1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Casing
; use Casing
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Eval_Fat
; use Eval_Fat
;
32 with Exp_Ch11
; use Exp_Ch11
;
33 with Exp_Ch2
; use Exp_Ch2
;
34 with Exp_Ch4
; use Exp_Ch4
;
35 with Exp_Pakd
; use Exp_Pakd
;
36 with Exp_Util
; use Exp_Util
;
37 with Expander
; use Expander
;
38 with Freeze
; use Freeze
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Output
; use Output
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Eval
; use Sem_Eval
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sem_Warn
; use Sem_Warn
;
55 with Sinfo
; use Sinfo
;
56 with Sinput
; use Sinput
;
57 with Snames
; use Snames
;
58 with Sprint
; use Sprint
;
59 with Stand
; use Stand
;
60 with Stringt
; use Stringt
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Ttypes
; use Ttypes
;
64 with Validsw
; use Validsw
;
66 package body Checks
is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
108 -- First, we need to know for certain that the previous expression has
109 -- been executed. This is done principally by the mechanism of calling
110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
145 type Saved_Check
is record
147 -- Set True if entry is killed by Kill_Checks
150 -- The entity involved in the expression that is checked
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
158 Check_Type
: Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
163 Target_Type
: Entity_Id
;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
166 -- it has the same target type (or more accurately one with a
167 -- range that is smaller or equal to the stored target type of a
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table, we just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
176 Saved_Checks
: array (Int
range 1 .. 200) of Saved_Check
;
177 -- Array of saved checks
179 Num_Saved_Checks
: Nat
:= 0;
180 -- Number of saved checks
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
192 Saved_Checks_Stack
: array (Int
range 1 .. 100) of Nat
;
193 Saved_Checks_TOS
: Nat
:= 0;
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
199 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
);
200 -- Used to apply arithmetic overflow checks for all cases except operators
201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
213 procedure Apply_Division_Check
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
223 procedure Apply_Float_Conversion_Check
225 Target_Typ
: Entity_Id
);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
231 procedure Apply_Selected_Length_Checks
233 Target_Typ
: Entity_Id
;
234 Source_Typ
: Entity_Id
;
235 Do_Static
: Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
241 procedure Apply_Selected_Range_Checks
243 Target_Typ
: Entity_Id
;
244 Source_Typ
: Entity_Id
;
245 Do_Static
: Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
251 type Check_Type
is new Check_Id
range Access_Check
.. Division_Check
;
252 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
263 -- if Var = 0 or else Q / Var > 12 then
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
271 -- if Var = 0 or Q / Var > 12 then
277 Check_Type
: Character;
278 Target_Type
: Entity_Id
;
279 Entry_OK
: out Boolean;
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
295 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
305 -- To be cleaned up???
307 function Guard_Access
310 Ck_Node
: Node_Id
) return Node_Id
;
311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
315 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
319 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326 function Range_Or_Validity_Checks_Suppressed
327 (Expr
: Node_Id
) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
332 function Selected_Length_Checks
334 Target_Typ
: Entity_Id
;
335 Source_Typ
: Entity_Id
;
336 Warn_Node
: Node_Id
) return Check_Result
;
337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
341 function Selected_Range_Checks
343 Target_Typ
: Entity_Id
;
344 Source_Typ
: Entity_Id
;
345 Warn_Node
: Node_Id
) return Check_Result
;
346 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
347 -- just returns a list of nodes as described in the spec of this package
348 -- for the Range_Check function.
350 ------------------------------
351 -- Access_Checks_Suppressed --
352 ------------------------------
354 function Access_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
356 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
357 return Is_Check_Suppressed
(E
, Access_Check
);
359 return Scope_Suppress
.Suppress
(Access_Check
);
361 end Access_Checks_Suppressed
;
363 -------------------------------------
364 -- Accessibility_Checks_Suppressed --
365 -------------------------------------
367 function Accessibility_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
369 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
370 return Is_Check_Suppressed
(E
, Accessibility_Check
);
372 return Scope_Suppress
.Suppress
(Accessibility_Check
);
374 end Accessibility_Checks_Suppressed
;
376 -----------------------------
377 -- Activate_Division_Check --
378 -----------------------------
380 procedure Activate_Division_Check
(N
: Node_Id
) is
382 Set_Do_Division_Check
(N
, True);
383 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
384 end Activate_Division_Check
;
386 -----------------------------
387 -- Activate_Overflow_Check --
388 -----------------------------
390 procedure Activate_Overflow_Check
(N
: Node_Id
) is
391 Typ
: constant Entity_Id
:= Etype
(N
);
394 -- Floating-point case. If Etype is not set (this can happen when we
395 -- activate a check on a node that has not yet been analyzed), then
396 -- we assume we do not have a floating-point type (as per our spec).
398 if Present
(Typ
) and then Is_Floating_Point_Type
(Typ
) then
400 -- Ignore call if we have no automatic overflow checks on the target
401 -- and Check_Float_Overflow mode is not set. These are the cases in
402 -- which we expect to generate infinities and NaN's with no check.
404 if not (Machine_Overflows_On_Target
or Check_Float_Overflow
) then
407 -- Ignore for unary operations ("+", "-", abs) since these can never
408 -- result in overflow for floating-point cases.
410 elsif Nkind
(N
) in N_Unary_Op
then
413 -- Otherwise we will set the flag
422 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
423 -- for zero-divide is a divide check, not an overflow check).
425 if Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
, N_Op_Plus
) then
430 -- Fall through for cases where we do set the flag
432 Set_Do_Overflow_Check
(N
, True);
433 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
434 end Activate_Overflow_Check
;
436 --------------------------
437 -- Activate_Range_Check --
438 --------------------------
440 procedure Activate_Range_Check
(N
: Node_Id
) is
442 Set_Do_Range_Check
(N
, True);
443 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
444 end Activate_Range_Check
;
446 ---------------------------------
447 -- Alignment_Checks_Suppressed --
448 ---------------------------------
450 function Alignment_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
452 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
453 return Is_Check_Suppressed
(E
, Alignment_Check
);
455 return Scope_Suppress
.Suppress
(Alignment_Check
);
457 end Alignment_Checks_Suppressed
;
459 ----------------------------------
460 -- Allocation_Checks_Suppressed --
461 ----------------------------------
463 -- Note: at the current time there are no calls to this function, because
464 -- the relevant check is in the run-time, so it is not a check that the
465 -- compiler can suppress anyway, but we still have to recognize the check
466 -- name Allocation_Check since it is part of the standard.
468 function Allocation_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
470 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
471 return Is_Check_Suppressed
(E
, Allocation_Check
);
473 return Scope_Suppress
.Suppress
(Allocation_Check
);
475 end Allocation_Checks_Suppressed
;
477 -------------------------
478 -- Append_Range_Checks --
479 -------------------------
481 procedure Append_Range_Checks
482 (Checks
: Check_Result
;
484 Suppress_Typ
: Entity_Id
;
485 Static_Sloc
: Source_Ptr
;
488 Internal_Flag_Node
: constant Node_Id
:= Flag_Node
;
489 Internal_Static_Sloc
: constant Source_Ptr
:= Static_Sloc
;
491 Checks_On
: constant Boolean :=
492 (not Index_Checks_Suppressed
(Suppress_Typ
))
493 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
496 -- For now we just return if Checks_On is false, however this should
497 -- be enhanced to check for an always True value in the condition
498 -- and to generate a compilation warning???
500 if not Checks_On
then
505 exit when No
(Checks
(J
));
507 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
508 and then Present
(Condition
(Checks
(J
)))
510 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
511 Append_To
(Stmts
, Checks
(J
));
512 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
518 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
519 Reason
=> CE_Range_Check_Failed
));
522 end Append_Range_Checks
;
524 ------------------------
525 -- Apply_Access_Check --
526 ------------------------
528 procedure Apply_Access_Check
(N
: Node_Id
) is
529 P
: constant Node_Id
:= Prefix
(N
);
532 -- We do not need checks if we are not generating code (i.e. the
533 -- expander is not active). This is not just an optimization, there
534 -- are cases (e.g. with pragma Debug) where generating the checks
535 -- can cause real trouble).
537 if not Expander_Active
then
541 -- No check if short circuiting makes check unnecessary
543 if not Check_Needed
(P
, Access_Check
) then
547 -- No check if accessing the Offset_To_Top component of a dispatch
548 -- table. They are safe by construction.
550 if Tagged_Type_Expansion
551 and then Present
(Etype
(P
))
552 and then RTU_Loaded
(Ada_Tags
)
553 and then RTE_Available
(RE_Offset_To_Top_Ptr
)
554 and then Etype
(P
) = RTE
(RE_Offset_To_Top_Ptr
)
559 -- Otherwise go ahead and install the check
561 Install_Null_Excluding_Check
(P
);
562 end Apply_Access_Check
;
564 -------------------------------
565 -- Apply_Accessibility_Check --
566 -------------------------------
568 procedure Apply_Accessibility_Check
571 Insert_Node
: Node_Id
)
573 Loc
: constant Source_Ptr
:= Sloc
(N
);
574 Param_Ent
: Entity_Id
:= Param_Entity
(N
);
575 Param_Level
: Node_Id
;
576 Type_Level
: Node_Id
;
579 if Ada_Version
>= Ada_2012
580 and then not Present
(Param_Ent
)
581 and then Is_Entity_Name
(N
)
582 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
583 and then Present
(Effective_Extra_Accessibility
(Entity
(N
)))
585 Param_Ent
:= Entity
(N
);
586 while Present
(Renamed_Object
(Param_Ent
)) loop
588 -- Renamed_Object must return an Entity_Name here
589 -- because of preceding "Present (E_E_A (...))" test.
591 Param_Ent
:= Entity
(Renamed_Object
(Param_Ent
));
595 if Inside_A_Generic
then
598 -- Only apply the run-time check if the access parameter has an
599 -- associated extra access level parameter and when the level of the
600 -- type is less deep than the level of the access parameter, and
601 -- accessibility checks are not suppressed.
603 elsif Present
(Param_Ent
)
604 and then Present
(Extra_Accessibility
(Param_Ent
))
605 and then UI_Gt
(Object_Access_Level
(N
),
606 Deepest_Type_Access_Level
(Typ
))
607 and then not Accessibility_Checks_Suppressed
(Param_Ent
)
608 and then not Accessibility_Checks_Suppressed
(Typ
)
611 New_Occurrence_Of
(Extra_Accessibility
(Param_Ent
), Loc
);
614 Make_Integer_Literal
(Loc
, Deepest_Type_Access_Level
(Typ
));
616 -- Raise Program_Error if the accessibility level of the access
617 -- parameter is deeper than the level of the target access type.
619 Insert_Action
(Insert_Node
,
620 Make_Raise_Program_Error
(Loc
,
623 Left_Opnd
=> Param_Level
,
624 Right_Opnd
=> Type_Level
),
625 Reason
=> PE_Accessibility_Check_Failed
));
627 Analyze_And_Resolve
(N
);
629 end Apply_Accessibility_Check
;
631 --------------------------------
632 -- Apply_Address_Clause_Check --
633 --------------------------------
635 procedure Apply_Address_Clause_Check
(E
: Entity_Id
; N
: Node_Id
) is
636 pragma Assert
(Nkind
(N
) = N_Freeze_Entity
);
638 AC
: constant Node_Id
:= Address_Clause
(E
);
639 Loc
: constant Source_Ptr
:= Sloc
(AC
);
640 Typ
: constant Entity_Id
:= Etype
(E
);
643 -- Address expression (not necessarily the same as Aexp, for example
644 -- when Aexp is a reference to a constant, in which case Expr gets
645 -- reset to reference the value expression of the constant).
648 -- See if alignment check needed. Note that we never need a check if the
649 -- maximum alignment is one, since the check will always succeed.
651 -- Note: we do not check for checks suppressed here, since that check
652 -- was done in Sem_Ch13 when the address clause was processed. We are
653 -- only called if checks were not suppressed. The reason for this is
654 -- that we have to delay the call to Apply_Alignment_Check till freeze
655 -- time (so that all types etc are elaborated), but we have to check
656 -- the status of check suppressing at the point of the address clause.
659 or else not Check_Address_Alignment
(AC
)
660 or else Maximum_Alignment
= 1
665 -- Obtain expression from address clause
667 Expr
:= Address_Value
(Expression
(AC
));
669 -- See if we know that Expr has an acceptable value at compile time. If
670 -- it hasn't or we don't know, we defer issuing the warning until the
671 -- end of the compilation to take into account back end annotations.
673 if Compile_Time_Known_Value
(Expr
)
674 and then (Known_Alignment
(E
) or else Known_Alignment
(Typ
))
677 AL
: Uint
:= Alignment
(Typ
);
680 -- The object alignment might be more restrictive than the type
683 if Known_Alignment
(E
) then
687 if Expr_Value
(Expr
) mod AL
= 0 then
692 -- If the expression has the form X'Address, then we can find out if the
693 -- object X has an alignment that is compatible with the object E. If it
694 -- hasn't or we don't know, we defer issuing the warning until the end
695 -- of the compilation to take into account back end annotations.
697 elsif Nkind
(Expr
) = N_Attribute_Reference
698 and then Attribute_Name
(Expr
) = Name_Address
700 Has_Compatible_Alignment
(E
, Prefix
(Expr
), False) = Known_Compatible
705 -- Here we do not know if the value is acceptable. Strictly we don't
706 -- have to do anything, since if the alignment is bad, we have an
707 -- erroneous program. However we are allowed to check for erroneous
708 -- conditions and we decide to do this by default if the check is not
711 -- However, don't do the check if elaboration code is unwanted
713 if Restriction_Active
(No_Elaboration_Code
) then
716 -- Generate a check to raise PE if alignment may be inappropriate
719 -- If the original expression is a non-static constant, use the name
720 -- of the constant itself rather than duplicating its initialization
721 -- expression, which was extracted above.
723 -- Note: Expr is empty if the address-clause is applied to in-mode
724 -- actuals (allowed by 13.1(22)).
726 if not Present
(Expr
)
728 (Is_Entity_Name
(Expression
(AC
))
729 and then Ekind
(Entity
(Expression
(AC
))) = E_Constant
730 and then Nkind
(Parent
(Entity
(Expression
(AC
)))) =
731 N_Object_Declaration
)
733 Expr
:= New_Copy_Tree
(Expression
(AC
));
735 Remove_Side_Effects
(Expr
);
738 if No
(Actions
(N
)) then
739 Set_Actions
(N
, New_List
);
742 Prepend_To
(Actions
(N
),
743 Make_Raise_Program_Error
(Loc
,
750 (RTE
(RE_Integer_Address
), Expr
),
752 Make_Attribute_Reference
(Loc
,
753 Prefix
=> New_Occurrence_Of
(E
, Loc
),
754 Attribute_Name
=> Name_Alignment
)),
755 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
756 Reason
=> PE_Misaligned_Address_Value
));
758 Warning_Msg
:= No_Error_Msg
;
759 Analyze
(First
(Actions
(N
)), Suppress
=> All_Checks
);
761 -- If the above raise action generated a warning message (for example
762 -- from Warn_On_Non_Local_Exception mode with the active restriction
763 -- No_Exception_Propagation).
765 if Warning_Msg
/= No_Error_Msg
then
767 -- If the expression has a known at compile time value, then
768 -- once we know the alignment of the type, we can check if the
769 -- exception will be raised or not, and if not, we don't need
770 -- the warning so we will kill the warning later on.
772 if Compile_Time_Known_Value
(Expr
) then
773 Alignment_Warnings
.Append
774 ((E
=> E
, A
=> Expr_Value
(Expr
), W
=> Warning_Msg
));
776 -- Add explanation of the warning generated by the check
780 ("\address value may be incompatible with alignment of "
790 -- If we have some missing run time component in configurable run time
791 -- mode then just skip the check (it is not required in any case).
793 when RE_Not_Available
=>
795 end Apply_Address_Clause_Check
;
797 -------------------------------------
798 -- Apply_Arithmetic_Overflow_Check --
799 -------------------------------------
801 procedure Apply_Arithmetic_Overflow_Check
(N
: Node_Id
) is
803 -- Use old routine in almost all cases (the only case we are treating
804 -- specially is the case of a signed integer arithmetic op with the
805 -- overflow checking mode set to MINIMIZED or ELIMINATED).
807 if Overflow_Check_Mode
= Strict
808 or else not Is_Signed_Integer_Arithmetic_Op
(N
)
810 Apply_Arithmetic_Overflow_Strict
(N
);
812 -- Otherwise use the new routine for the case of a signed integer
813 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
814 -- mode is MINIMIZED or ELIMINATED.
817 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
819 end Apply_Arithmetic_Overflow_Check
;
821 --------------------------------------
822 -- Apply_Arithmetic_Overflow_Strict --
823 --------------------------------------
825 -- This routine is called only if the type is an integer type, and a
826 -- software arithmetic overflow check may be needed for op (add, subtract,
827 -- or multiply). This check is performed only if Software_Overflow_Checking
828 -- is enabled and Do_Overflow_Check is set. In this case we expand the
829 -- operation into a more complex sequence of tests that ensures that
830 -- overflow is properly caught.
832 -- This is used in CHECKED modes. It is identical to the code for this
833 -- cases before the big overflow earthquake, thus ensuring that in this
834 -- modes we have compatible behavior (and reliability) to what was there
835 -- before. It is also called for types other than signed integers, and if
836 -- the Do_Overflow_Check flag is off.
838 -- Note: we also call this routine if we decide in the MINIMIZED case
839 -- to give up and just generate an overflow check without any fuss.
841 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
) is
842 Loc
: constant Source_Ptr
:= Sloc
(N
);
843 Typ
: constant Entity_Id
:= Etype
(N
);
844 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
847 -- Nothing to do if Do_Overflow_Check not set or overflow checks
850 if not Do_Overflow_Check
(N
) then
854 -- An interesting special case. If the arithmetic operation appears as
855 -- the operand of a type conversion:
859 -- and all the following conditions apply:
861 -- arithmetic operation is for a signed integer type
862 -- target type type1 is a static integer subtype
863 -- range of x and y are both included in the range of type1
864 -- range of x op y is included in the range of type1
865 -- size of type1 is at least twice the result size of op
867 -- then we don't do an overflow check in any case. Instead, we transform
868 -- the operation so that we end up with:
870 -- type1 (type1 (x) op type1 (y))
872 -- This avoids intermediate overflow before the conversion. It is
873 -- explicitly permitted by RM 3.5.4(24):
875 -- For the execution of a predefined operation of a signed integer
876 -- type, the implementation need not raise Constraint_Error if the
877 -- result is outside the base range of the type, so long as the
878 -- correct result is produced.
880 -- It's hard to imagine that any programmer counts on the exception
881 -- being raised in this case, and in any case it's wrong coding to
882 -- have this expectation, given the RM permission. Furthermore, other
883 -- Ada compilers do allow such out of range results.
885 -- Note that we do this transformation even if overflow checking is
886 -- off, since this is precisely about giving the "right" result and
887 -- avoiding the need for an overflow check.
889 -- Note: this circuit is partially redundant with respect to the similar
890 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
891 -- with cases that do not come through here. We still need the following
892 -- processing even with the Exp_Ch4 code in place, since we want to be
893 -- sure not to generate the arithmetic overflow check in these cases
894 -- (Exp_Ch4 would have a hard time removing them once generated).
896 if Is_Signed_Integer_Type
(Typ
)
897 and then Nkind
(Parent
(N
)) = N_Type_Conversion
899 Conversion_Optimization
: declare
900 Target_Type
: constant Entity_Id
:=
901 Base_Type
(Entity
(Subtype_Mark
(Parent
(N
))));
915 if Is_Integer_Type
(Target_Type
)
916 and then RM_Size
(Root_Type
(Target_Type
)) >= 2 * RM_Size
(Rtyp
)
918 Tlo
:= Expr_Value
(Type_Low_Bound
(Target_Type
));
919 Thi
:= Expr_Value
(Type_High_Bound
(Target_Type
));
922 (Left_Opnd
(N
), LOK
, Llo
, Lhi
, Assume_Valid
=> True);
924 (Right_Opnd
(N
), ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
927 and then Tlo
<= Llo
and then Lhi
<= Thi
928 and then Tlo
<= Rlo
and then Rhi
<= Thi
930 Determine_Range
(N
, VOK
, Vlo
, Vhi
, Assume_Valid
=> True);
932 if VOK
and then Tlo
<= Vlo
and then Vhi
<= Thi
then
933 Rewrite
(Left_Opnd
(N
),
934 Make_Type_Conversion
(Loc
,
935 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
936 Expression
=> Relocate_Node
(Left_Opnd
(N
))));
938 Rewrite
(Right_Opnd
(N
),
939 Make_Type_Conversion
(Loc
,
940 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
941 Expression
=> Relocate_Node
(Right_Opnd
(N
))));
943 -- Rewrite the conversion operand so that the original
944 -- node is retained, in order to avoid the warning for
945 -- redundant conversions in Resolve_Type_Conversion.
