_t cost_classes_ptr;
1446 enum reg_class *cost_classes;
1448 ira_assert (! allocno_p);
1449 fprintf (f, "\n");
1450 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1452 if (REG_N_REFS (regno) <= 0)
1453 continue;
1454 cost_classes_ptr = regno_cost_classes[regno];
1455 cost_classes = cost_classes_ptr->classes;
1456 fprintf (f, " r%d costs:", regno);
1457 for (k = 0; k < cost_classes_ptr->num; k++)
1459 rclass = cost_classes[k];
1460 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1461 #ifdef CANNOT_CHANGE_MODE_CLASS
1462 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1463 #endif
1465 fprintf (f, " %s:%d", reg_class_names[rclass],
1466 COSTS (costs, regno)->cost[k]);
1468 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1472 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1473 costs. */
1474 static void
1475 process_bb_for_costs (basic_block bb)
1477 rtx insn;
1479 frequency = REG_FREQ_FROM_BB (bb);
1480 if (frequency == 0)
1481 frequency = 1;
1482 FOR_BB_INSNS (bb, insn)
1483 insn = scan_one_insn (insn);
1486 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1487 costs. */
1488 static void
1489 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1491 basic_block bb;
1493 bb = loop_tree_node->bb;
1494 if (bb != NULL)
1495 process_bb_for_costs (bb);
1498 /* Find costs of register classes and memory for allocnos or pseudos
1499 and their best costs. Set up preferred, alternative and allocno
1500 classes for pseudos. */
1501 static void
1502 find_costs_and_classes (FILE *dump_file)
1504 int i, k, start, max_cost_classes_num;
1505 int pass;
1506 basic_block bb;
1507 enum reg_class *regno_best_class;
1509 init_recog ();
1510 regno_best_class
1511 = (enum reg_class *) ira_allocate (max_reg_num ()
1512 * sizeof (enum reg_class));
1513 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1514 regno_best_class[i] = NO_REGS;
1515 if (!resize_reg_info () && allocno_p
1516 && pseudo_classes_defined_p && flag_expensive_optimizations)
1518 ira_allocno_t a;
1519 ira_allocno_iterator ai;
1521 pref = pref_buffer;
1522 max_cost_classes_num = 1;
1523 FOR_EACH_ALLOCNO (a, ai)
1525 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1526 setup_regno_cost_classes_by_aclass
1527 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1528 max_cost_classes_num
1529 = MAX (max_cost_classes_num,
1530 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1532 start = 1;
1534 else
1536 pref = NULL;
1537 max_cost_classes_num = ira_important_classes_num;
1538 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1539 if (regno_reg_rtx[i] != NULL_RTX)
1540 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1541 else
1542 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1543 start = 0;
1545 if (allocno_p)
1546 /* Clear the flag for the next compiled function. */
1547 pseudo_classes_defined_p = false;
1548 /* Normally we scan the insns once and determine the best class to
1549 use for each allocno. However, if -fexpensive-optimizations are
1550 on, we do so twice, the second time using the tentative best
1551 classes to guide the selection. */
1552 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1554 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1555 fprintf (dump_file,
1556 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1558 if (pass != start)
1560 max_cost_classes_num = 1;
1561 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1563 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1564 max_cost_classes_num
1565 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1569 struct_costs_size
1570 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1571 /* Zero out our accumulation of the cost of each class for each
1572 allocno. */
1573 memset (costs, 0, cost_elements_num * struct_costs_size);
1575 if (allocno_p)
1577 /* Scan the instructions and record each time it would save code
1578 to put a certain allocno in a certain class. */
1579 ira_traverse_loop_tree (true, ira_loop_tree_root,
1580 process_bb_node_for_costs, NULL);
1582 memcpy (total_allocno_costs, costs,
1583 max_struct_costs_size * ira_allocnos_num);
1585 else
1587 basic_block bb;
1589 FOR_EACH_BB_FN (bb, cfun)
1590 process_bb_for_costs (bb);
1593 if (pass == 0)
1594 pref = pref_buffer;
1596 /* Now for each allocno look at how desirable each class is and
1597 find which class is preferred. */
1598 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1600 ira_allocno_t a, parent_a;
1601 int rclass, a_num, parent_a_num, add_cost;
1602 ira_loop_tree_node_t parent;
1603 int best_cost, allocno_cost;
1604 enum reg_class best, alt_class;
1605 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1606 enum reg_class *cost_classes = cost_classes_ptr->classes;
1607 int *i_costs = temp_costs->cost;
1608 int i_mem_cost;
1609 int equiv_savings = regno_equiv_gains[i];
1611 if (! allocno_p)
