mips.h (set_volatile): Delete.
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob451fa0b7d38ad7b3a0f4365634373e258d2b153e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Atag; use Exp_Atag;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Intr; use Exp_Intr;
41 with Exp_Pakd; use Exp_Pakd;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Fname; use Fname;
45 with Freeze; use Freeze;
46 with Inline; use Inline;
47 with Lib; use Lib;
48 with Namet; use Namet;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch12; use Sem_Ch12;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_Util; use Sem_Util;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Stand; use Stand;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
72 with Validsw; use Validsw;
74 package body Exp_Ch6 is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Add_Access_Actual_To_Build_In_Place_Call
81 (Function_Call : Node_Id;
82 Function_Id : Entity_Id;
83 Return_Object : Node_Id;
84 Is_Access : Boolean := False);
85 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
86 -- object name given by Return_Object and add the attribute to the end of
87 -- the actual parameter list associated with the build-in-place function
88 -- call denoted by Function_Call. However, if Is_Access is True, then
89 -- Return_Object is already an access expression, in which case it's passed
90 -- along directly to the build-in-place function. Finally, if Return_Object
91 -- is empty, then pass a null literal as the actual.
93 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
94 (Function_Call : Node_Id;
95 Function_Id : Entity_Id;
96 Alloc_Form : BIP_Allocation_Form := Unspecified;
97 Alloc_Form_Exp : Node_Id := Empty);
98 -- Ada 2005 (AI-318-02): Add an actual indicating the form of allocation,
99 -- if any, to be done by a build-in-place function. If Alloc_Form_Exp is
100 -- present, then use it, otherwise pass a literal corresponding to the
101 -- Alloc_Form parameter (which must not be Unspecified in that case).
103 procedure Add_Extra_Actual_To_Call
104 (Subprogram_Call : Node_Id;
105 Extra_Formal : Entity_Id;
106 Extra_Actual : Node_Id);
107 -- Adds Extra_Actual as a named parameter association for the formal
108 -- Extra_Formal in Subprogram_Call.
110 procedure Add_Final_List_Actual_To_Build_In_Place_Call
111 (Function_Call : Node_Id;
112 Function_Id : Entity_Id;
113 Acc_Type : Entity_Id);
114 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type has
115 -- controlled parts, add an actual parameter that is a pointer to
116 -- appropriate finalization list. The finalization list is that of the
117 -- current scope, except for "new Acc'(F(...))" in which case it's the
118 -- finalization list of the access type returned by the allocator. Acc_Type
119 -- is that type in the allocator case; Empty otherwise.
121 procedure Add_Task_Actuals_To_Build_In_Place_Call
122 (Function_Call : Node_Id;
123 Function_Id : Entity_Id;
124 Master_Actual : Node_Id);
125 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
126 -- contains tasks, add two actual parameters: the master, and a pointer to
127 -- the caller's activation chain. Master_Actual is the actual parameter
128 -- expression to pass for the master. In most cases, this is the current
129 -- master (_master). The two exceptions are: If the function call is the
130 -- initialization expression for an allocator, we pass the master of the
131 -- access type. If the function call is the initialization expression for
132 -- a return object, we pass along the master passed in by the caller. The
133 -- activation chain to pass is always the local one.
135 procedure Check_Overriding_Operation (Subp : Entity_Id);
136 -- Subp is a dispatching operation. Check whether it may override an
137 -- inherited private operation, in which case its DT entry is that of
138 -- the hidden operation, not the one it may have received earlier.
139 -- This must be done before emitting the code to set the corresponding
140 -- DT to the address of the subprogram. The actual placement of Subp in
141 -- the proper place in the list of primitive operations is done in
142 -- Declare_Inherited_Private_Subprograms, which also has to deal with
143 -- implicit operations. This duplication is unavoidable for now???
145 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
146 -- This procedure is called only if the subprogram body N, whose spec
147 -- has the given entity Spec, contains a parameterless recursive call.
148 -- It attempts to generate runtime code to detect if this a case of
149 -- infinite recursion.
151 -- The body is scanned to determine dependencies. If the only external
152 -- dependencies are on a small set of scalar variables, then the values
153 -- of these variables are captured on entry to the subprogram, and if
154 -- the values are not changed for the call, we know immediately that
155 -- we have an infinite recursion.
157 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
158 -- For each actual of an in-out or out parameter which is a numeric
159 -- (view) conversion of the form T (A), where A denotes a variable,
160 -- we insert the declaration:
162 -- Temp : T[ := T (A)];
164 -- prior to the call. Then we replace the actual with a reference to Temp,
165 -- and append the assignment:
167 -- A := TypeA (Temp);
169 -- after the call. Here TypeA is the actual type of variable A.
170 -- For out parameters, the initial declaration has no expression.
171 -- If A is not an entity name, we generate instead:
173 -- Var : TypeA renames A;
174 -- Temp : T := Var; -- omitting expression for out parameter.
175 -- ...
176 -- Var := TypeA (Temp);
178 -- For other in-out parameters, we emit the required constraint checks
179 -- before and/or after the call.
181 -- For all parameter modes, actuals that denote components and slices
182 -- of packed arrays are expanded into suitable temporaries.
184 -- For non-scalar objects that are possibly unaligned, add call by copy
185 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
187 procedure Expand_Inlined_Call
188 (N : Node_Id;
189 Subp : Entity_Id;
190 Orig_Subp : Entity_Id);
191 -- If called subprogram can be inlined by the front-end, retrieve the
192 -- analyzed body, replace formals with actuals and expand call in place.
193 -- Generate thunks for actuals that are expressions, and insert the
194 -- corresponding constant declarations before the call. If the original
195 -- call is to a derived operation, the return type is the one of the
196 -- derived operation, but the body is that of the original, so return
197 -- expressions in the body must be converted to the desired type (which
198 -- is simply not noted in the tree without inline expansion).
200 function Expand_Protected_Object_Reference
201 (N : Node_Id;
202 Scop : Entity_Id) return Node_Id;
204 procedure Expand_Protected_Subprogram_Call
205 (N : Node_Id;
206 Subp : Entity_Id;
207 Scop : Entity_Id);
208 -- A call to a protected subprogram within the protected object may appear
209 -- as a regular call. The list of actuals must be expanded to contain a
210 -- reference to the object itself, and the call becomes a call to the
211 -- corresponding protected subprogram.
213 ----------------------------------------------
214 -- Add_Access_Actual_To_Build_In_Place_Call --
215 ----------------------------------------------
217 procedure Add_Access_Actual_To_Build_In_Place_Call
218 (Function_Call : Node_Id;
219 Function_Id : Entity_Id;
220 Return_Object : Node_Id;
221 Is_Access : Boolean := False)
223 Loc : constant Source_Ptr := Sloc (Function_Call);
224 Obj_Address : Node_Id;
225 Obj_Acc_Formal : Entity_Id;
227 begin
228 -- Locate the implicit access parameter in the called function
230 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
232 -- If no return object is provided, then pass null
234 if not Present (Return_Object) then
235 Obj_Address := Make_Null (Loc);
236 Set_Parent (Obj_Address, Function_Call);
238 -- If Return_Object is already an expression of an access type, then use
239 -- it directly, since it must be an access value denoting the return
240 -- object, and couldn't possibly be the return object itself.
242 elsif Is_Access then
243 Obj_Address := Return_Object;
244 Set_Parent (Obj_Address, Function_Call);
246 -- Apply Unrestricted_Access to caller's return object
248 else
249 Obj_Address :=
250 Make_Attribute_Reference (Loc,
251 Prefix => Return_Object,
252 Attribute_Name => Name_Unrestricted_Access);
254 Set_Parent (Return_Object, Obj_Address);
255 Set_Parent (Obj_Address, Function_Call);
256 end if;
258 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
260 -- Build the parameter association for the new actual and add it to the
261 -- end of the function's actuals.
263 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
264 end Add_Access_Actual_To_Build_In_Place_Call;
266 --------------------------------------------------
267 -- Add_Alloc_Form_Actual_To_Build_In_Place_Call --
268 --------------------------------------------------
270 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
271 (Function_Call : Node_Id;
272 Function_Id : Entity_Id;
273 Alloc_Form : BIP_Allocation_Form := Unspecified;
274 Alloc_Form_Exp : Node_Id := Empty)
276 Loc : constant Source_Ptr := Sloc (Function_Call);
277 Alloc_Form_Actual : Node_Id;
278 Alloc_Form_Formal : Node_Id;
280 begin
281 -- The allocation form generally doesn't need to be passed in the case
282 -- of a constrained result subtype, since normally the caller performs
283 -- the allocation in that case. However this formal is still needed in
284 -- the case where the function has a tagged result, because generally
285 -- such functions can be called in a dispatching context and such calls
286 -- must be handled like calls to class-wide functions.
288 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
289 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
290 then
291 return;
292 end if;
294 -- Locate the implicit allocation form parameter in the called function.
295 -- Maybe it would be better for each implicit formal of a build-in-place
296 -- function to have a flag or a Uint attribute to identify it. ???
298 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
300 if Present (Alloc_Form_Exp) then
301 pragma Assert (Alloc_Form = Unspecified);
303 Alloc_Form_Actual := Alloc_Form_Exp;
305 else
306 pragma Assert (Alloc_Form /= Unspecified);
308 Alloc_Form_Actual :=
309 Make_Integer_Literal (Loc,
310 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
311 end if;
313 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
315 -- Build the parameter association for the new actual and add it to the
316 -- end of the function's actuals.
318 Add_Extra_Actual_To_Call
319 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
320 end Add_Alloc_Form_Actual_To_Build_In_Place_Call;
322 ------------------------------
323 -- Add_Extra_Actual_To_Call --
324 ------------------------------
326 procedure Add_Extra_Actual_To_Call
327 (Subprogram_Call : Node_Id;
328 Extra_Formal : Entity_Id;
329 Extra_Actual : Node_Id)
331 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
332 Param_Assoc : Node_Id;
334 begin
335 Param_Assoc :=
336 Make_Parameter_Association (Loc,
337 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
338 Explicit_Actual_Parameter => Extra_Actual);
340 Set_Parent (Param_Assoc, Subprogram_Call);
341 Set_Parent (Extra_Actual, Param_Assoc);
343 if Present (Parameter_Associations (Subprogram_Call)) then
344 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
345 N_Parameter_Association
346 then
348 -- Find last named actual, and append
350 declare
351 L : Node_Id;
352 begin
353 L := First_Actual (Subprogram_Call);
354 while Present (L) loop
355 if No (Next_Actual (L)) then
356 Set_Next_Named_Actual (Parent (L), Extra_Actual);
357 exit;
358 end if;
359 Next_Actual (L);
360 end loop;
361 end;
363 else
364 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
365 end if;
367 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
369 else
370 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
371 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
372 end if;
373 end Add_Extra_Actual_To_Call;
375 --------------------------------------------------
376 -- Add_Final_List_Actual_To_Build_In_Place_Call --
377 --------------------------------------------------
379 procedure Add_Final_List_Actual_To_Build_In_Place_Call
380 (Function_Call : Node_Id;
381 Function_Id : Entity_Id;
382 Acc_Type : Entity_Id)
384 Loc : constant Source_Ptr := Sloc (Function_Call);
385 Final_List : Node_Id;
386 Final_List_Actual : Node_Id;
387 Final_List_Formal : Node_Id;
389 begin
390 -- No such extra parameter is needed if there are no controlled parts.
391 -- The test for Controlled_Type accounts for class-wide results (which
392 -- potentially have controlled parts, even if the root type doesn't),
393 -- and the test for a tagged result type is needed because calls to
394 -- such a function can in general occur in dispatching contexts, which
395 -- must be treated the same as a call to class-wide functions. Both of
396 -- these situations require that a finalization list be passed.
398 if not Controlled_Type (Underlying_Type (Etype (Function_Id)))
399 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
400 then
401 return;
402 end if;
404 -- Locate implicit finalization list parameter in the called function
406 Final_List_Formal := Build_In_Place_Formal (Function_Id, BIP_Final_List);
408 -- Create the actual which is a pointer to the appropriate finalization
409 -- list. Acc_Type is present if and only if this call is the
410 -- initialization of an allocator. Use the Current_Scope or the Acc_Type
411 -- as appropriate.
413 if Present (Acc_Type)
414 and then (Ekind (Acc_Type) = E_Anonymous_Access_Type
415 or else
416 Present (Associated_Final_Chain (Base_Type (Acc_Type))))
417 then
418 Final_List := Find_Final_List (Acc_Type);
419 else
420 Final_List := Find_Final_List (Current_Scope);
421 end if;
423 Final_List_Actual :=
424 Make_Attribute_Reference (Loc,
425 Prefix => Final_List,
426 Attribute_Name => Name_Unrestricted_Access);
428 Analyze_And_Resolve (Final_List_Actual, Etype (Final_List_Formal));
430 -- Build the parameter association for the new actual and add it to the
431 -- end of the function's actuals.
433 Add_Extra_Actual_To_Call
434 (Function_Call, Final_List_Formal, Final_List_Actual);
435 end Add_Final_List_Actual_To_Build_In_Place_Call;
437 ---------------------------------------------
438 -- Add_Task_Actuals_To_Build_In_Place_Call --
439 ---------------------------------------------
441 procedure Add_Task_Actuals_To_Build_In_Place_Call
442 (Function_Call : Node_Id;
443 Function_Id : Entity_Id;
444 Master_Actual : Node_Id)
445 -- Note: Master_Actual can be Empty, but only if there are no tasks
447 Loc : constant Source_Ptr := Sloc (Function_Call);
449 begin
450 -- No such extra parameters are needed if there are no tasks
452 if not Has_Task (Etype (Function_Id)) then
453 return;
454 end if;
456 -- The master
458 declare
459 Master_Formal : Node_Id;
460 begin
461 -- Locate implicit master parameter in the called function
463 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Master);
465 Analyze_And_Resolve (Master_Actual, Etype (Master_Formal));
467 -- Build the parameter association for the new actual and add it to
468 -- the end of the function's actuals.
470 Add_Extra_Actual_To_Call
471 (Function_Call, Master_Formal, Master_Actual);
472 end;
474 -- The activation chain
476 declare
477 Activation_Chain_Actual : Node_Id;
478 Activation_Chain_Formal : Node_Id;
479 begin
480 -- Locate implicit activation chain parameter in the called function
482 Activation_Chain_Formal := Build_In_Place_Formal
483 (Function_Id, BIP_Activation_Chain);
485 -- Create the actual which is a pointer to the current activation
486 -- chain
488 Activation_Chain_Actual :=
489 Make_Attribute_Reference (Loc,
490 Prefix => Make_Identifier (Loc, Name_uChain),
491 Attribute_Name => Name_Unrestricted_Access);
493 Analyze_And_Resolve
494 (Activation_Chain_Actual, Etype (Activation_Chain_Formal));
496 -- Build the parameter association for the new actual and add it to
497 -- the end of the function's actuals.
499 Add_Extra_Actual_To_Call
500 (Function_Call, Activation_Chain_Formal, Activation_Chain_Actual);
501 end;
502 end Add_Task_Actuals_To_Build_In_Place_Call;
504 -----------------------
505 -- BIP_Formal_Suffix --
506 -----------------------
508 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
509 begin
510 case Kind is
511 when BIP_Alloc_Form =>
512 return "BIPalloc";
513 when BIP_Final_List =>
514 return "BIPfinallist";
515 when BIP_Master =>
516 return "BIPmaster";
517 when BIP_Activation_Chain =>
518 return "BIPactivationchain";
519 when BIP_Object_Access =>
520 return "BIPaccess";
521 end case;
522 end BIP_Formal_Suffix;
524 ---------------------------
525 -- Build_In_Place_Formal --
526 ---------------------------
528 function Build_In_Place_Formal
529 (Func : Entity_Id;
530 Kind : BIP_Formal_Kind) return Entity_Id
532 Extra_Formal : Entity_Id := Extra_Formals (Func);
534 begin
535 -- Maybe it would be better for each implicit formal of a build-in-place
536 -- function to have a flag or a Uint attribute to identify it. ???
538 loop
539 pragma Assert (Present (Extra_Formal));
540 exit when
541 Chars (Extra_Formal) =
542 New_External_Name (Chars (Func), BIP_Formal_Suffix (Kind));
543 Next_Formal_With_Extras (Extra_Formal);
544 end loop;
546 return Extra_Formal;
547 end Build_In_Place_Formal;
549 --------------------------------
550 -- Check_Overriding_Operation --
551 --------------------------------
553 procedure Check_Overriding_Operation (Subp : Entity_Id) is
554 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
555 Op_List : constant Elist_Id := Primitive_Operations (Typ);
556 Op_Elmt : Elmt_Id;
557 Prim_Op : Entity_Id;
558 Par_Op : Entity_Id;
560 begin
561 if Is_Derived_Type (Typ)
562 and then not Is_Private_Type (Typ)
563 and then In_Open_Scopes (Scope (Etype (Typ)))
564 and then Typ = Base_Type (Typ)
565 then
566 -- Subp overrides an inherited private operation if there is an
567 -- inherited operation with a different name than Subp (see
568 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
569 -- same name as Subp.
571 Op_Elmt := First_Elmt (Op_List);
572 while Present (Op_Elmt) loop
573 Prim_Op := Node (Op_Elmt);
574 Par_Op := Alias (Prim_Op);
576 if Present (Par_Op)
577 and then not Comes_From_Source (Prim_Op)
578 and then Chars (Prim_Op) /= Chars (Par_Op)
579 and then Chars (Par_Op) = Chars (Subp)
580 and then Is_Hidden (Par_Op)
581 and then Type_Conformant (Prim_Op, Subp)
582 then
583 Set_DT_Position (Subp, DT_Position (Prim_Op));
584 end if;
586 Next_Elmt (Op_Elmt);
587 end loop;
588 end if;
589 end Check_Overriding_Operation;
591 -------------------------------
592 -- Detect_Infinite_Recursion --
593 -------------------------------
595 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
596 Loc : constant Source_Ptr := Sloc (N);
598 Var_List : constant Elist_Id := New_Elmt_List;
599 -- List of globals referenced by body of procedure
601 Call_List : constant Elist_Id := New_Elmt_List;
602 -- List of recursive calls in body of procedure
604 Shad_List : constant Elist_Id := New_Elmt_List;
605 -- List of entity id's for entities created to capture the value of
606 -- referenced globals on entry to the procedure.
608 Scop : constant Uint := Scope_Depth (Spec);
609 -- This is used to record the scope depth of the current procedure, so
610 -- that we can identify global references.
612 Max_Vars : constant := 4;
613 -- Do not test more than four global variables
615 Count_Vars : Natural := 0;
616 -- Count variables found so far
618 Var : Entity_Id;
619 Elm : Elmt_Id;
620 Ent : Entity_Id;
621 Call : Elmt_Id;
622 Decl : Node_Id;
623 Test : Node_Id;
624 Elm1 : Elmt_Id;
625 Elm2 : Elmt_Id;
626 Last : Node_Id;
628 function Process (Nod : Node_Id) return Traverse_Result;
629 -- Function to traverse the subprogram body (using Traverse_Func)
631 -------------
632 -- Process --
633 -------------
635 function Process (Nod : Node_Id) return Traverse_Result is
636 begin
637 -- Procedure call
639 if Nkind (Nod) = N_Procedure_Call_Statement then
641 -- Case of one of the detected recursive calls
643 if Is_Entity_Name (Name (Nod))
644 and then Has_Recursive_Call (Entity (Name (Nod)))
645 and then Entity (Name (Nod)) = Spec
646 then
647 Append_Elmt (Nod, Call_List);
648 return Skip;
650 -- Any other procedure call may have side effects
652 else
653 return Abandon;
654 end if;
656 -- A call to a pure function can always be ignored
658 elsif Nkind (Nod) = N_Function_Call
659 and then Is_Entity_Name (Name (Nod))
660 and then Is_Pure (Entity (Name (Nod)))
661 then
662 return Skip;
664 -- Case of an identifier reference
666 elsif Nkind (Nod) = N_Identifier then
667 Ent := Entity (Nod);
669 -- If no entity, then ignore the reference
671 -- Not clear why this can happen. To investigate, remove this
672 -- test and look at the crash that occurs here in 3401-004 ???
674 if No (Ent) then
675 return Skip;
677 -- Ignore entities with no Scope, again not clear how this
678 -- can happen, to investigate, look at 4108-008 ???
680 elsif No (Scope (Ent)) then
681 return Skip;
683 -- Ignore the reference if not to a more global object
685 elsif Scope_Depth (Scope (Ent)) >= Scop then
686 return Skip;
688 -- References to types, exceptions and constants are always OK
690 elsif Is_Type (Ent)
691 or else Ekind (Ent) = E_Exception
692 or else Ekind (Ent) = E_Constant
693 then
694 return Skip;
696 -- If other than a non-volatile scalar variable, we have some
697 -- kind of global reference (e.g. to a function) that we cannot
698 -- deal with so we forget the attempt.
700 elsif Ekind (Ent) /= E_Variable
701 or else not Is_Scalar_Type (Etype (Ent))
702 or else Treat_As_Volatile (Ent)
703 then
704 return Abandon;
706 -- Otherwise we have a reference to a global scalar
708 else
709 -- Loop through global entities already detected
711 Elm := First_Elmt (Var_List);
712 loop
713 -- If not detected before, record this new global reference
715 if No (Elm) then
716 Count_Vars := Count_Vars + 1;
718 if Count_Vars <= Max_Vars then
719 Append_Elmt (Entity (Nod), Var_List);
720 else
721 return Abandon;
722 end if;
724 exit;
726 -- If recorded before, ignore
728 elsif Node (Elm) = Entity (Nod) then
729 return Skip;
731 -- Otherwise keep looking
733 else
734 Next_Elmt (Elm);
735 end if;
736 end loop;
738 return Skip;
739 end if;
741 -- For all other node kinds, recursively visit syntactic children
743 else
744 return OK;
745 end if;
746 end Process;
748 function Traverse_Body is new Traverse_Func (Process);
750 -- Start of processing for Detect_Infinite_Recursion
752 begin
753 -- Do not attempt detection in No_Implicit_Conditional mode, since we
754 -- won't be able to generate the code to handle the recursion in any
755 -- case.
757 if Restriction_Active (No_Implicit_Conditionals) then
758 return;
759 end if;
761 -- Otherwise do traversal and quit if we get abandon signal
763 if Traverse_Body (N) = Abandon then
764 return;
766 -- We must have a call, since Has_Recursive_Call was set. If not just
767 -- ignore (this is only an error check, so if we have a funny situation,
768 -- due to bugs or errors, we do not want to bomb!)
770 elsif Is_Empty_Elmt_List (Call_List) then
771 return;
772 end if;
774 -- Here is the case where we detect recursion at compile time
776 -- Push our current scope for analyzing the declarations and code that
777 -- we will insert for the checking.
779 Push_Scope (Spec);
781 -- This loop builds temporary variables for each of the referenced
782 -- globals, so that at the end of the loop the list Shad_List contains
783 -- these temporaries in one-to-one correspondence with the elements in
784 -- Var_List.