947 Rewrite
(N
, Relocate_Node
(N
));
949 Set_Etype
(N
, Target_Type
);
951 Analyze_And_Resolve
(Left_Opnd
(N
), Target_Type
);
952 Analyze_And_Resolve
(Right_Opnd
(N
), Target_Type
);
954 -- Given that the target type is twice the size of the
955 -- source type, overflow is now impossible, so we can
956 -- safely kill the overflow check and return.
958 Set_Do_Overflow_Check
(N
, False);
963 end Conversion_Optimization
;
966 -- Now see if an overflow check is required
969 Siz
: constant Int
:= UI_To_Int
(Esize
(Rtyp
));
970 Dsiz
: constant Int
:= Siz
* 2;
977 -- Skip check if back end does overflow checks, or the overflow flag
978 -- is not set anyway, or we are not doing code expansion, or the
979 -- parent node is a type conversion whose operand is an arithmetic
980 -- operation on signed integers on which the expander can promote
981 -- later the operands to type Integer (see Expand_N_Type_Conversion).
983 if Backend_Overflow_Checks_On_Target
984 or else not Do_Overflow_Check
(N
)
985 or else not Expander_Active
986 or else (Present
(Parent
(N
))
987 and then Nkind
(Parent
(N
)) = N_Type_Conversion
988 and then Integer_Promotion_Possible
(Parent
(N
)))
993 -- Otherwise, generate the full general code for front end overflow
994 -- detection, which works by doing arithmetic in a larger type:
1000 -- Typ (Checktyp (x) op Checktyp (y));
1002 -- where Typ is the type of the original expression, and Checktyp is
1003 -- an integer type of sufficient length to hold the largest possible
1006 -- If the size of check type exceeds the size of Long_Long_Integer,
1007 -- we use a different approach, expanding to:
1009 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1011 -- where xxx is Add, Multiply or Subtract as appropriate
1013 -- Find check type if one exists
1015 if Dsiz
<= Standard_Integer_Size
then
1016 Ctyp
:= Standard_Integer
;
1018 elsif Dsiz
<= Standard_Long_Long_Integer_Size
then
1019 Ctyp
:= Standard_Long_Long_Integer
;
1021 -- No check type exists, use runtime call
1024 if Nkind
(N
) = N_Op_Add
then
1025 Cent
:= RE_Add_With_Ovflo_Check
;
1027 elsif Nkind
(N
) = N_Op_Multiply
then
1028 Cent
:= RE_Multiply_With_Ovflo_Check
;
1031 pragma Assert
(Nkind
(N
) = N_Op_Subtract
);
1032 Cent
:= RE_Subtract_With_Ovflo_Check
;
1037 Make_Function_Call
(Loc
,
1038 Name
=> New_Occurrence_Of
(RTE
(Cent
), Loc
),
1039 Parameter_Associations
=> New_List
(
1040 OK_Convert_To
(RTE
(RE_Integer_64
), Left_Opnd
(N
)),
1041 OK_Convert_To
(RTE
(RE_Integer_64
), Right_Opnd
(N
))))));
1043 Analyze_And_Resolve
(N
, Typ
);
1047 -- If we fall through, we have the case where we do the arithmetic
1048 -- in the next higher type and get the check by conversion. In these
1049 -- cases Ctyp is set to the type to be used as the check type.
1051 Opnod
:= Relocate_Node
(N
);
1053 Opnd
:= OK_Convert_To
(Ctyp
, Left_Opnd
(Opnod
));
1056 Set_Etype
(Opnd
, Ctyp
);
1057 Set_Analyzed
(Opnd
, True);
1058 Set_Left_Opnd
(Opnod
, Opnd
);
1060 Opnd
:= OK_Convert_To
(Ctyp
, Right_Opnd
(Opnod
));
1063 Set_Etype
(Opnd
, Ctyp
);
1064 Set_Analyzed
(Opnd
, True);
1065 Set_Right_Opnd
(Opnod
, Opnd
);
1067 -- The type of the operation changes to the base type of the check
1068 -- type, and we reset the overflow check indication, since clearly no
1069 -- overflow is possible now that we are using a double length type.
1070 -- We also set the Analyzed flag to avoid a recursive attempt to
1073 Set_Etype
(Opnod
, Base_Type
(Ctyp
));
1074 Set_Do_Overflow_Check
(Opnod
, False);
1075 Set_Analyzed
(Opnod
, True);
1077 -- Now build the outer conversion
1079 Opnd
:= OK_Convert_To
(Typ
, Opnod
);
1081 Set_Etype
(Opnd
, Typ
);
1083 -- In the discrete type case, we directly generate the range check
1084 -- for the outer operand. This range check will implement the
1085 -- required overflow check.
1087 if Is_Discrete_Type
(Typ
) then
1089 Generate_Range_Check
1090 (Expression
(N
), Typ
, CE_Overflow_Check_Failed
);
1092 -- For other types, we enable overflow checking on the conversion,
1093 -- after setting the node as analyzed to prevent recursive attempts
1094 -- to expand the conversion node.
1097 Set_Analyzed
(Opnd
, True);
1098 Enable_Overflow_Check
(Opnd
);
1103 when RE_Not_Available
=>
1106 end Apply_Arithmetic_Overflow_Strict
;
1108 ----------------------------------------------------
1109 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1110 ----------------------------------------------------
1112 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
) is
1113 pragma Assert
(Is_Signed_Integer_Arithmetic_Op
(Op
));
1115 Loc
: constant Source_Ptr
:= Sloc
(Op
);
1116 P
: constant Node_Id
:= Parent
(Op
);
1118 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
1119 -- Operands and results are of this type when we convert
1121 Result_Type
: constant Entity_Id
:= Etype
(Op
);
1122 -- Original result type
1124 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1125 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
1128 -- Ranges of values for result
1131 -- Nothing to do if our parent is one of the following:
1133 -- Another signed integer arithmetic op
1134 -- A membership operation
1135 -- A comparison operation
1137 -- In all these cases, we will process at the higher level (and then
1138 -- this node will be processed during the downwards recursion that
1139 -- is part of the processing in Minimize_Eliminate_Overflows).
1141 if Is_Signed_Integer_Arithmetic_Op
(P
)
1142 or else Nkind
(P
) in N_Membership_Test
1143 or else Nkind
(P
) in N_Op_Compare
1145 -- This is also true for an alternative in a case expression
1147 or else Nkind
(P
) = N_Case_Expression_Alternative
1149 -- This is also true for a range operand in a membership test
1151 or else (Nkind
(P
) = N_Range
1152 and then Nkind
(Parent
(P
)) in N_Membership_Test
)
1154 -- If_Expressions and Case_Expressions are treated as arithmetic
1155 -- ops, but if they appear in an assignment or similar contexts
1156 -- there is no overflow check that starts from that parent node,
1157 -- so apply check now.
1159 if Nkind_In
(P
, N_If_Expression
, N_Case_Expression
)
1160 and then not Is_Signed_Integer_Arithmetic_Op
(Parent
(P
))
1168 -- Otherwise, we have a top level arithmetic operation node, and this
1169 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1170 -- modes. This is the case where we tell the machinery not to move into
1171 -- Bignum mode at this top level (of course the top level operation
1172 -- will still be in Bignum mode if either of its operands are of type
1175 Minimize_Eliminate_Overflows
(Op
, Lo
, Hi
, Top_Level
=> True);
1177 -- That call may but does not necessarily change the result type of Op.
1178 -- It is the job of this routine to undo such changes, so that at the
1179 -- top level, we have the proper type. This "undoing" is a point at
1180 -- which a final overflow check may be applied.
1182 -- If the result type was not fiddled we are all set. We go to base
1183 -- types here because things may have been rewritten to generate the
1184 -- base type of the operand types.
1186 if Base_Type
(Etype
(Op
)) = Base_Type
(Result_Type
) then
1191 elsif Is_RTE
(Etype
(Op
), RE_Bignum
) then
1193 -- We need a sequence that looks like:
1195 -- Rnn : Result_Type;
1198 -- M : Mark_Id := SS_Mark;
1200 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1204 -- This block is inserted (using Insert_Actions), and then the node
1205 -- is replaced with a reference to Rnn.
1207 -- If our parent is a conversion node then there is no point in
1208 -- generating a conversion to Result_Type. Instead, we let the parent
1209 -- handle this. Note that this special case is not just about
1210 -- optimization. Consider
1214 -- X := Long_Long_Integer'Base (A * (B ** C));
1216 -- Now the product may fit in Long_Long_Integer but not in Integer.
1217 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1218 -- overflow exception for this intermediate value.
1221 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
1222 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Op
);
1228 RHS
:= Convert_From_Bignum
(Op
);
1230 if Nkind
(P
) /= N_Type_Conversion
then
1231 Convert_To_And_Rewrite
(Result_Type
, RHS
);
1232 Rtype
:= Result_Type
;
1234 -- Interesting question, do we need a check on that conversion
1235 -- operation. Answer, not if we know the result is in range.
1236 -- At the moment we are not taking advantage of this. To be
1237 -- looked at later ???
1244 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
1245 Make_Assignment_Statement
(Loc
,
1246 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
1247 Expression
=> RHS
));
1249 Insert_Actions
(Op
, New_List
(
1250 Make_Object_Declaration
(Loc
,
1251 Defining_Identifier
=> Rnn
,
1252 Object_Definition
=> New_Occurrence_Of
(Rtype
, Loc
)),
1255 Rewrite
(Op
, New_Occurrence_Of
(Rnn
, Loc
));
1256 Analyze_And_Resolve
(Op
);
1259 -- Here we know the result is Long_Long_Integer'Base, or that it has
1260 -- been rewritten because the parent operation is a conversion. See
1261 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1265 (Etype
(Op
) = LLIB
or else Nkind
(Parent
(Op
)) = N_Type_Conversion
);
1267 -- All we need to do here is to convert the result to the proper
1268 -- result type. As explained above for the Bignum case, we can
1269 -- omit this if our parent is a type conversion.
1271 if Nkind
(P
) /= N_Type_Conversion
then
1272 Convert_To_And_Rewrite
(Result_Type
, Op
);
1275 Analyze_And_Resolve
(Op
);
1277 end Apply_Arithmetic_Overflow_Minimized_Eliminated
;
1279 ----------------------------
1280 -- Apply_Constraint_Check --
1281 ----------------------------
1283 procedure Apply_Constraint_Check
1286 No_Sliding
: Boolean := False)
1288 Desig_Typ
: Entity_Id
;
1291 -- No checks inside a generic (check the instantiations)
1293 if Inside_A_Generic
then
1297 -- Apply required constraint checks
1299 if Is_Scalar_Type
(Typ
) then
1300 Apply_Scalar_Range_Check
(N
, Typ
);
1302 elsif Is_Array_Type
(Typ
) then
1304 -- A useful optimization: an aggregate with only an others clause
1305 -- always has the right bounds.
1307 if Nkind
(N
) = N_Aggregate
1308 and then No
(Expressions
(N
))
1310 (First
(Choices
(First
(Component_Associations
(N
)))))
1316 if Is_Constrained
(Typ
) then
1317 Apply_Length_Check
(N
, Typ
);
1320 Apply_Range_Check
(N
, Typ
);
1323 Apply_Range_Check
(N
, Typ
);
1326 elsif (Is_Record_Type
(Typ
) or else Is_Private_Type
(Typ
))
1327 and then Has_Discriminants
(Base_Type
(Typ
))
1328 and then Is_Constrained
(Typ
)
1330 Apply_Discriminant_Check
(N
, Typ
);
1332 elsif Is_Access_Type
(Typ
) then
1334 Desig_Typ
:= Designated_Type
(Typ
);
1336 -- No checks necessary if expression statically null
1338 if Known_Null
(N
) then
1339 if Can_Never_Be_Null
(Typ
) then
1340 Install_Null_Excluding_Check
(N
);
1343 -- No sliding possible on access to arrays
1345 elsif Is_Array_Type
(Desig_Typ
) then
1346 if Is_Constrained
(Desig_Typ
) then
1347 Apply_Length_Check
(N
, Typ
);
1350 Apply_Range_Check
(N
, Typ
);
1352 elsif Has_Discriminants
(Base_Type
(Desig_Typ
))
1353 and then Is_Constrained
(Desig_Typ
)
1355 Apply_Discriminant_Check
(N
, Typ
);
1358 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1359 -- this check if the constraint node is illegal, as shown by having
1360 -- an error posted. This additional guard prevents cascaded errors
1361 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1363 if Can_Never_Be_Null
(Typ
)
1364 and then not Can_Never_Be_Null
(Etype
(N
))
1365 and then not Error_Posted
(N
)
1367 Install_Null_Excluding_Check
(N
);
1370 end Apply_Constraint_Check
;
1372 ------------------------------
1373 -- Apply_Discriminant_Check --
1374 ------------------------------
1376 procedure Apply_Discriminant_Check
1379 Lhs
: Node_Id
:= Empty
)
1381 Loc
: constant Source_Ptr
:= Sloc
(N
);
1382 Do_Access
: constant Boolean := Is_Access_Type
(Typ
);
1383 S_Typ
: Entity_Id
:= Etype
(N
);
1387 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean;
1388 -- A heap object with an indefinite subtype is constrained by its
1389 -- initial value, and assigning to it requires a constraint_check.
1390 -- The target may be an explicit dereference, or a renaming of one.
1392 function Is_Aliased_Unconstrained_Component
return Boolean;
1393 -- It is possible for an aliased component to have a nominal
1394 -- unconstrained subtype (through instantiation). If this is a
1395 -- discriminated component assigned in the expansion of an aggregate
1396 -- in an initialization, the check must be suppressed. This unusual
1397 -- situation requires a predicate of its own.
1399 ----------------------------------
1400 -- Denotes_Explicit_Dereference --
1401 ----------------------------------
1403 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean is
1406 Nkind
(Obj
) = N_Explicit_Dereference
1408 (Is_Entity_Name
(Obj
)
1409 and then Present
(Renamed_Object
(Entity
(Obj
)))
1410 and then Nkind
(Renamed_Object
(Entity
(Obj
))) =
1411 N_Explicit_Dereference
);
1412 end Denotes_Explicit_Dereference
;
1414 ----------------------------------------
1415 -- Is_Aliased_Unconstrained_Component --
1416 ----------------------------------------
1418 function Is_Aliased_Unconstrained_Component
return Boolean is
1423 if Nkind
(Lhs
) /= N_Selected_Component
then
1426 Comp
:= Entity
(Selector_Name
(Lhs
));
1427 Pref
:= Prefix
(Lhs
);
1430 if Ekind
(Comp
) /= E_Component
1431 or else not Is_Aliased
(Comp
)
1436 return not Comes_From_Source
(Pref
)
1437 and then In_Instance
1438 and then not Is_Constrained
(Etype
(Comp
));
1439 end Is_Aliased_Unconstrained_Component
;
1441 -- Start of processing for Apply_Discriminant_Check
1445 T_Typ
:= Designated_Type
(Typ
);
1450 -- Nothing to do if discriminant checks are suppressed or else no code
1451 -- is to be generated
1453 if not Expander_Active
1454 or else Discriminant_Checks_Suppressed
(T_Typ
)
1459 -- No discriminant checks necessary for an access when expression is
1460 -- statically Null. This is not only an optimization, it is fundamental
1461 -- because otherwise discriminant checks may be generated in init procs
1462 -- for types containing an access to a not-yet-frozen record, causing a
1463 -- deadly forward reference.
1465 -- Also, if the expression is of an access type whose designated type is
1466 -- incomplete, then the access value must be null and we suppress the
1469 if Known_Null
(N
) then
1472 elsif Is_Access_Type
(S_Typ
) then
1473 S_Typ
:= Designated_Type
(S_Typ
);
1475 if Ekind
(S_Typ
) = E_Incomplete_Type
then
1480 -- If an assignment target is present, then we need to generate the
1481 -- actual subtype if the target is a parameter or aliased object with
1482 -- an unconstrained nominal subtype.
1484 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1485 -- subtype to the parameter and dereference cases, since other aliased
1486 -- objects are unconstrained (unless the nominal subtype is explicitly
1490 and then (Present
(Param_Entity
(Lhs
))
1491 or else (Ada_Version
< Ada_2005
1492 and then not Is_Constrained
(T_Typ
)
1493 and then Is_Aliased_View
(Lhs
)
1494 and then not Is_Aliased_Unconstrained_Component
)
1495 or else (Ada_Version
>= Ada_2005
1496 and then not Is_Constrained
(T_Typ
)
1497 and then Denotes_Explicit_Dereference
(Lhs
)
1498 and then Nkind
(Original_Node
(Lhs
)) /=
1501 T_Typ
:= Get_Actual_Subtype
(Lhs
);
1504 -- Nothing to do if the type is unconstrained (this is the case where
1505 -- the actual subtype in the RM sense of N is unconstrained and no check
1508 if not Is_Constrained
(T_Typ
) then
1511 -- Ada 2005: nothing to do if the type is one for which there is a
1512 -- partial view that is constrained.
1514 elsif Ada_Version
>= Ada_2005
1515 and then Object_Type_Has_Constrained_Partial_View
1516 (Typ
=> Base_Type
(T_Typ
),
1517 Scop
=> Current_Scope
)
1522 -- Nothing to do if the type is an Unchecked_Union
1524 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
1528 -- Suppress checks if the subtypes are the same. The check must be
1529 -- preserved in an assignment to a formal, because the constraint is
1530 -- given by the actual.
1532 if Nkind
(Original_Node
(N
)) /= N_Allocator
1534 or else not Is_Entity_Name
(Lhs
)
1535 or else No
(Param_Entity
(Lhs
)))
1538 or else (Do_Access
and then Designated_Type
(Typ
) = S_Typ
))
1539 and then not Is_Aliased_View
(Lhs
)
1544 -- We can also eliminate checks on allocators with a subtype mark that
1545 -- coincides with the context type. The context type may be a subtype
1546 -- without a constraint (common case, a generic actual).
1548 elsif Nkind
(Original_Node
(N
)) = N_Allocator
1549 and then Is_Entity_Name
(Expression
(Original_Node
(N
)))
1552 Alloc_Typ
: constant Entity_Id
:=
1553 Entity
(Expression
(Original_Node
(N
)));
1556 if Alloc_Typ
= T_Typ
1557 or else (Nkind
(Parent
(T_Typ
)) = N_Subtype_Declaration
1558 and then Is_Entity_Name
(
1559 Subtype_Indication
(Parent
(T_Typ
)))
1560 and then Alloc_Typ
= Base_Type
(T_Typ
))
1568 -- See if we have a case where the types are both constrained, and all
1569 -- the constraints are constants. In this case, we can do the check
1570 -- successfully at compile time.
1572 -- We skip this check for the case where the node is rewritten as
1573 -- an allocator, because it already carries the context subtype,
1574 -- and extracting the discriminants from the aggregate is messy.
1576 if Is_Constrained
(S_Typ
)
1577 and then Nkind
(Original_Node
(N
)) /= N_Allocator
1587 -- S_Typ may not have discriminants in the case where it is a
1588 -- private type completed by a default discriminated type. In that
1589 -- case, we need to get the constraints from the underlying type.
1590 -- If the underlying type is unconstrained (i.e. has no default
1591 -- discriminants) no check is needed.
1593 if Has_Discriminants
(S_Typ
) then
1594 Discr
:= First_Discriminant
(S_Typ
);
1595 DconS
:= First_Elmt
(Discriminant_Constraint
(S_Typ
));
1598 Discr
:= First_Discriminant
(Underlying_Type
(S_Typ
));
1601 (Discriminant_Constraint
(Underlying_Type
(S_Typ
)));
1607 -- A further optimization: if T_Typ is derived from S_Typ
1608 -- without imposing a constraint, no check is needed.