1613 if (regno_reg_rtx[i] == NULL_RTX)
1614 continue;
1615 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1616 i_mem_cost = temp_costs->mem_cost;
1618 else
1620 if (ira_regno_allocno_map[i] == NULL)
1621 continue;
1622 memset (temp_costs, 0, struct_costs_size);
1623 i_mem_cost = 0;
1624 /* Find cost of all allocnos with the same regno. */
1625 for (a = ira_regno_allocno_map[i];
1626 a != NULL;
1627 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1629 int *a_costs, *p_costs;
1631 a_num = ALLOCNO_NUM (a);
1632 if ((flag_ira_region == IRA_REGION_ALL
1633 || flag_ira_region == IRA_REGION_MIXED)
1634 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1635 && (parent_a = parent->regno_allocno_map[i]) != NULL
1636 /* There are no caps yet. */
1637 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1638 (a)->border_allocnos,
1639 ALLOCNO_NUM (a)))
1641 /* Propagate costs to upper levels in the region
1642 tree. */
1643 parent_a_num = ALLOCNO_NUM (parent_a);
1644 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1645 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1646 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1648 add_cost = a_costs[k];
1649 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1650 p_costs[k] = INT_MAX;
1651 else
1652 p_costs[k] += add_cost;
1654 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1655 if (add_cost > 0
1656 && (INT_MAX - add_cost
1657 < COSTS (total_allocno_costs,
1658 parent_a_num)->mem_cost))
1659 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1660 = INT_MAX;
1661 else
1662 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1663 += add_cost;
1665 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1666 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1668 a_costs = COSTS (costs, a_num)->cost;
1669 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1671 add_cost = a_costs[k];
1672 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1673 i_costs[k] = INT_MAX;
1674 else
1675 i_costs[k] += add_cost;
1677 add_cost = COSTS (costs, a_num)->mem_cost;
1678 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1679 i_mem_cost = INT_MAX;
1680 else
1681 i_mem_cost += add_cost;
1684 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1685 i_mem_cost = 0;
1686 else if (equiv_savings < 0)
1687 i_mem_cost = -equiv_savings;
1688 else if (equiv_savings > 0)
1690 i_mem_cost = 0;
1691 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1692 i_costs[k] += equiv_savings;
1695 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1696 best = ALL_REGS;
1697 alt_class = NO_REGS;
1698 /* Find best common class for all allocnos with the same
1699 regno. */
1700 for (k = 0; k < cost_classes_ptr->num; k++)
1702 rclass = cost_classes[k];
1703 /* Ignore classes that are too small or invalid for this
1704 operand. */
1705 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1706 #ifdef CANNOT_CHANGE_MODE_CLASS
1707 || invalid_mode_change_p (i, (enum reg_class) rclass)
1708 #endif
1710 continue;
1711 if (i_costs[k] < best_cost)
1713 best_cost = i_costs[k];
1714 best = (enum reg_class) rclass;
1716 else if (i_costs[k] == best_cost)
1717 best = ira_reg_class_subunion[best][rclass];
1718 if (pass == flag_expensive_optimizations
1719 /* We still prefer registers to memory even at this
1720 stage if their costs are the same. We will make
1721 a final decision during assigning hard registers
1722 when we have all info including more accurate
1723 costs which might be affected by assigning hard
1724 registers to other pseudos because the pseudos
1725 involved in moves can be coalesced. */
1726 && i_costs[k] <= i_mem_cost
1727 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1728 > reg_class_size[alt_class]))
1729 alt_class = reg_class_subunion[alt_class][rclass];
1731 alt_class = ira_allocno_class_translate[alt_class];
1732 if (best_cost > i_mem_cost)
1733 regno_aclass[i] = NO_REGS;
1734 else
1736 /* Make the common class the biggest class of best and
1737 alt_class. */
1738 regno_aclass[i]
1739 = ira_reg_class_superunion[best][alt_class];
1740 ira_assert (regno_aclass[i] != NO_REGS
1741 && ira_reg_allocno_class_p[regno_aclass[i]]);
1743 if (pass == flag_expensive_optimizations)
1745 if (best_cost > i_mem_cost)
1746 best = alt_class = NO_REGS;
1747 else if (best == alt_class)
1748 alt_class = NO_REGS;
1749 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1750 if ((!allocno_p || internal_flag_ira_verbose > 2)
1751 && dump_file != NULL)
1752 fprintf (dump_file,
1753 " r%d: preferred %s, alternative %s, allocno %s\n",
1754 i, reg_class_names[best], reg_class_names[alt_class],
1755 reg_class_names[regno_aclass[i]]);
1757 regno_best_class[i] = best;
1758 if (! allocno_p)
1760 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1761 continue;
1763 for (a = ira_regno_allocno_map[i];
1764 a != NULL;
1765 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1767 enum reg_class aclass = regno_aclass[i];
1768 int a_num = ALLOCNO_NUM (a);
1769 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1770 int *a_costs = COSTS (costs, a_num)->cost;
1772 if (aclass == NO_REGS)
1773 best = NO_REGS;
1774 else
1776 /* Finding best class which is subset of the common
1777 class. */
1778 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1779 allocno_cost = best_cost;
1780 best = ALL_REGS;
1781 for (k = 0; k < cost_classes_ptr->num; k++)
1783 rclass = cost_classes[k];
1784 if (! ira_class_subset_p[rclass][aclass])
1785 continue;
1786 /* Ignore classes that are too small or invalid
1787 for this operand. */
1788 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1789 #ifdef CANNOT_CHANGE_MODE_CLASS
1790 || invalid_mode_change_p (i, (enum reg_class) rclass)
1791 #endif
1794 else if (total_a_costs[k] < best_cost)
1796 best_cost = total_a_costs[k];
1797 allocno_cost = a_costs[k];
1798 best = (enum reg_class) rclass;
1800 else if (total_a_costs[k] == best_cost)
1802 best = ira_reg_class_subunion[best][rclass];
1803 allocno_cost = MAX (allocno_cost, a_costs[k]);
1806 ALLOCNO_CLASS_COST (a) = allocno_cost;
1808 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1809 && (pass == 0 || pref[a_num] != best))
1811 fprintf (dump_file, " a%d (r%d,", a_num, i);
1812 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1813 fprintf (dump_file, "b%d", bb->index);
1814 else
1815 fprintf (dump_file, "l%d",
1816 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1817 fprintf (dump_file, ") best %s, allocno %s\n",
1818 reg_class_names[best],
1819 reg_class_names[aclass]);
1821 pref[a_num] = best;
1822 if (pass == flag_expensive_optimizations && best != aclass
1823 && ira_class_hard_regs_num[best] > 0
1824 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1825 >= ira_class_hard_regs_num[best]))
1827 int ind = cost_classes_ptr->index[aclass];
1829 ira_assert (ind >= 0);
1830 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1831 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1832 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1833 / (ira_register_move_cost
1834 [ALLOCNO_MODE (a)][best][aclass]));
1835 for (k = 0; k < cost_classes_ptr->num; k++)
1836 if (ira_class_subset_p[cost_classes[k]][best])
1837 a_costs[k] = a_costs[ind];
1842 if (internal_flag_ira_verbose > 4 && dump_file)
1844 if (allocno_p)
1845 print_allocno_costs (dump_file);
1846 else
1847 print_pseudo_costs (dump_file);
1848 fprintf (dump_file,"\n");
1851 ira_free (regno_best_class);
1856 /* Process moves involving hard regs to modify allocno hard register
1857 costs. We can do this only after determining allocno class. If a
1858 hard register forms a register class, than moves with the hard
1859 register are already taken into account in class costs for the
1860 allocno. */
1861 static void
1862 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1864 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1865 bool to_p;
1866 ira_allocno_t a, curr_a;
1867 ira_loop_tree_node_t curr_loop_tree_node;
1868 enum reg_class rclass;
1869 basic_block bb;
1870 rtx insn, set, src, dst;
1872 bb = loop_tree_node->bb;
1873 if (bb == NULL)
1874 return;
1875 freq = REG_FREQ_FROM_BB (bb);
1876 if (freq == 0)
1877 freq = 1;
1878 FOR_BB_INSNS (bb, insn)
1880 if (!NONDEBUG_INSN_P (insn))
1881 continue;
1882 set = single_set (insn);
1883 if (set == NULL_RTX)
1884 continue;
1885 dst = SET_DEST (set);
1886 src = SET_SRC (set);
1887 if (! REG_P (dst) || ! REG_P (src))
1888 continue;
1889 dst_regno = REGNO (dst);
1890 src_regno = REGNO (src);
1891 if (dst_regno >= FIRST_PSEUDO_REGISTER
1892 && src_regno < FIRST_PSEUDO_REGISTER)
1894 hard_regno = src_regno;
1895 a = ira_curr_regno_allocno_map[dst_regno];
1896 to_p = true;
1898 else if (src_regno >= FIRST_PSEUDO_REGISTER
1899 && dst_regno < FIRST_PSEUDO_REGISTER)
1901 hard_regno = dst_regno;
1902 a = ira_curr_regno_allocno_map[src_regno];
1903 to_p = false;
1905 else
1906 continue;
1907 rclass = ALLOCNO_CLASS (a);
1908 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1909 continue;
1910 i = ira_class_hard_reg_index[rclass][hard_regno];
1911 if (i < 0)
1912 continue;
1913 a_regno = ALLOCNO_REGNO (a);
1914 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1915 curr_loop_tree_node != NULL;
1916 curr_loop_tree_node = curr_loop_tree_node->parent)
1917 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1918 ira_add_allocno_pref (curr_a, hard_regno, freq);
1920 int cost;
1921 enum reg_class hard_reg_class;
1922 enum machine_mode mode;
1924 mode = ALLOCNO_MODE (a);
1925 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1926 ira_init_register_move_cost_if_necessary (mode);
1927 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1928 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1929 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1930 ALLOCNO_CLASS_COST (a));
1931 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1932 rclass, 0);
1933 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1934 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1935 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1936 ALLOCNO_HARD_REG_COSTS (a)[i]);
1941 /* After we find hard register and memory costs for allocnos, define
1942 its class and modify hard register cost because insns moving
1943 allocno to/from hard registers. */
1944 static void
1945 setup_allocno_class_and_costs (void)
1947 int i, j, n, regno, hard_regno, num;
1948 int *reg_costs;
1949 enum reg_class aclass, rclass;
1950 ira_allocno_t a;
1951 ira_allocno_iterator ai;
1952 cost_classes_t cost_classes_ptr;
1954 ira_assert (allocno_p);
1955 FOR_EACH_ALLOCNO (a, ai)
1957 i = ALLOCNO_NUM (a);
1958 regno = ALLOCNO_REGNO (a);
1959 aclass = regno_aclass[regno];
1960 cost_classes_ptr = regno_cost_classes[regno];
1961 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1962 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1963 ira_set_allocno_class (a, aclass);
1964 if (aclass == NO_REGS)
1965 continue;
1966 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1968 n = ira_class_hard_regs_num[aclass];
1969 ALLOCNO_HARD_REG_COSTS (a)
1970 = reg_costs = ira_allocate_cost_vector (aclass);
1971 for (j = n - 1; j >= 0; j--)
1973 hard_regno = ira_class_hard_regs[aclass][j];
1974 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1975 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1976 else
1978 rclass = REGNO_REG_CLASS (hard_regno);
1979 num = cost_classes_ptr->index[rclass];
1980 if (num < 0)
1982 num = cost_classes_ptr->hard_regno_index[hard_regno];
1983 ira_assert (num >= 0);
1985 reg_costs[j] = COSTS (costs, i)->cost[num];
1990 if (optimize)
1991 ira_traverse_loop_tree (true, ira_loop_tree_root,
1992 process_bb_node_for_hard_reg_moves, NULL);
1997 /* Function called once during compiler work. */
1998 void
1999 ira_init_costs_once (void)
2001 int i;
2003 init_cost = NULL;
2004 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2006 op_costs[i] = NULL;
2007 this_op_costs[i] = NULL;
2009 temp_costs = NULL;
2012 /* Free allocated temporary cost vectors. */
2013 static void
2014 free_ira_costs (void)
2016 int i;
2018 free (init_cost);
2019 init_cost = NULL;
2020 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2022 free (op_costs[i]);
2023 free (this_op_costs[i]);
2024 op_costs[i] = this_op_costs[i] = NULL;
2026 free (temp_costs);
2027 temp_costs = NULL;
2030 /* This is called each time register related information is
2031 changed. */
2032 void
2033 ira_init_costs (void)
2035 int i;
2037 free_ira_costs ();
2038 max_struct_costs_size
2039 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2040 /* Don't use ira_allocate because vectors live through several IRA
2041 calls. */
2042 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2043 init_cost->mem_cost = 1000000;
2044 for (i = 0; i < ira_important_classes_num; i++)
2045 init_cost->cost[i] = 1000000;
2046 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2048 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2049 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2051 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2054 /* Function called once at the end of compiler work. */
2055 void
2056 ira_finish_costs_once (void)
2058 free_ira_costs ();
2063 /* Common initialization function for ira_costs and
2064 ira_set_pseudo_classes. */
2065 static void
2066 init_costs (void)
2068 init_subregs_of_mode ();
2069 costs = (struct costs *) ira_allocate (max_struct_costs_size
2070 * cost_elements_num);
2071 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2072 * cost_elements_num);
2073 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2074 * max_reg_num ());
2075 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2076 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2079 /* Common finalization function for ira_costs and
2080 ira_set_pseudo_classes. */
2081 static void
2082 finish_costs (void)
2084 finish_subregs_of_mode ();
2085 ira_free (regno_equiv_gains);
2086 ira_free (regno_aclass);
2087 ira_free (pref_buffer);
2088 ira_free (costs);
2091 /* Entry function which defines register class, memory and hard
2092 register costs for each allocno. */
2093 void
2094 ira_costs (void)
2096 allocno_p = true;
2097 cost_elements_num = ira_allocnos_num;
2098 init_costs ();
2099 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2100 * ira_allocnos_num);
2101 initiate_regno_cost_classes ();
2102 calculate_elim_costs_all_insns ();
2103 find_costs_and_classes (ira_dump_file);
2104 setup_allocno_class_and_costs ();
2105 finish_regno_cost_classes ();
2106 finish_costs ();
2107 ira_free (total_allocno_costs);
2110 /* Entry function which defines classes for pseudos.
2111 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2112 void
2113 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2115 allocno_p = false;
2116 internal_flag_ira_verbose = flag_ira_verbose;
2117 cost_elements_num = max_reg_num ();
2118 init_costs ();
2119 initiate_regno_cost_classes ();
2120 find_costs_and_classes (dump_file);
2121 finish_regno_cost_classes ();
2122 if (define_pseudo_classes)
2123 pseudo_classes_defined_p = true;
2125 finish_costs ();
2130 /* Change hard register costs for allocnos which lives through
2131 function calls. This is called only when we found all intersected
2132 calls during building allocno live ranges. */
2133 void
2134 ira_tune_allocno_costs (void)
2136 int j, n, regno;
2137 int cost, min_cost, *reg_costs;
2138 enum reg_class aclass, rclass;
2139 enum machine_mode mode;
2140 ira_allocno_t a;
2141 ira_allocno_iterator ai;
2142 ira_allocno_object_iterator oi;
2143 ira_object_t obj;
2144 bool skip_p;
2146 FOR_EACH_ALLOCNO (a, ai)
2148 aclass = ALLOCNO_CLASS (a);
2149 if (aclass == NO_REGS)
2150 continue;
2151 mode = ALLOCNO_MODE (a);
2152 n = ira_class_hard_regs_num[aclass];
2153 min_cost = INT_MAX;
2154 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2155 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2157 ira_allocate_and_set_costs
2158 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2159 ALLOCNO_CLASS_COST (a));
2160 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2161 for (j = n - 1; j >= 0; j--)
2163 regno = ira_class_hard_regs[aclass][j];
2164 skip_p = false;
2165 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2167 if (ira_hard_reg_set_intersection_p (regno, mode,
2168 OBJECT_CONFLICT_HARD_REGS
2169 (obj)))
2171 skip_p = true;
2172 break;
2175 if (skip_p)
2176 continue;
2177 rclass = REGNO_REG_CLASS (regno);
2178 cost = 0;
2179 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2180 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2181 cost += (ALLOCNO_CALL_FREQ (a)
2182 * (ira_memory_move_cost[mode][rclass][0]
2183 + ira_memory_move_cost[mode][rclass][1]));
2184 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2185 cost += ((ira_memory_move_cost[mode][rclass][0]
2186 + ira_memory_move_cost[mode][rclass][1])
2187 * ALLOCNO_FREQ (a)
2188 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2189 #endif
2190 if (INT_MAX - cost < reg_costs[j])
2191 reg_costs[j] = INT_MAX;
2192 else
2193 reg_costs[j] += cost;
2194 if (min_cost > reg_costs[j])
2195 min_cost = reg_costs[j];
2198 if (min_cost != INT_MAX)
2199 ALLOCNO_CLASS_COST (a) = min_cost;
2201 /* Some targets allow pseudos to be allocated to unaligned sequences
2202 of hard registers. However, selecting an unaligned sequence can
2203 unnecessarily restrict later allocations. So increase the cost of
2204 unaligned hard regs to encourage the use of aligned hard regs. */
2206 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2208 if (nregs > 1)
2210 ira_allocate_and_set_costs
2211 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2212 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2213 for (j = n - 1; j >= 0; j--)
2215 regno = ira_non_ordered_class_hard_regs[aclass][j];
2216 if ((regno % nregs) != 0)
2218 int index = ira_class_hard_reg_index[aclass][regno];
2219 ira_assert (index != -1);
2220 reg_costs[index] += ALLOCNO_FREQ (a);
2228 /* Add COST to the estimated gain for eliminating REGNO with its
2229 equivalence. If COST is zero, record that no such elimination is
2230 possible. */
2232 void
2233 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2235 if (cost == 0)
2236 regno_equiv_gains[regno] = 0;
2237 else
2238 regno_equiv_gains[regno] += cost;