786 Last := Empty;
787 Elm := First_Elmt (Var_List);
788 while Present (Elm) loop
789 Var := Node (Elm);
790 Ent :=
791 Make_Defining_Identifier (Loc,
792 Chars => New_Internal_Name ('S'));
793 Append_Elmt (Ent, Shad_List);
795 -- Insert a declaration for this temporary at the start of the
796 -- declarations for the procedure. The temporaries are declared as
797 -- constant objects initialized to the current values of the
798 -- corresponding temporaries.
800 Decl :=
801 Make_Object_Declaration (Loc,
802 Defining_Identifier => Ent,
803 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
804 Constant_Present => True,
805 Expression => New_Occurrence_Of (Var, Loc));
807 if No (Last) then
808 Prepend (Decl, Declarations (N));
809 else
810 Insert_After (Last, Decl);
811 end if;
813 Last := Decl;
814 Analyze (Decl);
815 Next_Elmt (Elm);
816 end loop;
818 -- Loop through calls
820 Call := First_Elmt (Call_List);
821 while Present (Call) loop
823 -- Build a predicate expression of the form
825 -- True
826 -- and then global1 = temp1
827 -- and then global2 = temp2
828 -- ...
830 -- This predicate determines if any of the global values
831 -- referenced by the procedure have changed since the
832 -- current call, if not an infinite recursion is assured.
834 Test := New_Occurrence_Of (Standard_True, Loc);
836 Elm1 := First_Elmt (Var_List);
837 Elm2 := First_Elmt (Shad_List);
838 while Present (Elm1) loop
839 Test :=
840 Make_And_Then (Loc,
841 Left_Opnd => Test,
842 Right_Opnd =>
843 Make_Op_Eq (Loc,
844 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
845 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
847 Next_Elmt (Elm1);
848 Next_Elmt (Elm2);
849 end loop;
851 -- Now we replace the call with the sequence
853 -- if no-changes (see above) then
854 -- raise Storage_Error;
855 -- else
856 -- original-call
857 -- end if;
859 Rewrite (Node (Call),
860 Make_If_Statement (Loc,
861 Condition => Test,
862 Then_Statements => New_List (
863 Make_Raise_Storage_Error (Loc,
864 Reason => SE_Infinite_Recursion)),
866 Else_Statements => New_List (
867 Relocate_Node (Node (Call)))));
869 Analyze (Node (Call));
871 Next_Elmt (Call);
872 end loop;
874 -- Remove temporary scope stack entry used for analysis
876 Pop_Scope;
877 end Detect_Infinite_Recursion;
879 --------------------
880 -- Expand_Actuals --
881 --------------------
883 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
884 Loc : constant Source_Ptr := Sloc (N);
885 Actual : Node_Id;
886 Formal : Entity_Id;
887 N_Node : Node_Id;
888 Post_Call : List_Id;
889 E_Formal : Entity_Id;
891 procedure Add_Call_By_Copy_Code;
892 -- For cases where the parameter must be passed by copy, this routine
893 -- generates a temporary variable into which the actual is copied and
894 -- then passes this as the parameter. For an OUT or IN OUT parameter,
895 -- an assignment is also generated to copy the result back. The call
896 -- also takes care of any constraint checks required for the type
897 -- conversion case (on both the way in and the way out).
899 procedure Add_Simple_Call_By_Copy_Code;
900 -- This is similar to the above, but is used in cases where we know
901 -- that all that is needed is to simply create a temporary and copy
902 -- the value in and out of the temporary.
904 procedure Check_Fortran_Logical;
905 -- A value of type Logical that is passed through a formal parameter
906 -- must be normalized because .TRUE. usually does not have the same
907 -- representation as True. We assume that .FALSE. = False = 0.
908 -- What about functions that return a logical type ???
910 function Is_Legal_Copy return Boolean;
911 -- Check that an actual can be copied before generating the temporary
912 -- to be used in the call. If the actual is of a by_reference type then
913 -- the program is illegal (this can only happen in the presence of
914 -- rep. clauses that force an incorrect alignment). If the formal is
915 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
916 -- the effect that this might lead to unaligned arguments.
918 function Make_Var (Actual : Node_Id) return Entity_Id;
919 -- Returns an entity that refers to the given actual parameter,
920 -- Actual (not including any type conversion). If Actual is an
921 -- entity name, then this entity is returned unchanged, otherwise
922 -- a renaming is created to provide an entity for the actual.
924 procedure Reset_Packed_Prefix;
925 -- The expansion of a packed array component reference is delayed in
926 -- the context of a call. Now we need to complete the expansion, so we
927 -- unmark the analyzed bits in all prefixes.
929 ---------------------------
930 -- Add_Call_By_Copy_Code --
931 ---------------------------
933 procedure Add_Call_By_Copy_Code is
934 Expr : Node_Id;
935 Init : Node_Id;
936 Temp : Entity_Id;
937 Indic : Node_Id;
938 Var : Entity_Id;
939 F_Typ : constant Entity_Id := Etype (Formal);
940 V_Typ : Entity_Id;
941 Crep : Boolean;
943 begin
944 if not Is_Legal_Copy then
945 return;
946 end if;
948 Temp :=
949 Make_Defining_Identifier (Loc,
950 Chars => New_Internal_Name ('T'));
952 -- Use formal type for temp, unless formal type is an unconstrained
953 -- array, in which case we don't have to worry about bounds checks,
954 -- and we use the actual type, since that has appropriate bounds.
956 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
957 Indic := New_Occurrence_Of (Etype (Actual), Loc);
958 else
959 Indic := New_Occurrence_Of (Etype (Formal), Loc);
960 end if;
962 if Nkind (Actual) = N_Type_Conversion then
963 V_Typ := Etype (Expression (Actual));
965 -- If the formal is an (in-)out parameter, capture the name
966 -- of the variable in order to build the post-call assignment.
968 Var := Make_Var (Expression (Actual));
970 Crep := not Same_Representation
971 (F_Typ, Etype (Expression (Actual)));
973 else
974 V_Typ := Etype (Actual);
975 Var := Make_Var (Actual);
976 Crep := False;
977 end if;
979 -- Setup initialization for case of in out parameter, or an out
980 -- parameter where the formal is an unconstrained array (in the
981 -- latter case, we have to pass in an object with bounds).
983 -- If this is an out parameter, the initial copy is wasteful, so as
984 -- an optimization for the one-dimensional case we extract the
985 -- bounds of the actual and build an uninitialized temporary of the
986 -- right size.
988 if Ekind (Formal) = E_In_Out_Parameter
989 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
990 then
991 if Nkind (Actual) = N_Type_Conversion then
992 if Conversion_OK (Actual) then
993 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
994 else
995 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
996 end if;
998 elsif Ekind (Formal) = E_Out_Parameter
999 and then Is_Array_Type (F_Typ)
1000 and then Number_Dimensions (F_Typ) = 1
1001 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1002 then
1003 -- Actual is a one-dimensional array or slice, and the type
1004 -- requires no initialization. Create a temporary of the
1005 -- right size, but do not copy actual into it (optimization).
1007 Init := Empty;
1008 Indic :=
1009 Make_Subtype_Indication (Loc,
1010 Subtype_Mark =>
1011 New_Occurrence_Of (F_Typ, Loc),
1012 Constraint =>
1013 Make_Index_Or_Discriminant_Constraint (Loc,
1014 Constraints => New_List (
1015 Make_Range (Loc,
1016 Low_Bound =>
1017 Make_Attribute_Reference (Loc,
1018 Prefix => New_Occurrence_Of (Var, Loc),
1019 Attribute_name => Name_First),
1020 High_Bound =>
1021 Make_Attribute_Reference (Loc,
1022 Prefix => New_Occurrence_Of (Var, Loc),
1023 Attribute_Name => Name_Last)))));
1025 else
1026 Init := New_Occurrence_Of (Var, Loc);
1027 end if;
1029 -- An initialization is created for packed conversions as
1030 -- actuals for out parameters to enable Make_Object_Declaration
1031 -- to determine the proper subtype for N_Node. Note that this
1032 -- is wasteful because the extra copying on the call side is
1033 -- not required for such out parameters. ???
1035 elsif Ekind (Formal) = E_Out_Parameter
1036 and then Nkind (Actual) = N_Type_Conversion
1037 and then (Is_Bit_Packed_Array (F_Typ)
1038 or else
1039 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1040 then
1041 if Conversion_OK (Actual) then
1042 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1043 else
1044 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1045 end if;
1047 elsif Ekind (Formal) = E_In_Parameter then
1049 -- Handle the case in which the actual is a type conversion
1051 if Nkind (Actual) = N_Type_Conversion then
1052 if Conversion_OK (Actual) then
1053 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1054 else
1055 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1056 end if;
1057 else
1058 Init := New_Occurrence_Of (Var, Loc);
1059 end if;
1061 else
1062 Init := Empty;
1063 end if;
1065 N_Node :=
1066 Make_Object_Declaration (Loc,
1067 Defining_Identifier => Temp,
1068 Object_Definition => Indic,
1069 Expression => Init);
1070 Set_Assignment_OK (N_Node);
1071 Insert_Action (N, N_Node);
1073 -- Now, normally the deal here is that we use the defining
1074 -- identifier created by that object declaration. There is
1075 -- one exception to this. In the change of representation case
1076 -- the above declaration will end up looking like:
1078 -- temp : type := identifier;
1080 -- And in this case we might as well use the identifier directly
1081 -- and eliminate the temporary. Note that the analysis of the
1082 -- declaration was not a waste of time in that case, since it is
1083 -- what generated the necessary change of representation code. If
1084 -- the change of representation introduced additional code, as in
1085 -- a fixed-integer conversion, the expression is not an identifier
1086 -- and must be kept.
1088 if Crep
1089 and then Present (Expression (N_Node))
1090 and then Is_Entity_Name (Expression (N_Node))
1091 then
1092 Temp := Entity (Expression (N_Node));
1093 Rewrite (N_Node, Make_Null_Statement (Loc));
1094 end if;
1096 -- For IN parameter, all we do is to replace the actual
1098 if Ekind (Formal) = E_In_Parameter then
1099 Rewrite (Actual, New_Reference_To (Temp, Loc));
1100 Analyze (Actual);
1102 -- Processing for OUT or IN OUT parameter
1104 else
1105 -- Kill current value indications for the temporary variable we
1106 -- created, since we just passed it as an OUT parameter.
1108 Kill_Current_Values (Temp);
1110 -- If type conversion, use reverse conversion on exit
1112 if Nkind (Actual) = N_Type_Conversion then
1113 if Conversion_OK (Actual) then
1114 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1115 else
1116 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1117 end if;
1118 else
1119 Expr := New_Occurrence_Of (Temp, Loc);
1120 end if;
1122 Rewrite (Actual, New_Reference_To (Temp, Loc));
1123 Analyze (Actual);
1125 -- If the actual is a conversion of a packed reference, it may
1126 -- already have been expanded by Remove_Side_Effects, and the
1127 -- resulting variable is a temporary which does not designate
1128 -- the proper out-parameter, which may not be addressable. In
1129 -- that case, generate an assignment to the original expression
1130 -- (before expansion of the packed reference) so that the proper
1131 -- expansion of assignment to a packed component can take place.
1133 declare
1134 Obj : Node_Id;
1135 Lhs : Node_Id;
1137 begin
1138 if Is_Renaming_Of_Object (Var)
1139 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1140 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1141 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1142 = N_Indexed_Component
1143 and then
1144 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1145 then
1146 Obj := Renamed_Object (Var);
1147 Lhs :=
1148 Make_Selected_Component (Loc,
1149 Prefix =>
1150 New_Copy_Tree (Original_Node (Prefix (Obj))),
1151 Selector_Name => New_Copy (Selector_Name (Obj)));
1152 Reset_Analyzed_Flags (Lhs);
1154 else
1155 Lhs := New_Occurrence_Of (Var, Loc);
1156 end if;
1158 Set_Assignment_OK (Lhs);
1160 Append_To (Post_Call,
1161 Make_Assignment_Statement (Loc,
1162 Name => Lhs,
1163 Expression => Expr));
1164 end;
1165 end if;
1167 end Add_Call_By_Copy_Code;
1169 ----------------------------------
1170 -- Add_Simple_Call_By_Copy_Code --
1171 ----------------------------------
1173 procedure Add_Simple_Call_By_Copy_Code is
1174 Temp : Entity_Id;
1175 Decl : Node_Id;
1176 Incod : Node_Id;
1177 Outcod : Node_Id;
1178 Lhs : Node_Id;
1179 Rhs : Node_Id;
1180 Indic : Node_Id;
1181 F_Typ : constant Entity_Id := Etype (Formal);
1183 begin
1184 if not Is_Legal_Copy then
1185 return;
1186 end if;
1188 -- Use formal type for temp, unless formal type is an unconstrained
1189 -- array, in which case we don't have to worry about bounds checks,
1190 -- and we use the actual type, since that has appropriate bounds.
1192 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1193 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1194 else
1195 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1196 end if;
1198 -- Prepare to generate code
1200 Reset_Packed_Prefix;
1202 Temp :=
1203 Make_Defining_Identifier (Loc,
1204 Chars => New_Internal_Name ('T'));
1205 Incod := Relocate_Node (Actual);
1206 Outcod := New_Copy_Tree (Incod);
1208 -- Generate declaration of temporary variable, initializing it
1209 -- with the input parameter unless we have an OUT formal or
1210 -- this is an initialization call.
1212 -- If the formal is an out parameter with discriminants, the
1213 -- discriminants must be captured even if the rest of the object
1214 -- is in principle uninitialized, because the discriminants may
1215 -- be read by the called subprogram.
1217 if Ekind (Formal) = E_Out_Parameter then
1218 Incod := Empty;
1220 if Has_Discriminants (Etype (Formal)) then
1221 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1222 end if;
1224 elsif Inside_Init_Proc then
1226 -- Could use a comment here to match comment below ???
1228 if Nkind (Actual) /= N_Selected_Component
1229 or else
1230 not Has_Discriminant_Dependent_Constraint
1231 (Entity (Selector_Name (Actual)))
1232 then
1233 Incod := Empty;
1235 -- Otherwise, keep the component in order to generate the proper
1236 -- actual subtype, that depends on enclosing discriminants.
1238 else
1239 null;
1240 end if;
1241 end if;
1243 Decl :=
1244 Make_Object_Declaration (Loc,
1245 Defining_Identifier => Temp,
1246 Object_Definition => Indic,
1247 Expression => Incod);
1249 if Inside_Init_Proc
1250 and then No (Incod)
1251 then
1252 -- If the call is to initialize a component of a composite type,
1253 -- and the component does not depend on discriminants, use the
1254 -- actual type of the component. This is required in case the
1255 -- component is constrained, because in general the formal of the
1256 -- initialization procedure will be unconstrained. Note that if
1257 -- the component being initialized is constrained by an enclosing
1258 -- discriminant, the presence of the initialization in the
1259 -- declaration will generate an expression for the actual subtype.
1261 Set_No_Initialization (Decl);
1262 Set_Object_Definition (Decl,
1263 New_Occurrence_Of (Etype (Actual), Loc));
1264 end if;
1266 Insert_Action (N, Decl);
1268 -- The actual is simply a reference to the temporary
1270 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1272 -- Generate copy out if OUT or IN OUT parameter
1274 if Ekind (Formal) /= E_In_Parameter then
1275 Lhs := Outcod;
1276 Rhs := New_Occurrence_Of (Temp, Loc);
1278 -- Deal with conversion
1280 if Nkind (Lhs) = N_Type_Conversion then
1281 Lhs := Expression (Lhs);
1282 Rhs := Convert_To (Etype (Actual), Rhs);
1283 end if;
1285 Append_To (Post_Call,
1286 Make_Assignment_Statement (Loc,
1287 Name => Lhs,
1288 Expression => Rhs));
1289 Set_Assignment_OK (Name (Last (Post_Call)));
1290 end if;
1291 end Add_Simple_Call_By_Copy_Code;
1293 ---------------------------
1294 -- Check_Fortran_Logical --
1295 ---------------------------
1297 procedure Check_Fortran_Logical is
1298 Logical : constant Entity_Id := Etype (Formal);
1299 Var : Entity_Id;
1301 -- Note: this is very incomplete, e.g. it does not handle arrays
1302 -- of logical values. This is really not the right approach at all???)
1304 begin
1305 if Convention (Subp) = Convention_Fortran
1306 and then Root_Type (Etype (Formal)) = Standard_Boolean
1307 and then Ekind (Formal) /= E_In_Parameter
1308 then
1309 Var := Make_Var (Actual);
1310 Append_To (Post_Call,
1311 Make_Assignment_Statement (Loc,
1312 Name => New_Occurrence_Of (Var, Loc),
1313 Expression =>
1314 Unchecked_Convert_To (
1315 Logical,
1316 Make_Op_Ne (Loc,
1317 Left_Opnd => New_Occurrence_Of (Var, Loc),
1318 Right_Opnd =>
1319 Unchecked_Convert_To (
1320 Logical,
1321 New_Occurrence_Of (Standard_False, Loc))))));
1322 end if;
1323 end Check_Fortran_Logical;
1325 -------------------
1326 -- Is_Legal_Copy --
1327 -------------------
1329 function Is_Legal_Copy return Boolean is
1330 begin
1331 -- An attempt to copy a value of such a type can only occur if
1332 -- representation clauses give the actual a misaligned address.
1334 if Is_By_Reference_Type (Etype (Formal)) then
1335 Error_Msg_N
1336 ("misaligned actual cannot be passed by reference", Actual);
1337 return False;
1339 -- For users of Starlet, we assume that the specification of by-
1340 -- reference mechanism is mandatory. This may lead to unaligned
1341 -- objects but at least for DEC legacy code it is known to work.
1342 -- The warning will alert users of this code that a problem may
1343 -- be lurking.
1345 elsif Mechanism (Formal) = By_Reference
1346 and then Is_Valued_Procedure (Scope (Formal))
1347 then
1348 Error_Msg_N
1349 ("by_reference actual may be misaligned?", Actual);
1350 return False;
1352 else
1353 return True;
1354 end if;
1355 end Is_Legal_Copy;
1357 --------------
1358 -- Make_Var --
1359 --------------
1361 function Make_Var (Actual : Node_Id) return Entity_Id is
1362 Var : Entity_Id;
1364 begin
1365 if Is_Entity_Name (Actual) then
1366 return Entity (Actual);
1368 else
1369 Var :=
1370 Make_Defining_Identifier (Loc,
1371 Chars => New_Internal_Name ('T'));
1373 N_Node :=
1374 Make_Object_Renaming_Declaration (Loc,
1375 Defining_Identifier => Var,
1376 Subtype_Mark =>
1377 New_Occurrence_Of (Etype (Actual), Loc),
1378 Name => Relocate_Node (Actual));
1380 Insert_Action (N, N_Node);
1381 return Var;
1382 end if;
1383 end Make_Var;
1385 -------------------------
1386 -- Reset_Packed_Prefix --
1387 -------------------------
1389 procedure Reset_Packed_Prefix is
1390 Pfx : Node_Id := Actual;
1391 begin
1392 loop
1393 Set_Analyzed (Pfx, False);
1394 exit when Nkind (Pfx) /= N_Selected_Component
1395 and then Nkind (Pfx) /= N_Indexed_Component;
1396 Pfx := Prefix (Pfx);
1397 end loop;
1398 end Reset_Packed_Prefix;
1400 -- Start of processing for Expand_Actuals
1402 begin
1403 Post_Call := New_List;
1405 Formal := First_Formal (Subp);
1406 Actual := First_Actual (N);
1407 while Present (Formal) loop
1408 E_Formal := Etype (Formal);
1410 if Is_Scalar_Type (E_Formal)
1411 or else Nkind (Actual) = N_Slice
1412 then
1413 Check_Fortran_Logical;
1415 -- RM 6.4.1 (11)
1417 elsif Ekind (Formal) /= E_Out_Parameter then
1419 -- The unusual case of the current instance of a protected type
1420 -- requires special handling. This can only occur in the context
1421 -- of a call within the body of a protected operation.
1423 if Is_Entity_Name (Actual)
1424 and then Ekind (Entity (Actual)) = E_Protected_Type
1425 and then In_Open_Scopes (Entity (Actual))
1426 then
1427 if Scope (Subp) /= Entity (Actual) then
1428 Error_Msg_N ("operation outside protected type may not "
1429 & "call back its protected operations?", Actual);
1430 end if;
1432 Rewrite (Actual,
1433 Expand_Protected_Object_Reference (N, Entity (Actual)));
1434 end if;
1436 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1437 -- build-in-place function, then a temporary return object needs
1438 -- to be created and access to it must be passed to the function.
1439 -- Currently we limit such functions to those with inherently
1440 -- limited result subtypes, but eventually we plan to expand the
1441 -- functions that are treated as build-in-place to include other
1442 -- composite result types.
1444 if Ada_Version >= Ada_05
1445 and then Is_Build_In_Place_Function_Call (Actual)
1446 then
1447 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1448 end if;
1450 Apply_Constraint_Check (Actual, E_Formal);
1452 -- Out parameter case. No constraint checks on access type
1453 -- RM 6.4.1 (13)
1455 elsif Is_Access_Type (E_Formal) then
1456 null;
1458 -- RM 6.4.1 (14)
1460 elsif Has_Discriminants (Base_Type (E_Formal))
1461 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1462 then
1463 Apply_Constraint_Check (Actual, E_Formal);
1465 -- RM 6.4.1 (15)
1467 else
1468 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1469 end if;
1471 -- Processing for IN-OUT and OUT parameters
1473 if Ekind (Formal) /= E_In_Parameter then
1475 -- For type conversions of arrays, apply length/range checks
1477 if Is_Array_Type (E_Formal)
1478 and then Nkind (Actual) = N_Type_Conversion
1479 then
1480 if Is_Constrained (E_Formal) then
1481 Apply_Length_Check (Expression (Actual), E_Formal);
1482 else
1483 Apply_Range_Check (Expression (Actual), E_Formal);
1484 end if;
1485 end if;
1487 -- If argument is a type conversion for a type that is passed
1488 -- by copy, then we must pass the parameter by copy.
1490 if Nkind (Actual) = N_Type_Conversion
1491 and then
1492 (Is_Numeric_Type (E_Formal)
1493 or else Is_Access_Type (E_Formal)
1494 or else Is_Enumeration_Type (E_Formal)
1495 or else Is_Bit_Packed_Array (Etype (Formal))
1496 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1498 -- Also pass by copy if change of representation
1500 or else not Same_Representation
1501 (Etype (Formal),
1502 Etype (Expression (Actual))))
1503 then
1504 Add_Call_By_Copy_Code;
1506 -- References to components of bit packed arrays are expanded
1507 -- at this point, rather than at the point of analysis of the
1508 -- actuals, to handle the expansion of the assignment to
1509 -- [in] out parameters.
