Fix failure when -fno-rtti test is run in C++17 or later
[official-gcc.git] / gcc / ada / freeze.adb
blob5036a7991eda65932c031bcedbd0f12de06760c2
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 package body Freeze is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
86 (Decl : Node_Id;
87 New_S : Entity_Id;
88 After : in out Node_Id);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause (E : Entity_Id);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type : Entity_Id;
98 Comp : Entity_Id;
99 ADC : Node_Id;
100 Comp_ADC_Present : out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Debug_Info_Needed (T : Entity_Id);
112 -- As each entity is frozen, this routine is called to deal with the
113 -- setting of Debug_Info_Needed for the entity. This flag is set if
114 -- the entity comes from source, or if we are in Debug_Generated_Code
115 -- mode or if the -gnatdV debug flag is set. However, it never sets
116 -- the flag if Debug_Info_Off is set. This procedure also ensures that
117 -- subsidiary entities have the flag set as required.
119 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
120 -- When an expression function is frozen by a use of it, the expression
121 -- itself is frozen. Check that the expression does not include references
122 -- to deferred constants without completion. We report this at the freeze
123 -- point of the function, to provide a better error message.
125 -- In most cases the expression itself is frozen by the time the function
126 -- itself is frozen, because the formals will be frozen by then. However,
127 -- Attribute references to outer types are freeze points for those types;
128 -- this routine generates the required freeze nodes for them.
130 procedure Check_Inherited_Conditions (R : Entity_Id);
131 -- For a tagged derived type, create wrappers for inherited operations
132 -- that have a class-wide condition, so it can be properly rewritten if
133 -- it involves calls to other overriding primitives.
135 procedure Check_Strict_Alignment (E : Entity_Id);
136 -- E is a base type. If E is tagged or has a component that is aliased
137 -- or tagged or contains something this is aliased or tagged, set
138 -- Strict_Alignment.
140 procedure Check_Unsigned_Type (E : Entity_Id);
141 pragma Inline (Check_Unsigned_Type);
142 -- If E is a fixed-point or discrete type, then all the necessary work
143 -- to freeze it is completed except for possible setting of the flag
144 -- Is_Unsigned_Type, which is done by this procedure. The call has no
145 -- effect if the entity E is not a discrete or fixed-point type.
147 procedure Freeze_And_Append
148 (Ent : Entity_Id;
149 N : Node_Id;
150 Result : in out List_Id);
151 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
152 -- nodes to Result, modifying Result from No_List if necessary. N has
153 -- the same usage as in Freeze_Entity.
155 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
156 -- Freeze enumeration type. The Esize field is set as processing
157 -- proceeds (i.e. set by default when the type is declared and then
158 -- adjusted by rep clauses. What this procedure does is to make sure
159 -- that if a foreign convention is specified, and no specific size
160 -- is given, then the size must be at least Integer'Size.
162 procedure Freeze_Static_Object (E : Entity_Id);
163 -- If an object is frozen which has Is_Statically_Allocated set, then
164 -- all referenced types must also be marked with this flag. This routine
165 -- is in charge of meeting this requirement for the object entity E.
167 procedure Freeze_Subprogram (E : Entity_Id);
168 -- Perform freezing actions for a subprogram (create extra formals,
169 -- and set proper default mechanism values). Note that this routine
170 -- is not called for internal subprograms, for which neither of these
171 -- actions is needed (or desirable, we do not want for example to have
172 -- these extra formals present in initialization procedures, where they
173 -- would serve no purpose). In this call E is either a subprogram or
174 -- a subprogram type (i.e. an access to a subprogram).
176 function Is_Fully_Defined (T : Entity_Id) return Boolean;
177 -- True if T is not private and has no private components, or has a full
178 -- view. Used to determine whether the designated type of an access type
179 -- should be frozen when the access type is frozen. This is done when an
180 -- allocator is frozen, or an expression that may involve attributes of
181 -- the designated type. Otherwise freezing the access type does not freeze
182 -- the designated type.
184 procedure Process_Default_Expressions
185 (E : Entity_Id;
186 After : in out Node_Id);
187 -- This procedure is called for each subprogram to complete processing of
188 -- default expressions at the point where all types are known to be frozen.
189 -- The expressions must be analyzed in full, to make sure that all error
190 -- processing is done (they have only been preanalyzed). If the expression
191 -- is not an entity or literal, its analysis may generate code which must
192 -- not be executed. In that case we build a function body to hold that
193 -- code. This wrapper function serves no other purpose (it used to be
194 -- called to evaluate the default, but now the default is inlined at each
195 -- point of call).
197 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
198 -- Typ is a record or array type that is being frozen. This routine sets
199 -- the default component alignment from the scope stack values if the
200 -- alignment is otherwise not specified.
202 procedure Set_SSO_From_Default (T : Entity_Id);
203 -- T is a record or array type that is being frozen. If it is a base type,
204 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
205 -- will be set appropriately. Note that an explicit occurrence of aspect
206 -- Scalar_Storage_Order or an explicit setting of this aspect with an
207 -- attribute definition clause occurs, then these two flags are reset in
208 -- any case, so call will have no effect.
210 procedure Undelay_Type (T : Entity_Id);
211 -- T is a type of a component that we know to be an Itype. We don't want
212 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
213 -- Full_View or Corresponding_Record_Type.
215 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
216 -- Expr is the expression for an address clause for entity Nam whose type
217 -- is Typ. If Typ has a default initialization, and there is no explicit
218 -- initialization in the source declaration, check whether the address
219 -- clause might cause overlaying of an entity, and emit a warning on the
220 -- side effect that the initialization will cause.
222 -------------------------------
223 -- Adjust_Esize_For_Alignment --
224 -------------------------------
226 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
227 Align : Uint;
229 begin
230 if Known_Esize (Typ) and then Known_Alignment (Typ) then
231 Align := Alignment_In_Bits (Typ);
233 if Align > Esize (Typ)
234 and then Align <= Standard_Long_Long_Integer_Size
235 then
236 Set_Esize (Typ, Align);
237 end if;
238 end if;
239 end Adjust_Esize_For_Alignment;
241 ------------------------------------
242 -- Build_And_Analyze_Renamed_Body --
243 ------------------------------------
245 procedure Build_And_Analyze_Renamed_Body
246 (Decl : Node_Id;
247 New_S : Entity_Id;
248 After : in out Node_Id)
250 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
251 Ent : constant Entity_Id := Defining_Entity (Decl);
252 Body_Node : Node_Id;
253 Renamed_Subp : Entity_Id;
255 begin
256 -- If the renamed subprogram is intrinsic, there is no need for a
257 -- wrapper body: we set the alias that will be called and expanded which
258 -- completes the declaration. This transformation is only legal if the
259 -- renamed entity has already been elaborated.
261 -- Note that it is legal for a renaming_as_body to rename an intrinsic
262 -- subprogram, as long as the renaming occurs before the new entity
263 -- is frozen (RM 8.5.4 (5)).
265 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
266 and then Is_Entity_Name (Name (Body_Decl))
267 then
268 Renamed_Subp := Entity (Name (Body_Decl));
269 else
270 Renamed_Subp := Empty;
271 end if;
273 if Present (Renamed_Subp)
274 and then Is_Intrinsic_Subprogram (Renamed_Subp)
275 and then
276 (not In_Same_Source_Unit (Renamed_Subp, Ent)
277 or else Sloc (Renamed_Subp) < Sloc (Ent))
279 -- We can make the renaming entity intrinsic if the renamed function
280 -- has an interface name, or if it is one of the shift/rotate
281 -- operations known to the compiler.
283 and then
284 (Present (Interface_Name (Renamed_Subp))
285 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
286 Name_Rotate_Right,
287 Name_Shift_Left,
288 Name_Shift_Right,
289 Name_Shift_Right_Arithmetic))
290 then
291 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
293 if Present (Alias (Renamed_Subp)) then
294 Set_Alias (Ent, Alias (Renamed_Subp));
295 else
296 Set_Alias (Ent, Renamed_Subp);
297 end if;
299 Set_Is_Intrinsic_Subprogram (Ent);
300 Set_Has_Completion (Ent);
302 else
303 Body_Node := Build_Renamed_Body (Decl, New_S);
304 Insert_After (After, Body_Node);
305 Mark_Rewrite_Insertion (Body_Node);
306 Analyze (Body_Node);
307 After := Body_Node;
308 end if;
309 end Build_And_Analyze_Renamed_Body;
311 ------------------------
312 -- Build_Renamed_Body --
313 ------------------------
315 function Build_Renamed_Body
316 (Decl : Node_Id;
317 New_S : Entity_Id) return Node_Id
319 Loc : constant Source_Ptr := Sloc (New_S);
320 -- We use for the source location of the renamed body, the location of
321 -- the spec entity. It might seem more natural to use the location of
322 -- the renaming declaration itself, but that would be wrong, since then
323 -- the body we create would look as though it was created far too late,
324 -- and this could cause problems with elaboration order analysis,
325 -- particularly in connection with instantiations.
327 N : constant Node_Id := Unit_Declaration_Node (New_S);
328 Nam : constant Node_Id := Name (N);
329 Old_S : Entity_Id;
330 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
331 Actuals : List_Id := No_List;
332 Call_Node : Node_Id;
333 Call_Name : Node_Id;
334 Body_Node : Node_Id;
335 Formal : Entity_Id;
336 O_Formal : Entity_Id;
337 Param_Spec : Node_Id;
339 Pref : Node_Id := Empty;
340 -- If the renamed entity is a primitive operation given in prefix form,
341 -- the prefix is the target object and it has to be added as the first
342 -- actual in the generated call.
344 begin
345 -- Determine the entity being renamed, which is the target of the call
346 -- statement. If the name is an explicit dereference, this is a renaming
347 -- of a subprogram type rather than a subprogram. The name itself is
348 -- fully analyzed.
350 if Nkind (Nam) = N_Selected_Component then
351 Old_S := Entity (Selector_Name (Nam));
353 elsif Nkind (Nam) = N_Explicit_Dereference then
354 Old_S := Etype (Nam);
356 elsif Nkind (Nam) = N_Indexed_Component then
357 if Is_Entity_Name (Prefix (Nam)) then
358 Old_S := Entity (Prefix (Nam));
359 else
360 Old_S := Entity (Selector_Name (Prefix (Nam)));
361 end if;
363 elsif Nkind (Nam) = N_Character_Literal then
364 Old_S := Etype (New_S);
366 else
367 Old_S := Entity (Nam);
368 end if;
370 if Is_Entity_Name (Nam) then
372 -- If the renamed entity is a predefined operator, retain full name
373 -- to ensure its visibility.
375 if Ekind (Old_S) = E_Operator
376 and then Nkind (Nam) = N_Expanded_Name
377 then
378 Call_Name := New_Copy (Name (N));
379 else
380 Call_Name := New_Occurrence_Of (Old_S, Loc);
381 end if;
383 else
384 if Nkind (Nam) = N_Selected_Component
385 and then Present (First_Formal (Old_S))
386 and then
387 (Is_Controlling_Formal (First_Formal (Old_S))
388 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
389 then
391 -- Retrieve the target object, to be added as a first actual
392 -- in the call.
394 Call_Name := New_Occurrence_Of (Old_S, Loc);
395 Pref := Prefix (Nam);
397 else
398 Call_Name := New_Copy (Name (N));
399 end if;
401 -- Original name may have been overloaded, but is fully resolved now
403 Set_Is_Overloaded (Call_Name, False);
404 end if;
406 -- For simple renamings, subsequent calls can be expanded directly as
407 -- calls to the renamed entity. The body must be generated in any case
408 -- for calls that may appear elsewhere. This is not done in the case
409 -- where the subprogram is an instantiation because the actual proper
410 -- body has not been built yet.
412 if Ekind_In (Old_S, E_Function, E_Procedure)
413 and then Nkind (Decl) = N_Subprogram_Declaration
414 and then not Is_Generic_Instance (Old_S)
415 then
416 Set_Body_To_Inline (Decl, Old_S);
417 end if;
419 -- Check whether the return type is a limited view. If the subprogram
420 -- is already frozen the generated body may have a non-limited view
421 -- of the type, that must be used, because it is the one in the spec
422 -- of the renaming declaration.
424 if Ekind (Old_S) = E_Function
425 and then Is_Entity_Name (Result_Definition (Spec))
426 then
427 declare
428 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
429 begin
430 if Has_Non_Limited_View (Ret_Type) then
431 Set_Result_Definition
432 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
433 end if;
434 end;
435 end if;
437 -- The body generated for this renaming is an internal artifact, and
438 -- does not constitute a freeze point for the called entity.
440 Set_Must_Not_Freeze (Call_Name);
442 Formal := First_Formal (Defining_Entity (Decl));
444 if Present (Pref) then
445 declare
446 Pref_Type : constant Entity_Id := Etype (Pref);
447 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
449 begin
450 -- The controlling formal may be an access parameter, or the
451 -- actual may be an access value, so adjust accordingly.
453 if Is_Access_Type (Pref_Type)
454 and then not Is_Access_Type (Form_Type)
455 then
456 Actuals := New_List
457 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
459 elsif Is_Access_Type (Form_Type)
460 and then not Is_Access_Type (Pref)
461 then
462 Actuals :=
463 New_List (
464 Make_Attribute_Reference (Loc,
465 Attribute_Name => Name_Access,
466 Prefix => Relocate_Node (Pref)));
467 else
468 Actuals := New_List (Pref);
469 end if;
470 end;
472 elsif Present (Formal) then
473 Actuals := New_List;
475 else
476 Actuals := No_List;
477 end if;
479 if Present (Formal) then
480 while Present (Formal) loop
481 Append (New_Occurrence_Of (Formal, Loc), Actuals);
482 Next_Formal (Formal);
483 end loop;
484 end if;
486 -- If the renamed entity is an entry, inherit its profile. For other
487 -- renamings as bodies, both profiles must be subtype conformant, so it
488 -- is not necessary to replace the profile given in the declaration.
489 -- However, default values that are aggregates are rewritten when
490 -- partially analyzed, so we recover the original aggregate to insure
491 -- that subsequent conformity checking works. Similarly, if the default
492 -- expression was constant-folded, recover the original expression.
494 Formal := First_Formal (Defining_Entity (Decl));
496 if Present (Formal) then
497 O_Formal := First_Formal (Old_S);
498 Param_Spec := First (Parameter_Specifications (Spec));
499 while Present (Formal) loop
500 if Is_Entry (Old_S) then
501 if Nkind (Parameter_Type (Param_Spec)) /=
502 N_Access_Definition
503 then
504 Set_Etype (Formal, Etype (O_Formal));
505 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
506 end if;
508 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
509 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
510 Nkind (Default_Value (O_Formal))
511 then
512 Set_Expression (Param_Spec,
513 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
514 end if;
516 Next_Formal (Formal);
517 Next_Formal (O_Formal);
518 Next (Param_Spec);
519 end loop;
520 end if;
522 -- If the renamed entity is a function, the generated body contains a
523 -- return statement. Otherwise, build a procedure call. If the entity is
524 -- an entry, subsequent analysis of the call will transform it into the
525 -- proper entry or protected operation call. If the renamed entity is
526 -- a character literal, return it directly.
528 if Ekind (Old_S) = E_Function
529 or else Ekind (Old_S) = E_Operator
530 or else (Ekind (Old_S) = E_Subprogram_Type
531 and then Etype (Old_S) /= Standard_Void_Type)
532 then
533 Call_Node :=
534 Make_Simple_Return_Statement (Loc,
535 Expression =>
536 Make_Function_Call (Loc,
537 Name => Call_Name,
538 Parameter_Associations => Actuals));
540 elsif Ekind (Old_S) = E_Enumeration_Literal then
541 Call_Node :=
542 Make_Simple_Return_Statement (Loc,
543 Expression => New_Occurrence_Of (Old_S, Loc));
545 elsif Nkind (Nam) = N_Character_Literal then
546 Call_Node :=
547 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
549 else
550 Call_Node :=
551 Make_Procedure_Call_Statement (Loc,
552 Name => Call_Name,
553 Parameter_Associations => Actuals);
554 end if;
556 -- Create entities for subprogram body and formals
558 Set_Defining_Unit_Name (Spec,
559 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
561 Param_Spec := First (Parameter_Specifications (Spec));
562 while Present (Param_Spec) loop
563 Set_Defining_Identifier (Param_Spec,
564 Make_Defining_Identifier (Loc,
565 Chars => Chars (Defining_Identifier (Param_Spec))));
566 Next (Param_Spec);
567 end loop;
569 Body_Node :=
570 Make_Subprogram_Body (Loc,
571 Specification => Spec,
572 Declarations => New_List,
573 Handled_Statement_Sequence =>
574 Make_Handled_Sequence_Of_Statements (Loc,
575 Statements => New_List (Call_Node)));
577 if Nkind (Decl) /= N_Subprogram_Declaration then
578 Rewrite (N,
579 Make_Subprogram_Declaration (Loc,
580 Specification => Specification (N)));
581 end if;
583 -- Link the body to the entity whose declaration it completes. If
584 -- the body is analyzed when the renamed entity is frozen, it may
585 -- be necessary to restore the proper scope (see package Exp_Ch13).
587 if Nkind (N) = N_Subprogram_Renaming_Declaration
588 and then Present (Corresponding_Spec (N))
589 then
590 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
591 else
592 Set_Corresponding_Spec (Body_Node, New_S);
593 end if;
595 return Body_Node;
596 end Build_Renamed_Body;
598 --------------------------
599 -- Check_Address_Clause --
600 --------------------------
602 procedure Check_Address_Clause (E : Entity_Id) is
603 Addr : constant Node_Id := Address_Clause (E);
604 Typ : constant Entity_Id := Etype (E);
605 Decl : Node_Id;
606 Expr : Node_Id;
607 Init : Node_Id;
608 Lhs : Node_Id;
609 Tag_Assign : Node_Id;
611 begin
612 if Present (Addr) then
614 -- For a deferred constant, the initialization value is on full view
616 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
617 Decl := Declaration_Node (Full_View (E));
618 else
619 Decl := Declaration_Node (E);
620 end if;
622 Expr := Expression (Addr);
624 if Needs_Constant_Address (Decl, Typ) then
625 Check_Constant_Address_Clause (Expr, E);
627 -- Has_Delayed_Freeze was set on E when the address clause was
628 -- analyzed, and must remain set because we want the address
629 -- clause to be elaborated only after any entity it references
630 -- has been elaborated.
631 end if;
633 -- If Rep_Clauses are to be ignored, remove address clause from
634 -- list attached to entity, because it may be illegal for gigi,
635 -- for example by breaking order of elaboration..
637 if Ignore_Rep_Clauses then
638 declare
639 Rep : Node_Id;
641 begin
642 Rep := First_Rep_Item (E);
644 if Rep = Addr then
645 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
647 else
648 while Present (Rep)
649 and then Next_Rep_Item (Rep) /= Addr
650 loop
651 Rep := Next_Rep_Item (Rep);
652 end loop;
653 end if;
655 if Present (Rep) then
656 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
657 end if;
658 end;
660 -- And now remove the address clause
662 Kill_Rep_Clause (Addr);
664 elsif not Error_Posted (Expr)
665 and then not Needs_Finalization (Typ)
666 then
667 Warn_Overlay (Expr, Typ, Name (Addr));
668 end if;
670 Init := Expression (Decl);
672 -- If a variable, or a non-imported constant, overlays a constant
673 -- object and has an initialization value, then the initialization
674 -- may end up writing into read-only memory. Detect the cases of
675 -- statically identical values and remove the initialization. In
676 -- the other cases, give a warning. We will give other warnings
677 -- later for the variable if it is assigned.
679 if (Ekind (E) = E_Variable
680 or else (Ekind (E) = E_Constant
681 and then not Is_Imported (E)))
682 and then Overlays_Constant (E)
683 and then Present (Init)
684 then
685 declare
686 O_Ent : Entity_Id;
687 Off : Boolean;
689 begin
690 Find_Overlaid_Entity (Addr, O_Ent, Off);
692 if Ekind (O_Ent) = E_Constant
693 and then Etype (O_Ent) = Typ
694 and then Present (Constant_Value (O_Ent))
695 and then Compile_Time_Compare
696 (Init,
697 Constant_Value (O_Ent),
698 Assume_Valid => True) = EQ
699 then
700 Set_No_Initialization (Decl);
701 return;
703 elsif Comes_From_Source (Init)
704 and then Address_Clause_Overlay_Warnings
705 then
706 Error_Msg_Sloc := Sloc (Addr);
707 Error_Msg_NE
708 ("??constant& may be modified via address clause#",
709 Decl, O_Ent);
710 end if;
711 end;
712 end if;
714 -- Remove side effects from initial expression, except in the case of
715 -- limited build-in-place calls and aggregates, which have their own
716 -- expansion elsewhere. This exception is necessary to avoid copying
717 -- limited objects.
719 if Present (Init) and then not Is_Limited_View (Typ) then
721 -- Capture initialization value at point of declaration, and make
722 -- explicit assignment legal, because object may be a constant.
724 Remove_Side_Effects (Init);
725 Lhs := New_Occurrence_Of (E, Sloc (Decl));
726 Set_Assignment_OK (Lhs);
728 -- Move initialization to freeze actions, once the object has
729 -- been frozen and the address clause alignment check has been
730 -- performed.
732 Append_Freeze_Action (E,
733 Make_Assignment_Statement (Sloc (Decl),
734 Name => Lhs,
735 Expression => Expression (Decl)));
737 Set_No_Initialization (Decl);
739 -- If the object is tagged, check whether the tag must be
740 -- reassigned explicitly.
742 Tag_Assign := Make_Tag_Assignment (Decl);
743 if Present (Tag_Assign) then
744 Append_Freeze_Action (E, Tag_Assign);
745 end if;
746 end if;
747 end if;
748 end Check_Address_Clause;
750 -----------------------------
751 -- Check_Compile_Time_Size --
752 -----------------------------
754 procedure Check_Compile_Time_Size (T : Entity_Id) is
756 procedure Set_Small_Size (T : Entity_Id; S : Uint);
757 -- Sets the compile time known size (64 bits or less) in the RM_Size
758 -- field of T, checking for a size clause that was given which attempts
759 -- to give a smaller size.
761 function Size_Known (T : Entity_Id) return Boolean;
762 -- Recursive function that does all the work
764 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
765 -- If T is a constrained subtype, its size is not known if any of its
766 -- discriminant constraints is not static and it is not a null record.
767 -- The test is conservative and doesn't check that the components are
768 -- in fact constrained by non-static discriminant values. Could be made
769 -- more precise ???
771 --------------------
772 -- Set_Small_Size --
773 --------------------
775 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
776 begin
777 if S > 64 then
778 return;
780 -- Check for bad size clause given
782 elsif Has_Size_Clause (T) then
783 if RM_Size (T) < S then
784 Error_Msg_Uint_1 := S;
785 Error_Msg_NE
786 ("size for& too small, minimum allowed is ^",
787 Size_Clause (T), T);
788 end if;
790 -- Set size if not set already
792 elsif Unknown_RM_Size (T) then
793 Set_RM_Size (T, S);
794 end if;
795 end Set_Small_Size;
797 ----------------
798 -- Size_Known --
799 ----------------
801 function Size_Known (T : Entity_Id) return Boolean is
802 Index : Entity_Id;
803 Comp : Entity_Id;
804 Ctyp : Entity_Id;
805 Low : Node_Id;
806 High : Node_Id;
808 begin
809 if Size_Known_At_Compile_Time (T) then
810 return True;
812 -- Always True for elementary types, even generic formal elementary
813 -- types. We used to return False in the latter case, but the size
814 -- is known at compile time, even in the template, we just do not
815 -- know the exact size but that's not the point of this routine.
817 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
818 return True;
820 -- Array types
822 elsif Is_Array_Type (T) then
824 -- String literals always have known size, and we can set it
826 if Ekind (T) = E_String_Literal_Subtype then
827 Set_Small_Size
828 (T, Component_Size (T) * String_Literal_Length (T));
829 return True;
831 -- Unconstrained types never have known at compile time size
833 elsif not Is_Constrained (T) then
834 return False;
836 -- Don't do any recursion on type with error posted, since we may
837 -- have a malformed type that leads us into a loop.
839 elsif Error_Posted (T) then
840 return False;
842 -- Otherwise if component size unknown, then array size unknown
844 elsif not Size_Known (Component_Type (T)) then
845 return False;
846 end if;
848 -- Check for all indexes static, and also compute possible size
849 -- (in case it is not greater than 64 and may be packable).
851 declare
852 Size : Uint := Component_Size (T);
853 Dim : Uint;
855 begin
856 Index := First_Index (T);
857 while Present (Index) loop
858 if Nkind (Index) = N_Range then
859 Get_Index_Bounds (Index, Low, High);
861 elsif Error_Posted (Scalar_Range (Etype (Index))) then
862 return False;
864 else
865 Low := Type_Low_Bound (Etype (Index));
866 High := Type_High_Bound (Etype (Index));
867 end if;
869 if not Compile_Time_Known_Value (Low)
870 or else not Compile_Time_Known_Value (High)
871 or else Etype (Index) = Any_Type
872 then
873 return False;
875 else
876 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
878 if Dim >= 0 then
879 Size := Size * Dim;
880 else
881 Size := Uint_0;
882 end if;
883 end if;
885 Next_Index (Index);
886 end loop;
888 Set_Small_Size (T, Size);
889 return True;
890 end;
892 -- For non-generic private types, go to underlying type if present
894 elsif Is_Private_Type (T)
895 and then not Is_Generic_Type (T)
896 and then Present (Underlying_Type (T))
897 then
898 -- Don't do any recursion on type with error posted, since we may
899 -- have a malformed type that leads us into a loop.
901 if Error_Posted (T) then
902 return False;
903 else
904 return Size_Known (Underlying_Type (T));
905 end if;
907 -- Record types
909 elsif Is_Record_Type (T) then
911 -- A class-wide type is never considered to have a known size
913 if Is_Class_Wide_Type (T) then
914 return False;
916 -- A subtype of a variant record must not have non-static
917 -- discriminated components.
919 elsif T /= Base_Type (T)
920 and then not Static_Discriminated_Components (T)
921 then
922 return False;
924 -- Don't do any recursion on type with error posted, since we may
925 -- have a malformed type that leads us into a loop.
927 elsif Error_Posted (T) then
928 return False;
929 end if;
931 -- Now look at the components of the record
933 declare
934 -- The following two variables are used to keep track of the
935 -- size of packed records if we can tell the size of the packed
936 -- record in the front end. Packed_Size_Known is True if so far
937 -- we can figure out the size. It is initialized to True for a
938 -- packed record, unless the record has discriminants or atomic
939 -- components or independent components.
941 -- The reason we eliminate the discriminated case is that
942 -- we don't know the way the back end lays out discriminated
943 -- packed records. If Packed_Size_Known is True, then
944 -- Packed_Size is the size in bits so far.
946 Packed_Size_Known : Boolean :=
947 Is_Packed (T)
948 and then not Has_Discriminants (T)
949 and then not Has_Atomic_Components (T)
950 and then not Has_Independent_Components (T);
952 Packed_Size : Uint := Uint_0;
953 -- Size in bits so far
955 begin
956 -- Test for variant part present
958 if Has_Discriminants (T)
959 and then Present (Parent (T))
960 and then Nkind (Parent (T)) = N_Full_Type_Declaration
961 and then Nkind (Type_Definition (Parent (T))) =
962 N_Record_Definition
963 and then not Null_Present (Type_Definition (Parent (T)))
964 and then
965 Present (Variant_Part
966 (Component_List (Type_Definition (Parent (T)))))
967 then
968 -- If variant part is present, and type is unconstrained,
969 -- then we must have defaulted discriminants, or a size
970 -- clause must be present for the type, or else the size
971 -- is definitely not known at compile time.
973 if not Is_Constrained (T)
974 and then
975 No (Discriminant_Default_Value (First_Discriminant (T)))
976 and then Unknown_RM_Size (T)
977 then
978 return False;
979 end if;
980 end if;
982 -- Loop through components
984 Comp := First_Component_Or_Discriminant (T);
985 while Present (Comp) loop
986 Ctyp := Etype (Comp);
988 -- We do not know the packed size if there is a component
989 -- clause present (we possibly could, but this would only
990 -- help in the case of a record with partial rep clauses.
991 -- That's because in the case of full rep clauses, the
992 -- size gets figured out anyway by a different circuit).
994 if Present (Component_Clause (Comp)) then
995 Packed_Size_Known := False;
996 end if;
998 -- We do not know the packed size for an atomic/VFA type
999 -- or component, or an independent type or component, or a
1000 -- by-reference type or aliased component (because packing
1001 -- does not touch these).
1003 if Is_Atomic_Or_VFA (Ctyp)
1004 or else Is_Atomic_Or_VFA (Comp)
1005 or else Is_Independent (Ctyp)
1006 or else Is_Independent (Comp)
1007 or else Is_By_Reference_Type (Ctyp)
1008 or else Is_Aliased (Comp)
1009 then
1010 Packed_Size_Known := False;
1011 end if;
1013 -- We need to identify a component that is an array where
1014 -- the index type is an enumeration type with non-standard
1015 -- representation, and some bound of the type depends on a
1016 -- discriminant.
1018 -- This is because gigi computes the size by doing a
1019 -- substitution of the appropriate discriminant value in
1020 -- the size expression for the base type, and gigi is not
1021 -- clever enough to evaluate the resulting expression (which
1022 -- involves a call to rep_to_pos) at compile time.
1024 -- It would be nice if gigi would either recognize that
1025 -- this expression can be computed at compile time, or
1026 -- alternatively figured out the size from the subtype
1027 -- directly, where all the information is at hand ???
1029 if Is_Array_Type (Etype (Comp))
1030 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1031 then
1032 declare
1033 Ocomp : constant Entity_Id :=
1034 Original_Record_Component (Comp);
1035 OCtyp : constant Entity_Id := Etype (Ocomp);
1036 Ind : Node_Id;
1037 Indtyp : Entity_Id;
1038 Lo, Hi : Node_Id;
1040 begin
1041 Ind := First_Index (OCtyp);
1042 while Present (Ind) loop
1043 Indtyp := Etype (Ind);
1045 if Is_Enumeration_Type (Indtyp)
1046 and then Has_Non_Standard_Rep (Indtyp)
1047 then
1048 Lo := Type_Low_Bound (Indtyp);
1049 Hi := Type_High_Bound (Indtyp);
1051 if Is_Entity_Name (Lo)
1052 and then Ekind (Entity (Lo)) = E_Discriminant
1053 then
1054 return False;
1056 elsif Is_Entity_Name (Hi)
1057 and then Ekind (Entity (Hi)) = E_Discriminant
1058 then
1059 return False;
1060 end if;
1061 end if;
1063 Next_Index (Ind);
1064 end loop;
1065 end;
1066 end if;
1068 -- Clearly size of record is not known if the size of one of
1069 -- the components is not known.
1071 if not Size_Known (Ctyp) then
1072 return False;
1073 end if;
1075 -- Accumulate packed size if possible
1077 if Packed_Size_Known then
1079 -- We can deal with elementary types, small packed arrays
1080 -- if the representation is a modular type and also small
1081 -- record types (if the size is not greater than 64, but
1082 -- the condition is checked by Set_Small_Size).
1084 if Is_Elementary_Type (Ctyp)
1085 or else (Is_Array_Type (Ctyp)
1086 and then Present
1087 (Packed_Array_Impl_Type (Ctyp))
1088 and then Is_Modular_Integer_Type
1089 (Packed_Array_Impl_Type (Ctyp)))
1090 or else Is_Record_Type (Ctyp)
1091 then
1092 -- If RM_Size is known and static, then we can keep
1093 -- accumulating the packed size.
1095 if Known_Static_RM_Size (Ctyp) then
1097 Packed_Size := Packed_Size + RM_Size (Ctyp);
1099 -- If we have a field whose RM_Size is not known then
1100 -- we can't figure out the packed size here.
1102 else
1103 Packed_Size_Known := False;
1104 end if;
1106 -- For other types we can't figure out the packed size
1108 else
1109 Packed_Size_Known := False;
1110 end if;
1111 end if;
1113 Next_Component_Or_Discriminant (Comp);
1114 end loop;
1116 if Packed_Size_Known then
1117 Set_Small_Size (T, Packed_Size);
1118 end if;
1120 return True;
1121 end;
1123 -- All other cases, size not known at compile time
1125 else
1126 return False;
1127 end if;
1128 end Size_Known;
1130 -------------------------------------
1131 -- Static_Discriminated_Components --
1132 -------------------------------------
1134 function Static_Discriminated_Components
1135 (T : Entity_Id) return Boolean
1137 Constraint : Elmt_Id;
1139 begin
1140 if Has_Discriminants (T)
1141 and then Present (Discriminant_Constraint (T))
1142 and then Present (First_Component (T))
1143 then
1144 Constraint := First_Elmt (Discriminant_Constraint (T));
1145 while Present (Constraint) loop
1146 if not Compile_Time_Known_Value (Node (Constraint)) then
1147 return False;
1148 end if;
1150 Next_Elmt (Constraint);
1151 end loop;
1152 end if;
1154 return True;
1155 end Static_Discriminated_Components;
1157 -- Start of processing for Check_Compile_Time_Size
1159 begin
1160 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1161 end Check_Compile_Time_Size;
1163 -----------------------------------
1164 -- Check_Component_Storage_Order --
1165 -----------------------------------
1167 procedure Check_Component_Storage_Order
1168 (Encl_Type : Entity_Id;
1169 Comp : Entity_Id;
1170 ADC : Node_Id;
1171 Comp_ADC_Present : out Boolean)
1173 Comp_Base : Entity_Id;
1174 Comp_ADC : Node_Id;
1175 Encl_Base : Entity_Id;
1176 Err_Node : Node_Id;
1178 Component_Aliased : Boolean;
1180 Comp_Byte_Aligned : Boolean := False;
1181 -- Set for the record case, True if Comp is aligned on byte boundaries
1182 -- (in which case it is allowed to have different storage order).
1184 Comp_SSO_Differs : Boolean;
1185 -- Set True when the component is a nested composite, and it does not
1186 -- have the same scalar storage order as Encl_Type.
1188 begin
1189 -- Record case
1191 if Present (Comp) then
1192 Err_Node := Comp;
1193 Comp_Base := Etype (Comp);
1195 if Is_Tag (Comp) then
1196 Comp_Byte_Aligned := True;
1197 Component_Aliased := False;
1199 else
1200 -- If a component clause is present, check if the component starts
1201 -- and ends on byte boundaries. Otherwise conservatively assume it
1202 -- does so only in the case where the record is not packed.
1204 if Present (Component_Clause (Comp)) then
1205 Comp_Byte_Aligned :=
1206 (Normalized_First_Bit (Comp) mod System_Storage_Unit = 0)
1207 and then
1208 (Esize (Comp) mod System_Storage_Unit = 0);
1209 else
1210 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1211 end if;
1213 Component_Aliased := Is_Aliased (Comp);
1214 end if;
1216 -- Array case
1218 else
1219 Err_Node := Encl_Type;
1220 Comp_Base := Component_Type (Encl_Type);
1222 Component_Aliased := Has_Aliased_Components (Encl_Type);
1223 end if;
1225 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1226 -- the attribute definition clause is attached to the first subtype.
1227 -- Also, if the base type is incomplete or private, go to full view
1228 -- if known
1230 Encl_Base := Base_Type (Encl_Type);
1231 if Present (Underlying_Type (Encl_Base)) then
1232 Encl_Base := Underlying_Type (Encl_Base);
1233 end if;
1235 Comp_Base := Base_Type (Comp_Base);
1236 if Present (Underlying_Type (Comp_Base)) then
1237 Comp_Base := Underlying_Type (Comp_Base);
1238 end if;
1240 Comp_ADC :=
1241 Get_Attribute_Definition_Clause
1242 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1243 Comp_ADC_Present := Present (Comp_ADC);
1245 -- Case of record or array component: check storage order compatibility.
1246 -- But, if the record has Complex_Representation, then it is treated as
1247 -- a scalar in the back end so the storage order is irrelevant.