1610 if Nkind
(Original_Node
(Parent
(T_Typ
))) =
1611 N_Full_Type_Declaration
1614 Type_Def
: constant Node_Id
:=
1615 Type_Definition
(Original_Node
(Parent
(T_Typ
)));
1617 if Nkind
(Type_Def
) = N_Derived_Type_Definition
1618 and then Is_Entity_Name
(Subtype_Indication
(Type_Def
))
1619 and then Entity
(Subtype_Indication
(Type_Def
)) = S_Typ
1627 -- Constraint may appear in full view of type
1629 if Ekind
(T_Typ
) = E_Private_Subtype
1630 and then Present
(Full_View
(T_Typ
))
1633 First_Elmt
(Discriminant_Constraint
(Full_View
(T_Typ
)));
1636 First_Elmt
(Discriminant_Constraint
(T_Typ
));
1639 while Present
(Discr
) loop
1640 ItemS
:= Node
(DconS
);
1641 ItemT
:= Node
(DconT
);
1643 -- For a discriminated component type constrained by the
1644 -- current instance of an enclosing type, there is no
1645 -- applicable discriminant check.
1647 if Nkind
(ItemT
) = N_Attribute_Reference
1648 and then Is_Access_Type
(Etype
(ItemT
))
1649 and then Is_Entity_Name
(Prefix
(ItemT
))
1650 and then Is_Type
(Entity
(Prefix
(ItemT
)))
1655 -- If the expressions for the discriminants are identical
1656 -- and it is side-effect free (for now just an entity),
1657 -- this may be a shared constraint, e.g. from a subtype
1658 -- without a constraint introduced as a generic actual.
1659 -- Examine other discriminants if any.
1662 and then Is_Entity_Name
(ItemS
)
1666 elsif not Is_OK_Static_Expression
(ItemS
)
1667 or else not Is_OK_Static_Expression
(ItemT
)
1671 elsif Expr_Value
(ItemS
) /= Expr_Value
(ItemT
) then
1672 if Do_Access
then -- needs run-time check.
1675 Apply_Compile_Time_Constraint_Error
1676 (N
, "incorrect value for discriminant&??",
1677 CE_Discriminant_Check_Failed
, Ent
=> Discr
);
1684 Next_Discriminant
(Discr
);
1693 -- Here we need a discriminant check. First build the expression
1694 -- for the comparisons of the discriminants:
1696 -- (n.disc1 /= typ.disc1) or else
1697 -- (n.disc2 /= typ.disc2) or else
1699 -- (n.discn /= typ.discn)
1701 Cond
:= Build_Discriminant_Checks
(N
, T_Typ
);
1703 -- If Lhs is set and is a parameter, then the condition is guarded by:
1704 -- lhs'constrained and then (condition built above)
1706 if Present
(Param_Entity
(Lhs
)) then
1710 Make_Attribute_Reference
(Loc
,
1711 Prefix
=> New_Occurrence_Of
(Param_Entity
(Lhs
), Loc
),
1712 Attribute_Name
=> Name_Constrained
),
1713 Right_Opnd
=> Cond
);
1717 Cond
:= Guard_Access
(Cond
, Loc
, N
);
1721 Make_Raise_Constraint_Error
(Loc
,
1723 Reason
=> CE_Discriminant_Check_Failed
));
1724 end Apply_Discriminant_Check
;
1726 -------------------------
1727 -- Apply_Divide_Checks --
1728 -------------------------
1730 procedure Apply_Divide_Checks
(N
: Node_Id
) is
1731 Loc
: constant Source_Ptr
:= Sloc
(N
);
1732 Typ
: constant Entity_Id
:= Etype
(N
);
1733 Left
: constant Node_Id
:= Left_Opnd
(N
);
1734 Right
: constant Node_Id
:= Right_Opnd
(N
);
1736 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1737 -- Current overflow checking mode
1747 pragma Warnings
(Off
, Lhi
);
1748 -- Don't actually use this value
1751 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1752 -- operating on signed integer types, then the only thing this routine
1753 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1754 -- procedure will (possibly later on during recursive downward calls),
1755 -- ensure that any needed overflow/division checks are properly applied.
1757 if Mode
in Minimized_Or_Eliminated
1758 and then Is_Signed_Integer_Type
(Typ
)
1760 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
1764 -- Proceed here in SUPPRESSED or CHECKED modes
1767 and then not Backend_Divide_Checks_On_Target
1768 and then Check_Needed
(Right
, Division_Check
)
1770 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
1772 -- Deal with division check
1774 if Do_Division_Check
(N
)
1775 and then not Division_Checks_Suppressed
(Typ
)
1777 Apply_Division_Check
(N
, Rlo
, Rhi
, ROK
);
1780 -- Deal with overflow check
1782 if Do_Overflow_Check
(N
)
1783 and then not Overflow_Checks_Suppressed
(Etype
(N
))
1785 Set_Do_Overflow_Check
(N
, False);
1787 -- Test for extremely annoying case of xxx'First divided by -1
1788 -- for division of signed integer types (only overflow case).
1790 if Nkind
(N
) = N_Op_Divide
1791 and then Is_Signed_Integer_Type
(Typ
)
1793 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
1794 LLB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
1796 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
1798 ((not LOK
) or else (Llo
= LLB
))
1801 Make_Raise_Constraint_Error
(Loc
,
1807 Duplicate_Subexpr_Move_Checks
(Left
),
1808 Right_Opnd
=> Make_Integer_Literal
(Loc
, LLB
)),
1812 Left_Opnd
=> Duplicate_Subexpr
(Right
),
1813 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1))),
1815 Reason
=> CE_Overflow_Check_Failed
));
1820 end Apply_Divide_Checks
;
1822 --------------------------
1823 -- Apply_Division_Check --
1824 --------------------------
1826 procedure Apply_Division_Check
1832 pragma Assert
(Do_Division_Check
(N
));
1834 Loc
: constant Source_Ptr
:= Sloc
(N
);
1835 Right
: constant Node_Id
:= Right_Opnd
(N
);
1839 and then not Backend_Divide_Checks_On_Target
1840 and then Check_Needed
(Right
, Division_Check
)
1842 -- See if division by zero possible, and if so generate test. This
1843 -- part of the test is not controlled by the -gnato switch, since
1844 -- it is a Division_Check and not an Overflow_Check.
1846 if Do_Division_Check
(N
) then
1847 Set_Do_Division_Check
(N
, False);
1849 if (not ROK
) or else (Rlo
<= 0 and then 0 <= Rhi
) then
1851 Make_Raise_Constraint_Error
(Loc
,
1854 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
1855 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
1856 Reason
=> CE_Divide_By_Zero
));
1860 end Apply_Division_Check
;
1862 ----------------------------------
1863 -- Apply_Float_Conversion_Check --
1864 ----------------------------------
1866 -- Let F and I be the source and target types of the conversion. The RM
1867 -- specifies that a floating-point value X is rounded to the nearest
1868 -- integer, with halfway cases being rounded away from zero. The rounded
1869 -- value of X is checked against I'Range.
1871 -- The catch in the above paragraph is that there is no good way to know
1872 -- whether the round-to-integer operation resulted in overflow. A remedy is
1873 -- to perform a range check in the floating-point domain instead, however:
1875 -- (1) The bounds may not be known at compile time
1876 -- (2) The check must take into account rounding or truncation.
1877 -- (3) The range of type I may not be exactly representable in F.
1878 -- (4) For the rounding case, The end-points I'First - 0.5 and
1879 -- I'Last + 0.5 may or may not be in range, depending on the
1880 -- sign of I'First and I'Last.
1881 -- (5) X may be a NaN, which will fail any comparison
1883 -- The following steps correctly convert X with rounding:
1885 -- (1) If either I'First or I'Last is not known at compile time, use
1886 -- I'Base instead of I in the next three steps and perform a
1887 -- regular range check against I'Range after conversion.
1888 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1889 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1890 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1891 -- In other words, take one of the closest floating-point numbers
1892 -- (which is an integer value) to I'First, and see if it is in
1894 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1895 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1896 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1897 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1898 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1900 -- For the truncating case, replace steps (2) and (3) as follows:
1901 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1902 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1904 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1905 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1908 procedure Apply_Float_Conversion_Check
1910 Target_Typ
: Entity_Id
)
1912 LB
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
1913 HB
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
1914 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
1915 Expr_Type
: constant Entity_Id
:= Base_Type
(Etype
(Ck_Node
));
1916 Target_Base
: constant Entity_Id
:=
1917 Implementation_Base_Type
(Target_Typ
);
1919 Par
: constant Node_Id
:= Parent
(Ck_Node
);
1920 pragma Assert
(Nkind
(Par
) = N_Type_Conversion
);
1921 -- Parent of check node, must be a type conversion
1923 Truncate
: constant Boolean := Float_Truncate
(Par
);
1924 Max_Bound
: constant Uint
:=
1926 (Machine_Radix_Value
(Expr_Type
),
1927 Machine_Mantissa_Value
(Expr_Type
) - 1) - 1;
1929 -- Largest bound, so bound plus or minus half is a machine number of F
1931 Ifirst
, Ilast
: Uint
;
1932 -- Bounds of integer type
1935 -- Bounds to check in floating-point domain
1937 Lo_OK
, Hi_OK
: Boolean;
1938 -- True iff Lo resp. Hi belongs to I'Range
1940 Lo_Chk
, Hi_Chk
: Node_Id
;
1941 -- Expressions that are False iff check fails
1943 Reason
: RT_Exception_Code
;
1946 -- We do not need checks if we are not generating code (i.e. the full
1947 -- expander is not active). In SPARK mode, we specifically don't want
1948 -- the frontend to expand these checks, which are dealt with directly
1949 -- in the formal verification backend.
1951 if not Expander_Active
then
1955 if not Compile_Time_Known_Value
(LB
)
1956 or not Compile_Time_Known_Value
(HB
)
1959 -- First check that the value falls in the range of the base type,
1960 -- to prevent overflow during conversion and then perform a
1961 -- regular range check against the (dynamic) bounds.
1963 pragma Assert
(Target_Base
/= Target_Typ
);
1965 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Par
);
1968 Apply_Float_Conversion_Check
(Ck_Node
, Target_Base
);
1969 Set_Etype
(Temp
, Target_Base
);
1971 Insert_Action
(Parent
(Par
),
1972 Make_Object_Declaration
(Loc
,
1973 Defining_Identifier
=> Temp
,
1974 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
),
1975 Expression
=> New_Copy_Tree
(Par
)),
1976 Suppress
=> All_Checks
);
1979 Make_Raise_Constraint_Error
(Loc
,
1982 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
1983 Right_Opnd
=> New_Occurrence_Of
(Target_Typ
, Loc
)),
1984 Reason
=> CE_Range_Check_Failed
));
1985 Rewrite
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1991 -- Get the (static) bounds of the target type
1993 Ifirst
:= Expr_Value
(LB
);
1994 Ilast
:= Expr_Value
(HB
);
1996 -- A simple optimization: if the expression is a universal literal,
1997 -- we can do the comparison with the bounds and the conversion to
1998 -- an integer type statically. The range checks are unchanged.
2000 if Nkind
(Ck_Node
) = N_Real_Literal
2001 and then Etype
(Ck_Node
) = Universal_Real
2002 and then Is_Integer_Type
(Target_Typ
)
2003 and then Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
2006 Int_Val
: constant Uint
:= UR_To_Uint
(Realval
(Ck_Node
));
2009 if Int_Val
<= Ilast
and then Int_Val
>= Ifirst
then
2011 -- Conversion is safe
2013 Rewrite
(Parent
(Ck_Node
),
2014 Make_Integer_Literal
(Loc
, UI_To_Int
(Int_Val
)));
2015 Analyze_And_Resolve
(Parent
(Ck_Node
), Target_Typ
);
2021 -- Check against lower bound
2023 if Truncate
and then Ifirst
> 0 then
2024 Lo
:= Pred
(Expr_Type
, UR_From_Uint
(Ifirst
));
2028 Lo
:= Succ
(Expr_Type
, UR_From_Uint
(Ifirst
- 1));
2031 elsif abs (Ifirst
) < Max_Bound
then
2032 Lo
:= UR_From_Uint
(Ifirst
) - Ureal_Half
;
2033 Lo_OK
:= (Ifirst
> 0);
2036 Lo
:= Machine
(Expr_Type
, UR_From_Uint
(Ifirst
), Round_Even
, Ck_Node
);
2037 Lo_OK
:= (Lo
>= UR_From_Uint
(Ifirst
));
2042 -- Lo_Chk := (X >= Lo)
2044 Lo_Chk
:= Make_Op_Ge
(Loc
,
2045 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2046 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2049 -- Lo_Chk := (X > Lo)
2051 Lo_Chk
:= Make_Op_Gt
(Loc
,
2052 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2053 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2056 -- Check against higher bound
2058 if Truncate
and then Ilast
< 0 then
2059 Hi
:= Succ
(Expr_Type
, UR_From_Uint
(Ilast
));
2063 Hi
:= Pred
(Expr_Type
, UR_From_Uint
(Ilast
+ 1));
2066 elsif abs (Ilast
) < Max_Bound
then
2067 Hi
:= UR_From_Uint
(Ilast
) + Ureal_Half
;
2068 Hi_OK
:= (Ilast
< 0);
2070 Hi
:= Machine
(Expr_Type
, UR_From_Uint
(Ilast
), Round_Even
, Ck_Node
);
2071 Hi_OK
:= (Hi
<= UR_From_Uint
(Ilast
));
2076 -- Hi_Chk := (X <= Hi)
2078 Hi_Chk
:= Make_Op_Le
(Loc
,
2079 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2080 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2083 -- Hi_Chk := (X < Hi)
2085 Hi_Chk
:= Make_Op_Lt
(Loc
,
2086 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2087 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2090 -- If the bounds of the target type are the same as those of the base
2091 -- type, the check is an overflow check as a range check is not
2092 -- performed in these cases.
2094 if Expr_Value
(Type_Low_Bound
(Target_Base
)) = Ifirst
2095 and then Expr_Value
(Type_High_Bound
(Target_Base
)) = Ilast
2097 Reason
:= CE_Overflow_Check_Failed
;
2099 Reason
:= CE_Range_Check_Failed
;
2102 -- Raise CE if either conditions does not hold
2104 Insert_Action
(Ck_Node
,
2105 Make_Raise_Constraint_Error
(Loc
,
2106 Condition
=> Make_Op_Not
(Loc
, Make_And_Then
(Loc
, Lo_Chk
, Hi_Chk
)),
2108 end Apply_Float_Conversion_Check
;
2110 ------------------------
2111 -- Apply_Length_Check --
2112 ------------------------
2114 procedure Apply_Length_Check
2116 Target_Typ
: Entity_Id
;
2117 Source_Typ
: Entity_Id
:= Empty
)
2120 Apply_Selected_Length_Checks
2121 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2122 end Apply_Length_Check
;
2124 -------------------------------------
2125 -- Apply_Parameter_Aliasing_Checks --
2126 -------------------------------------
2128 procedure Apply_Parameter_Aliasing_Checks
2132 Loc
: constant Source_Ptr
:= Sloc
(Call
);
2134 function May_Cause_Aliasing
2135 (Formal_1
: Entity_Id
;
2136 Formal_2
: Entity_Id
) return Boolean;
2137 -- Determine whether two formal parameters can alias each other
2138 -- depending on their modes.
2140 function Original_Actual
(N
: Node_Id
) return Node_Id
;
2141 -- The expander may replace an actual with a temporary for the sake of
2142 -- side effect removal. The temporary may hide a potential aliasing as
2143 -- it does not share the address of the actual. This routine attempts
2144 -- to retrieve the original actual.
2146 procedure Overlap_Check
2147 (Actual_1
: Node_Id
;
2149 Formal_1
: Entity_Id
;
2150 Formal_2
: Entity_Id
;
2151 Check
: in out Node_Id
);
2152 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2153 -- If detailed exception messages are enabled, the check is augmented to
2154 -- provide information about the names of the corresponding formals. See
2155 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2156 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2157 -- Check contains all and-ed simple tests generated so far or remains
2158 -- unchanged in the case of detailed exception messaged.
2160 ------------------------
2161 -- May_Cause_Aliasing --
2162 ------------------------
2164 function May_Cause_Aliasing
2165 (Formal_1
: Entity_Id
;
2166 Formal_2
: Entity_Id
) return Boolean
2169 -- The following combination cannot lead to aliasing
2171 -- Formal 1 Formal 2
2174 if Ekind
(Formal_1
) = E_In_Parameter
2176 Ekind
(Formal_2
) = E_In_Parameter
2180 -- The following combinations may lead to aliasing
2182 -- Formal 1 Formal 2
2192 end May_Cause_Aliasing
;
2194 ---------------------
2195 -- Original_Actual --
2196 ---------------------
2198 function Original_Actual
(N
: Node_Id
) return Node_Id
is
2200 if Nkind
(N
) = N_Type_Conversion
then
2201 return Expression
(N
);
2203 -- The expander created a temporary to capture the result of a type
2204 -- conversion where the expression is the real actual.
2206 elsif Nkind
(N
) = N_Identifier
2207 and then Present
(Original_Node
(N
))
2208 and then Nkind
(Original_Node
(N
)) = N_Type_Conversion
2210 return Expression
(Original_Node
(N
));
2214 end Original_Actual
;
2220 procedure Overlap_Check
2221 (Actual_1
: Node_Id
;
2223 Formal_1
: Entity_Id
;
2224 Formal_2
: Entity_Id
;
2225 Check
: in out Node_Id
)
2228 ID_Casing
: constant Casing_Type
:=
2229 Identifier_Casing
(Source_Index
(Current_Sem_Unit
));
2233 -- Actual_1'Overlaps_Storage (Actual_2)
2236 Make_Attribute_Reference
(Loc
,
2237 Prefix
=> New_Copy_Tree
(Original_Actual
(Actual_1
)),
2238 Attribute_Name
=> Name_Overlaps_Storage
,
2240 New_List
(New_Copy_Tree
(Original_Actual
(Actual_2
))));
2242 -- Generate the following check when detailed exception messages are
2245 -- if Actual_1'Overlaps_Storage (Actual_2) then
2246 -- raise Program_Error with <detailed message>;
2249 if Exception_Extra_Info
then
2252 -- Do not generate location information for internal calls
2254 if Comes_From_Source
(Call
) then
2255 Store_String_Chars
(Build_Location_String
(Loc
));
2256 Store_String_Char
(' ');
2259 Store_String_Chars
("aliased parameters, actuals for """);
2261 Get_Name_String
(Chars
(Formal_1
));
2262 Set_Casing
(ID_Casing
);
2263 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2265 Store_String_Chars
(""" and """);
2267 Get_Name_String
(Chars
(Formal_2
));
2268 Set_Casing
(ID_Casing
);
2269 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2271 Store_String_Chars
(""" overlap");
2273 Insert_Action
(Call
,
2274 Make_If_Statement
(Loc
,
2276 Then_Statements
=> New_List
(
2277 Make_Raise_Statement
(Loc
,
2279 New_Occurrence_Of
(Standard_Program_Error
, Loc
),
2280 Expression
=> Make_String_Literal
(Loc
, End_String
)))));
2282 -- Create a sequence of overlapping checks by and-ing them all
2292 Right_Opnd
=> Cond
);
2302 Formal_1
: Entity_Id
;
2303 Formal_2
: Entity_Id
;
2304 Orig_Act_1
: Node_Id
;
2305 Orig_Act_2
: Node_Id
;
2307 -- Start of processing for Apply_Parameter_Aliasing_Checks
2312 Actual_1
:= First_Actual
(Call
);
2313 Formal_1
:= First_Formal
(Subp
);
2314 while Present
(Actual_1
) and then Present
(Formal_1
) loop
2315 Orig_Act_1
:= Original_Actual
(Actual_1
);
2317 -- Ensure that the actual is an object that is not passed by value.
2318 -- Elementary types are always passed by value, therefore actuals of
2319 -- such types cannot lead to aliasing. An aggregate is an object in
2320 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2321 -- another actual. A type that is By_Reference (such as an array of
2322 -- controlled types) is not subject to the check because any update
2323 -- will be done in place and a subsequent read will always see the
2324 -- correct value, see RM 6.2 (12/3).