1511 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1512 Add_Simple_Call_By_Copy_Code;
1514 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1515 -- because the back-end cannot cope with such objects. In other
1516 -- cases where alignment forces a copy, the back-end generates
1517 -- it properly. It should not be generated unconditionally in the
1518 -- front-end because it does not know precisely the alignment
1519 -- requirements of the target, and makes too conservative an
1520 -- estimate, leading to superfluous copies or spurious errors
1521 -- on by-reference parameters.
1523 elsif Nkind (Actual) = N_Selected_Component
1524 and then
1525 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1526 and then not Represented_As_Scalar (Etype (Formal))
1527 then
1528 Add_Simple_Call_By_Copy_Code;
1530 -- References to slices of bit packed arrays are expanded
1532 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1533 Add_Call_By_Copy_Code;
1535 -- References to possibly unaligned slices of arrays are expanded
1537 elsif Is_Possibly_Unaligned_Slice (Actual) then
1538 Add_Call_By_Copy_Code;
1540 -- Deal with access types where the actual subtype and the
1541 -- formal subtype are not the same, requiring a check.
1543 -- It is necessary to exclude tagged types because of "downward
1544 -- conversion" errors and a strange assertion error in namet
1545 -- from gnatf in bug 1215-001 ???
1547 elsif Is_Access_Type (E_Formal)
1548 and then not Same_Type (E_Formal, Etype (Actual))
1549 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1550 then
1551 Add_Call_By_Copy_Code;
1553 -- If the actual is not a scalar and is marked for volatile
1554 -- treatment, whereas the formal is not volatile, then pass
1555 -- by copy unless it is a by-reference type.
1557 elsif Is_Entity_Name (Actual)
1558 and then Treat_As_Volatile (Entity (Actual))
1559 and then not Is_By_Reference_Type (Etype (Actual))
1560 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1561 and then not Treat_As_Volatile (E_Formal)
1562 then
1563 Add_Call_By_Copy_Code;
1565 elsif Nkind (Actual) = N_Indexed_Component
1566 and then Is_Entity_Name (Prefix (Actual))
1567 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1568 then
1569 Add_Call_By_Copy_Code;
1570 end if;
1572 -- Processing for IN parameters
1574 else
1575 -- For IN parameters is in the packed array case, we expand an
1576 -- indexed component (the circuit in Exp_Ch4 deliberately left
1577 -- indexed components appearing as actuals untouched, so that
1578 -- the special processing above for the OUT and IN OUT cases
1579 -- could be performed. We could make the test in Exp_Ch4 more
1580 -- complex and have it detect the parameter mode, but it is
1581 -- easier simply to handle all cases here.)
1583 if Nkind (Actual) = N_Indexed_Component
1584 and then Is_Packed (Etype (Prefix (Actual)))
1585 then
1586 Reset_Packed_Prefix;
1587 Expand_Packed_Element_Reference (Actual);
1589 -- If we have a reference to a bit packed array, we copy it,
1590 -- since the actual must be byte aligned.
1592 -- Is this really necessary in all cases???
1594 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1595 Add_Simple_Call_By_Copy_Code;
1597 -- If a non-scalar actual is possibly unaligned, we need a copy
1599 elsif Is_Possibly_Unaligned_Object (Actual)
1600 and then not Represented_As_Scalar (Etype (Formal))
1601 then
1602 Add_Simple_Call_By_Copy_Code;
1604 -- Similarly, we have to expand slices of packed arrays here
1605 -- because the result must be byte aligned.
1607 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1608 Add_Call_By_Copy_Code;
1610 -- Only processing remaining is to pass by copy if this is a
1611 -- reference to a possibly unaligned slice, since the caller
1612 -- expects an appropriately aligned argument.
1614 elsif Is_Possibly_Unaligned_Slice (Actual) then
1615 Add_Call_By_Copy_Code;
1616 end if;
1617 end if;
1619 Next_Formal (Formal);
1620 Next_Actual (Actual);
1621 end loop;
1623 -- Find right place to put post call stuff if it is present
1625 if not Is_Empty_List (Post_Call) then
1627 -- If call is not a list member, it must be the triggering statement
1628 -- of a triggering alternative or an entry call alternative, and we
1629 -- can add the post call stuff to the corresponding statement list.
1631 if not Is_List_Member (N) then
1632 declare
1633 P : constant Node_Id := Parent (N);
1635 begin
1636 pragma Assert (Nkind (P) = N_Triggering_Alternative
1637 or else Nkind (P) = N_Entry_Call_Alternative);
1639 if Is_Non_Empty_List (Statements (P)) then
1640 Insert_List_Before_And_Analyze
1641 (First (Statements (P)), Post_Call);
1642 else
1643 Set_Statements (P, Post_Call);
1644 end if;
1645 end;
1647 -- Otherwise, normal case where N is in a statement sequence,
1648 -- just put the post-call stuff after the call statement.
1650 else
1651 Insert_Actions_After (N, Post_Call);
1652 end if;
1653 end if;
1655 -- The call node itself is re-analyzed in Expand_Call
1657 end Expand_Actuals;
1659 -----------------
1660 -- Expand_Call --
1661 -----------------
1663 -- This procedure handles expansion of function calls and procedure call
1664 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1665 -- Expand_N_Procedure_Call_Statement. Processing for calls includes:
1667 -- Replace call to Raise_Exception by Raise_Exception always if possible
1668 -- Provide values of actuals for all formals in Extra_Formals list
1669 -- Replace "call" to enumeration literal function by literal itself
1670 -- Rewrite call to predefined operator as operator
1671 -- Replace actuals to in-out parameters that are numeric conversions,
1672 -- with explicit assignment to temporaries before and after the call.
1673 -- Remove optional actuals if First_Optional_Parameter specified.
1675 -- Note that the list of actuals has been filled with default expressions
1676 -- during semantic analysis of the call. Only the extra actuals required
1677 -- for the 'Constrained attribute and for accessibility checks are added
1678 -- at this point.
1680 procedure Expand_Call (N : Node_Id) is
1681 Loc : constant Source_Ptr := Sloc (N);
1682 Extra_Actuals : List_Id := No_List;
1683 Prev : Node_Id := Empty;
1685 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1686 -- Adds one entry to the end of the actual parameter list. Used for
1687 -- default parameters and for extra actuals (for Extra_Formals). The
1688 -- argument is an N_Parameter_Association node.
1690 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1691 -- Adds an extra actual to the list of extra actuals. Expr is the
1692 -- expression for the value of the actual, EF is the entity for the
1693 -- extra formal.
1695 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1696 -- Within an instance, a type derived from a non-tagged formal derived
1697 -- type inherits from the original parent, not from the actual. This is
1698 -- tested in 4723-003. The current derivation mechanism has the derived
1699 -- type inherit from the actual, which is only correct outside of the
1700 -- instance. If the subprogram is inherited, we test for this particular
1701 -- case through a convoluted tree traversal before setting the proper
1702 -- subprogram to be called.
1704 --------------------------
1705 -- Add_Actual_Parameter --
1706 --------------------------
1708 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
1709 Actual_Expr : constant Node_Id :=
1710 Explicit_Actual_Parameter (Insert_Param);
1712 begin
1713 -- Case of insertion is first named actual
1715 if No (Prev) or else
1716 Nkind (Parent (Prev)) /= N_Parameter_Association
1717 then
1718 Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
1719 Set_First_Named_Actual (N, Actual_Expr);
1721 if No (Prev) then
1722 if No (Parameter_Associations (N)) then
1723 Set_Parameter_Associations (N, New_List);
1724 Append (Insert_Param, Parameter_Associations (N));
1725 end if;
1726 else
1727 Insert_After (Prev, Insert_Param);
1728 end if;
1730 -- Case of insertion is not first named actual
1732 else
1733 Set_Next_Named_Actual
1734 (Insert_Param, Next_Named_Actual (Parent (Prev)));
1735 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
1736 Append (Insert_Param, Parameter_Associations (N));
1737 end if;
1739 Prev := Actual_Expr;
1740 end Add_Actual_Parameter;
1742 ----------------------
1743 -- Add_Extra_Actual --
1744 ----------------------
1746 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
1747 Loc : constant Source_Ptr := Sloc (Expr);
1749 begin
1750 if Extra_Actuals = No_List then
1751 Extra_Actuals := New_List;
1752 Set_Parent (Extra_Actuals, N);
1753 end if;
1755 Append_To (Extra_Actuals,
1756 Make_Parameter_Association (Loc,
1757 Explicit_Actual_Parameter => Expr,
1758 Selector_Name =>
1759 Make_Identifier (Loc, Chars (EF))));
1761 Analyze_And_Resolve (Expr, Etype (EF));
1762 end Add_Extra_Actual;
1764 ---------------------------
1765 -- Inherited_From_Formal --
1766 ---------------------------
1768 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
1769 Par : Entity_Id;
1770 Gen_Par : Entity_Id;
1771 Gen_Prim : Elist_Id;
1772 Elmt : Elmt_Id;
1773 Indic : Node_Id;
1775 begin
1776 -- If the operation is inherited, it is attached to the corresponding
1777 -- type derivation. If the parent in the derivation is a generic
1778 -- actual, it is a subtype of the actual, and we have to recover the
1779 -- original derived type declaration to find the proper parent.
1781 if Nkind (Parent (S)) /= N_Full_Type_Declaration
1782 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
1783 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
1784 N_Derived_Type_Definition
1785 or else not In_Instance
1786 then
1787 return Empty;
1789 else
1790 Indic :=
1791 (Subtype_Indication
1792 (Type_Definition (Original_Node (Parent (S)))));
1794 if Nkind (Indic) = N_Subtype_Indication then
1795 Par := Entity (Subtype_Mark (Indic));
1796 else
1797 Par := Entity (Indic);
1798 end if;
1799 end if;
1801 if not Is_Generic_Actual_Type (Par)
1802 or else Is_Tagged_Type (Par)
1803 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
1804 or else not In_Open_Scopes (Scope (Par))
1805 then
1806 return Empty;
1808 else
1809 Gen_Par := Generic_Parent_Type (Parent (Par));
1810 end if;
1812 -- If the actual has no generic parent type, the formal is not
1813 -- a formal derived type, so nothing to inherit.
1815 if No (Gen_Par) then
1816 return Empty;
1817 end if;
1819 -- If the generic parent type is still the generic type, this is a
1820 -- private formal, not a derived formal, and there are no operations
1821 -- inherited from the formal.
1823 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
1824 return Empty;
1825 end if;
1827 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
1829 Elmt := First_Elmt (Gen_Prim);
1830 while Present (Elmt) loop
1831 if Chars (Node (Elmt)) = Chars (S) then
1832 declare
1833 F1 : Entity_Id;
1834 F2 : Entity_Id;
1836 begin
1837 F1 := First_Formal (S);
1838 F2 := First_Formal (Node (Elmt));
1839 while Present (F1)
1840 and then Present (F2)
1841 loop
1842 if Etype (F1) = Etype (F2)
1843 or else Etype (F2) = Gen_Par
1844 then
1845 Next_Formal (F1);
1846 Next_Formal (F2);
1847 else
1848 Next_Elmt (Elmt);
1849 exit; -- not the right subprogram
1850 end if;
1852 return Node (Elmt);
1853 end loop;
1854 end;
1856 else
1857 Next_Elmt (Elmt);
1858 end if;
1859 end loop;
1861 raise Program_Error;
1862 end Inherited_From_Formal;
1864 -- Local variables
1866 Remote : constant Boolean := Is_Remote_Call (N);
1867 Actual : Node_Id;
1868 Formal : Entity_Id;
1869 Orig_Subp : Entity_Id := Empty;
1870 Param_Count : Natural := 0;
1871 Parent_Formal : Entity_Id;
1872 Parent_Subp : Entity_Id;
1873 Scop : Entity_Id;
1874 Subp : Entity_Id;
1876 Prev_Orig : Node_Id;
1877 -- Original node for an actual, which may have been rewritten. If the
1878 -- actual is a function call that has been transformed from a selected
1879 -- component, the original node is unanalyzed. Otherwise, it carries
1880 -- semantic information used to generate additional actuals.
1882 CW_Interface_Formals_Present : Boolean := False;
1884 -- Start of processing for Expand_Call
1886 begin
1887 -- Ignore if previous error
1889 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1890 return;
1891 end if;
1893 -- Call using access to subprogram with explicit dereference
1895 if Nkind (Name (N)) = N_Explicit_Dereference then
1896 Subp := Etype (Name (N));
1897 Parent_Subp := Empty;
1899 -- Case of call to simple entry, where the Name is a selected component
1900 -- whose prefix is the task, and whose selector name is the entry name
1902 elsif Nkind (Name (N)) = N_Selected_Component then
1903 Subp := Entity (Selector_Name (Name (N)));
1904 Parent_Subp := Empty;
1906 -- Case of call to member of entry family, where Name is an indexed
1907 -- component, with the prefix being a selected component giving the
1908 -- task and entry family name, and the index being the entry index.
1910 elsif Nkind (Name (N)) = N_Indexed_Component then
1911 Subp := Entity (Selector_Name (Prefix (Name (N))));
1912 Parent_Subp := Empty;
1914 -- Normal case
1916 else
1917 Subp := Entity (Name (N));
1918 Parent_Subp := Alias (Subp);
1920 -- Replace call to Raise_Exception by call to Raise_Exception_Always
1921 -- if we can tell that the first parameter cannot possibly be null.
1922 -- This helps optimization and also generation of warnings.
1924 -- We do not do this if Raise_Exception_Always does not exist, which
1925 -- can happen in configurable run time profiles which provide only a
1926 -- Raise_Exception, which is in fact an unconditional raise anyway.
1928 if Is_RTE (Subp, RE_Raise_Exception)
1929 and then RTE_Available (RE_Raise_Exception_Always)
1930 then
1931 declare
1932 FA : constant Node_Id := Original_Node (First_Actual (N));
1934 begin
1935 -- The case we catch is where the first argument is obtained
1936 -- using the Identity attribute (which must always be
1937 -- non-null).
1939 if Nkind (FA) = N_Attribute_Reference
1940 and then Attribute_Name (FA) = Name_Identity
1941 then
1942 Subp := RTE (RE_Raise_Exception_Always);
1943 Set_Name (N, New_Occurrence_Of (Subp, Loc));
1944 end if;
1945 end;
1946 end if;
1948 if Ekind (Subp) = E_Entry then
1949 Parent_Subp := Empty;
1950 end if;
1951 end if;
1953 -- Ada 2005 (AI-345): We have a procedure call as a triggering
1954 -- alternative in an asynchronous select or as an entry call in
1955 -- a conditional or timed select. Check whether the procedure call
1956 -- is a renaming of an entry and rewrite it as an entry call.
1958 if Ada_Version >= Ada_05
1959 and then Nkind (N) = N_Procedure_Call_Statement
1960 and then
1961 ((Nkind (Parent (N)) = N_Triggering_Alternative
1962 and then Triggering_Statement (Parent (N)) = N)
1963 or else
1964 (Nkind (Parent (N)) = N_Entry_Call_Alternative
1965 and then Entry_Call_Statement (Parent (N)) = N))
1966 then
1967 declare
1968 Ren_Decl : Node_Id;
1969 Ren_Root : Entity_Id := Subp;
1971 begin
1972 -- This may be a chain of renamings, find the root
1974 if Present (Alias (Ren_Root)) then
1975 Ren_Root := Alias (Ren_Root);
1976 end if;
1978 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
1979 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
1981 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
1982 Rewrite (N,
1983 Make_Entry_Call_Statement (Loc,
1984 Name =>
1985 New_Copy_Tree (Name (Ren_Decl)),
1986 Parameter_Associations =>
1987 New_Copy_List_Tree (Parameter_Associations (N))));
1989 return;
1990 end if;
1991 end if;
1992 end;
1993 end if;
1995 -- First step, compute extra actuals, corresponding to any
1996 -- Extra_Formals present. Note that we do not access Extra_Formals
1997 -- directly, instead we simply note the presence of the extra
1998 -- formals as we process the regular formals and collect the
1999 -- corresponding actuals in Extra_Actuals.
2001 -- We also generate any required range checks for actuals as we go
2002 -- through the loop, since this is a convenient place to do this.
2004 Formal := First_Formal (Subp);
2005 Actual := First_Actual (N);
2006 Param_Count := 1;
2007 while Present (Formal) loop
2009 -- Generate range check if required (not activated yet ???)
2011 -- if Do_Range_Check (Actual) then
2012 -- Set_Do_Range_Check (Actual, False);
2013 -- Generate_Range_Check
2014 -- (Actual, Etype (Formal), CE_Range_Check_Failed);
2015 -- end if;
2017 -- Prepare to examine current entry
2019 Prev := Actual;
2020 Prev_Orig := Original_Node (Prev);
2022 -- The original actual may have been a call written in prefix
2023 -- form, and rewritten before analysis.
2025 if not Analyzed (Prev_Orig)
2026 and then
2027 (Nkind (Actual) = N_Function_Call
2028 or else
2029 Nkind (Actual) = N_Identifier)
2030 then
2031 Prev_Orig := Prev;
2032 end if;
2034 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2035 -- to expand it in a further round.
2037 CW_Interface_Formals_Present :=
2038 CW_Interface_Formals_Present
2039 or else
2040 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2041 and then Is_Interface (Etype (Etype (Formal))))
2042 or else
2043 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2044 and then Is_Interface (Directly_Designated_Type
2045 (Etype (Etype (Formal)))));
2047 -- Create possible extra actual for constrained case. Usually, the
2048 -- extra actual is of the form actual'constrained, but since this
2049 -- attribute is only available for unconstrained records, TRUE is
2050 -- expanded if the type of the formal happens to be constrained (for
2051 -- instance when this procedure is inherited from an unconstrained
2052 -- record to a constrained one) or if the actual has no discriminant
2053 -- (its type is constrained). An exception to this is the case of a
2054 -- private type without discriminants. In this case we pass FALSE
2055 -- because the object has underlying discriminants with defaults.
2057 if Present (Extra_Constrained (Formal)) then
2058 if Ekind (Etype (Prev)) in Private_Kind
2059 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2060 then
2061 Add_Extra_Actual (
2062 New_Occurrence_Of (Standard_False, Loc),
2063 Extra_Constrained (Formal));
2065 elsif Is_Constrained (Etype (Formal))
2066 or else not Has_Discriminants (Etype (Prev))
2067 then
2068 Add_Extra_Actual (
2069 New_Occurrence_Of (Standard_True, Loc),
2070 Extra_Constrained (Formal));
2072 -- Do not produce extra actuals for Unchecked_Union parameters.
2073 -- Jump directly to the end of the loop.
2075 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2076 goto Skip_Extra_Actual_Generation;
2078 else
2079 -- If the actual is a type conversion, then the constrained
2080 -- test applies to the actual, not the target type.
2082 declare
2083 Act_Prev : Node_Id;
2085 begin
2086 -- Test for unchecked conversions as well, which can occur
2087 -- as out parameter actuals on calls to stream procedures.
2089 Act_Prev := Prev;
2090 while Nkind (Act_Prev) = N_Type_Conversion
2091 or else Nkind (Act_Prev) = N_Unchecked_Type_Conversion
2092 loop
2093 Act_Prev := Expression (Act_Prev);
2094 end loop;
2096 -- If the expression is a conversion of a dereference,
2097 -- this is internally generated code that manipulates
2098 -- addresses, e.g. when building interface tables. No
2099 -- check should occur in this case, and the discriminated
2100 -- object is not directly a hand.
2102 if not Comes_From_Source (Actual)
2103 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2104 and then Nkind (Act_Prev) = N_Explicit_Dereference
2105 then
2106 Add_Extra_Actual
2107 (New_Occurrence_Of (Standard_False, Loc),
2108 Extra_Constrained (Formal));
2110 else
2111 Add_Extra_Actual
2112 (Make_Attribute_Reference (Sloc (Prev),
2113 Prefix =>
2114 Duplicate_Subexpr_No_Checks
2115 (Act_Prev, Name_Req => True),
2116 Attribute_Name => Name_Constrained),
2117 Extra_Constrained (Formal));
2118 end if;
2119 end;
2120 end if;
2121 end if;
2123 -- Create possible extra actual for accessibility level
2125 if Present (Extra_Accessibility (Formal)) then
2127 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2128 -- attribute, then the original actual may be an aliased object
2129 -- occurring as the prefix in a call using "Object.Operation"
2130 -- notation. In that case we must pass the level of the object,
2131 -- so Prev_Orig is reset to Prev and the attribute will be
2132 -- processed by the code for Access attributes further below.
2134 if Prev_Orig /= Prev
2135 and then Nkind (Prev) = N_Attribute_Reference
2136 and then
2137 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2138 and then Is_Aliased_View (Prev_Orig)
2139 then
2140 Prev_Orig := Prev;
2141 end if;
2143 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals
2144 -- of accessibility levels.
2146 if Ekind (Current_Scope) in Subprogram_Kind
2147 and then Is_Thunk (Current_Scope)
2148 then
2149 declare
2150 Parm_Ent : Entity_Id;
2152 begin
2153 if Is_Controlling_Actual (Actual) then
2155 -- Find the corresponding actual of the thunk
2157 Parm_Ent := First_Entity (Current_Scope);
2158 for J in 2 .. Param_Count loop
2159 Next_Entity (Parm_Ent);
2160 end loop;
2162 else pragma Assert (Is_Entity_Name (Actual));
2163 Parm_Ent := Entity (Actual);
2164 end if;
2166 Add_Extra_Actual
2167 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2168 Extra_Accessibility (Formal));
2169 end;
2171 elsif Is_Entity_Name (Prev_Orig) then
2173 -- When passing an access parameter, or a renaming of an access
2174 -- parameter, as the actual to another access parameter we need
2175 -- to pass along the actual's own access level parameter. This
2176 -- is done if we are within the scope of the formal access
2177 -- parameter (if this is an inlined body the extra formal is
2178 -- irrelevant).
2180 if (Is_Formal (Entity (Prev_Orig))
2181 or else
2182 (Present (Renamed_Object (Entity (Prev_Orig)))
2183 and then
2184 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2185 and then
2186 Is_Formal
2187 (Entity (Renamed_Object (Entity (Prev_Orig))))))
2188 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2189 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2190 then
2191 declare
2192 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2194 begin
2195 pragma Assert (Present (Parm_Ent));
2197 if Present (Extra_Accessibility (Parm_Ent)) then
2198 Add_Extra_Actual
2199 (New_Occurrence_Of
2200 (Extra_Accessibility (Parm_Ent), Loc),
2201 Extra_Accessibility (Formal));
2203 -- If the actual access parameter does not have an
2204 -- associated extra formal providing its scope level,
2205 -- then treat the actual as having library-level
2206 -- accessibility.
2208 else
2209 Add_Extra_Actual
2210 (Make_Integer_Literal (Loc,
2211 Intval => Scope_Depth (Standard_Standard)),
2212 Extra_Accessibility (Formal));
2213 end if;
2214 end;
2216 -- The actual is a normal access value, so just pass the level
2217 -- of the actual's access type.
2219 else
2220 Add_Extra_Actual
2221 (Make_Integer_Literal (Loc,
2222 Intval => Type_Access_Level (Etype (Prev_Orig))),
2223 Extra_Accessibility (Formal));
2224 end if;
2226 -- All cases other than thunks
2228 else
2229 case Nkind (Prev_Orig) is
2231 when N_Attribute_Reference =>
2232 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2234 -- For X'Access, pass on the level of the prefix X
2236 when Attribute_Access =>
2237 Add_Extra_Actual (
2238 Make_Integer_Literal (Loc,
2239 Intval =>
2240 Object_Access_Level (Prefix (Prev_Orig))),
2241 Extra_Accessibility (Formal));
2243 -- Treat the unchecked attributes as library-level
2245 when Attribute_Unchecked_Access |
2246 Attribute_Unrestricted_Access =>
2247 Add_Extra_Actual (
2248 Make_Integer_Literal (Loc,
2249 Intval => Scope_Depth (Standard_Standard)),
2250 Extra_Accessibility (Formal));
2252 -- No other cases of attributes returning access
2253 -- values that can be passed to access parameters
2255 when others =>
2256 raise Program_Error;
2258 end case;
2260 -- For allocators we pass the level of the execution of
2261 -- the called subprogram, which is one greater than the
2262 -- current scope level.
2264 when N_Allocator =>
2265 Add_Extra_Actual (
2266 Make_Integer_Literal (Loc,
2267 Scope_Depth (Current_Scope) + 1),
2268 Extra_Accessibility (Formal));
2270 -- For other cases we simply pass the level of the
2271 -- actual's access type.
2273 when others =>
2274 Add_Extra_Actual (
2275 Make_Integer_Literal (Loc,
2276 Intval => Type_Access_Level (Etype (Prev_Orig))),
2277 Extra_Accessibility (Formal));
2279 end case;
2280 end if;
2281 end if;
2283 -- Perform the check of 4.6(49) that prevents a null value from being
2284 -- passed as an actual to an access parameter. Note that the check is
2285 -- elided in the common cases of passing an access attribute or
2286 -- access parameter as an actual. Also, we currently don't enforce
2287 -- this check for expander-generated actuals and when -gnatdj is set.
2289 if Ada_Version >= Ada_05 then
2291 -- Ada 2005 (AI-231): Check null-excluding access types
2293 if Is_Access_Type (Etype (Formal))
2294 and then Can_Never_Be_Null (Etype (Formal))
2295 and then Nkind (Prev) /= N_Raise_Constraint_Error
2296 and then (Known_Null (Prev)
2297 or else not Can_Never_Be_Null (Etype (Prev)))
2298 then
2299 Install_Null_Excluding_Check (Prev);
2300 end if;
2302 -- Ada_Version < Ada_05
2304 else
2305 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2306 or else Access_Checks_Suppressed (Subp)
2307 then
2308 null;
2310 elsif Debug_Flag_J then
2311 null;
2313 elsif not Comes_From_Source (Prev) then
2314 null;
2316 elsif Is_Entity_Name (Prev)
2317 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2318 then
2319 null;
2321 elsif Nkind (Prev) = N_Allocator
2322 or else Nkind (Prev) = N_Attribute_Reference
2323 then
2324 null;
2326 -- Suppress null checks when passing to access parameters of Java
2327 -- and CIL subprograms. (Should this be done for other foreign
2328 -- conventions as well ???)
2330 elsif Convention (Subp) = Convention_Java
2331 or else Convention (Subp) = Convention_CIL
2332 then
2333 null;
2335 else
2336 Install_Null_Excluding_Check (Prev);
2337 end if;
2338 end if;
2340 -- Perform appropriate validity checks on parameters that
2341 -- are entities.
2343 if Validity_Checks_On then
2344 if (Ekind (Formal) = E_In_Parameter
2345 and then Validity_Check_In_Params)
2346 or else
2347 (Ekind (Formal) = E_In_Out_Parameter
2348 and then Validity_Check_In_Out_Params)
2349 then
2350 -- If the actual is an indexed component of a packed type (or
2351 -- is an indexed or selected component whose prefix recursively
2352 -- meets this condition), it has not been expanded yet. It will
2353 -- be copied in the validity code that follows, and has to be
2354 -- expanded appropriately, so reanalyze it.
2356 -- What we do is just to unset analyzed bits on prefixes till
2357 -- we reach something that does not have a prefix.
2359 declare
2360 Nod : Node_Id;
2362 begin
2363 Nod := Actual;
2364 while Nkind (Nod) = N_Indexed_Component
2365 or else
2366 Nkind (Nod) = N_Selected_Component
2367 loop
2368 Set_Analyzed (Nod, False);
2369 Nod := Prefix (Nod);
2370 end loop;
2371 end;
2373 Ensure_Valid (Actual);
2374 end if;
2375 end if;
2377 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2378 -- since this is a left side reference. We only do this for calls
2379 -- from the source program since we assume that compiler generated
2380 -- calls explicitly generate any required checks. We also need it
2381 -- only if we are doing standard validity checks, since clearly it
2382 -- is not needed if validity checks are off, and in subscript
2383 -- validity checking mode, all indexed components are checked with
2384 -- a call directly from Expand_N_Indexed_Component.
2386 if Comes_From_Source (N)
2387 and then Ekind (Formal) /= E_In_Parameter
2388 and then Validity_Checks_On
2389 and then Validity_Check_Default
2390 and then not Validity_Check_Subscripts
2391 then
2392 Check_Valid_Lvalue_Subscripts (Actual);
2393 end if;
2395 -- Mark any scalar OUT parameter that is a simple variable as no
2396 -- longer known to be valid (unless the type is always valid). This
2397 -- reflects the fact that if an OUT parameter is never set in a
2398 -- procedure, then it can become invalid on the procedure return.
2400 if Ekind (Formal) = E_Out_Parameter
2401 and then Is_Entity_Name (Actual)
2402 and then Ekind (Entity (Actual)) = E_Variable
2403 and then not Is_Known_Valid (Etype (Actual))
2404 then
2405 Set_Is_Known_Valid (Entity (Actual), False);
2406 end if;
2408 -- For an OUT or IN OUT parameter, if the actual is an entity, then
2409 -- clear current values, since they can be clobbered. We are probably
2410 -- doing this in more places than we need to, but better safe than
2411 -- sorry when it comes to retaining bad current values!
2413 if Ekind (Formal) /= E_In_Parameter
2414 and then Is_Entity_Name (Actual)
2415 and then Present (Entity (Actual))
2416 then
2417 declare
2418 Ent : constant Entity_Id := Entity (Actual);
2419 Sav : Node_Id;
2421 begin
2422 -- For an OUT parameter that is an assignable entity, we do not
2423 -- want to clobber the Last_Assignment field, since if it is
2424 -- set, it was precisely because it is indeed an OUT parameter!
2426 if Ekind (Formal) = E_Out_Parameter
2427 and then Is_Assignable (Ent)
2428 then
2429 Sav := Last_Assignment (Ent);
2430 Kill_Current_Values (Ent);
2431 Set_Last_Assignment (Ent, Sav);
2433 -- For all other cases, just kill the current values
2435 else
2436 Kill_Current_Values (Ent);
2437 end if;
2438 end;
2439 end if;
2441 -- If the formal is class wide and the actual is an aggregate, force
2442 -- evaluation so that the back end who does not know about class-wide
2443 -- type, does not generate a temporary of the wrong size.
2445 if not Is_Class_Wide_Type (Etype (Formal)) then
2446 null;
2448 elsif Nkind (Actual) = N_Aggregate
2449 or else (Nkind (Actual) = N_Qualified_Expression
2450 and then Nkind (Expression (Actual)) = N_Aggregate)
2451 then
2452 Force_Evaluation (Actual);
2453 end if;
2455 -- In a remote call, if the formal is of a class-wide type, check
2456 -- that the actual meets the requirements described in E.4(18).
2458 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
2459 Insert_Action (Actual,
2460 Make_Transportable_Check (Loc,
2461 Duplicate_Subexpr_Move_Checks (Actual)));
2462 end if;
2464 -- This label is required when skipping extra actual generation for
2465 -- Unchecked_Union parameters.
2467 <<Skip_Extra_Actual_Generation>>
2469 Param_Count := Param_Count + 1;
2470 Next_Actual (Actual);
2471 Next_Formal (Formal);
2472 end loop;
2474 -- If we are expanding a rhs of an assignment we need to check if tag
2475 -- propagation is needed. You might expect this processing to be in
2476 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
2477 -- assignment might be transformed to a declaration for an unconstrained
2478 -- value if the expression is classwide.
2480 if Nkind (N) = N_Function_Call
2481 and then Is_Tag_Indeterminate (N)
2482 and then Is_Entity_Name (Name (N))
2483 then
2484 declare
2485 Ass : Node_Id := Empty;
2487 begin
2488 if Nkind (Parent (N)) = N_Assignment_Statement then
2489 Ass := Parent (N);
2491 elsif Nkind (Parent (N)) = N_Qualified_Expression
2492 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2493 then
2494 Ass := Parent (Parent (N));
2496 elsif Nkind (Parent (N)) = N_Explicit_Dereference
2497 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2498 then
2499 Ass := Parent (Parent (N));
2500 end if;
2502 if Present (Ass)
2503 and then Is_Class_Wide_Type (Etype (Name (Ass)))
2504 then
2505 if Is_Access_Type (Etype (N)) then
2506 if Designated_Type (Etype (N)) /=
2507 Root_Type (Etype (Name (Ass)))
2508 then
2509 Error_Msg_NE
2510 ("tag-indeterminate expression "
2511 & " must have designated type& (RM 5.2 (6))",
2512 N, Root_Type (Etype (Name (Ass))));
2513 else
2514 Propagate_Tag (Name (Ass), N);
2515 end if;
2517 elsif Etype (N) /= Root_Type (Etype (Name (Ass))) then
2518 Error_Msg_NE
2519 ("tag-indeterminate expression must have type&"
2520 & "(RM 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
2522 else
2523 Propagate_Tag (Name (Ass), N);
2524 end if;
2526 -- The call will be rewritten as a dispatching call, and
2527 -- expanded as such.
2529 return;
2530 end if;
2531 end;
2532 end if;
2534 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
2535 -- it to point to the correct secondary virtual table
2537 if (Nkind (N) = N_Function_Call
2538 or else Nkind (N) = N_Procedure_Call_Statement)
2539 and then CW_Interface_Formals_Present
2540 then
2541 Expand_Interface_Actuals (N);
2542 end if;
2544 -- Deals with Dispatch_Call if we still have a call, before expanding
2545 -- extra actuals since this will be done on the re-analysis of the
2546 -- dispatching call. Note that we do not try to shorten the actual
2547 -- list for a dispatching call, it would not make sense to do so.
2548 -- Expansion of dispatching calls is suppressed when VM_Target, because
2549 -- the VM back-ends directly handle the generation of dispatching
2550 -- calls and would have to undo any expansion to an indirect call.
2552 if (Nkind (N) = N_Function_Call
2553 or else Nkind (N) = N_Procedure_Call_Statement)
2554 and then Present (Controlling_Argument (N))
2555 and then VM_Target = No_VM
2556 then
2557 Expand_Dispatching_Call (N);
2559 -- The following return is worrisome. Is it really OK to
2560 -- skip all remaining processing in this procedure ???
2562 return;
2564 -- Similarly, expand calls to RCI subprograms on which pragma
2565 -- All_Calls_Remote applies. The rewriting will be reanalyzed
2566 -- later. Do this only when the call comes from source since we do
2567 -- not want such a rewritting to occur in expanded code.
2569 elsif Is_All_Remote_Call (N) then
2570 Expand_All_Calls_Remote_Subprogram_Call (N);
2572 -- Similarly, do not add extra actuals for an entry call whose entity
2573 -- is a protected procedure, or for an internal protected subprogram
2574 -- call, because it will be rewritten as a protected subprogram call
2575 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
2577 elsif Is_Protected_Type (Scope (Subp))
2578 and then (Ekind (Subp) = E_Procedure
2579 or else Ekind (Subp) = E_Function)
2580 then
2581 null;
2583 -- During that loop we gathered the extra actuals (the ones that
2584 -- correspond to Extra_Formals), so now they can be appended.
2586 else
2587 while Is_Non_Empty_List (Extra_Actuals) loop
2588 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2589 end loop;
2590 end if;
2592 -- At this point we have all the actuals, so this is the point at
2593 -- which the various expansion activities for actuals is carried out.
2595 Expand_Actuals (N, Subp);
2597 -- If the subprogram is a renaming, or if it is inherited, replace it
2598 -- in the call with the name of the actual subprogram being called.
2599 -- If this is a dispatching call, the run-time decides what to call.
2600 -- The Alias attribute does not apply to entries.
2602 if Nkind (N) /= N_Entry_Call_Statement
2603 and then No (Controlling_Argument (N))
2604 and then Present (Parent_Subp)
2605 then
2606 if Present (Inherited_From_Formal (Subp)) then
2607 Parent_Subp := Inherited_From_Formal (Subp);
2608 else
2609 while Present (Alias (Parent_Subp)) loop
2610 Parent_Subp := Alias (Parent_Subp);
2611 end loop;
2612 end if;
2614 -- The below setting of Entity is suspect, see F109-018 discussion???
2616 Set_Entity (Name (N), Parent_Subp);
2618 if Is_Abstract_Subprogram (Parent_Subp)
2619 and then not In_Instance
2620 then
2621 Error_Msg_NE
2622 ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
2623 end if;
2625 -- Add an explicit conversion for parameter of the derived type.
2626 -- This is only done for scalar and access in-parameters. Others
2627 -- have been expanded in expand_actuals.
2629 Formal := First_Formal (Subp);
2630 Parent_Formal := First_Formal (Parent_Subp);
2631 Actual := First_Actual (N);
2633 -- It is not clear that conversion is needed for intrinsic
2634 -- subprograms, but it certainly is for those that are user-
2635 -- defined, and that can be inherited on derivation, namely
2636 -- unchecked conversion and deallocation.
2637 -- General case needs study ???
2639 if not Is_Intrinsic_Subprogram (Parent_Subp)
2640 or else Is_Generic_Instance (Parent_Subp)
2641 then
2642 while Present (Formal) loop
2643 if Etype (Formal) /= Etype (Parent_Formal)
2644 and then Is_Scalar_Type (Etype (Formal))
2645 and then Ekind (Formal) = E_In_Parameter
2646 and then
2647 not Subtypes_Statically_Match
2648 (Etype (Parent_Formal), Etype (Actual))
2649 and then not Raises_Constraint_Error (Actual)
2650 then
2651 Rewrite (Actual,
2652 OK_Convert_To (Etype (Parent_Formal),
2653 Relocate_Node (Actual)));
2655 Analyze (Actual);
2656 Resolve (Actual, Etype (Parent_Formal));
2657 Enable_Range_Check (Actual);
2659 elsif Is_Access_Type (Etype (Formal))
2660 and then Base_Type (Etype (Parent_Formal)) /=
2661 Base_Type (Etype (Actual))
2662 then
2663 if Ekind (Formal) /= E_In_Parameter then
2664 Rewrite (Actual,
2665 Convert_To (Etype (Parent_Formal),
2666 Relocate_Node (Actual)));
2668 Analyze (Actual);
2669 Resolve (Actual, Etype (Parent_Formal));
2671 elsif
2672 Ekind (Etype (Parent_Formal)) = E_Anonymous_Access_Type
2673 and then Designated_Type (Etype (Parent_Formal))
2675 Designated_Type (Etype (Actual))
2676 and then not Is_Controlling_Formal (Formal)
2677 then
2678 -- This unchecked conversion is not necessary unless
2679 -- inlining is enabled, because in that case the type
2680 -- mismatch may become visible in the body about to be
2681 -- inlined.
2683 Rewrite (Actual,
2684 Unchecked_Convert_To (Etype (Parent_Formal),
2685 Relocate_Node (Actual)));
2687 Analyze (Actual);
2688 Resolve (Actual, Etype (Parent_Formal));
2689 end if;
2690 end if;
2692 Next_Formal (Formal);
2693 Next_Formal (Parent_Formal);
2694 Next_Actual (Actual);
2695 end loop;
2696 end if;
2698 Orig_Subp := Subp;
2699 Subp := Parent_Subp;
2700 end if;
2702 -- Check for violation of No_Abort_Statements
2704 if Is_RTE (Subp, RE_Abort_Task) then
2705 Check_Restriction (No_Abort_Statements, N);
2707 -- Check for violation of No_Dynamic_Attachment
2709 elsif RTU_Loaded (Ada_Interrupts)
2710 and then (Is_RTE (Subp, RE_Is_Reserved) or else
2711 Is_RTE (Subp, RE_Is_Attached) or else
2712 Is_RTE (Subp, RE_Current_Handler) or else
2713 Is_RTE (Subp, RE_Attach_Handler) or else
2714 Is_RTE (Subp, RE_Exchange_Handler) or else
2715 Is_RTE (Subp, RE_Detach_Handler) or else
2716 Is_RTE (Subp, RE_Reference))
2717 then
2718 Check_Restriction (No_Dynamic_Attachment, N);
2719 end if;
2721 -- Deal with case where call is an explicit dereference
2723 if Nkind (Name (N)) = N_Explicit_Dereference then
2725 -- Handle case of access to protected subprogram type
2727 if Is_Access_Protected_Subprogram_Type
2728 (Base_Type (Etype (Prefix (Name (N)))))
2729 then
2730 -- If this is a call through an access to protected operation,
2731 -- the prefix has the form (object'address, operation'access).
2732 -- Rewrite as a for other protected calls: the object is the
2733 -- first parameter of the list of actuals.
2735 declare
2736 Call : Node_Id;
2737 Parm : List_Id;
2738 Nam : Node_Id;
2739 Obj : Node_Id;
2740 Ptr : constant Node_Id := Prefix (Name (N));
2742 T : constant Entity_Id :=
2743 Equivalent_Type (Base_Type (Etype (Ptr)));
2745 D_T : constant Entity_Id :=
2746 Designated_Type (Base_Type (Etype (Ptr)));
2748 begin
2749 Obj :=
2750 Make_Selected_Component (Loc,
2751 Prefix => Unchecked_Convert_To (T, Ptr),
2752 Selector_Name =>
2753 New_Occurrence_Of (First_Entity (T), Loc));
2755 Nam :=
2756 Make_Selected_Component (Loc,
2757 Prefix => Unchecked_Convert_To (T, Ptr),
2758 Selector_Name =>
2759 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
2761 Nam :=
2762 Make_Explicit_Dereference (Loc,
2763 Prefix => Nam);
2765 if Present (Parameter_Associations (N)) then
2766 Parm := Parameter_Associations (N);
2767 else
2768 Parm := New_List;
2769 end if;
2771 Prepend (Obj, Parm);
2773 if Etype (D_T) = Standard_Void_Type then
2774 Call :=
2775 Make_Procedure_Call_Statement (Loc,
2776 Name => Nam,
2777 Parameter_Associations => Parm);
2778 else
2779 Call :=
2780 Make_Function_Call (Loc,
2781 Name => Nam,
2782 Parameter_Associations => Parm);
2783 end if;
2785 Set_First_Named_Actual (Call, First_Named_Actual (N));
2786 Set_Etype (Call, Etype (D_T));
2788 -- We do not re-analyze the call to avoid infinite recursion.
2789 -- We analyze separately the prefix and the object, and set
2790 -- the checks on the prefix that would otherwise be emitted
2791 -- when resolving a call.
2793 Rewrite (N, Call);
2794 Analyze (Nam);
2795 Apply_Access_Check (Nam);
2796 Analyze (Obj);
2797 return;
2798 end;
2799 end if;
2800 end if;
2802 -- If this is a call to an intrinsic subprogram, then perform the
2803 -- appropriate expansion to the corresponding tree node and we
2804 -- are all done (since after that the call is gone!)
2806 -- In the case where the intrinsic is to be processed by the back end,
2807 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
2808 -- since the idea in this case is to pass the call unchanged.
2809 -- If the intrinsic is an inherited unchecked conversion, and the
2810 -- derived type is the target type of the conversion, we must retain
2811 -- it as the return type of the expression. Otherwise the expansion
2812 -- below, which uses the parent operation, will yield the wrong type.
2814 if Is_Intrinsic_Subprogram (Subp) then
2815 Expand_Intrinsic_Call (N, Subp);
2817 if Nkind (N) = N_Unchecked_Type_Conversion
2818 and then Parent_Subp /= Orig_Subp
2819 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
2820 then
2821 Set_Etype (N, Etype (Orig_Subp));
2822 end if;
2824 return;
2825 end if;
2827 if Ekind (Subp) = E_Function
2828 or else Ekind (Subp) = E_Procedure
2829 then
2830 if Is_Inlined (Subp) then
2832 Inlined_Subprogram : declare
2833 Bod : Node_Id;
2834 Must_Inline : Boolean := False;
2835 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2836 Scop : constant Entity_Id := Scope (Subp);
2838 function In_Unfrozen_Instance return Boolean;
2839 -- If the subprogram comes from an instance in the same
2840 -- unit, and the instance is not yet frozen, inlining might
2841 -- trigger order-of-elaboration problems in gigi.
2843 --------------------------
2844 -- In_Unfrozen_Instance --
2845 --------------------------
2847 function In_Unfrozen_Instance return Boolean is
2848 S : Entity_Id;
2850 begin
2851 S := Scop;
2852 while Present (S)
2853 and then S /= Standard_Standard
2854 loop
2855 if Is_Generic_Instance (S)
2856 and then Present (Freeze_Node (S))
2857 and then not Analyzed (Freeze_Node (S))
2858 then
2859 return True;
2860 end if;
2862 S := Scope (S);
2863 end loop;
2865 return False;
2866 end In_Unfrozen_Instance;
2868 -- Start of processing for Inlined_Subprogram
2870 begin
2871 -- Verify that the body to inline has already been seen, and
2872 -- that if the body is in the current unit the inlining does
2873 -- not occur earlier. This avoids order-of-elaboration problems
2874 -- in the back end.
2876 -- This should be documented in sinfo/einfo ???
2878 if No (Spec)
2879 or else Nkind (Spec) /= N_Subprogram_Declaration
2880 or else No (Body_To_Inline (Spec))
2881 then
2882 Must_Inline := False;
2884 -- If this an inherited function that returns a private
2885 -- type, do not inline if the full view is an unconstrained
2886 -- array, because such calls cannot be inlined.
2888 elsif Present (Orig_Subp)
2889 and then Is_Array_Type (Etype (Orig_Subp))
2890 and then not Is_Constrained (Etype (Orig_Subp))
2891 then
2892 Must_Inline := False;
2894 elsif In_Unfrozen_Instance then
2895 Must_Inline := False;
2897 else
2898 Bod := Body_To_Inline (Spec);
2900 if (In_Extended_Main_Code_Unit (N)
2901 or else In_Extended_Main_Code_Unit (Parent (N))
2902 or else Is_Always_Inlined (Subp))
2903 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
2904 or else
2905 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
2906 then
2907 Must_Inline := True;
2909 -- If we are compiling a package body that is not the main
2910 -- unit, it must be for inlining/instantiation purposes,
2911 -- in which case we inline the call to insure that the same
2912 -- temporaries are generated when compiling the body by
2913 -- itself. Otherwise link errors can occur.
2915 -- If the function being called is itself in the main unit,
2916 -- we cannot inline, because there is a risk of double
2917 -- elaboration and/or circularity: the inlining can make
2918 -- visible a private entity in the body of the main unit,
2919 -- that gigi will see before its sees its proper definition.
2921 elsif not (In_Extended_Main_Code_Unit (N))
2922 and then In_Package_Body
2923 then
2924 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
2925 end if;
2926 end if;
2928 if Must_Inline then
2929 Expand_Inlined_Call (N, Subp, Orig_Subp);
2931 else
2932 -- Let the back end handle it
2934 Add_Inlined_Body (Subp);
2936 if Front_End_Inlining
2937 and then Nkind (Spec) = N_Subprogram_Declaration
2938 and then (In_Extended_Main_Code_Unit (N))
2939 and then No (Body_To_Inline (Spec))
2940 and then not Has_Completion (Subp)
2941 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
2942 then
2943 Cannot_Inline
2944 ("cannot inline& (body not seen yet)?",
2945 N, Subp);
2946 end if;
2947 end if;
2948 end Inlined_Subprogram;
2949 end if;
2950 end if;
2952 -- Check for a protected subprogram. This is either an intra-object
2953 -- call, or a protected function call. Protected procedure calls are
2954 -- rewritten as entry calls and handled accordingly.
2956 -- In Ada 2005, this may be an indirect call to an access parameter
2957 -- that is an access_to_subprogram. In that case the anonymous type
2958 -- has a scope that is a protected operation, but the call is a
2959 -- regular one.
2961 Scop := Scope (Subp);
2963 if Nkind (N) /= N_Entry_Call_Statement
2964 and then Is_Protected_Type (Scop)
2965 and then Ekind (Subp) /= E_Subprogram_Type
2966 then
2967 -- If the call is an internal one, it is rewritten as a call to
2968 -- to the corresponding unprotected subprogram.
2970 Expand_Protected_Subprogram_Call (N, Subp, Scop);
2971 end if;
2973 -- Functions returning controlled objects need special attention
2974 -- If the return type is limited the context is an initialization
2975 -- and different processing applies.
2977 if Controlled_Type (Etype (Subp))
2978 and then not Is_Inherently_Limited_Type (Etype (Subp))
2979 and then not Is_Limited_Interface (Etype (Subp))
2980 then
2981 Expand_Ctrl_Function_Call (N);
2982 end if;
2984 -- Test for First_Optional_Parameter, and if so, truncate parameter
2985 -- list if there are optional parameters at the trailing end.
2986 -- Note we never delete procedures for call via a pointer.
2988 if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
2989 and then Present (First_Optional_Parameter (Subp))
2990 then
2991 declare
2992 Last_Keep_Arg : Node_Id;
2994 begin
2995 -- Last_Keep_Arg will hold the last actual that should be
2996 -- retained. If it remains empty at the end, it means that
2997 -- all parameters are optional.
2999 Last_Keep_Arg := Empty;
3001 -- Find first optional parameter, must be present since we
3002 -- checked the validity of the parameter before setting it.
3004 Formal := First_Formal (Subp);
3005 Actual := First_Actual (N);
3006 while Formal /= First_Optional_Parameter (Subp) loop
3007 Last_Keep_Arg := Actual;
3008 Next_Formal (Formal);
3009 Next_Actual (Actual);
3010 end loop;
3012 -- We have Formal and Actual pointing to the first potentially
3013 -- droppable argument. We can drop all the trailing arguments
3014 -- whose actual matches the default. Note that we know that all
3015 -- remaining formals have defaults, because we checked that this
3016 -- requirement was met before setting First_Optional_Parameter.
3018 -- We use Fully_Conformant_Expressions to check for identity
3019 -- between formals and actuals, which may miss some cases, but
3020 -- on the other hand, this is only an optimization (if we fail
3021 -- to truncate a parameter it does not affect functionality).
3022 -- So if the default is 3 and the actual is 1+2, we consider
3023 -- them unequal, which hardly seems worrisome.
3025 while Present (Formal) loop
3026 if not Fully_Conformant_Expressions
3027 (Actual, Default_Value (Formal))
3028 then
3029 Last_Keep_Arg := Actual;
3030 end if;
3032 Next_Formal (Formal);
3033 Next_Actual (Actual);
3034 end loop;
3036 -- If no arguments, delete entire list, this is the easy case
3038 if No (Last_Keep_Arg) then
3039 while Is_Non_Empty_List (Parameter_Associations (N)) loop
3040 Delete_Tree (Remove_Head (Parameter_Associations (N)));
3041 end loop;
3043 Set_Parameter_Associations (N, No_List);
3044 Set_First_Named_Actual (N, Empty);
3046 -- Case where at the last retained argument is positional. This
3047 -- is also an easy case, since the retained arguments are already
3048 -- in the right form, and we don't need to worry about the order
3049 -- of arguments that get eliminated.
3051 elsif Is_List_Member (Last_Keep_Arg) then
3052 while Present (Next (Last_Keep_Arg)) loop
3053 Delete_Tree (Remove_Next (Last_Keep_Arg));
3054 end loop;
3056 Set_First_Named_Actual (N, Empty);
3058 -- This is the annoying case where the last retained argument
3059 -- is a named parameter. Since the original arguments are not
3060 -- in declaration order, we may have to delete some fairly
3061 -- random collection of arguments.
3063 else
3064 declare
3065 Temp : Node_Id;
3066 Passoc : Node_Id;
3068 begin
3069 -- First step, remove all the named parameters from the
3070 -- list (they are still chained using First_Named_Actual
3071 -- and Next_Named_Actual, so we have not lost them!)
3073 Temp := First (Parameter_Associations (N));
3075 -- Case of all parameters named, remove them all
3077 if Nkind (Temp) = N_Parameter_Association then
3078 while Is_Non_Empty_List (Parameter_Associations (N)) loop
3079 Temp := Remove_Head (Parameter_Associations (N));
3080 end loop;
3082 -- Case of mixed positional/named, remove named parameters
3084 else
3085 while Nkind (Next (Temp)) /= N_Parameter_Association loop
3086 Next (Temp);
3087 end loop;
3089 while Present (Next (Temp)) loop
3090 Remove (Next (Temp));
3091 end loop;
3092 end if;
3094 -- Now we loop through the named parameters, till we get
3095 -- to the last one to be retained, adding them to the list.
3096 -- Note that the Next_Named_Actual list does not need to be
3097 -- touched since we are only reordering them on the actual
3098 -- parameter association list.
3100 Passoc := Parent (First_Named_Actual (N));
3101 loop
3102 Temp := Relocate_Node (Passoc);
3103 Append_To
3104 (Parameter_Associations (N), Temp);
3105 exit when
3106 Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
3107 Passoc := Parent (Next_Named_Actual (Passoc));
3108 end loop;
3110 Set_Next_Named_Actual (Temp, Empty);
3112 loop
3113 Temp := Next_Named_Actual (Passoc);
3114 exit when No (Temp);
3115 Set_Next_Named_Actual
3116 (Passoc, Next_Named_Actual (Parent (Temp)));
3117 Delete_Tree (Temp);
3118 end loop;
3119 end;
3120 end if;
3121 end;
3122 end if;
3124 -- Special processing for Ada 2005 AI-329, which requires a call to
3125 -- Raise_Exception to raise Constraint_Error if the Exception_Id is
3126 -- null. Note that we never need to do this in GNAT mode, or if the
3127 -- parameter to Raise_Exception is a use of Identity, since in these
3128 -- cases we know that the parameter is never null.
3130 -- Note: We must check that the node has not been inlined. This is
3131 -- required because under zfp the Raise_Exception subprogram has the
3132 -- pragma inline_always (and hence the call has been expanded above
3133 -- into a block containing the code of the subprogram).
3135 if Ada_Version >= Ada_05
3136 and then not GNAT_Mode
3137 and then Is_RTE (Subp, RE_Raise_Exception)
3138 and then Nkind (N) = N_Procedure_Call_Statement
3139 and then (Nkind (First_Actual (N)) /= N_Attribute_Reference
3140 or else Attribute_Name (First_Actual (N)) /= Name_Identity)
3141 then
3142 declare
3143 RCE : constant Node_Id :=
3144 Make_Raise_Constraint_Error (Loc,
3145 Reason => CE_Null_Exception_Id);
3146 begin
3147 Insert_After (N, RCE);
3148 Analyze (RCE);
3149 end;
3150 end if;
3151 end Expand_Call;
3153 --------------------------
3154 -- Expand_Inlined_Call --
3155 --------------------------
3157 procedure Expand_Inlined_Call
3158 (N : Node_Id;
3159 Subp : Entity_Id;
3160 Orig_Subp : Entity_Id)
3162 Loc : constant Source_Ptr := Sloc (N);
3163 Is_Predef : constant Boolean :=
3164 Is_Predefined_File_Name
3165 (Unit_File_Name (Get_Source_Unit (Subp)));
3166 Orig_Bod : constant Node_Id :=
3167 Body_To_Inline (Unit_Declaration_Node (Subp));
3169 Blk : Node_Id;
3170 Bod : Node_Id;
3171 Decl : Node_Id;
3172 Decls : constant List_Id := New_List;
3173 Exit_Lab : Entity_Id := Empty;
3174 F : Entity_Id;
3175 A : Node_Id;
3176 Lab_Decl : Node_Id;
3177 Lab_Id : Node_Id;
3178 New_A : Node_Id;
3179 Num_Ret : Int := 0;
3180 Ret_Type : Entity_Id;
3181 Targ : Node_Id;
3182 Targ1 : Node_Id;
3183 Temp : Entity_Id;
3184 Temp_Typ : Entity_Id;
3186 Is_Unc : constant Boolean :=
3187 Is_Array_Type (Etype (Subp))
3188 and then not Is_Constrained (Etype (Subp));
3189 -- If the type returned by the function is unconstrained and the
3190 -- call can be inlined, special processing is required.
3192 function Is_Null_Procedure return Boolean;
3193 -- Predicate to recognize stubbed procedures and null procedures, for
3194 -- which there is no need for the full inlining mechanism.
3196 procedure Make_Exit_Label;
3197 -- Build declaration for exit label to be used in Return statements
3199 function Process_Formals (N : Node_Id) return Traverse_Result;
3200 -- Replace occurrence of a formal with the corresponding actual, or
3201 -- the thunk generated for it.
3203 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3204 -- If the call being expanded is that of an internal subprogram,
3205 -- set the sloc of the generated block to that of the call itself,
3206 -- so that the expansion is skipped by the -next- command in gdb.
3207 -- Same processing for a subprogram in a predefined file, e.g.
3208 -- Ada.Tags. If Debug_Generated_Code is true, suppress this change
3209 -- to simplify our own development.
3211 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3212 -- If the function body is a single expression, replace call with
3213 -- expression, else insert block appropriately.
3215 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3216 -- If procedure body has no local variables, inline body without
3217 -- creating block, otherwise rewrite call with block.
3219 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3220 -- Determine whether a formal parameter is used only once in Orig_Bod
3222 -----------------------
3223 -- Is_Null_Procedure --
3224 -----------------------
3226 function Is_Null_Procedure return Boolean is
3227 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
3229 begin
3230 if Ekind (Subp) /= E_Procedure then
3231 return False;
3233 elsif Nkind (Orig_Bod) /= N_Subprogram_Body then
3234 return False;
3236 -- Check if this is an Ada 2005 null procedure
3238 elsif Nkind (Decl) = N_Subprogram_Declaration
3239 and then Null_Present (Specification (Decl))
3240 then
3241 return True;
3243 -- Check if the body contains only a null statement, followed by the
3244 -- return statement added during expansion.
3246 else
3247 declare
3248 Stat : constant Node_Id :=
3249 First
3250 (Statements (Handled_Statement_Sequence (Orig_Bod)));
3252 Stat2 : constant Node_Id := Next (Stat);
3254 begin
3255 return
3256 Nkind (Stat) = N_Null_Statement
3257 and then
3258 (No (Stat2)
3259 or else
3260 (Nkind (Stat2) = N_Simple_Return_Statement
3261 and then No (Next (Stat2))));
3262 end;
3263 end if;
3264 end Is_Null_Procedure;
3266 ---------------------
3267 -- Make_Exit_Label --
3268 ---------------------
3270 procedure Make_Exit_Label is
3271 begin
3272 -- Create exit label for subprogram if one does not exist yet
3274 if No (Exit_Lab) then
3275 Lab_Id :=
3276 Make_Identifier (Loc,
3277 Chars => New_Internal_Name ('L'));
3278 Set_Entity (Lab_Id,
3279 Make_Defining_Identifier (Loc, Chars (Lab_Id)));
3280 Exit_Lab := Make_Label (Loc, Lab_Id);
3282 Lab_Decl :=
3283 Make_Implicit_Label_Declaration (Loc,
3284 Defining_Identifier => Entity (Lab_Id),
3285 Label_Construct => Exit_Lab);
3286 end if;
3287 end Make_Exit_Label;
3289 ---------------------
3290 -- Process_Formals --
3291 ---------------------
3293 function Process_Formals (N : Node_Id) return Traverse_Result is
3294 A : Entity_Id;
3295 E : Entity_Id;
3296 Ret : Node_Id;
3298 begin
3299 if Is_Entity_Name (N)
3300 and then Present (Entity (N))
3301 then
3302 E := Entity (N);
3304 if Is_Formal (E)
3305 and then Scope (E) = Subp
3306 then
3307 A := Renamed_Object (E);
3309 -- Rewrite the occurrence of the formal into an occurrence of
3310 -- the actual. Also establish visibility on the proper view of
3311 -- the actual's subtype for the body's context (if the actual's
3312 -- subtype is private at the call point but its full view is
3313 -- visible to the body, then the inlined tree here must be
3314 -- analyzed with the full view).
3316 if Is_Entity_Name (A) then
3317 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
3318 Check_Private_View (N);
3320 elsif Nkind (A) = N_Defining_Identifier then
3321 Rewrite (N, New_Occurrence_Of (A, Loc));
3322 Check_Private_View (N);
3324 -- Numeric literal
3326 else
3327 Rewrite (N, New_Copy (A));
3328 end if;
3329 end if;
3331 return Skip;
3333 elsif Nkind (N) = N_Simple_Return_Statement then
3334 if No (Expression (N)) then
3335 Make_Exit_Label;
3336 Rewrite (N,
3337 Make_Goto_Statement (Loc,
3338 Name => New_Copy (Lab_Id)));
3340 else
3341 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3342 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3343 then
3344 -- Function body is a single expression. No need for
3345 -- exit label.
3347 null;
3349 else
3350 Num_Ret := Num_Ret + 1;
3351 Make_Exit_Label;
3352 end if;
3354 -- Because of the presence of private types, the views of the
3355 -- expression and the context may be different, so place an
3356 -- unchecked conversion to the context type to avoid spurious
3357 -- errors, eg. when the expression is a numeric literal and
3358 -- the context is private. If the expression is an aggregate,
3359 -- use a qualified expression, because an aggregate is not a
3360 -- legal argument of a conversion.
3362 if Nkind (Expression (N)) = N_Aggregate
3363 or else Nkind (Expression (N)) = N_Null
3364 then
3365 Ret :=
3366 Make_Qualified_Expression (Sloc (N),
3367 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3368 Expression => Relocate_Node (Expression (N)));
3369 else
3370 Ret :=
3371 Unchecked_Convert_To
3372 (Ret_Type, Relocate_Node (Expression (N)));
3373 end if;
3375 if Nkind (Targ) = N_Defining_Identifier then
3376 Rewrite (N,
3377 Make_Assignment_Statement (Loc,
3378 Name => New_Occurrence_Of (Targ, Loc),
3379 Expression => Ret));
3380 else
3381 Rewrite (N,
3382 Make_Assignment_Statement (Loc,
3383 Name => New_Copy (Targ),
3384 Expression => Ret));
3385 end if;
3387 Set_Assignment_OK (Name (N));
3389 if Present (Exit_Lab) then
3390 Insert_After (N,
3391 Make_Goto_Statement (Loc,
3392 Name => New_Copy (Lab_Id)));
3393 end if;
3394 end if;
3396 return OK;
3398 -- Remove pragma Unreferenced since it may refer to formals that
3399 -- are not visible in the inlined body, and in any case we will
3400 -- not be posting warnings on the inlined body so it is unneeded.
3402 elsif Nkind (N) = N_Pragma
3403 and then Chars (N) = Name_Unreferenced
3404 then
3405 Rewrite (N, Make_Null_Statement (Sloc (N)));
3406 return OK;
3408 else
3409 return OK;
3410 end if;
3411 end Process_Formals;
3413 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3415 ------------------
3416 -- Process_Sloc --
3417 ------------------
3419 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3420 begin
3421 if not Debug_Generated_Code then
3422 Set_Sloc (Nod, Sloc (N));
3423 Set_Comes_From_Source (Nod, False);
3424 end if;
3426 return OK;
3427 end Process_Sloc;
3429 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3431 ---------------------------
3432 -- Rewrite_Function_Call --
3433 ---------------------------
3435 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3436 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3437 Fst : constant Node_Id := First (Statements (HSS));
3439 begin
3440 -- Optimize simple case: function body is a single return statement,
3441 -- which has been expanded into an assignment.
3443 if Is_Empty_List (Declarations (Blk))
3444 and then Nkind (Fst) = N_Assignment_Statement
3445 and then No (Next (Fst))
3446 then
3448 -- The function call may have been rewritten as the temporary
3449 -- that holds the result of the call, in which case remove the
3450 -- now useless declaration.
3452 if Nkind (N) = N_Identifier
3453 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3454 then
3455 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3456 end if;
3458 Rewrite (N, Expression (Fst));
3460 elsif Nkind (N) = N_Identifier
3461 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3462 then
3463 -- The block assigns the result of the call to the temporary
3465 Insert_After (Parent (Entity (N)), Blk);
3467 elsif Nkind (Parent (N)) = N_Assignment_Statement
3468 and then
3469 (Is_Entity_Name (Name (Parent (N)))
3470 or else
3471 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3472 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3473 then
3474 -- Replace assignment with the block
3476 declare
3477 Original_Assignment : constant Node_Id := Parent (N);
3479 begin
3480 -- Preserve the original assignment node to keep the complete
3481 -- assignment subtree consistent enough for Analyze_Assignment
3482 -- to proceed (specifically, the original Lhs node must still
3483 -- have an assignment statement as its parent).
3485 -- We cannot rely on Original_Node to go back from the block
3486 -- node to the assignment node, because the assignment might
3487 -- already be a rewrite substitution.
3489 Discard_Node (Relocate_Node (Original_Assignment));
3490 Rewrite (Original_Assignment, Blk);
3491 end;
3493 elsif Nkind (Parent (N)) = N_Object_Declaration then
3494 Set_Expression (Parent (N), Empty);
3495 Insert_After (Parent (N), Blk);
3497 elsif Is_Unc then
3498 Insert_Before (Parent (N), Blk);
3499 end if;
3500 end Rewrite_Function_Call;
3502 ----------------------------
3503 -- Rewrite_Procedure_Call --
3504 ----------------------------
3506 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
3507 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3508 begin
3509 -- If there is a transient scope for N, this will be the scope of the
3510 -- actions for N, and the statements in Blk need to be within this
3511 -- scope. For example, they need to have visibility on the constant
3512 -- declarations created for the formals.
3514 -- If N needs no transient scope, and if there are no declarations in
3515 -- the inlined body, we can do a little optimization and insert the
3516 -- statements for the body directly after N, and rewrite N to a
3517 -- null statement, instead of rewriting N into a full-blown block
3518 -- statement.
3520 if not Scope_Is_Transient
3521 and then Is_Empty_List (Declarations (Blk))
3522 then
3523 Insert_List_After (N, Statements (HSS));
3524 Rewrite (N, Make_Null_Statement (Loc));
3525 else
3526 Rewrite (N, Blk);
3527 end if;
3528 end Rewrite_Procedure_Call;
3530 -------------------------
3531 -- Formal_Is_Used_Once --
3532 -------------------------
3534 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3535 Use_Counter : Int := 0;
3537 function Count_Uses (N : Node_Id) return Traverse_Result;
3538 -- Traverse the tree and count the uses of the formal parameter.
3539 -- In this case, for optimization purposes, we do not need to
3540 -- continue the traversal once more than one use is encountered.
3542 ----------------
3543 -- Count_Uses --
3544 ----------------
3546 function Count_Uses (N : Node_Id) return Traverse_Result is
3547 begin
3548 -- The original node is an identifier
3550 if Nkind (N) = N_Identifier
3551 and then Present (Entity (N))
3553 -- Original node's entity points to the one in the copied body
3555 and then Nkind (Entity (N)) = N_Identifier
3556 and then Present (Entity (Entity (N)))
3558 -- The entity of the copied node is the formal parameter
3560 and then Entity (Entity (N)) = Formal
3561 then
3562 Use_Counter := Use_Counter + 1;
3564 if Use_Counter > 1 then
3566 -- Denote more than one use and abandon the traversal
3568 Use_Counter := 2;
3569 return Abandon;
3571 end if;
3572 end if;
3574 return OK;
3575 end Count_Uses;
3577 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3579 -- Start of processing for Formal_Is_Used_Once
3581 begin
3582 Count_Formal_Uses (Orig_Bod);
3583 return Use_Counter = 1;
3584 end Formal_Is_Used_Once;
3586 -- Start of processing for Expand_Inlined_Call
3588 begin
3589 -- Check for special case of To_Address call, and if so, just do an
3590 -- unchecked conversion instead of expanding the call. Not only is this
3591 -- more efficient, but it also avoids problem with order of elaboration
3592 -- when address clauses are inlined (address expression elaborated at
3593 -- wrong point).
3595 if Subp = RTE (RE_To_Address) then
3596 Rewrite (N,
3597 Unchecked_Convert_To
3598 (RTE (RE_Address),
3599 Relocate_Node (First_Actual (N))));
3600 return;
3602 elsif Is_Null_Procedure then
3603 Rewrite (N, Make_Null_Statement (Loc));
3604 return;
3605 end if;
3607 -- Check for an illegal attempt to inline a recursive procedure. If the
3608 -- subprogram has parameters this is detected when trying to supply a
3609 -- binding for parameters that already have one. For parameterless
3610 -- subprograms this must be done explicitly.
3612 if In_Open_Scopes (Subp) then
3613 Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
3614 Set_Is_Inlined (Subp, False);
3615 return;
3616 end if;
3618 if Nkind (Orig_Bod) = N_Defining_Identifier
3619 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
3620 then
3621 -- Subprogram is a renaming_as_body. Calls appearing after the
3622 -- renaming can be replaced with calls to the renamed entity
3623 -- directly, because the subprograms are subtype conformant. If
3624 -- the renamed subprogram is an inherited operation, we must redo
3625 -- the expansion because implicit conversions may be needed.
3627 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3629 if Present (Alias (Orig_Bod)) then
3630 Expand_Call (N);
3631 end if;
3633 return;
3634 end if;
3636 -- Use generic machinery to copy body of inlined subprogram, as if it
3637 -- were an instantiation, resetting source locations appropriately, so
3638 -- that nested inlined calls appear in the main unit.
3640 Save_Env (Subp, Empty);
3641 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3643 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3644 Blk :=
3645 Make_Block_Statement (Loc,
3646 Declarations => Declarations (Bod),
3647 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
3649 if No (Declarations (Bod)) then
3650 Set_Declarations (Blk, New_List);
3651 end if;
3653 -- For the unconstrained case, capture the name of the local
3654 -- variable that holds the result. This must be the first declaration
3655 -- in the block, because its bounds cannot depend on local variables.
3656 -- Otherwise there is no way to declare the result outside of the
3657 -- block. Needless to say, in general the bounds will depend on the
3658 -- actuals in the call.
3660 if Is_Unc then
3661 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3662 end if;
3664 -- If this is a derived function, establish the proper return type
3666 if Present (Orig_Subp)
3667 and then Orig_Subp /= Subp
3668 then
3669 Ret_Type := Etype (Orig_Subp);
3670 else
3671 Ret_Type := Etype (Subp);
3672 end if;
3674 -- Create temporaries for the actuals that are expressions, or that
3675 -- are scalars and require copying to preserve semantics.
3677 F := First_Formal (Subp);
3678 A := First_Actual (N);
3679 while Present (F) loop
3680 if Present (Renamed_Object (F)) then
3681 Error_Msg_N ("cannot inline call to recursive subprogram", N);
3682 return;
3683 end if;
3685 -- If the argument may be a controlling argument in a call within
3686 -- the inlined body, we must preserve its classwide nature to insure
3687 -- that dynamic dispatching take place subsequently. If the formal
3688 -- has a constraint it must be preserved to retain the semantics of
3689 -- the body.
3691 if Is_Class_Wide_Type (Etype (F))
3692 or else (Is_Access_Type (Etype (F))
3693 and then
3694 Is_Class_Wide_Type (Designated_Type (Etype (F))))
3695 then
3696 Temp_Typ := Etype (F);
3698 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3699 and then Etype (F) /= Base_Type (Etype (F))
3700 then
3701 Temp_Typ := Etype (F);
3703 else
3704 Temp_Typ := Etype (A);
3705 end if;
3707 -- If the actual is a simple name or a literal, no need to
3708 -- create a temporary, object can be used directly.
3710 -- If the actual is a literal and the formal has its address taken,
3711 -- we cannot pass the literal itself as an argument, so its value
3712 -- must be captured in a temporary.
3714 if (Is_Entity_Name (A)
3715 and then
3716 (not Is_Scalar_Type (Etype (A))
3717 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3719 -- When the actual is an identifier and the corresponding formal
3720 -- is used only once in the original body, the formal can be
3721 -- substituted directly with the actual parameter.
3723 or else (Nkind (A) = N_Identifier
3724 and then Formal_Is_Used_Once (F))
3726 or else
3727 ((Nkind (A) = N_Real_Literal or else
3728 Nkind (A) = N_Integer_Literal or else
3729 Nkind (A) = N_Character_Literal)
3730 and then not Address_Taken (F))
3731 then
3732 if Etype (F) /= Etype (A) then
3733 Set_Renamed_Object
3734 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3735 else
3736 Set_Renamed_Object (F, A);
3737 end if;
3739 else
3740 Temp :=
3741 Make_Defining_Identifier (Loc,
3742 Chars => New_Internal_Name ('C'));
3744 -- If the actual for an in/in-out parameter is a view conversion,
3745 -- make it into an unchecked conversion, given that an untagged
3746 -- type conversion is not a proper object for a renaming.
3748 -- In-out conversions that involve real conversions have already
3749 -- been transformed in Expand_Actuals.
3751 if Nkind (A) = N_Type_Conversion
3752 and then Ekind (F) /= E_In_Parameter
3753 then
3754 New_A :=
3755 Make_Unchecked_Type_Conversion (Loc,
3756 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3757 Expression => Relocate_Node (Expression (A)));
3759 elsif Etype (F) /= Etype (A) then
3760 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3761 Temp_Typ := Etype (F);
3763 else
3764 New_A := Relocate_Node (A);
3765 end if;
3767 Set_Sloc (New_A, Sloc (N));
3769 -- If the actual has a by-reference type, it cannot be copied, so
3770 -- its value is captured in a renaming declaration. Otherwise
3771 -- declare a local constant initialized with the actual.
3773 if Ekind (F) = E_In_Parameter
3774 and then not Is_Limited_Type (Etype (A))
3775 and then not Is_Tagged_Type (Etype (A))
3776 then
3777 Decl :=
3778 Make_Object_Declaration (Loc,
3779 Defining_Identifier => Temp,
3780 Constant_Present => True,
3781 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3782 Expression => New_A);
3783 else
3784 Decl :=
3785 Make_Object_Renaming_Declaration (Loc,
3786 Defining_Identifier => Temp,
3787 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3788 Name => New_A);
3789 end if;
3791 Append (Decl, Decls);
3792 Set_Renamed_Object (F, Temp);
3793 end if;
3795 Next_Formal (F);
3796 Next_Actual (A);
3797 end loop;
3799 -- Establish target of function call. If context is not assignment or
3800 -- declaration, create a temporary as a target. The declaration for
3801 -- the temporary may be subsequently optimized away if the body is a
3802 -- single expression, or if the left-hand side of the assignment is
3803 -- simple enough, i.e. an entity or an explicit dereference of one.
3805 if Ekind (Subp) = E_Function then
3806 if Nkind (Parent (N)) = N_Assignment_Statement
3807 and then Is_Entity_Name (Name (Parent (N)))
3808 then
3809 Targ := Name (Parent (N));
3811 elsif Nkind (Parent (N)) = N_Assignment_Statement
3812 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3813 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3814 then
3815 Targ := Name (Parent (N));
3817 else
3818 -- Replace call with temporary and create its declaration
3820 Temp :=
3821 Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3822 Set_Is_Internal (Temp);
3824 -- For the unconstrained case. the generated temporary has the
3825 -- same constrained declaration as the result variable.
3826 -- It may eventually be possible to remove that temporary and
3827 -- use the result variable directly.
3829 if Is_Unc then
3830 Decl :=
3831 Make_Object_Declaration (Loc,
3832 Defining_Identifier => Temp,
3833 Object_Definition =>
3834 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3836 Replace_Formals (Decl);
3838 else
3839 Decl :=
3840 Make_Object_Declaration (Loc,
3841 Defining_Identifier => Temp,
3842 Object_Definition =>
3843 New_Occurrence_Of (Ret_Type, Loc));
3845 Set_Etype (Temp, Ret_Type);
3846 end if;
3848 Set_No_Initialization (Decl);
3849 Append (Decl, Decls);
3850 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3851 Targ := Temp;
3852 end if;
3853 end if;
3855 Insert_Actions (N, Decls);
3857 -- Traverse the tree and replace formals with actuals or their thunks.
3858 -- Attach block to tree before analysis and rewriting.
3860 Replace_Formals (Blk);
3861 Set_Parent (Blk, N);
3863 if not Comes_From_Source (Subp)
3864 or else Is_Predef
3865 then
3866 Reset_Slocs (Blk);
3867 end if;
3869 if Present (Exit_Lab) then
3871 -- If the body was a single expression, the single return statement
3872 -- and the corresponding label are useless.
3874 if Num_Ret = 1
3875 and then
3876 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3877 N_Goto_Statement
3878 then
3879 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3880 else
3881 Append (Lab_Decl, (Declarations (Blk)));
3882 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3883 end if;
3884 end if;
3886 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
3887 -- conflicting private views that Gigi would ignore. If this is
3888 -- predefined unit, analyze with checks off, as is done in the non-
3889 -- inlined run-time units.
3891 declare
3892 I_Flag : constant Boolean := In_Inlined_Body;
3894 begin
3895 In_Inlined_Body := True;
3897 if Is_Predef then
3898 declare
3899 Style : constant Boolean := Style_Check;
3900 begin
3901 Style_Check := False;
3902 Analyze (Blk, Suppress => All_Checks);
3903 Style_Check := Style;
3904 end;
3906 else
3907 Analyze (Blk);
3908 end if;
3910 In_Inlined_Body := I_Flag;
3911 end;
3913 if Ekind (Subp) = E_Procedure then
3914 Rewrite_Procedure_Call (N, Blk);
3915 else
3916 Rewrite_Function_Call (N, Blk);
3918 -- For the unconstrained case, the replacement of the call has been
3919 -- made prior to the complete analysis of the generated declarations.
3920 -- Propagate the proper type now.
3922 if Is_Unc then
3923 if Nkind (N) = N_Identifier then
3924 Set_Etype (N, Etype (Entity (N)));
3925 else
3926 Set_Etype (N, Etype (Targ1));
3927 end if;
3928 end if;
3929 end if;
3931 Restore_Env;
3933 -- Cleanup mapping between formals and actuals for other expansions
3935 F := First_Formal (Subp);
3936 while Present (F) loop
3937 Set_Renamed_Object (F, Empty);
3938 Next_Formal (F);
3939 end loop;
3940 end Expand_Inlined_Call;
3942 ----------------------------
3943 -- Expand_N_Function_Call --
3944 ----------------------------
3946 procedure Expand_N_Function_Call (N : Node_Id) is
3947 Typ : constant Entity_Id := Etype (N);
3949 function Returned_By_Reference return Boolean;
3950 -- If the return type is returned through the secondary stack; that is
3951 -- by reference, we don't want to create a temp to force stack checking.
3952 -- ???"sec stack" is not right -- Ada 95 return-by-reference object are
3953 -- returned wherever they are.
3954 -- Shouldn't this function be moved to exp_util???
3956 function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean;
3957 -- If the call is the right side of an assignment or the expression in
3958 -- an object declaration, we don't need to create a temp as the left
3959 -- side will already trigger stack checking if necessary.
3961 -- If the call is a component in an extension aggregate, it will be
3962 -- expanded into assignments as well, so no temporary is needed. This
3963 -- also solves the problem of functions returning types with unknown
3964 -- discriminants, where it is not possible to declare an object of the
3965 -- type altogether.
3967 ---------------------------
3968 -- Returned_By_Reference --
3969 ---------------------------
3971 function Returned_By_Reference return Boolean is
3972 S : Entity_Id;
3974 begin
3975 if Is_Inherently_Limited_Type (Typ) then
3976 return True;
3978 elsif Nkind (Parent (N)) /= N_Simple_Return_Statement then
3979 return False;
3981 elsif Requires_Transient_Scope (Typ) then
3983 -- Verify that the return type of the enclosing function has the
3984 -- same constrained status as that of the expression.
3986 S := Current_Scope;
3987 while Ekind (S) /= E_Function loop
3988 S := Scope (S);
3989 end loop;
3991 return Is_Constrained (Typ) = Is_Constrained (Etype (S));
3992 else
3993 return False;
3994 end if;
3995 end Returned_By_Reference;
3997 ---------------------------
3998 -- Rhs_Of_Assign_Or_Decl --
3999 ---------------------------
4001 function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean is
4002 begin
4003 if (Nkind (Parent (N)) = N_Assignment_Statement
4004 and then Expression (Parent (N)) = N)
4005 or else
4006 (Nkind (Parent (N)) = N_Qualified_Expression
4007 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
4008 and then Expression (Parent (Parent (N))) = Parent (N))
4009 or else
4010 (Nkind (Parent (N)) = N_Object_Declaration
4011 and then Expression (Parent (N)) = N)
4012 or else
4013 (Nkind (Parent (N)) = N_Component_Association
4014 and then Expression (Parent (N)) = N
4015 and then Nkind (Parent (Parent (N))) = N_Aggregate
4016 and then Rhs_Of_Assign_Or_Decl (Parent (Parent (N))))
4017 or else
4018 (Nkind (Parent (N)) = N_Extension_Aggregate
4019 and then Is_Private_Type (Etype (Typ)))
4020 then
4021 return True;
4022 else
4023 return False;
4024 end if;
4025 end Rhs_Of_Assign_Or_Decl;
4027 -- Start of processing for Expand_N_Function_Call
4029 begin
4030 -- A special check. If stack checking is enabled, and the return type
4031 -- might generate a large temporary, and the call is not the right side
4032 -- of an assignment, then generate an explicit temporary. We do this
4033 -- because otherwise gigi may generate a large temporary on the fly and
4034 -- this can cause trouble with stack checking.
4036 -- This is unnecessary if the call is the expression in an object
4037 -- declaration, or if it appears outside of any library unit. This can
4038 -- only happen if it appears as an actual in a library-level instance,
4039 -- in which case a temporary will be generated for it once the instance
4040 -- itself is installed.
4042 if May_Generate_Large_Temp (Typ)
4043 and then not Rhs_Of_Assign_Or_Decl (N)
4044 and then not Returned_By_Reference
4045 and then Current_Scope /= Standard_Standard
4046 then
4047 if Stack_Checking_Enabled then
4049 -- Note: it might be thought that it would be OK to use a call to
4050 -- Force_Evaluation here, but that's not good enough, because
4051 -- that can results in a 'Reference construct that may still need
4052 -- a temporary.
4054 declare
4055 Loc : constant Source_Ptr := Sloc (N);
4056 Temp_Obj : constant Entity_Id :=
4057 Make_Defining_Identifier (Loc,
4058 Chars => New_Internal_Name ('F'));
4059 Temp_Typ : Entity_Id := Typ;
4060 Decl : Node_Id;
4061 A : Node_Id;
4062 F : Entity_Id;
4063 Proc : Entity_Id;
4065 begin
4066 if Is_Tagged_Type (Typ)
4067 and then Present (Controlling_Argument (N))
4068 then
4069 if Nkind (Parent (N)) /= N_Procedure_Call_Statement
4070 and then Nkind (Parent (N)) /= N_Function_Call
4071 then
4072 -- If this is a tag-indeterminate call, the object must
4073 -- be classwide.
4075 if Is_Tag_Indeterminate (N) then
4076 Temp_Typ := Class_Wide_Type (Typ);
4077 end if;
4079 else
4080 -- If this is a dispatching call that is itself the
4081 -- controlling argument of an enclosing call, the
4082 -- nominal subtype of the object that replaces it must
4083 -- be classwide, so that dispatching will take place
4084 -- properly. If it is not a controlling argument, the
4085 -- object is not classwide.
4087 Proc := Entity (Name (Parent (N)));
4089 F := First_Formal (Proc);
4090 A := First_Actual (Parent (N));
4091 while A /= N loop
4092 Next_Formal (F);
4093 Next_Actual (A);
4094 end loop;
4096 if Is_Controlling_Formal (F) then
4097 Temp_Typ := Class_Wide_Type (Typ);
4098 end if;
4099 end if;
4100 end if;
4102 Decl :=
4103 Make_Object_Declaration (Loc,
4104 Defining_Identifier => Temp_Obj,
4105 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
4106 Constant_Present => True,
4107 Expression => Relocate_Node (N));
4108 Set_Assignment_OK (Decl);
4110 Insert_Actions (N, New_List (Decl));
4111 Rewrite (N, New_Occurrence_Of (Temp_Obj, Loc));
4112 end;
4114 else
4115 -- If stack-checking is not enabled, increment serial number
4116 -- for internal names, so that subsequent symbols are consistent
4117 -- with and without stack-checking.
4119 Synchronize_Serial_Number;
4121 -- Now we can expand the call with consistent symbol names
4123 Expand_Call (N);
4124 end if;
4126 -- Normal case, expand the call
4128 else
4129 Expand_Call (N);
4130 end if;
4131 end Expand_N_Function_Call;
4133 ---------------------------------------
4134 -- Expand_N_Procedure_Call_Statement --
4135 ---------------------------------------
4137 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4138 begin
4139 Expand_Call (N);
4140 end Expand_N_Procedure_Call_Statement;
4142 ------------------------------
4143 -- Expand_N_Subprogram_Body --
4144 ------------------------------
4146 -- Add poll call if ATC polling is enabled, unless the body will be
4147 -- inlined by the back-end.
4149 -- Add dummy push/pop label nodes at start and end to clear any local
4150 -- exception indications if local-exception-to-goto optimization active.
4152 -- Add return statement if last statement in body is not a return statement
4153 -- (this makes things easier on Gigi which does not want to have to handle
4154 -- a missing return).
4156 -- Add call to Activate_Tasks if body is a task activator
4158 -- Deal with possible detection of infinite recursion
4160 -- Eliminate body completely if convention stubbed
4162 -- Encode entity names within body, since we will not need to reference
4163 -- these entities any longer in the front end.
4165 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4167 -- Reset Pure indication if any parameter has root type System.Address
4169 -- Wrap thread body
4171 procedure Expand_N_Subprogram_Body (N : Node_Id) is
4172 Loc : constant Source_Ptr := Sloc (N);
4173 H : constant Node_Id := Handled_Statement_Sequence (N);
4174 Body_Id : Entity_Id;
4175 Spec_Id : Entity_Id;
4176 Except_H : Node_Id;
4177 Scop : Entity_Id;
4178 Dec : Node_Id;
4179 Next_Op : Node_Id;
4180 L : List_Id;
4182 procedure Add_Return (S : List_Id);
4183 -- Append a return statement to the statement sequence S if the last
4184 -- statement is not already a return or a goto statement. Note that
4185 -- the latter test is not critical, it does not matter if we add a
4186 -- few extra returns, since they get eliminated anyway later on.
4188 ----------------
4189 -- Add_Return --
4190 ----------------
4192 procedure Add_Return (S : List_Id) is
4193 Last_Stm : Node_Id;
4194 Loc : Source_Ptr;
4196 begin
4197 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
4198 -- not relevant in this context since they are not executable.
4200 Last_Stm := Last (S);
4201 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
4202 Prev (Last_Stm);
4203 end loop;
4205 -- Now insert return unless last statement is a transfer
4207 if not Is_Transfer (Last_Stm) then
4209 -- The source location for the return is the end label of the
4210 -- procedure if present. Otherwise use the sloc of the last
4211 -- statement in the list. If the list comes from a generated
4212 -- exception handler and we are not debugging generated code,
4213 -- all the statements within the handler are made invisible
4214 -- to the debugger.
4216 if Nkind (Parent (S)) = N_Exception_Handler
4217 and then not Comes_From_Source (Parent (S))
4218 then
4219 Loc := Sloc (Last_Stm);
4221 elsif Present (End_Label (H)) then
4222 Loc := Sloc (End_Label (H));
4224 else
4225 Loc := Sloc (Last_Stm);
4226 end if;
4228 Append_To (S, Make_Simple_Return_Statement (Loc));
4229 end if;
4230 end Add_Return;
4232 -- Start of processing for Expand_N_Subprogram_Body
4234 begin
4235 -- Set L to either the list of declarations if present, or
4236 -- to the list of statements if no declarations are present.
4237 -- This is used to insert new stuff at the start.
4239 if Is_Non_Empty_List (Declarations (N)) then
4240 L := Declarations (N);
4241 else
4242 L := Statements (H);
4243 end if;
4245 -- If local-exception-to-goto optimization active, insert dummy push
4246 -- statements at start, and dummy pop statements at end.
4248 if (Debug_Flag_Dot_G
4249 or else Restriction_Active (No_Exception_Propagation))
4250 and then Is_Non_Empty_List (L)
4251 then
4252 declare
4253 FS : constant Node_Id := First (L);
4254 FL : constant Source_Ptr := Sloc (FS);
4255 LS : Node_Id;
4256 LL : Source_Ptr;
4258 begin
4259 -- LS points to either last statement, if statements are present
4260 -- or to the last declaration if there are no statements present.
4261 -- It is the node after which the pop's are generated.
4263 if Is_Non_Empty_List (Statements (H)) then
4264 LS := Last (Statements (H));
4265 else
4266 LS := Last (L);
4267 end if;
4269 LL := Sloc (LS);
4271 Insert_List_Before_And_Analyze (FS, New_List (
4272 Make_Push_Constraint_Error_Label (FL),
4273 Make_Push_Program_Error_Label (FL),
4274 Make_Push_Storage_Error_Label (FL)));
4276 Insert_List_After_And_Analyze (LS, New_List (
4277 Make_Pop_Constraint_Error_Label (LL),
4278 Make_Pop_Program_Error_Label (LL),
4279 Make_Pop_Storage_Error_Label (LL)));
4280 end;
4281 end if;
4283 -- Find entity for subprogram
4285 Body_Id := Defining_Entity (N);
4287 if Present (Corresponding_Spec (N)) then
4288 Spec_Id := Corresponding_Spec (N);
4289 else
4290 Spec_Id := Body_Id;
4291 end if;
4293 -- Need poll on entry to subprogram if polling enabled. We only do this
4294 -- for non-empty subprograms, since it does not seem necessary to poll
4295 -- for a dummy null subprogram. Do not add polling point if calls to
4296 -- this subprogram will be inlined by the back-end, to avoid repeated
4297 -- polling points in nested inlinings.
4299 if Is_Non_Empty_List (L) then
4300 if Is_Inlined (Spec_Id)
4301 and then Front_End_Inlining
4302 and then Optimization_Level > 1
4303 then
4304 null;
4305 else
4306 Generate_Poll_Call (First (L));
4307 end if;
4308 end if;
4310 -- If this is a Pure function which has any parameters whose root
4311 -- type is System.Address, reset the Pure indication, since it will
4312 -- likely cause incorrect code to be generated as the parameter is
4313 -- probably a pointer, and the fact that the same pointer is passed
4314 -- does not mean that the same value is being referenced.
4316 -- Note that if the programmer gave an explicit Pure_Function pragma,
4317 -- then we believe the programmer, and leave the subprogram Pure.
4319 -- This code should probably be at the freeze point, so that it
4320 -- happens even on a -gnatc (or more importantly -gnatt) compile
4321 -- so that the semantic tree has Is_Pure set properly ???
4323 if Is_Pure (Spec_Id)
4324 and then Is_Subprogram (Spec_Id)
4325 and then not Has_Pragma_Pure_Function (Spec_Id)
4326 then
4327 declare
4328 F : Entity_Id;
4330 begin
4331 F := First_Formal (Spec_Id);
4332 while Present (F) loop
4333 if Is_Descendent_Of_Address (Etype (F)) then
4334 Set_Is_Pure (Spec_Id, False);
4336 if Spec_Id /= Body_Id then
4337 Set_Is_Pure (Body_Id, False);
4338 end if;
4340 exit;
4341 end if;
4343 Next_Formal (F);
4344 end loop;
4345 end;
4346 end if;
4348 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
4350 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
4351 declare
4352 F : Entity_Id;
4354 begin
4355 -- Loop through formals
4357 F := First_Formal (Spec_Id);
4358 while Present (F) loop
4359 if Is_Scalar_Type (Etype (F))
4360 and then Ekind (F) = E_Out_Parameter
4361 then
4362 -- Insert the initialization. We turn off validity checks
4363 -- for this assignment, since we do not want any check on
4364 -- the initial value itself (which may well be invalid).
4366 Insert_Before_And_Analyze (First (L),
4367 Make_Assignment_Statement (Loc,
4368 Name => New_Occurrence_Of (F, Loc),
4369 Expression => Get_Simple_Init_Val (Etype (F), Loc)),
4370 Suppress => Validity_Check);
4371 end if;
4373 Next_Formal (F);
4374 end loop;
4375 end;
4376 end if;
4378 Scop := Scope (Spec_Id);
4380 -- Add discriminal renamings to protected subprograms. Install new
4381 -- discriminals for expansion of the next subprogram of this protected
4382 -- type, if any.
4384 if Is_List_Member (N)
4385 and then Present (Parent (List_Containing (N)))
4386 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4387 then
4388 Add_Discriminal_Declarations
4389 (Declarations (N), Scop, Name_uObject, Loc);
4390 Add_Private_Declarations
4391 (Declarations (N), Scop, Name_uObject, Loc);
4393 -- Associate privals and discriminals with the next protected
4394 -- operation body to be expanded. These are used to expand references
4395 -- to private data objects and discriminants, respectively.
4397 Next_Op := Next_Protected_Operation (N);
4399 if Present (Next_Op) then
4400 Dec := Parent (Base_Type (Scop));
4401 Set_Privals (Dec, Next_Op, Loc);
4402 Set_Discriminals (Dec);
4403 end if;
4404 end if;
4406 -- Clear out statement list for stubbed procedure
4408 if Present (Corresponding_Spec (N)) then
4409 Set_Elaboration_Flag (N, Spec_Id);
4411 if Convention (Spec_Id) = Convention_Stubbed
4412 or else Is_Eliminated (Spec_Id)
4413 then
4414 Set_Declarations (N, Empty_List);
4415 Set_Handled_Statement_Sequence (N,
4416 Make_Handled_Sequence_Of_Statements (Loc,
4417 Statements => New_List (
4418 Make_Null_Statement (Loc))));
4419 return;
4420 end if;
4421 end if;
4423 -- Returns_By_Ref flag is normally set when the subprogram is frozen
4424 -- but subprograms with no specs are not frozen.
4426 declare
4427 Typ : constant Entity_Id := Etype (Spec_Id);
4428 Utyp : constant Entity_Id := Underlying_Type (Typ);
4430 begin
4431 if not Acts_As_Spec (N)
4432 and then Nkind (Parent (Parent (Spec_Id))) /=
4433 N_Subprogram_Body_Stub
4434 then
4435 null;
4437 elsif Is_Inherently_Limited_Type (Typ) then
4438 Set_Returns_By_Ref (Spec_Id);
4440 elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
4441 Set_Returns_By_Ref (Spec_Id);
4442 end if;
4443 end;
4445 -- For a procedure, we add a return for all possible syntactic ends
4446 -- of the subprogram. Note that reanalysis is not necessary in this
4447 -- case since it would require a lot of work and accomplish nothing.
4449 if Ekind (Spec_Id) = E_Procedure
4450 or else Ekind (Spec_Id) = E_Generic_Procedure
4451 then
4452 Add_Return (Statements (H));
4454 if Present (Exception_Handlers (H)) then
4455 Except_H := First_Non_Pragma (Exception_Handlers (H));
4456 while Present (Except_H) loop
4457 Add_Return (Statements (Except_H));
4458 Next_Non_Pragma (Except_H);
4459 end loop;
4460 end if;
4462 -- For a function, we must deal with the case where there is at least
4463 -- one missing return. What we do is to wrap the entire body of the
4464 -- function in a block:
4466 -- begin
4467 -- ...
4468 -- end;
4470 -- becomes
4472 -- begin
4473 -- begin
4474 -- ...
4475 -- end;
4477 -- raise Program_Error;
4478 -- end;
4480 -- This approach is necessary because the raise must be signalled
4481 -- to the caller, not handled by any local handler (RM 6.4(11)).
4483 -- Note: we do not need to analyze the constructed sequence here,
4484 -- since it has no handler, and an attempt to analyze the handled
4485 -- statement sequence twice is risky in various ways (e.g. the
4486 -- issue of expanding cleanup actions twice).
4488 elsif Has_Missing_Return (Spec_Id) then
4489 declare
4490 Hloc : constant Source_Ptr := Sloc (H);
4491 Blok : constant Node_Id :=
4492 Make_Block_Statement (Hloc,
4493 Handled_Statement_Sequence => H);
4494 Rais : constant Node_Id :=
4495 Make_Raise_Program_Error (Hloc,
4496 Reason => PE_Missing_Return);
4498 begin
4499 Set_Handled_Statement_Sequence (N,
4500 Make_Handled_Sequence_Of_Statements (Hloc,
4501 Statements => New_List (Blok, Rais)));
4503 Push_Scope (Spec_Id);
4504 Analyze (Blok);
4505 Analyze (Rais);
4506 Pop_Scope;
4507 end;
4508 end if;
4510 -- If subprogram contains a parameterless recursive call, then we may
4511 -- have an infinite recursion, so see if we can generate code to check
4512 -- for this possibility if storage checks are not suppressed.
4514 if Ekind (Spec_Id) = E_Procedure
4515 and then Has_Recursive_Call (Spec_Id)
4516 and then not Storage_Checks_Suppressed (Spec_Id)
4517 then
4518 Detect_Infinite_Recursion (N, Spec_Id);
4519 end if;
4521 -- Finally, if we are in Normalize_Scalars mode, then any scalar out
4522 -- parameters must be initialized to the appropriate default value.
4524 if Ekind (Spec_Id) = E_Procedure and then Normalize_Scalars then
4525 declare
4526 Floc : Source_Ptr;
4527 Formal : Entity_Id;
4528 Stm : Node_Id;
4530 begin
4531 Formal := First_Formal (Spec_Id);
4532 while Present (Formal) loop
4533 Floc := Sloc (Formal);
4535 if Ekind (Formal) = E_Out_Parameter
4536 and then Is_Scalar_Type (Etype (Formal))
4537 then
4538 Stm :=
4539 Make_Assignment_Statement (Floc,
4540 Name => New_Occurrence_Of (Formal, Floc),
4541 Expression =>
4542 Get_Simple_Init_Val (Etype (Formal), Floc));
4543 Prepend (Stm, Declarations (N));
4544 Analyze (Stm);
4545 end if;
4547 Next_Formal (Formal);
4548 end loop;
4549 end;
4550 end if;
4552 -- Set to encode entity names in package body before gigi is called
4554 Qualify_Entity_Names (N);
4555 end Expand_N_Subprogram_Body;
4557 -----------------------------------
4558 -- Expand_N_Subprogram_Body_Stub --
4559 -----------------------------------
4561 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
4562 begin
4563 if Present (Corresponding_Body (N)) then
4564 Expand_N_Subprogram_Body (
4565 Unit_Declaration_Node (Corresponding_Body (N)));
4566 end if;
4567 end Expand_N_Subprogram_Body_Stub;
4569 -------------------------------------
4570 -- Expand_N_Subprogram_Declaration --
4571 -------------------------------------
4573 -- If the declaration appears within a protected body, it is a private
4574 -- operation of the protected type. We must create the corresponding
4575 -- protected subprogram an associated formals. For a normal protected
4576 -- operation, this is done when expanding the protected type declaration.
4578 -- If the declaration is for a null procedure, emit null body
4580 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
4581 Loc : constant Source_Ptr := Sloc (N);
4582 Subp : constant Entity_Id := Defining_Entity (N);
4583 Scop : constant Entity_Id := Scope (Subp);
4584 Prot_Decl : Node_Id;
4585 Prot_Bod : Node_Id;
4586 Prot_Id : Entity_Id;
4588 begin
4589 -- Deal with case of protected subprogram. Do not generate protected
4590 -- operation if operation is flagged as eliminated.
4592 if Is_List_Member (N)
4593 and then Present (Parent (List_Containing (N)))
4594 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4595 and then Is_Protected_Type (Scop)
4596 then
4597 if No (Protected_Body_Subprogram (Subp))
4598 and then not Is_Eliminated (Subp)
4599 then
4600 Prot_Decl :=
4601 Make_Subprogram_Declaration (Loc,
4602 Specification =>
4603 Build_Protected_Sub_Specification
4604 (N, Scop, Unprotected_Mode));
4606 -- The protected subprogram is declared outside of the protected
4607 -- body. Given that the body has frozen all entities so far, we
4608 -- analyze the subprogram and perform freezing actions explicitly.
4609 -- including the generation of an explicit freeze node, to ensure
4610 -- that gigi has the proper order of elaboration.
4611 -- If the body is a subunit, the insertion point is before the
4612 -- stub in the parent.
4614 Prot_Bod := Parent (List_Containing (N));
4616 if Nkind (Parent (Prot_Bod)) = N_Subunit then
4617 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
4618 end if;
4620 Insert_Before (Prot_Bod, Prot_Decl);
4621 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
4622 Set_Has_Delayed_Freeze (Prot_Id);
4624 Push_Scope (Scope (Scop));
4625 Analyze (Prot_Decl);
4626 Insert_Actions (N, Freeze_Entity (Prot_Id, Loc));
4627 Set_Protected_Body_Subprogram (Subp, Prot_Id);
4628 Pop_Scope;
4629 end if;
4631 -- Ada 2005 (AI-348): Generation of the null body
4633 elsif Nkind (Specification (N)) = N_Procedure_Specification
4634 and then Null_Present (Specification (N))
4635 then
4636 declare
4637 Bod : constant Node_Id :=
4638 Make_Subprogram_Body (Loc,
4639 Specification =>
4640 New_Copy_Tree (Specification (N)),
4641 Declarations => New_List,
4642 Handled_Statement_Sequence =>
4643 Make_Handled_Sequence_Of_Statements (Loc,
4644 Statements => New_List (Make_Null_Statement (Loc))));
4645 begin
4646 Set_Body_To_Inline (N, Bod);
4647 Insert_After (N, Bod);
4648 Analyze (Bod);
4650 -- Corresponding_Spec isn't being set by Analyze_Subprogram_Body,
4651 -- evidently because Set_Has_Completion is called earlier for null
4652 -- procedures in Analyze_Subprogram_Declaration, so we force its
4653 -- setting here. If the setting of Has_Completion is not set
4654 -- earlier, then it can result in missing body errors if other
4655 -- errors were already reported (since expansion is turned off).
4657 -- Should creation of the empty body be moved to the analyzer???
4659 Set_Corresponding_Spec (Bod, Defining_Entity (Specification (N)));
4660 end;
4661 end if;
4662 end Expand_N_Subprogram_Declaration;
4664 ---------------------------------------
4665 -- Expand_Protected_Object_Reference --
4666 ---------------------------------------
4668 function Expand_Protected_Object_Reference
4669 (N : Node_Id;
4670 Scop : Entity_Id) return Node_Id
4672 Loc : constant Source_Ptr := Sloc (N);
4673 Corr : Entity_Id;
4674 Rec : Node_Id;
4675 Param : Entity_Id;
4676 Proc : Entity_Id;
4678 begin
4679 Rec :=
4680 Make_Identifier (Loc,
4681 Chars => Name_uObject);
4682 Set_Etype (Rec, Corresponding_Record_Type (Scop));
4684 -- Find enclosing protected operation, and retrieve its first parameter,
4685 -- which denotes the enclosing protected object. If the enclosing
4686 -- operation is an entry, we are immediately within the protected body,
4687 -- and we can retrieve the object from the service entries procedure. A
4688 -- barrier function has has the same signature as an entry. A barrier
4689 -- function is compiled within the protected object, but unlike
4690 -- protected operations its never needs locks, so that its protected
4691 -- body subprogram points to itself.
4693 Proc := Current_Scope;
4694 while Present (Proc)
4695 and then Scope (Proc) /= Scop
4696 loop
4697 Proc := Scope (Proc);
4698 end loop;
4700 Corr := Protected_Body_Subprogram (Proc);
4702 if No (Corr) then
4704 -- Previous error left expansion incomplete.
4705 -- Nothing to do on this call.
4707 return Empty;
4708 end if;
4710 Param :=
4711 Defining_Identifier
4712 (First (Parameter_Specifications (Parent (Corr))));
4714 if Is_Subprogram (Proc)
4715 and then Proc /= Corr
4716 then
4717 -- Protected function or procedure
4719 Set_Entity (Rec, Param);
4721 -- Rec is a reference to an entity which will not be in scope when
4722 -- the call is reanalyzed, and needs no further analysis.
4724 Set_Analyzed (Rec);
4726 else
4727 -- Entry or barrier function for entry body. The first parameter of
4728 -- the entry body procedure is pointer to the object. We create a
4729 -- local variable of the proper type, duplicating what is done to
4730 -- define _object later on.
4732 declare
4733 Decls : List_Id;
4734 Obj_Ptr : constant Entity_Id := Make_Defining_Identifier (Loc,
4735 Chars =>
4736 New_Internal_Name ('T'));
4738 begin
4739 Decls := New_List (
4740 Make_Full_Type_Declaration (Loc,
4741 Defining_Identifier => Obj_Ptr,
4742 Type_Definition =>
4743 Make_Access_To_Object_Definition (Loc,
4744 Subtype_Indication =>
4745 New_Reference_To
4746 (Corresponding_Record_Type (Scop), Loc))));
4748 Insert_Actions (N, Decls);
4749 Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
4751 Rec :=
4752 Make_Explicit_Dereference (Loc,
4753 Unchecked_Convert_To (Obj_Ptr,
4754 New_Occurrence_Of (Param, Loc)));
4756 -- Analyze new actual. Other actuals in calls are already analyzed
4757 -- and the list of actuals is not reanalyzed after rewriting.
4759 Set_Parent (Rec, N);
4760 Analyze (Rec);
4761 end;
4762 end if;
4764 return Rec;
4765 end Expand_Protected_Object_Reference;
4767 --------------------------------------
4768 -- Expand_Protected_Subprogram_Call --
4769 --------------------------------------
4771 procedure Expand_Protected_Subprogram_Call
4772 (N : Node_Id;
4773 Subp : Entity_Id;
4774 Scop : Entity_Id)
4776 Rec : Node_Id;
4778 begin
4779 -- If the protected object is not an enclosing scope, this is
4780 -- an inter-object function call. Inter-object procedure
4781 -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
4782 -- The call is intra-object only if the subprogram being
4783 -- called is in the protected body being compiled, and if the
4784 -- protected object in the call is statically the enclosing type.
4785 -- The object may be an component of some other data structure,
4786 -- in which case this must be handled as an inter-object call.
4788 if not In_Open_Scopes (Scop)
4789 or else not Is_Entity_Name (Name (N))
4790 then
4791 if Nkind (Name (N)) = N_Selected_Component then
4792 Rec := Prefix (Name (N));
4794 else
4795 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
4796 Rec := Prefix (Prefix (Name (N)));
4797 end if;
4799 Build_Protected_Subprogram_Call (N,
4800 Name => New_Occurrence_Of (Subp, Sloc (N)),
4801 Rec => Convert_Concurrent (Rec, Etype (Rec)),
4802 External => True);
4804 else
4805 Rec := Expand_Protected_Object_Reference (N, Scop);
4807 if No (Rec) then
4808 return;
4809 end if;
4811 Build_Protected_Subprogram_Call (N,
4812 Name => Name (N),
4813 Rec => Rec,
4814 External => False);
4816 end if;
4818 Analyze (N);
4820 -- If it is a function call it can appear in elaboration code and
4821 -- the called entity must be frozen here.
4823 if Ekind (Subp) = E_Function then
4824 Freeze_Expression (Name (N));
4825 end if;
4826 end Expand_Protected_Subprogram_Call;
4828 --------------------------------
4829 -- Is_Build_In_Place_Function --
4830 --------------------------------
4832 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
4833 begin
4834 -- For now we test whether E denotes a function or access-to-function
4835 -- type whose result subtype is inherently limited. Later this test may
4836 -- be revised to allow composite nonlimited types. Functions with a
4837 -- foreign convention or whose result type has a foreign convention
4838 -- never qualify.
4840 if Ekind (E) = E_Function
4841 or else Ekind (E) = E_Generic_Function
4842 or else (Ekind (E) = E_Subprogram_Type
4843 and then Etype (E) /= Standard_Void_Type)
4844 then
4845 -- Note: If you have Convention (C) on an inherently limited type,
4846 -- you're on your own. That is, the C code will have to be carefully
4847 -- written to know about the Ada conventions.
4849 if Has_Foreign_Convention (E)
4850 or else Has_Foreign_Convention (Etype (E))
4851 then
4852 return False;
4854 -- If the return type is a limited interface it has to be treated
4855 -- as a return in place, even if the actual object is some non-
4856 -- limited descendant.
4858 elsif Is_Limited_Interface (Etype (E)) then
4859 return True;
4861 else
4862 return Is_Inherently_Limited_Type (Etype (E))
4863 and then Ada_Version >= Ada_05
4864 and then not Debug_Flag_Dot_L;
4865 end if;
4867 else
4868 return False;
4869 end if;
4870 end Is_Build_In_Place_Function;
4872 -------------------------------------
4873 -- Is_Build_In_Place_Function_Call --
4874 -------------------------------------
4876 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
4877 Exp_Node : Node_Id := N;
4878 Function_Id : Entity_Id;
4880 begin
4881 -- Step past qualification or unchecked conversion (the latter can occur
4882 -- in cases of calls to 'Input).
4884 if Nkind (Exp_Node) = N_Qualified_Expression
4885 or else Nkind (Exp_Node) = N_Unchecked_Type_Conversion
4886 then
4887 Exp_Node := Expression (N);
4888 end if;
4890 if Nkind (Exp_Node) /= N_Function_Call then
4891 return False;
4893 else
4894 if Is_Entity_Name (Name (Exp_Node)) then
4895 Function_Id := Entity (Name (Exp_Node));
4897 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
4898 Function_Id := Etype (Name (Exp_Node));
4899 end if;
4901 return Is_Build_In_Place_Function (Function_Id);
4902 end if;
4903 end Is_Build_In_Place_Function_Call;
4905 ---------------------------------------
4906 -- Is_Build_In_Place_Function_Return --
4907 ---------------------------------------
4909 function Is_Build_In_Place_Function_Return (N : Node_Id) return Boolean is
4910 begin
4911 if Nkind (N) = N_Simple_Return_Statement
4912 or else Nkind (N) = N_Extended_Return_Statement
4913 then
4914 return Is_Build_In_Place_Function
4915 (Return_Applies_To (Return_Statement_Entity (N)));
4916 else
4917 return False;
4918 end if;
4919 end Is_Build_In_Place_Function_Return;
4921 -----------------------
4922 -- Freeze_Subprogram --
4923 -----------------------
4925 procedure Freeze_Subprogram (N : Node_Id) is
4926 Loc : constant Source_Ptr := Sloc (N);
4928 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
4929 -- (Ada 2005): Register a predefined primitive in all the secondary
4930 -- dispatch tables of its primitive type.
4932 ----------------------------------
4933 -- Register_Predefined_DT_Entry --
4934 ----------------------------------
4936 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
4937 Iface_DT_Ptr : Elmt_Id;
4938 Tagged_Typ : Entity_Id;
4939 Thunk_Id : Entity_Id;
4940 Thunk_Code : Node_Id;
4942 begin
4943 Tagged_Typ := Find_Dispatching_Type (Prim);
4945 if No (Access_Disp_Table (Tagged_Typ))
4946 or else not Has_Abstract_Interfaces (Tagged_Typ)
4947 or else not RTE_Available (RE_Interface_Tag)
4948 or else Restriction_Active (No_Dispatching_Calls)
4949 then
4950 return;
4951 end if;
4953 -- Skip the first access-to-dispatch-table pointer since it leads
4954 -- to the primary dispatch table. We are only concerned with the
4955 -- secondary dispatch table pointers. Note that the access-to-
4956 -- dispatch-table pointer corresponds to the first implemented
4957 -- interface retrieved below.
4959 Iface_DT_Ptr :=
4960 Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ)));
4962 while Present (Iface_DT_Ptr)
4963 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
4964 loop
4965 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
4967 if Present (Thunk_Code) then
4968 Insert_Actions (N, New_List (
4969 Thunk_Code,
4971 Build_Set_Predefined_Prim_Op_Address (Loc,
4972 Tag_Node => New_Reference_To (Node (Iface_DT_Ptr), Loc),
4973 Position => DT_Position (Prim),
4974 Address_Node =>
4975 Make_Attribute_Reference (Loc,
4976 Prefix => New_Reference_To (Thunk_Id, Loc),
4977 Attribute_Name => Name_Address))));
4978 end if;
4980 Next_Elmt (Iface_DT_Ptr);
4981 end loop;
4982 end Register_Predefined_DT_Entry;
4984 -- Local variables
4986 Subp : constant Entity_Id := Entity (N);
4988 begin
4989 -- We suppress the initialization of the dispatch table entry when
4990 -- VM_Target because the dispatching mechanism is handled internally
4991 -- by the VM.
4993 if Is_Dispatching_Operation (Subp)
4994 and then not Is_Abstract_Subprogram (Subp)
4995 and then Present (DTC_Entity (Subp))
4996 and then Present (Scope (DTC_Entity (Subp)))
4997 and then VM_Target = No_VM
4998 and then not Restriction_Active (No_Dispatching_Calls)
4999 and then RTE_Available (RE_Tag)
5000 then
5001 declare
5002 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
5004 begin
5005 -- Handle private overriden primitives
5007 if not Is_CPP_Class (Typ) then
5008 Check_Overriding_Operation (Subp);
5009 end if;
5011 -- We assume that imported CPP primitives correspond with objects
5012 -- whose constructor is in the CPP side; therefore we don't need
5013 -- to generate code to register them in the dispatch table.
5015 if Is_CPP_Class (Typ) then
5016 null;
5018 -- Handle CPP primitives found in derivations of CPP_Class types.
5019 -- These primitives must have been inherited from some parent, and
5020 -- there is no need to register them in the dispatch table because
5021 -- Build_Inherit_Prims takes care of the initialization of these
5022 -- slots.
5024 elsif Is_Imported (Subp)
5025 and then (Convention (Subp) = Convention_CPP
5026 or else Convention (Subp) = Convention_C)
5027 then
5028 null;
5030 -- Generate code to register the primitive in non statically
5031 -- allocated dispatch tables
5033 elsif not Static_Dispatch_Tables
5034 or else not
5035 Is_Library_Level_Tagged_Type (Scope (DTC_Entity (Subp)))
5036 then
5037 -- When a primitive is frozen, enter its name in its dispatch
5038 -- table slot.
5040 if not Is_Interface (Typ)
5041 or else Present (Abstract_Interface_Alias (Subp))
5042 then
5043 if Is_Predefined_Dispatching_Operation (Subp) then
5044 Register_Predefined_DT_Entry (Subp);
5045 end if;
5047 Register_Primitive (Loc,
5048 Prim => Subp,
5049 Ins_Nod => N);
5050 end if;
5051 end if;
5052 end;
5053 end if;
5055 -- Mark functions that return by reference. Note that it cannot be part
5056 -- of the normal semantic analysis of the spec since the underlying
5057 -- returned type may not be known yet (for private types).
5059 declare
5060 Typ : constant Entity_Id := Etype (Subp);
5061 Utyp : constant Entity_Id := Underlying_Type (Typ);
5062 begin
5063 if Is_Inherently_Limited_Type (Typ) then
5064 Set_Returns_By_Ref (Subp);
5065 elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
5066 Set_Returns_By_Ref (Subp);
5067 end if;
5068 end;
5069 end Freeze_Subprogram;
5071 -------------------------------------------
5072 -- Make_Build_In_Place_Call_In_Allocator --
5073 -------------------------------------------
5075 procedure Make_Build_In_Place_Call_In_Allocator
5076 (Allocator : Node_Id;
5077 Function_Call : Node_Id)
5079 Loc : Source_Ptr;
5080 Func_Call : Node_Id := Function_Call;
5081 Function_Id : Entity_Id;
5082 Result_Subt : Entity_Id;
5083 Acc_Type : constant Entity_Id := Etype (Allocator);
5084 New_Allocator : Node_Id;
5085 Return_Obj_Access : Entity_Id;
5087 begin
5088 -- Step past qualification or unchecked conversion (the latter can occur
5089 -- in cases of calls to 'Input).
5091 if Nkind (Func_Call) = N_Qualified_Expression
5092 or else Nkind (Func_Call) = N_Unchecked_Type_Conversion
5093 then
5094 Func_Call := Expression (Func_Call);
5095 end if;
5097 -- If the call has already been processed to add build-in-place actuals
5098 -- then return. This should not normally occur in an allocator context,
5099 -- but we add the protection as a defensive measure.
5101 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5102 return;
5103 end if;
5105 -- Mark the call as processed as a build-in-place call
5107 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5109 Loc := Sloc (Function_Call);
5111 if Is_Entity_Name (Name (Func_Call)) then
5112 Function_Id := Entity (Name (Func_Call));
5114 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5115 Function_Id := Etype (Name (Func_Call));
5117 else
5118 raise Program_Error;
5119 end if;
5121 Result_Subt := Etype (Function_Id);
5123 -- When the result subtype is constrained, the return object must be
5124 -- allocated on the caller side, and access to it is passed to the
5125 -- function.
5127 -- Here and in related routines, we must examine the full view of the
5128 -- type, because the view at the point of call may differ from that
5129 -- that in the function body, and the expansion mechanism depends on
5130 -- the characteristics of the full view.
5132 if Is_Constrained (Underlying_Type (Result_Subt)) then
5134 -- Replace the initialized allocator of form "new T'(Func (...))"
5135 -- with an uninitialized allocator of form "new T", where T is the
5136 -- result subtype of the called function. The call to the function
5137 -- is handled separately further below.
5139 New_Allocator :=
5140 Make_Allocator (Loc, New_Reference_To (Result_Subt, Loc));
5142 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
5143 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
5144 Set_No_Initialization (New_Allocator);
5146 Rewrite (Allocator, New_Allocator);
5148 -- Create a new access object and initialize it to the result of the
5149 -- new uninitialized allocator.
5151 Return_Obj_Access :=
5152 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
5153 Set_Etype (Return_Obj_Access, Acc_Type);
5155 Insert_Action (Allocator,
5156 Make_Object_Declaration (Loc,
5157 Defining_Identifier => Return_Obj_Access,
5158 Object_Definition => New_Reference_To (Acc_Type, Loc),
5159 Expression => Relocate_Node (Allocator)));
5161 -- When the function has a controlling result, an allocation-form
5162 -- parameter must be passed indicating that the caller is allocating
5163 -- the result object. This is needed because such a function can be
5164 -- called as a dispatching operation and must be treated similarly
5165 -- to functions with unconstrained result subtypes.
5167 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5168 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5170 Add_Final_List_Actual_To_Build_In_Place_Call
5171 (Func_Call, Function_Id, Acc_Type);
5173 Add_Task_Actuals_To_Build_In_Place_Call
5174 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5176 -- Add an implicit actual to the function call that provides access
5177 -- to the allocated object. An unchecked conversion to the (specific)
5178 -- result subtype of the function is inserted to handle cases where
5179 -- the access type of the allocator has a class-wide designated type.
5181 Add_Access_Actual_To_Build_In_Place_Call
5182 (Func_Call,
5183 Function_Id,
5184 Make_Unchecked_Type_Conversion (Loc,
5185 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5186 Expression =>
5187 Make_Explicit_Dereference (Loc,
5188 Prefix => New_Reference_To (Return_Obj_Access, Loc))));
5190 -- When the result subtype is unconstrained, the function itself must
5191 -- perform the allocation of the return object, so we pass parameters
5192 -- indicating that. We don't yet handle the case where the allocation
5193 -- must be done in a user-defined storage pool, which will require
5194 -- passing another actual or two to provide allocation/deallocation
5195 -- operations. ???
5197 else
5199 -- Pass an allocation parameter indicating that the function should
5200 -- allocate its result on the heap.
5202 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5203 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
5205 Add_Final_List_Actual_To_Build_In_Place_Call
5206 (Func_Call, Function_Id, Acc_Type);
5208 Add_Task_Actuals_To_Build_In_Place_Call
5209 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5211 -- The caller does not provide the return object in this case, so we
5212 -- have to pass null for the object access actual.
5214 Add_Access_Actual_To_Build_In_Place_Call
5215 (Func_Call, Function_Id, Return_Object => Empty);
5216 end if;
5218 -- Finally, replace the allocator node with a reference to the result
5219 -- of the function call itself (which will effectively be an access
5220 -- to the object created by the allocator).
5222 Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
5223 Analyze_And_Resolve (Allocator, Acc_Type);
5224 end Make_Build_In_Place_Call_In_Allocator;
5226 ---------------------------------------------------
5227 -- Make_Build_In_Place_Call_In_Anonymous_Context --
5228 ---------------------------------------------------
5230 procedure Make_Build_In_Place_Call_In_Anonymous_Context
5231 (Function_Call : Node_Id)
5233 Loc : Source_Ptr;
5234 Func_Call : Node_Id := Function_Call;
5235 Function_Id : Entity_Id;
5236 Result_Subt : Entity_Id;
5237 Return_Obj_Id : Entity_Id;
5238 Return_Obj_Decl : Entity_Id;
5240 begin
5241 -- Step past qualification or unchecked conversion (the latter can occur
5242 -- in cases of calls to 'Input).
5244 if Nkind (Func_Call) = N_Qualified_Expression
5245 or else Nkind (Func_Call) = N_Unchecked_Type_Conversion
5246 then
5247 Func_Call := Expression (Func_Call);
5248 end if;
5250 -- If the call has already been processed to add build-in-place actuals
5251 -- then return. One place this can occur is for calls to build-in-place
5252 -- functions that occur within a call to a protected operation, where
5253 -- due to rewriting and expansion of the protected call there can be
5254 -- more than one call to Expand_Actuals for the same set of actuals.
5256 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5257 return;
5258 end if;
5260 -- Mark the call as processed as a build-in-place call
5262 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5264 Loc := Sloc (Function_Call);
5266 if Is_Entity_Name (Name (Func_Call)) then
5267 Function_Id := Entity (Name (Func_Call));
5269 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5270 Function_Id := Etype (Name (Func_Call));
5272 else
5273 raise Program_Error;
5274 end if;
5276 Result_Subt := Etype (Function_Id);
5278 -- When the result subtype is constrained, an object of the subtype is
5279 -- declared and an access value designating it is passed as an actual.
5281 if Is_Constrained (Underlying_Type (Result_Subt)) then
5283 -- Create a temporary object to hold the function result
5285 Return_Obj_Id :=
5286 Make_Defining_Identifier (Loc,
5287 Chars => New_Internal_Name ('R'));
5288 Set_Etype (Return_Obj_Id, Result_Subt);
5290 Return_Obj_Decl :=
5291 Make_Object_Declaration (Loc,
5292 Defining_Identifier => Return_Obj_Id,
5293 Aliased_Present => True,
5294 Object_Definition => New_Reference_To (Result_Subt, Loc));
5296 Set_No_Initialization (Return_Obj_Decl);
5298 Insert_Action (Func_Call, Return_Obj_Decl);
5300 -- When the function has a controlling result, an allocation-form
5301 -- parameter must be passed indicating that the caller is allocating
5302 -- the result object. This is needed because such a function can be
5303 -- called as a dispatching operation and must be treated similarly
5304 -- to functions with unconstrained result subtypes.
5306 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5307 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5309 Add_Final_List_Actual_To_Build_In_Place_Call
5310 (Func_Call, Function_Id, Acc_Type => Empty);
5312 Add_Task_Actuals_To_Build_In_Place_Call
5313 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5315 -- Add an implicit actual to the function call that provides access
5316 -- to the caller's return object.
5318 Add_Access_Actual_To_Build_In_Place_Call
5319 (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
5321 -- When the result subtype is unconstrained, the function must allocate
5322 -- the return object in the secondary stack, so appropriate implicit
5323 -- parameters are added to the call to indicate that. A transient
5324 -- scope is established to ensure eventual cleanup of the result.
5326 else
5328 -- Pass an allocation parameter indicating that the function should
5329 -- allocate its result on the secondary stack.
5331 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5332 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
5334 Add_Final_List_Actual_To_Build_In_Place_Call
5335 (Func_Call, Function_Id, Acc_Type => Empty);
5337 Add_Task_Actuals_To_Build_In_Place_Call
5338 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5340 -- Pass a null value to the function since no return object is
5341 -- available on the caller side.
5343 Add_Access_Actual_To_Build_In_Place_Call
5344 (Func_Call, Function_Id, Empty);
5346 Establish_Transient_Scope (Func_Call, Sec_Stack => True);
5347 end if;
5348 end Make_Build_In_Place_Call_In_Anonymous_Context;
5350 ---------------------------------------------------
5351 -- Make_Build_In_Place_Call_In_Assignment --
5352 ---------------------------------------------------
5354 procedure Make_Build_In_Place_Call_In_Assignment
5355 (Assign : Node_Id;
5356 Function_Call : Node_Id)
5358 Lhs : constant Node_Id := Name (Assign);
5359 Loc : Source_Ptr;
5360 Func_Call : Node_Id := Function_Call;
5361 Function_Id : Entity_Id;
5362 Result_Subt : Entity_Id;
5363 Ref_Type : Entity_Id;
5364 Ptr_Typ_Decl : Node_Id;
5365 Def_Id : Entity_Id;
5366 New_Expr : Node_Id;
5368 begin
5369 -- Step past qualification or unchecked conversion (the latter can occur
5370 -- in cases of calls to 'Input).
5372 if Nkind (Func_Call) = N_Qualified_Expression
5373 or else Nkind (Func_Call) = N_Unchecked_Type_Conversion
5374 then
5375 Func_Call := Expression (Func_Call);
5376 end if;
5378 -- If the call has already been processed to add build-in-place actuals
5379 -- then return. This should not normally occur in an assignment context,
5380 -- but we add the protection as a defensive measure.
5382 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5383 return;
5384 end if;
5386 -- Mark the call as processed as a build-in-place call
5388 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5390 Loc := Sloc (Function_Call);
5392 if Is_Entity_Name (Name (Func_Call)) then
5393 Function_Id := Entity (Name (Func_Call));
5395 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5396 Function_Id := Etype (Name (Func_Call));
5398 else
5399 raise Program_Error;
5400 end if;
5402 Result_Subt := Etype (Function_Id);
5404 -- When the result subtype is unconstrained, an additional actual must
5405 -- be passed to indicate that the caller is providing the return object.
5406 -- This parameter must also be passed when the called function has a
5407 -- controlling result, because dispatching calls to the function needs
5408 -- to be treated effectively the same as calls to class-wide functions.
5410 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5411 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5413 Add_Final_List_Actual_To_Build_In_Place_Call
5414 (Func_Call, Function_Id, Acc_Type => Empty);
5416 Add_Task_Actuals_To_Build_In_Place_Call
5417 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5419 -- Add an implicit actual to the function call that provides access to
5420 -- the caller's return object.
5422 Add_Access_Actual_To_Build_In_Place_Call
5423 (Func_Call,
5424 Function_Id,
5425 Make_Unchecked_Type_Conversion (Loc,
5426 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5427 Expression => Relocate_Node (Lhs)));
5429 -- Create an access type designating the function's result subtype
5431 Ref_Type :=
5432 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5434 Ptr_Typ_Decl :=
5435 Make_Full_Type_Declaration (Loc,
5436 Defining_Identifier => Ref_Type,
5437 Type_Definition =>
5438 Make_Access_To_Object_Definition (Loc,
5439 All_Present => True,
5440 Subtype_Indication =>
5441 New_Reference_To (Result_Subt, Loc)));
5443 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
5445 -- Finally, create an access object initialized to a reference to the
5446 -- function call.
5448 Def_Id :=
5449 Make_Defining_Identifier (Loc,
5450 Chars => New_Internal_Name ('R'));
5451 Set_Etype (Def_Id, Ref_Type);
5453 New_Expr :=
5454 Make_Reference (Loc,
5455 Prefix => Relocate_Node (Func_Call));
5457 Insert_After_And_Analyze (Ptr_Typ_Decl,
5458 Make_Object_Declaration (Loc,
5459 Defining_Identifier => Def_Id,
5460 Object_Definition => New_Reference_To (Ref_Type, Loc),
5461 Expression => New_Expr));
5463 Rewrite (Assign, Make_Null_Statement (Loc));
5464 end Make_Build_In_Place_Call_In_Assignment;
5466 ----------------------------------------------------
5467 -- Make_Build_In_Place_Call_In_Object_Declaration --
5468 ----------------------------------------------------
5470 procedure Make_Build_In_Place_Call_In_Object_Declaration
5471 (Object_Decl : Node_Id;
5472 Function_Call : Node_Id)
5474 Loc : Source_Ptr;
5475 Obj_Def_Id : constant Entity_Id :=
5476 Defining_Identifier (Object_Decl);
5478 Func_Call : Node_Id := Function_Call;
5479 Function_Id : Entity_Id;
5480 Result_Subt : Entity_Id;
5481 Caller_Object : Node_Id;
5482 Call_Deref : Node_Id;
5483 Ref_Type : Entity_Id;
5484 Ptr_Typ_Decl : Node_Id;
5485 Def_Id : Entity_Id;
5486 New_Expr : Node_Id;
5487 Enclosing_Func : Entity_Id;
5488 Pass_Caller_Acc : Boolean := False;
5490 begin
5491 -- Step past qualification or unchecked conversion (the latter can occur
5492 -- in cases of calls to 'Input).
5494 if Nkind (Func_Call) = N_Qualified_Expression
5495 or else Nkind (Func_Call) = N_Unchecked_Type_Conversion
5496 then
5497 Func_Call := Expression (Func_Call);
5498 end if;
5500 -- If the call has already been processed to add build-in-place actuals
5501 -- then return. This should not normally occur in an object declaration,
5502 -- but we add the protection as a defensive measure.
5504 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5505 return;
5506 end if;
5508 -- Mark the call as processed as a build-in-place call
5510 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5512 Loc := Sloc (Function_Call);
5514 if Is_Entity_Name (Name (Func_Call)) then
5515 Function_Id := Entity (Name (Func_Call));
5517 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5518 Function_Id := Etype (Name (Func_Call));
5520 else
5521 raise Program_Error;
5522 end if;
5524 Result_Subt := Etype (Function_Id);
5526 -- In the constrained case, add an implicit actual to the function call
5527 -- that provides access to the declared object. An unchecked conversion
5528 -- to the (specific) result type of the function is inserted to handle
5529 -- the case where the object is declared with a class-wide type.
5531 if Is_Constrained (Underlying_Type (Result_Subt)) then
5532 Caller_Object :=
5533 Make_Unchecked_Type_Conversion (Loc,
5534 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5535 Expression => New_Reference_To (Obj_Def_Id, Loc));
5537 -- When the function has a controlling result, an allocation-form
5538 -- parameter must be passed indicating that the caller is allocating
5539 -- the result object. This is needed because such a function can be
5540 -- called as a dispatching operation and must be treated similarly
5541 -- to functions with unconstrained result subtypes.
5543 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5544 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5546 -- If the function's result subtype is unconstrained and the object is
5547 -- a return object of an enclosing build-in-place function, then the
5548 -- implicit build-in-place parameters of the enclosing function must be
5549 -- passed along to the called function.
5551 elsif Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement then
5552 Pass_Caller_Acc := True;
5554 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5556 -- If the enclosing function has a constrained result type, then
5557 -- caller allocation will be used.
5559 if Is_Constrained (Etype (Enclosing_Func)) then
5560 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5561 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5563 -- Otherwise, when the enclosing function has an unconstrained result
5564 -- type, the BIP_Alloc_Form formal of the enclosing function must be
5565 -- passed along to the callee.
5567 else
5568 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5569 (Func_Call,
5570 Function_Id,
5571 Alloc_Form_Exp =>
5572 New_Reference_To
5573 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
5574 Loc));
5575 end if;
5577 -- Retrieve the BIPacc formal from the enclosing function and convert
5578 -- it to the access type of the callee's BIP_Object_Access formal.
5580 Caller_Object :=
5581 Make_Unchecked_Type_Conversion (Loc,
5582 Subtype_Mark =>
5583 New_Reference_To
5584 (Etype
5585 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
5586 Loc),
5587 Expression =>
5588 New_Reference_To
5589 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
5590 Loc));
5592 -- In other unconstrained cases, pass an indication to do the allocation
5593 -- on the secondary stack and set Caller_Object to Empty so that a null
5594 -- value will be passed for the caller's object address. A transient
5595 -- scope is established to ensure eventual cleanup of the result.
5597 else
5598 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5599 (Func_Call,
5600 Function_Id,
5601 Alloc_Form => Secondary_Stack);
5602 Caller_Object := Empty;
5604 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
5605 end if;
5607 Add_Final_List_Actual_To_Build_In_Place_Call
5608 (Func_Call, Function_Id, Acc_Type => Empty);
5610 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
5611 and then Has_Task (Result_Subt)
5612 then
5613 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5615 -- Here we're passing along the master that was passed in to this
5616 -- function.
5618 Add_Task_Actuals_To_Build_In_Place_Call
5619 (Func_Call, Function_Id,
5620 Master_Actual =>
5621 New_Reference_To
5622 (Build_In_Place_Formal (Enclosing_Func, BIP_Master), Loc));
5624 else
5625 Add_Task_Actuals_To_Build_In_Place_Call
5626 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5627 end if;
5629 Add_Access_Actual_To_Build_In_Place_Call
5630 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
5632 -- Create an access type designating the function's result subtype
5634 Ref_Type :=
5635 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5637 Ptr_Typ_Decl :=
5638 Make_Full_Type_Declaration (Loc,
5639 Defining_Identifier => Ref_Type,
5640 Type_Definition =>
5641 Make_Access_To_Object_Definition (Loc,
5642 All_Present => True,
5643 Subtype_Indication =>
5644 New_Reference_To (Result_Subt, Loc)));
5646 -- The access type and its accompanying object must be inserted after
5647 -- the object declaration in the constrained case, so that the function
5648 -- call can be passed access to the object. In the unconstrained case,
5649 -- the access type and object must be inserted before the object, since
5650 -- the object declaration is rewritten to be a renaming of a dereference
5651 -- of the access object.
5653 if Is_Constrained (Underlying_Type (Result_Subt)) then
5654 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
5655 else
5656 Insert_Before_And_Analyze (Object_Decl, Ptr_Typ_Decl);
5657 end if;
5659 -- Finally, create an access object initialized to a reference to the
5660 -- function call.
5662 Def_Id :=
5663 Make_Defining_Identifier (Loc,
5664 Chars => New_Internal_Name ('R'));
5665 Set_Etype (Def_Id, Ref_Type);
5667 New_Expr :=
5668 Make_Reference (Loc,
5669 Prefix => Relocate_Node (Func_Call));
5671 Insert_After_And_Analyze (Ptr_Typ_Decl,
5672 Make_Object_Declaration (Loc,
5673 Defining_Identifier => Def_Id,
5674 Object_Definition => New_Reference_To (Ref_Type, Loc),
5675 Expression => New_Expr));
5677 if Is_Constrained (Underlying_Type (Result_Subt)) then
5678 Set_Expression (Object_Decl, Empty);
5679 Set_No_Initialization (Object_Decl);
5681 -- In case of an unconstrained result subtype, rewrite the object
5682 -- declaration as an object renaming where the renamed object is a
5683 -- dereference of <function_Call>'reference:
5685 -- Obj : Subt renames <function_call>'Ref.all;
5687 else
5688 Call_Deref :=
5689 Make_Explicit_Dereference (Loc,
5690 Prefix => New_Reference_To (Def_Id, Loc));
5692 Rewrite (Object_Decl,
5693 Make_Object_Renaming_Declaration (Loc,
5694 Defining_Identifier => Make_Defining_Identifier (Loc,
5695 New_Internal_Name ('D')),
5696 Access_Definition => Empty,
5697 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
5698 Name => Call_Deref));
5700 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
5702 Analyze (Object_Decl);
5704 -- Replace the internal identifier of the renaming declaration's
5705 -- entity with identifier of the original object entity. We also have
5706 -- to exchange the entities containing their defining identifiers to
5707 -- ensure the correct replacement of the object declaration by the
5708 -- object renaming declaration to avoid homograph conflicts (since
5709 -- the object declaration's defining identifier was already entered
5710 -- in current scope). The Next_Entity links of the two entities also
5711 -- have to be swapped since the entities are part of the return
5712 -- scope's entity list and the list structure would otherwise be
5713 -- corrupted.
5715 declare
5716 Renaming_Def_Id : constant Entity_Id :=
5717 Defining_Identifier (Object_Decl);
5718 Next_Entity_Temp : constant Entity_Id :=
5719 Next_Entity (Renaming_Def_Id);
5720 begin
5721 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
5723 -- Swap next entity links in preparation for exchanging entities
5725 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
5726 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
5728 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
5729 end;
5730 end if;
5732 -- If the object entity has a class-wide Etype, then we need to change
5733 -- it to the result subtype of the function call, because otherwise the
5734 -- object will be class-wide without an explicit intialization and won't
5735 -- be allocated properly by the back end. It seems unclean to make such
5736 -- a revision to the type at this point, and we should try to improve
5737 -- this treatment when build-in-place functions with class-wide results
5738 -- are implemented. ???
5740 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
5741 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
5742 end if;
5743 end Make_Build_In_Place_Call_In_Object_Declaration;
5745 end Exp_Ch6;