1249 if (Is_Record_Type (Comp_Base)
1250 and then not Has_Complex_Representation (Comp_Base))
1251 or else Is_Array_Type (Comp_Base)
1252 then
1253 Comp_SSO_Differs :=
1254 Reverse_Storage_Order (Encl_Base) /=
1255 Reverse_Storage_Order (Comp_Base);
1257 -- Parent and extension must have same storage order
1259 if Present (Comp) and then Chars (Comp) = Name_uParent then
1260 if Comp_SSO_Differs then
1261 Error_Msg_N
1262 ("record extension must have same scalar storage order as "
1263 & "parent", Err_Node);
1264 end if;
1266 -- If component and composite SSO differs, check that component
1267 -- falls on byte boundaries and isn't bit packed.
1269 elsif Comp_SSO_Differs then
1271 -- Component SSO differs from enclosing composite:
1273 -- Reject if composite is a bit-packed array, as it is rewritten
1274 -- into an array of scalars.
1276 if Is_Bit_Packed_Array (Encl_Base) then
1277 Error_Msg_N
1278 ("type of packed array must have same scalar storage order "
1279 & "as component", Err_Node);
1281 -- Reject if not byte aligned
1283 elsif Is_Record_Type (Encl_Base)
1284 and then not Comp_Byte_Aligned
1285 then
1286 Error_Msg_N
1287 ("type of non-byte-aligned component must have same scalar "
1288 & "storage order as enclosing composite", Err_Node);
1290 -- Warn if specified only for the outer composite
1292 elsif Present (ADC) and then No (Comp_ADC) then
1293 Error_Msg_NE
1294 ("scalar storage order specified for & does not apply to "
1295 & "component?", Err_Node, Encl_Base);
1296 end if;
1297 end if;
1299 -- Enclosing type has explicit SSO: non-composite component must not
1300 -- be aliased.
1302 elsif Present (ADC) and then Component_Aliased then
1303 Error_Msg_N
1304 ("aliased component not permitted for type with explicit "
1305 & "Scalar_Storage_Order", Err_Node);
1306 end if;
1307 end Check_Component_Storage_Order;
1309 -----------------------------
1310 -- Check_Debug_Info_Needed --
1311 -----------------------------
1313 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1314 begin
1315 if Debug_Info_Off (T) then
1316 return;
1318 elsif Comes_From_Source (T)
1319 or else Debug_Generated_Code
1320 or else Debug_Flag_VV
1321 or else Needs_Debug_Info (T)
1322 then
1323 Set_Debug_Info_Needed (T);
1324 end if;
1325 end Check_Debug_Info_Needed;
1327 -------------------------------
1328 -- Check_Expression_Function --
1329 -------------------------------
1331 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1332 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1333 -- Function to search for deferred constant
1335 -------------------
1336 -- Find_Constant --
1337 -------------------
1339 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1340 begin
1341 -- When a constant is initialized with the result of a dispatching
1342 -- call, the constant declaration is rewritten as a renaming of the
1343 -- displaced function result. This scenario is not a premature use of
1344 -- a constant even though the Has_Completion flag is not set.
1346 if Is_Entity_Name (Nod)
1347 and then Present (Entity (Nod))
1348 and then Ekind (Entity (Nod)) = E_Constant
1349 and then Scope (Entity (Nod)) = Current_Scope
1350 and then Nkind (Declaration_Node (Entity (Nod))) =
1351 N_Object_Declaration
1352 and then not Is_Imported (Entity (Nod))
1353 and then not Has_Completion (Entity (Nod))
1354 and then not Is_Frozen (Entity (Nod))
1355 then
1356 Error_Msg_NE
1357 ("premature use of& in call or instance", N, Entity (Nod));
1359 elsif Nkind (Nod) = N_Attribute_Reference then
1360 Analyze (Prefix (Nod));
1362 if Is_Entity_Name (Prefix (Nod))
1363 and then Is_Type (Entity (Prefix (Nod)))
1364 then
1365 Freeze_Before (N, Entity (Prefix (Nod)));
1366 end if;
1367 end if;
1369 return OK;
1370 end Find_Constant;
1372 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1374 -- Local variables
1376 Decl : Node_Id;
1378 -- Start of processing for Check_Expression_Function
1380 begin
1381 Decl := Original_Node (Unit_Declaration_Node (Nam));
1383 -- The subprogram body created for the expression function is not
1384 -- itself a freeze point.
1386 if Scope (Nam) = Current_Scope
1387 and then Nkind (Decl) = N_Expression_Function
1388 and then Nkind (N) /= N_Subprogram_Body
1389 then
1390 Check_Deferred (Expression (Decl));
1391 end if;
1392 end Check_Expression_Function;
1394 --------------------------------
1395 -- Check_Inherited_Conditions --
1396 --------------------------------
1398 procedure Check_Inherited_Conditions (R : Entity_Id) is
1399 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1400 Decls : List_Id;
1401 Needs_Wrapper : Boolean;
1402 Op_Node : Elmt_Id;
1403 Par_Prim : Entity_Id;
1404 Prim : Entity_Id;
1406 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id);
1407 -- Build corresponding pragmas for an operation whose ancestor has
1408 -- class-wide pre/postconditions. If the operation is inherited, the
1409 -- pragmas force the creation of a wrapper for the inherited operation.
1410 -- If the ancestor is being overridden, the pragmas are constructed only
1411 -- to verify their legality, in case they contain calls to other
1412 -- primitives that may haven been overridden.
1414 ---------------------------------------
1415 -- Build_Inherited_Condition_Pragmas --
1416 ---------------------------------------
1418 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id) is
1419 A_Post : Node_Id;
1420 A_Pre : Node_Id;
1421 New_Prag : Node_Id;
1423 begin
1424 A_Pre := Get_Class_Wide_Pragma (Par_Prim, Pragma_Precondition);
1426 if Present (A_Pre) then
1427 New_Prag := New_Copy_Tree (A_Pre);
1428 Build_Class_Wide_Expression
1429 (Prag => New_Prag,
1430 Subp => Prim,
1431 Par_Subp => Par_Prim,
1432 Adjust_Sloc => False,
1433 Needs_Wrapper => Needs_Wrapper);
1435 if Needs_Wrapper
1436 and then not Comes_From_Source (Subp)
1437 and then Expander_Active
1438 then
1439 Append (New_Prag, Decls);
1440 end if;
1441 end if;
1443 A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition);
1445 if Present (A_Post) then
1446 New_Prag := New_Copy_Tree (A_Post);
1447 Build_Class_Wide_Expression
1448 (Prag => New_Prag,
1449 Subp => Prim,
1450 Par_Subp => Par_Prim,
1451 Adjust_Sloc => False,
1452 Needs_Wrapper => Needs_Wrapper);
1454 if Needs_Wrapper
1455 and then not Comes_From_Source (Subp)
1456 and then Expander_Active
1457 then
1458 Append (New_Prag, Decls);
1459 end if;
1460 end if;
1461 end Build_Inherited_Condition_Pragmas;
1463 -- Start of processing for Check_Inherited_Conditions
1465 begin
1466 Op_Node := First_Elmt (Prim_Ops);
1467 while Present (Op_Node) loop
1468 Prim := Node (Op_Node);
1470 -- Map the overridden primitive to the overriding one. This takes
1471 -- care of all overridings and is done only once.
1473 if Present (Overridden_Operation (Prim))
1474 and then Comes_From_Source (Prim)
1475 then
1476 Par_Prim := Overridden_Operation (Prim);
1477 Update_Primitives_Mapping (Par_Prim, Prim);
1478 end if;
1480 Next_Elmt (Op_Node);
1481 end loop;
1483 -- Perform validity checks on the inherited conditions of overriding
1484 -- operations, for conformance with LSP, and apply SPARK-specific
1485 -- restrictions on inherited conditions.
1487 Op_Node := First_Elmt (Prim_Ops);
1488 while Present (Op_Node) loop
1489 Prim := Node (Op_Node);
1491 if Present (Overridden_Operation (Prim))
1492 and then Comes_From_Source (Prim)
1493 then
1494 Par_Prim := Overridden_Operation (Prim);
1496 -- Analyze the contract items of the overridden operation, before
1497 -- they are rewritten as pragmas.
1499 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1501 -- In GNATprove mode this is where we can collect the inherited
1502 -- conditions, because we do not create the Check pragmas that
1503 -- normally convey the the modified class-wide conditions on
1504 -- overriding operations.
1506 if GNATprove_Mode then
1507 Collect_Inherited_Class_Wide_Conditions (Prim);
1509 -- Otherwise build the corresponding pragmas to check for legality
1510 -- of the inherited condition.
1512 else
1513 Build_Inherited_Condition_Pragmas (Prim);
1514 end if;
1515 end if;
1517 Next_Elmt (Op_Node);
1518 end loop;
1520 -- Now examine the inherited operations to check whether they require
1521 -- a wrapper to handle inherited conditions that call other primitives,
1522 -- so that LSP can be verified/enforced.
1524 Op_Node := First_Elmt (Prim_Ops);
1525 Needs_Wrapper := False;
1527 while Present (Op_Node) loop
1528 Decls := Empty_List;
1529 Prim := Node (Op_Node);
1531 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1532 Par_Prim := Alias (Prim);
1534 -- Analyze the contract items of the parent operation, and
1535 -- determine whether a wrapper is needed. This is determined
1536 -- when the condition is rewritten in sem_prag, using the
1537 -- mapping between overridden and overriding operations built
1538 -- in the loop above.
1540 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1541 Build_Inherited_Condition_Pragmas (Prim);
1542 end if;
1544 if Needs_Wrapper
1545 and then not Is_Abstract_Subprogram (Par_Prim)
1546 and then Expander_Active
1547 then
1548 -- We need to build a new primitive that overrides the inherited
1549 -- one, and whose inherited expression has been updated above.
1550 -- These expressions are the arguments of pragmas that are part
1551 -- of the declarations of the wrapper. The wrapper holds a single
1552 -- statement that is a call to the class-wide clone, where the
1553 -- controlling actuals are conversions to the corresponding type
1554 -- in the parent primitive:
1556 -- procedure New_Prim (F1 : T1; ...);
1557 -- procedure New_Prim (F1 : T1; ...) is
1558 -- pragma Check (Precondition, Expr);
1559 -- begin
1560 -- Par_Prim_Clone (Par_Type (F1), ...);
1561 -- end;
1563 -- If the primitive is a function the statement is a return
1564 -- statement with a call.
1566 declare
1567 Loc : constant Source_Ptr := Sloc (R);
1568 Par_R : constant Node_Id := Parent (R);
1569 New_Body : Node_Id;
1570 New_Decl : Node_Id;
1571 New_Spec : Node_Id;
1573 begin
1574 New_Spec := Build_Overriding_Spec (Par_Prim, R);
1575 New_Decl :=
1576 Make_Subprogram_Declaration (Loc,
1577 Specification => New_Spec);
1579 -- Insert the declaration and the body of the wrapper after
1580 -- type declaration that generates inherited operation. For
1581 -- a null procedure, the declaration implies a null body.
1583 if Nkind (New_Spec) = N_Procedure_Specification
1584 and then Null_Present (New_Spec)
1585 then
1586 Insert_After_And_Analyze (Par_R, New_Decl);
1588 else
1589 -- Build body as wrapper to a call to the already built
1590 -- class-wide clone.
1592 New_Body :=
1593 Build_Class_Wide_Clone_Call
1594 (Loc, Decls, Par_Prim, New_Spec);
1596 Insert_List_After_And_Analyze
1597 (Par_R, New_List (New_Decl, New_Body));
1598 end if;
1599 end;
1601 Needs_Wrapper := False;
1602 end if;
1604 Next_Elmt (Op_Node);
1605 end loop;
1606 end Check_Inherited_Conditions;
1608 ----------------------------
1609 -- Check_Strict_Alignment --
1610 ----------------------------
1612 procedure Check_Strict_Alignment (E : Entity_Id) is
1613 Comp : Entity_Id;
1615 begin
1616 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1617 Set_Strict_Alignment (E);
1619 elsif Is_Array_Type (E) then
1620 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1622 elsif Is_Record_Type (E) then
1623 if Is_Limited_Record (E) then
1624 Set_Strict_Alignment (E);
1625 return;
1626 end if;
1628 Comp := First_Component (E);
1629 while Present (Comp) loop
1630 if not Is_Type (Comp)
1631 and then (Strict_Alignment (Etype (Comp))
1632 or else Is_Aliased (Comp))
1633 then
1634 Set_Strict_Alignment (E);
1635 return;
1636 end if;
1638 Next_Component (Comp);
1639 end loop;
1640 end if;
1641 end Check_Strict_Alignment;
1643 -------------------------
1644 -- Check_Unsigned_Type --
1645 -------------------------
1647 procedure Check_Unsigned_Type (E : Entity_Id) is
1648 Ancestor : Entity_Id;
1649 Lo_Bound : Node_Id;
1650 Btyp : Entity_Id;
1652 begin
1653 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1654 return;
1655 end if;
1657 -- Do not attempt to analyze case where range was in error
1659 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1660 return;
1661 end if;
1663 -- The situation that is nontrivial is something like:
1665 -- subtype x1 is integer range -10 .. +10;
1666 -- subtype x2 is x1 range 0 .. V1;
1667 -- subtype x3 is x2 range V2 .. V3;
1668 -- subtype x4 is x3 range V4 .. V5;
1670 -- where Vn are variables. Here the base type is signed, but we still
1671 -- know that x4 is unsigned because of the lower bound of x2.
1673 -- The only way to deal with this is to look up the ancestor chain
1675 Ancestor := E;
1676 loop
1677 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1678 return;
1679 end if;
1681 Lo_Bound := Type_Low_Bound (Ancestor);
1683 if Compile_Time_Known_Value (Lo_Bound) then
1684 if Expr_Rep_Value (Lo_Bound) >= 0 then
1685 Set_Is_Unsigned_Type (E, True);
1686 end if;
1688 return;
1690 else
1691 Ancestor := Ancestor_Subtype (Ancestor);
1693 -- If no ancestor had a static lower bound, go to base type
1695 if No (Ancestor) then
1697 -- Note: the reason we still check for a compile time known
1698 -- value for the base type is that at least in the case of
1699 -- generic formals, we can have bounds that fail this test,
1700 -- and there may be other cases in error situations.
1702 Btyp := Base_Type (E);
1704 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1705 return;
1706 end if;
1708 Lo_Bound := Type_Low_Bound (Base_Type (E));
1710 if Compile_Time_Known_Value (Lo_Bound)
1711 and then Expr_Rep_Value (Lo_Bound) >= 0
1712 then
1713 Set_Is_Unsigned_Type (E, True);
1714 end if;
1716 return;
1717 end if;
1718 end if;
1719 end loop;
1720 end Check_Unsigned_Type;
1722 -----------------------------
1723 -- Is_Atomic_VFA_Aggregate --
1724 -----------------------------
1726 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1727 Loc : constant Source_Ptr := Sloc (N);
1728 New_N : Node_Id;
1729 Par : Node_Id;
1730 Temp : Entity_Id;
1731 Typ : Entity_Id;
1733 begin
1734 Par := Parent (N);
1736 -- Array may be qualified, so find outer context
1738 if Nkind (Par) = N_Qualified_Expression then
1739 Par := Parent (Par);
1740 end if;
1742 if not Comes_From_Source (Par) then
1743 return False;
1744 end if;
1746 case Nkind (Par) is
1747 when N_Assignment_Statement =>
1748 Typ := Etype (Name (Par));
1750 if not Is_Atomic_Or_VFA (Typ)
1751 and then not (Is_Entity_Name (Name (Par))
1752 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1753 then
1754 return False;
1755 end if;
1757 when N_Object_Declaration =>
1758 Typ := Etype (Defining_Identifier (Par));
1760 if not Is_Atomic_Or_VFA (Typ)
1761 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1762 then
1763 return False;
1764 end if;
1766 when others =>
1767 return False;
1768 end case;
1770 Temp := Make_Temporary (Loc, 'T', N);
1771 New_N :=
1772 Make_Object_Declaration (Loc,
1773 Defining_Identifier => Temp,
1774 Object_Definition => New_Occurrence_Of (Typ, Loc),
1775 Expression => Relocate_Node (N));
1776 Insert_Before (Par, New_N);
1777 Analyze (New_N);
1779 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1780 return True;
1781 end Is_Atomic_VFA_Aggregate;
1783 -----------------------------------------------
1784 -- Explode_Initialization_Compound_Statement --
1785 -----------------------------------------------
1787 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1788 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1790 begin
1791 if Present (Init_Stmts)
1792 and then Nkind (Init_Stmts) = N_Compound_Statement
1793 then
1794 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1796 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1797 -- just removing it, because Freeze_All may rely on this particular
1798 -- Node_Id still being present in the enclosing list to know where to
1799 -- stop freezing.
1801 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1803 Set_Initialization_Statements (E, Empty);
1804 end if;
1805 end Explode_Initialization_Compound_Statement;
1807 ----------------
1808 -- Freeze_All --
1809 ----------------
1811 -- Note: the easy coding for this procedure would be to just build a
1812 -- single list of freeze nodes and then insert them and analyze them
1813 -- all at once. This won't work, because the analysis of earlier freeze
1814 -- nodes may recursively freeze types which would otherwise appear later
1815 -- on in the freeze list. So we must analyze and expand the freeze nodes
1816 -- as they are generated.
1818 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1819 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1820 -- This is the internal recursive routine that does freezing of entities
1821 -- (but NOT the analysis of default expressions, which should not be
1822 -- recursive, we don't want to analyze those till we are sure that ALL
1823 -- the types are frozen).
1825 --------------------
1826 -- Freeze_All_Ent --
1827 --------------------
1829 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1830 E : Entity_Id;
1831 Flist : List_Id;
1832 Lastn : Node_Id;
1834 procedure Process_Flist;
1835 -- If freeze nodes are present, insert and analyze, and reset cursor
1836 -- for next insertion.
1838 -------------------
1839 -- Process_Flist --
1840 -------------------
1842 procedure Process_Flist is
1843 begin
1844 if Is_Non_Empty_List (Flist) then
1845 Lastn := Next (After);
1846 Insert_List_After_And_Analyze (After, Flist);
1848 if Present (Lastn) then
1849 After := Prev (Lastn);
1850 else
1851 After := Last (List_Containing (After));
1852 end if;
1853 end if;
1854 end Process_Flist;
1856 -- Start of processing for Freeze_All_Ent
1858 begin
1859 E := From;
1860 while Present (E) loop
1862 -- If the entity is an inner package which is not a package
1863 -- renaming, then its entities must be frozen at this point. Note
1864 -- that such entities do NOT get frozen at the end of the nested
1865 -- package itself (only library packages freeze).
1867 -- Same is true for task declarations, where anonymous records
1868 -- created for entry parameters must be frozen.
1870 if Ekind (E) = E_Package
1871 and then No (Renamed_Object (E))
1872 and then not Is_Child_Unit (E)
1873 and then not Is_Frozen (E)
1874 then
1875 Push_Scope (E);
1877 Install_Visible_Declarations (E);
1878 Install_Private_Declarations (E);
1879 Freeze_All (First_Entity (E), After);
1881 End_Package_Scope (E);
1883 if Is_Generic_Instance (E)
1884 and then Has_Delayed_Freeze (E)
1885 then
1886 Set_Has_Delayed_Freeze (E, False);
1887 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1888 end if;
1890 elsif Ekind (E) in Task_Kind
1891 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1892 N_Task_Type_Declaration)
1893 then
1894 Push_Scope (E);
1895 Freeze_All (First_Entity (E), After);
1896 End_Scope;
1898 -- For a derived tagged type, we must ensure that all the
1899 -- primitive operations of the parent have been frozen, so that
1900 -- their addresses will be in the parent's dispatch table at the
1901 -- point it is inherited.
1903 elsif Ekind (E) = E_Record_Type
1904 and then Is_Tagged_Type (E)
1905 and then Is_Tagged_Type (Etype (E))
1906 and then Is_Derived_Type (E)
1907 then
1908 declare
1909 Prim_List : constant Elist_Id :=
1910 Primitive_Operations (Etype (E));
1912 Prim : Elmt_Id;
1913 Subp : Entity_Id;
1915 begin
1916 Prim := First_Elmt (Prim_List);
1917 while Present (Prim) loop
1918 Subp := Node (Prim);
1920 if Comes_From_Source (Subp)
1921 and then not Is_Frozen (Subp)
1922 then
1923 Flist := Freeze_Entity (Subp, After);
1924 Process_Flist;
1925 end if;
1927 Next_Elmt (Prim);
1928 end loop;
1929 end;
1930 end if;
1932 if not Is_Frozen (E) then
1933 Flist := Freeze_Entity (E, After);
1934 Process_Flist;
1936 -- If already frozen, and there are delayed aspects, this is where
1937 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1938 -- for a description of how we handle aspect visibility).
1940 elsif Has_Delayed_Aspects (E) then
1942 -- Retrieve the visibility to the discriminants in order to
1943 -- analyze properly the aspects.
1945 Push_Scope_And_Install_Discriminants (E);
1947 declare
1948 Ritem : Node_Id;
1950 begin
1951 Ritem := First_Rep_Item (E);
1952 while Present (Ritem) loop
1953 if Nkind (Ritem) = N_Aspect_Specification
1954 and then Entity (Ritem) = E
1955 and then Is_Delayed_Aspect (Ritem)
1956 then
1957 Check_Aspect_At_End_Of_Declarations (Ritem);
1958 end if;
1960 Ritem := Next_Rep_Item (Ritem);
1961 end loop;
1962 end;
1964 Uninstall_Discriminants_And_Pop_Scope (E);
1965 end if;
1967 -- If an incomplete type is still not frozen, this may be a
1968 -- premature freezing because of a body declaration that follows.
1969 -- Indicate where the freezing took place. Freezing will happen
1970 -- if the body comes from source, but not if it is internally
1971 -- generated, for example as the body of a type invariant.
1973 -- If the freezing is caused by the end of the current declarative
1974 -- part, it is a Taft Amendment type, and there is no error.
1976 if not Is_Frozen (E)
1977 and then Ekind (E) = E_Incomplete_Type
1978 then
1979 declare
1980 Bod : constant Node_Id := Next (After);
1982 begin
1983 -- The presence of a body freezes all entities previously
1984 -- declared in the current list of declarations, but this
1985 -- does not apply if the body does not come from source.
1986 -- A type invariant is transformed into a subprogram body
1987 -- which is placed at the end of the private part of the
1988 -- current package, but this body does not freeze incomplete
1989 -- types that may be declared in this private part.
1991 if (Nkind_In (Bod, N_Entry_Body,
1992 N_Package_Body,
1993 N_Protected_Body,
1994 N_Subprogram_Body,
1995 N_Task_Body)
1996 or else Nkind (Bod) in N_Body_Stub)
1997 and then
1998 List_Containing (After) = List_Containing (Parent (E))
1999 and then Comes_From_Source (Bod)
2000 then
2001 Error_Msg_Sloc := Sloc (Next (After));
2002 Error_Msg_NE
2003 ("type& is frozen# before its full declaration",
2004 Parent (E), E);
2005 end if;
2006 end;
2007 end if;
2009 Next_Entity (E);
2010 end loop;
2011 end Freeze_All_Ent;
2013 -- Local variables
2015 Decl : Node_Id;
2016 E : Entity_Id;
2017 Item : Entity_Id;
2019 -- Start of processing for Freeze_All
2021 begin
2022 Freeze_All_Ent (From, After);
2024 -- Now that all types are frozen, we can deal with default expressions
2025 -- that require us to build a default expression functions. This is the
2026 -- point at which such functions are constructed (after all types that
2027 -- might be used in such expressions have been frozen).
2029 -- For subprograms that are renaming_as_body, we create the wrapper
2030 -- bodies as needed.
2032 -- We also add finalization chains to access types whose designated
2033 -- types are controlled. This is normally done when freezing the type,
2034 -- but this misses recursive type definitions where the later members
2035 -- of the recursion introduce controlled components.
2037 -- Loop through entities
2039 E := From;
2040 while Present (E) loop
2041 if Is_Subprogram (E) then
2042 if not Default_Expressions_Processed (E) then
2043 Process_Default_Expressions (E, After);
2044 end if;
2046 if not Has_Completion (E) then
2047 Decl := Unit_Declaration_Node (E);
2049 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
2050 if Error_Posted (Decl) then
2051 Set_Has_Completion (E);
2052 else
2053 Build_And_Analyze_Renamed_Body (Decl, E, After);
2054 end if;
2056 elsif Nkind (Decl) = N_Subprogram_Declaration
2057 and then Present (Corresponding_Body (Decl))
2058 and then
2059 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2060 N_Subprogram_Renaming_Declaration
2061 then
2062 Build_And_Analyze_Renamed_Body
2063 (Decl, Corresponding_Body (Decl), After);
2064 end if;
2065 end if;
2067 -- Freeze the default expressions of entries, entry families, and
2068 -- protected subprograms.
2070 elsif Is_Concurrent_Type (E) then
2071 Item := First_Entity (E);
2072 while Present (Item) loop
2073 if (Is_Entry (Item) or else Is_Subprogram (Item))
2074 and then not Default_Expressions_Processed (Item)
2075 then
2076 Process_Default_Expressions (Item, After);
2077 end if;
2079 Next_Entity (Item);
2080 end loop;
2081 end if;
2083 -- Historical note: We used to create a finalization master for an
2084 -- access type whose designated type is not controlled, but contains
2085 -- private controlled compoments. This form of postprocessing is no
2086 -- longer needed because the finalization master is now created when
2087 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2089 Next_Entity (E);
2090 end loop;
2091 end Freeze_All;
2093 -----------------------
2094 -- Freeze_And_Append --
2095 -----------------------
2097 procedure Freeze_And_Append
2098 (Ent : Entity_Id;
2099 N : Node_Id;
2100 Result : in out List_Id)
2102 L : constant List_Id := Freeze_Entity (Ent, N);
2103 begin
2104 if Is_Non_Empty_List (L) then
2105 if Result = No_List then
2106 Result := L;
2107 else
2108 Append_List (L, Result);
2109 end if;
2110 end if;
2111 end Freeze_And_Append;
2113 -------------------
2114 -- Freeze_Before --
2115 -------------------
2117 procedure Freeze_Before
2118 (N : Node_Id;
2119 T : Entity_Id;
2120 Do_Freeze_Profile : Boolean := True)
2122 -- Freeze T, then insert the generated Freeze nodes before the node N.
2123 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2124 -- indicates whether its profile should be frozen at the same time.
2126 Freeze_Nodes : constant List_Id :=
2127 Freeze_Entity (T, N, Do_Freeze_Profile);
2128 Pack : constant Entity_Id := Scope (T);
2130 begin
2131 if Ekind (T) = E_Function then
2132 Check_Expression_Function (N, T);
2133 end if;
2135 if Is_Non_Empty_List (Freeze_Nodes) then
2137 -- If the entity is a type declared in an inner package, it may be
2138 -- frozen by an outer declaration before the package itself is
2139 -- frozen. Install the package scope to analyze the freeze nodes,
2140 -- which may include generated subprograms such as predicate
2141 -- functions, etc.
2143 if Is_Type (T) and then From_Nested_Package (T) then
2144 Push_Scope (Pack);
2145 Install_Visible_Declarations (Pack);
2146 Install_Private_Declarations (Pack);
2147 Insert_Actions (N, Freeze_Nodes);
2148 End_Package_Scope (Pack);
2150 else
2151 Insert_Actions (N, Freeze_Nodes);
2152 end if;
2153 end if;
2154 end Freeze_Before;
2156 -------------------
2157 -- Freeze_Entity --
2158 -------------------
2160 -- WARNING: This routine manages Ghost regions. Return statements must be
2161 -- replaced by gotos which jump to the end of the routine and restore the
2162 -- Ghost mode.
2164 function Freeze_Entity
2165 (E : Entity_Id;
2166 N : Node_Id;
2167 Do_Freeze_Profile : Boolean := True) return List_Id
2169 Loc : constant Source_Ptr := Sloc (N);
2171 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2172 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
2173 -- Save the Ghost-related attributes to restore on exit
2175 Atype : Entity_Id;
2176 Comp : Entity_Id;
2177 F_Node : Node_Id;
2178 Formal : Entity_Id;
2179 Indx : Node_Id;
2181 Has_Default_Initialization : Boolean := False;
2182 -- This flag gets set to true for a variable with default initialization
2184 Result : List_Id := No_List;
2185 -- List of freezing actions, left at No_List if none
2187 Test_E : Entity_Id := E;
2188 -- This could use a comment ???
2190 procedure Add_To_Result (Fnod : Node_Id);
2191 -- Add freeze action Fnod to list Result
2193 function After_Last_Declaration return Boolean;
2194 -- If Loc is a freeze_entity that appears after the last declaration
2195 -- in the scope, inhibit error messages on late completion.
2197 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2198 -- Check that an Access or Unchecked_Access attribute with a prefix
2199 -- which is the current instance type can only be applied when the type
2200 -- is limited.
2202 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2203 -- Give a warning for pragma Convention with language C or C++ applied
2204 -- to a discriminated record type. This is suppressed for the unchecked
2205 -- union case, since the whole point in this case is interface C. We
2206 -- also do not generate this within instantiations, since we will have
2207 -- generated a message on the template.
2209 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2210 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2211 -- integer literal without an explicit corresponding size clause. The
2212 -- caller has checked that Utype is a modular integer type.
2214 procedure Freeze_Array_Type (Arr : Entity_Id);
2215 -- Freeze array type, including freezing index and component types
2217 procedure Freeze_Object_Declaration (E : Entity_Id);
2218 -- Perform checks and generate freeze node if needed for a constant or
2219 -- variable declared by an object declaration.
2221 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2222 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2223 -- package. Recurse on inner generic packages.
2225 function Freeze_Profile (E : Entity_Id) return Boolean;
2226 -- Freeze formals and return type of subprogram. If some type in the
2227 -- profile is incomplete and we are in an instance, freezing of the
2228 -- entity will take place elsewhere, and the function returns False.
2230 procedure Freeze_Record_Type (Rec : Entity_Id);
2231 -- Freeze record type, including freezing component types, and freezing
2232 -- primitive operations if this is a tagged type.
2234 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2235 -- Determine whether an arbitrary entity is subject to Boolean aspect
2236 -- Import and its value is specified as True.
2238 procedure Inherit_Freeze_Node
2239 (Fnod : Node_Id;
2240 Typ : Entity_Id);
2241 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2242 -- that any attributes attached to Typ's original node are preserved.
2244 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2245 -- If E is an entity for an imported subprogram with pre/post-conditions
2246 -- then this procedure will create a wrapper to ensure that proper run-
2247 -- time checking of the pre/postconditions. See body for details.
2249 -------------------
2250 -- Add_To_Result --
2251 -------------------
2253 procedure Add_To_Result (Fnod : Node_Id) is
2254 begin
2255 -- The Ghost mode of the enclosing context is ignored, while the
2256 -- entity being frozen is living. Insert the freezing action prior
2257 -- to the start of the enclosing ignored Ghost region. As a result
2258 -- the freezeing action will be preserved when the ignored Ghost
2259 -- context is eliminated.
2261 if Saved_GM = Ignore
2262 and then Ghost_Mode /= Ignore
2263 and then Present (Ignored_Ghost_Region)
2264 then
2265 Insert_Action (Ignored_Ghost_Region, Fnod);
2267 -- Otherwise add the freezing action to the result list
2269 else
2270 Append_New_To (Result, Fnod);
2271 end if;
2272 end Add_To_Result;
2274 ----------------------------
2275 -- After_Last_Declaration --
2276 ----------------------------
2278 function After_Last_Declaration return Boolean is
2279 Spec : constant Node_Id := Parent (Current_Scope);
2281 begin
2282 if Nkind (Spec) = N_Package_Specification then
2283 if Present (Private_Declarations (Spec)) then
2284 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2285 elsif Present (Visible_Declarations (Spec)) then
2286 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2287 else
2288 return False;
2289 end if;
2291 else
2292 return False;
2293 end if;
2294 end After_Last_Declaration;
2296 ----------------------------
2297 -- Check_Current_Instance --
2298 ----------------------------
2300 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2302 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2303 -- Determine whether Typ is compatible with the rules for aliased
2304 -- views of types as defined in RM 3.10 in the various dialects.
2306 function Process (N : Node_Id) return Traverse_Result;
2307 -- Process routine to apply check to given node
2309 -----------------------------
2310 -- Is_Aliased_View_Of_Type --
2311 -----------------------------
2313 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2314 Typ_Decl : constant Node_Id := Parent (Typ);
2316 begin
2317 -- Common case
2319 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2320 and then Limited_Present (Type_Definition (Typ_Decl))
2321 then
2322 return True;
2324 -- The following paragraphs describe what a legal aliased view of
2325 -- a type is in the various dialects of Ada.
2327 -- Ada 95
2329 -- The current instance of a limited type, and a formal parameter
2330 -- or generic formal object of a tagged type.
2332 -- Ada 95 limited type
2333 -- * Type with reserved word "limited"
2334 -- * A protected or task type
2335 -- * A composite type with limited component
2337 elsif Ada_Version <= Ada_95 then
2338 return Is_Limited_Type (Typ);
2340 -- Ada 2005
2342 -- The current instance of a limited tagged type, a protected
2343 -- type, a task type, or a type that has the reserved word
2344 -- "limited" in its full definition ... a formal parameter or
2345 -- generic formal object of a tagged type.
2347 -- Ada 2005 limited type
2348 -- * Type with reserved word "limited", "synchronized", "task"
2349 -- or "protected"
2350 -- * A composite type with limited component
2351 -- * A derived type whose parent is a non-interface limited type
2353 elsif Ada_Version = Ada_2005 then
2354 return
2355 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2356 or else
2357 (Is_Derived_Type (Typ)
2358 and then not Is_Interface (Etype (Typ))
2359 and then Is_Limited_Type (Etype (Typ)));
2361 -- Ada 2012 and beyond
2363 -- The current instance of an immutably limited type ... a formal
2364 -- parameter or generic formal object of a tagged type.
2366 -- Ada 2012 limited type
2367 -- * Type with reserved word "limited", "synchronized", "task"
2368 -- or "protected"
2369 -- * A composite type with limited component
2370 -- * A derived type whose parent is a non-interface limited type
2371 -- * An incomplete view
2373 -- Ada 2012 immutably limited type
2374 -- * Explicitly limited record type
2375 -- * Record extension with "limited" present
2376 -- * Non-formal limited private type that is either tagged
2377 -- or has at least one access discriminant with a default
2378 -- expression
2379 -- * Task type, protected type or synchronized interface
2380 -- * Type derived from immutably limited type
2382 else
2383 return
2384 Is_Immutably_Limited_Type (Typ)
2385 or else Is_Incomplete_Type (Typ);
2386 end if;
2387 end Is_Aliased_View_Of_Type;
2389 -------------
2390 -- Process --
2391 -------------
2393 function Process (N : Node_Id) return Traverse_Result is
2394 begin
2395 case Nkind (N) is
2396 when N_Attribute_Reference =>
2397 if Nam_In (Attribute_Name (N), Name_Access,
2398 Name_Unchecked_Access)
2399 and then Is_Entity_Name (Prefix (N))
2400 and then Is_Type (Entity (Prefix (N)))
2401 and then Entity (Prefix (N)) = E
2402 then
2403 if Ada_Version < Ada_2012 then
2404 Error_Msg_N
2405 ("current instance must be a limited type",
2406 Prefix (N));
2407 else
2408 Error_Msg_N
2409 ("current instance must be an immutably limited "
2410 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2411 end if;
2413 return Abandon;
2415 else
2416 return OK;
2417 end if;
2419 when others =>
2420 return OK;
2421 end case;
2422 end Process;
2424 procedure Traverse is new Traverse_Proc (Process);
2426 -- Local variables
2428 Rec_Type : constant Entity_Id :=
2429 Scope (Defining_Identifier (Comp_Decl));
2431 -- Start of processing for Check_Current_Instance
2433 begin
2434 if not Is_Aliased_View_Of_Type (Rec_Type) then
2435 Traverse (Comp_Decl);
2436 end if;
2437 end Check_Current_Instance;
2439 ---------------------------------
2440 -- Check_Suspicious_Convention --
2441 ---------------------------------
2443 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2444 begin
2445 if Has_Discriminants (Rec_Type)
2446 and then Is_Base_Type (Rec_Type)
2447 and then not Is_Unchecked_Union (Rec_Type)
2448 and then (Convention (Rec_Type) = Convention_C
2449 or else
2450 Convention (Rec_Type) = Convention_CPP)
2451 and then Comes_From_Source (Rec_Type)
2452 and then not In_Instance
2453 and then not Has_Warnings_Off (Rec_Type)
2454 then
2455 declare
2456 Cprag : constant Node_Id :=
2457 Get_Rep_Pragma (Rec_Type, Name_Convention);
2458 A2 : Node_Id;
2460 begin
2461 if Present (Cprag) then
2462 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2464 if Convention (Rec_Type) = Convention_C then
2465 Error_Msg_N
2466 ("?x?discriminated record has no direct equivalent in "
2467 & "C", A2);
2468 else
2469 Error_Msg_N
2470 ("?x?discriminated record has no direct equivalent in "
2471 & "C++", A2);
2472 end if;
2474 Error_Msg_NE
2475 ("\?x?use of convention for type& is dubious",
2476 A2, Rec_Type);
2477 end if;
2478 end;
2479 end if;
2480 end Check_Suspicious_Convention;
2482 ------------------------------
2483 -- Check_Suspicious_Modulus --
2484 ------------------------------
2486 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2487 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2489 begin
2490 if not Warn_On_Suspicious_Modulus_Value then
2491 return;
2492 end if;
2494 if Nkind (Decl) = N_Full_Type_Declaration then
2495 declare
2496 Tdef : constant Node_Id := Type_Definition (Decl);
2498 begin
2499 if Nkind (Tdef) = N_Modular_Type_Definition then
2500 declare
2501 Modulus : constant Node_Id :=
2502 Original_Node (Expression (Tdef));
2504 begin
2505 if Nkind (Modulus) = N_Integer_Literal then
2506 declare
2507 Modv : constant Uint := Intval (Modulus);
2508 Sizv : constant Uint := RM_Size (Utype);
2510 begin
2511 -- First case, modulus and size are the same. This
2512 -- happens if you have something like mod 32, with
2513 -- an explicit size of 32, this is for sure a case
2514 -- where the warning is given, since it is seems
2515 -- very unlikely that someone would want e.g. a
2516 -- five bit type stored in 32 bits. It is much
2517 -- more likely they wanted a 32-bit type.