2326 if Nkind
(Orig_Act_1
) = N_Aggregate
2327 or else (Nkind
(Orig_Act_1
) = N_Qualified_Expression
2328 and then Nkind
(Expression
(Orig_Act_1
)) = N_Aggregate
)
2332 elsif Is_Object_Reference
(Orig_Act_1
)
2333 and then not Is_Elementary_Type
(Etype
(Orig_Act_1
))
2334 and then not Is_By_Reference_Type
(Etype
(Orig_Act_1
))
2336 Actual_2
:= Next_Actual
(Actual_1
);
2337 Formal_2
:= Next_Formal
(Formal_1
);
2338 while Present
(Actual_2
) and then Present
(Formal_2
) loop
2339 Orig_Act_2
:= Original_Actual
(Actual_2
);
2341 -- The other actual we are testing against must also denote
2342 -- a non pass-by-value object. Generate the check only when
2343 -- the mode of the two formals may lead to aliasing.
2345 if Is_Object_Reference
(Orig_Act_2
)
2346 and then not Is_Elementary_Type
(Etype
(Orig_Act_2
))
2347 and then May_Cause_Aliasing
(Formal_1
, Formal_2
)
2350 (Actual_1
=> Actual_1
,
2351 Actual_2
=> Actual_2
,
2352 Formal_1
=> Formal_1
,
2353 Formal_2
=> Formal_2
,
2357 Next_Actual
(Actual_2
);
2358 Next_Formal
(Formal_2
);
2362 Next_Actual
(Actual_1
);
2363 Next_Formal
(Formal_1
);
2366 -- Place a simple check right before the call
2368 if Present
(Check
) and then not Exception_Extra_Info
then
2369 Insert_Action
(Call
,
2370 Make_Raise_Program_Error
(Loc
,
2372 Reason
=> PE_Aliased_Parameters
));
2374 end Apply_Parameter_Aliasing_Checks
;
2376 -------------------------------------
2377 -- Apply_Parameter_Validity_Checks --
2378 -------------------------------------
2380 procedure Apply_Parameter_Validity_Checks
(Subp
: Entity_Id
) is
2381 Subp_Decl
: Node_Id
;
2383 procedure Add_Validity_Check
2384 (Formal
: Entity_Id
;
2386 For_Result
: Boolean := False);
2387 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2388 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2389 -- Set flag For_Result when to verify the result of a function.
2391 ------------------------
2392 -- Add_Validity_Check --
2393 ------------------------
2395 procedure Add_Validity_Check
2396 (Formal
: Entity_Id
;
2398 For_Result
: Boolean := False)
2400 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
);
2401 -- Create a pre/postcondition pragma that tests expression Expr
2403 ------------------------------
2404 -- Build_Pre_Post_Condition --
2405 ------------------------------
2407 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
) is
2408 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2415 Pragma_Identifier
=>
2416 Make_Identifier
(Loc
, Prag_Nam
),
2417 Pragma_Argument_Associations
=> New_List
(
2418 Make_Pragma_Argument_Association
(Loc
,
2419 Chars
=> Name_Check
,
2420 Expression
=> Expr
)));
2422 -- Add a message unless exception messages are suppressed
2424 if not Exception_Locations_Suppressed
then
2425 Append_To
(Pragma_Argument_Associations
(Prag
),
2426 Make_Pragma_Argument_Association
(Loc
,
2427 Chars
=> Name_Message
,
2429 Make_String_Literal
(Loc
,
2431 & Get_Name_String
(Prag_Nam
)
2433 & Build_Location_String
(Loc
))));
2436 -- Insert the pragma in the tree
2438 if Nkind
(Parent
(Subp_Decl
)) = N_Compilation_Unit
then
2439 Add_Global_Declaration
(Prag
);
2442 -- PPC pragmas associated with subprogram bodies must be inserted
2443 -- in the declarative part of the body.
2445 elsif Nkind
(Subp_Decl
) = N_Subprogram_Body
then
2446 Decls
:= Declarations
(Subp_Decl
);
2450 Set_Declarations
(Subp_Decl
, Decls
);
2453 Prepend_To
(Decls
, Prag
);
2456 -- For subprogram declarations insert the PPC pragma right after
2457 -- the declarative node.
2460 Insert_After_And_Analyze
(Subp_Decl
, Prag
);
2462 end Build_Pre_Post_Condition
;
2466 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2467 Typ
: constant Entity_Id
:= Etype
(Formal
);
2471 -- Start of processing for Add_Validity_Check
2474 -- For scalars, generate 'Valid test
2476 if Is_Scalar_Type
(Typ
) then
2479 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2481 elsif Scalar_Part_Present
(Typ
) then
2482 Nam
:= Name_Valid_Scalars
;
2484 -- No test needed for other cases (no scalars to test)
2490 -- Step 1: Create the expression to verify the validity of the
2493 Check
:= New_Occurrence_Of
(Formal
, Loc
);
2495 -- When processing a function result, use 'Result. Generate
2500 Make_Attribute_Reference
(Loc
,
2502 Attribute_Name
=> Name_Result
);
2506 -- Context['Result]'Valid[_Scalars]
2509 Make_Attribute_Reference
(Loc
,
2511 Attribute_Name
=> Nam
);
2513 -- Step 2: Create a pre or post condition pragma
2515 Build_Pre_Post_Condition
(Check
);
2516 end Add_Validity_Check
;
2521 Subp_Spec
: Node_Id
;
2523 -- Start of processing for Apply_Parameter_Validity_Checks
2526 -- Extract the subprogram specification and declaration nodes
2528 Subp_Spec
:= Parent
(Subp
);
2530 if Nkind
(Subp_Spec
) = N_Defining_Program_Unit_Name
then
2531 Subp_Spec
:= Parent
(Subp_Spec
);
2534 Subp_Decl
:= Parent
(Subp_Spec
);
2536 if not Comes_From_Source
(Subp
)
2538 -- Do not process formal subprograms because the corresponding actual
2539 -- will receive the proper checks when the instance is analyzed.
2541 or else Is_Formal_Subprogram
(Subp
)
2543 -- Do not process imported subprograms since pre and postconditions
2544 -- are never verified on routines coming from a different language.
2546 or else Is_Imported
(Subp
)
2547 or else Is_Intrinsic_Subprogram
(Subp
)
2549 -- The PPC pragmas generated by this routine do not correspond to
2550 -- source aspects, therefore they cannot be applied to abstract
2553 or else Nkind
(Subp_Decl
) = N_Abstract_Subprogram_Declaration
2555 -- Do not consider subprogram renaminds because the renamed entity
2556 -- already has the proper PPC pragmas.
2558 or else Nkind
(Subp_Decl
) = N_Subprogram_Renaming_Declaration
2560 -- Do not process null procedures because there is no benefit of
2561 -- adding the checks to a no action routine.
2563 or else (Nkind
(Subp_Spec
) = N_Procedure_Specification
2564 and then Null_Present
(Subp_Spec
))
2569 -- Inspect all the formals applying aliasing and scalar initialization
2570 -- checks where applicable.
2572 Formal
:= First_Formal
(Subp
);
2573 while Present
(Formal
) loop
2575 -- Generate the following scalar initialization checks for each
2576 -- formal parameter:
2578 -- mode IN - Pre => Formal'Valid[_Scalars]
2579 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2580 -- mode OUT - Post => Formal'Valid[_Scalars]
2582 if Check_Validity_Of_Parameters
then
2583 if Ekind_In
(Formal
, E_In_Parameter
, E_In_Out_Parameter
) then
2584 Add_Validity_Check
(Formal
, Name_Precondition
, False);
2587 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
2588 Add_Validity_Check
(Formal
, Name_Postcondition
, False);
2592 Next_Formal
(Formal
);
2595 -- Generate following scalar initialization check for function result:
2597 -- Post => Subp'Result'Valid[_Scalars]
2599 if Check_Validity_Of_Parameters
and then Ekind
(Subp
) = E_Function
then
2600 Add_Validity_Check
(Subp
, Name_Postcondition
, True);
2602 end Apply_Parameter_Validity_Checks
;
2604 ---------------------------
2605 -- Apply_Predicate_Check --
2606 ---------------------------
2608 procedure Apply_Predicate_Check
(N
: Node_Id
; Typ
: Entity_Id
) is
2612 if Predicate_Checks_Suppressed
(Empty
) then
2615 elsif Predicates_Ignored
(Typ
) then
2618 elsif Present
(Predicate_Function
(Typ
)) then
2620 while Present
(S
) and then not Is_Subprogram
(S
) loop
2624 -- A predicate check does not apply within internally generated
2625 -- subprograms, such as TSS functions.
2627 if Within_Internal_Subprogram
then
2630 -- If the check appears within the predicate function itself, it
2631 -- means that the user specified a check whose formal is the
2632 -- predicated subtype itself, rather than some covering type. This
2633 -- is likely to be a common error, and thus deserves a warning.
2635 elsif Present
(S
) and then S
= Predicate_Function
(Typ
) then
2637 ("predicate check includes a function call that "
2638 & "requires a predicate check??", Parent
(N
));
2640 ("\this will result in infinite recursion??", Parent
(N
));
2642 Make_Raise_Storage_Error
(Sloc
(N
),
2643 Reason
=> SE_Infinite_Recursion
));
2645 -- Here for normal case of predicate active
2648 -- If the type has a static predicate and the expression is known
2649 -- at compile time, see if the expression satisfies the predicate.
2651 Check_Expression_Against_Static_Predicate
(N
, Typ
);
2653 if not Expander_Active
then
2657 -- For an entity of the type, generate a call to the predicate
2658 -- function, unless its type is an actual subtype, which is not
2659 -- visible outside of the enclosing subprogram.
2661 if Is_Entity_Name
(N
)
2662 and then not Is_Actual_Subtype
(Typ
)
2665 Make_Predicate_Check
2666 (Typ
, New_Occurrence_Of
(Entity
(N
), Sloc
(N
))));
2668 -- If the expression is not an entity it may have side effects,
2669 -- and the following call will create an object declaration for
2670 -- it. We disable checks during its analysis, to prevent an
2671 -- infinite recursion.
2675 Make_Predicate_Check
2676 (Typ
, Duplicate_Subexpr
(N
)), Suppress
=> All_Checks
);
2680 end Apply_Predicate_Check
;
2682 -----------------------
2683 -- Apply_Range_Check --
2684 -----------------------
2686 procedure Apply_Range_Check
2688 Target_Typ
: Entity_Id
;
2689 Source_Typ
: Entity_Id
:= Empty
)
2692 Apply_Selected_Range_Checks
2693 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2694 end Apply_Range_Check
;
2696 ------------------------------
2697 -- Apply_Scalar_Range_Check --
2698 ------------------------------
2700 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2701 -- off if it is already set on.
2703 procedure Apply_Scalar_Range_Check
2705 Target_Typ
: Entity_Id
;
2706 Source_Typ
: Entity_Id
:= Empty
;
2707 Fixed_Int
: Boolean := False)
2709 Parnt
: constant Node_Id
:= Parent
(Expr
);
2711 Arr
: Node_Id
:= Empty
; -- initialize to prevent warning
2712 Arr_Typ
: Entity_Id
:= Empty
; -- initialize to prevent warning
2715 Is_Subscr_Ref
: Boolean;
2716 -- Set true if Expr is a subscript
2718 Is_Unconstrained_Subscr_Ref
: Boolean;
2719 -- Set true if Expr is a subscript of an unconstrained array. In this
2720 -- case we do not attempt to do an analysis of the value against the
2721 -- range of the subscript, since we don't know the actual subtype.
2724 -- Set to True if Expr should be regarded as a real value even though
2725 -- the type of Expr might be discrete.
2727 procedure Bad_Value
(Warn
: Boolean := False);
2728 -- Procedure called if value is determined to be out of range. Warn is
2729 -- True to force a warning instead of an error, even when SPARK_Mode is
2736 procedure Bad_Value
(Warn
: Boolean := False) is
2738 Apply_Compile_Time_Constraint_Error
2739 (Expr
, "value not in range of}??", CE_Range_Check_Failed
,
2745 -- Start of processing for Apply_Scalar_Range_Check
2748 -- Return if check obviously not needed
2751 -- Not needed inside generic
2755 -- Not needed if previous error
2757 or else Target_Typ
= Any_Type
2758 or else Nkind
(Expr
) = N_Error
2760 -- Not needed for non-scalar type
2762 or else not Is_Scalar_Type
(Target_Typ
)
2764 -- Not needed if we know node raises CE already
2766 or else Raises_Constraint_Error
(Expr
)
2771 -- Now, see if checks are suppressed
2774 Is_List_Member
(Expr
) and then Nkind
(Parnt
) = N_Indexed_Component
;
2776 if Is_Subscr_Ref
then
2777 Arr
:= Prefix
(Parnt
);
2778 Arr_Typ
:= Get_Actual_Subtype_If_Available
(Arr
);
2780 if Is_Access_Type
(Arr_Typ
) then
2781 Arr_Typ
:= Designated_Type
(Arr_Typ
);
2785 if not Do_Range_Check
(Expr
) then
2787 -- Subscript reference. Check for Index_Checks suppressed
2789 if Is_Subscr_Ref
then
2791 -- Check array type and its base type
2793 if Index_Checks_Suppressed
(Arr_Typ
)
2794 or else Index_Checks_Suppressed
(Base_Type
(Arr_Typ
))
2798 -- Check array itself if it is an entity name
2800 elsif Is_Entity_Name
(Arr
)
2801 and then Index_Checks_Suppressed
(Entity
(Arr
))
2805 -- Check expression itself if it is an entity name
2807 elsif Is_Entity_Name
(Expr
)
2808 and then Index_Checks_Suppressed
(Entity
(Expr
))
2813 -- All other cases, check for Range_Checks suppressed
2816 -- Check target type and its base type
2818 if Range_Checks_Suppressed
(Target_Typ
)
2819 or else Range_Checks_Suppressed
(Base_Type
(Target_Typ
))
2823 -- Check expression itself if it is an entity name
2825 elsif Is_Entity_Name
(Expr
)
2826 and then Range_Checks_Suppressed
(Entity
(Expr
))
2830 -- If Expr is part of an assignment statement, then check left
2831 -- side of assignment if it is an entity name.
2833 elsif Nkind
(Parnt
) = N_Assignment_Statement
2834 and then Is_Entity_Name
(Name
(Parnt
))
2835 and then Range_Checks_Suppressed
(Entity
(Name
(Parnt
)))
2842 -- Do not set range checks if they are killed
2844 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
2845 and then Kill_Range_Check
(Expr
)
2850 -- Do not set range checks for any values from System.Scalar_Values
2851 -- since the whole idea of such values is to avoid checking them.
2853 if Is_Entity_Name
(Expr
)
2854 and then Is_RTU
(Scope
(Entity
(Expr
)), System_Scalar_Values
)
2859 -- Now see if we need a check
2861 if No
(Source_Typ
) then
2862 S_Typ
:= Etype
(Expr
);
2864 S_Typ
:= Source_Typ
;
2867 if not Is_Scalar_Type
(S_Typ
) or else S_Typ
= Any_Type
then
2871 Is_Unconstrained_Subscr_Ref
:=
2872 Is_Subscr_Ref
and then not Is_Constrained
(Arr_Typ
);
2874 -- Special checks for floating-point type
2876 if Is_Floating_Point_Type
(S_Typ
) then
2878 -- Always do a range check if the source type includes infinities and
2879 -- the target type does not include infinities. We do not do this if
2880 -- range checks are killed.
2881 -- If the expression is a literal and the bounds of the type are
2882 -- static constants it may be possible to optimize the check.
2884 if Has_Infinities
(S_Typ
)
2885 and then not Has_Infinities
(Target_Typ
)
2887 -- If the expression is a literal and the bounds of the type are
2888 -- static constants it may be possible to optimize the check.
2890 if Nkind
(Expr
) = N_Real_Literal
then
2892 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2893 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2896 if Compile_Time_Known_Value
(Tlo
)
2897 and then Compile_Time_Known_Value
(Thi
)
2898 and then Expr_Value_R
(Expr
) >= Expr_Value_R
(Tlo
)
2899 and then Expr_Value_R
(Expr
) <= Expr_Value_R
(Thi
)
2903 Enable_Range_Check
(Expr
);
2908 Enable_Range_Check
(Expr
);
2913 -- Return if we know expression is definitely in the range of the target
2914 -- type as determined by Determine_Range. Right now we only do this for
2915 -- discrete types, and not fixed-point or floating-point types.
2917 -- The additional less-precise tests below catch these cases
2919 -- Note: skip this if we are given a source_typ, since the point of
2920 -- supplying a Source_Typ is to stop us looking at the expression.
2921 -- We could sharpen this test to be out parameters only ???
2923 if Is_Discrete_Type
(Target_Typ
)
2924 and then Is_Discrete_Type
(Etype
(Expr
))
2925 and then not Is_Unconstrained_Subscr_Ref
2926 and then No
(Source_Typ
)
2929 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2930 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2935 if Compile_Time_Known_Value
(Tlo
)
2936 and then Compile_Time_Known_Value
(Thi
)
2939 Lov
: constant Uint
:= Expr_Value
(Tlo
);
2940 Hiv
: constant Uint
:= Expr_Value
(Thi
);
2943 -- If range is null, we for sure have a constraint error
2944 -- (we don't even need to look at the value involved,
2945 -- since all possible values will raise CE).
2949 -- When SPARK_Mode is On, force a warning instead of
2950 -- an error in that case, as this likely corresponds
2951 -- to deactivated code.
2953 Bad_Value
(Warn
=> SPARK_Mode
= On
);
2955 -- In GNATprove mode, we enable the range check so that
2956 -- GNATprove will issue a message if it cannot be proved.
2958 if GNATprove_Mode
then
2959 Enable_Range_Check
(Expr
);
2965 -- Otherwise determine range of value
2967 Determine_Range
(Expr
, OK
, Lo
, Hi
, Assume_Valid
=> True);
2971 -- If definitely in range, all OK
2973 if Lo
>= Lov
and then Hi
<= Hiv
then
2976 -- If definitely not in range, warn
2978 elsif Lov
> Hi
or else Hiv
< Lo
then
2982 -- Otherwise we don't know
2994 Is_Floating_Point_Type
(S_Typ
)
2995 or else (Is_Fixed_Point_Type
(S_Typ
) and then not Fixed_Int
);
2997 -- Check if we can determine at compile time whether Expr is in the
2998 -- range of the target type. Note that if S_Typ is within the bounds
2999 -- of Target_Typ then this must be the case. This check is meaningful
3000 -- only if this is not a conversion between integer and real types.
3002 if not Is_Unconstrained_Subscr_Ref
3003 and then Is_Discrete_Type
(S_Typ
) = Is_Discrete_Type
(Target_Typ
)
3005 (In_Subrange_Of
(S_Typ
, Target_Typ
, Fixed_Int
)
3007 -- Also check if the expression itself is in the range of the
3008 -- target type if it is a known at compile time value. We skip
3009 -- this test if S_Typ is set since for OUT and IN OUT parameters
3010 -- the Expr itself is not relevant to the checking.
3014 and then Is_In_Range
(Expr
, Target_Typ
,
3015 Assume_Valid
=> True,
3016 Fixed_Int
=> Fixed_Int
,
3017 Int_Real
=> Int_Real
)))
3021 elsif Is_Out_Of_Range
(Expr
, Target_Typ
,
3022 Assume_Valid
=> True,
3023 Fixed_Int
=> Fixed_Int
,
3024 Int_Real
=> Int_Real
)
3029 -- Floating-point case
3030 -- In the floating-point case, we only do range checks if the type is
3031 -- constrained. We definitely do NOT want range checks for unconstrained
3032 -- types, since we want to have infinities, except when
3033 -- Check_Float_Overflow is set.
3035 elsif Is_Floating_Point_Type
(S_Typ
) then
3036 if Is_Constrained
(S_Typ
) or else Check_Float_Overflow
then
3037 Enable_Range_Check
(Expr
);
3040 -- For all other cases we enable a range check unconditionally
3043 Enable_Range_Check
(Expr
);
3046 end Apply_Scalar_Range_Check
;
3048 ----------------------------------
3049 -- Apply_Selected_Length_Checks --
3050 ----------------------------------
3052 procedure Apply_Selected_Length_Checks
3054 Target_Typ
: Entity_Id
;
3055 Source_Typ
: Entity_Id
;
3056 Do_Static
: Boolean)
3059 R_Result
: Check_Result
;
3062 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3063 Checks_On
: constant Boolean :=
3064 (not Index_Checks_Suppressed
(Target_Typ
))
3065 or else (not Length_Checks_Suppressed
(Target_Typ
));
3068 -- Note: this means that we lose some useful warnings if the expander
3069 -- is not active, and we also lose these warnings in SPARK mode ???
3071 if not Expander_Active
then
3076 Selected_Length_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3078 for J
in 1 .. 2 loop
3079 R_Cno
:= R_Result
(J
);
3080 exit when No
(R_Cno
);
3082 -- A length check may mention an Itype which is attached to a
3083 -- subsequent node. At the top level in a package this can cause
3084 -- an order-of-elaboration problem, so we make sure that the itype
3085 -- is referenced now.
3087 if Ekind
(Current_Scope
) = E_Package
3088 and then Is_Compilation_Unit
(Current_Scope
)
3090 Ensure_Defined
(Target_Typ
, Ck_Node
);
3092 if Present
(Source_Typ
) then
3093 Ensure_Defined
(Source_Typ
, Ck_Node
);
3095 elsif Is_Itype
(Etype
(Ck_Node
)) then
3096 Ensure_Defined
(Etype
(Ck_Node
), Ck_Node
);
3100 -- If the item is a conditional raise of constraint error, then have
3101 -- a look at what check is being performed and ???
3103 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3104 and then Present
(Condition
(R_Cno
))
3106 Cond
:= Condition
(R_Cno
);
3108 -- Case where node does not now have a dynamic check
3110 if not Has_Dynamic_Length_Check
(Ck_Node
) then
3112 -- If checks are on, just insert the check
3115 Insert_Action
(Ck_Node
, R_Cno
);
3117 if not Do_Static
then
3118 Set_Has_Dynamic_Length_Check
(Ck_Node
);
3121 -- If checks are off, then analyze the length check after
3122 -- temporarily attaching it to the tree in case the relevant
3123 -- condition can be evaluated at compile time. We still want a
3124 -- compile time warning in this case.
3127 Set_Parent
(R_Cno
, Ck_Node
);
3132 -- Output a warning if the condition is known to be True
3134 if Is_Entity_Name
(Cond
)
3135 and then Entity
(Cond
) = Standard_True
3137 Apply_Compile_Time_Constraint_Error
3138 (Ck_Node
, "wrong length for array of}??",
3139 CE_Length_Check_Failed
,
3143 -- If we were only doing a static check, or if checks are not
3144 -- on, then we want to delete the check, since it is not needed.
3145 -- We do this by replacing the if statement by a null statement
3147 elsif Do_Static
or else not Checks_On
then
3148 Remove_Warning_Messages
(R_Cno
);
3149 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3153 Install_Static_Check
(R_Cno
, Loc
);
3156 end Apply_Selected_Length_Checks
;
3158 ---------------------------------
3159 -- Apply_Selected_Range_Checks --
3160 ---------------------------------
3162 procedure Apply_Selected_Range_Checks
3164 Target_Typ
: Entity_Id
;
3165 Source_Typ
: Entity_Id
;
3166 Do_Static
: Boolean)
3168 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3169 Checks_On
: constant Boolean :=
3170 not Index_Checks_Suppressed
(Target_Typ
)
3172 not Range_Checks_Suppressed
(Target_Typ
);
3176 R_Result
: Check_Result
;
3179 if not Expander_Active
or not Checks_On
then
3184 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3186 for J
in 1 .. 2 loop
3187 R_Cno
:= R_Result
(J
);
3188 exit when No
(R_Cno
);
3190 -- The range check requires runtime evaluation. Depending on what its
3191 -- triggering condition is, the check may be converted into a compile
3192 -- time constraint check.
3194 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3195 and then Present
(Condition
(R_Cno
))
3197 Cond
:= Condition
(R_Cno
);
3199 -- Insert the range check before the related context. Note that
3200 -- this action analyses the triggering condition.
3202 Insert_Action
(Ck_Node
, R_Cno
);
3204 -- This old code doesn't make sense, why is the context flagged as
3205 -- requiring dynamic range checks now in the middle of generating
3208 if not Do_Static
then
3209 Set_Has_Dynamic_Range_Check
(Ck_Node
);
3212 -- The triggering condition evaluates to True, the range check
3213 -- can be converted into a compile time constraint check.
3215 if Is_Entity_Name
(Cond
)
3216 and then Entity
(Cond
) = Standard_True
3218 -- Since an N_Range is technically not an expression, we have
3219 -- to set one of the bounds to C_E and then just flag the
3220 -- N_Range. The warning message will point to the lower bound
3221 -- and complain about a range, which seems OK.
3223 if Nkind
(Ck_Node
) = N_Range
then
3224 Apply_Compile_Time_Constraint_Error
3225 (Low_Bound
(Ck_Node
),
3226 "static range out of bounds of}??",
3227 CE_Range_Check_Failed
,
3231 Set_Raises_Constraint_Error
(Ck_Node
);
3234 Apply_Compile_Time_Constraint_Error
3236 "static value out of range of}??",
3237 CE_Range_Check_Failed
,
3242 -- If we were only doing a static check, or if checks are not
3243 -- on, then we want to delete the check, since it is not needed.
3244 -- We do this by replacing the if statement by a null statement
3246 elsif Do_Static
then
3247 Remove_Warning_Messages
(R_Cno
);
3248 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3251 -- The range check raises Constraint_Error explicitly
3254 Install_Static_Check
(R_Cno
, Loc
);
3257 end Apply_Selected_Range_Checks
;
3259 -------------------------------
3260 -- Apply_Static_Length_Check --
3261 -------------------------------
3263 procedure Apply_Static_Length_Check
3265 Target_Typ
: Entity_Id
;
3266 Source_Typ
: Entity_Id
:= Empty
)
3269 Apply_Selected_Length_Checks
3270 (Expr
, Target_Typ
, Source_Typ
, Do_Static
=> True);
3271 end Apply_Static_Length_Check
;
3273 -------------------------------------
3274 -- Apply_Subscript_Validity_Checks --
3275 -------------------------------------
3277 procedure Apply_Subscript_Validity_Checks
(Expr
: Node_Id
) is
3281 pragma Assert
(Nkind
(Expr
) = N_Indexed_Component
);
3283 -- Loop through subscripts
3285 Sub
:= First
(Expressions
(Expr
));
3286 while Present
(Sub
) loop
3288 -- Check one subscript. Note that we do not worry about enumeration
3289 -- type with holes, since we will convert the value to a Pos value
3290 -- for the subscript, and that convert will do the necessary validity
3293 Ensure_Valid
(Sub
, Holes_OK
=> True);
3295 -- Move to next subscript
3299 end Apply_Subscript_Validity_Checks
;
3301 ----------------------------------
3302 -- Apply_Type_Conversion_Checks --
3303 ----------------------------------
3305 procedure Apply_Type_Conversion_Checks
(N
: Node_Id
) is
3306 Target_Type
: constant Entity_Id
:= Etype
(N
);
3307 Target_Base
: constant Entity_Id
:= Base_Type
(Target_Type
);
3308 Expr
: constant Node_Id
:= Expression
(N
);
3310 Expr_Type
: constant Entity_Id
:= Underlying_Type
(Etype
(Expr
));
3311 -- Note: if Etype (Expr) is a private type without discriminants, its
3312 -- full view might have discriminants with defaults, so we need the
3313 -- full view here to retrieve the constraints.
3316 if Inside_A_Generic
then
3319 -- Skip these checks if serious errors detected, there are some nasty
3320 -- situations of incomplete trees that blow things up.
3322 elsif Serious_Errors_Detected
> 0 then
3325 -- Never generate discriminant checks for Unchecked_Union types
3327 elsif Present
(Expr_Type
)
3328 and then Is_Unchecked_Union
(Expr_Type
)
3332 -- Scalar type conversions of the form Target_Type (Expr) require a
3333 -- range check if we cannot be sure that Expr is in the base type of
3334 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3335 -- are not quite the same condition from an implementation point of
3336 -- view, but clearly the second includes the first.
3338 elsif Is_Scalar_Type
(Target_Type
) then
3340 Conv_OK
: constant Boolean := Conversion_OK
(N
);
3341 -- If the Conversion_OK flag on the type conversion is set and no
3342 -- floating-point type is involved in the type conversion then
3343 -- fixed-point values must be read as integral values.
3345 Float_To_Int
: constant Boolean :=
3346 Is_Floating_Point_Type
(Expr_Type
)
3347 and then Is_Integer_Type
(Target_Type
);
3350 if not Overflow_Checks_Suppressed
(Target_Base
)
3351 and then not Overflow_Checks_Suppressed
(Target_Type
)
3353 In_Subrange_Of
(Expr_Type
, Target_Base
, Fixed_Int
=> Conv_OK
)
3354 and then not Float_To_Int
3356 Activate_Overflow_Check
(N
);
3359 if not Range_Checks_Suppressed
(Target_Type
)
3360 and then not Range_Checks_Suppressed
(Expr_Type
)
3362 if Float_To_Int
then
3363 Apply_Float_Conversion_Check
(Expr
, Target_Type
);
3365 Apply_Scalar_Range_Check
3366 (Expr
, Target_Type
, Fixed_Int
=> Conv_OK
);
3368 -- If the target type has predicates, we need to indicate
3369 -- the need for a check, even if Determine_Range finds that
3370 -- the value is within bounds. This may be the case e.g for
3371 -- a division with a constant denominator.
3373 if Has_Predicates
(Target_Type
) then
3374 Enable_Range_Check
(Expr
);
3380 elsif Comes_From_Source
(N
)
3381 and then not Discriminant_Checks_Suppressed
(Target_Type
)
3382 and then Is_Record_Type
(Target_Type
)
3383 and then Is_Derived_Type
(Target_Type
)
3384 and then not Is_Tagged_Type
(Target_Type
)
3385 and then not Is_Constrained
(Target_Type
)
3386 and then Present
(Stored_Constraint
(Target_Type
))
3388 -- An unconstrained derived type may have inherited discriminant.
3389 -- Build an actual discriminant constraint list using the stored
3390 -- constraint, to verify that the expression of the parent type
3391 -- satisfies the constraints imposed by the (unconstrained) derived
3392 -- type. This applies to value conversions, not to view conversions
3396 Loc
: constant Source_Ptr
:= Sloc
(N
);
3398 Constraint
: Elmt_Id
;
3399 Discr_Value
: Node_Id
;
3402 New_Constraints
: constant Elist_Id
:= New_Elmt_List
;
3403 Old_Constraints
: constant Elist_Id
:=
3404 Discriminant_Constraint
(Expr_Type
);
3407 Constraint
:= First_Elmt
(Stored_Constraint
(Target_Type
));
3408 while Present
(Constraint
) loop
3409 Discr_Value
:= Node
(Constraint
);
3411 if Is_Entity_Name
(Discr_Value
)
3412 and then Ekind
(Entity
(Discr_Value
)) = E_Discriminant
3414 Discr
:= Corresponding_Discriminant
(Entity
(Discr_Value
));
3417 and then Scope
(Discr
) = Base_Type
(Expr_Type
)
3419 -- Parent is constrained by new discriminant. Obtain
3420 -- Value of original discriminant in expression. If the
3421 -- new discriminant has been used to constrain more than
3422 -- one of the stored discriminants, this will provide the
3423 -- required consistency check.
3426 (Make_Selected_Component
(Loc
,
3428 Duplicate_Subexpr_No_Checks
3429 (Expr
, Name_Req
=> True),
3431 Make_Identifier
(Loc
, Chars
(Discr
))),
3435 -- Discriminant of more remote ancestor ???
3440 -- Derived type definition has an explicit value for this
3441 -- stored discriminant.
3445 (Duplicate_Subexpr_No_Checks
(Discr_Value
),
3449 Next_Elmt
(Constraint
);
3452 -- Use the unconstrained expression type to retrieve the
3453 -- discriminants of the parent, and apply momentarily the
3454 -- discriminant constraint synthesized above.
3456 Set_Discriminant_Constraint
(Expr_Type
, New_Constraints
);
3457 Cond
:= Build_Discriminant_Checks
(Expr
, Expr_Type
);
3458 Set_Discriminant_Constraint
(Expr_Type
, Old_Constraints
);
3461 Make_Raise_Constraint_Error
(Loc
,
3463 Reason
=> CE_Discriminant_Check_Failed
));
3466 -- For arrays, checks are set now, but conversions are applied during
3467 -- expansion, to take into accounts changes of representation. The
3468 -- checks become range checks on the base type or length checks on the
3469 -- subtype, depending on whether the target type is unconstrained or
3470 -- constrained. Note that the range check is put on the expression of a
3471 -- type conversion, while the length check is put on the type conversion
3474 elsif Is_Array_Type
(Target_Type
) then
3475 if Is_Constrained
(Target_Type
) then
3476 Set_Do_Length_Check
(N
);
3478 Set_Do_Range_Check
(Expr
);
3481 end Apply_Type_Conversion_Checks
;
3483 ----------------------------------------------
3484 -- Apply_Universal_Integer_Attribute_Checks --
3485 ----------------------------------------------
3487 procedure Apply_Universal_Integer_Attribute_Checks
(N
: Node_Id
) is
3488 Loc
: constant Source_Ptr
:= Sloc
(N
);
3489 Typ
: constant Entity_Id
:= Etype
(N
);
3492 if Inside_A_Generic
then
3495 -- Nothing to do if checks are suppressed
3497 elsif Range_Checks_Suppressed
(Typ
)
3498 and then Overflow_Checks_Suppressed
(Typ
)
3502 -- Nothing to do if the attribute does not come from source. The
3503 -- internal attributes we generate of this type do not need checks,
3504 -- and furthermore the attempt to check them causes some circular
3505 -- elaboration orders when dealing with packed types.
3507 elsif not Comes_From_Source
(N
) then
3510 -- If the prefix is a selected component that depends on a discriminant
3511 -- the check may improperly expose a discriminant instead of using
3512 -- the bounds of the object itself. Set the type of the attribute to
3513 -- the base type of the context, so that a check will be imposed when
3514 -- needed (e.g. if the node appears as an index).
3516 elsif Nkind
(Prefix
(N
)) = N_Selected_Component
3517 and then Ekind
(Typ
) = E_Signed_Integer_Subtype
3518 and then Depends_On_Discriminant
(Scalar_Range
(Typ
))
3520 Set_Etype
(N
, Base_Type
(Typ
));
3522 -- Otherwise, replace the attribute node with a type conversion node
3523 -- whose expression is the attribute, retyped to universal integer, and
3524 -- whose subtype mark is the target type. The call to analyze this
3525 -- conversion will set range and overflow checks as required for proper
3526 -- detection of an out of range value.
3529 Set_Etype
(N
, Universal_Integer
);
3530 Set_Analyzed
(N
, True);
3533 Make_Type_Conversion
(Loc
,
3534 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
3535 Expression
=> Relocate_Node
(N
)));
3537 Analyze_And_Resolve
(N
, Typ
);
3540 end Apply_Universal_Integer_Attribute_Checks
;
3542 -------------------------------------
3543 -- Atomic_Synchronization_Disabled --
3544 -------------------------------------
3546 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3547 -- using a bogus check called Atomic_Synchronization. This is to make it
3548 -- more convenient to get exactly the same semantics as [Un]Suppress.
3550 function Atomic_Synchronization_Disabled
(E
: Entity_Id
) return Boolean is
3552 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3553 -- looks enabled, since it is never disabled.
3555 if Debug_Flag_Dot_E
then
3558 -- If debug flag d.d is set then always return True, i.e. all atomic
3559 -- sync looks disabled, since it always tests True.
3561 elsif Debug_Flag_Dot_D
then
3564 -- If entity present, then check result for that entity
3566 elsif Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
3567 return Is_Check_Suppressed
(E
, Atomic_Synchronization
);
3569 -- Otherwise result depends on current scope setting
3572 return Scope_Suppress
.Suppress
(Atomic_Synchronization
);
3574 end Atomic_Synchronization_Disabled
;
3576 -------------------------------
3577 -- Build_Discriminant_Checks --
3578 -------------------------------
3580 function Build_Discriminant_Checks
3582 T_Typ
: Entity_Id
) return Node_Id
3584 Loc
: constant Source_Ptr
:= Sloc
(N
);
3587 Disc_Ent
: Entity_Id
;
3591 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
;
3593 ----------------------------------
3594 -- Aggregate_Discriminant_Value --
3595 ----------------------------------
3597 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
is
3601 -- The aggregate has been normalized with named associations. We use
3602 -- the Chars field to locate the discriminant to take into account
3603 -- discriminants in derived types, which carry the same name as those
3606 Assoc
:= First
(Component_Associations
(N
));
3607 while Present
(Assoc
) loop
3608 if Chars
(First
(Choices
(Assoc
))) = Chars
(Disc
) then
3609 return Expression
(Assoc
);
3615 -- Discriminant must have been found in the loop above
3617 raise Program_Error
;
3618 end Aggregate_Discriminant_Val
;
3620 -- Start of processing for Build_Discriminant_Checks
3623 -- Loop through discriminants evolving the condition
3626 Disc
:= First_Elmt
(Discriminant_Constraint
(T_Typ
));
3628 -- For a fully private type, use the discriminants of the parent type
3630 if Is_Private_Type
(T_Typ
)
3631 and then No
(Full_View
(T_Typ
))
3633 Disc_Ent
:= First_Discriminant
(Etype
(Base_Type
(T_Typ
)));
3635 Disc_Ent
:= First_Discriminant
(T_Typ
);
3638 while Present
(Disc
) loop
3639 Dval
:= Node
(Disc
);
3641 if Nkind
(Dval
) = N_Identifier
3642 and then Ekind
(Entity
(Dval
)) = E_Discriminant
3644 Dval
:= New_Occurrence_Of
(Discriminal
(Entity
(Dval
)), Loc
);
3646 Dval
:= Duplicate_Subexpr_No_Checks
(Dval
);
3649 -- If we have an Unchecked_Union node, we can infer the discriminants
3652 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
3654 Get_Discriminant_Value
(
3655 First_Discriminant
(T_Typ
),
3657 Stored_Constraint
(T_Typ
)));
3659 elsif Nkind
(N
) = N_Aggregate
then
3661 Duplicate_Subexpr_No_Checks
3662 (Aggregate_Discriminant_Val
(Disc_Ent
));
3666 Make_Selected_Component
(Loc
,
3668 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
3669 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc_Ent
)));
3671 Set_Is_In_Discriminant_Check
(Dref
);
3674 Evolve_Or_Else
(Cond
,
3677 Right_Opnd
=> Dval
));
3680 Next_Discriminant
(Disc_Ent
);
3684 end Build_Discriminant_Checks
;
3690 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean is
3697 function Left_Expression
(Op
: Node_Id
) return Node_Id
;
3698 -- Return the relevant expression from the left operand of the given
3699 -- short circuit form: this is LO itself, except if LO is a qualified
3700 -- expression, a type conversion, or an expression with actions, in
3701 -- which case this is Left_Expression (Expression (LO)).
3703 ---------------------
3704 -- Left_Expression --
3705 ---------------------
3707 function Left_Expression
(Op
: Node_Id
) return Node_Id
is
3708 LE
: Node_Id
:= Left_Opnd
(Op
);
3710 while Nkind_In
(LE
, N_Qualified_Expression
,
3712 N_Expression_With_Actions
)
3714 LE
:= Expression
(LE
);
3718 end Left_Expression
;
3720 -- Start of processing for Check_Needed
3723 -- Always check if not simple entity
3725 if Nkind
(Nod
) not in N_Has_Entity
3726 or else not Comes_From_Source
(Nod
)
3731 -- Look up tree for short circuit
3738 -- Done if out of subexpression (note that we allow generated stuff
3739 -- such as itype declarations in this context, to keep the loop going
3740 -- since we may well have generated such stuff in complex situations.
3741 -- Also done if no parent (probably an error condition, but no point
3742 -- in behaving nasty if we find it).
3745 or else (K
not in N_Subexpr
and then Comes_From_Source
(P
))
3749 -- Or/Or Else case, where test is part of the right operand, or is
3750 -- part of one of the actions associated with the right operand, and
3751 -- the left operand is an equality test.
3753 elsif K
= N_Op_Or
then
3754 exit when N
= Right_Opnd
(P
)
3755 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3757 elsif K
= N_Or_Else
then
3758 exit when (N
= Right_Opnd
(P
)
3761 and then List_Containing
(N
) = Actions
(P
)))
3762 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3764 -- Similar test for the And/And then case, where the left operand
3765 -- is an inequality test.
3767 elsif K
= N_Op_And
then
3768 exit when N
= Right_Opnd
(P
)
3769 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3771 elsif K
= N_And_Then
then
3772 exit when (N
= Right_Opnd
(P
)
3775 and then List_Containing
(N
) = Actions
(P
)))
3776 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3782 -- If we fall through the loop, then we have a conditional with an
3783 -- appropriate test as its left operand, so look further.
3785 L
:= Left_Expression
(P
);
3787 -- L is an "=" or "/=" operator: extract its operands
3789 R
:= Right_Opnd
(L
);
3792 -- Left operand of test must match original variable
3794 if Nkind
(L
) not in N_Has_Entity
or else Entity
(L
) /= Entity
(Nod
) then
3798 -- Right operand of test must be key value (zero or null)
3801 when Access_Check
=>
3802 if not Known_Null
(R
) then
3806 when Division_Check
=>
3807 if not Compile_Time_Known_Value
(R
)
3808 or else Expr_Value
(R
) /= Uint_0
3814 raise Program_Error
;
3817 -- Here we have the optimizable case, warn if not short-circuited
3819 if K
= N_Op_And
or else K
= N_Op_Or
then
3820 Error_Msg_Warn
:= SPARK_Mode
/= On
;
3823 when Access_Check
=>
3824 if GNATprove_Mode
then
3826 ("Constraint_Error might have been raised (access check)",
3830 ("Constraint_Error may be raised (access check)??",
3834 when Division_Check
=>
3835 if GNATprove_Mode
then
3837 ("Constraint_Error might have been raised (zero divide)",
3841 ("Constraint_Error may be raised (zero divide)??",
3846 raise Program_Error
;
3849 if K
= N_Op_And
then
3850 Error_Msg_N
-- CODEFIX
3851 ("use `AND THEN` instead of AND??", P
);
3853 Error_Msg_N
-- CODEFIX
3854 ("use `OR ELSE` instead of OR??", P
);
3857 -- If not short-circuited, we need the check
3861 -- If short-circuited, we can omit the check
3868 -----------------------------------
3869 -- Check_Valid_Lvalue_Subscripts --
3870 -----------------------------------
3872 procedure Check_Valid_Lvalue_Subscripts
(Expr
: Node_Id
) is
3874 -- Skip this if range checks are suppressed
3876 if Range_Checks_Suppressed
(Etype
(Expr
)) then
3879 -- Only do this check for expressions that come from source. We assume
3880 -- that expander generated assignments explicitly include any necessary
3881 -- checks. Note that this is not just an optimization, it avoids
3882 -- infinite recursions.
3884 elsif not Comes_From_Source
(Expr
) then
3887 -- For a selected component, check the prefix
3889 elsif Nkind
(Expr
) = N_Selected_Component
then
3890 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3893 -- Case of indexed component
3895 elsif Nkind
(Expr
) = N_Indexed_Component
then
3896 Apply_Subscript_Validity_Checks
(Expr
);
3898 -- Prefix may itself be or contain an indexed component, and these
3899 -- subscripts need checking as well.
3901 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3903 end Check_Valid_Lvalue_Subscripts
;
3905 ----------------------------------
3906 -- Null_Exclusion_Static_Checks --
3907 ----------------------------------
3909 procedure Null_Exclusion_Static_Checks
(N
: Node_Id
) is
3910 Error_Node
: Node_Id
;
3912 Has_Null
: constant Boolean := Has_Null_Exclusion
(N
);
3913 K
: constant Node_Kind
:= Nkind
(N
);
3918 (Nkind_In
(K
, N_Component_Declaration
,
3919 N_Discriminant_Specification
,
3920 N_Function_Specification
,
3921 N_Object_Declaration
,
3922 N_Parameter_Specification
));
3924 if K
= N_Function_Specification
then
3925 Typ
:= Etype
(Defining_Entity
(N
));
3927 Typ
:= Etype
(Defining_Identifier
(N
));
3931 when N_Component_Declaration
=>
3932 if Present
(Access_Definition
(Component_Definition
(N
))) then
3933 Error_Node
:= Component_Definition
(N
);
3935 Error_Node
:= Subtype_Indication
(Component_Definition
(N
));
3938 when N_Discriminant_Specification
=>
3939 Error_Node
:= Discriminant_Type
(N
);
3941 when N_Function_Specification
=>
3942 Error_Node
:= Result_Definition
(N
);
3944 when N_Object_Declaration
=>
3945 Error_Node
:= Object_Definition
(N
);
3947 when N_Parameter_Specification
=>
3948 Error_Node
:= Parameter_Type
(N
);
3951 raise Program_Error
;
3956 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3957 -- applied to an access [sub]type.
3959 if not Is_Access_Type
(Typ
) then
3961 ("`NOT NULL` allowed only for an access type", Error_Node
);
3963 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3964 -- be applied to a [sub]type that does not exclude null already.
3966 elsif Can_Never_Be_Null
(Typ
)
3967 and then Comes_From_Source
(Typ
)
3970 ("`NOT NULL` not allowed (& already excludes null)",
3975 -- Check that null-excluding objects are always initialized, except for
3976 -- deferred constants, for which the expression will appear in the full
3979 if K
= N_Object_Declaration
3980 and then No
(Expression
(N
))
3981 and then not Constant_Present
(N
)
3982 and then not No_Initialization
(N
)
3984 -- Add an expression that assigns null. This node is needed by
3985 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3986 -- a Constraint_Error node.
3988 Set_Expression
(N
, Make_Null
(Sloc
(N
)));
3989 Set_Etype
(Expression
(N
), Etype
(Defining_Identifier
(N
)));
3991 Apply_Compile_Time_Constraint_Error
3992 (N
=> Expression
(N
),
3994 "(Ada 2005) null-excluding objects must be initialized??",
3995 Reason
=> CE_Null_Not_Allowed
);
3998 -- Check that a null-excluding component, formal or object is not being
3999 -- assigned a null value. Otherwise generate a warning message and
4000 -- replace Expression (N) by an N_Constraint_Error node.
4002 if K
/= N_Function_Specification
then
4003 Expr
:= Expression
(N
);
4005 if Present
(Expr
) and then Known_Null
(Expr
) then
4007 when N_Component_Declaration |
4008 N_Discriminant_Specification
=>
4009 Apply_Compile_Time_Constraint_Error
4011 Msg
=> "(Ada 2005) null not allowed "
4012 & "in null-excluding components??",
4013 Reason
=> CE_Null_Not_Allowed
);
4015 when N_Object_Declaration
=>
4016 Apply_Compile_Time_Constraint_Error
4018 Msg
=> "(Ada 2005) null not allowed "
4019 & "in null-excluding objects??",
4020 Reason
=> CE_Null_Not_Allowed
);
4022 when N_Parameter_Specification
=>
4023 Apply_Compile_Time_Constraint_Error
4025 Msg
=> "(Ada 2005) null not allowed "
4026 & "in null-excluding formals??",
4027 Reason
=> CE_Null_Not_Allowed
);
4034 end Null_Exclusion_Static_Checks
;
4036 ----------------------------------
4037 -- Conditional_Statements_Begin --
4038 ----------------------------------
4040 procedure Conditional_Statements_Begin
is
4042 Saved_Checks_TOS
:= Saved_Checks_TOS
+ 1;
4044 -- If stack overflows, kill all checks, that way we know to simply reset
4045 -- the number of saved checks to zero on return. This should never occur
4048 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4051 -- In the normal case, we just make a new stack entry saving the current
4052 -- number of saved checks for a later restore.
4055 Saved_Checks_Stack
(Saved_Checks_TOS
) := Num_Saved_Checks
;
4057 if Debug_Flag_CC
then
4058 w
("Conditional_Statements_Begin: Num_Saved_Checks = ",
4062 end Conditional_Statements_Begin
;
4064 --------------------------------
4065 -- Conditional_Statements_End --
4066 --------------------------------
4068 procedure Conditional_Statements_End
is
4070 pragma Assert
(Saved_Checks_TOS
> 0);
4072 -- If the saved checks stack overflowed, then we killed all checks, so
4073 -- setting the number of saved checks back to zero is correct. This
4074 -- should never occur in practice.
4076 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4077 Num_Saved_Checks
:= 0;
4079 -- In the normal case, restore the number of saved checks from the top
4083 Num_Saved_Checks
:= Saved_Checks_Stack
(Saved_Checks_TOS
);
4085 if Debug_Flag_CC
then
4086 w
("Conditional_Statements_End: Num_Saved_Checks = ",
4091 Saved_Checks_TOS
:= Saved_Checks_TOS
- 1;
4092 end Conditional_Statements_End
;
4094 -------------------------
4095 -- Convert_From_Bignum --
4096 -------------------------
4098 function Convert_From_Bignum
(N
: Node_Id
) return Node_Id
is
4099 Loc
: constant Source_Ptr
:= Sloc
(N
);
4102 pragma Assert
(Is_RTE
(Etype
(N
), RE_Bignum
));
4104 -- Construct call From Bignum
4107 Make_Function_Call
(Loc
,
4109 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4110 Parameter_Associations
=> New_List
(Relocate_Node
(N
)));
4111 end Convert_From_Bignum
;
4113 -----------------------
4114 -- Convert_To_Bignum --
4115 -----------------------
4117 function Convert_To_Bignum
(N
: Node_Id
) return Node_Id
is
4118 Loc
: constant Source_Ptr
:= Sloc
(N
);
4121 -- Nothing to do if Bignum already except call Relocate_Node
4123 if Is_RTE
(Etype
(N
), RE_Bignum
) then
4124 return Relocate_Node
(N
);
4126 -- Otherwise construct call to To_Bignum, converting the operand to the
4127 -- required Long_Long_Integer form.
4130 pragma Assert
(Is_Signed_Integer_Type
(Etype
(N
)));
4132 Make_Function_Call
(Loc
,
4134 New_Occurrence_Of
(RTE
(RE_To_Bignum
), Loc
),
4135 Parameter_Associations
=> New_List
(
4136 Convert_To
(Standard_Long_Long_Integer
, Relocate_Node
(N
))));
4138 end Convert_To_Bignum
;
4140 ---------------------
4141 -- Determine_Range --
4142 ---------------------
4144 Cache_Size
: constant := 2 ** 10;
4145 type Cache_Index
is range 0 .. Cache_Size
- 1;
4146 -- Determine size of below cache (power of 2 is more efficient)
4148 Determine_Range_Cache_N
: array (Cache_Index
) of Node_Id
;
4149 Determine_Range_Cache_V
: array (Cache_Index
) of Boolean;
4150 Determine_Range_Cache_Lo
: array (Cache_Index
) of Uint
;
4151 Determine_Range_Cache_Hi
: array (Cache_Index
) of Uint
;
4152 Determine_Range_Cache_Lo_R
: array (Cache_Index
) of Ureal
;
4153 Determine_Range_Cache_Hi_R
: array (Cache_Index
) of Ureal
;
4154 -- The above arrays are used to implement a small direct cache for
4155 -- Determine_Range and Determine_Range_R calls. Because of the way these
4156 -- subprograms recursively traces subexpressions, and because overflow
4157 -- checking calls the routine on the way up the tree, a quadratic behavior
4158 -- can otherwise be encountered in large expressions. The cache entry for
4159 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4160 -- by checking the actual node value stored there. The Range_Cache_V array
4161 -- records the setting of Assume_Valid for the cache entry.
4163 procedure Determine_Range
4168 Assume_Valid
: Boolean := False)
4170 Typ
: Entity_Id
:= Etype
(N
);
4171 -- Type to use, may get reset to base type for possibly invalid entity
4175 -- Lo and Hi bounds of left operand
4179 -- Lo and Hi bounds of right (or only) operand
4182 -- Temp variable used to hold a bound node
4185 -- High bound of base type of expression
4189 -- Refined values for low and high bounds, after tightening
4192 -- Used in lower level calls to indicate if call succeeded
4194 Cindex
: Cache_Index
;
4195 -- Used to search cache
4200 function OK_Operands
return Boolean;
4201 -- Used for binary operators. Determines the ranges of the left and
4202 -- right operands, and if they are both OK, returns True, and puts
4203 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4209 function OK_Operands
return Boolean is
4212 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4219 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4223 -- Start of processing for Determine_Range
4226 -- Prevent junk warnings by initializing range variables
4233 -- For temporary constants internally generated to remove side effects
4234 -- we must use the corresponding expression to determine the range of
4235 -- the expression. But note that the expander can also generate
4236 -- constants in other cases, including deferred constants.
4238 if Is_Entity_Name
(N
)
4239 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4240 and then Ekind
(Entity
(N
)) = E_Constant
4241 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4243 if Present
(Expression
(Parent
(Entity
(N
)))) then
4245 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4247 elsif Present
(Full_View
(Entity
(N
))) then
4249 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4250 OK
, Lo
, Hi
, Assume_Valid
);
4258 -- If type is not defined, we can't determine its range
4262 -- We don't deal with anything except discrete types
4264 or else not Is_Discrete_Type
(Typ
)
4266 -- Ignore type for which an error has been posted, since range in
4267 -- this case may well be a bogosity deriving from the error. Also
4268 -- ignore if error posted on the reference node.
4270 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4276 -- For all other cases, we can determine the range
4280 -- If value is compile time known, then the possible range is the one
4281 -- value that we know this expression definitely has.
4283 if Compile_Time_Known_Value
(N
) then
4284 Lo
:= Expr_Value
(N
);
4289 -- Return if already in the cache
4291 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4293 if Determine_Range_Cache_N
(Cindex
) = N
4295 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4297 Lo
:= Determine_Range_Cache_Lo
(Cindex
);
4298 Hi
:= Determine_Range_Cache_Hi
(Cindex
);
4302 -- Otherwise, start by finding the bounds of the type of the expression,
4303 -- the value cannot be outside this range (if it is, then we have an
4304 -- overflow situation, which is a separate check, we are talking here
4305 -- only about the expression value).
4307 -- First a check, never try to find the bounds of a generic type, since
4308 -- these bounds are always junk values, and it is only valid to look at
4309 -- the bounds in an instance.
4311 if Is_Generic_Type
(Typ
) then
4316 -- First step, change to use base type unless we know the value is valid
4318 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4319 or else Assume_No_Invalid_Values
4320 or else Assume_Valid
4324 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4327 -- Retrieve the base type. Handle the case where the base type is a
4328 -- private enumeration type.
4330 Btyp
:= Base_Type
(Typ
);
4332 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4333 Btyp
:= Full_View
(Btyp
);
4336 -- We use the actual bound unless it is dynamic, in which case use the
4337 -- corresponding base type bound if possible. If we can't get a bound
4338 -- then we figure we can't determine the range (a peculiar case, that
4339 -- perhaps cannot happen, but there is no point in bombing in this
4340 -- optimization circuit.
4342 -- First the low bound
4344 Bound
:= Type_Low_Bound
(Typ
);
4346 if Compile_Time_Known_Value
(Bound
) then
4347 Lo
:= Expr_Value
(Bound
);
4349 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4350 Lo
:= Expr_Value
(Type_Low_Bound
(Btyp
));
4357 -- Now the high bound
4359 Bound
:= Type_High_Bound
(Typ
);
4361 -- We need the high bound of the base type later on, and this should
4362 -- always be compile time known. Again, it is not clear that this
4363 -- can ever be false, but no point in bombing.
4365 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4366 Hbound
:= Expr_Value
(Type_High_Bound
(Btyp
));
4374 -- If we have a static subtype, then that may have a tighter bound so
4375 -- use the upper bound of the subtype instead in this case.
4377 if Compile_Time_Known_Value
(Bound
) then
4378 Hi
:= Expr_Value
(Bound
);
4381 -- We may be able to refine this value in certain situations. If any
4382 -- refinement is possible, then Lor and Hir are set to possibly tighter
4383 -- bounds, and OK1 is set to True.
4387 -- For unary plus, result is limited by range of operand
4391 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4393 -- For unary minus, determine range of operand, and negate it
4397 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4404 -- For binary addition, get range of each operand and do the
4405 -- addition to get the result range.
4409 Lor
:= Lo_Left
+ Lo_Right
;
4410 Hir
:= Hi_Left
+ Hi_Right
;
4413 -- Division is tricky. The only case we consider is where the right
4414 -- operand is a positive constant, and in this case we simply divide
4415 -- the bounds of the left operand
4419 if Lo_Right
= Hi_Right
4420 and then Lo_Right
> 0
4422 Lor
:= Lo_Left
/ Lo_Right
;
4423 Hir
:= Hi_Left
/ Lo_Right
;
4429 -- For binary subtraction, get range of each operand and do the worst
4430 -- case subtraction to get the result range.
4432 when N_Op_Subtract
=>
4434 Lor
:= Lo_Left
- Hi_Right
;
4435 Hir
:= Hi_Left
- Lo_Right
;
4438 -- For MOD, if right operand is a positive constant, then result must
4439 -- be in the allowable range of mod results.
4443 if Lo_Right
= Hi_Right
4444 and then Lo_Right
/= 0
4446 if Lo_Right
> 0 then
4448 Hir
:= Lo_Right
- 1;
4450 else -- Lo_Right < 0
4451 Lor
:= Lo_Right
+ 1;
4460 -- For REM, if right operand is a positive constant, then result must
4461 -- be in the allowable range of mod results.
4465 if Lo_Right
= Hi_Right
4466 and then Lo_Right
/= 0
4469 Dval
: constant Uint
:= (abs Lo_Right
) - 1;
4472 -- The sign of the result depends on the sign of the
4473 -- dividend (but not on the sign of the divisor, hence
4474 -- the abs operation above).
4494 -- Attribute reference cases
4496 when N_Attribute_Reference
=>
4497 case Attribute_Name
(N
) is
4499 -- For Pos/Val attributes, we can refine the range using the
4500 -- possible range of values of the attribute expression.
4502 when Name_Pos | Name_Val
=>
4504 (First
(Expressions
(N
)), OK1
, Lor
, Hir
, Assume_Valid
);
4506 -- For Length attribute, use the bounds of the corresponding
4507 -- index type to refine the range.
4511 Atyp
: Entity_Id
:= Etype
(Prefix
(N
));
4519 if Is_Access_Type
(Atyp
) then
4520 Atyp
:= Designated_Type
(Atyp
);
4523 -- For string literal, we know exact value
4525 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
4527 Lo
:= String_Literal_Length
(Atyp
);
4528 Hi
:= String_Literal_Length
(Atyp
);
4532 -- Otherwise check for expression given
4534 if No
(Expressions
(N
)) then
4538 UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
4541 Indx
:= First_Index
(Atyp
);
4542 for J
in 2 .. Inum
loop
4543 Indx
:= Next_Index
(Indx
);
4546 -- If the index type is a formal type or derived from
4547 -- one, the bounds are not static.
4549 if Is_Generic_Type
(Root_Type
(Etype
(Indx
))) then
4555 (Type_Low_Bound
(Etype
(Indx
)), OK1
, LL
, LU
,
4560 (Type_High_Bound
(Etype
(Indx
)), OK1
, UL
, UU
,
4565 -- The maximum value for Length is the biggest
4566 -- possible gap between the values of the bounds.
4567 -- But of course, this value cannot be negative.
4569 Hir
:= UI_Max
(Uint_0
, UU
- LL
+ 1);
4571 -- For constrained arrays, the minimum value for
4572 -- Length is taken from the actual value of the
4573 -- bounds, since the index will be exactly of this
4576 if Is_Constrained
(Atyp
) then
4577 Lor
:= UI_Max
(Uint_0
, UL
- LU
+ 1);
4579 -- For an unconstrained array, the minimum value
4580 -- for length is always zero.
4589 -- No special handling for other attributes
4590 -- Probably more opportunities exist here???
4597 -- For type conversion from one discrete type to another, we can
4598 -- refine the range using the converted value.
4600 when N_Type_Conversion
=>
4601 Determine_Range
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4603 -- Nothing special to do for all other expression kinds
4611 -- At this stage, if OK1 is true, then we know that the actual result of
4612 -- the computed expression is in the range Lor .. Hir. We can use this
4613 -- to restrict the possible range of results.
4617 -- If the refined value of the low bound is greater than the type
4618 -- low bound, then reset it to the more restrictive value. However,
4619 -- we do NOT do this for the case of a modular type where the
4620 -- possible upper bound on the value is above the base type high
4621 -- bound, because that means the result could wrap.
4624 and then not (Is_Modular_Integer_Type
(Typ
) and then Hir
> Hbound
)
4629 -- Similarly, if the refined value of the high bound is less than the
4630 -- value so far, then reset it to the more restrictive value. Again,
4631 -- we do not do this if the refined low bound is negative for a
4632 -- modular type, since this would wrap.
4635 and then not (Is_Modular_Integer_Type
(Typ
) and then Lor
< Uint_0
)
4641 -- Set cache entry for future call and we are all done
4643 Determine_Range_Cache_N
(Cindex
) := N
;
4644 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
4645 Determine_Range_Cache_Lo
(Cindex
) := Lo
;
4646 Determine_Range_Cache_Hi
(Cindex
) := Hi
;
4649 -- If any exception occurs, it means that we have some bug in the compiler,
4650 -- possibly triggered by a previous error, or by some unforeseen peculiar
4651 -- occurrence. However, this is only an optimization attempt, so there is
4652 -- really no point in crashing the compiler. Instead we just decide, too
4653 -- bad, we can't figure out a range in this case after all.
4658 -- Debug flag K disables this behavior (useful for debugging)
4660 if Debug_Flag_K
then
4668 end Determine_Range
;
4670 -----------------------
4671 -- Determine_Range_R --
4672 -----------------------
4674 procedure Determine_Range_R
4679 Assume_Valid
: Boolean := False)
4681 Typ
: Entity_Id
:= Etype
(N
);
4682 -- Type to use, may get reset to base type for possibly invalid entity
4686 -- Lo and Hi bounds of left operand
4690 -- Lo and Hi bounds of right (or only) operand
4693 -- Temp variable used to hold a bound node
4696 -- High bound of base type of expression
4700 -- Refined values for low and high bounds, after tightening
4703 -- Used in lower level calls to indicate if call succeeded
4705 Cindex
: Cache_Index
;
4706 -- Used to search cache
4711 function OK_Operands
return Boolean;
4712 -- Used for binary operators. Determines the ranges of the left and
4713 -- right operands, and if they are both OK, returns True, and puts
4714 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4716 function Round_Machine
(B
: Ureal
) return Ureal
;
4717 -- B is a real bound. Round it using mode Round_Even.
4723 function OK_Operands
return Boolean is
4726 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4733 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4741 function Round_Machine
(B
: Ureal
) return Ureal
is
4743 return Machine
(Typ
, B
, Round_Even
, N
);
4746 -- Start of processing for Determine_Range_R
4749 -- Prevent junk warnings by initializing range variables
4756 -- For temporary constants internally generated to remove side effects
4757 -- we must use the corresponding expression to determine the range of
4758 -- the expression. But note that the expander can also generate
4759 -- constants in other cases, including deferred constants.
4761 if Is_Entity_Name
(N
)
4762 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4763 and then Ekind
(Entity
(N
)) = E_Constant
4764 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4766 if Present
(Expression
(Parent
(Entity
(N
)))) then
4768 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4770 elsif Present
(Full_View
(Entity
(N
))) then
4772 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4773 OK
, Lo
, Hi
, Assume_Valid
);
4782 -- If type is not defined, we can't determine its range
4786 -- We don't deal with anything except IEEE floating-point types
4788 or else not Is_Floating_Point_Type
(Typ
)
4789 or else Float_Rep
(Typ
) /= IEEE_Binary
4791 -- Ignore type for which an error has been posted, since range in
4792 -- this case may well be a bogosity deriving from the error. Also
4793 -- ignore if error posted on the reference node.
4795 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4801 -- For all other cases, we can determine the range
4805 -- If value is compile time known, then the possible range is the one
4806 -- value that we know this expression definitely has.
4808 if Compile_Time_Known_Value
(N
) then
4809 Lo
:= Expr_Value_R
(N
);
4814 -- Return if already in the cache
4816 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4818 if Determine_Range_Cache_N
(Cindex
) = N
4820 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4822 Lo
:= Determine_Range_Cache_Lo_R
(Cindex
);
4823 Hi
:= Determine_Range_Cache_Hi_R
(Cindex
);
4827 -- Otherwise, start by finding the bounds of the type of the expression,
4828 -- the value cannot be outside this range (if it is, then we have an
4829 -- overflow situation, which is a separate check, we are talking here
4830 -- only about the expression value).
4832 -- First a check, never try to find the bounds of a generic type, since
4833 -- these bounds are always junk values, and it is only valid to look at
4834 -- the bounds in an instance.
4836 if Is_Generic_Type
(Typ
) then
4841 -- First step, change to use base type unless we know the value is valid
4843 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4844 or else Assume_No_Invalid_Values
4845 or else Assume_Valid
4849 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4852 -- Retrieve the base type. Handle the case where the base type is a
4855 Btyp
:= Base_Type
(Typ
);
4857 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4858 Btyp
:= Full_View
(Btyp
);
4861 -- We use the actual bound unless it is dynamic, in which case use the
4862 -- corresponding base type bound if possible. If we can't get a bound
4863 -- then we figure we can't determine the range (a peculiar case, that
4864 -- perhaps cannot happen, but there is no point in bombing in this
4865 -- optimization circuit).
4867 -- First the low bound
4869 Bound
:= Type_Low_Bound
(Typ
);
4871 if Compile_Time_Known_Value
(Bound
) then
4872 Lo
:= Expr_Value_R
(Bound
);
4874 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4875 Lo
:= Expr_Value_R
(Type_Low_Bound
(Btyp
));
4882 -- Now the high bound
4884 Bound
:= Type_High_Bound
(Typ
);
4886 -- We need the high bound of the base type later on, and this should
4887 -- always be compile time known. Again, it is not clear that this
4888 -- can ever be false, but no point in bombing.
4890 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4891 Hbound
:= Expr_Value_R
(Type_High_Bound
(Btyp
));
4899 -- If we have a static subtype, then that may have a tighter bound so
4900 -- use the upper bound of the subtype instead in this case.
4902 if Compile_Time_Known_Value
(Bound
) then
4903 Hi
:= Expr_Value_R
(Bound
);
4906 -- We may be able to refine this value in certain situations. If any
4907 -- refinement is possible, then Lor and Hir are set to possibly tighter
4908 -- bounds, and OK1 is set to True.
4912 -- For unary plus, result is limited by range of operand
4916 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4918 -- For unary minus, determine range of operand, and negate it
4922 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4929 -- For binary addition, get range of each operand and do the
4930 -- addition to get the result range.
4934 Lor
:= Round_Machine
(Lo_Left
+ Lo_Right
);
4935 Hir
:= Round_Machine
(Hi_Left
+ Hi_Right
);
4938 -- For binary subtraction, get range of each operand and do the worst
4939 -- case subtraction to get the result range.
4941 when N_Op_Subtract
=>
4943 Lor
:= Round_Machine
(Lo_Left
- Hi_Right
);
4944 Hir
:= Round_Machine
(Hi_Left
- Lo_Right
);
4947 -- For multiplication, get range of each operand and do the
4948 -- four multiplications to get the result range.
4950 when N_Op_Multiply
=>
4953 M1
: constant Ureal
:= Round_Machine
(Lo_Left
* Lo_Right
);
4954 M2
: constant Ureal
:= Round_Machine
(Lo_Left
* Hi_Right
);
4955 M3
: constant Ureal
:= Round_Machine
(Hi_Left
* Lo_Right
);
4956 M4
: constant Ureal
:= Round_Machine
(Hi_Left
* Hi_Right
);
4958 Lor
:= UR_Min
(UR_Min
(M1
, M2
), UR_Min
(M3
, M4
));
4959 Hir
:= UR_Max
(UR_Max
(M1
, M2
), UR_Max
(M3
, M4
));
4963 -- For division, consider separately the cases where the right
4964 -- operand is positive or negative. Otherwise, the right operand
4965 -- can be arbitrarily close to zero, so the result is likely to
4966 -- be unbounded in one direction, do not attempt to compute it.
4971 -- Right operand is positive
4973 if Lo_Right
> Ureal_0
then
4975 -- If the low bound of the left operand is negative, obtain
4976 -- the overall low bound by dividing it by the smallest
4977 -- value of the right operand, and otherwise by the largest
4978 -- value of the right operand.
4980 if Lo_Left
< Ureal_0
then
4981 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
4983 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
4986 -- If the high bound of the left operand is negative, obtain
4987 -- the overall high bound by dividing it by the largest
4988 -- value of the right operand, and otherwise by the
4989 -- smallest value of the right operand.
4991 if Hi_Left
< Ureal_0
then
4992 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
4994 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
4997 -- Right operand is negative
4999 elsif Hi_Right
< Ureal_0
then
5001 -- If the low bound of the left operand is negative, obtain
5002 -- the overall low bound by dividing it by the largest
5003 -- value of the right operand, and otherwise by the smallest
5004 -- value of the right operand.
5006 if Lo_Left
< Ureal_0
then
5007 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
5009 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
5012 -- If the high bound of the left operand is negative, obtain
5013 -- the overall high bound by dividing it by the smallest
5014 -- value of the right operand, and otherwise by the
5015 -- largest value of the right operand.
5017 if Hi_Left
< Ureal_0
then
5018 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
5020 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
5028 -- For type conversion from one floating-point type to another, we
5029 -- can refine the range using the converted value.
5031 when N_Type_Conversion
=>
5032 Determine_Range_R
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
5034 -- Nothing special to do for all other expression kinds
5042 -- At this stage, if OK1 is true, then we know that the actual result of
5043 -- the computed expression is in the range Lor .. Hir. We can use this
5044 -- to restrict the possible range of results.
5048 -- If the refined value of the low bound is greater than the type
5049 -- low bound, then reset it to the more restrictive value.
5055 -- Similarly, if the refined value of the high bound is less than the
5056 -- value so far, then reset it to the more restrictive value.
5063 -- Set cache entry for future call and we are all done
5065 Determine_Range_Cache_N
(Cindex
) := N
;
5066 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
5067 Determine_Range_Cache_Lo_R
(Cindex
) := Lo
;
5068 Determine_Range_Cache_Hi_R
(Cindex
) := Hi
;
5071 -- If any exception occurs, it means that we have some bug in the compiler,
5072 -- possibly triggered by a previous error, or by some unforeseen peculiar
5073 -- occurrence. However, this is only an optimization attempt, so there is
5074 -- really no point in crashing the compiler. Instead we just decide, too
5075 -- bad, we can't figure out a range in this case after all.
5080 -- Debug flag K disables this behavior (useful for debugging)
5082 if Debug_Flag_K
then
5090 end Determine_Range_R
;
5092 ------------------------------------
5093 -- Discriminant_Checks_Suppressed --
5094 ------------------------------------
5096 function Discriminant_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5099 if Is_Unchecked_Union
(E
) then
5101 elsif Checks_May_Be_Suppressed
(E
) then
5102 return Is_Check_Suppressed
(E
, Discriminant_Check
);
5106 return Scope_Suppress
.Suppress
(Discriminant_Check
);
5107 end Discriminant_Checks_Suppressed
;
5109 --------------------------------
5110 -- Division_Checks_Suppressed --
5111 --------------------------------
5113 function Division_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5115 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5116 return Is_Check_Suppressed
(E
, Division_Check
);
5118 return Scope_Suppress
.Suppress
(Division_Check
);
5120 end Division_Checks_Suppressed
;
5122 --------------------------------------
5123 -- Duplicated_Tag_Checks_Suppressed --
5124 --------------------------------------
5126 function Duplicated_Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5128 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5129 return Is_Check_Suppressed
(E
, Duplicated_Tag_Check
);
5131 return Scope_Suppress
.Suppress
(Duplicated_Tag_Check
);
5133 end Duplicated_Tag_Checks_Suppressed
;
5135 -----------------------------------
5136 -- Elaboration_Checks_Suppressed --
5137 -----------------------------------
5139 function Elaboration_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5141 -- The complication in this routine is that if we are in the dynamic
5142 -- model of elaboration, we also check All_Checks, since All_Checks
5143 -- does not set Elaboration_Check explicitly.
5146 if Kill_Elaboration_Checks
(E
) then
5149 elsif Checks_May_Be_Suppressed
(E
) then
5150 if Is_Check_Suppressed
(E
, Elaboration_Check
) then
5152 elsif Dynamic_Elaboration_Checks
then
5153 return Is_Check_Suppressed
(E
, All_Checks
);
5160 if Scope_Suppress
.Suppress
(Elaboration_Check
) then
5162 elsif Dynamic_Elaboration_Checks
then
5163 return Scope_Suppress
.Suppress
(All_Checks
);
5167 end Elaboration_Checks_Suppressed
;
5169 ---------------------------
5170 -- Enable_Overflow_Check --
5171 ---------------------------
5173 procedure Enable_Overflow_Check
(N
: Node_Id
) is
5174 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
5175 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
5183 Do_Ovflow_Check
: Boolean;
5186 if Debug_Flag_CC
then
5187 w
("Enable_Overflow_Check for node ", Int
(N
));
5188 Write_Str
(" Source location = ");
5193 -- No check if overflow checks suppressed for type of node
5195 if Overflow_Checks_Suppressed
(Etype
(N
)) then
5198 -- Nothing to do for unsigned integer types, which do not overflow
5200 elsif Is_Modular_Integer_Type
(Typ
) then
5204 -- This is the point at which processing for STRICT mode diverges
5205 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5206 -- probably more extreme that it needs to be, but what is going on here
5207 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5208 -- to leave the processing for STRICT mode untouched. There were
5209 -- two reasons for this. First it avoided any incompatible change of
5210 -- behavior. Second, it guaranteed that STRICT mode continued to be
5213 -- The big difference is that in STRICT mode there is a fair amount of
5214 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5215 -- know that no check is needed. We skip all that in the two new modes,
5216 -- since really overflow checking happens over a whole subtree, and we
5217 -- do the corresponding optimizations later on when applying the checks.
5219 if Mode
in Minimized_Or_Eliminated
then
5220 if not (Overflow_Checks_Suppressed
(Etype
(N
)))
5221 and then not (Is_Entity_Name
(N
)
5222 and then Overflow_Checks_Suppressed
(Entity
(N
)))
5224 Activate_Overflow_Check
(N
);
5227 if Debug_Flag_CC
then
5228 w
("Minimized/Eliminated mode");
5234 -- Remainder of processing is for STRICT case, and is unchanged from
5235 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5237 -- Nothing to do if the range of the result is known OK. We skip this
5238 -- for conversions, since the caller already did the check, and in any
5239 -- case the condition for deleting the check for a type conversion is
5242 if Nkind
(N
) /= N_Type_Conversion
then
5243 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
5245 -- Note in the test below that we assume that the range is not OK
5246 -- if a bound of the range is equal to that of the type. That's not
5247 -- quite accurate but we do this for the following reasons:
5249 -- a) The way that Determine_Range works, it will typically report
5250 -- the bounds of the value as being equal to the bounds of the
5251 -- type, because it either can't tell anything more precise, or
5252 -- does not think it is worth the effort to be more precise.
5254 -- b) It is very unusual to have a situation in which this would
5255 -- generate an unnecessary overflow check (an example would be
5256 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5257 -- literal value one is added).
5259 -- c) The alternative is a lot of special casing in this routine
5260 -- which would partially duplicate Determine_Range processing.
5263 Do_Ovflow_Check
:= True;
5265 -- Note that the following checks are quite deliberately > and <
5266 -- rather than >= and <= as explained above.
5268 if Lo
> Expr_Value
(Type_Low_Bound
(Typ
))
5270 Hi
< Expr_Value
(Type_High_Bound
(Typ
))
5272 Do_Ovflow_Check
:= False;
5274 -- Despite the comments above, it is worth dealing specially with
5275 -- division specially. The only case where integer division can
5276 -- overflow is (largest negative number) / (-1). So we will do
5277 -- an extra range analysis to see if this is possible.
5279 elsif Nkind
(N
) = N_Op_Divide
then
5281 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5283 if OK
and then Lo
> Expr_Value
(Type_Low_Bound
(Typ
)) then
5284 Do_Ovflow_Check
:= False;
5288 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5290 if OK
and then (Lo
> Uint_Minus_1
5294 Do_Ovflow_Check
:= False;
5299 -- If no overflow check required, we are done
5301 if not Do_Ovflow_Check
then
5302 if Debug_Flag_CC
then
5303 w
("No overflow check required");
5311 -- If not in optimizing mode, set flag and we are done. We are also done
5312 -- (and just set the flag) if the type is not a discrete type, since it
5313 -- is not worth the effort to eliminate checks for other than discrete
5314 -- types. In addition, we take this same path if we have stored the
5315 -- maximum number of checks possible already (a very unlikely situation,
5316 -- but we do not want to blow up).
5318 if Optimization_Level
= 0
5319 or else not Is_Discrete_Type
(Etype
(N
))
5320 or else Num_Saved_Checks
= Saved_Checks
'Last
5322 Activate_Overflow_Check
(N
);
5324 if Debug_Flag_CC
then
5325 w
("Optimization off");
5331 -- Otherwise evaluate and check the expression
5336 Target_Type
=> Empty
,
5342 if Debug_Flag_CC
then
5343 w
("Called Find_Check");
5347 w
(" Check_Num = ", Chk
);
5348 w
(" Ent = ", Int
(Ent
));
5349 Write_Str
(" Ofs = ");
5354 -- If check is not of form to optimize, then set flag and we are done
5357 Activate_Overflow_Check
(N
);
5361 -- If check is already performed, then return without setting flag
5364 if Debug_Flag_CC
then
5365 w
("Check suppressed!");
5371 -- Here we will make a new entry for the new check
5373 Activate_Overflow_Check
(N
);
5374 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5375 Saved_Checks
(Num_Saved_Checks
) :=
5380 Target_Type
=> Empty
);
5382 if Debug_Flag_CC
then
5383 w
("Make new entry, check number = ", Num_Saved_Checks
);
5384 w
(" Entity = ", Int
(Ent
));
5385 Write_Str
(" Offset = ");
5387 w
(" Check_Type = O");
5388 w
(" Target_Type = Empty");
5391 -- If we get an exception, then something went wrong, probably because of
5392 -- an error in the structure of the tree due to an incorrect program. Or
5393 -- it may be a bug in the optimization circuit. In either case the safest
5394 -- thing is simply to set the check flag unconditionally.
5398 Activate_Overflow_Check
(N
);
5400 if Debug_Flag_CC
then
5401 w
(" exception occurred, overflow flag set");
5405 end Enable_Overflow_Check
;
5407 ------------------------
5408 -- Enable_Range_Check --
5409 ------------------------
5411 procedure Enable_Range_Check
(N
: Node_Id
) is
5420 -- Return if unchecked type conversion with range check killed. In this
5421 -- case we never set the flag (that's what Kill_Range_Check is about).
5423 if Nkind
(N
) = N_Unchecked_Type_Conversion
5424 and then Kill_Range_Check
(N
)
5429 -- Do not set range check flag if parent is assignment statement or
5430 -- object declaration with Suppress_Assignment_Checks flag set
5432 if Nkind_In
(Parent
(N
), N_Assignment_Statement
, N_Object_Declaration
)
5433 and then Suppress_Assignment_Checks
(Parent
(N
))
5438 -- Check for various cases where we should suppress the range check
5440 -- No check if range checks suppressed for type of node
5442 if Present
(Etype
(N
)) and then Range_Checks_Suppressed
(Etype
(N
)) then
5445 -- No check if node is an entity name, and range checks are suppressed
5446 -- for this entity, or for the type of this entity.
5448 elsif Is_Entity_Name
(N
)
5449 and then (Range_Checks_Suppressed
(Entity
(N
))
5450 or else Range_Checks_Suppressed
(Etype
(Entity
(N
))))
5454 -- No checks if index of array, and index checks are suppressed for
5455 -- the array object or the type of the array.
5457 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
then
5459 Pref
: constant Node_Id
:= Prefix
(Parent
(N
));
5461 if Is_Entity_Name
(Pref
)
5462 and then Index_Checks_Suppressed
(Entity
(Pref
))
5465 elsif Index_Checks_Suppressed
(Etype
(Pref
)) then
5471 -- Debug trace output
5473 if Debug_Flag_CC
then
5474 w
("Enable_Range_Check for node ", Int
(N
));
5475 Write_Str
(" Source location = ");
5480 -- If not in optimizing mode, set flag and we are done. We are also done
5481 -- (and just set the flag) if the type is not a discrete type, since it
5482 -- is not worth the effort to eliminate checks for other than discrete
5483 -- types. In addition, we take this same path if we have stored the
5484 -- maximum number of checks possible already (a very unlikely situation,
5485 -- but we do not want to blow up).
5487 if Optimization_Level
= 0
5488 or else No
(Etype
(N
))
5489 or else not Is_Discrete_Type
(Etype
(N
))
5490 or else Num_Saved_Checks
= Saved_Checks
'Last
5492 Activate_Range_Check
(N
);
5494 if Debug_Flag_CC
then
5495 w
("Optimization off");
5501 -- Otherwise find out the target type
5505 -- For assignment, use left side subtype
5507 if Nkind
(P
) = N_Assignment_Statement
5508 and then Expression
(P
) = N
5510 Ttyp
:= Etype
(Name
(P
));
5512 -- For indexed component, use subscript subtype
5514 elsif Nkind
(P
) = N_Indexed_Component
then
5521 Atyp
:= Etype
(Prefix
(P
));
5523 if Is_Access_Type
(Atyp
) then
5524 Atyp
:= Designated_Type
(Atyp
);
5526 -- If the prefix is an access to an unconstrained array,
5527 -- perform check unconditionally: it depends on the bounds of
5528 -- an object and we cannot currently recognize whether the test
5529 -- may be redundant.
5531 if not Is_Constrained
(Atyp
) then
5532 Activate_Range_Check
(N
);
5536 -- Ditto if prefix is simply an unconstrained array. We used
5537 -- to think this case was OK, if the prefix was not an explicit
5538 -- dereference, but we have now seen a case where this is not
5539 -- true, so it is safer to just suppress the optimization in this
5540 -- case. The back end is getting better at eliminating redundant
5541 -- checks in any case, so the loss won't be important.
5543 elsif Is_Array_Type
(Atyp
)
5544 and then not Is_Constrained
(Atyp
)
5546 Activate_Range_Check
(N
);
5550 Indx
:= First_Index
(Atyp
);
5551 Subs
:= First
(Expressions
(P
));
5554 Ttyp
:= Etype
(Indx
);
5563 -- For now, ignore all other cases, they are not so interesting
5566 if Debug_Flag_CC
then
5567 w
(" target type not found, flag set");
5570 Activate_Range_Check
(N
);
5574 -- Evaluate and check the expression
5579 Target_Type
=> Ttyp
,
5585 if Debug_Flag_CC
then
5586 w
("Called Find_Check");
5587 w
("Target_Typ = ", Int
(Ttyp
));
5591 w
(" Check_Num = ", Chk
);
5592 w
(" Ent = ", Int
(Ent
));
5593 Write_Str
(" Ofs = ");
5598 -- If check is not of form to optimize, then set flag and we are done
5601 if Debug_Flag_CC
then
5602 w
(" expression not of optimizable type, flag set");
5605 Activate_Range_Check
(N
);
5609 -- If check is already performed, then return without setting flag
5612 if Debug_Flag_CC
then
5613 w
("Check suppressed!");
5619 -- Here we will make a new entry for the new check
5621 Activate_Range_Check
(N
);
5622 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5623 Saved_Checks
(Num_Saved_Checks
) :=
5628 Target_Type
=> Ttyp
);
5630 if Debug_Flag_CC
then
5631 w
("Make new entry, check number = ", Num_Saved_Checks
);
5632 w
(" Entity = ", Int
(Ent
));
5633 Write_Str
(" Offset = ");
5635 w
(" Check_Type = R");
5636 w
(" Target_Type = ", Int
(Ttyp
));
5637 pg
(Union_Id
(Ttyp
));
5640 -- If we get an exception, then something went wrong, probably because of
5641 -- an error in the structure of the tree due to an incorrect program. Or
5642 -- it may be a bug in the optimization circuit. In either case the safest
5643 -- thing is simply to set the check flag unconditionally.
5647 Activate_Range_Check
(N
);
5649 if Debug_Flag_CC
then
5650 w
(" exception occurred, range flag set");
5654 end Enable_Range_Check
;
5660 procedure Ensure_Valid
5662 Holes_OK
: Boolean := False;
5663 Related_Id
: Entity_Id
:= Empty
;
5664 Is_Low_Bound
: Boolean := False;
5665 Is_High_Bound
: Boolean := False)
5667 Typ
: constant Entity_Id
:= Etype
(Expr
);
5670 -- Ignore call if we are not doing any validity checking
5672 if not Validity_Checks_On
then
5675 -- Ignore call if range or validity checks suppressed on entity or type
5677 elsif Range_Or_Validity_Checks_Suppressed
(Expr
) then
5680 -- No check required if expression is from the expander, we assume the
5681 -- expander will generate whatever checks are needed. Note that this is
5682 -- not just an optimization, it avoids infinite recursions.
5684 -- Unchecked conversions must be checked, unless they are initialized
5685 -- scalar values, as in a component assignment in an init proc.
5687 -- In addition, we force a check if Force_Validity_Checks is set
5689 elsif not Comes_From_Source
(Expr
)
5690 and then not Force_Validity_Checks
5691 and then (Nkind
(Expr
) /= N_Unchecked_Type_Conversion
5692 or else Kill_Range_Check
(Expr
))
5696 -- No check required if expression is known to have valid value
5698 elsif Expr_Known_Valid
(Expr
) then
5701 -- Ignore case of enumeration with holes where the flag is set not to
5702 -- worry about holes, since no special validity check is needed
5704 elsif Is_Enumeration_Type
(Typ
)
5705 and then Has_Non_Standard_Rep
(Typ
)
5710 -- No check required on the left-hand side of an assignment
5712 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
5713 and then Expr
= Name
(Parent
(Expr
))
5717 -- No check on a universal real constant. The context will eventually
5718 -- convert it to a machine number for some target type, or report an
5721 elsif Nkind
(Expr
) = N_Real_Literal
5722 and then Etype
(Expr
) = Universal_Real
5726 -- If the expression denotes a component of a packed boolean array,
5727 -- no possible check applies. We ignore the old ACATS chestnuts that
5728 -- involve Boolean range True..True.
5730 -- Note: validity checks are generated for expressions that yield a
5731 -- scalar type, when it is possible to create a value that is outside of
5732 -- the type. If this is a one-bit boolean no such value exists. This is
5733 -- an optimization, and it also prevents compiler blowing up during the
5734 -- elaboration of improperly expanded packed array references.
5736 elsif Nkind
(Expr
) = N_Indexed_Component
5737 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Expr
)))
5738 and then Root_Type
(Etype
(Expr
)) = Standard_Boolean
5742 -- For an expression with actions, we want to insert the validity check
5743 -- on the final Expression.
5745 elsif Nkind
(Expr
) = N_Expression_With_Actions
then
5746 Ensure_Valid
(Expression
(Expr
));
5749 -- An annoying special case. If this is an out parameter of a scalar
5750 -- type, then the value is not going to be accessed, therefore it is
5751 -- inappropriate to do any validity check at the call site.
5754 -- Only need to worry about scalar types
5756 if Is_Scalar_Type
(Typ
) then
5766 -- Find actual argument (which may be a parameter association)
5767 -- and the parent of the actual argument (the call statement)
5772 if Nkind
(P
) = N_Parameter_Association
then
5777 -- Only need to worry if we are argument of a procedure call
5778 -- since functions don't have out parameters. If this is an
5779 -- indirect or dispatching call, get signature from the
5782 if Nkind
(P
) = N_Procedure_Call_Statement
then
5783 L
:= Parameter_Associations
(P
);
5785 if Is_Entity_Name
(Name
(P
)) then
5786 E
:= Entity
(Name
(P
));
5788 pragma Assert
(Nkind
(Name
(P
)) = N_Explicit_Dereference
);
5789 E
:= Etype
(Name
(P
));
5792 -- Only need to worry if there are indeed actuals, and if
5793 -- this could be a procedure call, otherwise we cannot get a
5794 -- match (either we are not an argument, or the mode of the
5795 -- formal is not OUT). This test also filters out the
5798 if Is_Non_Empty_List
(L
) and then Is_Subprogram
(E
) then
5800 -- This is the loop through parameters, looking for an
5801 -- OUT parameter for which we are the argument.
5803 F
:= First_Formal
(E
);
5805 while Present
(F
) loop
5806 if Ekind
(F
) = E_Out_Parameter
and then A
= N
then
5819 -- If this is a boolean expression, only its elementary operands need
5820 -- checking: if they are valid, a boolean or short-circuit operation
5821 -- with them will be valid as well.
5823 if Base_Type
(Typ
) = Standard_Boolean
5825 (Nkind
(Expr
) in N_Op
or else Nkind
(Expr
) in N_Short_Circuit
)
5830 -- If we fall through, a validity check is required
5832 Insert_Valid_Check
(Expr
, Related_Id
, Is_Low_Bound
, Is_High_Bound
);
5834 if Is_Entity_Name
(Expr
)
5835 and then Safe_To_Capture_Value
(Expr
, Entity
(Expr
))
5837 Set_Is_Known_Valid
(Entity
(Expr
));
5841 ----------------------
5842 -- Expr_Known_Valid --
5843 ----------------------
5845 function Expr_Known_Valid
(Expr
: Node_Id
) return Boolean is
5846 Typ
: constant Entity_Id
:= Etype
(Expr
);
5849 -- Non-scalar types are always considered valid, since they never give
5850 -- rise to the issues of erroneous or bounded error behavior that are
5851 -- the concern. In formal reference manual terms the notion of validity
5852 -- only applies to scalar types. Note that even when packed arrays are
5853 -- represented using modular types, they are still arrays semantically,
5854 -- so they are also always valid (in particular, the unused bits can be
5855 -- random rubbish without affecting the validity of the array value).
5857 if not Is_Scalar_Type
(Typ
) or else Is_Packed_Array_Impl_Type
(Typ
) then
5860 -- If no validity checking, then everything is considered valid
5862 elsif not Validity_Checks_On
then
5865 -- Floating-point types are considered valid unless floating-point
5866 -- validity checks have been specifically turned on.
5868 elsif Is_Floating_Point_Type
(Typ
)
5869 and then not Validity_Check_Floating_Point
5873 -- If the expression is the value of an object that is known to be
5874 -- valid, then clearly the expression value itself is valid.
5876 elsif Is_Entity_Name
(Expr
)
5877 and then Is_Known_Valid
(Entity
(Expr
))
5879 -- Exclude volatile variables
5881 and then not Treat_As_Volatile
(Entity
(Expr
))
5885 -- References to discriminants are always considered valid. The value
5886 -- of a discriminant gets checked when the object is built. Within the
5887 -- record, we consider it valid, and it is important to do so, since
5888 -- otherwise we can try to generate bogus validity checks which
5889 -- reference discriminants out of scope. Discriminants of concurrent
5890 -- types are excluded for the same reason.
5892 elsif Is_Entity_Name
(Expr
)
5893 and then Denotes_Discriminant
(Expr
, Check_Concurrent
=> True)
5897 -- If the type is one for which all values are known valid, then we are
5898 -- sure that the value is valid except in the slightly odd case where
5899 -- the expression is a reference to a variable whose size has been
5900 -- explicitly set to a value greater than the object size.
5902 elsif Is_Known_Valid
(Typ
) then
5903 if Is_Entity_Name
(Expr
)
5904 and then Ekind
(Entity
(Expr
)) = E_Variable
5905 and then Esize
(Entity
(Expr
)) > Esize
(Typ
)
5912 -- Integer and character literals always have valid values, where
5913 -- appropriate these will be range checked in any case.
5915 elsif Nkind_In
(Expr
, N_Integer_Literal
, N_Character_Literal
) then
5918 -- If we have a type conversion or a qualification of a known valid
5919 -- value, then the result will always be valid.
5921 elsif Nkind_In
(Expr
, N_Type_Conversion
, N_Qualified_Expression
) then
5922 return Expr_Known_Valid
(Expression
(Expr
));
5924 -- Case of expression is a non-floating-point operator. In this case we
5925 -- can assume the result is valid the generated code for the operator
5926 -- will include whatever checks are needed (e.g. range checks) to ensure
5927 -- validity. This assumption does not hold for the floating-point case,
5928 -- since floating-point operators can generate Infinite or NaN results
5929 -- which are considered invalid.
5931 -- Historical note: in older versions, the exemption of floating-point
5932 -- types from this assumption was done only in cases where the parent
5933 -- was an assignment, function call or parameter association. Presumably
5934 -- the idea was that in other contexts, the result would be checked
5935 -- elsewhere, but this list of cases was missing tests (at least the
5936 -- N_Object_Declaration case, as shown by a reported missing validity
5937 -- check), and it is not clear why function calls but not procedure
5938 -- calls were tested for. It really seems more accurate and much
5939 -- safer to recognize that expressions which are the result of a
5940 -- floating-point operator can never be assumed to be valid.
5942 elsif Nkind
(Expr
) in N_Op
and then not Is_Floating_Point_Type
(Typ
) then
5945 -- The result of a membership test is always valid, since it is true or
5946 -- false, there are no other possibilities.
5948 elsif Nkind
(Expr
) in N_Membership_Test
then
5951 -- For all other cases, we do not know the expression is valid
5956 end Expr_Known_Valid
;
5962 procedure Find_Check
5964 Check_Type
: Character;
5965 Target_Type
: Entity_Id
;
5966 Entry_OK
: out Boolean;
5967 Check_Num
: out Nat
;
5968 Ent
: out Entity_Id
;
5971 function Within_Range_Of
5972 (Target_Type
: Entity_Id
;
5973 Check_Type
: Entity_Id
) return Boolean;
5974 -- Given a requirement for checking a range against Target_Type, and
5975 -- and a range Check_Type against which a check has already been made,
5976 -- determines if the check against check type is sufficient to ensure
5977 -- that no check against Target_Type is required.
5979 ---------------------
5980 -- Within_Range_Of --
5981 ---------------------
5983 function Within_Range_Of
5984 (Target_Type
: Entity_Id
;
5985 Check_Type
: Entity_Id
) return Boolean
5988 if Target_Type
= Check_Type
then
5993 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
5994 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
5995 Clo
: constant Node_Id
:= Type_Low_Bound
(Check_Type
);
5996 Chi
: constant Node_Id
:= Type_High_Bound
(Check_Type
);
6000 or else (Compile_Time_Known_Value
(Tlo
)
6002 Compile_Time_Known_Value
(Clo
)
6004 Expr_Value
(Clo
) >= Expr_Value
(Tlo
)))
6007 or else (Compile_Time_Known_Value
(Thi
)
6009 Compile_Time_Known_Value
(Chi
)
6011 Expr_Value
(Chi
) <= Expr_Value
(Clo
)))
6019 end Within_Range_Of
;
6021 -- Start of processing for Find_Check
6024 -- Establish default, in case no entry is found
6028 -- Case of expression is simple entity reference
6030 if Is_Entity_Name
(Expr
) then
6031 Ent
:= Entity
(Expr
);
6034 -- Case of expression is entity + known constant
6036 elsif Nkind
(Expr
) = N_Op_Add
6037 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6038 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6040 Ent
:= Entity
(Left_Opnd
(Expr
));
6041 Ofs
:= Expr_Value
(Right_Opnd
(Expr
));
6043 -- Case of expression is entity - known constant
6045 elsif Nkind
(Expr
) = N_Op_Subtract
6046 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6047 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6049 Ent
:= Entity
(Left_Opnd
(Expr
));
6050 Ofs
:= UI_Negate
(Expr_Value
(Right_Opnd
(Expr
)));
6052 -- Any other expression is not of the right form
6061 -- Come here with expression of appropriate form, check if entity is an
6062 -- appropriate one for our purposes.
6064 if (Ekind
(Ent
) = E_Variable
6065 or else Is_Constant_Object
(Ent
))
6066 and then not Is_Library_Level_Entity
(Ent
)
6074 -- See if there is matching check already
6076 for J
in reverse 1 .. Num_Saved_Checks
loop
6078 SC
: Saved_Check
renames Saved_Checks
(J
);
6080 if SC
.Killed
= False
6081 and then SC
.Entity
= Ent
6082 and then SC
.Offset
= Ofs
6083 and then SC
.Check_Type
= Check_Type
6084 and then Within_Range_Of
(Target_Type
, SC
.Target_Type
)
6092 -- If we fall through entry was not found
6097 ---------------------------------
6098 -- Generate_Discriminant_Check --
6099 ---------------------------------
6101 -- Note: the code for this procedure is derived from the
6102 -- Emit_Discriminant_Check Routine in trans.c.
6104 procedure Generate_Discriminant_Check
(N
: Node_Id
) is
6105 Loc
: constant Source_Ptr
:= Sloc
(N
);
6106 Pref
: constant Node_Id
:= Prefix
(N
);
6107 Sel
: constant Node_Id
:= Selector_Name
(N
);
6109 Orig_Comp
: constant Entity_Id
:=
6110 Original_Record_Component
(Entity
(Sel
));
6111 -- The original component to be checked
6113 Discr_Fct
: constant Entity_Id
:=
6114 Discriminant_Checking_Func
(Orig_Comp
);
6115 -- The discriminant checking function
6118 -- One discriminant to be checked in the type
6120 Real_Discr
: Entity_Id
;
6121 -- Actual discriminant in the call
6123 Pref_Type
: Entity_Id
;
6124 -- Type of relevant prefix (ignoring private/access stuff)
6127 -- List of arguments for function call
6130 -- Keep track of the formal corresponding to the actual we build for
6131 -- each discriminant, in order to be able to perform the necessary type
6135 -- Selected component reference for checking function argument
6138 Pref_Type
:= Etype
(Pref
);
6140 -- Force evaluation of the prefix, so that it does not get evaluated
6141 -- twice (once for the check, once for the actual reference). Such a
6142 -- double evaluation is always a potential source of inefficiency, and
6143 -- is functionally incorrect in the volatile case, or when the prefix
6144 -- may have side effects. A nonvolatile entity or a component of a
6145 -- nonvolatile entity requires no evaluation.
6147 if Is_Entity_Name
(Pref
) then
6148 if Treat_As_Volatile
(Entity
(Pref
)) then
6149 Force_Evaluation
(Pref
, Name_Req
=> True);
6152 elsif Treat_As_Volatile
(Etype
(Pref
)) then
6153 Force_Evaluation
(Pref
, Name_Req
=> True);
6155 elsif Nkind
(Pref
) = N_Selected_Component
6156 and then Is_Entity_Name
(Prefix
(Pref
))
6161 Force_Evaluation
(Pref
, Name_Req
=> True);
6164 -- For a tagged type, use the scope of the original component to
6165 -- obtain the type, because ???
6167 if Is_Tagged_Type
(Scope
(Orig_Comp
)) then
6168 Pref_Type
:= Scope
(Orig_Comp
);
6170 -- For an untagged derived type, use the discriminants of the parent
6171 -- which have been renamed in the derivation, possibly by a one-to-many
6172 -- discriminant constraint. For untagged type, initially get the Etype
6176 if Is_Derived_Type
(Pref_Type
)
6177 and then Number_Discriminants
(Pref_Type
) /=
6178 Number_Discriminants
(Etype
(Base_Type
(Pref_Type
)))
6180 Pref_Type
:= Etype
(Base_Type
(Pref_Type
));
6184 -- We definitely should have a checking function, This routine should
6185 -- not be called if no discriminant checking function is present.
6187 pragma Assert
(Present
(Discr_Fct
));
6189 -- