[testsuite] [i386] work around fails with --enable-frame-pointer
[official-gcc.git] / gcc / ada / sem_util.ads
blob384b9a3dac87a473ddc9e5ebe923419348448947
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
40 package Sem_Util is
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
47 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
48 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
49 -- the given string argument, adding leading and trailing asterisks if they
50 -- are not already present. Str_Lit is the static value of the pragma
51 -- argument.
53 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
54 -- Add A to the list of access types to process when expanding the
55 -- freeze node of E.
57 procedure Add_Global_Declaration (N : Node_Id);
58 -- These procedures adds a declaration N at the library level, to be
59 -- elaborated before any other code in the unit. It is used for example
60 -- for the entity that marks whether a unit has been elaborated. The
61 -- declaration is added to the Declarations list of the Aux_Decls_Node
62 -- for the current unit. The declarations are added in the current scope,
63 -- so the caller should push a new scope as required before the call.
65 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
66 -- Returns the name of E adding Suffix
68 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
69 -- Given two types, returns True if we are in Allow_Integer_Address mode
70 -- and one of the types is (a descendant of) System.Address (and this type
71 -- is private), and the other type is any integer type.
73 function Address_Value (N : Node_Id) return Node_Id;
74 -- Return the underlying value of the expression N of an address clause
76 function Addressable (V : Uint) return Boolean;
77 function Addressable (V : Int) return Boolean;
78 pragma Inline (Addressable);
79 -- Returns True if the value of V is the word size or an addressable factor
80 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
82 procedure Aggregate_Constraint_Checks
83 (Exp : Node_Id;
84 Check_Typ : Entity_Id);
85 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
86 -- and Check_Typ a constrained record type with discriminants, we generate
87 -- the appropriate discriminant checks. If Exp is an array aggregate then
88 -- emit the appropriate length checks. If Exp is a scalar type, or a string
89 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
90 -- are performed at run time. Also used for expressions in the argument of
91 -- 'Update, which shares some of the features of an aggregate.
93 function Alignment_In_Bits (E : Entity_Id) return Uint;
94 -- If the alignment of the type or object E is currently known to the
95 -- compiler, then this function returns the alignment value in bits.
96 -- Otherwise Uint_0 is returned, indicating that the alignment of the
97 -- entity is not yet known to the compiler.
99 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
100 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
101 -- Given a constraint or subtree of a constraint on a composite
102 -- subtype/object, returns True if there are no nonstatic constraints,
103 -- which might cause objects to be created with dynamic size.
104 -- Called for subtype declarations (including implicit ones created for
105 -- subtype indications in object declarations, as well as discriminated
106 -- record aggregate cases). For record aggregates, only records containing
107 -- discriminant-dependent arrays matter, because the discriminants must be
108 -- static when governing a variant part. Access discriminants are
109 -- irrelevant. Also called for array aggregates, but only named notation,
110 -- because those are the only dynamic cases.
112 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
113 -- Recursive procedure to construct string for qualified name of enclosing
114 -- program unit. The qualification stops at an enclosing scope has no
115 -- source name (block or loop). If entity is a subprogram instance, skip
116 -- enclosing wrapper package. The name is appended to Buf.
118 procedure Append_Inherited_Subprogram (S : Entity_Id);
119 -- If the parent of the operation is declared in the visible part of
120 -- the current scope, the inherited operation is visible even though the
121 -- derived type that inherits the operation may be completed in the private
122 -- part of the current package.
124 procedure Apply_Compile_Time_Constraint_Error
125 (N : Node_Id;
126 Msg : String;
127 Reason : RT_Exception_Code;
128 Ent : Entity_Id := Empty;
129 Typ : Entity_Id := Empty;
130 Loc : Source_Ptr := No_Location;
131 Warn : Boolean := False;
132 Emit_Message : Boolean := True);
133 -- N is a subexpression that will raise Constraint_Error when evaluated
134 -- at run time. Msg is a message that explains the reason for raising the
135 -- exception. The last character is ? if the message is always a warning,
136 -- even in Ada 95, and is not a ? if the message represents an illegality
137 -- (because of violation of static expression rules) in Ada 95 (but not
138 -- in Ada 83). Typically this routine posts all messages at the Sloc of
139 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
140 -- the message. After posting the appropriate message, this routine
141 -- replaces the expression with an appropriate N_Raise_Constraint_Error
142 -- node using the given Reason code. This node is then marked as being
143 -- static if the original node is static, but sets the flag
144 -- Raises_Constraint_Error, preventing further evaluation. The error
145 -- message may contain a } or & insertion character. This normally
146 -- references Etype (N), unless the Ent argument is given explicitly, in
147 -- which case it is used instead. The type of the raise node that is built
148 -- is normally Etype (N), but if the Typ parameter is present, this is used
149 -- instead. Warn is normally False. If it is True then the message is
150 -- treated as a warning even though it does not end with a ? (this is used
151 -- when the caller wants to parameterize whether an error or warning is
152 -- given), or when the message should be treated as a warning even when
153 -- SPARK_Mode is On (which otherwise would force an error).
154 -- If Emit_Message is False, then do not emit any message.
156 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
157 -- Id should be the entity of a state abstraction, an object, or a type.
158 -- Returns True iff Id is subject to external property Async_Readers.
160 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
161 -- Id should be the entity of a state abstraction, an object, or a type.
162 -- Returns True iff Id is subject to external property Async_Writers.
164 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
165 -- If at the point of declaration an array type has a private or limited
166 -- component, several array operations are not available on the type, and
167 -- the array type is flagged accordingly. If in the immediate scope of
168 -- the array type the component becomes non-private or non-limited, these
169 -- operations become available. This can happen if the scopes of both types
170 -- are open, and the scope of the array is not outside the scope of the
171 -- component.
173 procedure Bad_Aspect
174 (N : Node_Id;
175 Nam : Name_Id;
176 Warn : Boolean := False);
177 -- Called when node N is expected to contain a valid aspect name, and
178 -- Nam is found instead. If Warn is set True this is a warning, else this
179 -- is an error.
181 procedure Bad_Attribute
182 (N : Node_Id;
183 Nam : Name_Id;
184 Warn : Boolean := False);
185 -- Called when node N is expected to contain a valid attribute name, and
186 -- Nam is found instead. If Warn is set True this is a warning, else this
187 -- is an error.
189 procedure Bad_Predicated_Subtype_Use
190 (Msg : String;
191 N : Node_Id;
192 Typ : Entity_Id;
193 Suggest_Static : Boolean := False);
194 -- This is called when Typ, a predicated subtype, is used in a context
195 -- which does not allow the use of a predicated subtype. Msg is passed to
196 -- Error_Msg_FE to output an appropriate message using N as the location,
197 -- and Typ as the entity. The caller must set up any insertions other than
198 -- the & for the type itself. Note that if Typ is a generic actual type,
199 -- then the message will be output as a warning, and a raise Program_Error
200 -- is inserted using Insert_Action with node N as the insertion point. Node
201 -- N also supplies the source location for construction of the raise node.
202 -- If Typ does not have any predicates, the call has no effect. Set flag
203 -- Suggest_Static when the context warrants an advice on how to avoid the
204 -- use error.
206 function Bad_Unordered_Enumeration_Reference
207 (N : Node_Id;
208 T : Entity_Id) return Boolean;
209 -- Node N contains a potentially dubious reference to type T, either an
210 -- explicit comparison, or an explicit range. This function returns True
211 -- if the type T is an enumeration type for which No pragma Order has been
212 -- given, and the reference N is not in the same extended source unit as
213 -- the declaration of T.
215 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
216 -- Given block statement, entry body, package body, subprogram body, or
217 -- task body N, return the closest source location to the "begin" keyword.
219 function Build_Actual_Subtype
220 (T : Entity_Id;
221 N : Node_Or_Entity_Id) return Node_Id;
222 -- Build an anonymous subtype for an entity or expression, using the
223 -- bounds of the entity or the discriminants of the enclosing record.
224 -- T is the type for which the actual subtype is required, and N is either
225 -- a defining identifier, or any subexpression.
227 function Build_Actual_Subtype_Of_Component
228 (T : Entity_Id;
229 N : Node_Id) return Node_Id;
230 -- Determine whether a selected component has a type that depends on
231 -- discriminants, and build actual subtype for it if so.
233 -- Handling of inherited primitives whose ancestors have class-wide
234 -- pre/postconditions.
236 -- If a primitive operation of a parent type has a class-wide pre/post-
237 -- condition that includes calls to other primitives, and that operation
238 -- is inherited by a descendant type that also overrides some of these
239 -- other primitives, the condition that applies to the inherited
240 -- operation has a modified condition in which the overridden primitives
241 -- have been replaced by the primitives of the descendent type. A call
242 -- to the inherited operation cannot be simply a call to the parent
243 -- operation (with an appropriate conversion) as is the case for other
244 -- inherited operations, but must appear with a wrapper subprogram to which
245 -- the modified conditions apply. Furthermore the call to the parent
246 -- operation must not be subject to the original class-wide condition,
247 -- given that modified conditions apply. To implement these semantics
248 -- economically we create a subprogram body (a "class-wide clone") to
249 -- which no pre/postconditions apply, and we create bodies for the
250 -- original and the inherited operation that have their respective
251 -- pre/postconditions and simply call the clone. The following operations
252 -- take care of constructing declaration and body of the clone, and
253 -- building the calls to it within the appropriate wrappers.
255 procedure Build_Constrained_Itype
256 (N : Node_Id;
257 Typ : Entity_Id;
258 New_Assoc_List : List_Id);
259 -- Build a constrained itype for the newly created record aggregate N and
260 -- set it as a type of N. The itype will have Typ as its base type and
261 -- will be constrained by the values of discriminants from the component
262 -- association list New_Assoc_List.
264 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
265 -- those two routines behave differently for types with unknown
266 -- discriminants. They are both exported in from this package in the hope
267 -- to eventually unify them (a not duplicate them even more until then).
269 -- ??? Performance WARNING. The current implementation creates a new itype
270 -- for all aggregates whose base type is discriminated. This means that
271 -- for record aggregates nested inside an array aggregate we will create
272 -- a new itype for each record aggregate if the array component type has
273 -- discriminants. For large aggregates this may be a problem. What should
274 -- be done in this case is to reuse itypes as much as possible.
276 function Build_Default_Subtype
277 (T : Entity_Id;
278 N : Node_Id) return Entity_Id;
279 -- If T is an unconstrained type with defaulted discriminants, build a
280 -- subtype constrained by the default values, insert the subtype
281 -- declaration in the tree before N, and return the entity of that
282 -- subtype. Otherwise, simply return T.
284 function Build_Default_Subtype_OK (T : Entity_Id) return Boolean;
285 -- When analyzing object declarations, it is possible, in some cases, to
286 -- build subtypes for discriminated types. This is worthwhile to avoid the
287 -- backend allocating the maximum possible size for objects of the type.
288 -- In particular, when T is limited, the discriminants and therefore the
289 -- size of an object of type T cannot change. Furthermore, if T is definite
290 -- with initialized defaulted discriminants, we are able and want to build
291 -- a constrained subtype of the right size.
293 function Build_Discriminal_Subtype_Of_Component
294 (T : Entity_Id) return Node_Id;
295 -- Determine whether a record component has a type that depends on
296 -- discriminants, and build actual subtype for it if so.
298 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
299 -- Given a compilation unit node N, allocate an elaboration counter for
300 -- the compilation unit, and install it in the Elaboration_Entity field
301 -- of Spec_Id, the entity for the compilation unit.
303 procedure Build_Explicit_Dereference
304 (Expr : Node_Id;
305 Disc : Entity_Id);
306 -- AI05-139: Names with implicit dereference. If the expression N is a
307 -- reference type and the context imposes the corresponding designated
308 -- type, convert N into N.Disc.all. Such expressions are always over-
309 -- loaded with both interpretations, and the dereference interpretation
310 -- carries the name of the reference discriminant.
312 function Build_Overriding_Spec
313 (Op : Entity_Id;
314 Typ : Entity_Id) return Node_Id;
315 -- Build a subprogram specification for the wrapper of an inherited
316 -- operation with a modified pre- or postcondition (See AI12-0113).
317 -- Op is the parent operation, and Typ is the descendant type that
318 -- inherits the operation.
320 function Build_Subtype
321 (Related_Node : Node_Id;
322 Loc : Source_Ptr;
323 Typ : Entity_Id;
324 Constraints : List_Id)
325 return Entity_Id;
326 -- Typ is an array or discriminated type, Constraints is a list of
327 -- constraints that apply to Typ. This routine builds the constrained
328 -- subtype using Loc as the source location and attached this subtype
329 -- declaration to Related_Node. The returned subtype inherits predicates
330 -- from Typ.
332 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
333 -- careful which of the two better suits your needs (and certainly do not
334 -- duplicate their code).
336 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
337 -- Returns True if the expression cannot possibly raise Constraint_Error.
338 -- The response is conservative in the sense that a result of False does
339 -- not necessarily mean that CE could be raised, but a response of True
340 -- means that for sure CE cannot be raised.
342 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
343 -- Additional information on an ambiguous call in Ada_2022 when a
344 -- subprogram call has an actual that is an aggregate, and the
345 -- presence of container aggregates (or types with the corresponding
346 -- aspect) provides an additional interpretation. Message indicates
347 -- that an aggregate actual should carry a type qualification.
349 procedure Check_Dynamically_Tagged_Expression
350 (Expr : Node_Id;
351 Typ : Entity_Id;
352 Related_Nod : Node_Id);
353 -- Check wrong use of dynamically tagged expression
355 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
356 -- Verify that the full declaration of type T has been seen. If not, place
357 -- error message on node N. Used in object declarations, type conversions
358 -- and qualified expressions.
360 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
361 -- A subprogram that has an Address parameter and is declared in a Pure
362 -- package is not considered Pure, because the parameter may be used as a
363 -- pointer and the referenced data may change even if the address value
364 -- itself does not.
365 -- If the programmer gave an explicit Pure_Function pragma, then we respect
366 -- the pragma and leave the subprogram Pure.
368 procedure Check_Function_Writable_Actuals (N : Node_Id);
369 -- (Ada 2012): If the construct N has two or more direct constituents that
370 -- are names or expressions whose evaluation may occur in an arbitrary
371 -- order, at least one of which contains a function call with an in out or
372 -- out parameter, then the construct is legal only if: for each name that
373 -- is passed as a parameter of mode in out or out to some inner function
374 -- call C2 (not including the construct N itself), there is no other name
375 -- anywhere within a direct constituent of the construct C other than
376 -- the one containing C2, that is known to refer to the same object (RM
377 -- 6.4.1(6.17/3)).
379 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
380 -- AI05-139-2: Accessors and iterators for containers. This procedure
381 -- checks whether T is a reference type, and if so it adds an interprettion
382 -- to N whose type is the designated type of the reference_discriminant.
383 -- If N is a generalized indexing operation, the interpretation is added
384 -- both to the corresponding function call, and to the indexing node.
386 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
387 -- Within a protected function, the current object is a constant, and
388 -- internal calls to a procedure or entry are illegal. Similarly, other
389 -- uses of a protected procedure in a renaming or a generic instantiation
390 -- in the context of a protected function are illegal (AI05-0225).
392 procedure Check_Later_Vs_Basic_Declarations
393 (Decls : List_Id;
394 During_Parsing : Boolean);
395 -- If During_Parsing is True, check for misplacement of later vs basic
396 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
397 -- restriction is set, do the same: although SPARK 95 removes the
398 -- distinction between initial and later declarative items, the distinction
399 -- remains in the Examiner (JB01-005). Note that the Examiner does not
400 -- count package declarations in later declarative items.
402 procedure Check_No_Hidden_State (Id : Entity_Id);
403 -- Determine whether object or state Id introduces a hidden state. If this
404 -- is the case, emit an error.
406 procedure Check_Inherited_Nonoverridable_Aspects
407 (Inheritor : Entity_Id;
408 Interface_List : List_Id;
409 Parent_Type : Entity_Id);
410 -- Verify consistency of inherited nonoverridable aspects
411 -- when aspects are inherited from more than one source.
412 -- Parent_Type may be void (e.g., for a tagged task/protected type
413 -- whose declaration includes a non-empty interface list).
414 -- In the error case, error message is associate with Inheritor;
415 -- Inheritor parameter is otherwise unused.
417 function Check_Parents (N : Node_Id; List : Elist_Id) return Boolean;
418 -- Return True if all the occurrences of subtree N referencing entities in
419 -- the given List have the right value in their Parent field.
421 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
422 -- Verify the legality of reference Ref to variable Var_Id when the
423 -- variable is a constituent of a single protected/task type.
425 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
426 -- N is one of the statement forms that is a potentially blocking
427 -- operation. If it appears within a protected action, emit warning.
429 procedure Check_Previous_Null_Procedure
430 (Decl : Node_Id;
431 Prev : Entity_Id);
432 -- A null procedure or a subprogram renaming can complete a previous
433 -- declaration, unless that previous declaration is itself a null
434 -- procedure. This must be treated specially because the analysis of
435 -- the null procedure leaves the corresponding entity as having no
436 -- completion, because its completion is provided by a generated body
437 -- inserted after all other declarations.
439 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
440 -- Determine whether the contract of subprogram Subp_Id mentions attribute
441 -- 'Result and it contains an expression that evaluates differently in pre-
442 -- and post-state.
444 procedure Check_State_Refinements
445 (Context : Node_Id;
446 Is_Main_Unit : Boolean := False);
447 -- Verify that all abstract states declared in a block statement, entry
448 -- body, package body, protected body, subprogram body, task body, or a
449 -- package declaration denoted by Context have proper refinement. Emit an
450 -- error if this is not the case. Flag Is_Main_Unit should be set when
451 -- Context denotes the main compilation unit.
453 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
454 -- Verify that all abstract states and objects declared in the state space
455 -- of package body Body_Id are used as constituents. Emit an error if this
456 -- is not the case.
458 procedure Check_Unprotected_Access
459 (Context : Node_Id;
460 Expr : Node_Id);
461 -- Check whether the expression is a pointer to a protected component,
462 -- and the context is external to the protected operation, to warn against
463 -- a possible unlocked access to data.
465 function Choice_List (N : Node_Id) return List_Id;
466 -- Utility to retrieve the choices of a Component_Association or the
467 -- Discrete_Choices of an Iterated_Component_Association. For various
468 -- reasons these nodes have a different structure even though they play
469 -- similar roles in array aggregates.
471 type Condition_Kind is
472 (Ignored_Class_Precondition,
473 Ignored_Class_Postcondition,
474 Class_Precondition,
475 Class_Postcondition);
476 -- Kind of class-wide conditions
478 function Class_Condition
479 (Kind : Condition_Kind;
480 Subp : Entity_Id) return Node_Id;
481 -- Class-wide Kind condition of Subp
483 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
484 -- Gather the entities of all abstract states and objects declared in the
485 -- body state space of package body Body_Id.
487 procedure Collect_Interfaces
488 (T : Entity_Id;
489 Ifaces_List : out Elist_Id;
490 Exclude_Parents : Boolean := False;
491 Use_Full_View : Boolean := True);
492 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
493 -- directly or indirectly implemented by T. Exclude_Parents is used to
494 -- avoid the addition of inherited interfaces to the generated list.
495 -- Use_Full_View is used to collect the interfaces using the full-view
496 -- (if available).
498 procedure Collect_Interface_Components
499 (Tagged_Type : Entity_Id;
500 Components_List : out Elist_Id);
501 -- Ada 2005 (AI-251): Collect all the tag components associated with the
502 -- secondary dispatch tables of a tagged type.
504 procedure Collect_Interfaces_Info
505 (T : Entity_Id;
506 Ifaces_List : out Elist_Id;
507 Components_List : out Elist_Id;
508 Tags_List : out Elist_Id);
509 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
510 -- the record component and tag associated with each of these interfaces.
511 -- On exit Ifaces_List, Components_List and Tags_List have the same number
512 -- of elements, and elements at the same position on these tables provide
513 -- information on the same interface type.
515 procedure Collect_Parents
516 (T : Entity_Id;
517 List : out Elist_Id;
518 Use_Full_View : Boolean := True);
519 -- Collect all the parents of Typ. Use_Full_View is used to collect them
520 -- using the full-view of private parents (if available).
522 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
523 -- Called upon type derivation and extension. We scan the declarative part
524 -- in which the type appears, and collect subprograms that have one
525 -- subsidiary subtype of the type. These subprograms can only appear after
526 -- the type itself.
528 function Compile_Time_Constraint_Error
529 (N : Node_Id;
530 Msg : String;
531 Ent : Entity_Id := Empty;
532 Loc : Source_Ptr := No_Location;
533 Warn : Boolean := False;
534 Extra_Msg : String := "") return Node_Id;
535 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
536 -- generates a warning (or error) message in the same manner, but it does
537 -- not replace any nodes. For convenience, the function always returns its
538 -- first argument. The message is a warning if the message ends with ?, or
539 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
540 -- If Extra_Msg is not a null string, then it's associated with N and
541 -- emitted immediately after the main message (and before output of any
542 -- message indicating that Constraint_Error will be raised).
544 procedure Compute_Returns_By_Ref (Func : Entity_Id);
545 -- Set the Returns_By_Ref flag on Func if appropriate
547 generic
548 with function Predicate (Typ : Entity_Id) return Boolean;
549 function Collect_Types_In_Hierarchy
550 (Typ : Entity_Id;
551 Examine_Components : Boolean := False) return Elist_Id;
552 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
553 -- collecting those for which function Predicate is True. The resulting
554 -- list is ordered in a type-to-ultimate-ancestor fashion.
556 -- When Examine_Components is True, components types in the hierarchy also
557 -- get collected.
559 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
560 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
561 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
562 -- False).
564 function Copy_Component_List
565 (R_Typ : Entity_Id;
566 Loc : Source_Ptr) return List_Id;
567 -- Copy components from record type R_Typ that come from source. Used to
568 -- create a new compatible record type. Loc is the source location assigned
569 -- to the created nodes.
571 procedure Copy_Ghost_Aspect (From : Node_Id; To : Node_Id);
572 -- Copy the Ghost aspect if present in the aspect specifications of node
573 -- From to node To. On entry it is assumed that To does not have aspect
574 -- specifications. If From has no aspects, the routine has no effect.
576 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
577 -- Utility to create a parameter profile for a new subprogram spec, when
578 -- the subprogram has a body that acts as spec. This is done for some cases
579 -- of inlining, and for private protected ops. Also used to create bodies
580 -- for stubbed subprograms.
582 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
583 -- Copy the SPARK_Mode aspect if present in the aspect specifications
584 -- of node From to node To. On entry it is assumed that To does not have
585 -- aspect specifications. If From has no aspects, the routine has no
586 -- effect.
588 function Copy_Subprogram_Spec
589 (Spec : Node_Id;
590 New_Sloc : Source_Ptr := No_Location) return Node_Id;
591 -- Replicate a function or a procedure specification denoted by Spec. The
592 -- resulting tree is an exact duplicate of the original tree. New entities
593 -- are created for the unit name and the formal parameters. For definition
594 -- of New_Sloc, see the comment for New_Copy_Tree.
596 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
597 -- If a type is a generic actual type, return the corresponding formal in
598 -- the generic parent unit. There is no direct link in the tree for this
599 -- attribute, except in the case of formal private and derived types.
600 -- Possible optimization???
602 function Corresponding_Primitive_Op
603 (Ancestor_Op : Entity_Id;
604 Descendant_Type : Entity_Id) return Entity_Id;
605 -- Given a primitive subprogram of a first type and a (distinct)
606 -- descendant type of that type, find the corresponding primitive
607 -- subprogram of the descendant type.
609 function Current_Entity (N : Node_Id) return Entity_Id;
610 pragma Inline (Current_Entity);
611 -- Find the currently visible definition for a given identifier, that is to
612 -- say the first entry in the visibility chain for the Chars of N.
614 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
615 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
616 -- Find whether there is a previous definition for name or identifier N in
617 -- the current scope. Because declarations for a scope are not necessarily
618 -- contiguous (e.g. for packages) the first entry on the visibility chain
619 -- for N is not necessarily in the current scope.
621 function Current_Scope return Entity_Id;
622 -- Get entity representing current scope
624 function Current_Scope_No_Loops return Entity_Id;
625 -- Return the current scope ignoring internally generated loops
627 procedure Add_Block_Identifier
628 (N : Node_Id;
629 Id : out Entity_Id;
630 Scope : Entity_Id := Current_Scope);
631 -- Given a block statement N, generate an internal E_Block label and make
632 -- it the identifier of the block. Scope denotes the scope in which the
633 -- generated entity Id is created and defaults to the current scope. If the
634 -- block already has an identifier, Id returns the entity of its label.
636 function Current_Subprogram return Entity_Id;
637 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
638 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
639 -- Current_Scope is returned. The returned value is Empty if this is called
640 -- from a library package which is not within any subprogram.
642 function CW_Or_Needs_Finalization (Typ : Entity_Id) return Boolean;
643 -- True if Typ is a class-wide type or requires finalization actions. Same
644 -- as Needs_Finalization except with pragma Restrictions (No_Finalization),
645 -- in which case we know that class-wide objects do not need finalization.
647 function Defining_Entity (N : Node_Id) return Entity_Id;
648 -- Given a declaration N, returns the associated defining entity. If the
649 -- declaration has a specification, the entity is obtained from the
650 -- specification. If the declaration has a defining unit name, then the
651 -- defining entity is obtained from the defining unit name ignoring any
652 -- child unit prefixes.
654 -- Iterator loops also have a defining entity, which holds the list of
655 -- local entities declared during loop expansion. These entities need
656 -- debugging information, generated through Qualify_Entity_Names, and
657 -- the loop declaration must be placed in the table Name_Qualify_Units.
659 -- WARNING: There is a matching C declaration of this subprogram in fe.h
661 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
662 -- This is equivalent to Defining_Entity but it returns Empty for nodes
663 -- without an entity instead of raising Program_Error.
665 function Denotes_Discriminant
666 (N : Node_Id;
667 Check_Concurrent : Boolean := False) return Boolean;
668 -- Returns True if node N is an Entity_Name node for a discriminant. If the
669 -- flag Check_Concurrent is true, function also returns true when N denotes
670 -- the discriminal of the discriminant of a concurrent type. This is needed
671 -- to disable some optimizations on private components of protected types,
672 -- and constraint checks on entry families constrained by discriminants.
674 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
675 -- Detect suspicious overlapping between actuals in a call, when both are
676 -- writable (RM 2012 6.4.1(6.4/3)).
678 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
679 -- Functions to detect suspicious overlapping between actuals in a call,
680 -- when one of them is writable. The predicates are those proposed in
681 -- AI05-0144, to detect dangerous order dependence in complex calls.
682 -- I would add a parameter Warn which enables more extensive testing of
683 -- cases as we find appropriate when we are only warning ??? Or perhaps
684 -- return an indication of (Error, Warn, OK) ???
686 function Denotes_Variable (N : Node_Id) return Boolean;
687 -- Returns True if node N denotes a single variable without parentheses
689 function Depends_On_Discriminant (N : Node_Id) return Boolean;
690 -- Returns True if N denotes a discriminant or if N is a range, a subtype
691 -- indication or a scalar subtype where one of the bounds is a
692 -- discriminant.
694 function Derivation_Too_Early_To_Inherit
695 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
696 -- Returns True if Typ is a derived type, the given Streaming_Op
697 -- (one of Read, Write, Input, or Output) is explicitly specified
698 -- for Typ's parent type, and that attribute specification is *not*
699 -- inherited by Typ because the declaration of Typ precedes that
700 -- of the attribute specification.
702 function Designate_Same_Unit
703 (Name1 : Node_Id;
704 Name2 : Node_Id) return Boolean;
705 -- Returns True if Name1 and Name2 designate the same unit name; each of
706 -- these names is supposed to be a selected component name, an expanded
707 -- name, a defining program unit name or an identifier.
709 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
710 -- Emit an error if iterated component association N is actually an illegal
711 -- quantified expression lacking a quantifier.
713 function Discriminated_Size (Comp : Entity_Id) return Boolean;
714 -- If a component size is not static then a warning will be emitted
715 -- in Ravenscar or other restricted contexts. When a component is non-
716 -- static because of a discriminant constraint we can specialize the
717 -- warning by mentioning discriminants explicitly. This was created for
718 -- private components of protected objects, but is generally useful when
719 -- restriction No_Implicit_Heap_Allocation is active.
721 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
722 -- Id should be the entity of a state abstraction, an object, or a type.
723 -- Returns True iff Id is subject to external property Effective_Reads.
725 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
726 -- Id should be the entity of a state abstraction, an object, or a type.
727 -- Returns True iff Id is subject to external property Effective_Writes.
729 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
730 -- Returns the enclosing N_Compilation_Unit node that is the root of a
731 -- subtree containing N.
733 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
734 -- Returns the closest ancestor of Typ that is a CPP type.
736 function Enclosing_Declaration (N : Node_Id) return Node_Id;
737 -- Returns the declaration node enclosing N (including possibly N itself),
738 -- if any, or Empty otherwise.
740 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
741 -- Return the nearest enclosing declaration or statement that houses
742 -- arbitrary node N.
744 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
745 -- Returns the Node_Id associated with the innermost enclosing generic
746 -- body, if any. If none, then returns Empty.
748 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
749 -- Returns the Node_Id associated with the innermost enclosing generic
750 -- unit, if any. If none, then returns Empty.
752 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
753 -- Returns the nearest handled sequence of statements that encloses a given
754 -- statement, or Empty.
756 function Enclosing_Lib_Unit_Entity
757 (E : Entity_Id := Current_Scope) return Entity_Id;
758 -- Returns the entity of enclosing library unit node which is the root of
759 -- the current scope (which must not be Standard_Standard, and the caller
760 -- is responsible for ensuring this condition) or other specified entity.
762 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
763 -- Returns the N_Compilation_Unit node of the library unit that is directly
764 -- or indirectly (through a subunit) at the root of a subtree containing
765 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
766 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
767 -- library unit. If no such item is found, returns Empty.
769 function Enclosing_Package (N : Node_Or_Entity_Id) return Entity_Id;
770 -- Utility function to return the Ada entity of the package enclosing
771 -- the entity or node N, if any. Returns Empty if no enclosing package.
773 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
774 -- Returns the entity of the package or subprogram enclosing E, if any.
775 -- Returns Empty if no enclosing package or subprogram.
777 function Enclosing_Subprogram (N : Node_Or_Entity_Id) return Entity_Id;
778 -- Utility function to return the Ada entity of the subprogram enclosing
779 -- N, if any. Returns Empty if no enclosing subprogram.
781 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
782 -- Given block statement, entry body, package body, package declaration,
783 -- protected body, [single] protected type declaration, subprogram body,
784 -- task body, or [single] task type declaration N, return the closest
785 -- source location of the "end" keyword.
787 procedure Ensure_Freeze_Node (E : Entity_Id);
788 -- Make sure a freeze node is allocated for entity E. If necessary, build
789 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
791 procedure Enter_Name (Def_Id : Entity_Id);
792 -- Insert new name in symbol table of current scope with check for
793 -- duplications (error message is issued if a conflict is found).
794 -- Note: Enter_Name is not used for most overloadable entities, instead
795 -- they are entered using Sem_Ch6.Enter_Overloaded_Entity. However,
796 -- this is used for SOME overloadable entities, such as enumeration
797 -- literals and certain operator symbols.
799 function Entity_Of (N : Node_Id) return Entity_Id;
800 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
801 -- entity of the earliest renamed source abstract state or whole object.
802 -- If no suitable entity is available, return Empty. This routine carries
803 -- out actions that are tied to SPARK semantics.
805 function Exceptions_OK return Boolean;
806 -- Determine whether exceptions are allowed to be caught, propagated, or
807 -- raised.
809 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
810 -- This procedure is called after issuing a message complaining about an
811 -- inappropriate use of limited type T. If useful, it adds additional
812 -- continuation lines to the message explaining why type T is limited.
813 -- Messages are placed at node N.
815 function Expression_Of_Expression_Function
816 (Subp : Entity_Id) return Node_Id;
817 -- Return the expression of expression function Subp
819 type Extensions_Visible_Mode is
820 (Extensions_Visible_None,
821 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
822 -- value acts as a default in a non-SPARK compilation.
824 Extensions_Visible_False,
825 -- A value of "False" signifies that Extensions_Visible is either
826 -- missing or the pragma is present and the value of its Boolean
827 -- expression is False.
829 Extensions_Visible_True);
830 -- A value of "True" signifies that Extensions_Visible is present and
831 -- the value of its Boolean expression is True.
833 function Extensions_Visible_Status
834 (Id : Entity_Id) return Extensions_Visible_Mode;
835 -- Given the entity of a subprogram or formal parameter subject to pragma
836 -- Extensions_Visible, return the Boolean value denoted by the expression
837 -- of the pragma.
839 procedure Find_Actual
840 (N : Node_Id;
841 Formal : out Entity_Id;
842 Call : out Node_Id);
843 -- Determines if the node N is an actual parameter of a function or a
844 -- procedure call. If so, then Formal points to the entity for the formal
845 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
846 -- Call is set to the node for the corresponding call. If the node N is not
847 -- an actual parameter then Formal and Call are set to Empty.
849 function Find_Body_Discriminal
850 (Spec_Discriminant : Entity_Id) return Entity_Id;
851 -- Given a discriminant of the record type that implements a task or
852 -- protected type, return the discriminal of the corresponding discriminant
853 -- of the actual concurrent type.
855 function Find_Corresponding_Discriminant
856 (Id : Node_Id;
857 Typ : Entity_Id) return Entity_Id;
858 -- Because discriminants may have different names in a generic unit and in
859 -- an instance, they are resolved positionally when possible. A reference
860 -- to a discriminant carries the discriminant that it denotes when it is
861 -- analyzed. Subsequent uses of this id on a different type denotes the
862 -- discriminant at the same position in this new type.
864 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
865 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
866 -- defines the Default_Initial_Condition pragma of type Typ. This is either
867 -- Typ itself or a parent type when the pragma is inherited.
869 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
870 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
871 -- such a loop exists, return the entity of its identifier (E_Loop scope),
872 -- otherwise return Empty.
874 function Find_Enclosing_Scope (N : Node_Id) return Scope_Kind_Id with
875 Post => Find_Enclosing_Scope'Result /= N;
876 -- Find the nearest scope which encloses arbitrary node N
878 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
879 -- Find the nested loop statement in a conditional block. Loops subject to
880 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
881 -- loop are nested within the block.
883 procedure Find_Overlaid_Entity
884 (N : Node_Id;
885 Ent : out Entity_Id;
886 Off : out Boolean);
887 -- The node N should be an address representation clause. Determines if the
888 -- target expression is the address of an entity with an optional offset.
889 -- If so, set Ent to the entity and, if there is an offset, set Off to
890 -- True, otherwise to False. If it is not possible to determine that the
891 -- address is of this form, then set Ent to Empty.
893 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
894 -- Return the type of formal parameter Param as determined by its
895 -- specification.
897 -- The following type describes the placement of an arbitrary entity with
898 -- respect to SPARK visible / hidden state space.
900 type State_Space_Kind is
901 (Not_In_Package,
902 -- An entity is not in the visible, private or body state space when
903 -- the immediate enclosing construct is not a package.
905 Visible_State_Space,
906 -- An entity is in the visible state space when it appears immediately
907 -- within the visible declarations of a package or when it appears in
908 -- the visible state space of a nested package which in turn is declared
909 -- in the visible declarations of an enclosing package:
911 -- package Pack is
912 -- Visible_Variable : ...
913 -- package Nested
914 -- with Abstract_State => Visible_State
915 -- is
916 -- Visible_Nested_Variable : ...
917 -- end Nested;
918 -- end Pack;
920 -- Entities associated with a package instantiation inherit the state
921 -- space from the instance placement:
923 -- generic
924 -- package Gen is
925 -- Generic_Variable : ...
926 -- end Gen;
928 -- with Gen;
929 -- package Pack is
930 -- package Inst is new Gen;
931 -- -- Generic_Variable is in the visible state space of Pack
932 -- end Pack;
934 Private_State_Space,
935 -- An entity is in the private state space when it appears immediately
936 -- within the private declarations of a package or when it appears in
937 -- the visible state space of a nested package which in turn is declared
938 -- in the private declarations of an enclosing package:
940 -- package Pack is
941 -- private
942 -- Private_Variable : ...
943 -- package Nested
944 -- with Abstract_State => Private_State
945 -- is
946 -- Private_Nested_Variable : ...
947 -- end Nested;
948 -- end Pack;
950 -- The same placement principle applies to package instantiations
952 Body_State_Space);
953 -- An entity is in the body state space when it appears immediately
954 -- within the declarations of a package body or when it appears in the
955 -- visible state space of a nested package which in turn is declared in
956 -- the declarations of an enclosing package body:
958 -- package body Pack is
959 -- Body_Variable : ...
960 -- package Nested
961 -- with Abstract_State => Body_State
962 -- is
963 -- Body_Nested_Variable : ...
964 -- end Nested;
965 -- end Pack;
967 -- The same placement principle applies to package instantiations
969 procedure Find_Placement_In_State_Space
970 (Item_Id : Entity_Id;
971 Placement : out State_Space_Kind;
972 Pack_Id : out Entity_Id);
973 -- Determine the state space placement of an item. Item_Id denotes the
974 -- entity of an abstract state, object, or package instantiation. Placement
975 -- captures the precise placement of the item in the enclosing state space.
976 -- If the state space is that of a package, Pack_Id denotes its entity,
977 -- otherwise Pack_Id is Empty.
979 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
980 -- Locate primitive equality for type if it exists. Return Empty if it is
981 -- not available.
983 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
984 -- Find specific type of a class-wide type, and handle the case of an
985 -- incomplete type coming either from a limited_with clause or from an
986 -- incomplete type declaration. If resulting type is private return its
987 -- full view.
989 function Find_Static_Alternative (N : Node_Id) return Node_Id;
990 -- N is a case statement whose expression is a compile-time value.
991 -- Determine the alternative chosen, so that the code of non-selected
992 -- alternatives, and the warnings that may apply to them, are removed.
994 function First_Actual (Node : Node_Id) return Node_Id;
995 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
996 -- N_Entry_Call_Statement node. The result returned is the first actual
997 -- parameter in declaration order (not the order of parameters as they
998 -- appeared in the source, which can be quite different as a result of the
999 -- use of named parameters). Empty is returned for a call with no
1000 -- parameters. The procedure for iterating through the actuals in
1001 -- declaration order is to use this function to find the first actual, and
1002 -- then use Next_Actual to obtain the next actual in declaration order.
1003 -- Note that the value returned is always the expression (not the
1004 -- N_Parameter_Association nodes, even if named association is used).
1006 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1008 function First_Global
1009 (Subp : Entity_Id;
1010 Global_Mode : Name_Id;
1011 Refined : Boolean := False) return Node_Id;
1012 -- Returns the first global item of mode Global_Mode (which can be
1013 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1014 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1015 -- is retrieved from the Refined_Global aspect/pragma associated to the
1016 -- body of Subp if present. Next_Global can be used to get the next global
1017 -- item with the same mode.
1019 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1020 -- Replace all occurrences of a particular word in string Msg depending on
1021 -- the Ekind of Id as follows:
1022 -- * Replace "subprogram" with
1023 -- - "entry" when Id is an entry [family]
1024 -- - "task type" when Id is a single task object, task type or task
1025 -- body.
1026 -- * Replace "protected" with
1027 -- - "task" when Id is a single task object, task type or task body
1028 -- All other non-matching words remain as is
1030 function From_Nested_Package (T : Entity_Id) return Boolean;
1031 -- A type declared in a nested package may be frozen by a declaration
1032 -- appearing after the package but before the package is frozen. If the
1033 -- type has aspects that generate subprograms, these may contain references
1034 -- to entities local to the nested package. In that case the package must
1035 -- be installed on the scope stack to prevent spurious visibility errors.
1037 procedure Gather_Components
1038 (Typ : Entity_Id;
1039 Comp_List : Node_Id;
1040 Governed_By : List_Id;
1041 Into : Elist_Id;
1042 Report_Errors : out Boolean;
1043 Allow_Compile_Time : Boolean := False;
1044 Include_Interface_Tag : Boolean := False);
1045 -- The purpose of this procedure is to gather the valid components in a
1046 -- record type according to the values of its discriminants, in order to
1047 -- validate the components of a record aggregate.
1049 -- Typ is the type of the aggregate when its constrained discriminants
1050 -- need to be collected, otherwise it is Empty.
1052 -- Comp_List is an N_Component_List node.
1054 -- Governed_By is a list of N_Component_Association nodes, where each
1055 -- choice list contains the name of a discriminant and the expression
1056 -- field gives its value. The values of the discriminants governing
1057 -- the (possibly nested) variant parts in Comp_List are found in this
1058 -- Component_Association List.
1060 -- Into is the list where the valid components are appended. Note that
1061 -- Into need not be an Empty list. If it's not, components are attached
1062 -- to its tail.
1064 -- Report_Errors is set to True if the values of the discriminants are
1065 -- insufficiently static (see body for details of what that means).
1067 -- Allow_Compile_Time if set to True, allows compile time known values in
1068 -- Governed_By expressions in addition to static expressions.
1070 -- Include_Interface_Tag if set to True, gather any interface tag
1071 -- component, otherwise exclude them.
1073 -- This procedure is also used when building a record subtype. If the
1074 -- discriminant constraint of the subtype is static, the components of the
1075 -- subtype are only those of the variants selected by the values of the
1076 -- discriminants. Otherwise all components of the parent must be included
1077 -- in the subtype for semantic analysis.
1079 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1080 -- Given a node for an expression, obtain the actual subtype of the
1081 -- expression. In the case of a parameter where the formal is an
1082 -- unconstrained array or discriminated type, this will be the previously
1083 -- constructed subtype of the actual. Note that this is not quite the
1084 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1085 -- it is the subtype of the value of the actual. The actual subtype is also
1086 -- returned in other cases where it has already been constructed for an
1087 -- object. Otherwise the expression type is returned unchanged, except for
1088 -- the case of an unconstrained array type, where an actual subtype is
1089 -- created, using Insert_Actions if necessary to insert any associated
1090 -- actions.
1092 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1093 -- This is like Get_Actual_Subtype, except that it never constructs an
1094 -- actual subtype. If an actual subtype is already available, i.e. the
1095 -- Actual_Subtype field of the corresponding entity is set, then it is
1096 -- returned. Otherwise the Etype of the node is returned.
1098 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1099 -- Return the body node for a stub
1101 function Get_Cursor_Type
1102 (Aspect : Node_Id;
1103 Typ : Entity_Id) return Entity_Id;
1104 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1105 -- primitive operation First. For use in resolving the other primitive
1106 -- operations of an Iterable type and expanding loops and quantified
1107 -- expressions over formal containers.
1109 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1110 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1111 -- primitive operation First. For use after resolving the primitive
1112 -- operations of an Iterable type.
1114 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1115 -- This is used to construct the string literal node representing a
1116 -- default external name, i.e. one that is constructed from the name of an
1117 -- entity, or (in the case of extended DEC import/export pragmas) an
1118 -- identifier provided as the external name. Letters in the name are
1119 -- according to the setting of Opt.External_Name_Default_Casing.
1121 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1122 -- If expression N references a part of an object, return this object.
1123 -- Otherwise return Empty. Expression N should have been resolved already.
1125 function Get_Enclosing_Deep_Object (N : Node_Id) return Entity_Id;
1126 -- If expression N references a reachable part of an object (as defined in
1127 -- SPARK RM 6.9), return this object. Otherwise return Empty. It is similar
1128 -- to Get_Enclosing_Object, but treats pointer dereference like component
1129 -- selection. Expression N should have been resolved already.
1131 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1132 -- Returns the true generic entity in an instantiation. If the name in the
1133 -- instantiation is a renaming, the function returns the renamed generic.
1135 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1136 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1137 -- in a child unit a derived type is within the derivation class of an
1138 -- ancestor declared in a parent unit, even if there is an intermediate
1139 -- derivation that does not see the full view of that ancestor.
1141 procedure Get_Index_Bounds
1142 (N : Node_Id;
1143 L : out Node_Id;
1144 H : out Node_Id;
1145 Use_Full_View : Boolean := False);
1146 -- This procedure assigns to L and H respectively the values of the low and
1147 -- high bounds of node N, which must be a range, subtype indication, or the
1148 -- name of a scalar subtype. The result in L, H may be set to Error if
1149 -- there was an earlier error in the range.
1150 -- Use_Full_View is intended for use by clients other than the compiler
1151 -- (specifically, gnat2scil) to indicate that we want the full view if
1152 -- the index type turns out to be a partial view; this case should not
1153 -- arise during normal compilation of semantically correct programs.
1155 type Range_Nodes is record
1156 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1157 end record;
1159 type Range_Values is record
1160 First, Last : Uint; -- First and Last values of a discrete_range
1161 end record;
1163 function Get_Index_Bounds
1164 (N : Node_Id;
1165 Use_Full_View : Boolean := False) return Range_Nodes;
1166 -- Same as the above procedure, but returns the result as a record.
1167 -- ???This should probably replace the procedure.
1169 function Get_Index_Bounds
1170 (N : Node_Id;
1171 Use_Full_View : Boolean := False) return Range_Values;
1172 -- Same as the above function, but returns the values, which must be known
1173 -- at compile time.
1175 procedure Get_Interfacing_Aspects
1176 (Iface_Asp : Node_Id;
1177 Conv_Asp : out Node_Id;
1178 EN_Asp : out Node_Id;
1179 Expo_Asp : out Node_Id;
1180 Imp_Asp : out Node_Id;
1181 LN_Asp : out Node_Id;
1182 Do_Checks : Boolean := False);
1183 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1184 -- aspects that apply to the same related entity. The aspects considered by
1185 -- this routine are as follows:
1187 -- Conv_Asp - aspect Convention
1188 -- EN_Asp - aspect External_Name
1189 -- Expo_Asp - aspect Export
1190 -- Imp_Asp - aspect Import
1191 -- LN_Asp - aspect Link_Name
1193 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1194 -- aspects.
1196 function Get_Enum_Lit_From_Pos
1197 (T : Entity_Id;
1198 Pos : Uint;
1199 Loc : Source_Ptr) return Node_Id;
1200 -- This function returns an identifier denoting the E_Enumeration_Literal
1201 -- entity for the specified value from the enumeration type or subtype T.
1202 -- The second argument is the Pos value. Constraint_Error is raised if
1203 -- argument Pos is not in range. The third argument supplies a source
1204 -- location for constructed nodes returned by this function. If No_Location
1205 -- is supplied as source location, the location of the returned node is
1206 -- copied from the original source location for the enumeration literal,
1207 -- when available.
1209 function Get_Iterable_Type_Primitive
1210 (Typ : Entity_Id;
1211 Nam : Name_Id) return Entity_Id;
1212 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1213 -- Element from the value of the Iterable aspect of a type.
1215 function Get_Library_Unit_Name (Decl_Node : Node_Id) return String_Id;
1216 -- Return the full expanded name of the library unit declared by Decl_Node
1218 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1219 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1220 -- is not present. It is assumed that Id denotes an entry.
1222 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1223 pragma Inline (Get_Name_Entity_Id);
1224 -- An entity value is associated with each name in the name table. The
1225 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1226 -- is the innermost visible entity with the given name. See the body of
1227 -- Sem_Ch8 for further details on handling of entity visibility.
1229 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1230 -- Return the Name component of Test_Case pragma N
1231 -- Bad name now that this no longer applies to Contract_Case ???
1233 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1234 -- Get defining entity of parent unit of a child unit. In most cases this
1235 -- is the defining entity of the unit, but for a child instance whose
1236 -- parent needs a body for inlining, the instantiation node of the parent
1237 -- has not yet been rewritten as a package declaration, and the entity has
1238 -- to be retrieved from the Instance_Spec of the unit.
1240 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1241 pragma Inline (Get_Pragma_Id);
1242 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1244 function Get_Qualified_Name
1245 (Id : Entity_Id;
1246 Suffix : Entity_Id := Empty) return Name_Id;
1247 -- Obtain the fully qualified form of entity Id. The format is:
1248 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1250 function Get_Qualified_Name
1251 (Nam : Name_Id;
1252 Suffix : Name_Id := No_Name;
1253 Scop : Entity_Id := Current_Scope) return Name_Id;
1254 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1255 -- Scop. The format is:
1256 -- scop-1__scop__nam__suffix
1258 procedure Get_Reason_String (N : Node_Id);
1259 -- Recursive routine to analyze reason argument for pragma Warnings. The
1260 -- value of the reason argument is appended to the current string using
1261 -- Store_String_Chars. The reason argument is expected to be a string
1262 -- literal or concatenation of string literals. An error is given for
1263 -- any other form.
1265 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1266 -- If Typ has Implicit_Dereference, return discriminant specified in the
1267 -- corresponding aspect.
1269 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1270 -- Given an arbitrary node, return the renamed object if the node
1271 -- represents a renamed object; otherwise return the node unchanged.
1272 -- The node can represent an arbitrary expression or any other kind of
1273 -- node (such as the name of a type).
1275 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1276 -- Given an entity for an exception, package, subprogram or generic unit,
1277 -- returns the ultimately renamed entity if this is a renaming. If this is
1278 -- not a renamed entity, returns its argument. It is an error to call this
1279 -- with any other kind of entity.
1281 function Get_Return_Object (N : Node_Id) return Entity_Id;
1282 -- Given an extended return statement, return the corresponding return
1283 -- object, identified as the one for which Is_Return_Object = True.
1285 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1286 -- Nod is either a procedure call statement, or a function call, or an
1287 -- accept statement node. This procedure finds the Entity_Id of the related
1288 -- subprogram or entry and returns it, or if no subprogram can be found,
1289 -- returns Empty.
1291 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1292 -- Given an entity for a task type or subtype, retrieves the
1293 -- Task_Body_Procedure field from the corresponding task type declaration.
1295 function Get_User_Defined_Equality (E : Entity_Id) return Entity_Id;
1296 -- For a type entity, return the entity of the primitive equality function
1297 -- for the type if it exists, otherwise return Empty.
1299 procedure Get_Views
1300 (Typ : Entity_Id;
1301 Priv_Typ : out Entity_Id;
1302 Full_Typ : out Entity_Id;
1303 UFull_Typ : out Entity_Id;
1304 CRec_Typ : out Entity_Id);
1305 -- Obtain the partial and full views of type Typ and in addition any extra
1306 -- types the full views may have. The return entities are as follows:
1308 -- Priv_Typ - the partial view (a private type)
1309 -- Full_Typ - the full view
1310 -- UFull_Typ - the underlying full view, if the full view is private
1311 -- CRec_Typ - the corresponding record type of the full views
1313 function Get_Fullest_View
1314 (E : Entity_Id;
1315 Include_PAT : Boolean := True;
1316 Recurse : Boolean := True) return Entity_Id;
1317 -- Get the fullest possible view of E, looking through private, limited,
1318 -- packed array and other implementation types. If Include_PAT is False,
1319 -- don't look inside packed array types. If Recurse is False, just
1320 -- go down one level (so it's no longer the "fullest" view).
1322 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1323 -- Result of Has_Compatible_Alignment test, description found below. Note
1324 -- that the values are arranged in increasing order of problematicness.
1326 function Has_Compatible_Alignment
1327 (Obj : Entity_Id;
1328 Expr : Node_Id;
1329 Layout_Done : Boolean) return Alignment_Result;
1330 -- Obj is an object entity, and expr is a node for an object reference. If
1331 -- the alignment of the object referenced by Expr is known to be compatible
1332 -- with the alignment of Obj (i.e. is larger or the same), then the result
1333 -- is Known_Compatible. If the alignment of the object referenced by Expr
1334 -- is known to be less than the alignment of Obj, then Known_Incompatible
1335 -- is returned. If neither condition can be reliably established at compile
1336 -- time, then Unknown is returned. If Layout_Done is True, the function can
1337 -- assume that the information on size and alignment of types and objects
1338 -- is present in the tree. This is used to determine if alignment checks
1339 -- are required for address clauses (Layout_Done is False in this case) as
1340 -- well as to issue appropriate warnings for them in the post compilation
1341 -- phase (Layout_Done is True in this case).
1343 -- Note: Known_Incompatible does not mean that at run time the alignment
1344 -- of Expr is known to be wrong for Obj, just that it can be determined
1345 -- that alignments have been explicitly or implicitly specified which are
1346 -- incompatible (whereas Unknown means that even this is not known). The
1347 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1348 -- Unknown, but issue a warning that there may be an alignment error.
1350 function Has_Declarations (N : Node_Id) return Boolean;
1351 -- Determines if the node can have declarations
1353 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1354 -- Simple predicate to test for defaulted discriminants
1356 function Has_Denormals (E : Entity_Id) return Boolean;
1357 -- Determines if the floating-point type E supports denormal numbers.
1358 -- Returns False if E is not a floating-point type.
1360 function Has_Discriminant_Dependent_Constraint
1361 (Comp : Entity_Id) return Boolean;
1362 -- Returns True if and only if Comp has a constrained subtype that depends
1363 -- on a discriminant.
1365 function Has_Effectively_Volatile_Profile
1366 (Subp_Id : Entity_Id) return Boolean;
1367 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1368 -- parameter for reading or returns an effectively volatile value for
1369 -- reading.
1371 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1372 -- Determine whether type Typ defines "full default initialization" as
1373 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1374 -- * A scalar type with specified Default_Value
1375 -- * An array-of-scalar type with specified Default_Component_Value
1376 -- * An array type whose element type defines full default initialization
1377 -- * A protected type, record type or type extension whose components
1378 -- either include a default expression or have a type which defines
1379 -- full default initialization. In the case of type extensions, the
1380 -- parent type defines full default initialization.
1381 -- * A task type
1382 -- * A private type with pragma Default_Initial_Condition that provides
1383 -- full default initialization.
1384 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1386 function Has_Fully_Default_Initializing_DIC_Pragma
1387 (Typ : Entity_Id) return Boolean;
1388 -- Determine whether type Typ has a suitable Default_Initial_Condition
1389 -- pragma which provides the full default initialization of the type.
1391 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1392 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1393 -- discriminants if it has a constrained nominal type, unless the object
1394 -- is a component of an enclosing Unchecked_Union object that is subject
1395 -- to a per-object constraint and the enclosing object lacks inferable
1396 -- discriminants.
1398 -- An expression of an Unchecked_Union type has inferable discriminants
1399 -- if it is either a name of an object with inferable discriminants or a
1400 -- qualified expression whose subtype mark denotes a constrained subtype.
1402 function Has_Infinities (E : Entity_Id) return Boolean;
1403 -- Determines if the range of the floating-point type E includes
1404 -- infinities. Returns False if E is not a floating-point type.
1406 function Has_Interfaces
1407 (T : Entity_Id;
1408 Use_Full_View : Boolean := True) return Boolean;
1409 -- Where T is a concurrent type or a record type, returns true if T covers
1410 -- any abstract interface types. In case of private types the argument
1411 -- Use_Full_View controls if the check is done using its full view (if
1412 -- available).
1414 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1415 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1416 -- assumed that Id denotes an entry.
1418 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1419 -- This is a simple minded function for determining whether an expression
1420 -- has no obvious side effects. It is used only for determining whether
1421 -- warnings are needed in certain situations, and is not guaranteed to
1422 -- be accurate in either direction. Exceptions may mean an expression
1423 -- does in fact have side effects, but this may be ignored and True is
1424 -- returned, or a complex expression may in fact be side effect free
1425 -- but we don't recognize it here and return False. The Side_Effect_Free
1426 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1427 -- be shared, so that this routine would be more accurate.
1429 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1430 -- Determine whether abstract state Id has at least one nonnull constituent
1431 -- as expressed in pragma Refined_State. This function does not take into
1432 -- account the visible refinement region of abstract state Id.
1434 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1435 -- Determine whether subprogram Subp has a class-wide precondition that is
1436 -- not statically True.
1438 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1439 -- Determine whether the body of procedure Proc_Id contains a sole null
1440 -- statement, possibly followed by an optional return. Used to optimize
1441 -- useless calls to assertion checks.
1443 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1444 -- Determine whether node N has a null exclusion
1446 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1447 -- Determine whether abstract state Id has a null refinement as expressed
1448 -- in pragma Refined_State. This function does not take into account the
1449 -- visible refinement region of abstract state Id.
1451 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1452 -- Return True if L has non-null statements
1454 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1455 -- Return True if L has no statements with side effects
1457 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1458 -- Return True if the loop has no side effect and can therefore be
1459 -- marked for removal. Return False if N is not a N_Loop_Statement.
1461 function Is_Container_Aggregate (Exp : Node_Id) return Boolean;
1462 -- Is the given expression a container aggregate?
1464 function Is_Function_With_Side_Effects (Subp : Entity_Id) return Boolean;
1465 -- Return True if Subp is a function with side effects, ie. it has a
1466 -- (direct or inherited) pragma Side_Effects with static value True.
1468 function Is_Newly_Constructed
1469 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1470 -- Indicates whether a given expression is "newly constructed" (RM 4.4).
1471 -- Context_Requires_NC determines the result returned for cases like a
1472 -- raise expression or a conditional expression where some-but-not-all
1473 -- operative constituents are newly constructed. Thus, this is a
1474 -- somewhat unusual predicate in that the result required in order to
1475 -- satisfy whatever legality rule is being checked can influence the
1476 -- result of the predicate. Context_Requires_NC might be True for
1477 -- something like the "newly constructed" rule for a limited expression
1478 -- of a return statement, and False for something like the
1479 -- "newly constructed" rule pertaining to a limited object renaming in a
1480 -- declare expression. Eventually, the code to implement every
1481 -- RM legality rule requiring/prohibiting a "newly constructed" expression
1482 -- should be implemented by calling this function; that's not done yet.
1483 -- The function name doesn't quite match the RM definition of the term if
1484 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1485 -- might be a more accurate name.
1487 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1488 (Subp : Entity_Id) return Boolean;
1489 -- Return True if Subp is a primitive of an abstract type, where the
1490 -- primitive has a class-wide pre- or postcondition whose expression
1491 -- is nonstatic.
1493 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1494 -- Predicate to determine whether a controlled type has a user-defined
1495 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1496 -- non-null), which causes the type to not have preelaborable
1497 -- initialization.
1499 function Has_Preelaborable_Initialization
1500 (E : Entity_Id;
1501 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1502 -- Return True iff type E has preelaborable initialization as defined in
1503 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1504 -- If Preelab_Init_Expr is present, indicates that the function should
1505 -- presume that for any subcomponent of E that is of a formal private or
1506 -- derived type that is referenced by a Preelaborable_Initialization
1507 -- attribute within the expression Preelab_Init_Expr, the formal type has
1508 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1510 function Has_Prefix (N : Node_Id) return Boolean;
1511 -- Return True if N has attribute Prefix
1513 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1514 -- Check if a type has a (sub)component of a private type that has not
1515 -- yet received a full declaration.
1517 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1518 -- Returns True iff entity E is subject to the Relaxed_Initialization
1519 -- aspect. Entity E can be either type, variable, constant, subprogram,
1520 -- entry or an abstract state. For private types and deferred constants
1521 -- E should be the private view, because aspect can only be attached there.
1523 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1524 -- Determines if the floating-point type E supports signed zeros.
1525 -- Returns False if E is not a floating-point type.
1527 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1528 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1529 -- All subprograms have a N_Contract node, but this does not mean that the
1530 -- contract is useful.
1532 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1533 -- Return whether an array type has static bounds
1535 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1536 -- Determine whether array type Typ has static non-empty bounds
1538 function Has_Stream (T : Entity_Id) return Boolean;
1539 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1540 -- case of a composite type, has a component for which this predicate is
1541 -- True, and if so returns True. Otherwise a result of False means that
1542 -- there is no Stream type in sight. For a private type, the test is
1543 -- applied to the underlying type (or returns False if there is no
1544 -- underlying type).
1546 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1547 -- Returns true if the last character of E is Suffix. Used in Assertions.
1549 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1550 -- Returns True if Typ is a composite type (array or record) that is either
1551 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1552 -- noncomposite type, or if no tagged subcomponents are present.
1554 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1555 -- Given arbitrary expression Expr, determine whether it contains at
1556 -- least one name whose entity is Any_Id.
1558 function Has_Effectively_Volatile_Component
1559 (Typ : Entity_Id) return Boolean;
1560 -- Given arbitrary type Typ, determine whether it contains at least one
1561 -- effectively volatile component.
1563 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1564 -- Given arbitrary type Typ, determine whether it contains at least one
1565 -- volatile component.
1567 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1568 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1569 -- implementation requirement which the pragma imposes. The return value is
1570 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1572 function Implements_Interface
1573 (Typ_Ent : Entity_Id;
1574 Iface_Ent : Entity_Id;
1575 Exclude_Parents : Boolean := False) return Boolean;
1576 -- Returns true if the Typ_Ent implements interface Iface_Ent
1578 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1579 -- Called when Typ is the type of the prefix of an implicit dereference.
1580 -- Return the designated type of Typ, taking into account that this type
1581 -- may be a limited view, when the nonlimited view is visible.
1583 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1584 -- Returns True if node N appears within a pragma that acts as an assertion
1585 -- expression. See Sem_Prag for the list of qualifying pragmas.
1587 function In_Check_Node (N : Node_Id) return Boolean;
1588 -- Return True if N is part of a N_Raise_xxx_Error node
1590 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1591 -- Returns True if entity E is inside a generic formal package
1593 function In_Generic_Scope (E : Entity_Id) return Boolean;
1594 -- Returns True if entity E is inside a generic scope
1596 function In_Instance return Boolean;
1597 -- Returns True if the current scope is within a generic instance
1599 function In_Instance_Body return Boolean;
1600 -- Returns True if current scope is within the body of an instance, where
1601 -- several semantic checks (e.g. accessibility checks) are relaxed.
1603 function In_Instance_Not_Visible return Boolean;
1604 -- Returns True if current scope is with the private part or the body of
1605 -- an instance. Other semantic checks are suppressed in this context.
1607 function In_Instance_Visible_Part
1608 (Id : Entity_Id := Current_Scope) return Boolean;
1609 -- Returns True if arbitrary entity Id is within the visible part of a
1610 -- package instance, where several additional semantic checks apply.
1612 function In_Package_Body return Boolean;
1613 -- Returns True if current scope is within a package body
1615 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1616 -- Returns true if the expression N occurs within a pragma with name Nam
1618 function In_Pre_Post_Condition
1619 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1620 -- Returns True if node N appears within a pre/postcondition pragma. Note
1621 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1622 -- True, then tests for N appearing within a class-wide pre/postcondition.
1624 function In_Quantified_Expression (N : Node_Id) return Boolean;
1625 -- Returns true if the expression N occurs within a quantified expression
1627 function In_Return_Value (Expr : Node_Id) return Boolean;
1628 -- Returns true if the expression Expr occurs within a simple return
1629 -- statement or is part of an assignment to the return object in an
1630 -- extended return statement.
1632 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1633 -- Returns True if N denotes a component or subcomponent in a record or
1634 -- array that has Reverse_Storage_Order.
1636 function In_Same_Declarative_Part
1637 (Context : Node_Id;
1638 N : Node_Id) return Boolean;
1639 -- True if the node N appears within the same declarative part denoted by
1640 -- the node Context.
1642 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1643 -- Determines if the current scope is within a subprogram compilation unit
1644 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1645 -- declaration) or within a task or protected body. The test is for
1646 -- appearing anywhere within such a construct (that is it does not need
1647 -- to be directly within).
1649 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1650 -- Determine whether node N is within the subtree rooted at Root
1652 function In_Subtree
1653 (N : Node_Id;
1654 Root1 : Node_Id;
1655 Root2 : Node_Id) return Boolean;
1656 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1657 -- This version is more efficient than calling the single root version of
1658 -- Is_Subtree twice.
1660 function In_Statement_Condition_With_Actions (N : Node_Id) return Boolean;
1661 -- Returns true if the expression N occurs within the condition of a
1662 -- statement node with actions. Subsidiary to inlining for GNATprove, where
1663 -- inlining of function calls in such expressions would expand the called
1664 -- body into actions list of the condition node. GNATprove cannot yet cope
1665 -- with such a complex AST.
1667 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1668 -- Determine whether a declaration occurs within the visible part of a
1669 -- package specification. The package must be on the scope stack, and the
1670 -- corresponding private part must not.
1672 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1673 -- Given the entity of a constant or a type, retrieve the incomplete or
1674 -- partial view of the same entity. Note that Id may not have a partial
1675 -- view in which case the function returns Empty.
1677 function Incomplete_View_From_Limited_With
1678 (Typ : Entity_Id) return Entity_Id;
1679 -- Typ is a type entity. This normally returns Typ. However, if there is
1680 -- an incomplete view of this entity that comes from a limited-with'ed
1681 -- package, then this returns that incomplete view.
1683 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1684 -- Given an N_Indexed_Component node, return the first bit position of the
1685 -- component if it is known at compile time. A value of No_Uint means that
1686 -- either the value is not yet known before back-end processing or it is
1687 -- not known at compile time after back-end processing.
1689 procedure Inherit_Predicate_Flags
1690 (Subt, Par : Entity_Id;
1691 Only_Flags : Boolean := False);
1692 -- Propagate static and dynamic predicate flags from a parent to the
1693 -- subtype in a subtype declaration with and without constraints, or from
1694 -- a parent to the derived type in a derived type declaration. Only_Flags
1695 -- is True in the case of a derived type declaration to inherit only the
1696 -- flags, not the predicate functions.
1698 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1699 -- Inherit the rep item chain of type From_Typ without clobbering any
1700 -- existing rep items on Typ's chain. Typ is the destination type.
1702 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1703 pragma Inline (Inherits_From_Tagged_Full_View);
1704 -- Return True if Typ is an untagged private type completed with a
1705 -- derivation of an untagged private type declaration whose full view
1706 -- is a tagged type.
1708 procedure Insert_Explicit_Dereference (N : Node_Id);
1709 -- In a context that requires a composite or subprogram type and where a
1710 -- prefix is an access type, rewrite the access type node N (which is the
1711 -- prefix, e.g. of an indexed component) as an explicit dereference.
1713 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1714 -- Examine all deferred constants in the declaration list Decls and check
1715 -- whether they have been completed by a full constant declaration or an
1716 -- Import pragma. Emit the error message if that is not the case.
1718 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1719 -- Install the elaboration model specified by pragma Elaboration_Checks
1720 -- associated with compilation unit Unit_Id. No action is taken when the
1721 -- unit lacks such pragma.
1723 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1724 -- Install both the generic formal parameters and the formal parameters of
1725 -- generic subprogram Subp_Id into visibility.
1727 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1728 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1730 function Invalid_Scalar_Value
1731 (Loc : Source_Ptr;
1732 Scal_Typ : Scalar_Id) return Node_Id;
1733 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1734 -- pragma Initialize_Scalars or by the binder. Return an expression created
1735 -- at source location Loc, which denotes the invalid value.
1737 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1738 -- True if E is the constructed wrapper for an access_to_subprogram
1739 -- type with Pre/Postconditions.
1741 function Is_Access_Variable (E : Entity_Id) return Boolean;
1742 -- Determines if type E is an access-to-variable
1744 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1745 -- Determines if N is an actual parameter of in-out mode in a subprogram
1746 -- call.
1748 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1749 -- Determines if N is an actual parameter of out mode in a subprogram call
1751 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1752 -- Determines if N is an actual parameter of out or in out mode in a
1753 -- subprogram call.
1755 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1756 -- Determines if N is an actual parameter in a subprogram or entry call
1758 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1759 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1760 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1761 -- rules of the language, it does not take into account the restriction
1762 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1763 -- and Obj violates the restriction. The caller is responsible for calling
1764 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1765 -- requirement for obeying the restriction in the call context.
1767 function Is_Ancestor_Package
1768 (E1 : Entity_Id;
1769 E2 : Entity_Id) return Boolean;
1770 -- Determine whether package E1 is an ancestor of E2
1772 function Is_Atomic_Object (N : Node_Id) return Boolean;
1773 -- Determine whether arbitrary node N denotes a reference to an atomic
1774 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1776 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1777 -- Determine whether node N denotes attribute 'Loop_Entry
1779 function Is_Attribute_Old (N : Node_Id) return Boolean;
1780 -- Determine whether node N denotes attribute 'Old
1782 function Is_Attribute_Result (N : Node_Id) return Boolean;
1783 -- Determine whether node N denotes attribute 'Result
1785 function Is_Attribute_Update (N : Node_Id) return Boolean;
1786 -- Determine whether node N denotes attribute 'Update
1788 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean
1789 with Inline;
1790 -- Determine whether node N denotes a body or a package declaration
1792 function Is_Bounded_String (T : Entity_Id) return Boolean;
1793 -- True if T is a bounded string type. Used to make sure "=" composes
1794 -- properly for bounded string types (see 4.5.2(32.1/1)).
1796 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1797 -- Determine whether entity Id denotes a procedure with synchronization
1798 -- kind By_Protected_Procedure.
1800 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1801 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1802 return Boolean;
1803 -- Returns true if the two specifications of the given
1804 -- nonoverridable aspect are compatible.
1806 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1807 (Expr : Node_Id) return Boolean;
1808 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1809 -- to a formal type, or a sequence of two or more such attributes connected
1810 -- by "and" operators, or if the Original_Node of Expr or its constituents
1811 -- is such an attribute.
1813 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1814 -- Exp is the expression for an array bound. Determines whether the
1815 -- bound is a compile-time known value, or a constant entity, or an
1816 -- enumeration literal, or an expression composed of constant-bound
1817 -- subexpressions which are evaluated by means of standard operators.
1819 function Is_Container_Element (Exp : Node_Id) return Boolean;
1820 -- This routine recognizes expressions that denote an element of one of
1821 -- the predefined containers, when the source only contains an indexing
1822 -- operation and an implicit dereference is inserted by the compiler.
1823 -- In the absence of this optimization, the indexing creates a temporary
1824 -- controlled cursor that sets the tampering bit of the container, and
1825 -- restricts the use of the convenient notation C (X) to contexts that
1826 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1827 -- explicit dereference. The transformation applies when it has the form
1828 -- F (X).Discr.all.
1830 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1831 -- Determine whether aspect specification or pragma Item is a contract
1832 -- annotation.
1834 function Is_Controlling_Limited_Procedure
1835 (Proc_Nam : Entity_Id) return Boolean;
1836 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1837 -- of a limited interface with a controlling first parameter.
1839 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1840 -- Returns True if N is a call to a CPP constructor
1842 function Is_CCT_Instance
1843 (Ref_Id : Entity_Id;
1844 Context_Id : Entity_Id) return Boolean;
1845 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1846 -- Global; also used when analyzing default expressions of protected and
1847 -- record components. Determine whether entity Ref_Id (which must represent
1848 -- either a protected type or a task type) denotes the current instance of
1849 -- a concurrent type. Context_Id denotes the associated context where the
1850 -- pragma appears.
1852 function Is_Child_Or_Sibling
1853 (Pack_1 : Entity_Id;
1854 Pack_2 : Entity_Id) return Boolean;
1855 -- Determine the following relations between two arbitrary packages:
1856 -- 1) One package is the parent of a child package
1857 -- 2) Both packages are siblings and share a common parent
1859 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1860 -- First determine whether type T is an interface and then check whether
1861 -- it is of protected, synchronized or task kind.
1863 function Is_Current_Instance (N : Node_Id) return Boolean;
1864 -- Predicate is true if N legally denotes a type name within its own
1865 -- declaration. Prior to Ada 2012 this covered only synchronized type
1866 -- declarations. In Ada 2012 it also covers type and subtype declarations
1867 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1869 function Is_Current_Instance_Reference_In_Type_Aspect
1870 (N : Node_Id) return Boolean;
1871 -- True if N is a reference to a current instance object that occurs within
1872 -- an aspect_specification for a type or subtype. In this case N will be
1873 -- a formal parameter of a subprogram created for a predicate, invariant,
1874 -- or Default_Initial_Condition aspect.
1876 function Is_Declaration
1877 (N : Node_Id;
1878 Body_OK : Boolean := True;
1879 Concurrent_OK : Boolean := True;
1880 Formal_OK : Boolean := True;
1881 Generic_OK : Boolean := True;
1882 Instantiation_OK : Boolean := True;
1883 Renaming_OK : Boolean := True;
1884 Stub_OK : Boolean := True;
1885 Subprogram_OK : Boolean := True;
1886 Type_OK : Boolean := True) return Boolean;
1887 -- Determine whether arbitrary node N denotes a declaration depending
1888 -- on the allowed subsets of declarations. Set the following flags to
1889 -- consider specific subsets of declarations:
1891 -- * Body_OK - body declarations
1893 -- * Concurrent_OK - concurrent type declarations
1895 -- * Formal_OK - formal declarations
1897 -- * Generic_OK - generic declarations, including generic renamings
1899 -- * Instantiation_OK - generic instantiations
1901 -- * Renaming_OK - renaming declarations, including generic renamings
1903 -- * Stub_OK - stub declarations
1905 -- * Subprogram_OK - entry, expression function, and subprogram
1906 -- declarations.
1908 -- * Type_OK - type declarations, including concurrent types
1910 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1911 -- Returns True iff component Comp is declared within a variant part
1913 function Is_Dependent_Component_Of_Mutable_Object
1914 (Object : Node_Id) return Boolean;
1915 -- Returns True if Object is the name of a subcomponent that depends on
1916 -- discriminants of a variable whose nominal subtype is unconstrained and
1917 -- not indefinite, and the variable is not aliased. Otherwise returns
1918 -- False. The nodes passed to this function are assumed to denote objects.
1920 function Is_Dereferenced (N : Node_Id) return Boolean;
1921 -- N is a subexpression node of an access type. This function returns true
1922 -- if N appears as the prefix of a node that does a dereference of the
1923 -- access value (selected/indexed component, explicit dereference or a
1924 -- slice), and false otherwise.
1926 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1927 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1928 -- This is the RM definition, a type is a descendant of another type if it
1929 -- is the same type or is derived from a descendant of the other type.
1931 function Is_Descendant_Of_Suspension_Object
1932 (Typ : Entity_Id) return Boolean;
1933 -- Determine whether type Typ is a descendant of type Suspension_Object
1934 -- defined in Ada.Synchronous_Task_Control. This version is different from
1935 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1936 -- an entity and by extension a call to RTSfind.
1938 function Is_Double_Precision_Floating_Point_Type
1939 (E : Entity_Id) return Boolean;
1940 -- Return whether E is a double precision floating point type,
1941 -- characterized by:
1942 -- . machine_radix = 2
1943 -- . machine_mantissa = 53
1944 -- . machine_emax = 2**10
1945 -- . machine_emin = 3 - machine_emax
1947 function Is_Effectively_Volatile
1948 (Id : Entity_Id;
1949 Ignore_Protected : Boolean := False) return Boolean;
1950 -- Determine whether a type or object denoted by entity Id is effectively
1951 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1952 -- * Volatile without No_Caching
1953 -- * An array type subject to aspect Volatile_Components
1954 -- * An array type whose component type is effectively volatile
1955 -- * A protected type
1956 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1958 -- If Ignore_Protected is True, then a protected object/type is treated
1959 -- like a non-protected record object/type for computing the result of
1960 -- this query.
1962 function Is_Effectively_Volatile_For_Reading
1963 (Id : Entity_Id;
1964 Ignore_Protected : Boolean := False) return Boolean;
1965 -- Determine whether a type or object denoted by entity Id is effectively
1966 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
1967 -- must be either
1968 -- * Volatile without No_Caching and have Async_Writers or
1969 -- Effective_Reads set to True
1970 -- * An array type subject to aspect Volatile_Components, unless it has
1971 -- Async_Writers and Effective_Reads set to False
1972 -- * An array type whose component type is effectively volatile for
1973 -- reading
1974 -- * A protected type
1975 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1977 -- If Ignore_Protected is True, then a protected object/type is treated
1978 -- like a non-protected record object/type for computing the result of
1979 -- this query.
1981 function Is_Effectively_Volatile_Object
1982 (N : Node_Id) return Boolean;
1983 -- Determine whether an arbitrary node denotes an effectively volatile
1984 -- object (SPARK RM 7.1.2).
1986 function Is_Effectively_Volatile_Object_For_Reading
1987 (N : Node_Id) return Boolean;
1988 -- Determine whether an arbitrary node denotes an effectively volatile
1989 -- object for reading (SPARK RM 7.1.2).
1991 function Is_Entity_Of_Quantified_Expression (Id : Entity_Id) return Boolean;
1992 -- Determine whether entity Id is the entity of a quantified expression
1994 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1995 -- Determine whether entity Id is the body entity of an entry [family]
1997 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1998 -- Determine whether entity Id is the spec entity of an entry [family]
2000 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2001 -- Determine if a given node N is an explicitly aliased formal parameter.
2003 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2004 -- Check whether a function in a call is an expanded priority attribute,
2005 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2006 -- does not take place in a configurable runtime.
2008 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2009 -- Determine whether subprogram [body] Subp denotes an expression function
2011 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2013 function Is_Expression_Function_Or_Completion
2014 (Subp : Entity_Id) return Boolean;
2015 -- Determine whether subprogram [body] Subp denotes an expression function
2016 -- or is completed by an expression function body.
2018 function Is_Extended_Precision_Floating_Point_Type
2019 (E : Entity_Id) return Boolean;
2020 -- Return whether E is an extended precision floating point type,
2021 -- characterized by:
2022 -- . machine_radix = 2
2023 -- . machine_mantissa = 64
2024 -- . machine_emax = 2**14
2025 -- . machine_emin = 3 - machine_emax
2027 function Is_EVF_Expression (N : Node_Id) return Boolean;
2028 -- Determine whether node N denotes a reference to a formal parameter of
2029 -- a specific tagged type whose related subprogram is subject to pragma
2030 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2031 -- constructs fall under this category:
2032 -- 1) A qualified expression whose operand is EVF
2033 -- 2) A type conversion whose operand is EVF
2034 -- 3) An if expression with at least one EVF dependent_expression
2035 -- 4) A case expression with at least one EVF dependent_expression
2037 function Is_False (U : Opt_Ubool) return Boolean;
2038 pragma Inline (Is_False);
2039 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2041 function Is_True (U : Opt_Ubool) return Boolean;
2042 pragma Inline (Is_True);
2043 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2044 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2045 -- case of error. It doesn't really matter whether the error case is
2046 -- considered True or False, but we don't want this to blow up in that
2047 -- case.
2049 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2050 -- Returns True iff the number U is a model number of the fixed-point type
2051 -- T, i.e. if it is an exact multiple of Small.
2053 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2054 -- Determine whether arbitrary node N denotes a reference to a full access
2055 -- object as per Ada 2022 RM C.6(8.2).
2057 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2058 -- Typ is a type entity. This function returns true if this type is fully
2059 -- initialized, meaning that an object of the type is fully initialized.
2060 -- Note that initialization resulting from use of pragma Normalize_Scalars
2061 -- does not count. Note that this is only used for the purpose of issuing
2062 -- warnings for objects that are potentially referenced uninitialized. This
2063 -- means that the result returned is not crucial, but should err on the
2064 -- side of thinking things are fully initialized if it does not know.
2066 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2067 -- Determine whether arbitrary declaration Decl denotes a generic package,
2068 -- a generic subprogram or a generic body.
2070 function Is_Independent_Object (N : Node_Id) return Boolean;
2071 -- Determine whether arbitrary node N denotes a reference to an independent
2072 -- object as per RM C.6(8).
2074 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2075 -- E is a subprogram. Return True is E is an implicit operation inherited
2076 -- by a derived type declaration.
2078 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2079 -- Return True if Subp is an expression function that fulfills all the
2080 -- following requirements for inlining:
2081 -- 1. pragma/aspect Inline_Always
2082 -- 2. No formals
2083 -- 3. No contracts
2084 -- 4. No dispatching primitive
2085 -- 5. Result subtype controlled (or with controlled components)
2086 -- 6. Result subtype not subject to type-invariant checks
2087 -- 7. Result subtype not a class-wide type
2088 -- 8. Return expression naming an object global to the function
2089 -- 9. Nominal subtype of the returned object statically compatible
2090 -- with the result subtype of the expression function.
2092 function Is_Internal_Block (N : Node_Id) return Boolean;
2093 pragma Inline (Is_Internal_Block);
2094 -- Determine if N is an N_Block_Statement with an internal label. See
2095 -- Add_Block_Identifier.
2097 function Is_Iterator (Typ : Entity_Id) return Boolean;
2098 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2099 -- Ada.Iterator_Interfaces, or it is derived from one.
2101 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2102 -- N is an iterator specification. Returns True iff N is an iterator over
2103 -- an array, either inside a loop of the form 'for X of A' or a quantified
2104 -- expression of the form 'for all/some X of A' where A is of array type.
2106 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2107 -- A library-level declaration is one that is accessible from Standard,
2108 -- i.e. a library unit or an entity declared in a library package.
2110 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2111 -- Determine whether a given type is a limited class-wide type, in which
2112 -- case it needs a Master_Id, because extensions of its designated type
2113 -- may include task components. A class-wide type that comes from a
2114 -- limited view must be treated in the same way.
2116 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2117 -- Determines whether Expr is a reference to a variable or formal parameter
2118 -- of mode OUT or IN OUT of the current enclosing subprogram.
2120 function Is_Master (N : Node_Id) return Boolean;
2121 -- Determine if the given node N constitutes a finalization master
2123 function Is_Name_Reference (N : Node_Id) return Boolean;
2124 -- Determine whether arbitrary node N is a reference to a name. This is
2125 -- similar to Is_Object_Reference but returns True only if N can be renamed
2126 -- without the need for a temporary, the typical example of an object not
2127 -- in this category being a function call.
2129 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2130 -- Determine whether arbitrary construct N violates preelaborability as
2131 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2132 -- syntactic and semantic properties of the construct.
2134 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2135 -- Determine whether entity Id denotes the procedure that verifies the
2136 -- assertion expression of pragma Default_Initial_Condition and if it does,
2137 -- the encapsulated expression is nontrivial.
2139 function Is_Null_Extension
2140 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2141 -- Given a tagged type, returns True if argument is a type extension
2142 -- that introduces no new components (discriminant or nondiscriminant).
2143 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2144 -- Cannot be called with class-wide types.
2146 function Is_Null_Extension_Of
2147 (Descendant, Ancestor : Entity_Id) return Boolean;
2148 -- Given two tagged types, the first a descendant of the second,
2149 -- returns True if every component of Descendant is inherited
2150 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2151 -- Cannot be called with class-wide types.
2153 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2154 -- Returns True for an N_Record_Definition node that has no user-defined
2155 -- components (and no variant part).
2157 function Is_Null_Record_Type
2158 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2159 -- Determine whether T is declared with a null record definition, a
2160 -- null component list, or as a type derived from a null record type
2161 -- (with a null extension if tagged). Returns True for interface types,
2162 -- False for discriminated types.
2164 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2165 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2166 -- attribute is applied to an object.
2168 function Is_Object_Reference (N : Node_Id) return Boolean;
2169 -- Determines if the tree referenced by N represents an object. Both
2170 -- variable and constant objects return True (compare Is_Variable).
2172 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2173 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2174 -- Note that the Is_Variable function is not quite the right test because
2175 -- this is a case in which conversions whose expression is a variable (in
2176 -- the Is_Variable sense) with an untagged type target are considered view
2177 -- conversions and hence variables.
2179 function Is_OK_Volatile_Context
2180 (Context : Node_Id;
2181 Obj_Ref : Node_Id;
2182 Check_Actuals : Boolean) return Boolean;
2183 -- Determine whether node Context denotes a "non-interfering context" (as
2184 -- defined in SPARK RM 7.1.3(9)) where volatile reference Obj_Ref can
2185 -- safely reside. When examining references that might be located within
2186 -- actual parameters of a subprogram call that has not been resolved yet,
2187 -- Check_Actuals should be False; such references will be assumed to be
2188 -- legal. They will need to be checked again after subprogram call has
2189 -- been resolved.
2191 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2192 -- Determine whether aspect specification or pragma Item is one of the
2193 -- following package contract annotations:
2194 -- Abstract_State
2195 -- Initial_Condition
2196 -- Initializes
2197 -- Refined_State
2199 function Is_Partially_Initialized_Type
2200 (Typ : Entity_Id;
2201 Include_Implicit : Boolean := True) return Boolean;
2202 -- Typ is a type entity. This function returns true if this type is partly
2203 -- initialized, meaning that an object of the type is at least partly
2204 -- initialized (in particular in the record case, that at least one
2205 -- component has an initialization expression, including via Default_Value
2206 -- and Default_Component_Value aspects). Note that initialization
2207 -- resulting from the use of pragma Normalize_Scalars does not count.
2208 -- Include_Implicit controls whether implicit initialization of access
2209 -- values to null, and of discriminant values, is counted as making the
2210 -- type be partially initialized. For the default setting of True, these
2211 -- implicit cases do count, and discriminated types or types containing
2212 -- access values not explicitly initialized will return True. Otherwise
2213 -- if Include_Implicit is False, these cases do not count as making the
2214 -- type be partially initialized.
2216 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2217 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2219 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2220 -- Determines if type T is a potentially persistent type. A potentially
2221 -- persistent type is defined (recursively) as a scalar type, an untagged
2222 -- record whose components are all of a potentially persistent type, or an
2223 -- array with all static constraints whose component type is potentially
2224 -- persistent. A private type is potentially persistent if the full type
2225 -- is potentially persistent.
2227 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2228 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2230 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2231 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2232 -- required to implement interfaces.
2234 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2235 -- Similar to the previous one, but excludes stream operations, because
2236 -- these may be overridden, and need extra formals, like user-defined
2237 -- operations.
2239 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2240 -- Determine whether aggregate Aggr violates the restrictions of
2241 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2243 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2244 -- Determine whether arbitrary node N violates the restrictions of
2245 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2246 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2247 -- and semantic properties of N for a more accurate diagnostic.
2249 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2250 -- Returns True if and only if the library unit is declared with an
2251 -- explicit designation of private.
2253 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2254 -- Return True if node N denotes a protected type name which represents
2255 -- the current instance of a protected object according to RM 9.4(21/2).
2257 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2258 -- Return True if a compilation unit is the specification or the
2259 -- body of a remote call interface package.
2261 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2262 -- Return True if E is a remote access-to-class-wide type
2264 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2265 -- Return True if E is a remote access to subprogram type
2267 function Is_Remote_Call (N : Node_Id) return Boolean;
2268 -- Return True if N denotes a potentially remote call
2270 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2271 -- Return True if Proc_Nam is a procedure renaming of an entry
2273 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2274 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2275 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2277 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2278 -- Determine whether arbitrary entity Id denotes the anonymous object
2279 -- created for a single protected or single task type.
2281 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2282 -- Determine whether arbitrary entity Id denotes a single protected or
2283 -- single task type.
2285 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2286 -- Determine whether arbitrary node N denotes the declaration of a single
2287 -- protected type or single task type.
2289 function Is_Single_Precision_Floating_Point_Type
2290 (E : Entity_Id) return Boolean;
2291 -- Return whether E is a single precision floating point type,
2292 -- characterized by:
2293 -- . machine_radix = 2
2294 -- . machine_mantissa = 24
2295 -- . machine_emax = 2**7
2296 -- . machine_emin = 3 - machine_emax
2298 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2299 -- Determine whether arbitrary entity Id denotes the anonymous object
2300 -- created for a single protected type.
2302 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2303 -- Determine whether arbitrary entity Id denotes the anonymous object
2304 -- created for a single task type.
2306 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2307 -- Determine whether an arbitrary [private] type is specifically tagged
2309 function Is_Statement (N : Node_Id) return Boolean;
2310 pragma Inline (Is_Statement);
2311 -- Check if the node N is a statement node. Note that this includes
2312 -- the case of procedure call statements (unlike the direct use of
2313 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2314 -- Note that a label is *not* a statement, and will return False.
2316 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2317 -- Return True if N is guaranteed to a selected component containing a
2318 -- statically known discriminant.
2319 -- Note that this routine takes a conservative view and may return False
2320 -- in some cases where N would match the criteria. In other words this
2321 -- routine should be used to simplify or optimize the expanded code.
2323 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2324 -- Determine whether subprogram Subp denotes a static function,
2325 -- which is a function with the aspect Static with value True.
2327 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2328 -- Determine whether Call is a static call to a static function,
2329 -- meaning that the name of the call denotes a static function
2330 -- and all of the call's actual parameters are given by static expressions.
2332 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2333 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2334 -- of a full access object as per RM C.6(7).
2336 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2337 -- Determine whether aspect specification or pragma Item is one of the
2338 -- following subprogram contract annotations:
2339 -- Always_Terminates
2340 -- Contract_Cases
2341 -- Depends
2342 -- Exceptional_Cases
2343 -- Extensions_Visible
2344 -- Global
2345 -- Post
2346 -- Post_Class
2347 -- Postcondition
2348 -- Pre
2349 -- Pre_Class
2350 -- Precondition
2351 -- Refined_Depends
2352 -- Refined_Global
2353 -- Refined_Post
2354 -- Subprogram_Variant
2355 -- Test_Case
2357 function Is_Subprogram_Stub_Without_Prior_Declaration
2358 (N : Node_Id) return Boolean;
2359 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2360 -- stub with no prior subprogram declaration.
2362 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2363 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2364 -- an arbitrary tagged type.
2366 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2367 -- Determine whether entity Id denotes an object and if it does, whether
2368 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2369 -- such, the object must be
2370 -- * Of a type that yields a synchronized object
2371 -- * An atomic object with enabled Async_Writers
2372 -- * A constant not of access-to-variable type
2373 -- * A variable subject to pragma Constant_After_Elaboration
2375 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2376 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2378 function Is_Transfer (N : Node_Id) return Boolean;
2379 -- Returns True if the node N is a statement which is known to cause an
2380 -- unconditional transfer of control at run time, i.e. the following
2381 -- statement definitely will not be executed.
2383 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
2384 -- Determine whether source node N denotes "True" or "False". Note that
2385 -- this is not true for expressions that got folded to True or False.
2387 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2388 -- Determine whether an arbitrary entity denotes an instance of function
2389 -- Ada.Unchecked_Conversion.
2391 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2392 pragma Inline (Is_Universal_Numeric_Type);
2393 -- True if T is Universal_Integer or Universal_Real
2395 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2396 -- Determine whether an entity denotes a user-defined equality
2398 function Is_User_Defined_Literal
2399 (N : Node_Id;
2400 Typ : Entity_Id) return Boolean;
2401 pragma Inline (Is_User_Defined_Literal);
2402 -- Determine whether N is a user-defined literal for Typ, including
2403 -- the case where N denotes a named number of the appropriate kind
2404 -- when Typ has an Integer_Literal or Real_Literal aspect.
2406 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2407 -- Determine whether N denotes a reference to a variable which captures the
2408 -- value of an object for validation purposes.
2410 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2411 -- Returns true if E has variable size components
2413 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2414 -- Returns true if E has variable size components
2416 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2418 function Is_Variable
2419 (N : Node_Id;
2420 Use_Original_Node : Boolean := True) return Boolean;
2421 -- Determines if the tree referenced by N represents a variable, i.e. can
2422 -- appear on the left side of an assignment. There is one situation (formal
2423 -- parameters) in which untagged type conversions are also considered
2424 -- variables, but Is_Variable returns False for such cases, since it has
2425 -- no knowledge of the context. Note that this is the point at which
2426 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2427 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2428 -- default is True since this routine is commonly invoked as part of the
2429 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2431 function Is_View_Conversion (N : Node_Id) return Boolean;
2432 -- Returns True if N is a type_conversion whose operand is the name of an
2433 -- object and both its target type and operand type are tagged, or it
2434 -- appears in a call as an actual parameter of mode out or in out
2435 -- (RM 4.6(5/2)).
2437 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2438 -- Check whether T is derived from a visibly controlled type. This is true
2439 -- if the root type is declared in Ada.Finalization. If T is derived
2440 -- instead from a private type whose full view is controlled, an explicit
2441 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2442 -- one.
2444 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2445 -- Determine whether arbitrary node N denotes a reference to an object
2446 -- which is Volatile_Full_Access.
2448 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2449 -- Determine whether [generic] function Func_Id is subject to enabled
2450 -- pragma Volatile_Function. Protected functions are treated as volatile
2451 -- (SPARK RM 7.1.2).
2453 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2454 -- Determine whether arbitrary node N denotes a reference to a volatile
2455 -- object as per RM C.6(8). Note that the test here is for something that
2456 -- is actually declared as volatile, not for an object that gets treated
2457 -- as volatile (see Einfo.Treat_As_Volatile).
2459 generic
2460 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2461 procedure Iterate_Call_Parameters (Call : Node_Id);
2462 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2463 -- a function, procedure, or entry call.
2465 function Iterator_Interface_Ancestor (Typ : Entity_Id) return Entity_Id;
2466 -- If Typ has an ancestor that is an iterator interface type declared in
2467 -- an instance of Ada.Iterator_Interfaces, then returns that interface
2468 -- type. Otherwise returns Empty. (It's not clear what it means if there
2469 -- is more than one such ancestor, perhaps coming from multiple instances,
2470 -- but this function returns the first such ancestor it finds. ???)
2472 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2473 -- This procedure is called to clear all constant indications from all
2474 -- entities in the current scope and in any parent scopes if the current
2475 -- scope is a block or a package (and that recursion continues to the top
2476 -- scope that is not a block or a package). This is used when the
2477 -- sequential flow-of-control assumption is violated (occurrence of a
2478 -- label, head of a loop, or start of an exception handler). The effect of
2479 -- the call is to clear the Current_Value field (but we do not need to
2480 -- clear the Is_True_Constant flag, since that only gets reset if there
2481 -- really is an assignment somewhere in the entity scope). This procedure
2482 -- also calls Kill_All_Checks, since this is a special case of needing to
2483 -- forget saved values. This procedure also clears the Is_Known_Null and
2484 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2485 -- parameters since these are also not known to be trustable any more.
2487 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2488 -- fields and leave other fields unchanged. This is used when we encounter
2489 -- an unconditional flow of control change (return, goto, raise). In such
2490 -- cases we don't need to clear the current values, since it may be that
2491 -- the flow of control change occurs in a conditional context, and if it
2492 -- is not taken, then it is just fine to keep the current values. But the
2493 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2494 -- conditional-return, assign-to-v, we do not want to complain that the
2495 -- second assignment clobbers the first.
2497 procedure Kill_Current_Values
2498 (Ent : Entity_Id;
2499 Last_Assignment_Only : Boolean := False);
2500 -- This performs the same processing as described above for the form with
2501 -- no argument, but for the specific entity given. The call has no effect
2502 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2503 -- same meaning as for the call with no Ent.
2505 procedure Kill_Size_Check_Code (E : Entity_Id);
2506 -- Called when an address clause or pragma Import is applied to an entity.
2507 -- If the entity is a variable or a constant, and size check code is
2508 -- present, this size check code is killed, since the object will not be
2509 -- allocated by the program.
2511 function Known_Non_Null (N : Node_Id) return Boolean;
2512 -- Given a node N for a subexpression of an access type, determines if
2513 -- this subexpression yields a value that is known at compile time to
2514 -- be non-null and returns True if so. Returns False otherwise. It is
2515 -- an error to call this function if N is not of an access type.
2517 function Known_Null (N : Node_Id) return Boolean;
2518 -- Given a node N for a subexpression of an access type, determines if this
2519 -- subexpression yields a value that is known at compile time to be null
2520 -- and returns True if so. Returns False otherwise. It is an error to call
2521 -- this function if N is not of an access type.
2523 function Known_To_Be_Assigned
2524 (N : Node_Id;
2525 Only_LHS : Boolean := False) return Boolean;
2526 -- The node N is an entity reference. This function determines whether the
2527 -- reference is for sure an assignment of the entity, returning True if
2528 -- so. Only_LHS will modify this behavior such that actuals for out or
2529 -- in out parameters will not be considered assigned.
2531 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2532 -- HSS is a handled statement sequence. This function returns the last
2533 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2534 -- such statement exists, Empty is returned.
2536 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2537 -- Given a node which designates the context of analysis and an origin in
2538 -- the tree, traverse from Root_Nod and mark all allocators as either
2539 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2540 -- cleaned up during resolution.
2542 procedure Mark_Elaboration_Attributes
2543 (N_Id : Node_Or_Entity_Id;
2544 Checks : Boolean := False;
2545 Level : Boolean := False;
2546 Modes : Boolean := False;
2547 Warnings : Boolean := False);
2548 -- Preserve relevant elaboration-related properties of the context in
2549 -- arbitrary entity or node N_Id. The flags control the properties as
2550 -- follows:
2552 -- Checks - Save the status of Elaboration_Check
2553 -- Level - Save the declaration level of N_Id (if applicable)
2554 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2555 -- Warnings - Save the status of Elab_Warnings
2557 procedure Mark_Save_Invocation_Graph_Of_Body;
2558 -- Notify the body of the main unit that the invocation constructs and
2559 -- relations expressed within it must be recorded by the ABE mechanism.
2561 function Matching_Static_Array_Bounds
2562 (L_Typ : Node_Id;
2563 R_Typ : Node_Id) return Boolean;
2564 -- L_Typ and R_Typ are two array types. Returns True when they have the
2565 -- same number of dimensions, and the same static bounds for each index
2566 -- position.
2568 function Might_Raise (N : Node_Id) return Boolean;
2569 -- True if evaluation of N might raise an exception. This is conservative;
2570 -- if we're not sure, we return True. If N is a subprogram body, this is
2571 -- about whether execution of that body can raise.
2573 function Nearest_Class_Condition_Subprogram
2574 (Kind : Condition_Kind;
2575 Spec_Id : Entity_Id) return Entity_Id;
2576 -- Return the nearest ancestor containing the merged class-wide conditions
2577 -- that statically apply to Spec_Id; return Empty otherwise.
2579 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2580 -- Return the entity of the nearest enclosing instance which encapsulates
2581 -- entity E. If no such instance exits, return Empty.
2583 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2584 -- True if Typ requires finalization actions
2586 function Needs_One_Actual (E : Entity_Id) return Boolean;
2587 -- Returns True if a function has defaults for all but its first formal,
2588 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2589 -- syntactic ambiguity that results from an indexing of a function call
2590 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2592 function Needs_Secondary_Stack (Id : Entity_Id) return Boolean;
2593 -- Return true if functions whose result type is Id must return on the
2594 -- secondary stack, i.e. allocate the return object on this stack.
2596 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2598 function Needs_Simple_Initialization
2599 (Typ : Entity_Id;
2600 Consider_IS : Boolean := True) return Boolean;
2601 -- Certain types need initialization even though there is no specific
2602 -- initialization routine:
2603 -- Access types (which need initializing to null)
2604 -- All scalar types if Normalize_Scalars mode set
2605 -- Descendants of standard string types if Normalize_Scalars mode set
2606 -- Scalar types having a Default_Value attribute
2607 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2608 -- set to False, but if Consider_IS is set to True, then the cases above
2609 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2611 function Needs_Variable_Reference_Marker
2612 (N : Node_Id;
2613 Calls_OK : Boolean) return Boolean;
2614 -- Determine whether arbitrary node N denotes a reference to a variable
2615 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2616 -- be set when the reference is allowed to appear within calls.
2618 function New_Copy_List_Tree (List : List_Id) return List_Id;
2619 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2620 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2621 -- nodes (entities) either directly or indirectly using this function.
2623 function New_Copy_Tree
2624 (Source : Node_Id;
2625 Map : Elist_Id := No_Elist;
2626 New_Sloc : Source_Ptr := No_Location;
2627 New_Scope : Entity_Id := Empty) return Node_Id;
2628 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2629 -- and nodes are handled separately as follows:
2631 -- * A node is replicated by first creating a shallow copy, then copying
2632 -- its syntactic fields, where all Parent pointers of the fields are
2633 -- updated to refer to the copy. In addition, the following semantic
2634 -- fields are recreated after the replication takes place.
2636 -- First_Named_Actual
2637 -- Next_Named_Actual
2638 -- Controlling_Argument
2640 -- If applicable, the Etype field (if any) is updated to refer to a
2641 -- local itype or type (see below).
2643 -- * An entity defined within an N_Expression_With_Actions node in the
2644 -- subtree is given a new entity, and all references to the original
2645 -- entity are updated to refer to the new entity. In addition, the
2646 -- following semantic fields are replicated and/or updated to refer
2647 -- to a local entity or itype.
2649 -- Discriminant_Constraint
2650 -- Etype
2651 -- First_Index
2652 -- Next_Entity
2653 -- Packed_Array_Impl_Type
2654 -- Scalar_Range
2655 -- Scope
2657 -- Note that currently no other expression can define entities.
2659 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2660 -- is given a new entity, and all references to the original itype
2661 -- are updated to refer to the new itype. In addition, the following
2662 -- semantic fields are replicated and/or updated to refer to a local
2663 -- entity or itype.
2665 -- Discriminant_Constraint
2666 -- Etype
2667 -- First_Index
2668 -- Next_Entity
2669 -- Packed_Array_Impl_Type
2670 -- Scalar_Range
2671 -- Scope
2673 -- The Associated_Node_For_Itype is updated to refer to a replicated
2674 -- node.
2676 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2677 -- Empty or Error node yields the same node.
2679 -- Parameter Map may be used to specify a set of mappings between entities.
2680 -- These mappings are then taken into account when replicating entities.
2681 -- The format of Map must be as follows:
2683 -- old entity 1
2684 -- new entity to replace references to entity 1
2685 -- old entity 2
2686 -- new entity to replace references to entity 2
2687 -- ...
2689 -- Map and its contents are left unchanged.
2691 -- Parameter New_Sloc may be used to specify a new source location for all
2692 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2693 -- is defaulted if a new source location is provided.
2695 -- Parameter New_Scope may be used to specify a new scope for all copied
2696 -- entities and itypes.
2698 function New_External_Entity
2699 (Kind : Entity_Kind;
2700 Scope_Id : Entity_Id;
2701 Sloc_Value : Source_Ptr;
2702 Related_Id : Entity_Id;
2703 Suffix : Character;
2704 Suffix_Index : Int := 0;
2705 Prefix : Character := ' ') return Entity_Id;
2706 -- This function creates an N_Defining_Identifier node for an internal
2707 -- created entity, such as an implicit type or subtype, or a record
2708 -- initialization procedure. The entity name is constructed with a call
2709 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2710 -- that the generated name may be referenced as a public entry, and the
2711 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2712 -- entity is for a type or subtype, the size/align fields are initialized
2713 -- to unknown (Uint_0).
2715 function New_Internal_Entity
2716 (Kind : Entity_Kind;
2717 Scope_Id : Entity_Id;
2718 Sloc_Value : Source_Ptr;
2719 Id_Char : Character) return Entity_Id;
2720 -- This function is similar to New_External_Entity, except that the
2721 -- name is constructed by New_Internal_Name (Id_Char). This is used
2722 -- when the resulting entity does not have to be referenced as a
2723 -- public entity (and in this case Is_Public is not set).
2725 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2726 -- Find next actual parameter in declaration order. As described for
2727 -- First_Actual, this is the next actual in the declaration order, not
2728 -- the call order, so this does not correspond to simply taking the
2729 -- next entry of the Parameter_Associations list. The argument is an
2730 -- actual previously returned by a call to First_Actual or Next_Actual.
2731 -- Note that the result produced is always an expression, not a parameter
2732 -- association node, even if named notation was used.
2734 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2736 procedure Next_Actual (Actual_Id : in out Node_Id);
2737 pragma Inline (Next_Actual);
2738 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2739 -- inline this procedural form, but not the functional form above.
2741 function Next_Global (Node : Node_Id) return Node_Id;
2742 -- Node is a global item from a list, obtained through calling First_Global
2743 -- and possibly Next_Global a number of times. Returns the next global item
2744 -- with the same mode.
2746 procedure Next_Global (Node : in out Node_Id);
2747 pragma Inline (Next_Global);
2748 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2749 -- inline this procedural form, but not the functional form above.
2751 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2752 -- Given any entity Id, determine whether Id is subject to volatility
2753 -- property No_Caching and if it is, the related expression evaluates
2754 -- to True.
2756 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2757 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2759 procedure Normalize_Actuals
2760 (N : Node_Id;
2761 S : Entity_Id;
2762 Report : Boolean;
2763 Success : out Boolean);
2764 -- Reorders lists of actuals according to names of formals, value returned
2765 -- in Success indicates success of reordering. For more details, see body.
2766 -- Errors are reported only if Report is set to True.
2768 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2769 -- This routine is called if the sub-expression N maybe the target of
2770 -- an assignment (e.g. it is the left side of an assignment, used as
2771 -- an out parameters, or used as prefixes of access attributes). It
2772 -- sets Never_Set_In_Source in the associated entity if there is one,
2773 -- taking into account the rule that in the case of renamed objects,
2774 -- it is the flag in the renamed object that must be set.
2776 -- The parameter Sure is set True if the modification is sure to occur
2777 -- (e.g. target of assignment, or out parameter), and to False if the
2778 -- modification is only potential (e.g. address of entity taken).
2780 function Null_To_Null_Address_Convert_OK
2781 (N : Node_Id;
2782 Typ : Entity_Id := Empty) return Boolean;
2783 -- Return True if we are compiling in relaxed RM semantics mode and:
2784 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2785 -- 2) N is a comparison operator, one of the operands is null, and the
2786 -- type of the other operand is a descendant of System.Address.
2788 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2789 -- Returns the number of elements in the array T if the index bounds of T
2790 -- is known at compile time. If the bounds are not known at compile time,
2791 -- the function returns the value zero.
2793 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2794 -- Retrieve the name of aspect or pragma N, taking into account a possible
2795 -- rewrite and whether the pragma is generated from an aspect as the names
2796 -- may be different. The routine also deals with 'Class in which case it
2797 -- returns the following values:
2799 -- Invariant -> Name_uInvariant
2800 -- Post'Class -> Name_uPost
2801 -- Pre'Class -> Name_uPre
2802 -- Type_Invariant -> Name_uType_Invariant
2803 -- Type_Invariant'Class -> Name_uType_Invariant
2805 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2806 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2807 -- or overrides an inherited dispatching primitive S2, the original
2808 -- corresponding operation of S is the original corresponding operation of
2809 -- S2. Otherwise, it is S itself.
2811 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2812 -- Returns True if the type Typ has a private view or if the public view
2813 -- appears in the visible part of a package spec.
2815 procedure Output_Entity (Id : Entity_Id);
2816 -- Print entity Id to standard output. The name of the entity appears in
2817 -- fully qualified form.
2819 -- WARNING: this routine should be used in debugging scenarios such as
2820 -- tracking down undefined symbols as it is fairly low level.
2822 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2823 -- Print name Nam to standard output. The name appears in fully qualified
2824 -- form assuming it appears in scope Scop. Note that this may not reflect
2825 -- the final qualification as the entity which carries the name may be
2826 -- relocated to a different scope.
2828 -- WARNING: this routine should be used in debugging scenarios such as
2829 -- tracking down undefined symbols as it is fairly low level.
2831 function Param_Entity (N : Node_Id) return Entity_Id;
2832 -- Given an expression N, determines if the expression is a reference
2833 -- to a formal (of a subprogram or entry), and if so returns the Id
2834 -- of the corresponding formal entity, otherwise returns Empty. Also
2835 -- handles the case of references to renamings of formals.
2837 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2838 -- Given a policy, return the policy identifier associated with it. If no
2839 -- such policy is in effect, the value returned is No_Name.
2841 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2842 -- Return True if a predicate check should be emitted for the given type
2843 -- Typ, taking into account Predicates_Ignored and
2844 -- Predicate_Checks_Suppressed.
2846 function Predicate_Failure_Expression
2847 (Typ : Entity_Id; Inherited_OK : Boolean) return Node_Id;
2848 -- If the given type or subtype is subject to a Predicate_Failure
2849 -- aspect specification, then returns the specified expression.
2850 -- Otherwise, if Inherited_OK is False then returns Empty.
2851 -- Otherwise, if Typ denotes a subtype or a derived type then
2852 -- returns the result of recursing on the ancestor subtype.
2853 -- Otherwise, returns Empty.
2855 function Predicate_Function_Needs_Membership_Parameter (Typ : Entity_Id)
2856 return Boolean is
2857 (Present (Predicate_Failure_Expression (Typ, Inherited_OK => True)));
2858 -- The predicate function for some, but not all, subtypes needs to
2859 -- know whether the predicate is being evaluated as part of a membership
2860 -- test. The predicate function for such a subtype takes an additional
2861 -- boolean to convey this information. This function returns True if this
2862 -- additional parameter is needed. More specifically, this function
2863 -- returns true if the Predicate_Failure aspect is specified for the
2864 -- given subtype or for any of its "ancestor" subtypes.
2866 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2867 -- Subp is the entity for a subprogram call. This function returns True if
2868 -- predicate tests are required for the arguments in this call (this is the
2869 -- normal case). It returns False for special cases where these predicate
2870 -- tests should be skipped (see body for details).
2872 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2873 -- Returns True if the names of both entities correspond with matching
2874 -- primitives. This routine includes support for the case in which one
2875 -- or both entities correspond with entities built by Derive_Subprogram
2876 -- with a special name to avoid being overridden (i.e. return true in case
2877 -- of entities with names "nameP" and "name" or vice versa).
2879 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2880 -- Returns some private component (if any) of the given Type_Id.
2881 -- Used to enforce the rules on visibility of operations on composite
2882 -- types, that depend on the full view of the component type. For a
2883 -- record type there may be several such components, we just return
2884 -- the first one.
2886 procedure Process_End_Label
2887 (N : Node_Id;
2888 Typ : Character;
2889 Ent : Entity_Id);
2890 -- N is a node whose End_Label is to be processed, generating all
2891 -- appropriate cross-reference entries, and performing style checks
2892 -- for any identifier references in the end label. Typ is either
2893 -- 'e' or 't indicating the type of the cross-reference entity
2894 -- (e for spec, t for body, see Lib.Xref spec for details). The
2895 -- parameter Ent gives the entity to which the End_Label refers,
2896 -- and to which cross-references are to be generated.
2898 procedure Propagate_Concurrent_Flags
2899 (Typ : Entity_Id;
2900 Comp_Typ : Entity_Id);
2901 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2902 -- are set on Comp_Typ. This follows the definition of these flags, which
2903 -- are set (recursively) on any composite type that has a component marked
2904 -- by one of these flags. This procedure can only set flags for Typ, and
2905 -- never clear them. Comp_Typ is the type of a component or a parent.
2907 procedure Propagate_DIC_Attributes
2908 (Typ : Entity_Id;
2909 From_Typ : Entity_Id);
2910 -- Inherit all Default_Initial_Condition-related attributes from type
2911 -- From_Typ. Typ is the destination type.
2913 procedure Propagate_Invariant_Attributes
2914 (Typ : Entity_Id;
2915 From_Typ : Entity_Id);
2916 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
2917 -- destination type.
2919 procedure Propagate_Predicate_Attributes
2920 (Typ : Entity_Id;
2921 From_Typ : Entity_Id);
2922 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
2923 -- Typ is the destination type.
2925 procedure Record_Possible_Part_Of_Reference
2926 (Var_Id : Entity_Id;
2927 Ref : Node_Id);
2928 -- Save reference Ref to variable Var_Id when the variable is subject to
2929 -- pragma Part_Of. If the variable is known to be a constituent of a single
2930 -- protected/task type, the legality of the reference is verified and the
2931 -- save does not take place.
2933 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2934 -- Determine whether entity Id is referenced within expression Expr
2936 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2937 -- Returns True if the expression Expr contains any references to a generic
2938 -- type. This can only happen within a generic template.
2940 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2941 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2942 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2943 -- performed by this routine does not affect the visibility of existing
2944 -- homonyms.
2946 procedure Remove_Homonym (Id : Entity_Id);
2947 -- Removes entity Id from the homonym chain
2949 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2950 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2951 -- the primitive operations list of the associated controlling type. Use
2952 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2953 -- by this routine does not affect the visibility of existing homonyms.
2955 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2956 -- Returns the name of E without Suffix
2958 procedure Replace_Null_By_Null_Address (N : Node_Id);
2959 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2960 -- RM semantics mode, and one of the operands is null. Replace null with
2961 -- System.Null_Address.
2963 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2964 -- This is used to construct the second argument in a call to Rep_To_Pos
2965 -- which is True if range checks are enabled (E is an entity to which the
2966 -- Range_Checks_Suppressed test is applied), and False if range checks are
2967 -- suppressed. Loc is the location for the node that is returned (which is
2968 -- a New_Occurrence of the appropriate entity).
2970 -- Note: one might think that it would be fine to always use True and to
2971 -- ignore the suppress in this case, but there is at least one case in the
2972 -- generated code (the code for array assignment in a loop) that depends on
2973 -- this suppression. Anyway, it is generally better to believe a request to
2974 -- suppress exceptions if possible.
2976 procedure Require_Entity (N : Node_Id);
2977 -- N is a node which should have an entity value if it is an entity name.
2978 -- If not, then check if there were previous errors. If so, just fill
2979 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2980 -- This is used as a defense mechanism against ill-formed trees caused by
2981 -- previous errors (particularly in -gnatq mode).
2983 function Requires_Transient_Scope (Typ : Entity_Id) return Boolean;
2984 pragma Inline (Requires_Transient_Scope);
2985 -- Return true if temporaries of Typ need to be wrapped in a transient
2986 -- scope, either because they are allocated on the secondary stack or
2987 -- finalization actions must be generated before the next instruction.
2988 -- Examples of types requiring such wrapping are variable-sized types,
2989 -- including unconstrained arrays, and controlled types.
2991 procedure Reset_Analyzed_Flags (N : Node_Id);
2992 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2994 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2995 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2996 -- routine must be used in tandem with Set_SPARK_Mode.
2998 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2999 -- Return true if Subp is a function that returns an unconstrained type
3001 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3002 -- Similar to attribute Root_Type, but this version always follows the
3003 -- Full_View of a private type (if available) while searching for the
3004 -- ultimate derivation ancestor.
3006 function Safe_To_Capture_Value
3007 (N : Node_Id;
3008 Ent : Entity_Id;
3009 Cond : Boolean := False) return Boolean;
3010 -- The caller is interested in capturing a value (either the current
3011 -- value, an indication that the value is [non-]null or an indication that
3012 -- the value is valid) for the given entity Ent. This value can only be
3013 -- captured if sequential execution semantics can be properly guaranteed so
3014 -- that a subsequent reference will indeed be sure that this current value
3015 -- indication is correct. The node N is the construct that resulted in the
3016 -- possible capture of the value (this is used to check if we are in a
3017 -- conditional).
3019 -- Cond is used to skip the test for being inside a conditional. It is used
3020 -- in the case of capturing values from if/while tests, which already do a
3021 -- proper job of handling scoping issues without this help.
3023 -- The only entities whose values can be captured are OUT and IN OUT formal
3024 -- parameters, and variables unless Cond is True, in which case we also
3025 -- allow IN formals, loop parameters and constants, where we cannot ever
3026 -- capture actual value information, but we can capture conditional tests.
3028 function Same_Name (N1, N2 : Node_Id) return Boolean;
3029 -- Determine if two (possibly expanded) names are the same name. This is
3030 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3032 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3033 -- Determine if Node1 and Node2 are known to designate the same object.
3034 -- This is a semantic test and both nodes must be fully analyzed. A result
3035 -- of True is decisively correct. A result of False does not necessarily
3036 -- mean that different objects are designated, just that this could not
3037 -- be reliably determined at compile time.
3039 function Same_Or_Aliased_Subprograms
3040 (S : Entity_Id;
3041 E : Entity_Id) return Boolean;
3042 -- Returns True if the subprogram entity S is the same as E or else S is an
3043 -- alias of E.
3045 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3046 -- Determines if T1 and T2 represent exactly the same type. Two types
3047 -- are the same if they are identical, or if one is an unconstrained
3048 -- subtype of the other, or they are both common subtypes of the same
3049 -- type with identical constraints. The result returned is conservative.
3050 -- It is True if the types are known to be the same, but a result of
3051 -- False is indecisive (e.g. the compiler may not be able to tell that
3052 -- two constraints are identical).
3054 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3055 -- Determines if Node1 and Node2 are known to be the same value, which is
3056 -- true if they are both compile time known values and have the same value,
3057 -- or if they are the same object (in the sense of function Same_Object).
3058 -- A result of False does not necessarily mean they have different values,
3059 -- just that it is not possible to determine they have the same value.
3061 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3062 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3063 -- least one scalar subcomponent.
3065 function Scope_Within
3066 (Inner : Entity_Id;
3067 Outer : Entity_Id) return Boolean;
3068 -- Determine whether scope Inner appears within scope Outer. Note that
3069 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3070 -- (B, A) may both return False.
3072 function Scope_Within_Or_Same
3073 (Inner : Entity_Id;
3074 Outer : Entity_Id) return Boolean;
3075 -- Determine whether scope Inner appears within scope Outer or both denote
3076 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3077 -- (A, B) and Scope_Within (B, A) may both return False.
3079 procedure Set_Current_Entity (E : Entity_Id);
3080 pragma Inline (Set_Current_Entity);
3081 -- Establish the entity E as the currently visible definition of its
3082 -- associated name (i.e. the Node_Id associated with its name).
3084 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3085 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes from
3086 -- source or we are in -gnatD mode, where we are debugging generated code.
3088 procedure Set_Debug_Info_Needed (T : Entity_Id);
3089 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3090 -- that are needed by T (for an object, the type of the object is needed,
3091 -- and for a type, various subsidiary types are needed -- see body for
3092 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3093 -- This routine should always be used instead of Set_Needs_Debug_Info to
3094 -- ensure that subsidiary entities are properly handled.
3096 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3097 -- This procedure has the same calling sequence as Set_Entity, but it
3098 -- performs additional checks as follows:
3100 -- If Style_Check is set, then it calls a style checking routine that
3101 -- can check identifier spelling style.
3103 -- If restriction No_Abort_Statements is set, then it checks that the
3104 -- entity is not Ada.Task_Identification.Abort_Task.
3106 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3107 -- entity is not one of the restricted names for this restriction.
3109 -- If restriction No_Long_Long_Integers is set, then it checks that the
3110 -- entity is not Standard.Long_Long_Integer.
3112 -- If restriction No_Implementation_Identifiers is set, then it checks
3113 -- that the entity is not implementation defined.
3115 procedure Set_Invalid_Scalar_Value
3116 (Scal_Typ : Float_Scalar_Id;
3117 Value : Ureal);
3118 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3119 -- pragma Initialize_Scalars.
3121 procedure Set_Invalid_Scalar_Value
3122 (Scal_Typ : Integer_Scalar_Id;
3123 Value : Uint);
3124 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3125 -- pragma Initialize_Scalars.
3127 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3128 pragma Inline (Set_Name_Entity_Id);
3129 -- Sets the Entity_Id value associated with the given name, which is the
3130 -- Id of the innermost visible entity with the given name. See the body
3131 -- of package Sem_Ch8 for further details on the handling of visibility.
3133 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3134 -- The arguments may be parameter associations, whose descendants
3135 -- are the optional formal name and the actual parameter. Positional
3136 -- parameters are already members of a list, and do not need to be
3137 -- chained separately. See also First_Actual and Next_Actual.
3139 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3140 pragma Inline (Set_Optimize_Alignment_Flags);
3141 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3143 procedure Set_Public_Status (Id : Entity_Id);
3144 -- If an entity (visible or otherwise) is defined in a library
3145 -- package, or a package that is itself public, then this subprogram
3146 -- labels the entity public as well.
3148 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3149 -- N is the node for either a left hand side (Out_Param set to False),
3150 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3151 -- an assignable entity being referenced, then the appropriate flag
3152 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3153 -- if Out_Param is True) is set True, and the other flag set False.
3155 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3156 pragma Inline (Set_Rep_Info);
3157 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3158 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3159 -- if T1 is a base type.
3161 procedure Set_Size_Info (T1, T2 : Entity_Id);
3162 pragma Inline (Set_Size_Info);
3163 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3164 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3165 -- in the fixed-point and discrete cases, and also copies the alignment
3166 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3167 -- separately set if this is required to be copied also.
3169 procedure Set_SPARK_Mode (Context : Entity_Id);
3170 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3171 -- a subprogram denoted by Context. This routine must be used in tandem
3172 -- with Restore_SPARK_Mode.
3174 function Scope_Is_Transient return Boolean;
3175 -- True if the current scope is transient
3177 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3178 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3179 -- True if we should ignore pragmas with the specified name. In particular,
3180 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3181 -- predefined unit. The _Par version should be called only from the parser;
3182 -- the _Sem version should be called only during semantic analysis.
3184 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3185 -- This function analyzes the given expression node and then resolves it
3186 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3187 -- returned corresponding to the value, otherwise an error message is
3188 -- output and No_Uint is returned.
3190 function Static_Integer (N : Node_Id) return Uint;
3191 -- This function analyzes the given expression node and then resolves it
3192 -- as any integer type. If the result is static, then the value of the
3193 -- universal expression is returned, otherwise an error message is output
3194 -- and a value of No_Uint is returned.
3196 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3197 -- Return True iff N is a name that "statically denotes" an entity.
3199 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3200 -- Return True iff N is a name that "statically denotes" an object.
3202 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3203 -- Return True if it can be statically determined that the Expressions
3204 -- E1 and E2 refer to different objects
3206 function Statically_Names_Object (N : Node_Id) return Boolean;
3207 -- Return True iff N is a name that "statically names" an object.
3209 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3210 -- Return the string that corresponds to the numeric literal N as it
3211 -- appears in the source.
3213 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3214 -- Determine whether node N is a loop statement subject to at least one
3215 -- 'Loop_Entry attribute.
3217 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3218 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3219 -- Typ is properly sized and aligned).
3221 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3222 -- Print debugging information on entry to each unit being analyzed
3224 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3225 -- Move a list of entities from one scope to another, and recompute
3226 -- Is_Public based upon the new scope.
3228 generic
3229 with function Process (N : Node_Id) return Traverse_Result is <>;
3230 Process_Itypes : Boolean := False;
3231 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3232 -- This is a version of Atree.Traverse_Func that not only traverses
3233 -- syntactic children of nodes, but also semantic children which are
3234 -- logically children of the node. This concerns currently lists of
3235 -- action nodes and ranges under Itypes, both inserted by the compiler.
3236 -- Itypes are only traversed when Process_Itypes is True.
3238 generic
3239 with function Process (N : Node_Id) return Traverse_Result is <>;
3240 Process_Itypes : Boolean := False;
3241 procedure Traverse_More_Proc (Node : Node_Id);
3242 pragma Inline (Traverse_More_Proc);
3243 -- This is the same as Traverse_More_Func except that no result is
3244 -- returned, i.e. Traverse_More_Func is called and the result is simply
3245 -- discarded.
3247 function Type_Without_Stream_Operation
3248 (T : Entity_Id;
3249 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3250 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3251 -- is active then we cannot generate stream subprograms for composite types
3252 -- with elementary subcomponents that lack user-defined stream subprograms.
3253 -- This predicate determines whether a type has such an elementary
3254 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3255 -- prevents the construction of a composite stream operation. If Op is
3256 -- specified we check only for the given stream operation.
3258 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3259 -- If entity E is overlaying some other entity via an Address clause (which
3260 -- possibly overlays yet another entity via its own Address clause), then
3261 -- return the ultimate overlaid entity. If entity E is not overlaying any
3262 -- other entity (or the overlaid entity cannot be determined statically),
3263 -- then return Empty.
3265 -- Subsidiary to the analysis of object overlays in SPARK.
3267 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3268 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3269 -- prefix exists.
3271 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3272 -- Return the entity that represents declaration N, so that different
3273 -- views of the same entity have the same unique defining entity:
3274 -- * private view and full view of a deferred constant
3275 -- --> full view
3276 -- * entry spec and entry body
3277 -- --> entry spec
3278 -- * formal parameter on spec and body
3279 -- --> formal parameter on spec
3280 -- * package spec, body, and body stub
3281 -- --> package spec
3282 -- * protected type, protected body, and protected body stub
3283 -- --> protected type (full view if private)
3284 -- * subprogram spec, body, and body stub
3285 -- --> subprogram spec
3286 -- * task type, task body, and task body stub
3287 -- --> task type (full view if private)
3288 -- * private or incomplete view and full view of a type
3289 -- --> full view
3290 -- In other cases, return the defining entity for N.
3292 function Unique_Entity (E : Entity_Id) return Entity_Id;
3293 -- Return the unique entity for entity E, which would be returned by
3294 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3296 function Unique_Name (E : Entity_Id) return String;
3297 -- Return a unique name for entity E, which could be used to identify E
3298 -- across compilation units.
3300 Child_Prefix : constant String := "ada___";
3301 -- Prefix for child packages when building a unique name for an entity. It
3302 -- is included here to share between Unique_Name and gnatprove.
3304 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3305 -- Determine whether a compilation unit is visible in the current context,
3306 -- because there is a with_clause that makes the unit available. Used to
3307 -- provide better messages on common visiblity errors on operators.
3309 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3310 -- Yields Universal_Integer or Universal_Real if this is a candidate
3312 function Unqualify (Expr : Node_Id) return Node_Id;
3313 pragma Inline (Unqualify);
3314 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3315 -- returns X. If Expr is not a qualified expression, returns Expr.
3317 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3318 pragma Inline (Unqual_Conv);
3319 -- Similar to Unqualify, but removes qualified expressions, type
3320 -- conversions, and unchecked conversions.
3322 function Validated_View (Typ : Entity_Id) return Entity_Id;
3323 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3324 -- verification by attribute 'Valid_Scalars. This view is the type itself
3325 -- or its full view or nonlimited view, while stripping away concurrency,
3326 -- derivations, and privacy.
3328 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3329 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3330 -- of a type extension or private extension declaration. If the full-view
3331 -- of private parents and progenitors is available then it is used to
3332 -- generate the list of visible ancestors; otherwise their partial
3333 -- view is added to the resulting list.
3335 function Within_Init_Proc return Boolean;
3336 -- Determines if Current_Scope is within an init proc
3338 function Within_Protected_Type (E : Entity_Id) return Boolean;
3339 -- Returns True if entity E is declared within a protected type
3341 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3342 -- Returns True if entity E is declared within scope S
3344 procedure Warn_On_Hiding_Entity
3345 (N : Node_Id;
3346 Hidden, Visible : Entity_Id;
3347 On_Use_Clause : Boolean);
3348 -- Warn on hiding of an entity, either because a new declaration hides
3349 -- an entity directly visible or potentially visible through a use_clause
3350 -- (On_Use_Clause = False), or because the entity would be potentially
3351 -- visible through a use_clause if it was now hidden by a visible
3352 -- declaration (On_Use_Clause = True). N is the node on which the warning
3353 -- is potentially issued: it is the visible entity in the former case, and
3354 -- the use_clause in the latter case.
3356 procedure Wrong_Type
3357 (Expr : Node_Id;
3358 Expected_Type : Entity_Id;
3359 Multiple : Boolean := False);
3360 -- Output error message for incorrectly typed expression. Expr is the node
3361 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3362 -- and Expected_Type is the entity for the expected type. Note that Expr
3363 -- does not have to be a subexpression, anything with an Etype field may
3364 -- be used. If Multiple is False, do not output the message if an error
3365 -- has already been posted for Expr.
3367 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3368 -- Determine whether type Typ "yields synchronized object" as specified by
3369 -- SPARK RM 9.1. To qualify as such, a type must be
3370 -- * An array type whose element type yields a synchronized object
3371 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3372 -- * A protected type
3373 -- * A record type or type extension without defaulted discriminants
3374 -- whose components are of a type that yields a synchronized object.
3375 -- * A synchronized interface type
3376 -- * A task type
3378 function Yields_Universal_Type (N : Node_Id) return Boolean;
3379 -- Determine whether unanalyzed node N yields a universal type
3381 procedure Preanalyze_Without_Errors (N : Node_Id);
3382 -- Preanalyze N without reporting errors
3384 package Interval_Lists is
3385 type Discrete_Interval is
3386 record
3387 Low, High : Uint;
3388 end record;
3390 type Discrete_Interval_List is
3391 array (Pos range <>) of Discrete_Interval;
3392 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3393 -- intervals, always with a gap of at least one value between
3394 -- successive intervals (i.e., mergeable intervals are merged).
3395 -- Low bound is one; high bound is nonnegative.
3397 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3398 -- Given an array aggregate N, returns the (unique) interval list
3399 -- representing the values of the aggregate choices; if all the array
3400 -- components are covered by the others choice then the length of the
3401 -- result is zero.
3403 function Choice_List_Intervals
3404 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3405 -- Given a discrete choice list, returns the (unique) interval
3406 -- list representing the chosen values.
3408 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3409 -- Given a static discrete type or subtype, returns the (unique)
3410 -- interval list representing the values of the type/subtype.
3411 -- If no static predicates are involved, the length of the result
3412 -- will be at most one.
3414 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3415 return Boolean;
3416 -- Returns True iff every value belonging to some interval of
3417 -- Subset also belongs to some interval of Of_Set.
3419 -- When we get around to implementing "is statically compatible"
3420 -- correctly for real types with static predicates, we may need
3421 -- an analogous Real_Interval_List type. Most of the language
3422 -- rules that reference "is statically compatible" pertain to
3423 -- discriminants and therefore do not require support for real types;
3424 -- the exception is 12.5.1(8).
3426 Intervals_Error : exception;
3427 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3428 -- be built.
3429 end Interval_Lists;
3431 package Old_Attr_Util is
3432 -- Operations related to 'Old attribute evaluation. This
3433 -- includes cases where a level of indirection is needed due to
3434 -- conditional evaluation as well as support for the
3435 -- "known on entry" rules.
3437 package Conditional_Evaluation is
3438 function Eligible_For_Conditional_Evaluation
3439 (Expr : Node_Id) return Boolean;
3440 -- Given a subexpression of a Postcondition expression
3441 -- (typically a 'Old attribute reference), returns True if
3442 -- - the expression is conditionally evaluated; and
3443 -- - its determining expressions are all known on entry; and
3444 -- - Ada_Version >= Ada_2022.
3445 -- See RM 6.1.1 for definitions of these terms.
3447 -- Also returns True if Expr is of an anonymous access type;
3448 -- this is just because we want the code that knows how to build
3449 -- 'Old temps in that case to reside in only one place.
3451 function Conditional_Evaluation_Condition
3452 (Expr : Node_Id) return Node_Id;
3453 -- Given an expression which is eligible for conditional evaluation,
3454 -- build a Boolean expression whose value indicates whether the
3455 -- expression should be evaluated.
3456 end Conditional_Evaluation;
3458 package Indirect_Temps is
3459 generic
3460 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3461 -- If Is_Eval_Stmt is True, then N is a statement that should
3462 -- only be executed in the case where the 'Old prefix is to be
3463 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3464 -- which should be elaborated unconditionally.
3465 -- Client is responsible for ensuring that any appended
3466 -- Eval_Stmt nodes are eventually analyzed.
3468 Append_Decls_In_Reverse_Order : Boolean := False;
3469 -- This parameter is for the convenience of exp_prag.adb, where we
3470 -- want to Prepend rather than Append so it is better to get the
3471 -- Append calls in reverse order.
3473 procedure Declare_Indirect_Temp
3474 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3475 Indirect_Temp : out Entity_Id);
3476 -- Indirect_Temp is of an access type; it is unconditionally
3477 -- declared but only conditionally initialized to reference the
3478 -- saved value of Attr_Prefix.
3480 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3481 -- Returns True for a specific tagged type because the temp must
3482 -- be of the class-wide type in order to preserve the underlying tag.
3484 -- Also returns True in the case of an anonymous access type
3485 -- because we want the code that knows how to deal with
3486 -- this case to reside in only one place.
3488 -- For an unconstrained-but-definite discriminated subtype, returns
3489 -- True if the potential difference in size between an
3490 -- unconstrained object and a constrained object is large.
3491 -- [This part is not implemented yet.]
3493 -- Otherwise, returns False if a declaration of the form
3494 -- Temp : Typ;
3495 -- is legal and side-effect-free (assuming that default
3496 -- initialization is suppressed). For example, returns True if Typ is
3497 -- indefinite, or if Typ has a controlled part.
3500 function Indirect_Temp_Value
3501 (Temp : Entity_Id;
3502 Typ : Entity_Id;
3503 Loc : Source_Ptr) return Node_Id;
3504 -- Evaluate a temp declared by Declare_Indirect_Temp.
3506 function Is_Access_Type_For_Indirect_Temp
3507 (T : Entity_Id) return Boolean;
3508 -- True for an access type that was declared via a call
3509 -- to Declare_Indirect_Temp.
3510 -- Indicates that the given access type should be treated
3511 -- the same with respect to finalization as a
3512 -- user-defined "comes from source" access type.
3514 end Indirect_Temps;
3515 end Old_Attr_Util;
3517 package Storage_Model_Support is
3519 -- This package provides a set of utility functions related to support
3520 -- for the Storage_Model feature. These functions provide an interface
3521 -- that the compiler (in particular back-end phases such as gigi and
3522 -- GNAT-LLVM) can use to easily obtain entities and operations that
3523 -- are specified for types that have aspects Storage_Model_Type or
3524 -- Designated_Storage_Model.
3526 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3527 -- Returns True iff Typ specifies aspect Storage_Model_Type
3529 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3531 function Has_Designated_Storage_Model_Aspect
3532 (Typ : Entity_Id) return Boolean;
3533 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3535 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3537 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3538 -- Given an access type Typ with aspect Designated_Storage_Model,
3539 -- returns the storage-model object associated with that type.
3540 -- The object Entity_Ids returned by this function can be passed
3541 -- other functions declared in this interface to retrieve operations
3542 -- associated with Storage_Model_Type aspect of the object's type.
3544 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3546 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3547 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3548 -- returns that type.
3550 function Get_Storage_Model_Type_Entity
3551 (SM_Obj_Or_Type : Entity_Id;
3552 Nam : Name_Id) return Entity_Id;
3553 -- Given a type with aspect Storage_Model_Type or an object of such a
3554 -- type, and Nam denoting the name of one of the argument kinds allowed
3555 -- for that aspect, returns the Entity_Id corresponding to the entity
3556 -- associated with Nam in the aspect. If an entity was not explicitly
3557 -- specified for Nam, then returns Empty, except that in the defaulted
3558 -- Address_Type case, System.Address will be returned, and in the
3559 -- defaulted Null_Address case, System.Null_Address will be returned.
3560 -- (Note: This function is modeled on Get_Iterable_Type_Primitive.)
3562 function Storage_Model_Address_Type
3563 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3564 -- Given a type with aspect Storage_Model_Type or an object of such a
3565 -- type, returns the type specified for the Address_Type choice in that
3566 -- aspect; returns type System.Address if the address type was not
3567 -- explicitly specified (indicating use of the native memory model).
3569 function Storage_Model_Null_Address
3570 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3571 -- Given a type with aspect Storage_Model_Type or an object of such a
3572 -- type, returns the constant specified for the Null_Address choice in
3573 -- that aspect; returns Empty if the constant object isn't specified,
3574 -- unless the native memory model is in use (System.Address), in which
3575 -- case it returns System.Null_Address.
3577 function Storage_Model_Allocate
3578 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3579 -- Given a type with aspect Storage_Model_Type or an object of such a
3580 -- type, returns the procedure specified for the Allocate choice in that
3581 -- aspect; returns Empty if the procedure isn't specified.
3583 function Storage_Model_Deallocate
3584 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3585 -- Given a type with aspect Storage_Model_Type or an object of such a
3586 -- type, returns the procedure specified for the Deallocate choice in
3587 -- that aspect; returns Empty if the procedure isn't specified.
3589 function Storage_Model_Copy_From
3590 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3591 -- Given a type with aspect Storage_Model_Type or an object of such a
3592 -- type, returns the procedure specified for the Copy_From choice in
3593 -- that aspect; returns Empty if the procedure isn't specified.
3595 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3597 function Storage_Model_Copy_To
3598 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3599 -- Given a type with aspect Storage_Model_Type or an object of such a
3600 -- type, returns the procedure specified for the Copy_To choice in that
3601 -- aspect; returns Empty if the procedure isn't specified.
3603 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3605 function Storage_Model_Storage_Size
3606 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3607 -- Given a type with aspect Storage_Model_Type or an object of such a
3608 -- type, returns the function specified for the Storage_Size choice in
3609 -- that aspect; returns Empty if the procedure isn't specified.
3611 end Storage_Model_Support;
3613 end Sem_Util;