2519 if Modv = Sizv then
2520 null;
2522 -- Second case, the modulus is 32 or 64 and no
2523 -- size clause is present. This is a less clear
2524 -- case for giving the warning, but in the case
2525 -- of 32/64 (5-bit or 6-bit types) these seem rare
2526 -- enough that it is a likely error (and in any
2527 -- case using 2**5 or 2**6 in these cases seems
2528 -- clearer. We don't include 8 or 16 here, simply
2529 -- because in practice 3-bit and 4-bit types are
2530 -- more common and too many false positives if
2531 -- we warn in these cases.
2533 elsif not Has_Size_Clause (Utype)
2534 and then (Modv = Uint_32 or else Modv = Uint_64)
2535 then
2536 null;
2538 -- No warning needed
2540 else
2541 return;
2542 end if;
2544 -- If we fall through, give warning
2546 Error_Msg_Uint_1 := Modv;
2547 Error_Msg_N
2548 ("?M?2 '*'*^' may have been intended here",
2549 Modulus);
2550 end;
2551 end if;
2552 end;
2553 end if;
2554 end;
2555 end if;
2556 end Check_Suspicious_Modulus;
2558 -----------------------
2559 -- Freeze_Array_Type --
2560 -----------------------
2562 procedure Freeze_Array_Type (Arr : Entity_Id) is
2563 FS : constant Entity_Id := First_Subtype (Arr);
2564 Ctyp : constant Entity_Id := Component_Type (Arr);
2565 Clause : Entity_Id;
2567 Non_Standard_Enum : Boolean := False;
2568 -- Set true if any of the index types is an enumeration type with a
2569 -- non-standard representation.
2571 begin
2572 Freeze_And_Append (Ctyp, N, Result);
2574 Indx := First_Index (Arr);
2575 while Present (Indx) loop
2576 Freeze_And_Append (Etype (Indx), N, Result);
2578 if Is_Enumeration_Type (Etype (Indx))
2579 and then Has_Non_Standard_Rep (Etype (Indx))
2580 then
2581 Non_Standard_Enum := True;
2582 end if;
2584 Next_Index (Indx);
2585 end loop;
2587 -- Processing that is done only for base types
2589 if Ekind (Arr) = E_Array_Type then
2591 -- Deal with default setting of reverse storage order
2593 Set_SSO_From_Default (Arr);
2595 -- Propagate flags for component type
2597 if Is_Controlled (Component_Type (Arr))
2598 or else Has_Controlled_Component (Ctyp)
2599 then
2600 Set_Has_Controlled_Component (Arr);
2601 end if;
2603 if Has_Unchecked_Union (Component_Type (Arr)) then
2604 Set_Has_Unchecked_Union (Arr);
2605 end if;
2607 -- The array type requires its own invariant procedure in order to
2608 -- verify the component invariant over all elements. In GNATprove
2609 -- mode, the component invariants are checked by other means. They
2610 -- should not be added to the array type invariant procedure, so
2611 -- that the procedure can be used to check the array type
2612 -- invariants if any.
2614 if Has_Invariants (Component_Type (Arr))
2615 and then not GNATprove_Mode
2616 then
2617 Set_Has_Own_Invariants (Arr);
2619 -- The array type is an implementation base type. Propagate the
2620 -- same property to the first subtype.
2622 if Is_Itype (Arr) then
2623 Set_Has_Own_Invariants (First_Subtype (Arr));
2624 end if;
2625 end if;
2627 -- Warn for pragma Pack overriding foreign convention
2629 if Has_Foreign_Convention (Ctyp)
2630 and then Has_Pragma_Pack (Arr)
2631 then
2632 declare
2633 CN : constant Name_Id :=
2634 Get_Convention_Name (Convention (Ctyp));
2635 PP : constant Node_Id :=
2636 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2637 begin
2638 if Present (PP) then
2639 Error_Msg_Name_1 := CN;
2640 Error_Msg_Sloc := Sloc (Arr);
2641 Error_Msg_N
2642 ("pragma Pack affects convention % components #??", PP);
2643 Error_Msg_Name_1 := CN;
2644 Error_Msg_N
2645 ("\array components may not have % compatible "
2646 & "representation??", PP);
2647 end if;
2648 end;
2649 end if;
2651 -- If packing was requested or if the component size was
2652 -- set explicitly, then see if bit packing is required. This
2653 -- processing is only done for base types, since all of the
2654 -- representation aspects involved are type-related.
2656 -- This is not just an optimization, if we start processing the
2657 -- subtypes, they interfere with the settings on the base type
2658 -- (this is because Is_Packed has a slightly different meaning
2659 -- before and after freezing).
2661 declare
2662 Csiz : Uint;
2663 Esiz : Uint;
2665 begin
2666 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2667 and then Known_Static_RM_Size (Ctyp)
2668 and then not Has_Component_Size_Clause (Arr)
2669 then
2670 Csiz := UI_Max (RM_Size (Ctyp), 1);
2672 elsif Known_Component_Size (Arr) then
2673 Csiz := Component_Size (Arr);
2675 elsif not Known_Static_Esize (Ctyp) then
2676 Csiz := Uint_0;
2678 else
2679 Esiz := Esize (Ctyp);
2681 -- We can set the component size if it is less than 16,
2682 -- rounding it up to the next storage unit size.
2684 if Esiz <= 8 then
2685 Csiz := Uint_8;
2686 elsif Esiz <= 16 then
2687 Csiz := Uint_16;
2688 else
2689 Csiz := Uint_0;
2690 end if;
2692 -- Set component size up to match alignment if it would
2693 -- otherwise be less than the alignment. This deals with
2694 -- cases of types whose alignment exceeds their size (the
2695 -- padded type cases).
2697 if Csiz /= 0 then
2698 declare
2699 A : constant Uint := Alignment_In_Bits (Ctyp);
2700 begin
2701 if Csiz < A then
2702 Csiz := A;
2703 end if;
2704 end;
2705 end if;
2706 end if;
2708 -- Case of component size that may result in bit packing
2710 if 1 <= Csiz and then Csiz <= 64 then
2711 declare
2712 Ent : constant Entity_Id :=
2713 First_Subtype (Arr);
2714 Pack_Pragma : constant Node_Id :=
2715 Get_Rep_Pragma (Ent, Name_Pack);
2716 Comp_Size_C : constant Node_Id :=
2717 Get_Attribute_Definition_Clause
2718 (Ent, Attribute_Component_Size);
2720 begin
2721 -- Warn if we have pack and component size so that the
2722 -- pack is ignored.
2724 -- Note: here we must check for the presence of a
2725 -- component size before checking for a Pack pragma to
2726 -- deal with the case where the array type is a derived
2727 -- type whose parent is currently private.
2729 if Present (Comp_Size_C)
2730 and then Has_Pragma_Pack (Ent)
2731 and then Warn_On_Redundant_Constructs
2732 then
2733 Error_Msg_Sloc := Sloc (Comp_Size_C);
2734 Error_Msg_NE
2735 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2736 Error_Msg_N
2737 ("\?r?explicit component size given#!", Pack_Pragma);
2738 Set_Is_Packed (Base_Type (Ent), False);
2739 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2740 end if;
2742 -- Set component size if not already set by a component
2743 -- size clause.
2745 if not Present (Comp_Size_C) then
2746 Set_Component_Size (Arr, Csiz);
2747 end if;
2749 -- Check for base type of 8, 16, 32 bits, where an
2750 -- unsigned subtype has a length one less than the
2751 -- base type (e.g. Natural subtype of Integer).
2753 -- In such cases, if a component size was not set
2754 -- explicitly, then generate a warning.
2756 if Has_Pragma_Pack (Arr)
2757 and then not Present (Comp_Size_C)
2758 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2759 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2760 then
2761 Error_Msg_Uint_1 := Csiz;
2763 if Present (Pack_Pragma) then
2764 Error_Msg_N
2765 ("??pragma Pack causes component size to be ^!",
2766 Pack_Pragma);
2767 Error_Msg_N
2768 ("\??use Component_Size to set desired value!",
2769 Pack_Pragma);
2770 end if;
2771 end if;
2773 -- Bit packing is never needed for 8, 16, 32, 64
2775 if Addressable (Csiz) then
2777 -- If the Esize of the component is known and equal to
2778 -- the component size then even packing is not needed.
2780 if Known_Static_Esize (Component_Type (Arr))
2781 and then Esize (Component_Type (Arr)) = Csiz
2782 then
2783 -- Here the array was requested to be packed, but
2784 -- the packing request had no effect whatsoever,
2785 -- so flag Is_Packed is reset.
2787 -- Note: semantically this means that we lose track
2788 -- of the fact that a derived type inherited pragma
2789 -- Pack that was non-effective, but that is fine.
2791 -- We regard a Pack pragma as a request to set a
2792 -- representation characteristic, and this request
2793 -- may be ignored.
2795 Set_Is_Packed (Base_Type (Arr), False);
2796 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2797 else
2798 Set_Is_Packed (Base_Type (Arr), True);
2799 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2800 end if;
2802 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2804 -- Bit packing is not needed for multiples of the storage
2805 -- unit if the type is composite because the back end can
2806 -- byte pack composite types.
2808 elsif Csiz mod System_Storage_Unit = 0
2809 and then Is_Composite_Type (Ctyp)
2810 then
2811 Set_Is_Packed (Base_Type (Arr), True);
2812 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2813 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2815 -- In all other cases, bit packing is needed
2817 else
2818 Set_Is_Packed (Base_Type (Arr), True);
2819 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2820 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2821 end if;
2822 end;
2823 end if;
2824 end;
2826 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2827 -- unsuitable packing or explicit component size clause given.
2829 if (Has_Aliased_Components (Arr)
2830 or else Has_Atomic_Components (Arr)
2831 or else Is_Atomic_Or_VFA (Ctyp))
2832 and then
2833 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2834 then
2835 Alias_Atomic_Check : declare
2837 procedure Complain_CS (T : String);
2838 -- Outputs error messages for incorrect CS clause or pragma
2839 -- Pack for aliased or atomic/VFA components (T is "aliased"
2840 -- or "atomic/vfa");
2842 -----------------
2843 -- Complain_CS --
2844 -----------------
2846 procedure Complain_CS (T : String) is
2847 begin
2848 if Has_Component_Size_Clause (Arr) then
2849 Clause :=
2850 Get_Attribute_Definition_Clause
2851 (FS, Attribute_Component_Size);
2853 Error_Msg_N
2854 ("incorrect component size for "
2855 & T & " components", Clause);
2856 Error_Msg_Uint_1 := Esize (Ctyp);
2857 Error_Msg_N
2858 ("\only allowed value is^", Clause);
2860 else
2861 Error_Msg_N
2862 ("cannot pack " & T & " components",
2863 Get_Rep_Pragma (FS, Name_Pack));
2864 end if;
2865 end Complain_CS;
2867 -- Start of processing for Alias_Atomic_Check
2869 begin
2870 -- If object size of component type isn't known, we cannot
2871 -- be sure so we defer to the back end.
2873 if not Known_Static_Esize (Ctyp) then
2874 null;
2876 -- Case where component size has no effect. First check for
2877 -- object size of component type multiple of the storage
2878 -- unit size.
2880 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2882 -- OK in both packing case and component size case if RM
2883 -- size is known and static and same as the object size.
2885 and then
2886 ((Known_Static_RM_Size (Ctyp)
2887 and then Esize (Ctyp) = RM_Size (Ctyp))
2889 -- Or if we have an explicit component size clause and
2890 -- the component size and object size are equal.
2892 or else
2893 (Has_Component_Size_Clause (Arr)
2894 and then Component_Size (Arr) = Esize (Ctyp)))
2895 then
2896 null;
2898 elsif Has_Aliased_Components (Arr) then
2899 Complain_CS ("aliased");
2901 elsif Has_Atomic_Components (Arr)
2902 or else Is_Atomic (Ctyp)
2903 then
2904 Complain_CS ("atomic");
2906 elsif Is_Volatile_Full_Access (Ctyp) then
2907 Complain_CS ("volatile full access");
2908 end if;
2909 end Alias_Atomic_Check;
2910 end if;
2912 -- Check for Independent_Components/Independent with unsuitable
2913 -- packing or explicit component size clause given.
2915 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2916 and then
2917 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2918 then
2919 begin
2920 -- If object size of component type isn't known, we cannot
2921 -- be sure so we defer to the back end.
2923 if not Known_Static_Esize (Ctyp) then
2924 null;
2926 -- Case where component size has no effect. First check for
2927 -- object size of component type multiple of the storage
2928 -- unit size.
2930 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2932 -- OK in both packing case and component size case if RM
2933 -- size is known and multiple of the storage unit size.
2935 and then
2936 ((Known_Static_RM_Size (Ctyp)
2937 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2939 -- Or if we have an explicit component size clause and
2940 -- the component size is larger than the object size.
2942 or else
2943 (Has_Component_Size_Clause (Arr)
2944 and then Component_Size (Arr) >= Esize (Ctyp)))
2945 then
2946 null;
2948 else
2949 if Has_Component_Size_Clause (Arr) then
2950 Clause :=
2951 Get_Attribute_Definition_Clause
2952 (FS, Attribute_Component_Size);
2954 Error_Msg_N
2955 ("incorrect component size for "
2956 & "independent components", Clause);
2957 Error_Msg_Uint_1 := Esize (Ctyp);
2958 Error_Msg_N
2959 ("\minimum allowed is^", Clause);
2961 else
2962 Error_Msg_N
2963 ("cannot pack independent components",
2964 Get_Rep_Pragma (FS, Name_Pack));
2965 end if;
2966 end if;
2967 end;
2968 end if;
2970 -- Warn for case of atomic type
2972 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2974 if Present (Clause)
2975 and then not Addressable (Component_Size (FS))
2976 then
2977 Error_Msg_NE
2978 ("non-atomic components of type& may not be "
2979 & "accessible by separate tasks??", Clause, Arr);
2981 if Has_Component_Size_Clause (Arr) then
2982 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2983 (FS, Attribute_Component_Size));
2984 Error_Msg_N ("\because of component size clause#??", Clause);
2986 elsif Has_Pragma_Pack (Arr) then
2987 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2988 Error_Msg_N ("\because of pragma Pack#??", Clause);
2989 end if;
2990 end if;
2992 -- Check for scalar storage order
2994 declare
2995 Dummy : Boolean;
2996 begin
2997 Check_Component_Storage_Order
2998 (Encl_Type => Arr,
2999 Comp => Empty,
3000 ADC => Get_Attribute_Definition_Clause
3001 (First_Subtype (Arr),
3002 Attribute_Scalar_Storage_Order),
3003 Comp_ADC_Present => Dummy);
3004 end;
3006 -- Processing that is done only for subtypes
3008 else
3009 -- Acquire alignment from base type
3011 if Unknown_Alignment (Arr) then
3012 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
3013 Adjust_Esize_Alignment (Arr);
3014 end if;
3015 end if;
3017 -- Specific checks for bit-packed arrays
3019 if Is_Bit_Packed_Array (Arr) then
3021 -- Check number of elements for bit-packed arrays that come from
3022 -- source and have compile time known ranges. The bit-packed
3023 -- arrays circuitry does not support arrays with more than
3024 -- Integer'Last + 1 elements, and when this restriction is
3025 -- violated, causes incorrect data access.
3027 -- For the case where this is not compile time known, a run-time
3028 -- check should be generated???
3030 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
3031 declare
3032 Elmts : Uint;
3033 Index : Node_Id;
3034 Ilen : Node_Id;
3035 Ityp : Entity_Id;
3037 begin
3038 Elmts := Uint_1;
3039 Index := First_Index (Arr);
3040 while Present (Index) loop
3041 Ityp := Etype (Index);
3043 -- Never generate an error if any index is of a generic
3044 -- type. We will check this in instances.
3046 if Is_Generic_Type (Ityp) then
3047 Elmts := Uint_0;
3048 exit;
3049 end if;
3051 Ilen :=
3052 Make_Attribute_Reference (Loc,
3053 Prefix => New_Occurrence_Of (Ityp, Loc),
3054 Attribute_Name => Name_Range_Length);
3055 Analyze_And_Resolve (Ilen);
3057 -- No attempt is made to check number of elements if not
3058 -- compile time known.
3060 if Nkind (Ilen) /= N_Integer_Literal then
3061 Elmts := Uint_0;
3062 exit;
3063 end if;
3065 Elmts := Elmts * Intval (Ilen);
3066 Next_Index (Index);
3067 end loop;
3069 if Elmts > Intval (High_Bound
3070 (Scalar_Range (Standard_Integer))) + 1
3071 then
3072 Error_Msg_N
3073 ("bit packed array type may not have "
3074 & "more than Integer''Last+1 elements", Arr);
3075 end if;
3076 end;
3077 end if;
3079 -- Check size
3081 if Known_RM_Size (Arr) then
3082 declare
3083 SizC : constant Node_Id := Size_Clause (Arr);
3084 Discard : Boolean;
3086 begin
3087 -- It is not clear if it is possible to have no size clause
3088 -- at this stage, but it is not worth worrying about. Post
3089 -- error on the entity name in the size clause if present,
3090 -- else on the type entity itself.
3092 if Present (SizC) then
3093 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
3094 else
3095 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
3096 end if;
3097 end;
3098 end if;
3099 end if;
3101 -- If any of the index types was an enumeration type with a non-
3102 -- standard rep clause, then we indicate that the array type is
3103 -- always packed (even if it is not bit-packed).
3105 if Non_Standard_Enum then
3106 Set_Has_Non_Standard_Rep (Base_Type (Arr));
3107 Set_Is_Packed (Base_Type (Arr));
3108 end if;
3110 Set_Component_Alignment_If_Not_Set (Arr);
3112 -- If the array is packed and bit-packed or packed to eliminate holes
3113 -- in the non-contiguous enumeration index types, we must create the
3114 -- packed array type to be used to actually implement the type. This
3115 -- is only needed for real array types (not for string literal types,
3116 -- since they are present only for the front end).
3118 if Is_Packed (Arr)
3119 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
3120 and then Ekind (Arr) /= E_String_Literal_Subtype
3121 then
3122 Create_Packed_Array_Impl_Type (Arr);
3123 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
3125 -- Make sure that we have the necessary routines to implement the
3126 -- packing, and complain now if not. Note that we only test this
3127 -- for constrained array types.
3129 if Is_Constrained (Arr)
3130 and then Is_Bit_Packed_Array (Arr)
3131 and then Present (Packed_Array_Impl_Type (Arr))
3132 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
3133 then
3134 declare
3135 CS : constant Uint := Component_Size (Arr);
3136 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
3138 begin
3139 if RE /= RE_Null
3140 and then not RTE_Available (RE)
3141 then
3142 Error_Msg_CRT
3143 ("packing of " & UI_Image (CS) & "-bit components",
3144 First_Subtype (Etype (Arr)));
3146 -- Cancel the packing
3148 Set_Is_Packed (Base_Type (Arr), False);
3149 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3150 Set_Packed_Array_Impl_Type (Arr, Empty);
3151 goto Skip_Packed;
3152 end if;
3153 end;
3154 end if;
3156 -- Size information of packed array type is copied to the array
3157 -- type, since this is really the representation. But do not
3158 -- override explicit existing size values. If the ancestor subtype
3159 -- is constrained the Packed_Array_Impl_Type will be inherited
3160 -- from it, but the size may have been provided already, and
3161 -- must not be overridden either.
3163 if not Has_Size_Clause (Arr)
3164 and then
3165 (No (Ancestor_Subtype (Arr))
3166 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3167 then
3168 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3169 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
3170 end if;
3172 if not Has_Alignment_Clause (Arr) then
3173 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
3174 end if;
3175 end if;
3177 <<Skip_Packed>>
3179 -- For non-packed arrays set the alignment of the array to the
3180 -- alignment of the component type if it is unknown. Skip this
3181 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3183 if not Is_Packed (Arr)
3184 and then Unknown_Alignment (Arr)
3185 and then Known_Alignment (Ctyp)
3186 and then Known_Static_Component_Size (Arr)
3187 and then Known_Static_Esize (Ctyp)
3188 and then Esize (Ctyp) = Component_Size (Arr)
3189 and then not Is_Atomic_Or_VFA (Arr)
3190 then
3191 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
3192 end if;
3194 -- A Ghost type cannot have a component of protected or task type
3195 -- (SPARK RM 6.9(19)).
3197 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3198 Error_Msg_N
3199 ("ghost array type & cannot have concurrent component type",
3200 Arr);
3201 end if;
3202 end Freeze_Array_Type;
3204 -------------------------------
3205 -- Freeze_Object_Declaration --
3206 -------------------------------
3208 procedure Freeze_Object_Declaration (E : Entity_Id) is
3209 procedure Check_Large_Modular_Array (Typ : Entity_Id);
3210 -- Check that the size of array type Typ can be computed without
3211 -- overflow, and generates a Storage_Error otherwise. This is only
3212 -- relevant for array types whose index is a (mod 2**64) type, where
3213 -- wrap-around arithmetic might yield a meaningless value for the
3214 -- length of the array, or its corresponding attribute.
3216 -------------------------------
3217 -- Check_Large_Modular_Array --
3218 -------------------------------
3220 procedure Check_Large_Modular_Array (Typ : Entity_Id) is
3221 Obj_Loc : constant Source_Ptr := Sloc (E);
3222 Idx_Typ : Entity_Id;
3224 begin
3225 -- Nothing to do when expansion is disabled because this routine
3226 -- generates a runtime check.
3228 if not Expander_Active then
3229 return;
3231 -- Nothing to do for String literal subtypes because their index
3232 -- cannot be a modular type.
3234 elsif Ekind (Typ) = E_String_Literal_Subtype then
3235 return;
3237 -- Nothing to do for an imported object because the object will
3238 -- be created on the exporting side.
3240 elsif Is_Imported (E) then
3241 return;
3243 -- Nothing to do for unconstrained array types. This case arises
3244 -- when the object declaration is illegal.
3246 elsif not Is_Constrained (Typ) then
3247 return;
3248 end if;
3250 Idx_Typ := Etype (First_Index (Typ));
3252 -- To prevent arithmetic overflow with large values, we raise
3253 -- Storage_Error under the following guard:
3255 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
3257 -- This takes care of the boundary case, but it is preferable to
3258 -- use a smaller limit, because even on 64-bit architectures an
3259 -- array of more than 2 ** 30 bytes is likely to raise
3260 -- Storage_Error.
3262 if Is_Modular_Integer_Type (Idx_Typ)
3263 and then RM_Size (Idx_Typ) = RM_Size (Standard_Long_Long_Integer)
3264 then
3265 Insert_Action (Declaration_Node (E),
3266 Make_Raise_Storage_Error (Obj_Loc,
3267 Condition =>
3268 Make_Op_Ge (Obj_Loc,
3269 Left_Opnd =>
3270 Make_Op_Subtract (Obj_Loc,
3271 Left_Opnd =>
3272 Make_Op_Divide (Obj_Loc,
3273 Left_Opnd =>
3274 Make_Attribute_Reference (Obj_Loc,
3275 Prefix =>
3276 New_Occurrence_Of (Typ, Obj_Loc),
3277 Attribute_Name => Name_Last),
3278 Right_Opnd =>
3279 Make_Integer_Literal (Obj_Loc, Uint_2)),
3280 Right_Opnd =>
3281 Make_Op_Divide (Obj_Loc,
3282 Left_Opnd =>
3283 Make_Attribute_Reference (Obj_Loc,
3284 Prefix =>
3285 New_Occurrence_Of (Typ, Obj_Loc),
3286 Attribute_Name => Name_First),
3287 Right_Opnd =>
3288 Make_Integer_Literal (Obj_Loc, Uint_2))),
3289 Right_Opnd =>
3290 Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
3291 Reason => SE_Object_Too_Large));
3292 end if;
3293 end Check_Large_Modular_Array;
3295 -- Local variables
3297 Typ : constant Entity_Id := Etype (E);
3298 Def : Node_Id;
3300 -- Start of processing for Freeze_Object_Declaration
3302 begin
3303 -- Abstract type allowed only for C++ imported variables or constants
3305 -- Note: we inhibit this check for objects that do not come from
3306 -- source because there is at least one case (the expansion of
3307 -- x'Class'Input where x is abstract) where we legitimately
3308 -- generate an abstract object.
3310 if Is_Abstract_Type (Typ)
3311 and then Comes_From_Source (Parent (E))
3312 and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
3313 then
3314 Def := Object_Definition (Parent (E));
3316 Error_Msg_N ("type of object cannot be abstract", Def);
3318 if Is_CPP_Class (Etype (E)) then
3319 Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
3321 elsif Present (Expression (Parent (E))) then
3322 Error_Msg_N -- CODEFIX
3323 ("\maybe a class-wide type was meant", Def);
3324 end if;
3325 end if;
3327 -- For object created by object declaration, perform required
3328 -- categorization (preelaborate and pure) checks. Defer these
3329 -- checks to freeze time since pragma Import inhibits default
3330 -- initialization and thus pragma Import affects these checks.
3332 Validate_Object_Declaration (Declaration_Node (E));
3334 -- If there is an address clause, check that it is valid and if need
3335 -- be move initialization to the freeze node.
3337 Check_Address_Clause (E);
3339 -- Similar processing is needed for aspects that may affect object
3340 -- layout, like Alignment, if there is an initialization expression.
3341 -- We don't do this if there is a pragma Linker_Section, because it
3342 -- would prevent the back end from statically initializing the
3343 -- object; we don't want elaboration code in that case.
3345 if Has_Delayed_Aspects (E)
3346 and then Expander_Active
3347 and then Is_Array_Type (Typ)
3348 and then Present (Expression (Parent (E)))
3349 and then No (Linker_Section_Pragma (E))
3350 then
3351 declare
3352 Decl : constant Node_Id := Parent (E);
3353 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3355 begin
3356 -- Capture initialization value at point of declaration, and
3357 -- make explicit assignment legal, because object may be a
3358 -- constant.
3360 Remove_Side_Effects (Expression (Decl));
3361 Set_Assignment_OK (Lhs);
3363 -- Move initialization to freeze actions
3365 Append_Freeze_Action (E,
3366 Make_Assignment_Statement (Loc,
3367 Name => Lhs,
3368 Expression => Expression (Decl)));
3370 Set_No_Initialization (Decl);
3371 -- Set_Is_Frozen (E, False);
3372 end;
3373 end if;
3375 -- Reset Is_True_Constant for non-constant aliased object. We
3376 -- consider that the fact that a non-constant object is aliased may
3377 -- indicate that some funny business is going on, e.g. an aliased
3378 -- object is passed by reference to a procedure which captures the
3379 -- address of the object, which is later used to assign a new value,
3380 -- even though the compiler thinks that it is not modified. Such
3381 -- code is highly dubious, but we choose to make it "work" for
3382 -- non-constant aliased objects.
3384 -- Note that we used to do this for all aliased objects, whether or
3385 -- not constant, but this caused anomalies down the line because we
3386 -- ended up with static objects that were not Is_True_Constant. Not
3387 -- resetting Is_True_Constant for (aliased) constant objects ensures
3388 -- that this anomaly never occurs.
3390 -- However, we don't do that for internal entities. We figure that if
3391 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3392 -- a dispatch table entry, then we mean it.
3394 if Ekind (E) /= E_Constant
3395 and then (Is_Aliased (E) or else Is_Aliased (Typ))
3396 and then not Is_Internal_Name (Chars (E))
3397 then
3398 Set_Is_True_Constant (E, False);
3399 end if;
3401 -- If the object needs any kind of default initialization, an error
3402 -- must be issued if No_Default_Initialization applies. The check
3403 -- doesn't apply to imported objects, which are not ever default
3404 -- initialized, and is why the check is deferred until freezing, at
3405 -- which point we know if Import applies. Deferred constants are also
3406 -- exempted from this test because their completion is explicit, or
3407 -- through an import pragma.
3409 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3410 null;
3412 elsif Comes_From_Source (E)
3413 and then not Is_Imported (E)
3414 and then not Has_Init_Expression (Declaration_Node (E))
3415 and then
3416 ((Has_Non_Null_Base_Init_Proc (Typ)
3417 and then not No_Initialization (Declaration_Node (E))
3418 and then not Initialization_Suppressed (Typ))
3419 or else
3420 (Needs_Simple_Initialization (Typ)
3421 and then not Is_Internal (E)))
3422 then
3423 Has_Default_Initialization := True;
3424 Check_Restriction
3425 (No_Default_Initialization, Declaration_Node (E));
3426 end if;
3428 -- Check that a Thread_Local_Storage variable does not have default
3429 -- initialization, and any explicit initialization must either be the
3430 -- null constant or a static constant.
3432 if Has_Pragma_Thread_Local_Storage (E) then
3433 declare
3434 Decl : constant Node_Id := Declaration_Node (E);
3435 begin
3436 if Has_Default_Initialization
3437 or else
3438 (Has_Init_Expression (Decl)
3439 and then
3440 (No (Expression (Decl))
3441 or else not
3442 (Is_OK_Static_Expression (Expression (Decl))
3443 or else Nkind (Expression (Decl)) = N_Null)))
3444 then
3445 if Nkind (Expression (Decl)) = N_Aggregate
3446 and then Compile_Time_Known_Aggregate (Expression (Decl))
3447 then
3448 null;
3449 else
3450 Error_Msg_NE
3451 ("Thread_Local_Storage variable& is improperly "
3452 & "initialized", Decl, E);
3453 Error_Msg_NE
3454 ("\only allowed initialization is explicit NULL, "
3455 & "static expression or static aggregate", Decl, E);
3456 end if;
3457 end if;
3458 end;
3459 end if;
3461 -- For imported objects, set Is_Public unless there is also an
3462 -- address clause, which means that there is no external symbol
3463 -- needed for the Import (Is_Public may still be set for other
3464 -- unrelated reasons). Note that we delayed this processing
3465 -- till freeze time so that we can be sure not to set the flag
3466 -- if there is an address clause. If there is such a clause,
3467 -- then the only purpose of the Import pragma is to suppress
3468 -- implicit initialization.
3470 if Is_Imported (E) and then No (Address_Clause (E)) then
3471 Set_Is_Public (E);
3472 end if;
3474 -- For source objects that are not Imported and are library level, if
3475 -- no linker section pragma was given inherit the appropriate linker
3476 -- section from the corresponding type.
3478 if Comes_From_Source (E)
3479 and then not Is_Imported (E)
3480 and then Is_Library_Level_Entity (E)
3481 and then No (Linker_Section_Pragma (E))
3482 then
3483 Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
3484 end if;
3486 -- For convention C objects of an enumeration type, warn if the size
3487 -- is not integer size and no explicit size given. Skip warning for
3488 -- Boolean and Character, and assume programmer expects 8-bit sizes
3489 -- for these cases.
3491 if (Convention (E) = Convention_C
3492 or else
3493 Convention (E) = Convention_CPP)
3494 and then Is_Enumeration_Type (Typ)
3495 and then not Is_Character_Type (Typ)
3496 and then not Is_Boolean_Type (Typ)
3497 and then Esize (Typ) < Standard_Integer_Size
3498 and then not Has_Size_Clause (E)
3499 then
3500 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3501 Error_Msg_N
3502 ("??convention C enumeration object has size less than ^", E);
3503 Error_Msg_N ("\??use explicit size clause to set size", E);
3504 end if;
3506 if Is_Array_Type (Typ) then
3507 Check_Large_Modular_Array (Typ);
3508 end if;
3509 end Freeze_Object_Declaration;
3511 -----------------------------
3512 -- Freeze_Generic_Entities --
3513 -----------------------------
3515 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3516 E : Entity_Id;
3517 F : Node_Id;
3518 Flist : List_Id;
3520 begin
3521 Flist := New_List;
3522 E := First_Entity (Pack);
3523 while Present (E) loop
3524 if Is_Type (E) and then not Is_Generic_Type (E) then
3525 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3526 Set_Entity (F, E);
3527 Append_To (Flist, F);
3529 elsif Ekind (E) = E_Generic_Package then
3530 Append_List_To (Flist, Freeze_Generic_Entities (E));
3531 end if;
3533 Next_Entity (E);
3534 end loop;
3536 return Flist;
3537 end Freeze_Generic_Entities;
3539 --------------------
3540 -- Freeze_Profile --
3541 --------------------
3543 function Freeze_Profile (E : Entity_Id) return Boolean is
3544 F_Type : Entity_Id;
3545 R_Type : Entity_Id;
3546 Warn_Node : Node_Id;
3548 begin
3549 -- Loop through formals
3551 Formal := First_Formal (E);
3552 while Present (Formal) loop
3553 F_Type := Etype (Formal);
3555 -- AI05-0151: incomplete types can appear in a profile. By the
3556 -- time the entity is frozen, the full view must be available,
3557 -- unless it is a limited view.
3559 if Is_Incomplete_Type (F_Type)
3560 and then Present (Full_View (F_Type))
3561 and then not From_Limited_With (F_Type)
3562 then
3563 F_Type := Full_View (F_Type);
3564 Set_Etype (Formal, F_Type);
3565 end if;
3567 if not From_Limited_With (F_Type) then
3568 Freeze_And_Append (F_Type, N, Result);
3569 end if;
3571 if Is_Private_Type (F_Type)
3572 and then Is_Private_Type (Base_Type (F_Type))
3573 and then No (Full_View (Base_Type (F_Type)))
3574 and then not Is_Generic_Type (F_Type)
3575 and then not Is_Derived_Type (F_Type)
3576 then
3577 -- If the type of a formal is incomplete, subprogram is being
3578 -- frozen prematurely. Within an instance (but not within a
3579 -- wrapper package) this is an artifact of our need to regard
3580 -- the end of an instantiation as a freeze point. Otherwise it
3581 -- is a definite error.
3583 if In_Instance then
3584 Set_Is_Frozen (E, False);
3585 Result := No_List;
3586 return False;
3588 elsif not After_Last_Declaration
3589 and then not Freezing_Library_Level_Tagged_Type
3590 then
3591 Error_Msg_Node_1 := F_Type;
3592 Error_Msg
3593 ("type & must be fully defined before this point", Loc);
3594 end if;
3595 end if;
3597 -- Check suspicious parameter for C function. These tests apply
3598 -- only to exported/imported subprograms.
3600 if Warn_On_Export_Import
3601 and then Comes_From_Source (E)
3602 and then (Convention (E) = Convention_C
3603 or else
3604 Convention (E) = Convention_CPP)
3605 and then (Is_Imported (E) or else Is_Exported (E))
3606 and then Convention (E) /= Convention (Formal)
3607 and then not Has_Warnings_Off (E)
3608 and then not Has_Warnings_Off (F_Type)
3609 and then not Has_Warnings_Off (Formal)
3610 then
3611 -- Qualify mention of formals with subprogram name
3613 Error_Msg_Qual_Level := 1;
3615 -- Check suspicious use of fat C pointer, but do not emit
3616 -- a warning on an access to subprogram when unnesting is
3617 -- active.
3619 if Is_Access_Type (F_Type)
3620 and then Esize (F_Type) > Ttypes.System_Address_Size
3621 and then (not Unnest_Subprogram_Mode
3622 or else not Is_Access_Subprogram_Type (F_Type))
3623 then
3624 Error_Msg_N
3625 ("?x?type of & does not correspond to C pointer!", Formal);
3627 -- Check suspicious return of boolean
3629 elsif Root_Type (F_Type) = Standard_Boolean
3630 and then Convention (F_Type) = Convention_Ada
3631 and then not Has_Warnings_Off (F_Type)
3632 and then not Has_Size_Clause (F_Type)
3633 then
3634 Error_Msg_N
3635 ("& is an 8-bit Ada Boolean?x?", Formal);
3636 Error_Msg_N
3637 ("\use appropriate corresponding type in C "
3638 & "(e.g. char)?x?", Formal);
3640 -- Check suspicious tagged type
3642 elsif (Is_Tagged_Type (F_Type)
3643 or else
3644 (Is_Access_Type (F_Type)
3645 and then Is_Tagged_Type (Designated_Type (F_Type))))
3646 and then Convention (E) = Convention_C
3647 then
3648 Error_Msg_N
3649 ("?x?& involves a tagged type which does not "
3650 & "correspond to any C type!", Formal);
3652 -- Check wrong convention subprogram pointer
3654 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3655 and then not Has_Foreign_Convention (F_Type)
3656 then
3657 Error_Msg_N
3658 ("?x?subprogram pointer & should "
3659 & "have foreign convention!", Formal);
3660 Error_Msg_Sloc := Sloc (F_Type);
3661 Error_Msg_NE
3662 ("\?x?add Convention pragma to declaration of &#",
3663 Formal, F_Type);
3664 end if;
3666 -- Turn off name qualification after message output
3668 Error_Msg_Qual_Level := 0;
3669 end if;
3671 -- Check for unconstrained array in exported foreign convention
3672 -- case.
3674 if Has_Foreign_Convention (E)
3675 and then not Is_Imported (E)
3676 and then Is_Array_Type (F_Type)
3677 and then not Is_Constrained (F_Type)
3678 and then Warn_On_Export_Import
3679 then
3680 Error_Msg_Qual_Level := 1;
3682 -- If this is an inherited operation, place the warning on
3683 -- the derived type declaration, rather than on the original
3684 -- subprogram.
3686 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3687 then
3688 Warn_Node := Parent (E);
3690 if Formal = First_Formal (E) then
3691 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3692 end if;
3693 else
3694 Warn_Node := Formal;
3695 end if;
3697 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3698 Warn_Node, Formal);
3699 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3700 Warn_Node, Formal);
3701 Error_Msg_Qual_Level := 0;
3702 end if;
3704 if not From_Limited_With (F_Type) then
3705 if Is_Access_Type (F_Type) then
3706 F_Type := Designated_Type (F_Type);
3707 end if;
3709 -- If the formal is an anonymous_access_to_subprogram
3710 -- freeze the subprogram type as well, to prevent
3711 -- scope anomalies in gigi, because there is no other
3712 -- clear point at which it could be frozen.
3714 if Is_Itype (Etype (Formal))
3715 and then Ekind (F_Type) = E_Subprogram_Type
3716 then
3717 Freeze_And_Append (F_Type, N, Result);
3718 end if;
3719 end if;
3721 Next_Formal (Formal);
3722 end loop;
3724 -- Case of function: similar checks on return type
3726 if Ekind (E) = E_Function then
3728 -- Freeze return type
3730 R_Type := Etype (E);
3732 -- AI05-0151: the return type may have been incomplete at the
3733 -- point of declaration. Replace it with the full view, unless the
3734 -- current type is a limited view. In that case the full view is
3735 -- in a different unit, and gigi finds the non-limited view after
3736 -- the other unit is elaborated.
3738 if Ekind (R_Type) = E_Incomplete_Type
3739 and then Present (Full_View (R_Type))
3740 and then not From_Limited_With (R_Type)
3741 then
3742 R_Type := Full_View (R_Type);
3743 Set_Etype (E, R_Type);
3744 end if;
3746 Freeze_And_Append (R_Type, N, Result);
3748 -- Check suspicious return type for C function
3750 if Warn_On_Export_Import
3751 and then (Convention (E) = Convention_C
3752 or else
3753 Convention (E) = Convention_CPP)
3754 and then (Is_Imported (E) or else Is_Exported (E))
3755 then
3756 -- Check suspicious return of fat C pointer
3758 if Is_Access_Type (R_Type)
3759 and then Esize (R_Type) > Ttypes.System_Address_Size
3760 and then not Has_Warnings_Off (E)
3761 and then not Has_Warnings_Off (R_Type)
3762 then
3763 Error_Msg_N
3764 ("?x?return type of& does not correspond to C pointer!",
3767 -- Check suspicious return of boolean
3769 elsif Root_Type (R_Type) = Standard_Boolean
3770 and then Convention (R_Type) = Convention_Ada
3771 and then not Has_Warnings_Off (E)
3772 and then not Has_Warnings_Off (R_Type)
3773 and then not Has_Size_Clause (R_Type)
3774 then
3775 declare
3776 N : constant Node_Id :=
3777 Result_Definition (Declaration_Node (E));
3778 begin
3779 Error_Msg_NE
3780 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3781 Error_Msg_NE
3782 ("\use appropriate corresponding type in C "
3783 & "(e.g. char)?x?", N, E);
3784 end;
3786 -- Check suspicious return tagged type
3788 elsif (Is_Tagged_Type (R_Type)
3789 or else (Is_Access_Type (R_Type)
3790 and then
3791 Is_Tagged_Type
3792 (Designated_Type (R_Type))))
3793 and then Convention (E) = Convention_C
3794 and then not Has_Warnings_Off (E)
3795 and then not Has_Warnings_Off (R_Type)
3796 then
3797 Error_Msg_N ("?x?return type of & does not "
3798 & "correspond to C type!", E);
3800 -- Check return of wrong convention subprogram pointer
3802 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3803 and then not Has_Foreign_Convention (R_Type)
3804 and then not Has_Warnings_Off (E)
3805 and then not Has_Warnings_Off (R_Type)
3806 then
3807 Error_Msg_N ("?x?& should return a foreign "
3808 & "convention subprogram pointer", E);
3809 Error_Msg_Sloc := Sloc (R_Type);
3810 Error_Msg_NE
3811 ("\?x?add Convention pragma to declaration of& #",
3812 E, R_Type);
3813 end if;
3814 end if;
3816 -- Give warning for suspicious return of a result of an
3817 -- unconstrained array type in a foreign convention function.
3819 if Has_Foreign_Convention (E)
3821 -- We are looking for a return of unconstrained array
3823 and then Is_Array_Type (R_Type)
3824 and then not Is_Constrained (R_Type)
3826 -- Exclude imported routines, the warning does not belong on
3827 -- the import, but rather on the routine definition.
3829 and then not Is_Imported (E)
3831 -- Check that general warning is enabled, and that it is not
3832 -- suppressed for this particular case.
3834 and then Warn_On_Export_Import
3835 and then not Has_Warnings_Off (E)
3836 and then not Has_Warnings_Off (R_Type)
3837 then
3838 Error_Msg_N
3839 ("?x?foreign convention function& should not return "
3840 & "unconstrained array!", E);
3841 end if;
3842 end if;
3844 -- Check suspicious use of Import in pure unit (cases where the RM
3845 -- allows calls to be omitted).
3847 if Is_Imported (E)
3849 -- It might be suspicious if the compilation unit has the Pure
3850 -- aspect/pragma.
3852 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3854 -- The RM allows omission of calls only in the case of
3855 -- library-level subprograms (see RM-10.2.1(18)).
3857 and then Is_Library_Level_Entity (E)
3859 -- Ignore internally generated entity. This happens in some cases
3860 -- of subprograms in specs, where we generate an implied body.
3862 and then Comes_From_Source (Import_Pragma (E))
3864 -- Assume run-time knows what it is doing
3866 and then not GNAT_Mode
3868 -- Assume explicit Pure_Function means import is pure
3870 and then not Has_Pragma_Pure_Function (E)
3872 -- Don't need warning in relaxed semantics mode
3874 and then not Relaxed_RM_Semantics
3876 -- Assume convention Intrinsic is OK, since this is specialized.
3877 -- This deals with the DEC unit current_exception.ads
3879 and then Convention (E) /= Convention_Intrinsic
3881 -- Assume that ASM interface knows what it is doing. This deals
3882 -- with e.g. unsigned.ads in the AAMP back end.
3884 and then Convention (E) /= Convention_Assembler
3885 then
3886 Error_Msg_N
3887 ("pragma Import in Pure unit??", Import_Pragma (E));
3888 Error_Msg_NE
3889 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3890 Import_Pragma (E), E);
3891 end if;
3893 return True;
3894 end Freeze_Profile;
3896 ------------------------
3897 -- Freeze_Record_Type --
3898 ------------------------
3900 procedure Freeze_Record_Type (Rec : Entity_Id) is
3901 ADC : Node_Id;
3902 Comp : Entity_Id;
3903 IR : Node_Id;
3904 Prev : Entity_Id;
3906 Junk : Boolean;
3907 pragma Warnings (Off, Junk);
3909 Aliased_Component : Boolean := False;
3910 -- Set True if we find at least one component which is aliased. This
3911 -- is used to prevent Implicit_Packing of the record, since packing
3912 -- cannot modify the size of alignment of an aliased component.
3914 All_Elem_Components : Boolean := True;
3915 -- True if all components are of a type whose underlying type is
3916 -- elementary.
3918 All_Sized_Components : Boolean := True;
3919 -- True if all components have a known RM_Size
3921 All_Storage_Unit_Components : Boolean := True;
3922 -- True if all components have an RM_Size that is a multiple of the
3923 -- storage unit.
3925 Elem_Component_Total_Esize : Uint := Uint_0;
3926 -- Accumulates total Esize values of all elementary components. Used
3927 -- for processing of Implicit_Packing.
3929 Placed_Component : Boolean := False;
3930 -- Set True if we find at least one component with a component
3931 -- clause (used to warn about useless Bit_Order pragmas, and also
3932 -- to detect cases where Implicit_Packing may have an effect).
3934 Rec_Pushed : Boolean := False;
3935 -- Set True if the record type scope Rec has been pushed on the scope
3936 -- stack. Needed for the analysis of delayed aspects specified to the
3937 -- components of Rec.
3939 Sized_Component_Total_RM_Size : Uint := Uint_0;
3940 -- Accumulates total RM_Size values of all sized components. Used
3941 -- for processing of Implicit_Packing.
3943 Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
3944 -- Accumulates total RM_Size values of all sized components, rounded
3945 -- individually to a multiple of the storage unit.
3947 SSO_ADC : Node_Id;
3948 -- Scalar_Storage_Order attribute definition clause for the record
3950 SSO_ADC_Component : Boolean := False;
3951 -- Set True if we find at least one component whose type has a
3952 -- Scalar_Storage_Order attribute definition clause.
3954 Unplaced_Component : Boolean := False;
3955 -- Set True if we find at least one component with no component
3956 -- clause (used to warn about useless Pack pragmas).
3958 function Check_Allocator (N : Node_Id) return Node_Id;
3959 -- If N is an allocator, possibly wrapped in one or more level of
3960 -- qualified expression(s), return the inner allocator node, else
3961 -- return Empty.
3963 procedure Check_Itype (Typ : Entity_Id);
3964 -- If the component subtype is an access to a constrained subtype of
3965 -- an already frozen type, make the subtype frozen as well. It might
3966 -- otherwise be frozen in the wrong scope, and a freeze node on
3967 -- subtype has no effect. Similarly, if the component subtype is a
3968 -- regular (not protected) access to subprogram, set the anonymous
3969 -- subprogram type to frozen as well, to prevent an out-of-scope
3970 -- freeze node at some eventual point of call. Protected operations
3971 -- are handled elsewhere.
3973 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3974 -- Make sure that all types mentioned in Discrete_Choices of the
3975 -- variants referenceed by the Variant_Part VP are frozen. This is
3976 -- a recursive routine to deal with nested variants.
3978 ---------------------
3979 -- Check_Allocator --
3980 ---------------------
3982 function Check_Allocator (N : Node_Id) return Node_Id is
3983 Inner : Node_Id;
3984 begin
3985 Inner := N;
3986 loop
3987 if Nkind (Inner) = N_Allocator then
3988 return Inner;
3989 elsif Nkind (Inner) = N_Qualified_Expression then
3990 Inner := Expression (Inner);
3991 else
3992 return Empty;
3993 end if;
3994 end loop;
3995 end Check_Allocator;
3997 -----------------
3998 -- Check_Itype --
3999 -----------------
4001 procedure Check_Itype (Typ : Entity_Id) is
4002 Desig : constant Entity_Id := Designated_Type (Typ);
4004 begin
4005 if not Is_Frozen (Desig)
4006 and then Is_Frozen (Base_Type (Desig))
4007 then
4008 Set_Is_Frozen (Desig);
4010 -- In addition, add an Itype_Reference to ensure that the
4011 -- access subtype is elaborated early enough. This cannot be
4012 -- done if the subtype may depend on discriminants.
4014 if Ekind (Comp) = E_Component
4015 and then Is_Itype (Etype (Comp))
4016 and then not Has_Discriminants (Rec)
4017 then
4018 IR := Make_Itype_Reference (Sloc (Comp));
4019 Set_Itype (IR, Desig);
4020 Add_To_Result (IR);
4021 end if;
4023 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
4024 and then Convention (Desig) /= Convention_Protected
4025 then
4026 Set_Is_Frozen (Desig);
4027 end if;
4028 end Check_Itype;
4030 ------------------------------------
4031 -- Freeze_Choices_In_Variant_Part --
4032 ------------------------------------
4034 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
4035 pragma Assert (Nkind (VP) = N_Variant_Part);
4037 Variant : Node_Id;
4038 Choice : Node_Id;
4039 CL : Node_Id;
4041 begin
4042 -- Loop through variants
4044 Variant := First_Non_Pragma (Variants (VP));
4045 while Present (Variant) loop
4047 -- Loop through choices, checking that all types are frozen
4049 Choice := First_Non_Pragma (Discrete_Choices (Variant));
4050 while Present (Choice) loop
4051 if Nkind (Choice) in N_Has_Etype
4052 and then Present (Etype (Choice))
4053 then
4054 Freeze_And_Append (Etype (Choice), N, Result);
4055 end if;
4057 Next_Non_Pragma (Choice);
4058 end loop;
4060 -- Check for nested variant part to process
4062 CL := Component_List (Variant);
4064 if not Null_Present (CL) then
4065 if Present (Variant_Part (CL)) then
4066 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
4067 end if;
4068 end if;
4070 Next_Non_Pragma (Variant);
4071 end loop;
4072 end Freeze_Choices_In_Variant_Part;
4074 -- Start of processing for Freeze_Record_Type
4076 begin
4077 -- Deal with delayed aspect specifications for components. The
4078 -- analysis of the aspect is required to be delayed to the freeze
4079 -- point, thus we analyze the pragma or attribute definition
4080 -- clause in the tree at this point. We also analyze the aspect
4081 -- specification node at the freeze point when the aspect doesn't
4082 -- correspond to pragma/attribute definition clause.
4084 Comp := First_Entity (Rec);
4085 while Present (Comp) loop
4086 if Ekind (Comp) = E_Component
4087 and then Has_Delayed_Aspects (Comp)
4088 then
4089 if not Rec_Pushed then
4090 Push_Scope (Rec);
4091 Rec_Pushed := True;
4093 -- The visibility to the discriminants must be restored in
4094 -- order to properly analyze the aspects.
4096 if Has_Discriminants (Rec) then
4097 Install_Discriminants (Rec);
4098 end if;
4099 end if;
4101 Analyze_Aspects_At_Freeze_Point (Comp);
4102 end if;
4104 Next_Entity (Comp);
4105 end loop;
4107 -- Pop the scope if Rec scope has been pushed on the scope stack
4108 -- during the delayed aspect analysis process.
4110 if Rec_Pushed then
4111 if Has_Discriminants (Rec) then
4112 Uninstall_Discriminants (Rec);
4113 end if;
4115 Pop_Scope;
4116 end if;
4118 -- Freeze components and embedded subtypes
4120 Comp := First_Entity (Rec);
4121 Prev := Empty;
4122 while Present (Comp) loop
4123 if Is_Aliased (Comp) then
4124 Aliased_Component := True;
4125 end if;
4127 -- Handle the component and discriminant case
4129 if Ekind_In (Comp, E_Component, E_Discriminant) then
4130 declare
4131 CC : constant Node_Id := Component_Clause (Comp);
4133 begin
4134 -- Freezing a record type freezes the type of each of its
4135 -- components. However, if the type of the component is
4136 -- part of this record, we do not want or need a separate
4137 -- Freeze_Node. Note that Is_Itype is wrong because that's
4138 -- also set in private type cases. We also can't check for
4139 -- the Scope being exactly Rec because of private types and
4140 -- record extensions.
4142 if Is_Itype (Etype (Comp))
4143 and then Is_Record_Type (Underlying_Type
4144 (Scope (Etype (Comp))))
4145 then
4146 Undelay_Type (Etype (Comp));
4147 end if;
4149 Freeze_And_Append (Etype (Comp), N, Result);
4151 -- Warn for pragma Pack overriding foreign convention
4153 if Has_Foreign_Convention (Etype (Comp))
4154 and then Has_Pragma_Pack (Rec)
4156 -- Don't warn for aliased components, since override
4157 -- cannot happen in that case.
4159 and then not Is_Aliased (Comp)
4160 then
4161 declare
4162 CN : constant Name_Id :=
4163 Get_Convention_Name (Convention (Etype (Comp)));
4164 PP : constant Node_Id :=
4165 Get_Pragma (Rec, Pragma_Pack);
4166 begin
4167 if Present (PP) then
4168 Error_Msg_Name_1 := CN;
4169 Error_Msg_Sloc := Sloc (Comp);
4170 Error_Msg_N
4171 ("pragma Pack affects convention % component#??",
4172 PP);
4173 Error_Msg_Name_1 := CN;
4174 Error_Msg_NE
4175 ("\component & may not have % compatible "
4176 & "representation??", PP, Comp);
4177 end if;
4178 end;
4179 end if;
4181 -- Check for error of component clause given for variable
4182 -- sized type. We have to delay this test till this point,
4183 -- since the component type has to be frozen for us to know
4184 -- if it is variable length.
4186 if Present (CC) then
4187 Placed_Component := True;
4189 -- We omit this test in a generic context, it will be
4190 -- applied at instantiation time.
4192 if Inside_A_Generic then
4193 null;
4195 -- Also omit this test in CodePeer mode, since we do not
4196 -- have sufficient info on size and rep clauses.
4198 elsif CodePeer_Mode then
4199 null;
4201 -- Omit check if component has a generic type. This can
4202 -- happen in an instantiation within a generic in ASIS
4203 -- mode, where we force freeze actions without full
4204 -- expansion.
4206 elsif Is_Generic_Type (Etype (Comp)) then
4207 null;
4209 -- Do the check
4211 elsif not
4212 Size_Known_At_Compile_Time
4213 (Underlying_Type (Etype (Comp)))
4214 then
4215 Error_Msg_N
4216 ("component clause not allowed for variable " &
4217 "length component", CC);
4218 end if;
4220 else
4221 Unplaced_Component := True;
4222 end if;
4224 -- Case of component requires byte alignment
4226 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
4228 -- Set the enclosing record to also require byte align
4230 Set_Must_Be_On_Byte_Boundary (Rec);
4232 -- Check for component clause that is inconsistent with
4233 -- the required byte boundary alignment.
4235 if Present (CC)
4236 and then Normalized_First_Bit (Comp) mod
4237 System_Storage_Unit /= 0
4238 then
4239 Error_Msg_N
4240 ("component & must be byte aligned",
4241 Component_Name (Component_Clause (Comp)));
4242 end if;
4243 end if;
4244 end;
4245 end if;
4247 -- Gather data for possible Implicit_Packing later. Note that at
4248 -- this stage we might be dealing with a real component, or with
4249 -- an implicit subtype declaration.
4251 if Known_Static_RM_Size (Etype (Comp)) then
4252 declare
4253 Comp_Type : constant Entity_Id := Etype (Comp);
4254 Comp_Size : constant Uint := RM_Size (Comp_Type);
4255 SSU : constant Int := Ttypes.System_Storage_Unit;
4257 begin
4258 Sized_Component_Total_RM_Size :=
4259 Sized_Component_Total_RM_Size + Comp_Size;
4261 Sized_Component_Total_Round_RM_Size :=
4262 Sized_Component_Total_Round_RM_Size +
4263 (Comp_Size + SSU - 1) / SSU * SSU;
4265 if Present (Underlying_Type (Comp_Type))
4266 and then Is_Elementary_Type (Underlying_Type (Comp_Type))
4267 then
4268 Elem_Component_Total_Esize :=
4269 Elem_Component_Total_Esize + Esize (Comp_Type);
4270 else
4271 All_Elem_Components := False;
4273 if Comp_Size mod SSU /= 0 then
4274 All_Storage_Unit_Components := False;
4275 end if;
4276 end if;
4277 end;
4278 else
4279 All_Sized_Components := False;
4280 end if;
4282 -- If the component is an Itype with Delayed_Freeze and is either
4283 -- a record or array subtype and its base type has not yet been
4284 -- frozen, we must remove this from the entity list of this record
4285 -- and put it on the entity list of the scope of its base type.
4286 -- Note that we know that this is not the type of a component
4287 -- since we cleared Has_Delayed_Freeze for it in the previous
4288 -- loop. Thus this must be the Designated_Type of an access type,
4289 -- which is the type of a component.
4291 if Is_Itype (Comp)
4292 and then Is_Type (Scope (Comp))
4293 and then Is_Composite_Type (Comp)
4294 and then Base_Type (Comp) /= Comp
4295 and then Has_Delayed_Freeze (Comp)
4296 and then not Is_Frozen (Base_Type (Comp))
4297 then
4298 declare
4299 Will_Be_Frozen : Boolean := False;
4300 S : Entity_Id;
4302 begin
4303 -- We have a difficult case to handle here. Suppose Rec is
4304 -- subtype being defined in a subprogram that's created as
4305 -- part of the freezing of Rec'Base. In that case, we know
4306 -- that Comp'Base must have already been frozen by the time
4307 -- we get to elaborate this because Gigi doesn't elaborate
4308 -- any bodies until it has elaborated all of the declarative
4309 -- part. But Is_Frozen will not be set at this point because
4310 -- we are processing code in lexical order.
4312 -- We detect this case by going up the Scope chain of Rec
4313 -- and seeing if we have a subprogram scope before reaching
4314 -- the top of the scope chain or that of Comp'Base. If we
4315 -- do, then mark that Comp'Base will actually be frozen. If
4316 -- so, we merely undelay it.
4318 S := Scope (Rec);
4319 while Present (S) loop
4320 if Is_Subprogram (S) then
4321 Will_Be_Frozen := True;
4322 exit;
4323 elsif S = Scope (Base_Type (Comp)) then
4324 exit;
4325 end if;
4327 S := Scope (S);
4328 end loop;
4330 if Will_Be_Frozen then
4331 Undelay_Type (Comp);
4333 else
4334 if Present (Prev) then
4335 Link_Entities (Prev, Next_Entity (Comp));
4336 else
4337 Set_First_Entity (Rec, Next_Entity (Comp));
4338 end if;
4340 -- Insert in entity list of scope of base type (which
4341 -- must be an enclosing scope, because still unfrozen).
4343 Append_Entity (Comp, Scope (Base_Type (Comp)));
4344 end if;
4345 end;
4347 -- If the component is an access type with an allocator as default
4348 -- value, the designated type will be frozen by the corresponding
4349 -- expression in init_proc. In order to place the freeze node for
4350 -- the designated type before that for the current record type,
4351 -- freeze it now.
4353 -- Same process if the component is an array of access types,
4354 -- initialized with an aggregate. If the designated type is
4355 -- private, it cannot contain allocators, and it is premature
4356 -- to freeze the type, so we check for this as well.
4358 elsif Is_Access_Type (Etype (Comp))
4359 and then Present (Parent (Comp))
4360 and then Present (Expression (Parent (Comp)))
4361 then
4362 declare
4363 Alloc : constant Node_Id :=
4364 Check_Allocator (Expression (Parent (Comp)));
4366 begin
4367 if Present (Alloc) then
4369 -- If component is pointer to a class-wide type, freeze
4370 -- the specific type in the expression being allocated.
4371 -- The expression may be a subtype indication, in which
4372 -- case freeze the subtype mark.
4374 if Is_Class_Wide_Type
4375 (Designated_Type (Etype (Comp)))
4376 then
4377 if Is_Entity_Name (Expression (Alloc)) then
4378 Freeze_And_Append
4379 (Entity (Expression (Alloc)), N, Result);
4381 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4382 then
4383 Freeze_And_Append
4384 (Entity (Subtype_Mark (Expression (Alloc))),
4385 N, Result);
4386 end if;
4388 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4389 Check_Itype (Etype (Comp));
4391 else
4392 Freeze_And_Append
4393 (Designated_Type (Etype (Comp)), N, Result);
4394 end if;
4395 end if;
4396 end;
4398 elsif Is_Access_Type (Etype (Comp))
4399 and then Is_Itype (Designated_Type (Etype (Comp)))
4400 then
4401 Check_Itype (Etype (Comp));
4403 -- Freeze the designated type when initializing a component with
4404 -- an aggregate in case the aggregate contains allocators.
4406 -- type T is ...;
4407 -- type T_Ptr is access all T;
4408 -- type T_Array is array ... of T_Ptr;
4410 -- type Rec is record
4411 -- Comp : T_Array := (others => ...);
4412 -- end record;
4414 elsif Is_Array_Type (Etype (Comp))
4415 and then Is_Access_Type (Component_Type (Etype (Comp)))
4416 then
4417 declare
4418 Comp_Par : constant Node_Id := Parent (Comp);
4419 Desig_Typ : constant Entity_Id :=
4420 Designated_Type
4421 (Component_Type (Etype (Comp)));
4423 begin
4424 -- The only case when this sort of freezing is not done is
4425 -- when the designated type is class-wide and the root type
4426 -- is the record owning the component. This scenario results
4427 -- in a circularity because the class-wide type requires
4428 -- primitives that have not been created yet as the root
4429 -- type is in the process of being frozen.
4431 -- type Rec is tagged;
4432 -- type Rec_Ptr is access all Rec'Class;
4433 -- type Rec_Array is array ... of Rec_Ptr;
4435 -- type Rec is record
4436 -- Comp : Rec_Array := (others => ...);
4437 -- end record;
4439 if Is_Class_Wide_Type (Desig_Typ)
4440 and then Root_Type (Desig_Typ) = Rec
4441 then
4442 null;
4444 elsif Is_Fully_Defined (Desig_Typ)
4445 and then Present (Comp_Par)
4446 and then Nkind (Comp_Par) = N_Component_Declaration
4447 and then Present (Expression (Comp_Par))
4448 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4449 then
4450 Freeze_And_Append (Desig_Typ, N, Result);
4451 end if;
4452 end;
4453 end if;
4455 Prev := Comp;
4456 Next_Entity (Comp);
4457 end loop;
4459 SSO_ADC :=
4460 Get_Attribute_Definition_Clause
4461 (Rec, Attribute_Scalar_Storage_Order);
4463 -- If the record type has Complex_Representation, then it is treated
4464 -- as a scalar in the back end so the storage order is irrelevant.
4466 if Has_Complex_Representation (Rec) then
4467 if Present (SSO_ADC) then
4468 Error_Msg_N
4469 ("??storage order has no effect with Complex_Representation",
4470 SSO_ADC);
4471 end if;
4473 else
4474 -- Deal with default setting of reverse storage order
4476 Set_SSO_From_Default (Rec);
4478 -- Check consistent attribute setting on component types
4480 declare
4481 Comp_ADC_Present : Boolean;
4482 begin
4483 Comp := First_Component (Rec);
4484 while Present (Comp) loop
4485 Check_Component_Storage_Order
4486 (Encl_Type => Rec,
4487 Comp => Comp,
4488 ADC => SSO_ADC,
4489 Comp_ADC_Present => Comp_ADC_Present);
4490 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4491 Next_Component (Comp);
4492 end loop;
4493 end;
4495 -- Now deal with reverse storage order/bit order issues
4497 if Present (SSO_ADC) then
4499 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4500 -- if the former is specified.
4502 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4504 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4505 -- apply to some ancestor type.
4507 Error_Msg_Sloc := Sloc (SSO_ADC);
4508 Error_Msg_N
4509 ("scalar storage order for& specified# inconsistent with "
4510 & "bit order", Rec);
4511 end if;
4513 -- Warn if there is a Scalar_Storage_Order attribute definition
4514 -- clause but no component clause, no component that itself has
4515 -- such an attribute definition, and no pragma Pack.
4517 if not (Placed_Component
4518 or else
4519 SSO_ADC_Component
4520 or else
4521 Is_Packed (Rec))
4522 then
4523 Error_Msg_N
4524 ("??scalar storage order specified but no component "
4525 & "clause", SSO_ADC);
4526 end if;
4527 end if;
4528 end if;
4530 -- Deal with Bit_Order aspect
4532 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4534 if Present (ADC) and then Base_Type (Rec) = Rec then
4535 if not (Placed_Component
4536 or else Present (SSO_ADC)
4537 or else Is_Packed (Rec))
4538 then
4539 -- Warn if clause has no effect when no component clause is
4540 -- present, but suppress warning if the Bit_Order is required
4541 -- due to the presence of a Scalar_Storage_Order attribute.
4543 Error_Msg_N
4544 ("??bit order specification has no effect", ADC);
4545 Error_Msg_N
4546 ("\??since no component clauses were specified", ADC);
4548 -- Here is where we do the processing to adjust component clauses
4549 -- for reversed bit order, when not using reverse SSO. If an error
4550 -- has been reported on Rec already (such as SSO incompatible with
4551 -- bit order), don't bother adjusting as this may generate extra
4552 -- noise.
4554 elsif Reverse_Bit_Order (Rec)
4555 and then not Reverse_Storage_Order (Rec)
4556 and then not Error_Posted (Rec)
4557 then
4558 Adjust_Record_For_Reverse_Bit_Order (Rec);
4560 -- Case where we have both an explicit Bit_Order and the same
4561 -- Scalar_Storage_Order: leave record untouched, the back-end
4562 -- will take care of required layout conversions.
4564 else
4565 null;
4567 end if;
4568 end if;
4570 -- Complete error checking on record representation clause (e.g.
4571 -- overlap of components). This is called after adjusting the
4572 -- record for reverse bit order.
4574 declare
4575 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4576 begin
4577 if Present (RRC) then
4578 Check_Record_Representation_Clause (RRC);
4579 end if;
4580 end;
4582 -- Check for useless pragma Pack when all components placed. We only
4583 -- do this check for record types, not subtypes, since a subtype may
4584 -- have all its components placed, and it still makes perfectly good
4585 -- sense to pack other subtypes or the parent type. We do not give
4586 -- this warning if Optimize_Alignment is set to Space, since the
4587 -- pragma Pack does have an effect in this case (it always resets
4588 -- the alignment to one).
4590 if Ekind (Rec) = E_Record_Type
4591 and then Is_Packed (Rec)
4592 and then not Unplaced_Component
4593 and then Optimize_Alignment /= 'S'
4594 then
4595 -- Reset packed status. Probably not necessary, but we do it so
4596 -- that there is no chance of the back end doing something strange
4597 -- with this redundant indication of packing.
4599 Set_Is_Packed (Rec, False);
4601 -- Give warning if redundant constructs warnings on
4603 if Warn_On_Redundant_Constructs then
4604 Error_Msg_N -- CODEFIX
4605 ("??pragma Pack has no effect, no unplaced components",
4606 Get_Rep_Pragma (Rec, Name_Pack));
4607 end if;
4608 end if;
4610 -- If this is the record corresponding to a remote type, freeze the
4611 -- remote type here since that is what we are semantically freezing.
4612 -- This prevents the freeze node for that type in an inner scope.
4614 if Ekind (Rec) = E_Record_Type then
4615 if Present (Corresponding_Remote_Type (Rec)) then
4616 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4617 end if;
4619 -- Check for controlled components, unchecked unions, and type
4620 -- invariants.
4622 Comp := First_Component (Rec);
4623 while Present (Comp) loop
4625 -- Do not set Has_Controlled_Component on a class-wide
4626 -- equivalent type. See Make_CW_Equivalent_Type.
4628 if not Is_Class_Wide_Equivalent_Type (Rec)
4629 and then
4630 (Has_Controlled_Component (Etype (Comp))
4631 or else
4632 (Chars (Comp) /= Name_uParent
4633 and then Is_Controlled (Etype (Comp)))
4634 or else
4635 (Is_Protected_Type (Etype (Comp))
4636 and then
4637 Present (Corresponding_Record_Type (Etype (Comp)))
4638 and then
4639 Has_Controlled_Component
4640 (Corresponding_Record_Type (Etype (Comp)))))
4641 then
4642 Set_Has_Controlled_Component (Rec);
4643 end if;
4645 if Has_Unchecked_Union (Etype (Comp)) then
4646 Set_Has_Unchecked_Union (Rec);
4647 end if;
4649 -- The record type requires its own invariant procedure in
4650 -- order to verify the invariant of each individual component.
4651 -- Do not consider internal components such as _parent because
4652 -- parent class-wide invariants are always inherited.
4653 -- In GNATprove mode, the component invariants are checked by
4654 -- other means. They should not be added to the record type
4655 -- invariant procedure, so that the procedure can be used to
4656 -- check the recordy type invariants if any.
4658 if Comes_From_Source (Comp)
4659 and then Has_Invariants (Etype (Comp))
4660 and then not GNATprove_Mode
4661 then
4662 Set_Has_Own_Invariants (Rec);
4663 end if;
4665 -- Scan component declaration for likely misuses of current
4666 -- instance, either in a constraint or a default expression.
4668 if Has_Per_Object_Constraint (Comp) then
4669 Check_Current_Instance (Parent (Comp));
4670 end if;
4672 Next_Component (Comp);
4673 end loop;
4674 end if;
4676 -- Enforce the restriction that access attributes with a current
4677 -- instance prefix can only apply to limited types. This comment
4678 -- is floating here, but does not seem to belong here???
4680 -- Set component alignment if not otherwise already set
4682 Set_Component_Alignment_If_Not_Set (Rec);
4684 -- For first subtypes, check if there are any fixed-point fields with
4685 -- component clauses, where we must check the size. This is not done
4686 -- till the freeze point since for fixed-point types, we do not know
4687 -- the size until the type is frozen. Similar processing applies to
4688 -- bit-packed arrays.
4690 if Is_First_Subtype (Rec) then
4691 Comp := First_Component (Rec);
4692 while Present (Comp) loop
4693 if Present (Component_Clause (Comp))
4694 and then (Is_Fixed_Point_Type (Etype (Comp))
4695 or else Is_Bit_Packed_Array (Etype (Comp)))
4696 then
4697 Check_Size
4698 (Component_Name (Component_Clause (Comp)),
4699 Etype (Comp),
4700 Esize (Comp),
4701 Junk);
4702 end if;
4704 Next_Component (Comp);
4705 end loop;
4706 end if;
4708 -- See if Size is too small as is (and implicit packing might help)
4710 if not Is_Packed (Rec)
4712 -- No implicit packing if even one component is explicitly placed
4714 and then not Placed_Component
4716 -- Or even one component is aliased
4718 and then not Aliased_Component
4720 -- Must have size clause and all sized components
4722 and then Has_Size_Clause (Rec)
4723 and then All_Sized_Components
4725 -- Do not try implicit packing on records with discriminants, too
4726 -- complicated, especially in the variant record case.
4728 and then not Has_Discriminants (Rec)
4730 -- We want to implicitly pack if the specified size of the record
4731 -- is less than the sum of the object sizes (no point in packing
4732 -- if this is not the case), if we can compute it, i.e. if we have
4733 -- only elementary components. Otherwise, we have at least one
4734 -- composite component and we want to implicitly pack only if bit
4735 -- packing is required for it, as we are sure in this case that
4736 -- the back end cannot do the expected layout without packing.
4738 and then
4739 ((All_Elem_Components
4740 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4741 or else
4742 (not All_Elem_Components
4743 and then not All_Storage_Unit_Components
4744 and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
4746 -- And the total RM size cannot be greater than the specified size
4747 -- since otherwise packing will not get us where we have to be.
4749 and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
4751 -- Never do implicit packing in CodePeer or SPARK modes since
4752 -- we don't do any packing in these modes, since this generates
4753 -- over-complex code that confuses static analysis, and in
4754 -- general, neither CodePeer not GNATprove care about the
4755 -- internal representation of objects.
4757 and then not (CodePeer_Mode or GNATprove_Mode)
4758 then
4759 -- If implicit packing enabled, do it
4761 if Implicit_Packing then
4762 Set_Is_Packed (Rec);
4764 -- Otherwise flag the size clause
4766 else
4767 declare
4768 Sz : constant Node_Id := Size_Clause (Rec);
4769 begin
4770 Error_Msg_NE -- CODEFIX
4771 ("size given for& too small", Sz, Rec);
4772 Error_Msg_N -- CODEFIX
4773 ("\use explicit pragma Pack "
4774 & "or use pragma Implicit_Packing", Sz);
4775 end;
4776 end if;
4777 end if;
4779 -- The following checks are relevant only when SPARK_Mode is on as
4780 -- they are not standard Ada legality rules.
4782 if SPARK_Mode = On then
4784 -- A discriminated type cannot be effectively volatile
4785 -- (SPARK RM 7.1.3(5)).
4787 if Is_Effectively_Volatile (Rec) then
4788 if Has_Discriminants (Rec) then
4789 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4790 end if;
4792 -- A non-effectively volatile record type cannot contain
4793 -- effectively volatile components (SPARK RM 7.1.3(6)).
4795 else
4796 Comp := First_Component (Rec);
4797 while Present (Comp) loop
4798 if Comes_From_Source (Comp)
4799 and then Is_Effectively_Volatile (Etype (Comp))
4800 then
4801 Error_Msg_Name_1 := Chars (Rec);
4802 Error_Msg_N
4803 ("component & of non-volatile type % cannot be "
4804 & "volatile", Comp);
4805 end if;
4807 Next_Component (Comp);
4808 end loop;
4809 end if;
4811 -- A type which does not yield a synchronized object cannot have
4812 -- a component that yields a synchronized object (SPARK RM 9.5).
4814 if not Yields_Synchronized_Object (Rec) then
4815 Comp := First_Component (Rec);
4816 while Present (Comp) loop
4817 if Comes_From_Source (Comp)
4818 and then Yields_Synchronized_Object (Etype (Comp))
4819 then
4820 Error_Msg_Name_1 := Chars (Rec);
4821 Error_Msg_N
4822 ("component & of non-synchronized type % cannot be "
4823 & "synchronized", Comp);
4824 end if;
4826 Next_Component (Comp);
4827 end loop;
4828 end if;
4830 -- A Ghost type cannot have a component of protected or task type
4831 -- (SPARK RM 6.9(19)).
4833 if Is_Ghost_Entity (Rec) then
4834 Comp := First_Component (Rec);
4835 while Present (Comp) loop
4836 if Comes_From_Source (Comp)
4837 and then Is_Concurrent_Type (Etype (Comp))
4838 then
4839 Error_Msg_Name_1 := Chars (Rec);
4840 Error_Msg_N
4841 ("component & of ghost type % cannot be concurrent",
4842 Comp);
4843 end if;
4845 Next_Component (Comp);
4846 end loop;
4847 end if;
4848 end if;
4850 -- Make sure that if we have an iterator aspect, then we have
4851 -- either Constant_Indexing or Variable_Indexing.
4853 declare
4854 Iterator_Aspect : Node_Id;
4856 begin
4857 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4859 if No (Iterator_Aspect) then
4860 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4861 end if;
4863 if Present (Iterator_Aspect) then
4864 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4865 or else
4866 Has_Aspect (Rec, Aspect_Variable_Indexing)
4867 then
4868 null;
4869 else
4870 Error_Msg_N
4871 ("Iterator_Element requires indexing aspect",
4872 Iterator_Aspect);
4873 end if;
4874 end if;
4875 end;
4877 -- All done if not a full record definition
4879 if Ekind (Rec) /= E_Record_Type then
4880 return;
4881 end if;
4883 -- Finally we need to check the variant part to make sure that
4884 -- all types within choices are properly frozen as part of the
4885 -- freezing of the record type.
4887 Check_Variant_Part : declare
4888 D : constant Node_Id := Declaration_Node (Rec);
4889 T : Node_Id;
4890 C : Node_Id;
4892 begin
4893 -- Find component list
4895 C := Empty;
4897 if Nkind (D) = N_Full_Type_Declaration then
4898 T := Type_Definition (D);
4900 if Nkind (T) = N_Record_Definition then
4901 C := Component_List (T);
4903 elsif Nkind (T) = N_Derived_Type_Definition
4904 and then Present (Record_Extension_Part (T))
4905 then
4906 C := Component_List (Record_Extension_Part (T));
4907 end if;
4908 end if;
4910 -- Case of variant part present
4912 if Present (C) and then Present (Variant_Part (C)) then
4913 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4914 end if;
4916 -- Note: we used to call Check_Choices here, but it is too early,
4917 -- since predicated subtypes are frozen here, but their freezing
4918 -- actions are in Analyze_Freeze_Entity, which has not been called
4919 -- yet for entities frozen within this procedure, so we moved that
4920 -- call to the Analyze_Freeze_Entity for the record type.
4922 end Check_Variant_Part;
4924 -- Check that all the primitives of an interface type are abstract
4925 -- or null procedures.
4927 if Is_Interface (Rec)
4928 and then not Error_Posted (Parent (Rec))
4929 then
4930 declare
4931 Elmt : Elmt_Id;
4932 Subp : Entity_Id;
4934 begin
4935 Elmt := First_Elmt (Primitive_Operations (Rec));
4936 while Present (Elmt) loop
4937 Subp := Node (Elmt);
4939 if not Is_Abstract_Subprogram (Subp)
4941 -- Avoid reporting the error on inherited primitives
4943 and then Comes_From_Source (Subp)
4944 then
4945 Error_Msg_Name_1 := Chars (Subp);
4947 if Ekind (Subp) = E_Procedure then
4948 if not Null_Present (Parent (Subp)) then
4949 Error_Msg_N
4950 ("interface procedure % must be abstract or null",
4951 Parent (Subp));
4952 end if;
4953 else
4954 Error_Msg_N
4955 ("interface function % must be abstract",
4956 Parent (Subp));
4957 end if;
4958 end if;
4960 Next_Elmt (Elmt);
4961 end loop;
4962 end;
4963 end if;
4965 -- For a derived tagged type, check whether inherited primitives
4966 -- might require a wrapper to handle class-wide conditions.
4968 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4969 Check_Inherited_Conditions (Rec);
4970 end if;
4971 end Freeze_Record_Type;
4973 -------------------------------
4974 -- Has_Boolean_Aspect_Import --
4975 -------------------------------
4977 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4978 Decl : constant Node_Id := Declaration_Node (E);
4979 Asp : Node_Id;
4980 Expr : Node_Id;
4982 begin
4983 if Has_Aspects (Decl) then
4984 Asp := First (Aspect_Specifications (Decl));
4985 while Present (Asp) loop
4986 Expr := Expression (Asp);
4988 -- The value of aspect Import is True when the expression is
4989 -- either missing or it is explicitly set to True.
4991 if Get_Aspect_Id (Asp) = Aspect_Import
4992 and then (No (Expr)
4993 or else (Compile_Time_Known_Value (Expr)
4994 and then Is_True (Expr_Value (Expr))))
4995 then
4996 return True;
4997 end if;
4999 Next (Asp);
5000 end loop;
5001 end if;
5003 return False;
5004 end Has_Boolean_Aspect_Import;
5006 -------------------------
5007 -- Inherit_Freeze_Node --
5008 -------------------------
5010 procedure Inherit_Freeze_Node
5011 (Fnod : Node_Id;
5012 Typ : Entity_Id)
5014 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
5016 begin
5017 Set_Freeze_Node (Typ, Fnod);
5018 Set_Entity (Fnod, Typ);
5020 -- The input type had an existing node. Propagate relevant attributes
5021 -- from the old freeze node to the inherited freeze node.
5023 -- ??? if both freeze nodes have attributes, would they differ?
5025 if Present (Typ_Fnod) then
5027 -- Attribute Access_Types_To_Process
5029 if Present (Access_Types_To_Process (Typ_Fnod))
5030 and then No (Access_Types_To_Process (Fnod))
5031 then
5032 Set_Access_Types_To_Process (Fnod,
5033 Access_Types_To_Process (Typ_Fnod));
5034 end if;
5036 -- Attribute Actions
5038 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
5039 Set_Actions (Fnod, Actions (Typ_Fnod));
5040 end if;
5042 -- Attribute First_Subtype_Link
5044 if Present (First_Subtype_Link (Typ_Fnod))
5045 and then No (First_Subtype_Link (Fnod))
5046 then
5047 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
5048 end if;
5050 -- Attribute TSS_Elist
5052 if Present (TSS_Elist (Typ_Fnod))
5053 and then No (TSS_Elist (Fnod))
5054 then
5055 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
5056 end if;
5057 end if;
5058 end Inherit_Freeze_Node;
5060 ------------------------------
5061 -- Wrap_Imported_Subprogram --
5062 ------------------------------
5064 -- The issue here is that our normal approach of checking preconditions
5065 -- and postconditions does not work for imported procedures, since we
5066 -- are not generating code for the body. To get around this we create
5067 -- a wrapper, as shown by the following example:
5069 -- procedure K (A : Integer);
5070 -- pragma Import (C, K);
5072 -- The spec is rewritten by removing the effects of pragma Import, but
5073 -- leaving the convention unchanged, as though the source had said:
5075 -- procedure K (A : Integer);
5076 -- pragma Convention (C, K);
5078 -- and we create a body, added to the entity K freeze actions, which
5079 -- looks like:
5081 -- procedure K (A : Integer) is
5082 -- procedure K (A : Integer);
5083 -- pragma Import (C, K);
5084 -- begin
5085 -- K (A);
5086 -- end K;
5088 -- Now the contract applies in the normal way to the outer procedure,
5089 -- and the inner procedure has no contracts, so there is no problem
5090 -- in just calling it to get the original effect.
5092 -- In the case of a function, we create an appropriate return statement
5093 -- for the subprogram body that calls the inner procedure.
5095 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
5096 function Copy_Import_Pragma return Node_Id;
5097 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
5099 ------------------------
5100 -- Copy_Import_Pragma --
5101 ------------------------
5103 function Copy_Import_Pragma return Node_Id is
5105 -- The subprogram should have an import pragma, otherwise it does
5106 -- need a wrapper.
5108 Prag : constant Node_Id := Import_Pragma (E);
5109 pragma Assert (Present (Prag));
5111 -- Save all semantic fields of the pragma
5113 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
5114 Save_From : constant Boolean := From_Aspect_Specification (Prag);
5115 Save_Prag : constant Node_Id := Next_Pragma (Prag);
5116 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
5118 Result : Node_Id;
5120 begin
5121 -- Reset all semantic fields. This avoids a potential infinite
5122 -- loop when the pragma comes from an aspect as the duplication
5123 -- will copy the aspect, then copy the corresponding pragma and
5124 -- so on.
5126 Set_Corresponding_Aspect (Prag, Empty);
5127 Set_From_Aspect_Specification (Prag, False);
5128 Set_Next_Pragma (Prag, Empty);
5129 Set_Next_Rep_Item (Prag, Empty);
5131 Result := Copy_Separate_Tree (Prag);
5133 -- Restore the original semantic fields
5135 Set_Corresponding_Aspect (Prag, Save_Asp);
5136 Set_From_Aspect_Specification (Prag, Save_From);
5137 Set_Next_Pragma (Prag, Save_Prag);
5138 Set_Next_Rep_Item (Prag, Save_Rep);
5140 return Result;
5141 end Copy_Import_Pragma;
5143 -- Local variables
5145 Loc : constant Source_Ptr := Sloc (E);
5146 CE : constant Name_Id := Chars (E);
5147 Bod : Node_Id;
5148 Forml : Entity_Id;
5149 Parms : List_Id;
5150 Prag : Node_Id;
5151 Spec : Node_Id;
5152 Stmt : Node_Id;
5154 -- Start of processing for Wrap_Imported_Subprogram
5156 begin
5157 -- Nothing to do if not imported
5159 if not Is_Imported (E) then
5160 return;
5162 -- Test enabling conditions for wrapping
5164 elsif Is_Subprogram (E)
5165 and then Present (Contract (E))
5166 and then Present (Pre_Post_Conditions (Contract (E)))
5167 and then not GNATprove_Mode
5168 then
5169 -- Here we do the wrap
5171 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5172 -- here are fully analyzed, but we definitely want fully syntactic
5173 -- unanalyzed trees in the body we construct, so that the analysis
5174 -- generates the right visibility, and that is exactly what the
5175 -- calls to Copy_Separate_Tree give us.
5177 Prag := Copy_Import_Pragma;
5179 -- Fix up spec so it is no longer imported and has convention Ada
5181 Set_Has_Completion (E, False);
5182 Set_Import_Pragma (E, Empty);
5183 Set_Interface_Name (E, Empty);
5184 Set_Is_Imported (E, False);
5185 Set_Convention (E, Convention_Ada);
5187 -- Grab the subprogram declaration and specification
5189 Spec := Declaration_Node (E);
5191 -- Build parameter list that we need
5193 Parms := New_List;
5194 Forml := First_Formal (E);
5195 while Present (Forml) loop
5196 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
5197 Next_Formal (Forml);
5198 end loop;
5200 -- Build the call
5202 -- An imported function whose result type is anonymous access
5203 -- creates a new anonymous access type when it is relocated into
5204 -- the declarations of the body generated below. As a result, the
5205 -- accessibility level of these two anonymous access types may not
5206 -- be compatible even though they are essentially the same type.
5207 -- Use an unchecked type conversion to reconcile this case. Note
5208 -- that the conversion is safe because in the named access type
5209 -- case, both the body and imported function utilize the same
5210 -- type.
5212 if Ekind_In (E, E_Function, E_Generic_Function) then
5213 Stmt :=
5214 Make_Simple_Return_Statement (Loc,
5215 Expression =>
5216 Unchecked_Convert_To (Etype (E),
5217 Make_Function_Call (Loc,
5218 Name => Make_Identifier (Loc, CE),
5219 Parameter_Associations => Parms)));
5221 else
5222 Stmt :=
5223 Make_Procedure_Call_Statement (Loc,
5224 Name => Make_Identifier (Loc, CE),
5225 Parameter_Associations => Parms);
5226 end if;
5228 -- Now build the body
5230 Bod :=
5231 Make_Subprogram_Body (Loc,
5232 Specification =>
5233 Copy_Separate_Tree (Spec),
5234 Declarations => New_List (
5235 Make_Subprogram_Declaration (Loc,
5236 Specification => Copy_Separate_Tree (Spec)),
5237 Prag),
5238 Handled_Statement_Sequence =>
5239 Make_Handled_Sequence_Of_Statements (Loc,
5240 Statements => New_List (Stmt),
5241 End_Label => Make_Identifier (Loc, CE)));
5243 -- Append the body to freeze result
5245 Add_To_Result (Bod);
5246 return;
5248 -- Case of imported subprogram that does not get wrapped
5250 else
5251 -- Set Is_Public. All imported entities need an external symbol
5252 -- created for them since they are always referenced from another
5253 -- object file. Note this used to be set when we set Is_Imported
5254 -- back in Sem_Prag, but now we delay it to this point, since we
5255 -- don't want to set this flag if we wrap an imported subprogram.
5257 Set_Is_Public (E);
5258 end if;
5259 end Wrap_Imported_Subprogram;
5261 -- Start of processing for Freeze_Entity
5263 begin
5264 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5265 -- now to ensure that any nodes generated during freezing are properly
5266 -- flagged as Ghost.
5268 Set_Ghost_Mode (E);
5270 -- We are going to test for various reasons why this entity need not be
5271 -- frozen here, but in the case of an Itype that's defined within a
5272 -- record, that test actually applies to the record.
5274 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5275 Test_E := Scope (E);
5276 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5277 and then Is_Record_Type (Underlying_Type (Scope (E)))
5278 then
5279 Test_E := Underlying_Type (Scope (E));
5280 end if;
5282 -- Do not freeze if already frozen since we only need one freeze node
5284 if Is_Frozen (E) then
5285 Result := No_List;
5286 goto Leave;
5288 -- Do not freeze if we are preanalyzing without freezing
5290 elsif Inside_Preanalysis_Without_Freezing > 0 then
5291 Result := No_List;
5292 goto Leave;
5294 elsif Ekind (E) = E_Generic_Package then
5295 Result := Freeze_Generic_Entities (E);
5296 goto Leave;
5298 -- It is improper to freeze an external entity within a generic because
5299 -- its freeze node will appear in a non-valid context. The entity will
5300 -- be frozen in the proper scope after the current generic is analyzed.
5301 -- However, aspects must be analyzed because they may be queried later
5302 -- within the generic itself, and the corresponding pragma or attribute
5303 -- definition has not been analyzed yet. After this, indicate that the
5304 -- entity has no further delayed aspects, to prevent a later aspect
5305 -- analysis out of the scope of the generic.
5307 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
5308 if Has_Delayed_Aspects (E) then
5309 Analyze_Aspects_At_Freeze_Point (E);
5310 Set_Has_Delayed_Aspects (E, False);
5311 end if;
5313 Result := No_List;
5314 goto Leave;
5316 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5317 -- the instance, the same applies to the subtype renaming the actual.
5319 elsif Is_Private_Type (E)
5320 and then Is_Generic_Actual_Type (E)
5321 and then No (Full_View (Base_Type (E)))
5322 and then Ada_Version >= Ada_2012
5323 then
5324 Result := No_List;
5325 goto Leave;
5327 -- Formal subprograms are never frozen
5329 elsif Is_Formal_Subprogram (E) then
5330 Result := No_List;
5331 goto Leave;
5333 -- Generic types are never frozen as they lack delayed semantic checks
5335 elsif Is_Generic_Type (E) then
5336 Result := No_List;
5337 goto Leave;
5339 -- Do not freeze a global entity within an inner scope created during
5340 -- expansion. A call to subprogram E within some internal procedure
5341 -- (a stream attribute for example) might require freezing E, but the
5342 -- freeze node must appear in the same declarative part as E itself.
5343 -- The two-pass elaboration mechanism in gigi guarantees that E will
5344 -- be frozen before the inner call is elaborated. We exclude constants
5345 -- from this test, because deferred constants may be frozen early, and
5346 -- must be diagnosed (e.g. in the case of a deferred constant being used
5347 -- in a default expression). If the enclosing subprogram comes from
5348 -- source, or is a generic instance, then the freeze point is the one
5349 -- mandated by the language, and we freeze the entity. A subprogram that
5350 -- is a child unit body that acts as a spec does not have a spec that
5351 -- comes from source, but can only come from source.
5353 elsif In_Open_Scopes (Scope (Test_E))
5354 and then Scope (Test_E) /= Current_Scope
5355 and then Ekind (Test_E) /= E_Constant
5356 then
5357 declare
5358 S : Entity_Id;
5360 begin
5361 S := Current_Scope;
5362 while Present (S) loop
5363 if Is_Overloadable (S) then
5364 if Comes_From_Source (S)
5365 or else Is_Generic_Instance (S)
5366 or else Is_Child_Unit (S)
5367 then
5368 exit;
5369 else
5370 Result := No_List;
5371 goto Leave;
5372 end if;
5373 end if;
5375 S := Scope (S);
5376 end loop;
5377 end;
5379 -- Similarly, an inlined instance body may make reference to global
5380 -- entities, but these references cannot be the proper freezing point
5381 -- for them, and in the absence of inlining freezing will take place in
5382 -- their own scope. Normally instance bodies are analyzed after the
5383 -- enclosing compilation, and everything has been frozen at the proper
5384 -- place, but with front-end inlining an instance body is compiled
5385 -- before the end of the enclosing scope, and as a result out-of-order
5386 -- freezing must be prevented.
5388 elsif Front_End_Inlining
5389 and then In_Instance_Body
5390 and then Present (Scope (Test_E))
5391 then
5392 declare
5393 S : Entity_Id;
5395 begin
5396 S := Scope (Test_E);
5397 while Present (S) loop
5398 if Is_Generic_Instance (S) then
5399 exit;
5400 else
5401 S := Scope (S);
5402 end if;
5403 end loop;
5405 if No (S) then
5406 Result := No_List;
5407 goto Leave;
5408 end if;
5409 end;
5410 end if;
5412 -- Add checks to detect proper initialization of scalars that may appear
5413 -- as subprogram parameters.
5415 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5416 Apply_Parameter_Validity_Checks (E);
5417 end if;
5419 -- Deal with delayed aspect specifications. The analysis of the aspect
5420 -- is required to be delayed to the freeze point, thus we analyze the
5421 -- pragma or attribute definition clause in the tree at this point. We
5422 -- also analyze the aspect specification node at the freeze point when
5423 -- the aspect doesn't correspond to pragma/attribute definition clause.
5424 -- In addition, a derived type may have inherited aspects that were
5425 -- delayed in the parent, so these must also be captured now.
5427 if Has_Delayed_Aspects (E)
5428 or else May_Inherit_Delayed_Rep_Aspects (E)
5429 then
5430 Analyze_Aspects_At_Freeze_Point (E);
5431 end if;
5433 -- Here to freeze the entity
5435 Set_Is_Frozen (E);
5437 -- Case of entity being frozen is other than a type
5439 if not Is_Type (E) then
5441 -- If entity is exported or imported and does not have an external
5442 -- name, now is the time to provide the appropriate default name.
5443 -- Skip this if the entity is stubbed, since we don't need a name
5444 -- for any stubbed routine. For the case on intrinsics, if no
5445 -- external name is specified, then calls will be handled in
5446 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5447 -- external name is provided, then Expand_Intrinsic_Call leaves
5448 -- calls in place for expansion by GIGI.
5450 if (Is_Imported (E) or else Is_Exported (E))
5451 and then No (Interface_Name (E))
5452 and then Convention (E) /= Convention_Stubbed
5453 and then Convention (E) /= Convention_Intrinsic
5454 then
5455 Set_Encoded_Interface_Name
5456 (E, Get_Default_External_Name (E));
5458 -- If entity is an atomic object appearing in a declaration and
5459 -- the expression is an aggregate, assign it to a temporary to
5460 -- ensure that the actual assignment is done atomically rather
5461 -- than component-wise (the assignment to the temp may be done
5462 -- component-wise, but that is harmless).
5464 elsif Is_Atomic_Or_VFA (E)
5465 and then Nkind (Parent (E)) = N_Object_Declaration
5466 and then Present (Expression (Parent (E)))
5467 and then Nkind (Expression (Parent (E))) = N_Aggregate
5468 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
5469 then
5470 null;
5471 end if;
5473 -- Subprogram case
5475 if Is_Subprogram (E) then
5477 -- Check for needing to wrap imported subprogram
5479 Wrap_Imported_Subprogram (E);
5481 -- Freeze all parameter types and the return type (RM 13.14(14)).
5482 -- However skip this for internal subprograms. This is also where
5483 -- any extra formal parameters are created since we now know
5484 -- whether the subprogram will use a foreign convention.
5486 -- In Ada 2012, freezing a subprogram does not always freeze the
5487 -- corresponding profile (see AI05-019). An attribute reference
5488 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5489 -- indicates whether the profile should be frozen now.
5490 -- Other constructs that should not freeze ???
5492 -- This processing doesn't apply to internal entities (see below)
5494 if not Is_Internal (E) and then Do_Freeze_Profile then
5495 if not Freeze_Profile (E) then
5496 goto Leave;
5497 end if;
5498 end if;
5500 -- Must freeze its parent first if it is a derived subprogram
5502 if Present (Alias (E)) then
5503 Freeze_And_Append (Alias (E), N, Result);
5504 end if;
5506 -- We don't freeze internal subprograms, because we don't normally
5507 -- want addition of extra formals or mechanism setting to happen
5508 -- for those. However we do pass through predefined dispatching
5509 -- cases, since extra formals may be needed in some cases, such as
5510 -- for the stream 'Input function (build-in-place formals).
5512 if not Is_Internal (E)
5513 or else Is_Predefined_Dispatching_Operation (E)
5514 then
5515 Freeze_Subprogram (E);
5516 end if;
5518 -- If warning on suspicious contracts then check for the case of
5519 -- a postcondition other than False for a No_Return subprogram.
5521 if No_Return (E)
5522 and then Warn_On_Suspicious_Contract
5523 and then Present (Contract (E))
5524 then
5525 declare
5526 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5527 Exp : Node_Id;
5529 begin
5530 while Present (Prag) loop
5531 if Nam_In (Pragma_Name_Unmapped (Prag),
5532 Name_Post,
5533 Name_Postcondition,
5534 Name_Refined_Post)
5535 then
5536 Exp :=
5537 Expression
5538 (First (Pragma_Argument_Associations (Prag)));
5540 if Nkind (Exp) /= N_Identifier
5541 or else Chars (Exp) /= Name_False
5542 then
5543 Error_Msg_NE
5544 ("useless postcondition, & is marked "
5545 & "No_Return?T?", Exp, E);
5546 end if;
5547 end if;
5549 Prag := Next_Pragma (Prag);
5550 end loop;
5551 end;
5552 end if;
5554 -- Here for other than a subprogram or type
5556 else
5557 -- If entity has a type, and it is not a generic unit, then
5558 -- freeze it first (RM 13.14(10)).
5560 if Present (Etype (E))
5561 and then Ekind (E) /= E_Generic_Function
5562 then
5563 Freeze_And_Append (Etype (E), N, Result);
5565 -- For an object of an anonymous array type, aspects on the
5566 -- object declaration apply to the type itself. This is the
5567 -- case for Atomic_Components, Volatile_Components, and
5568 -- Independent_Components. In these cases analysis of the
5569 -- generated pragma will mark the anonymous types accordingly,
5570 -- and the object itself does not require a freeze node.
5572 if Ekind (E) = E_Variable
5573 and then Is_Itype (Etype (E))
5574 and then Is_Array_Type (Etype (E))
5575 and then Has_Delayed_Aspects (E)
5576 then
5577 Set_Has_Delayed_Aspects (E, False);
5578 Set_Has_Delayed_Freeze (E, False);
5579 Set_Freeze_Node (E, Empty);
5580 end if;
5581 end if;
5583 -- Special processing for objects created by object declaration
5585 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5586 Freeze_Object_Declaration (E);
5587 end if;
5589 -- Check that a constant which has a pragma Volatile[_Components]
5590 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5592 -- Note: Atomic[_Components] also sets Volatile[_Components]
5594 if Ekind (E) = E_Constant
5595 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5596 and then not Is_Imported (E)
5597 and then not Has_Boolean_Aspect_Import (E)
5598 then
5599 -- Make sure we actually have a pragma, and have not merely
5600 -- inherited the indication from elsewhere (e.g. an address
5601 -- clause, which is not good enough in RM terms).
5603 if Has_Rep_Pragma (E, Name_Atomic)
5604 or else
5605 Has_Rep_Pragma (E, Name_Atomic_Components)
5606 then
5607 Error_Msg_N
5608 ("stand alone atomic constant must be " &
5609 "imported (RM C.6(13))", E);
5611 elsif Has_Rep_Pragma (E, Name_Volatile)
5612 or else
5613 Has_Rep_Pragma (E, Name_Volatile_Components)
5614 then
5615 Error_Msg_N
5616 ("stand alone volatile constant must be " &
5617 "imported (RM C.6(13))", E);
5618 end if;
5619 end if;
5621 -- Static objects require special handling
5623 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5624 and then Is_Statically_Allocated (E)
5625 then
5626 Freeze_Static_Object (E);
5627 end if;
5629 -- Remaining step is to layout objects
5631 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5632 or else Is_Formal (E)
5633 then
5634 Layout_Object (E);
5635 end if;
5637 -- For an object that does not have delayed freezing, and whose
5638 -- initialization actions have been captured in a compound
5639 -- statement, move them back now directly within the enclosing
5640 -- statement sequence.
5642 if Ekind_In (E, E_Constant, E_Variable)
5643 and then not Has_Delayed_Freeze (E)
5644 then
5645 Explode_Initialization_Compound_Statement (E);
5646 end if;
5648 -- Do not generate a freeze node for a generic unit
5650 if Is_Generic_Unit (E) then
5651 Result := No_List;
5652 goto Leave;
5653 end if;
5654 end if;
5656 -- Case of a type or subtype being frozen
5658 else
5659 -- Verify several SPARK legality rules related to Ghost types now
5660 -- that the type is frozen.
5662 Check_Ghost_Type (E);
5664 -- We used to check here that a full type must have preelaborable
5665 -- initialization if it completes a private type specified with
5666 -- pragma Preelaborable_Initialization, but that missed cases where
5667 -- the types occur within a generic package, since the freezing
5668 -- that occurs within a containing scope generally skips traversal
5669 -- of a generic unit's declarations (those will be frozen within
5670 -- instances). This check was moved to Analyze_Package_Specification.
5672 -- The type may be defined in a generic unit. This can occur when
5673 -- freezing a generic function that returns the type (which is
5674 -- defined in a parent unit). It is clearly meaningless to freeze
5675 -- this type. However, if it is a subtype, its size may be determi-
5676 -- nable and used in subsequent checks, so might as well try to
5677 -- compute it.
5679 -- In Ada 2012, Freeze_Entities is also used in the front end to
5680 -- trigger the analysis of aspect expressions, so in this case we
5681 -- want to continue the freezing process.
5683 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5684 -- In_Generic_Scope (E)???
5686 if Present (Scope (E))
5687 and then Is_Generic_Unit (Scope (E))
5688 and then
5689 (not Has_Predicates (E)
5690 and then not Has_Delayed_Freeze (E))
5691 then
5692 Check_Compile_Time_Size (E);
5693 Result := No_List;
5694 goto Leave;
5695 end if;
5697 -- Check for error of Type_Invariant'Class applied to an untagged
5698 -- type (check delayed to freeze time when full type is available).
5700 declare
5701 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5702 begin
5703 if Present (Prag)
5704 and then Class_Present (Prag)
5705 and then not Is_Tagged_Type (E)
5706 then
5707 Error_Msg_NE
5708 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5709 Error_Msg_N
5710 ("\can only be specified for a tagged type", Prag);
5711 end if;
5712 end;
5714 -- Deal with special cases of freezing for subtype
5716 if E /= Base_Type (E) then
5718 -- Before we do anything else, a specific test for the case of a
5719 -- size given for an array where the array would need to be packed
5720 -- in order for the size to be honored, but is not. This is the
5721 -- case where implicit packing may apply. The reason we do this so
5722 -- early is that, if we have implicit packing, the layout of the
5723 -- base type is affected, so we must do this before we freeze the
5724 -- base type.
5726 -- We could do this processing only if implicit packing is enabled
5727 -- since in all other cases, the error would be caught by the back
5728 -- end. However, we choose to do the check even if we do not have
5729 -- implicit packing enabled, since this allows us to give a more
5730 -- useful error message (advising use of pragma Implicit_Packing
5731 -- or pragma Pack).
5733 if Is_Array_Type (E) then
5734 declare
5735 Ctyp : constant Entity_Id := Component_Type (E);
5736 Rsiz : constant Uint := RM_Size (Ctyp);
5737 SZ : constant Node_Id := Size_Clause (E);
5738 Btyp : constant Entity_Id := Base_Type (E);
5740 Lo : Node_Id;
5741 Hi : Node_Id;
5742 Indx : Node_Id;
5744 Dim : Uint;
5745 Num_Elmts : Uint := Uint_1;
5746 -- Number of elements in array
5748 begin
5749 -- Check enabling conditions. These are straightforward
5750 -- except for the test for a limited composite type. This
5751 -- eliminates the rare case of a array of limited components
5752 -- where there are issues of whether or not we can go ahead
5753 -- and pack the array (since we can't freely pack and unpack
5754 -- arrays if they are limited).
5756 -- Note that we check the root type explicitly because the
5757 -- whole point is we are doing this test before we have had
5758 -- a chance to freeze the base type (and it is that freeze
5759 -- action that causes stuff to be inherited).
5761 -- The conditions on the size are identical to those used in
5762 -- Freeze_Array_Type to set the Is_Packed flag.
5764 if Has_Size_Clause (E)
5765 and then Known_Static_RM_Size (E)
5766 and then not Is_Packed (E)
5767 and then not Has_Pragma_Pack (E)
5768 and then not Has_Component_Size_Clause (E)
5769 and then Known_Static_RM_Size (Ctyp)
5770 and then Rsiz <= 64
5771 and then not (Addressable (Rsiz)
5772 and then Known_Static_Esize (Ctyp)
5773 and then Esize (Ctyp) = Rsiz)
5774 and then not (Rsiz mod System_Storage_Unit = 0
5775 and then Is_Composite_Type (Ctyp))
5776 and then not Is_Limited_Composite (E)
5777 and then not Is_Packed (Root_Type (E))
5778 and then not Has_Component_Size_Clause (Root_Type (E))
5779 and then not (CodePeer_Mode or GNATprove_Mode)
5780 then
5781 -- Compute number of elements in array
5783 Indx := First_Index (E);
5784 while Present (Indx) loop
5785 Get_Index_Bounds (Indx, Lo, Hi);
5787 if not (Compile_Time_Known_Value (Lo)
5788 and then
5789 Compile_Time_Known_Value (Hi))
5790 then
5791 goto No_Implicit_Packing;
5792 end if;
5794 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5796 if Dim >= 0 then
5797 Num_Elmts := Num_Elmts * Dim;
5798 else
5799 Num_Elmts := Uint_0;
5800 end if;
5802 Next_Index (Indx);
5803 end loop;
5805 -- What we are looking for here is the situation where
5806 -- the RM_Size given would be exactly right if there was
5807 -- a pragma Pack, resulting in the component size being
5808 -- the RM_Size of the component type.
5810 if RM_Size (E) = Num_Elmts * Rsiz then
5812 -- For implicit packing mode, just set the component
5813 -- size and Freeze_Array_Type will do the rest.
5815 if Implicit_Packing then
5816 Set_Component_Size (Btyp, Rsiz);
5818 -- Otherwise give an error message
5820 else
5821 Error_Msg_NE
5822 ("size given for& too small", SZ, E);
5823 Error_Msg_N -- CODEFIX
5824 ("\use explicit pragma Pack or use pragma "
5825 & "Implicit_Packing", SZ);
5826 end if;
5827 end if;
5828 end if;
5829 end;
5830 end if;
5832 <<No_Implicit_Packing>>
5834 -- If ancestor subtype present, freeze that first. Note that this
5835 -- will also get the base type frozen. Need RM reference ???
5837 Atype := Ancestor_Subtype (E);
5839 if Present (Atype) then
5840 Freeze_And_Append (Atype, N, Result);
5842 -- No ancestor subtype present
5844 else
5845 -- See if we have a nearest ancestor that has a predicate.
5846 -- That catches the case of derived type with a predicate.
5847 -- Need RM reference here ???
5849 Atype := Nearest_Ancestor (E);
5851 if Present (Atype) and then Has_Predicates (Atype) then
5852 Freeze_And_Append (Atype, N, Result);
5853 end if;
5855 -- Freeze base type before freezing the entity (RM 13.14(15))
5857 if E /= Base_Type (E) then
5858 Freeze_And_Append (Base_Type (E), N, Result);
5859 end if;
5860 end if;
5862 -- A subtype inherits all the type-related representation aspects
5863 -- from its parents (RM 13.1(8)).
5865 Inherit_Aspects_At_Freeze_Point (E);
5867 -- For a derived type, freeze its parent type first (RM 13.14(15))
5869 elsif Is_Derived_Type (E) then
5870 Freeze_And_Append (Etype (E), N, Result);
5871 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5873 -- A derived type inherits each type-related representation aspect
5874 -- of its parent type that was directly specified before the
5875 -- declaration of the derived type (RM 13.1(15)).
5877 Inherit_Aspects_At_Freeze_Point (E);
5878 end if;
5880 -- Check for incompatible size and alignment for record type
5882 if Warn_On_Size_Alignment
5883 and then Is_Record_Type (E)
5884 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5886 -- If explicit Object_Size clause given assume that the programmer
5887 -- knows what he is doing, and expects the compiler behavior.
5889 and then not Has_Object_Size_Clause (E)
5891 -- Check for size not a multiple of alignment
5893 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5894 then
5895 declare
5896 SC : constant Node_Id := Size_Clause (E);
5897 AC : constant Node_Id := Alignment_Clause (E);
5898 Loc : Node_Id;
5899 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5901 begin
5902 if Present (SC) and then Present (AC) then
5904 -- Give a warning
5906 if Sloc (SC) > Sloc (AC) then
5907 Loc := SC;
5908 Error_Msg_NE
5909 ("?Z?size is not a multiple of alignment for &",
5910 Loc, E);
5911 Error_Msg_Sloc := Sloc (AC);
5912 Error_Msg_Uint_1 := Alignment (E);
5913 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5915 else
5916 Loc := AC;
5917 Error_Msg_NE
5918 ("?Z?size is not a multiple of alignment for &",
5919 Loc, E);
5920 Error_Msg_Sloc := Sloc (SC);
5921 Error_Msg_Uint_1 := RM_Size (E);
5922 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5923 end if;
5925 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5926 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5927 end if;
5928 end;
5929 end if;
5931 -- Array type
5933 if Is_Array_Type (E) then
5934 Freeze_Array_Type (E);
5936 -- For a class-wide type, the corresponding specific type is
5937 -- frozen as well (RM 13.14(15))
5939 elsif Is_Class_Wide_Type (E) then
5940 Freeze_And_Append (Root_Type (E), N, Result);
5942 -- If the base type of the class-wide type is still incomplete,
5943 -- the class-wide remains unfrozen as well. This is legal when
5944 -- E is the formal of a primitive operation of some other type
5945 -- which is being frozen.
5947 if not Is_Frozen (Root_Type (E)) then
5948 Set_Is_Frozen (E, False);
5949 goto Leave;
5950 end if;
5952 -- The equivalent type associated with a class-wide subtype needs
5953 -- to be frozen to ensure that its layout is done.
5955 if Ekind (E) = E_Class_Wide_Subtype
5956 and then Present (Equivalent_Type (E))
5957 then
5958 Freeze_And_Append (Equivalent_Type (E), N, Result);
5959 end if;
5961 -- Generate an itype reference for a library-level class-wide type
5962 -- at the freeze point. Otherwise the first explicit reference to
5963 -- the type may appear in an inner scope which will be rejected by
5964 -- the back-end.
5966 if Is_Itype (E)
5967 and then Is_Compilation_Unit (Scope (E))
5968 then
5969 declare
5970 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5972 begin
5973 Set_Itype (Ref, E);
5975 -- From a gigi point of view, a class-wide subtype derives
5976 -- from its record equivalent type. As a result, the itype
5977 -- reference must appear after the freeze node of the
5978 -- equivalent type or gigi will reject the reference.
5980 if Ekind (E) = E_Class_Wide_Subtype
5981 and then Present (Equivalent_Type (E))
5982 then
5983 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5984 else
5985 Add_To_Result (Ref);
5986 end if;
5987 end;
5988 end if;
5990 -- For a record type or record subtype, freeze all component types
5991 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5992 -- using Is_Record_Type, because we don't want to attempt the freeze
5993 -- for the case of a private type with record extension (we will do
5994 -- that later when the full type is frozen).
5996 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
5997 if not In_Generic_Scope (E) then
5998 Freeze_Record_Type (E);
5999 end if;
6001 -- Report a warning if a discriminated record base type has a
6002 -- convention with language C or C++ applied to it. This check is
6003 -- done even within generic scopes (but not in instantiations),
6004 -- which is why we don't do it as part of Freeze_Record_Type.
6006 Check_Suspicious_Convention (E);
6008 -- For a concurrent type, freeze corresponding record type. This does
6009 -- not correspond to any specific rule in the RM, but the record type
6010 -- is essentially part of the concurrent type. Also freeze all local
6011 -- entities. This includes record types created for entry parameter
6012 -- blocks and whatever local entities may appear in the private part.
6014 elsif Is_Concurrent_Type (E) then
6015 if Present (Corresponding_Record_Type (E)) then
6016 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
6017 end if;
6019 Comp := First_Entity (E);
6020 while Present (Comp) loop
6021 if Is_Type (Comp) then
6022 Freeze_And_Append (Comp, N, Result);
6024 elsif (Ekind (Comp)) /= E_Function then
6026 -- The guard on the presence of the Etype seems to be needed
6027 -- for some CodePeer (-gnatcC) cases, but not clear why???
6029 if Present (Etype (Comp)) then
6030 if Is_Itype (Etype (Comp))
6031 and then Underlying_Type (Scope (Etype (Comp))) = E
6032 then
6033 Undelay_Type (Etype (Comp));
6034 end if;
6036 Freeze_And_Append (Etype (Comp), N, Result);
6037 end if;
6038 end if;
6040 Next_Entity (Comp);
6041 end loop;
6043 -- Private types are required to point to the same freeze node as
6044 -- their corresponding full views. The freeze node itself has to
6045 -- point to the partial view of the entity (because from the partial
6046 -- view, we can retrieve the full view, but not the reverse).
6047 -- However, in order to freeze correctly, we need to freeze the full
6048 -- view. If we are freezing at the end of a scope (or within the
6049 -- scope) of the private type, the partial and full views will have
6050 -- been swapped, the full view appears first in the entity chain and
6051 -- the swapping mechanism ensures that the pointers are properly set
6052 -- (on scope exit).
6054 -- If we encounter the partial view before the full view (e.g. when
6055 -- freezing from another scope), we freeze the full view, and then
6056 -- set the pointers appropriately since we cannot rely on swapping to
6057 -- fix things up (subtypes in an outer scope might not get swapped).
6059 -- If the full view is itself private, the above requirements apply
6060 -- to the underlying full view instead of the full view. But there is
6061 -- no swapping mechanism for the underlying full view so we need to
6062 -- set the pointers appropriately in both cases.
6064 elsif Is_Incomplete_Or_Private_Type (E)
6065 and then not Is_Generic_Type (E)
6066 then
6067 -- The construction of the dispatch table associated with library
6068 -- level tagged types forces freezing of all the primitives of the
6069 -- type, which may cause premature freezing of the partial view.
6070 -- For example:
6072 -- package Pkg is
6073 -- type T is tagged private;
6074 -- type DT is new T with private;
6075 -- procedure Prim (X : in out T; Y : in out DT'Class);
6076 -- private
6077 -- type T is tagged null record;
6078 -- Obj : T;
6079 -- type DT is new T with null record;
6080 -- end;
6082 -- In this case the type will be frozen later by the usual
6083 -- mechanism: an object declaration, an instantiation, or the
6084 -- end of a declarative part.
6086 if Is_Library_Level_Tagged_Type (E)
6087 and then not Present (Full_View (E))
6088 then
6089 Set_Is_Frozen (E, False);
6090 goto Leave;
6092 -- Case of full view present
6094 elsif Present (Full_View (E)) then
6096 -- If full view has already been frozen, then no further
6097 -- processing is required
6099 if Is_Frozen (Full_View (E)) then
6100 Set_Has_Delayed_Freeze (E, False);
6101 Set_Freeze_Node (E, Empty);
6103 -- Otherwise freeze full view and patch the pointers so that
6104 -- the freeze node will elaborate both views in the back end.
6105 -- However, if full view is itself private, freeze underlying
6106 -- full view instead and patch the pointers so that the freeze
6107 -- node will elaborate the three views in the back end.
6109 else
6110 declare
6111 Full : Entity_Id := Full_View (E);
6113 begin
6114 if Is_Private_Type (Full)
6115 and then Present (Underlying_Full_View (Full))
6116 then
6117 Full := Underlying_Full_View (Full);
6118 end if;
6120 Freeze_And_Append (Full, N, Result);
6122 if Full /= Full_View (E)
6123 and then Has_Delayed_Freeze (Full_View (E))
6124 then
6125 F_Node := Freeze_Node (Full);
6127 if Present (F_Node) then
6128 Inherit_Freeze_Node
6129 (Fnod => F_Node,
6130 Typ => Full_View (E));
6131 else
6132 Set_Has_Delayed_Freeze (Full_View (E), False);
6133 Set_Freeze_Node (Full_View (E), Empty);
6134 end if;
6135 end if;
6137 if Has_Delayed_Freeze (E) then
6138 F_Node := Freeze_Node (Full_View (E));
6140 if Present (F_Node) then
6141 Inherit_Freeze_Node
6142 (Fnod => F_Node,
6143 Typ => E);
6144 else
6145 -- {Incomplete,Private}_Subtypes with Full_Views
6146 -- constrained by discriminants.
6148 Set_Has_Delayed_Freeze (E, False);
6149 Set_Freeze_Node (E, Empty);
6150 end if;
6151 end if;
6152 end;
6153 end if;
6155 Check_Debug_Info_Needed (E);
6157 -- AI-117 requires that the convention of a partial view be the
6158 -- same as the convention of the full view. Note that this is a
6159 -- recognized breach of privacy, but it's essential for logical
6160 -- consistency of representation, and the lack of a rule in
6161 -- RM95 was an oversight.
6163 Set_Convention (E, Convention (Full_View (E)));
6165 Set_Size_Known_At_Compile_Time (E,
6166 Size_Known_At_Compile_Time (Full_View (E)));
6168 -- Size information is copied from the full view to the
6169 -- incomplete or private view for consistency.
6171 -- We skip this is the full view is not a type. This is very
6172 -- strange of course, and can only happen as a result of
6173 -- certain illegalities, such as a premature attempt to derive
6174 -- from an incomplete type.
6176 if Is_Type (Full_View (E)) then
6177 Set_Size_Info (E, Full_View (E));
6178 Set_RM_Size (E, RM_Size (Full_View (E)));
6179 end if;
6181 goto Leave;
6183 -- Case of underlying full view present
6185 elsif Is_Private_Type (E)
6186 and then Present (Underlying_Full_View (E))
6187 then
6188 if not Is_Frozen (Underlying_Full_View (E)) then
6189 Freeze_And_Append (Underlying_Full_View (E), N, Result);
6190 end if;
6192 -- Patch the pointers so that the freeze node will elaborate
6193 -- both views in the back end.
6195 if Has_Delayed_Freeze (E) then
6196 F_Node := Freeze_Node (Underlying_Full_View (E));
6198 if Present (F_Node) then
6199 Inherit_Freeze_Node
6200 (Fnod => F_Node,
6201 Typ => E);
6202 else
6203 Set_Has_Delayed_Freeze (E, False);
6204 Set_Freeze_Node (E, Empty);
6205 end if;
6206 end if;
6208 Check_Debug_Info_Needed (E);
6210 goto Leave;
6212 -- Case of no full view present. If entity is derived or subtype,
6213 -- it is safe to freeze, correctness depends on the frozen status
6214 -- of parent. Otherwise it is either premature usage, or a Taft
6215 -- amendment type, so diagnosis is at the point of use and the
6216 -- type might be frozen later.
6218 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
6219 null;
6221 else
6222 Set_Is_Frozen (E, False);
6223 Result := No_List;
6224 goto Leave;
6225 end if;
6227 -- For access subprogram, freeze types of all formals, the return
6228 -- type was already frozen, since it is the Etype of the function.
6229 -- Formal types can be tagged Taft amendment types, but otherwise
6230 -- they cannot be incomplete.
6232 elsif Ekind (E) = E_Subprogram_Type then
6233 Formal := First_Formal (E);
6234 while Present (Formal) loop
6235 if Ekind (Etype (Formal)) = E_Incomplete_Type
6236 and then No (Full_View (Etype (Formal)))
6237 then
6238 if Is_Tagged_Type (Etype (Formal)) then
6239 null;
6241 -- AI05-151: Incomplete types are allowed in access to
6242 -- subprogram specifications.
6244 elsif Ada_Version < Ada_2012 then
6245 Error_Msg_NE
6246 ("invalid use of incomplete type&", E, Etype (Formal));
6247 end if;
6248 end if;
6250 Freeze_And_Append (Etype (Formal), N, Result);
6251 Next_Formal (Formal);
6252 end loop;
6254 Freeze_Subprogram (E);
6256 -- For access to a protected subprogram, freeze the equivalent type
6257 -- (however this is not set if we are not generating code or if this
6258 -- is an anonymous type used just for resolution).
6260 elsif Is_Access_Protected_Subprogram_Type (E) then
6261 if Present (Equivalent_Type (E)) then
6262 Freeze_And_Append (Equivalent_Type (E), N, Result);
6263 end if;
6264 end if;
6266 -- Generic types are never seen by the back-end, and are also not
6267 -- processed by the expander (since the expander is turned off for
6268 -- generic processing), so we never need freeze nodes for them.
6270 if Is_Generic_Type (E) then
6271 goto Leave;
6272 end if;
6274 -- Some special processing for non-generic types to complete
6275 -- representation details not known till the freeze point.
6277 if Is_Fixed_Point_Type (E) then
6278 Freeze_Fixed_Point_Type (E);
6280 -- Some error checks required for ordinary fixed-point type. Defer
6281 -- these till the freeze-point since we need the small and range
6282 -- values. We only do these checks for base types
6284 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
6285 if Small_Value (E) < Ureal_2_M_80 then
6286 Error_Msg_Name_1 := Name_Small;
6287 Error_Msg_N
6288 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
6290 elsif Small_Value (E) > Ureal_2_80 then
6291 Error_Msg_Name_1 := Name_Small;
6292 Error_Msg_N
6293 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
6294 end if;
6296 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
6297 Error_Msg_Name_1 := Name_First;
6298 Error_Msg_N
6299 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
6300 end if;
6302 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
6303 Error_Msg_Name_1 := Name_Last;
6304 Error_Msg_N
6305 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
6306 end if;
6307 end if;
6309 elsif Is_Enumeration_Type (E) then
6310 Freeze_Enumeration_Type (E);
6312 elsif Is_Integer_Type (E) then
6313 Adjust_Esize_For_Alignment (E);
6315 if Is_Modular_Integer_Type (E)
6316 and then Warn_On_Suspicious_Modulus_Value
6317 then
6318 Check_Suspicious_Modulus (E);
6319 end if;
6321 -- The pool applies to named and anonymous access types, but not
6322 -- to subprogram and to internal types generated for 'Access
6323 -- references.
6325 elsif Is_Access_Type (E)
6326 and then not Is_Access_Subprogram_Type (E)
6327 and then Ekind (E) /= E_Access_Attribute_Type
6328 then
6329 -- If a pragma Default_Storage_Pool applies, and this type has no
6330 -- Storage_Pool or Storage_Size clause (which must have occurred
6331 -- before the freezing point), then use the default. This applies
6332 -- only to base types.
6334 -- None of this applies to access to subprograms, for which there
6335 -- are clearly no pools.
6337 if Present (Default_Pool)
6338 and then Is_Base_Type (E)
6339 and then not Has_Storage_Size_Clause (E)
6340 and then No (Associated_Storage_Pool (E))
6341 then
6342 -- Case of pragma Default_Storage_Pool (null)
6344 if Nkind (Default_Pool) = N_Null then
6345 Set_No_Pool_Assigned (E);
6347 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6349 else
6350 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6351 end if;
6352 end if;
6354 -- Check restriction for standard storage pool
6356 if No (Associated_Storage_Pool (E)) then
6357 Check_Restriction (No_Standard_Storage_Pools, E);
6358 end if;
6360 -- Deal with error message for pure access type. This is not an
6361 -- error in Ada 2005 if there is no pool (see AI-366).
6363 if Is_Pure_Unit_Access_Type (E)
6364 and then (Ada_Version < Ada_2005
6365 or else not No_Pool_Assigned (E))
6366 and then not Is_Generic_Unit (Scope (E))
6367 then
6368 Error_Msg_N ("named access type not allowed in pure unit", E);
6370 if Ada_Version >= Ada_2005 then
6371 Error_Msg_N
6372 ("\would be legal if Storage_Size of 0 given??", E);
6374 elsif No_Pool_Assigned (E) then
6375 Error_Msg_N
6376 ("\would be legal in Ada 2005??", E);
6378 else
6379 Error_Msg_N
6380 ("\would be legal in Ada 2005 if "
6381 & "Storage_Size of 0 given??", E);
6382 end if;
6383 end if;
6384 end if;
6386 -- Case of composite types
6388 if Is_Composite_Type (E) then
6390 -- AI-117 requires that all new primitives of a tagged type must
6391 -- inherit the convention of the full view of the type. Inherited
6392 -- and overriding operations are defined to inherit the convention
6393 -- of their parent or overridden subprogram (also specified in
6394 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6395 -- and New_Overloaded_Entity). Here we set the convention of
6396 -- primitives that are still convention Ada, which will ensure
6397 -- that any new primitives inherit the type's convention. Class-
6398 -- wide types can have a foreign convention inherited from their
6399 -- specific type, but are excluded from this since they don't have
6400 -- any associated primitives.
6402 if Is_Tagged_Type (E)
6403 and then not Is_Class_Wide_Type (E)
6404 and then Convention (E) /= Convention_Ada
6405 then
6406 declare
6407 Prim_List : constant Elist_Id := Primitive_Operations (E);
6408 Prim : Elmt_Id;
6410 begin
6411 Prim := First_Elmt (Prim_List);
6412 while Present (Prim) loop
6413 if Convention (Node (Prim)) = Convention_Ada then
6414 Set_Convention (Node (Prim), Convention (E));
6415 end if;
6417 Next_Elmt (Prim);
6418 end loop;
6419 end;
6420 end if;
6422 -- If the type is a simple storage pool type, then this is where
6423 -- we attempt to locate and validate its Allocate, Deallocate, and
6424 -- Storage_Size operations (the first is required, and the latter
6425 -- two are optional). We also verify that the full type for a
6426 -- private type is allowed to be a simple storage pool type.
6428 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6429 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6430 then
6431 -- If the type is marked Has_Private_Declaration, then this is
6432 -- a full type for a private type that was specified with the
6433 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6434 -- pragma is allowed for the full type (for example, it can't
6435 -- be an array type, or a nonlimited record type).
6437 if Has_Private_Declaration (E) then
6438 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6439 and then not Is_Private_Type (E)
6440 then
6441 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6442 Error_Msg_N
6443 ("pragma% can only apply to full type that is an " &
6444 "explicitly limited type", E);
6445 end if;
6446 end if;
6448 Validate_Simple_Pool_Ops : declare
6449 Pool_Type : Entity_Id renames E;
6450 Address_Type : constant Entity_Id := RTE (RE_Address);
6451 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6453 procedure Validate_Simple_Pool_Op_Formal
6454 (Pool_Op : Entity_Id;
6455 Pool_Op_Formal : in out Entity_Id;
6456 Expected_Mode : Formal_Kind;
6457 Expected_Type : Entity_Id;
6458 Formal_Name : String;
6459 OK_Formal : in out Boolean);
6460 -- Validate one formal Pool_Op_Formal of the candidate pool
6461 -- operation Pool_Op. The formal must be of Expected_Type
6462 -- and have mode Expected_Mode. OK_Formal will be set to
6463 -- False if the formal doesn't match. If OK_Formal is False
6464 -- on entry, then the formal will effectively be ignored
6465 -- (because validation of the pool op has already failed).
6466 -- Upon return, Pool_Op_Formal will be updated to the next
6467 -- formal, if any.
6469 procedure Validate_Simple_Pool_Operation
6470 (Op_Name : Name_Id);
6471 -- Search for and validate a simple pool operation with the
6472 -- name Op_Name. If the name is Allocate, then there must be
6473 -- exactly one such primitive operation for the simple pool
6474 -- type. If the name is Deallocate or Storage_Size, then
6475 -- there can be at most one such primitive operation. The
6476 -- profile of the located primitive must conform to what
6477 -- is expected for each operation.
6479 ------------------------------------
6480 -- Validate_Simple_Pool_Op_Formal --
6481 ------------------------------------
6483 procedure Validate_Simple_Pool_Op_Formal
6484 (Pool_Op : Entity_Id;
6485 Pool_Op_Formal : in out Entity_Id;
6486 Expected_Mode : Formal_Kind;
6487 Expected_Type : Entity_Id;
6488 Formal_Name : String;
6489 OK_Formal : in out Boolean)
6491 begin
6492 -- If OK_Formal is False on entry, then simply ignore
6493 -- the formal, because an earlier formal has already
6494 -- been flagged.
6496 if not OK_Formal then
6497 return;
6499 -- If no formal is passed in, then issue an error for a
6500 -- missing formal.
6502 elsif not Present (Pool_Op_Formal) then
6503 Error_Msg_NE
6504 ("simple storage pool op missing formal " &
6505 Formal_Name & " of type&", Pool_Op, Expected_Type);
6506 OK_Formal := False;
6508 return;
6509 end if;
6511 if Etype (Pool_Op_Formal) /= Expected_Type then
6513 -- If the pool type was expected for this formal, then
6514 -- this will not be considered a candidate operation
6515 -- for the simple pool, so we unset OK_Formal so that
6516 -- the op and any later formals will be ignored.
6518 if Expected_Type = Pool_Type then
6519 OK_Formal := False;
6521 return;
6523 else
6524 Error_Msg_NE
6525 ("wrong type for formal " & Formal_Name &
6526 " of simple storage pool op; expected type&",
6527 Pool_Op_Formal, Expected_Type);
6528 end if;
6529 end if;
6531 -- Issue error if formal's mode is not the expected one
6533 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6534 Error_Msg_N
6535 ("wrong mode for formal of simple storage pool op",
6536 Pool_Op_Formal);
6537 end if;
6539 -- Advance to the next formal
6541 Next_Formal (Pool_Op_Formal);
6542 end Validate_Simple_Pool_Op_Formal;
6544 ------------------------------------
6545 -- Validate_Simple_Pool_Operation --
6546 ------------------------------------
6548 procedure Validate_Simple_Pool_Operation
6549 (Op_Name : Name_Id)
6551 Op : Entity_Id;
6552 Found_Op : Entity_Id := Empty;
6553 Formal : Entity_Id;
6554 Is_OK : Boolean;
6556 begin
6557 pragma Assert
6558 (Nam_In (Op_Name, Name_Allocate,
6559 Name_Deallocate,
6560 Name_Storage_Size));
6562 Error_Msg_Name_1 := Op_Name;
6564 -- For each homonym declared immediately in the scope
6565 -- of the simple storage pool type, determine whether
6566 -- the homonym is an operation of the pool type, and,
6567 -- if so, check that its profile is as expected for
6568 -- a simple pool operation of that name.
6570 Op := Get_Name_Entity_Id (Op_Name);
6571 while Present (Op) loop
6572 if Ekind_In (Op, E_Function, E_Procedure)
6573 and then Scope (Op) = Current_Scope
6574 then
6575 Formal := First_Entity (Op);
6577 Is_OK := True;
6579 -- The first parameter must be of the pool type
6580 -- in order for the operation to qualify.
6582 if Op_Name = Name_Storage_Size then
6583 Validate_Simple_Pool_Op_Formal
6584 (Op, Formal, E_In_Parameter, Pool_Type,
6585 "Pool", Is_OK);
6586 else
6587 Validate_Simple_Pool_Op_Formal
6588 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6589 "Pool", Is_OK);
6590 end if;
6592 -- If another operation with this name has already
6593 -- been located for the type, then flag an error,
6594 -- since we only allow the type to have a single
6595 -- such primitive.
6597 if Present (Found_Op) and then Is_OK then
6598 Error_Msg_NE
6599 ("only one % operation allowed for " &
6600 "simple storage pool type&", Op, Pool_Type);
6601 end if;
6603 -- In the case of Allocate and Deallocate, a formal
6604 -- of type System.Address is required.
6606 if Op_Name = Name_Allocate then
6607 Validate_Simple_Pool_Op_Formal
6608 (Op, Formal, E_Out_Parameter,
6609 Address_Type, "Storage_Address", Is_OK);
6611 elsif Op_Name = Name_Deallocate then
6612 Validate_Simple_Pool_Op_Formal
6613 (Op, Formal, E_In_Parameter,
6614 Address_Type, "Storage_Address", Is_OK);
6615 end if;
6617 -- In the case of Allocate and Deallocate, formals
6618 -- of type Storage_Count are required as the third
6619 -- and fourth parameters.
6621 if Op_Name /= Name_Storage_Size then
6622 Validate_Simple_Pool_Op_Formal
6623 (Op, Formal, E_In_Parameter,
6624 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6625 Validate_Simple_Pool_Op_Formal
6626 (Op, Formal, E_In_Parameter,
6627 Stg_Cnt_Type, "Alignment", Is_OK);
6628 end if;
6630 -- If no mismatched formals have been found (Is_OK)
6631 -- and no excess formals are present, then this
6632 -- operation has been validated, so record it.
6634 if not Present (Formal) and then Is_OK then
6635 Found_Op := Op;
6636 end if;
6637 end if;
6639 Op := Homonym (Op);
6640 end loop;
6642 -- There must be a valid Allocate operation for the type,
6643 -- so issue an error if none was found.
6645 if Op_Name = Name_Allocate
6646 and then not Present (Found_Op)
6647 then
6648 Error_Msg_N ("missing % operation for simple " &
6649 "storage pool type", Pool_Type);
6651 elsif Present (Found_Op) then
6653 -- Simple pool operations can't be abstract
6655 if Is_Abstract_Subprogram (Found_Op) then
6656 Error_Msg_N
6657 ("simple storage pool operation must not be " &
6658 "abstract", Found_Op);
6659 end if;
6661 -- The Storage_Size operation must be a function with
6662 -- Storage_Count as its result type.
6664 if Op_Name = Name_Storage_Size then
6665 if Ekind (Found_Op) = E_Procedure then
6666 Error_Msg_N
6667 ("% operation must be a function", Found_Op);
6669 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6670 Error_Msg_NE
6671 ("wrong result type for%, expected type&",
6672 Found_Op, Stg_Cnt_Type);
6673 end if;
6675 -- Allocate and Deallocate must be procedures
6677 elsif Ekind (Found_Op) = E_Function then
6678 Error_Msg_N
6679 ("% operation must be a procedure", Found_Op);
6680 end if;
6681 end if;
6682 end Validate_Simple_Pool_Operation;
6684 -- Start of processing for Validate_Simple_Pool_Ops
6686 begin
6687 Validate_Simple_Pool_Operation (Name_Allocate);
6688 Validate_Simple_Pool_Operation (Name_Deallocate);
6689 Validate_Simple_Pool_Operation (Name_Storage_Size);
6690 end Validate_Simple_Pool_Ops;
6691 end if;
6692 end if;
6694 -- Now that all types from which E may depend are frozen, see if the
6695 -- size is known at compile time, if it must be unsigned, or if
6696 -- strict alignment is required
6698 Check_Compile_Time_Size (E);
6699 Check_Unsigned_Type (E);
6701 if Base_Type (E) = E then
6702 Check_Strict_Alignment (E);
6703 end if;
6705 -- Do not allow a size clause for a type which does not have a size
6706 -- that is known at compile time
6708 if Has_Size_Clause (E)
6709 and then not Size_Known_At_Compile_Time (E)
6710 then
6711 -- Suppress this message if errors posted on E, even if we are
6712 -- in all errors mode, since this is often a junk message
6714 if not Error_Posted (E) then
6715 Error_Msg_N
6716 ("size clause not allowed for variable length type",
6717 Size_Clause (E));
6718 end if;
6719 end if;
6721 -- Now we set/verify the representation information, in particular
6722 -- the size and alignment values. This processing is not required for
6723 -- generic types, since generic types do not play any part in code
6724 -- generation, and so the size and alignment values for such types
6725 -- are irrelevant. Ditto for types declared within a generic unit,
6726 -- which may have components that depend on generic parameters, and
6727 -- that will be recreated in an instance.
6729 if Inside_A_Generic then
6730 null;
6732 -- Otherwise we call the layout procedure
6734 else
6735 Layout_Type (E);
6736 end if;
6738 -- If this is an access to subprogram whose designated type is itself
6739 -- a subprogram type, the return type of this anonymous subprogram
6740 -- type must be decorated as well.
6742 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6743 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6744 then
6745 Layout_Type (Etype (Designated_Type (E)));
6746 end if;
6748 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6749 -- this is where we analye the expression (after the type is frozen,
6750 -- since in the case of Default_Value, we are analyzing with the
6751 -- type itself, and we treat Default_Component_Value similarly for
6752 -- the sake of uniformity).
6754 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6755 declare
6756 Nam : Name_Id;
6757 Exp : Node_Id;
6758 Typ : Entity_Id;
6760 begin
6761 if Is_Scalar_Type (E) then
6762 Nam := Name_Default_Value;
6763 Typ := E;
6764 Exp := Default_Aspect_Value (Typ);
6765 else
6766 Nam := Name_Default_Component_Value;
6767 Typ := Component_Type (E);
6768 Exp := Default_Aspect_Component_Value (E);
6769 end if;
6771 Analyze_And_Resolve (Exp, Typ);
6773 if Etype (Exp) /= Any_Type then
6774 if not Is_OK_Static_Expression (Exp) then
6775 Error_Msg_Name_1 := Nam;
6776 Flag_Non_Static_Expr
6777 ("aspect% requires static expression", Exp);
6778 end if;
6779 end if;
6780 end;
6781 end if;
6783 -- End of freeze processing for type entities
6784 end if;
6786 -- Here is where we logically freeze the current entity. If it has a
6787 -- freeze node, then this is the point at which the freeze node is
6788 -- linked into the result list.
6790 if Has_Delayed_Freeze (E) then
6792 -- If a freeze node is already allocated, use it, otherwise allocate
6793 -- a new one. The preallocation happens in the case of anonymous base
6794 -- types, where we preallocate so that we can set First_Subtype_Link.
6795 -- Note that we reset the Sloc to the current freeze location.
6797 if Present (Freeze_Node (E)) then
6798 F_Node := Freeze_Node (E);
6799 Set_Sloc (F_Node, Loc);
6801 else
6802 F_Node := New_Node (N_Freeze_Entity, Loc);
6803 Set_Freeze_Node (E, F_Node);
6804 Set_Access_Types_To_Process (F_Node, No_Elist);
6805 Set_TSS_Elist (F_Node, No_Elist);
6806 Set_Actions (F_Node, No_List);
6807 end if;
6809 Set_Entity (F_Node, E);
6810 Add_To_Result (F_Node);
6812 -- A final pass over record types with discriminants. If the type
6813 -- has an incomplete declaration, there may be constrained access
6814 -- subtypes declared elsewhere, which do not depend on the discrimi-
6815 -- nants of the type, and which are used as component types (i.e.
6816 -- the full view is a recursive type). The designated types of these
6817 -- subtypes can only be elaborated after the type itself, and they
6818 -- need an itype reference.
6820 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6821 declare
6822 Comp : Entity_Id;
6823 IR : Node_Id;
6824 Typ : Entity_Id;
6826 begin
6827 Comp := First_Component (E);
6828 while Present (Comp) loop
6829 Typ := Etype (Comp);
6831 if Ekind (Comp) = E_Component
6832 and then Is_Access_Type (Typ)
6833 and then Scope (Typ) /= E
6834 and then Base_Type (Designated_Type (Typ)) = E
6835 and then Is_Itype (Designated_Type (Typ))
6836 then
6837 IR := Make_Itype_Reference (Sloc (Comp));
6838 Set_Itype (IR, Designated_Type (Typ));
6839 Append (IR, Result);
6840 end if;
6842 Next_Component (Comp);
6843 end loop;
6844 end;
6845 end if;
6846 end if;
6848 -- When a type is frozen, the first subtype of the type is frozen as
6849 -- well (RM 13.14(15)). This has to be done after freezing the type,
6850 -- since obviously the first subtype depends on its own base type.
6852 if Is_Type (E) then
6853 Freeze_And_Append (First_Subtype (E), N, Result);
6855 -- If we just froze a tagged non-class wide record, then freeze the
6856 -- corresponding class-wide type. This must be done after the tagged
6857 -- type itself is frozen, because the class-wide type refers to the
6858 -- tagged type which generates the class.
6860 if Is_Tagged_Type (E)
6861 and then not Is_Class_Wide_Type (E)
6862 and then Present (Class_Wide_Type (E))
6863 then
6864 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6865 end if;
6866 end if;
6868 Check_Debug_Info_Needed (E);
6870 -- Special handling for subprograms
6872 if Is_Subprogram (E) then
6874 -- If subprogram has address clause then reset Is_Public flag, since
6875 -- we do not want the backend to generate external references.
6877 if Present (Address_Clause (E))
6878 and then not Is_Library_Level_Entity (E)
6879 then
6880 Set_Is_Public (E, False);
6881 end if;
6882 end if;
6884 <<Leave>>
6885 Restore_Ghost_Region (Saved_GM, Saved_IGR);
6887 return Result;
6888 end Freeze_Entity;
6890 -----------------------------
6891 -- Freeze_Enumeration_Type --
6892 -----------------------------
6894 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6895 begin
6896 -- By default, if no size clause is present, an enumeration type with
6897 -- Convention C is assumed to interface to a C enum and has integer
6898 -- size, except for a boolean type because it is assumed to interface
6899 -- to _Bool introduced in C99. This applies to types. For subtypes,
6900 -- verify that its base type has no size clause either. Treat other
6901 -- foreign conventions in the same way, and also make sure alignment
6902 -- is set right.
6904 if Has_Foreign_Convention (Typ)
6905 and then not Is_Boolean_Type (Typ)
6906 and then not Has_Size_Clause (Typ)
6907 and then not Has_Size_Clause (Base_Type (Typ))
6908 and then Esize (Typ) < Standard_Integer_Size
6910 -- Don't do this if Short_Enums on target
6912 and then not Target_Short_Enums
6913 then
6914 Init_Esize (Typ, Standard_Integer_Size);
6915 Set_Alignment (Typ, Alignment (Standard_Integer));
6917 -- Normal Ada case or size clause present or not Long_C_Enums on target
6919 else
6920 -- If the enumeration type interfaces to C, and it has a size clause
6921 -- that specifies less than int size, it warrants a warning. The
6922 -- user may intend the C type to be an enum or a char, so this is
6923 -- not by itself an error that the Ada compiler can detect, but it
6924 -- it is a worth a heads-up. For Boolean and Character types we
6925 -- assume that the programmer has the proper C type in mind.
6927 if Convention (Typ) = Convention_C
6928 and then Has_Size_Clause (Typ)
6929 and then Esize (Typ) /= Esize (Standard_Integer)
6930 and then not Is_Boolean_Type (Typ)
6931 and then not Is_Character_Type (Typ)
6933 -- Don't do this if Short_Enums on target
6935 and then not Target_Short_Enums
6936 then
6937 Error_Msg_N
6938 ("C enum types have the size of a C int??", Size_Clause (Typ));
6939 end if;
6941 Adjust_Esize_For_Alignment (Typ);
6942 end if;
6943 end Freeze_Enumeration_Type;
6945 -----------------------
6946 -- Freeze_Expression --
6947 -----------------------
6949 procedure Freeze_Expression (N : Node_Id) is
6951 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6952 -- If the expression is an array aggregate, the type of the component
6953 -- expressions is also frozen. If the component type is an access type
6954 -- and the expressions include allocators, the designed type is frozen
6955 -- as well.
6957 function In_Expanded_Body (N : Node_Id) return Boolean;
6958 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6959 -- it is the handled statement sequence of an expander-generated
6960 -- subprogram (init proc, stream subprogram, or renaming as body).
6961 -- If so, this is not a freezing context.
6963 -----------------------------------------
6964 -- Find_Aggregate_Component_Desig_Type --
6965 -----------------------------------------
6967 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6968 Assoc : Node_Id;
6969 Exp : Node_Id;
6971 begin
6972 if Present (Expressions (N)) then
6973 Exp := First (Expressions (N));
6974 while Present (Exp) loop
6975 if Nkind (Exp) = N_Allocator then
6976 return Designated_Type (Component_Type (Etype (N)));
6977 end if;
6979 Next (Exp);
6980 end loop;
6981 end if;
6983 if Present (Component_Associations (N)) then
6984 Assoc := First (Component_Associations (N));
6985 while Present (Assoc) loop
6986 if Nkind (Expression (Assoc)) = N_Allocator then
6987 return Designated_Type (Component_Type (Etype (N)));
6988 end if;
6990 Next (Assoc);
6991 end loop;
6992 end if;
6994 return Empty;
6995 end Find_Aggregate_Component_Desig_Type;
6997 ----------------------
6998 -- In_Expanded_Body --
6999 ----------------------
7001 function In_Expanded_Body (N : Node_Id) return Boolean is
7002 P : Node_Id;
7003 Id : Entity_Id;
7005 begin
7006 if Nkind (N) = N_Subprogram_Body then
7007 P := N;
7008 else
7009 P := Parent (N);
7010 end if;
7012 if Nkind (P) /= N_Subprogram_Body then
7013 return False;
7015 else
7016 Id := Defining_Unit_Name (Specification (P));
7018 -- The following are expander-created bodies, or bodies that
7019 -- are not freeze points.
7021 if Nkind (Id) = N_Defining_Identifier
7022 and then (Is_Init_Proc (Id)
7023 or else Is_TSS (Id, TSS_Stream_Input)
7024 or else Is_TSS (Id, TSS_Stream_Output)
7025 or else Is_TSS (Id, TSS_Stream_Read)
7026 or else Is_TSS (Id, TSS_Stream_Write)
7027 or else Nkind_In (Original_Node (P),
7028 N_Subprogram_Renaming_Declaration,
7029 N_Expression_Function))
7030 then
7031 return True;
7032 else
7033 return False;
7034 end if;
7035 end if;
7036 end In_Expanded_Body;
7038 -- Local variables
7040 In_Spec_Exp : constant Boolean := In_Spec_Expression;
7042 Desig_Typ : Entity_Id;
7043 Nam : Entity_Id;
7044 P : Node_Id;
7045 Parent_P : Node_Id;
7046 Typ : Entity_Id;
7048 Freeze_Outside : Boolean := False;
7049 -- This flag is set true if the entity must be frozen outside the
7050 -- current subprogram. This happens in the case of expander generated
7051 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
7052 -- not freeze all entities like other bodies, but which nevertheless
7053 -- may reference entities that have to be frozen before the body and
7054 -- obviously cannot be frozen inside the body.
7056 Freeze_Outside_Subp : Entity_Id := Empty;
7057 -- This entity is set if we are inside a subprogram body and the frozen
7058 -- entity is defined in the enclosing scope of this subprogram. In such
7059 -- case we must skip the subprogram body when climbing the parents chain
7060 -- to locate the correct placement for the freezing node.
7062 -- Start of processing for Freeze_Expression
7064 begin
7065 -- Immediate return if freezing is inhibited. This flag is set by the
7066 -- analyzer to stop freezing on generated expressions that would cause
7067 -- freezing if they were in the source program, but which are not
7068 -- supposed to freeze, since they are created.
7070 if Must_Not_Freeze (N) then
7071 return;
7072 end if;
7074 -- If expression is non-static, then it does not freeze in a default
7075 -- expression, see section "Handling of Default Expressions" in the
7076 -- spec of package Sem for further details. Note that we have to make
7077 -- sure that we actually have a real expression (if we have a subtype
7078 -- indication, we can't test Is_OK_Static_Expression). However, we
7079 -- exclude the case of the prefix of an attribute of a static scalar
7080 -- subtype from this early return, because static subtype attributes
7081 -- should always cause freezing, even in default expressions, but
7082 -- the attribute may not have been marked as static yet (because in
7083 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
7084 -- Freeze_Expression on the prefix).
7086 if In_Spec_Exp
7087 and then Nkind (N) in N_Subexpr
7088 and then not Is_OK_Static_Expression (N)
7089 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7090 or else not (Is_Entity_Name (N)
7091 and then Is_Type (Entity (N))
7092 and then Is_OK_Static_Subtype (Entity (N))))
7093 then
7094 return;
7095 end if;
7097 -- Freeze type of expression if not frozen already
7099 Typ := Empty;
7101 if Nkind (N) in N_Has_Etype then
7102 if not Is_Frozen (Etype (N)) then
7103 Typ := Etype (N);
7105 -- Base type may be an derived numeric type that is frozen at the
7106 -- point of declaration, but first_subtype is still unfrozen.
7108 elsif not Is_Frozen (First_Subtype (Etype (N))) then
7109 Typ := First_Subtype (Etype (N));
7110 end if;
7111 end if;
7113 -- For entity name, freeze entity if not frozen already. A special
7114 -- exception occurs for an identifier that did not come from source.
7115 -- We don't let such identifiers freeze a non-internal entity, i.e.
7116 -- an entity that did come from source, since such an identifier was
7117 -- generated by the expander, and cannot have any semantic effect on
7118 -- the freezing semantics. For example, this stops the parameter of
7119 -- an initialization procedure from freezing the variable.
7121 if Is_Entity_Name (N)
7122 and then not Is_Frozen (Entity (N))
7123 and then (Nkind (N) /= N_Identifier
7124 or else Comes_From_Source (N)
7125 or else not Comes_From_Source (Entity (N)))
7126 then
7127 Nam := Entity (N);
7129 if Present (Nam) and then Ekind (Nam) = E_Function then
7130 Check_Expression_Function (N, Nam);
7131 end if;
7133 else
7134 Nam := Empty;
7135 end if;
7137 -- For an allocator freeze designated type if not frozen already
7139 -- For an aggregate whose component type is an access type, freeze the
7140 -- designated type now, so that its freeze does not appear within the
7141 -- loop that might be created in the expansion of the aggregate. If the
7142 -- designated type is a private type without full view, the expression
7143 -- cannot contain an allocator, so the type is not frozen.
7145 -- For a function, we freeze the entity when the subprogram declaration
7146 -- is frozen, but a function call may appear in an initialization proc.
7147 -- before the declaration is frozen. We need to generate the extra
7148 -- formals, if any, to ensure that the expansion of the call includes
7149 -- the proper actuals. This only applies to Ada subprograms, not to
7150 -- imported ones.
7152 Desig_Typ := Empty;
7154 case Nkind (N) is
7155 when N_Allocator =>
7156 Desig_Typ := Designated_Type (Etype (N));
7158 when N_Aggregate =>
7159 if Is_Array_Type (Etype (N))
7160 and then Is_Access_Type (Component_Type (Etype (N)))
7161 then
7162 -- Check whether aggregate includes allocators
7164 Desig_Typ := Find_Aggregate_Component_Desig_Type;
7165 end if;
7167 when N_Indexed_Component
7168 | N_Selected_Component
7169 | N_Slice
7171 if Is_Access_Type (Etype (Prefix (N))) then
7172 Desig_Typ := Designated_Type (Etype (Prefix (N)));
7173 end if;
7175 when N_Identifier =>
7176 if Present (Nam)
7177 and then Ekind (Nam) = E_Function
7178 and then Nkind (Parent (N)) = N_Function_Call
7179 and then Convention (Nam) = Convention_Ada
7180 then
7181 Create_Extra_Formals (Nam);
7182 end if;
7184 when others =>
7185 null;
7186 end case;
7188 if Desig_Typ /= Empty
7189 and then (Is_Frozen (Desig_Typ)
7190 or else (not Is_Fully_Defined (Desig_Typ)))
7191 then
7192 Desig_Typ := Empty;
7193 end if;
7195 -- All done if nothing needs freezing
7197 if No (Typ)
7198 and then No (Nam)
7199 and then No (Desig_Typ)
7200 then
7201 return;
7202 end if;
7204 -- Check if we are inside a subprogram body and the frozen entity is
7205 -- defined in the enclosing scope of this subprogram. In such case we
7206 -- must skip the subprogram when climbing the parents chain to locate
7207 -- the correct placement for the freezing node.
7209 -- This is not needed for default expressions and other spec expressions
7210 -- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb)
7211 -- takes care of placing them at the proper place, after the generic
7212 -- unit.
7214 if Present (Nam)
7215 and then Scope (Nam) /= Current_Scope
7216 and then not (In_Spec_Exp and then Inside_A_Generic)
7217 then
7218 declare
7219 S : Entity_Id := Current_Scope;
7221 begin
7222 while Present (S)
7223 and then In_Same_Source_Unit (Nam, S)
7224 loop
7225 if Scope (S) = Scope (Nam) then
7226 if Is_Subprogram (S) and then Has_Completion (S) then
7227 Freeze_Outside_Subp := S;
7228 end if;
7230 exit;
7231 end if;
7233 S := Scope (S);
7234 end loop;
7235 end;
7236 end if;
7238 -- Examine the enclosing context by climbing the parent chain
7240 -- If we identified that we must freeze the entity outside of a given
7241 -- subprogram then we just climb up to that subprogram checking if some
7242 -- enclosing node is marked as Must_Not_Freeze (since in such case we
7243 -- must not freeze yet this entity).
7245 P := N;
7247 if Present (Freeze_Outside_Subp) then
7248 loop
7249 -- Do not freeze the current expression if another expression in
7250 -- the chain of parents must not be frozen.
7252 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7253 return;
7254 end if;
7256 Parent_P := Parent (P);
7258 -- If we don't have a parent, then we are not in a well-formed
7259 -- tree. This is an unusual case, but there are some legitimate
7260 -- situations in which this occurs, notably when the expressions
7261 -- in the range of a type declaration are resolved. We simply
7262 -- ignore the freeze request in this case.
7264 if No (Parent_P) then
7265 return;
7266 end if;
7268 exit when
7269 Nkind (Parent_P) = N_Subprogram_Body
7270 and then Unique_Defining_Entity (Parent_P) =
7271 Freeze_Outside_Subp;
7273 P := Parent_P;
7274 end loop;
7276 -- Otherwise the traversal serves two purposes - to detect scenarios
7277 -- where freezeing is not needed and to find the proper insertion point
7278 -- for the freeze nodes. Although somewhat similar to Insert_Actions,
7279 -- this traversal is freezing semantics-sensitive. Inserting freeze
7280 -- nodes blindly in the tree may result in types being frozen too early.
7282 else
7283 loop
7284 -- Do not freeze the current expression if another expression in
7285 -- the chain of parents must not be frozen.
7287 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
7288 return;
7289 end if;
7291 Parent_P := Parent (P);
7293 -- If we don't have a parent, then we are not in a well-formed
7294 -- tree. This is an unusual case, but there are some legitimate
7295 -- situations in which this occurs, notably when the expressions
7296 -- in the range of a type declaration are resolved. We simply
7297 -- ignore the freeze request in this case. Is this right ???
7299 if No (Parent_P) then
7300 return;
7301 end if;
7303 -- See if we have got to an appropriate point in the tree
7305 case Nkind (Parent_P) is
7307 -- A special test for the exception of (RM 13.14(8)) for the
7308 -- case of per-object expressions (RM 3.8(18)) occurring in
7309 -- component definition or a discrete subtype definition. Note
7310 -- that we test for a component declaration which includes both
7311 -- cases we are interested in, and furthermore the tree does
7312 -- not have explicit nodes for either of these two constructs.
7314 when N_Component_Declaration =>
7316 -- The case we want to test for here is an identifier that
7317 -- is a per-object expression, this is either a discriminant
7318 -- that appears in a context other than the component
7319 -- declaration or it is a reference to the type of the
7320 -- enclosing construct.
7322 -- For either of these cases, we skip the freezing
7324 if not In_Spec_Expression
7325 and then Nkind (N) = N_Identifier
7326 and then (Present (Entity (N)))
7327 then
7328 -- We recognize the discriminant case by just looking for
7329 -- a reference to a discriminant. It can only be one for
7330 -- the enclosing construct. Skip freezing in this case.
7332 if Ekind (Entity (N)) = E_Discriminant then
7333 return;
7335 -- For the case of a reference to the enclosing record,
7336 -- (or task or protected type), we look for a type that
7337 -- matches the current scope.
7339 elsif Entity (N) = Current_Scope then
7340 return;
7341 end if;
7342 end if;
7344 -- If we have an enumeration literal that appears as the choice
7345 -- in the aggregate of an enumeration representation clause,
7346 -- then freezing does not occur (RM 13.14(10)).
7348 when N_Enumeration_Representation_Clause =>
7350 -- The case we are looking for is an enumeration literal
7352 if Nkind_In (N, N_Identifier, N_Character_Literal)
7353 and then Is_Enumeration_Type (Etype (N))
7354 then
7355 -- If enumeration literal appears directly as the choice,
7356 -- do not freeze (this is the normal non-overloaded case)
7358 if Nkind (Parent (N)) = N_Component_Association
7359 and then First (Choices (Parent (N))) = N
7360 then
7361 return;
7363 -- If enumeration literal appears as the name of function
7364 -- which is the choice, then also do not freeze. This
7365 -- happens in the overloaded literal case, where the
7366 -- enumeration literal is temporarily changed to a
7367 -- function call for overloading analysis purposes.
7369 elsif Nkind (Parent (N)) = N_Function_Call
7370 and then Nkind (Parent (Parent (N))) =
7371 N_Component_Association
7372 and then First (Choices (Parent (Parent (N)))) =
7373 Parent (N)
7374 then
7375 return;
7376 end if;
7377 end if;
7379 -- Normally if the parent is a handled sequence of statements,
7380 -- then the current node must be a statement, and that is an
7381 -- appropriate place to insert a freeze node.
7383 when N_Handled_Sequence_Of_Statements =>
7385 -- An exception occurs when the sequence of statements is
7386 -- for an expander generated body that did not do the usual
7387 -- freeze all operation. In this case we usually want to
7388 -- freeze outside this body, not inside it, and we skip
7389 -- past the subprogram body that we are inside.
7391 if In_Expanded_Body (Parent_P) then
7392 declare
7393 Subp : constant Node_Id := Parent (Parent_P);
7394 Spec : Entity_Id;
7396 begin
7397 -- Freeze the entity only when it is declared inside
7398 -- the body of the expander generated procedure.
7399 -- This case is recognized by the scope of the entity
7400 -- or its type, which is either the spec for some
7401 -- enclosing body, or (in the case of init_procs,
7402 -- for which there are no separate specs) the current
7403 -- scope.
7405 if Nkind (Subp) = N_Subprogram_Body then
7406 Spec := Corresponding_Spec (Subp);
7408 if (Present (Typ) and then Scope (Typ) = Spec)
7409 or else
7410 (Present (Nam) and then Scope (Nam) = Spec)
7411 then
7412 exit;
7414 elsif Present (Typ)
7415 and then Scope (Typ) = Current_Scope
7416 and then Defining_Entity (Subp) = Current_Scope
7417 then
7418 exit;
7419 end if;
7420 end if;
7422 -- An expression function may act as a completion of
7423 -- a function declaration. As such, it can reference
7424 -- entities declared between the two views:
7426 -- Hidden []; -- 1
7427 -- function F return ...;
7428 -- private
7429 -- function Hidden return ...;
7430 -- function F return ... is (Hidden); -- 2
7432 -- Refering to the example above, freezing the
7433 -- expression of F (2) would place Hidden's freeze
7434 -- node (1) in the wrong place. Avoid explicit
7435 -- freezing and let the usual scenarios do the job
7436 -- (for example, reaching the end of the private
7437 -- declarations, or a call to F.)
7439 if Nkind (Original_Node (Subp)) = N_Expression_Function
7440 then
7441 null;
7443 -- Freeze outside the body
7445 else
7446 Parent_P := Parent (Parent_P);
7447 Freeze_Outside := True;
7448 end if;
7449 end;
7451 -- Here if normal case where we are in handled statement
7452 -- sequence and want to do the insertion right there.
7454 else
7455 exit;
7456 end if;
7458 -- If parent is a body or a spec or a block, then the current
7459 -- node is a statement or declaration and we can insert the
7460 -- freeze node before it.
7462 when N_Block_Statement
7463 | N_Entry_Body
7464 | N_Package_Body
7465 | N_Package_Specification
7466 | N_Protected_Body
7467 | N_Subprogram_Body
7468 | N_Task_Body
7470 exit;
7472 -- The expander is allowed to define types in any statements
7473 -- list, so any of the following parent nodes also mark a
7474 -- freezing point if the actual node is in a list of
7475 -- statements or declarations.
7477 when N_Abortable_Part
7478 | N_Accept_Alternative
7479 | N_And_Then
7480 | N_Case_Statement_Alternative
7481 | N_Compilation_Unit_Aux
7482 | N_Conditional_Entry_Call
7483 | N_Delay_Alternative
7484 | N_Elsif_Part
7485 | N_Entry_Call_Alternative
7486 | N_Exception_Handler
7487 | N_Extended_Return_Statement
7488 | N_Freeze_Entity
7489 | N_If_Statement
7490 | N_Or_Else
7491 | N_Selective_Accept
7492 | N_Triggering_Alternative
7494 exit when Is_List_Member (P);
7496 -- Freeze nodes produced by an expression coming from the
7497 -- Actions list of a N_Expression_With_Actions node must remain
7498 -- within the Actions list. Inserting the freeze nodes further
7499 -- up the tree may lead to use before declaration issues in the
7500 -- case of array types.
7502 when N_Expression_With_Actions =>
7503 if Is_List_Member (P)
7504 and then List_Containing (P) = Actions (Parent_P)
7505 then
7506 exit;
7507 end if;
7509 -- Note: N_Loop_Statement is a special case. A type that
7510 -- appears in the source can never be frozen in a loop (this
7511 -- occurs only because of a loop expanded by the expander), so
7512 -- we keep on going. Otherwise we terminate the search. Same
7513 -- is true of any entity which comes from source. (if they
7514 -- have predefined type, that type does not appear to come
7515 -- from source, but the entity should not be frozen here).
7517 when N_Loop_Statement =>
7518 exit when not Comes_From_Source (Etype (N))
7519 and then (No (Nam) or else not Comes_From_Source (Nam));
7521 -- For all other cases, keep looking at parents
7523 when others =>
7524 null;
7525 end case;
7527 -- We fall through the case if we did not yet find the proper
7528 -- place in the free for inserting the freeze node, so climb.
7530 P := Parent_P;
7531 end loop;
7532 end if;
7534 -- If the expression appears in a record or an initialization procedure,
7535 -- the freeze nodes are collected and attached to the current scope, to
7536 -- be inserted and analyzed on exit from the scope, to insure that
7537 -- generated entities appear in the correct scope. If the expression is
7538 -- a default for a discriminant specification, the scope is still void.
7539 -- The expression can also appear in the discriminant part of a private
7540 -- or concurrent type.
7542 -- If the expression appears in a constrained subcomponent of an
7543 -- enclosing record declaration, the freeze nodes must be attached to
7544 -- the outer record type so they can eventually be placed in the
7545 -- enclosing declaration list.
7547 -- The other case requiring this special handling is if we are in a
7548 -- default expression, since in that case we are about to freeze a
7549 -- static type, and the freeze scope needs to be the outer scope, not
7550 -- the scope of the subprogram with the default parameter.
7552 -- For default expressions and other spec expressions in generic units,
7553 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7554 -- placing them at the proper place, after the generic unit.
7556 if (In_Spec_Exp and not Inside_A_Generic)
7557 or else Freeze_Outside
7558 or else (Is_Type (Current_Scope)
7559 and then (not Is_Concurrent_Type (Current_Scope)
7560 or else not Has_Completion (Current_Scope)))
7561 or else Ekind (Current_Scope) = E_Void
7562 then
7563 declare
7564 N : constant Node_Id := Current_Scope;
7565 Freeze_Nodes : List_Id := No_List;
7566 Pos : Int := Scope_Stack.Last;
7568 begin
7569 if Present (Desig_Typ) then
7570 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7571 end if;
7573 if Present (Typ) then
7574 Freeze_And_Append (Typ, N, Freeze_Nodes);
7575 end if;
7577 if Present (Nam) then
7578 Freeze_And_Append (Nam, N, Freeze_Nodes);
7579 end if;
7581 -- The current scope may be that of a constrained component of
7582 -- an enclosing record declaration, or of a loop of an enclosing
7583 -- quantified expression, which is above the current scope in the
7584 -- scope stack. Indeed in the context of a quantified expression,
7585 -- a scope is created and pushed above the current scope in order
7586 -- to emulate the loop-like behavior of the quantified expression.
7587 -- If the expression is within a top-level pragma, as for a pre-
7588 -- condition on a library-level subprogram, nothing to do.
7590 if not Is_Compilation_Unit (Current_Scope)
7591 and then (Is_Record_Type (Scope (Current_Scope))
7592 or else Nkind (Parent (Current_Scope)) =
7593 N_Quantified_Expression)
7594 then
7595 Pos := Pos - 1;
7596 end if;
7598 if Is_Non_Empty_List (Freeze_Nodes) then
7599 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7600 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7601 Freeze_Nodes;
7602 else
7603 Append_List (Freeze_Nodes,
7604 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7605 end if;
7606 end if;
7607 end;
7609 return;
7610 end if;
7612 -- Now we have the right place to do the freezing. First, a special
7613 -- adjustment, if we are in spec-expression analysis mode, these freeze
7614 -- actions must not be thrown away (normally all inserted actions are
7615 -- thrown away in this mode. However, the freeze actions are from static
7616 -- expressions and one of the important reasons we are doing this
7617 -- special analysis is to get these freeze actions. Therefore we turn
7618 -- off the In_Spec_Expression mode to propagate these freeze actions.
7619 -- This also means they get properly analyzed and expanded.
7621 In_Spec_Expression := False;
7623 -- Freeze the designated type of an allocator (RM 13.14(13))
7625 if Present (Desig_Typ) then
7626 Freeze_Before (P, Desig_Typ);
7627 end if;
7629 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7630 -- the enumeration representation clause exception in the loop above.
7632 if Present (Typ) then
7633 Freeze_Before (P, Typ);
7634 end if;
7636 -- Freeze name if one is present (RM 13.14(11))
7638 if Present (Nam) then
7639 Freeze_Before (P, Nam);
7640 end if;
7642 -- Restore In_Spec_Expression flag
7644 In_Spec_Expression := In_Spec_Exp;
7645 end Freeze_Expression;
7647 -----------------------
7648 -- Freeze_Expr_Types --
7649 -----------------------
7651 procedure Freeze_Expr_Types
7652 (Def_Id : Entity_Id;
7653 Typ : Entity_Id;
7654 Expr : Node_Id;
7655 N : Node_Id)
7657 function Cloned_Expression return Node_Id;
7658 -- Build a duplicate of the expression of the return statement that has
7659 -- no defining entities shared with the original expression.
7661 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
7662 -- Freeze all types referenced in the subtree rooted at Node
7664 -----------------------
7665 -- Cloned_Expression --
7666 -----------------------
7668 function Cloned_Expression return Node_Id is
7669 function Clone_Id (Node : Node_Id) return Traverse_Result;
7670 -- Tree traversal routine that clones the defining identifier of
7671 -- iterator and loop parameter specification nodes.
7673 --------------
7674 -- Clone_Id --
7675 --------------
7677 function Clone_Id (Node : Node_Id) return Traverse_Result is
7678 begin
7679 if Nkind_In (Node, N_Iterator_Specification,
7680 N_Loop_Parameter_Specification)
7681 then
7682 Set_Defining_Identifier
7683 (Node, New_Copy (Defining_Identifier (Node)));
7684 end if;
7686 return OK;
7687 end Clone_Id;
7689 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
7691 -- Local variable
7693 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
7695 -- Start of processing for Cloned_Expression
7697 begin
7698 -- We must duplicate the expression with semantic information to
7699 -- inherit the decoration of global entities in generic instances.
7700 -- Set the parent of the new node to be the parent of the original
7701 -- to get the proper context, which is needed for complete error
7702 -- reporting and for semantic analysis.
7704 Set_Parent (Dup_Expr, Parent (Expr));
7706 -- Replace the defining identifier of iterators and loop param
7707 -- specifications by a clone to ensure that the cloned expression
7708 -- and the original expression don't have shared identifiers;
7709 -- otherwise, as part of the preanalysis of the expression, these
7710 -- shared identifiers may be left decorated with itypes which
7711 -- will not be available in the tree passed to the backend.
7713 Clone_Def_Ids (Dup_Expr);
7715 return Dup_Expr;
7716 end Cloned_Expression;
7718 ----------------------
7719 -- Freeze_Type_Refs --
7720 ----------------------
7722 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
7723 procedure Check_And_Freeze_Type (Typ : Entity_Id);
7724 -- Check that Typ is fully declared and freeze it if so
7726 ---------------------------
7727 -- Check_And_Freeze_Type --
7728 ---------------------------
7730 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
7731 begin
7732 -- Skip Itypes created by the preanalysis, and itypes whose
7733 -- scope is another type (i.e. component subtypes that depend
7734 -- on a discriminant),
7736 if Is_Itype (Typ)
7737 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
7738 or else Is_Type (Scope (Typ)))
7739 then
7740 return;
7741 end if;
7743 -- This provides a better error message than generating primitives
7744 -- whose compilation fails much later. Refine the error message if
7745 -- possible.
7747 Check_Fully_Declared (Typ, Node);
7749 if Error_Posted (Node) then
7750 if Has_Private_Component (Typ)
7751 and then not Is_Private_Type (Typ)
7752 then
7753 Error_Msg_NE ("\type& has private component", Node, Typ);
7754 end if;
7756 else
7757 Freeze_Before (N, Typ);
7758 end if;
7759 end Check_And_Freeze_Type;
7761 -- Start of processing for Freeze_Type_Refs
7763 begin
7764 -- Check that a type referenced by an entity can be frozen
7766 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
7767 Check_And_Freeze_Type (Etype (Entity (Node)));
7769 -- Check that the enclosing record type can be frozen
7771 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
7772 Check_And_Freeze_Type (Scope (Entity (Node)));
7773 end if;
7775 -- Freezing an access type does not freeze the designated type, but
7776 -- freezing conversions between access to interfaces requires that
7777 -- the interface types themselves be frozen, so that dispatch table
7778 -- entities are properly created.
7780 -- Unclear whether a more general rule is needed ???
7782 elsif Nkind (Node) = N_Type_Conversion
7783 and then Is_Access_Type (Etype (Node))
7784 and then Is_Interface (Designated_Type (Etype (Node)))
7785 then
7786 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7787 end if;
7789 -- An implicit dereference freezes the designated type. In the case
7790 -- of a dispatching call whose controlling argument is an access
7791 -- type, the dereference is not made explicit, so we must check for
7792 -- such a call and freeze the designated type.
7794 if Nkind (Node) in N_Has_Etype
7795 and then Present (Etype (Node))
7796 and then Is_Access_Type (Etype (Node))
7797 and then Nkind (Parent (Node)) = N_Function_Call
7798 and then Node = Controlling_Argument (Parent (Node))
7799 then
7800 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
7801 end if;
7803 -- No point in posting several errors on the same expression
7805 if Serious_Errors_Detected > 0 then
7806 return Abandon;
7807 else
7808 return OK;
7809 end if;
7810 end Freeze_Type_Refs;
7812 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
7814 -- Local variables
7816 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
7817 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
7818 Dup_Expr : constant Node_Id := Cloned_Expression;
7820 -- Start of processing for Freeze_Expr_Types
7822 begin
7823 -- Preanalyze a duplicate of the expression to have available the
7824 -- minimum decoration needed to locate referenced unfrozen types
7825 -- without adding any decoration to the function expression.
7827 Push_Scope (Def_Id);
7828 Install_Formals (Def_Id);
7830 Preanalyze_Spec_Expression (Dup_Expr, Typ);
7831 End_Scope;
7833 -- Restore certain attributes of Def_Id since the preanalysis may
7834 -- have introduced itypes to this scope, thus modifying attributes
7835 -- First_Entity and Last_Entity.
7837 Set_First_Entity (Def_Id, Saved_First_Entity);
7838 Set_Last_Entity (Def_Id, Saved_Last_Entity);
7840 if Present (Last_Entity (Def_Id)) then
7841 Set_Next_Entity (Last_Entity (Def_Id), Empty);
7842 end if;
7844 -- Freeze all types referenced in the expression
7846 Freeze_References (Dup_Expr);
7847 end Freeze_Expr_Types;
7849 -----------------------------
7850 -- Freeze_Fixed_Point_Type --
7851 -----------------------------
7853 -- Certain fixed-point types and subtypes, including implicit base types
7854 -- and declared first subtypes, have not yet set up a range. This is
7855 -- because the range cannot be set until the Small and Size values are
7856 -- known, and these are not known till the type is frozen.
7858 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7859 -- whose bounds are unanalyzed real literals. This routine will recognize
7860 -- this case, and transform this range node into a properly typed range
7861 -- with properly analyzed and resolved values.
7863 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7864 Rng : constant Node_Id := Scalar_Range (Typ);
7865 Lo : constant Node_Id := Low_Bound (Rng);
7866 Hi : constant Node_Id := High_Bound (Rng);
7867 Btyp : constant Entity_Id := Base_Type (Typ);
7868 Brng : constant Node_Id := Scalar_Range (Btyp);
7869 BLo : constant Node_Id := Low_Bound (Brng);
7870 BHi : constant Node_Id := High_Bound (Brng);
7871 Small : constant Ureal := Small_Value (Typ);
7872 Loval : Ureal;
7873 Hival : Ureal;
7874 Atype : Entity_Id;
7876 Orig_Lo : Ureal;
7877 Orig_Hi : Ureal;
7878 -- Save original bounds (for shaving tests)
7880 Actual_Size : Nat;
7881 -- Actual size chosen
7883 function Fsize (Lov, Hiv : Ureal) return Nat;
7884 -- Returns size of type with given bounds. Also leaves these
7885 -- bounds set as the current bounds of the Typ.
7887 -----------
7888 -- Fsize --
7889 -----------
7891 function Fsize (Lov, Hiv : Ureal) return Nat is
7892 begin
7893 Set_Realval (Lo, Lov);
7894 Set_Realval (Hi, Hiv);
7895 return Minimum_Size (Typ);
7896 end Fsize;
7898 -- Start of processing for Freeze_Fixed_Point_Type
7900 begin
7901 -- The type, or its first subtype if we are freezing the anonymous
7902 -- base, may have a delayed Small aspect. It must be analyzed now,
7903 -- so that all characteristics of the type (size, bounds) can be
7904 -- computed and validated in the call to Minimum_Size that follows.
7906 if Has_Delayed_Aspects (First_Subtype (Typ)) then
7907 Analyze_Aspects_At_Freeze_Point (First_Subtype (Typ));
7908 Set_Has_Delayed_Aspects (First_Subtype (Typ), False);
7909 end if;
7911 -- If Esize of a subtype has not previously been set, set it now
7913 if Unknown_Esize (Typ) then
7914 Atype := Ancestor_Subtype (Typ);
7916 if Present (Atype) then
7917 Set_Esize (Typ, Esize (Atype));
7918 else
7919 Set_Esize (Typ, Esize (Base_Type (Typ)));
7920 end if;
7921 end if;
7923 -- Immediate return if the range is already analyzed. This means that
7924 -- the range is already set, and does not need to be computed by this
7925 -- routine.
7927 if Analyzed (Rng) then
7928 return;
7929 end if;
7931 -- Immediate return if either of the bounds raises Constraint_Error
7933 if Raises_Constraint_Error (Lo)
7934 or else Raises_Constraint_Error (Hi)
7935 then
7936 return;
7937 end if;
7939 Loval := Realval (Lo);
7940 Hival := Realval (Hi);
7942 Orig_Lo := Loval;
7943 Orig_Hi := Hival;
7945 -- Ordinary fixed-point case
7947 if Is_Ordinary_Fixed_Point_Type (Typ) then
7949 -- For the ordinary fixed-point case, we are allowed to fudge the
7950 -- end-points up or down by small. Generally we prefer to fudge up,
7951 -- i.e. widen the bounds for non-model numbers so that the end points
7952 -- are included. However there are cases in which this cannot be
7953 -- done, and indeed cases in which we may need to narrow the bounds.
7954 -- The following circuit makes the decision.
7956 -- Note: our terminology here is that Incl_EP means that the bounds
7957 -- are widened by Small if necessary to include the end points, and
7958 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7959 -- end-points if this reduces the size.
7961 -- Note that in the Incl case, all we care about is including the
7962 -- end-points. In the Excl case, we want to narrow the bounds as
7963 -- much as permitted by the RM, to give the smallest possible size.
7965 Fudge : declare
7966 Loval_Incl_EP : Ureal;
7967 Hival_Incl_EP : Ureal;
7969 Loval_Excl_EP : Ureal;
7970 Hival_Excl_EP : Ureal;
7972 Size_Incl_EP : Nat;
7973 Size_Excl_EP : Nat;
7975 Model_Num : Ureal;
7976 First_Subt : Entity_Id;
7977 Actual_Lo : Ureal;
7978 Actual_Hi : Ureal;
7980 begin
7981 -- First step. Base types are required to be symmetrical. Right
7982 -- now, the base type range is a copy of the first subtype range.
7983 -- This will be corrected before we are done, but right away we
7984 -- need to deal with the case where both bounds are non-negative.
7985 -- In this case, we set the low bound to the negative of the high
7986 -- bound, to make sure that the size is computed to include the
7987 -- required sign. Note that we do not need to worry about the
7988 -- case of both bounds negative, because the sign will be dealt
7989 -- with anyway. Furthermore we can't just go making such a bound
7990 -- symmetrical, since in a twos-complement system, there is an
7991 -- extra negative value which could not be accommodated on the
7992 -- positive side.
7994 if Typ = Btyp
7995 and then not UR_Is_Negative (Loval)
7996 and then Hival > Loval
7997 then
7998 Loval := -Hival;
7999 Set_Realval (Lo, Loval);
8000 end if;
8002 -- Compute the fudged bounds. If the number is a model number,
8003 -- then we do nothing to include it, but we are allowed to backoff
8004 -- to the next adjacent model number when we exclude it. If it is
8005 -- not a model number then we straddle the two values with the
8006 -- model numbers on either side.
8008 Model_Num := UR_Trunc (Loval / Small) * Small;
8010 if Loval = Model_Num then
8011 Loval_Incl_EP := Model_Num;
8012 else
8013 Loval_Incl_EP := Model_Num - Small;
8014 end if;
8016 -- The low value excluding the end point is Small greater, but
8017 -- we do not do this exclusion if the low value is positive,
8018 -- since it can't help the size and could actually hurt by
8019 -- crossing the high bound.
8021 if UR_Is_Negative (Loval_Incl_EP) then
8022 Loval_Excl_EP := Loval_Incl_EP + Small;
8024 -- If the value went from negative to zero, then we have the
8025 -- case where Loval_Incl_EP is the model number just below
8026 -- zero, so we want to stick to the negative value for the
8027 -- base type to maintain the condition that the size will
8028 -- include signed values.
8030 if Typ = Btyp
8031 and then UR_Is_Zero (Loval_Excl_EP)
8032 then
8033 Loval_Excl_EP := Loval_Incl_EP;
8034 end if;
8036 else
8037 Loval_Excl_EP := Loval_Incl_EP;
8038 end if;
8040 -- Similar processing for upper bound and high value
8042 Model_Num := UR_Trunc (Hival / Small) * Small;
8044 if Hival = Model_Num then
8045 Hival_Incl_EP := Model_Num;
8046 else
8047 Hival_Incl_EP := Model_Num + Small;
8048 end if;
8050 if UR_Is_Positive (Hival_Incl_EP) then
8051 Hival_Excl_EP := Hival_Incl_EP - Small;
8052 else
8053 Hival_Excl_EP := Hival_Incl_EP;
8054 end if;
8056 -- One further adjustment is needed. In the case of subtypes, we
8057 -- cannot go outside the range of the base type, or we get
8058 -- peculiarities, and the base type range is already set. This
8059 -- only applies to the Incl values, since clearly the Excl values
8060 -- are already as restricted as they are allowed to be.
8062 if Typ /= Btyp then
8063 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
8064 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
8065 end if;
8067 -- Get size including and excluding end points
8069 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
8070 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
8072 -- No need to exclude end-points if it does not reduce size
8074 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
8075 Loval_Excl_EP := Loval_Incl_EP;
8076 end if;
8078 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
8079 Hival_Excl_EP := Hival_Incl_EP;
8080 end if;
8082 -- Now we set the actual size to be used. We want to use the
8083 -- bounds fudged up to include the end-points but only if this
8084 -- can be done without violating a specifically given size
8085 -- size clause or causing an unacceptable increase in size.
8087 -- Case of size clause given
8089 if Has_Size_Clause (Typ) then
8091 -- Use the inclusive size only if it is consistent with
8092 -- the explicitly specified size.
8094 if Size_Incl_EP <= RM_Size (Typ) then
8095 Actual_Lo := Loval_Incl_EP;
8096 Actual_Hi := Hival_Incl_EP;
8097 Actual_Size := Size_Incl_EP;
8099 -- If the inclusive size is too large, we try excluding
8100 -- the end-points (will be caught later if does not work).
8102 else
8103 Actual_Lo := Loval_Excl_EP;
8104 Actual_Hi := Hival_Excl_EP;
8105 Actual_Size := Size_Excl_EP;
8106 end if;
8108 -- Case of size clause not given
8110 else
8111 -- If we have a base type whose corresponding first subtype
8112 -- has an explicit size that is large enough to include our
8113 -- end-points, then do so. There is no point in working hard
8114 -- to get a base type whose size is smaller than the specified
8115 -- size of the first subtype.
8117 First_Subt := First_Subtype (Typ);
8119 if Has_Size_Clause (First_Subt)
8120 and then Size_Incl_EP <= Esize (First_Subt)
8121 then
8122 Actual_Size := Size_Incl_EP;
8123 Actual_Lo := Loval_Incl_EP;
8124 Actual_Hi := Hival_Incl_EP;
8126 -- If excluding the end-points makes the size smaller and
8127 -- results in a size of 8,16,32,64, then we take the smaller
8128 -- size. For the 64 case, this is compulsory. For the other
8129 -- cases, it seems reasonable. We like to include end points
8130 -- if we can, but not at the expense of moving to the next
8131 -- natural boundary of size.
8133 elsif Size_Incl_EP /= Size_Excl_EP
8134 and then Addressable (Size_Excl_EP)
8135 then
8136 Actual_Size := Size_Excl_EP;
8137 Actual_Lo := Loval_Excl_EP;
8138 Actual_Hi := Hival_Excl_EP;
8140 -- Otherwise we can definitely include the end points
8142 else
8143 Actual_Size := Size_Incl_EP;
8144 Actual_Lo := Loval_Incl_EP;
8145 Actual_Hi := Hival_Incl_EP;
8146 end if;
8148 -- One pathological case: normally we never fudge a low bound
8149 -- down, since it would seem to increase the size (if it has
8150 -- any effect), but for ranges containing single value, or no
8151 -- values, the high bound can be small too large. Consider:
8153 -- type t is delta 2.0**(-14)
8154 -- range 131072.0 .. 0;
8156 -- That lower bound is *just* outside the range of 32 bits, and
8157 -- does need fudging down in this case. Note that the bounds
8158 -- will always have crossed here, since the high bound will be
8159 -- fudged down if necessary, as in the case of:
8161 -- type t is delta 2.0**(-14)
8162 -- range 131072.0 .. 131072.0;
8164 -- So we detect the situation by looking for crossed bounds,
8165 -- and if the bounds are crossed, and the low bound is greater
8166 -- than zero, we will always back it off by small, since this
8167 -- is completely harmless.
8169 if Actual_Lo > Actual_Hi then
8170 if UR_Is_Positive (Actual_Lo) then
8171 Actual_Lo := Loval_Incl_EP - Small;
8172 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8174 -- And of course, we need to do exactly the same parallel
8175 -- fudge for flat ranges in the negative region.
8177 elsif UR_Is_Negative (Actual_Hi) then
8178 Actual_Hi := Hival_Incl_EP + Small;
8179 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
8180 end if;
8181 end if;
8182 end if;
8184 Set_Realval (Lo, Actual_Lo);
8185 Set_Realval (Hi, Actual_Hi);
8186 end Fudge;
8188 -- For the decimal case, none of this fudging is required, since there
8189 -- are no end-point problems in the decimal case (the end-points are
8190 -- always included).
8192 else
8193 Actual_Size := Fsize (Loval, Hival);
8194 end if;
8196 -- At this stage, the actual size has been calculated and the proper
8197 -- required bounds are stored in the low and high bounds.
8199 if Actual_Size > 64 then
8200 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
8201 Error_Msg_N
8202 ("size required (^) for type& too large, maximum allowed is 64",
8203 Typ);
8204 Actual_Size := 64;
8205 end if;
8207 -- Check size against explicit given size
8209 if Has_Size_Clause (Typ) then
8210 if Actual_Size > RM_Size (Typ) then
8211 Error_Msg_Uint_1 := RM_Size (Typ);
8212 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
8213 Error_Msg_NE
8214 ("size given (^) for type& too small, minimum allowed is ^",
8215 Size_Clause (Typ), Typ);
8217 else
8218 Actual_Size := UI_To_Int (Esize (Typ));
8219 end if;
8221 -- Increase size to next natural boundary if no size clause given
8223 else
8224 if Actual_Size <= 8 then
8225 Actual_Size := 8;
8226 elsif Actual_Size <= 16 then
8227 Actual_Size := 16;
8228 elsif Actual_Size <= 32 then
8229 Actual_Size := 32;
8230 else
8231 Actual_Size := 64;
8232 end if;
8234 Init_Esize (Typ, Actual_Size);
8235 Adjust_Esize_For_Alignment (Typ);
8236 end if;
8238 -- If we have a base type, then expand the bounds so that they extend to
8239 -- the full width of the allocated size in bits, to avoid junk range
8240 -- checks on intermediate computations.
8242 if Base_Type (Typ) = Typ then
8243 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
8244 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
8245 end if;
8247 -- Final step is to reanalyze the bounds using the proper type
8248 -- and set the Corresponding_Integer_Value fields of the literals.
8250 Set_Etype (Lo, Empty);
8251 Set_Analyzed (Lo, False);
8252 Analyze (Lo);
8254 -- Resolve with universal fixed if the base type, and the base type if
8255 -- it is a subtype. Note we can't resolve the base type with itself,
8256 -- that would be a reference before definition.
8258 if Typ = Btyp then
8259 Resolve (Lo, Universal_Fixed);
8260 else
8261 Resolve (Lo, Btyp);
8262 end if;
8264 -- Set corresponding integer value for bound
8266 Set_Corresponding_Integer_Value
8267 (Lo, UR_To_Uint (Realval (Lo) / Small));
8269 -- Similar processing for high bound
8271 Set_Etype (Hi, Empty);
8272 Set_Analyzed (Hi, False);
8273 Analyze (Hi);
8275 if Typ = Btyp then
8276 Resolve (Hi, Universal_Fixed);
8277 else
8278 Resolve (Hi, Btyp);
8279 end if;
8281 Set_Corresponding_Integer_Value
8282 (Hi, UR_To_Uint (Realval (Hi) / Small));
8284 -- Set type of range to correspond to bounds
8286 Set_Etype (Rng, Etype (Lo));
8288 -- Set Esize to calculated size if not set already
8290 if Unknown_Esize (Typ) then
8291 Init_Esize (Typ, Actual_Size);
8292 end if;
8294 -- Set RM_Size if not already set. If already set, check value
8296 declare
8297 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
8299 begin
8300 if RM_Size (Typ) /= Uint_0 then
8301 if RM_Size (Typ) < Minsiz then
8302 Error_Msg_Uint_1 := RM_Size (Typ);
8303 Error_Msg_Uint_2 := Minsiz;
8304 Error_Msg_NE
8305 ("size given (^) for type& too small, minimum allowed is ^",
8306 Size_Clause (Typ), Typ);
8307 end if;
8309 else
8310 Set_RM_Size (Typ, Minsiz);
8311 end if;
8312 end;
8314 -- Check for shaving
8316 if Comes_From_Source (Typ) then
8318 -- In SPARK mode the given bounds must be strictly representable
8320 if SPARK_Mode = On then
8321 if Orig_Lo < Expr_Value_R (Lo) then
8322 Error_Msg_NE
8323 ("declared low bound of type & is outside type range",
8324 Lo, Typ);
8325 end if;
8327 if Orig_Hi > Expr_Value_R (Hi) then
8328 Error_Msg_NE
8329 ("declared high bound of type & is outside type range",
8330 Hi, Typ);
8331 end if;
8333 else
8334 if Orig_Lo < Expr_Value_R (Lo) then
8335 Error_Msg_N
8336 ("declared low bound of type & is outside type range??", Typ);
8337 Error_Msg_N
8338 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
8339 end if;
8341 if Orig_Hi > Expr_Value_R (Hi) then
8342 Error_Msg_N
8343 ("declared high bound of type & is outside type range??",
8344 Typ);
8345 Error_Msg_N
8346 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
8347 end if;
8348 end if;
8349 end if;
8350 end Freeze_Fixed_Point_Type;
8352 ------------------
8353 -- Freeze_Itype --
8354 ------------------
8356 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
8357 L : List_Id;
8359 begin
8360 Set_Has_Delayed_Freeze (T);
8361 L := Freeze_Entity (T, N);
8363 if Is_Non_Empty_List (L) then
8364 Insert_Actions (N, L);
8365 end if;
8366 end Freeze_Itype;
8368 --------------------------
8369 -- Freeze_Static_Object --
8370 --------------------------
8372 procedure Freeze_Static_Object (E : Entity_Id) is
8374 Cannot_Be_Static : exception;
8375 -- Exception raised if the type of a static object cannot be made
8376 -- static. This happens if the type depends on non-global objects.
8378 procedure Ensure_Expression_Is_SA (N : Node_Id);
8379 -- Called to ensure that an expression used as part of a type definition
8380 -- is statically allocatable, which means that the expression type is
8381 -- statically allocatable, and the expression is either static, or a
8382 -- reference to a library level constant.
8384 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
8385 -- Called to mark a type as static, checking that it is possible
8386 -- to set the type as static. If it is not possible, then the
8387 -- exception Cannot_Be_Static is raised.
8389 -----------------------------
8390 -- Ensure_Expression_Is_SA --
8391 -----------------------------
8393 procedure Ensure_Expression_Is_SA (N : Node_Id) is
8394 Ent : Entity_Id;
8396 begin
8397 Ensure_Type_Is_SA (Etype (N));
8399 if Is_OK_Static_Expression (N) then
8400 return;
8402 elsif Nkind (N) = N_Identifier then
8403 Ent := Entity (N);
8405 if Present (Ent)
8406 and then Ekind (Ent) = E_Constant
8407 and then Is_Library_Level_Entity (Ent)
8408 then
8409 return;
8410 end if;
8411 end if;
8413 raise Cannot_Be_Static;
8414 end Ensure_Expression_Is_SA;
8416 -----------------------
8417 -- Ensure_Type_Is_SA --
8418 -----------------------
8420 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
8421 N : Node_Id;
8422 C : Entity_Id;
8424 begin
8425 -- If type is library level, we are all set
8427 if Is_Library_Level_Entity (Typ) then
8428 return;
8429 end if;
8431 -- We are also OK if the type already marked as statically allocated,
8432 -- which means we processed it before.
8434 if Is_Statically_Allocated (Typ) then
8435 return;
8436 end if;
8438 -- Mark type as statically allocated
8440 Set_Is_Statically_Allocated (Typ);
8442 -- Check that it is safe to statically allocate this type
8444 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
8445 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
8446 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
8448 elsif Is_Array_Type (Typ) then
8449 N := First_Index (Typ);
8450 while Present (N) loop
8451 Ensure_Type_Is_SA (Etype (N));
8452 Next_Index (N);
8453 end loop;
8455 Ensure_Type_Is_SA (Component_Type (Typ));
8457 elsif Is_Access_Type (Typ) then
8458 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
8460 declare
8461 F : Entity_Id;
8462 T : constant Entity_Id := Etype (Designated_Type (Typ));
8464 begin
8465 if T /= Standard_Void_Type then
8466 Ensure_Type_Is_SA (T);
8467 end if;
8469 F := First_Formal (Designated_Type (Typ));
8470 while Present (F) loop
8471 Ensure_Type_Is_SA (Etype (F));
8472 Next_Formal (F);
8473 end loop;
8474 end;
8476 else
8477 Ensure_Type_Is_SA (Designated_Type (Typ));
8478 end if;
8480 elsif Is_Record_Type (Typ) then
8481 C := First_Entity (Typ);
8482 while Present (C) loop
8483 if Ekind (C) = E_Discriminant
8484 or else Ekind (C) = E_Component
8485 then
8486 Ensure_Type_Is_SA (Etype (C));
8488 elsif Is_Type (C) then
8489 Ensure_Type_Is_SA (C);
8490 end if;
8492 Next_Entity (C);
8493 end loop;
8495 elsif Ekind (Typ) = E_Subprogram_Type then
8496 Ensure_Type_Is_SA (Etype (Typ));
8498 C := First_Formal (Typ);
8499 while Present (C) loop
8500 Ensure_Type_Is_SA (Etype (C));
8501 Next_Formal (C);
8502 end loop;
8504 else
8505 raise Cannot_Be_Static;
8506 end if;
8507 end Ensure_Type_Is_SA;
8509 -- Start of processing for Freeze_Static_Object
8511 begin
8512 Ensure_Type_Is_SA (Etype (E));
8514 exception
8515 when Cannot_Be_Static =>
8517 -- If the object that cannot be static is imported or exported, then
8518 -- issue an error message saying that this object cannot be imported
8519 -- or exported. If it has an address clause it is an overlay in the
8520 -- current partition and the static requirement is not relevant.
8521 -- Do not issue any error message when ignoring rep clauses.
8523 if Ignore_Rep_Clauses then
8524 null;
8526 elsif Is_Imported (E) then
8527 if No (Address_Clause (E)) then
8528 Error_Msg_N
8529 ("& cannot be imported (local type is not constant)", E);
8530 end if;
8532 -- Otherwise must be exported, something is wrong if compiler
8533 -- is marking something as statically allocated which cannot be).
8535 else pragma Assert (Is_Exported (E));
8536 Error_Msg_N
8537 ("& cannot be exported (local type is not constant)", E);
8538 end if;
8539 end Freeze_Static_Object;
8541 -----------------------
8542 -- Freeze_Subprogram --
8543 -----------------------
8545 procedure Freeze_Subprogram (E : Entity_Id) is
8546 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
8547 -- Set the conventions of all anonymous access-to-subprogram formals and
8548 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8550 ----------------------------
8551 -- Set_Profile_Convention --
8552 ----------------------------
8554 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
8555 Conv : constant Convention_Id := Convention (Subp_Id);
8557 procedure Set_Type_Convention (Typ : Entity_Id);
8558 -- Set the convention of anonymous access-to-subprogram type Typ and
8559 -- its designated type to Conv.
8561 -------------------------
8562 -- Set_Type_Convention --
8563 -------------------------
8565 procedure Set_Type_Convention (Typ : Entity_Id) is
8566 begin
8567 -- Set the convention on both the anonymous access-to-subprogram
8568 -- type and the subprogram type it points to because both types
8569 -- participate in conformance-related checks.
8571 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
8572 Set_Convention (Typ, Conv);
8573 Set_Convention (Designated_Type (Typ), Conv);
8574 end if;
8575 end Set_Type_Convention;
8577 -- Local variables
8579 Formal : Entity_Id;
8581 -- Start of processing for Set_Profile_Convention
8583 begin
8584 Formal := First_Formal (Subp_Id);
8585 while Present (Formal) loop
8586 Set_Type_Convention (Etype (Formal));
8587 Next_Formal (Formal);
8588 end loop;
8590 if Ekind (Subp_Id) = E_Function then
8591 Set_Type_Convention (Etype (Subp_Id));
8592 end if;
8593 end Set_Profile_Convention;
8595 -- Local variables
8597 F : Entity_Id;
8598 Retype : Entity_Id;
8600 -- Start of processing for Freeze_Subprogram
8602 begin
8603 -- Subprogram may not have an address clause unless it is imported
8605 if Present (Address_Clause (E)) then
8606 if not Is_Imported (E) then
8607 Error_Msg_N
8608 ("address clause can only be given for imported subprogram",
8609 Name (Address_Clause (E)));
8610 end if;
8611 end if;
8613 -- Reset the Pure indication on an imported subprogram unless an
8614 -- explicit Pure_Function pragma was present or the subprogram is an
8615 -- intrinsic. We do this because otherwise it is an insidious error
8616 -- to call a non-pure function from pure unit and have calls
8617 -- mysteriously optimized away. What happens here is that the Import
8618 -- can bypass the normal check to ensure that pure units call only pure
8619 -- subprograms.
8621 -- The reason for the intrinsic exception is that in general, intrinsic
8622 -- functions (such as shifts) are pure anyway. The only exceptions are
8623 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8624 -- in any case, so no problem arises.
8626 if Is_Imported (E)
8627 and then Is_Pure (E)
8628 and then not Has_Pragma_Pure_Function (E)
8629 and then not Is_Intrinsic_Subprogram (E)
8630 then
8631 Set_Is_Pure (E, False);
8632 end if;
8634 -- We also reset the Pure indication on a subprogram with an Address
8635 -- parameter, because the parameter may be used as a pointer and the
8636 -- referenced data may change even if the address value does not.
8638 -- Note that if the programmer gave an explicit Pure_Function pragma,
8639 -- then we believe the programmer, and leave the subprogram Pure. We
8640 -- also suppress this check on run-time files.
8642 if Is_Pure (E)
8643 and then Is_Subprogram (E)
8644 and then not Has_Pragma_Pure_Function (E)
8645 and then not Is_Internal_Unit (Current_Sem_Unit)
8646 then
8647 Check_Function_With_Address_Parameter (E);
8648 end if;
8650 -- Ensure that all anonymous access-to-subprogram types inherit the
8651 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8652 -- not done for a defaulted convention Ada because those types also
8653 -- default to Ada. Convention Protected must not be propagated when
8654 -- the subprogram is an entry because this would be illegal. The only
8655 -- way to force convention Protected on these kinds of types is to
8656 -- include keyword "protected" in the access definition.
8658 if Convention (E) /= Convention_Ada
8659 and then Convention (E) /= Convention_Protected
8660 then
8661 Set_Profile_Convention (E);
8662 end if;
8664 -- For non-foreign convention subprograms, this is where we create
8665 -- the extra formals (for accessibility level and constrained bit
8666 -- information). We delay this till the freeze point precisely so
8667 -- that we know the convention.
8669 if not Has_Foreign_Convention (E) then
8670 if No (Extra_Formals (E)) then
8671 Create_Extra_Formals (E);
8672 end if;
8674 Set_Mechanisms (E);
8676 -- If this is convention Ada and a Valued_Procedure, that's odd
8678 if Ekind (E) = E_Procedure
8679 and then Is_Valued_Procedure (E)
8680 and then Convention (E) = Convention_Ada
8681 and then Warn_On_Export_Import
8682 then
8683 Error_Msg_N
8684 ("??Valued_Procedure has no effect for convention Ada", E);
8685 Set_Is_Valued_Procedure (E, False);
8686 end if;
8688 -- Case of foreign convention
8690 else
8691 Set_Mechanisms (E);
8693 -- For foreign conventions, warn about return of unconstrained array
8695 if Ekind (E) = E_Function then
8696 Retype := Underlying_Type (Etype (E));
8698 -- If no return type, probably some other error, e.g. a
8699 -- missing full declaration, so ignore.
8701 if No (Retype) then
8702 null;
8704 -- If the return type is generic, we have emitted a warning
8705 -- earlier on, and there is nothing else to check here. Specific
8706 -- instantiations may lead to erroneous behavior.
8708 elsif Is_Generic_Type (Etype (E)) then
8709 null;
8711 -- Display warning if returning unconstrained array
8713 elsif Is_Array_Type (Retype)
8714 and then not Is_Constrained (Retype)
8716 -- Check appropriate warning is enabled (should we check for
8717 -- Warnings (Off) on specific entities here, probably so???)
8719 and then Warn_On_Export_Import
8720 then
8721 Error_Msg_N
8722 ("?x?foreign convention function& should not return " &
8723 "unconstrained array", E);
8724 return;
8725 end if;
8726 end if;
8728 -- If any of the formals for an exported foreign convention
8729 -- subprogram have defaults, then emit an appropriate warning since
8730 -- this is odd (default cannot be used from non-Ada code)
8732 if Is_Exported (E) then
8733 F := First_Formal (E);
8734 while Present (F) loop
8735 if Warn_On_Export_Import
8736 and then Present (Default_Value (F))
8737 then
8738 Error_Msg_N
8739 ("?x?parameter cannot be defaulted in non-Ada call",
8740 Default_Value (F));
8741 end if;
8743 Next_Formal (F);
8744 end loop;
8745 end if;
8746 end if;
8748 -- Pragma Inline_Always is disallowed for dispatching subprograms
8749 -- because the address of such subprograms is saved in the dispatch
8750 -- table to support dispatching calls, and dispatching calls cannot
8751 -- be inlined. This is consistent with the restriction against using
8752 -- 'Access or 'Address on an Inline_Always subprogram.
8754 if Is_Dispatching_Operation (E)
8755 and then Has_Pragma_Inline_Always (E)
8756 then
8757 Error_Msg_N
8758 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8759 end if;
8761 -- Because of the implicit representation of inherited predefined
8762 -- operators in the front-end, the overriding status of the operation
8763 -- may be affected when a full view of a type is analyzed, and this is
8764 -- not captured by the analysis of the corresponding type declaration.
8765 -- Therefore the correctness of a not-overriding indicator must be
8766 -- rechecked when the subprogram is frozen.
8768 if Nkind (E) = N_Defining_Operator_Symbol
8769 and then not Error_Posted (Parent (E))
8770 then
8771 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8772 end if;
8774 if Modify_Tree_For_C
8775 and then Nkind (Parent (E)) = N_Function_Specification
8776 and then Is_Array_Type (Etype (E))
8777 and then Is_Constrained (Etype (E))
8778 and then not Is_Unchecked_Conversion_Instance (E)
8779 and then not Rewritten_For_C (E)
8780 then
8781 Build_Procedure_Form (Unit_Declaration_Node (E));
8782 end if;
8783 end Freeze_Subprogram;
8785 ----------------------
8786 -- Is_Fully_Defined --
8787 ----------------------
8789 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8790 begin
8791 if Ekind (T) = E_Class_Wide_Type then
8792 return Is_Fully_Defined (Etype (T));
8794 elsif Is_Array_Type (T) then
8795 return Is_Fully_Defined (Component_Type (T));
8797 elsif Is_Record_Type (T)
8798 and not Is_Private_Type (T)
8799 then
8800 -- Verify that the record type has no components with private types
8801 -- without completion.
8803 declare
8804 Comp : Entity_Id;
8806 begin
8807 Comp := First_Component (T);
8808 while Present (Comp) loop
8809 if not Is_Fully_Defined (Etype (Comp)) then
8810 return False;
8811 end if;
8813 Next_Component (Comp);
8814 end loop;
8815 return True;
8816 end;
8818 -- For the designated type of an access to subprogram, all types in
8819 -- the profile must be fully defined.
8821 elsif Ekind (T) = E_Subprogram_Type then
8822 declare
8823 F : Entity_Id;
8825 begin
8826 F := First_Formal (T);
8827 while Present (F) loop
8828 if not Is_Fully_Defined (Etype (F)) then
8829 return False;
8830 end if;
8832 Next_Formal (F);
8833 end loop;
8835 return Is_Fully_Defined (Etype (T));
8836 end;
8838 else
8839 return not Is_Private_Type (T)
8840 or else Present (Full_View (Base_Type (T)));
8841 end if;
8842 end Is_Fully_Defined;
8844 ---------------------------------
8845 -- Process_Default_Expressions --
8846 ---------------------------------
8848 procedure Process_Default_Expressions
8849 (E : Entity_Id;
8850 After : in out Node_Id)
8852 Loc : constant Source_Ptr := Sloc (E);
8853 Dbody : Node_Id;
8854 Formal : Node_Id;
8855 Dcopy : Node_Id;
8856 Dnam : Entity_Id;
8858 begin
8859 Set_Default_Expressions_Processed (E);
8861 -- A subprogram instance and its associated anonymous subprogram share
8862 -- their signature. The default expression functions are defined in the
8863 -- wrapper packages for the anonymous subprogram, and should not be
8864 -- generated again for the instance.
8866 if Is_Generic_Instance (E)
8867 and then Present (Alias (E))
8868 and then Default_Expressions_Processed (Alias (E))
8869 then
8870 return;
8871 end if;
8873 Formal := First_Formal (E);
8874 while Present (Formal) loop
8875 if Present (Default_Value (Formal)) then
8877 -- We work with a copy of the default expression because we
8878 -- do not want to disturb the original, since this would mess
8879 -- up the conformance checking.
8881 Dcopy := New_Copy_Tree (Default_Value (Formal));
8883 -- The analysis of the expression may generate insert actions,
8884 -- which of course must not be executed. We wrap those actions
8885 -- in a procedure that is not called, and later on eliminated.
8886 -- The following cases have no side effects, and are analyzed
8887 -- directly.
8889 if Nkind (Dcopy) = N_Identifier
8890 or else Nkind_In (Dcopy, N_Expanded_Name,
8891 N_Integer_Literal,
8892 N_Character_Literal,
8893 N_String_Literal,
8894 N_Real_Literal)
8895 or else (Nkind (Dcopy) = N_Attribute_Reference
8896 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
8897 or else Known_Null (Dcopy)
8898 then
8899 -- If there is no default function, we must still do a full
8900 -- analyze call on the default value, to ensure that all error
8901 -- checks are performed, e.g. those associated with static
8902 -- evaluation. Note: this branch will always be taken if the
8903 -- analyzer is turned off (but we still need the error checks).
8905 -- Note: the setting of parent here is to meet the requirement
8906 -- that we can only analyze the expression while attached to
8907 -- the tree. Really the requirement is that the parent chain
8908 -- be set, we don't actually need to be in the tree.
8910 Set_Parent (Dcopy, Declaration_Node (Formal));
8911 Analyze (Dcopy);
8913 -- Default expressions are resolved with their own type if the
8914 -- context is generic, to avoid anomalies with private types.
8916 if Ekind (Scope (E)) = E_Generic_Package then
8917 Resolve (Dcopy);
8918 else
8919 Resolve (Dcopy, Etype (Formal));
8920 end if;
8922 -- If that resolved expression will raise constraint error,
8923 -- then flag the default value as raising constraint error.
8924 -- This allows a proper error message on the calls.
8926 if Raises_Constraint_Error (Dcopy) then
8927 Set_Raises_Constraint_Error (Default_Value (Formal));
8928 end if;
8930 -- If the default is a parameterless call, we use the name of
8931 -- the called function directly, and there is no body to build.
8933 elsif Nkind (Dcopy) = N_Function_Call
8934 and then No (Parameter_Associations (Dcopy))
8935 then
8936 null;
8938 -- Else construct and analyze the body of a wrapper procedure
8939 -- that contains an object declaration to hold the expression.
8940 -- Given that this is done only to complete the analysis, it is
8941 -- simpler to build a procedure than a function which might
8942 -- involve secondary stack expansion.
8944 else
8945 Dnam := Make_Temporary (Loc, 'D');
8947 Dbody :=
8948 Make_Subprogram_Body (Loc,
8949 Specification =>
8950 Make_Procedure_Specification (Loc,
8951 Defining_Unit_Name => Dnam),
8953 Declarations => New_List (
8954 Make_Object_Declaration (Loc,
8955 Defining_Identifier => Make_Temporary (Loc, 'T'),
8956 Object_Definition =>
8957 New_Occurrence_Of (Etype (Formal), Loc),
8958 Expression => New_Copy_Tree (Dcopy))),
8960 Handled_Statement_Sequence =>
8961 Make_Handled_Sequence_Of_Statements (Loc,
8962 Statements => Empty_List));
8964 Set_Scope (Dnam, Scope (E));
8965 Set_Assignment_OK (First (Declarations (Dbody)));
8966 Set_Is_Eliminated (Dnam);
8967 Insert_After (After, Dbody);
8968 Analyze (Dbody);
8969 After := Dbody;
8970 end if;
8971 end if;
8973 Next_Formal (Formal);
8974 end loop;
8975 end Process_Default_Expressions;
8977 ----------------------------------------
8978 -- Set_Component_Alignment_If_Not_Set --
8979 ----------------------------------------
8981 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8982 begin
8983 -- Ignore if not base type, subtypes don't need anything
8985 if Typ /= Base_Type (Typ) then
8986 return;
8987 end if;
8989 -- Do not override existing representation
8991 if Is_Packed (Typ) then
8992 return;
8994 elsif Has_Specified_Layout (Typ) then
8995 return;
8997 elsif Component_Alignment (Typ) /= Calign_Default then
8998 return;
9000 else
9001 Set_Component_Alignment
9002 (Typ, Scope_Stack.Table
9003 (Scope_Stack.Last).Component_Alignment_Default);
9004 end if;
9005 end Set_Component_Alignment_If_Not_Set;
9007 --------------------------
9008 -- Set_SSO_From_Default --
9009 --------------------------
9011 procedure Set_SSO_From_Default (T : Entity_Id) is
9012 Reversed : Boolean;
9014 begin
9015 -- Set default SSO for an array or record base type, except in case of
9016 -- a type extension (which always inherits the SSO of its parent type).
9018 if Is_Base_Type (T)
9019 and then (Is_Array_Type (T)
9020 or else (Is_Record_Type (T)
9021 and then not (Is_Tagged_Type (T)
9022 and then Is_Derived_Type (T))))
9023 then
9024 Reversed :=
9025 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
9026 or else
9027 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
9029 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
9031 -- For a record type, if bit order is specified explicitly,
9032 -- then do not set SSO from default if not consistent. Note that
9033 -- we do not want to look at a Bit_Order attribute definition
9034 -- for a parent: if we were to inherit Bit_Order, then both
9035 -- SSO_Set_*_By_Default flags would have been cleared already
9036 -- (by Inherit_Aspects_At_Freeze_Point).
9038 and then not
9039 (Is_Record_Type (T)
9040 and then
9041 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
9042 and then Reverse_Bit_Order (T) /= Reversed)
9043 then
9044 -- If flags cause reverse storage order, then set the result. Note
9045 -- that we would have ignored the pragma setting the non default
9046 -- storage order in any case, hence the assertion at this point.
9048 pragma Assert
9049 (not Reversed or else Support_Nondefault_SSO_On_Target);
9051 Set_Reverse_Storage_Order (T, Reversed);
9053 -- For a record type, also set reversed bit order. Note: if a bit
9054 -- order has been specified explicitly, then this is a no-op.
9056 if Is_Record_Type (T) then
9057 Set_Reverse_Bit_Order (T, Reversed);
9058 end if;
9059 end if;
9060 end if;
9061 end Set_SSO_From_Default;
9063 ------------------
9064 -- Undelay_Type --
9065 ------------------
9067 procedure Undelay_Type (T : Entity_Id) is
9068 begin
9069 Set_Has_Delayed_Freeze (T, False);
9070 Set_Freeze_Node (T, Empty);
9072 -- Since we don't want T to have a Freeze_Node, we don't want its
9073 -- Full_View or Corresponding_Record_Type to have one either.
9075 -- ??? Fundamentally, this whole handling is unpleasant. What we really
9076 -- want is to be sure that for an Itype that's part of record R and is a
9077 -- subtype of type T, that it's frozen after the later of the freeze
9078 -- points of R and T. We have no way of doing that directly, so what we
9079 -- do is force most such Itypes to be frozen as part of freezing R via
9080 -- this procedure and only delay the ones that need to be delayed
9081 -- (mostly the designated types of access types that are defined as part
9082 -- of the record).
9084 if Is_Private_Type (T)
9085 and then Present (Full_View (T))
9086 and then Is_Itype (Full_View (T))
9087 and then Is_Record_Type (Scope (Full_View (T)))
9088 then
9089 Undelay_Type (Full_View (T));
9090 end if;
9092 if Is_Concurrent_Type (T)
9093 and then Present (Corresponding_Record_Type (T))
9094 and then Is_Itype (Corresponding_Record_Type (T))
9095 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
9096 then
9097 Undelay_Type (Corresponding_Record_Type (T));
9098 end if;
9099 end Undelay_Type;
9101 ------------------
9102 -- Warn_Overlay --
9103 ------------------
9105 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
9106 Ent : constant Entity_Id := Entity (Nam);
9107 -- The object to which the address clause applies
9109 Init : Node_Id;
9110 Old : Entity_Id := Empty;
9111 Decl : Node_Id;
9113 begin
9114 -- No warning if address clause overlay warnings are off
9116 if not Address_Clause_Overlay_Warnings then
9117 return;
9118 end if;
9120 -- No warning if there is an explicit initialization
9122 Init := Original_Node (Expression (Declaration_Node (Ent)));
9124 if Present (Init) and then Comes_From_Source (Init) then
9125 return;
9126 end if;
9128 -- We only give the warning for non-imported entities of a type for
9129 -- which a non-null base init proc is defined, or for objects of access
9130 -- types with implicit null initialization, or when Normalize_Scalars
9131 -- applies and the type is scalar or a string type (the latter being
9132 -- tested for because predefined String types are initialized by inline
9133 -- code rather than by an init_proc). Note that we do not give the
9134 -- warning for Initialize_Scalars, since we suppressed initialization
9135 -- in this case. Also, do not warn if Suppress_Initialization is set
9136 -- either on the type, or on the object via pragma or aspect.
9138 if Present (Expr)
9139 and then not Is_Imported (Ent)
9140 and then not Initialization_Suppressed (Typ)
9141 and then not (Ekind (Ent) = E_Variable
9142 and then Initialization_Suppressed (Ent))
9143 and then (Has_Non_Null_Base_Init_Proc (Typ)
9144 or else Is_Access_Type (Typ)
9145 or else (Normalize_Scalars
9146 and then (Is_Scalar_Type (Typ)
9147 or else Is_String_Type (Typ))))
9148 then
9149 if Nkind (Expr) = N_Attribute_Reference
9150 and then Is_Entity_Name (Prefix (Expr))
9151 then
9152 Old := Entity (Prefix (Expr));
9154 elsif Is_Entity_Name (Expr)
9155 and then Ekind (Entity (Expr)) = E_Constant
9156 then
9157 Decl := Declaration_Node (Entity (Expr));
9159 if Nkind (Decl) = N_Object_Declaration
9160 and then Present (Expression (Decl))
9161 and then Nkind (Expression (Decl)) = N_Attribute_Reference
9162 and then Is_Entity_Name (Prefix (Expression (Decl)))
9163 then
9164 Old := Entity (Prefix (Expression (Decl)));
9166 elsif Nkind (Expr) = N_Function_Call then
9167 return;
9168 end if;
9170 -- A function call (most likely to To_Address) is probably not an
9171 -- overlay, so skip warning. Ditto if the function call was inlined
9172 -- and transformed into an entity.
9174 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
9175 return;
9176 end if;
9178 -- If a pragma Import follows, we assume that it is for the current
9179 -- target of the address clause, and skip the warning. There may be
9180 -- a source pragma or an aspect that specifies import and generates
9181 -- the corresponding pragma. These will indicate that the entity is
9182 -- imported and that is checked above so that the spurious warning
9183 -- (generated when the entity is frozen) will be suppressed. The
9184 -- pragma may be attached to the aspect, so it is not yet a list
9185 -- member.
9187 if Is_List_Member (Parent (Expr)) then
9188 Decl := Next (Parent (Expr));
9190 if Present (Decl)
9191 and then Nkind (Decl) = N_Pragma
9192 and then Pragma_Name (Decl) = Name_Import
9193 then
9194 return;
9195 end if;
9196 end if;
9198 -- Otherwise give warning message
9200 if Present (Old) then
9201 Error_Msg_Node_2 := Old;
9202 Error_Msg_N
9203 ("default initialization of & may modify &??",
9204 Nam);
9205 else
9206 Error_Msg_N
9207 ("default initialization of & may modify overlaid storage??",
9208 Nam);
9209 end if;
9211 -- Add friendly warning if initialization comes from a packed array
9212 -- component.
9214 if Is_Record_Type (Typ) then
9215 declare
9216 Comp : Entity_Id;
9218 begin
9219 Comp := First_Component (Typ);
9220 while Present (Comp) loop
9221 if Nkind (Parent (Comp)) = N_Component_Declaration
9222 and then Present (Expression (Parent (Comp)))
9223 then
9224 exit;
9225 elsif Is_Array_Type (Etype (Comp))
9226 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
9227 then
9228 Error_Msg_NE
9229 ("\packed array component& " &
9230 "will be initialized to zero??",
9231 Nam, Comp);
9232 exit;
9233 else
9234 Next_Component (Comp);
9235 end if;
9236 end loop;
9237 end;
9238 end if;
9240 Error_Msg_N
9241 ("\use pragma Import for & to " &
9242 "suppress initialization (RM B.1(24))??",
9243 Nam);
9244 end if;
9245 end Warn_Overlay;
9247 end Freeze;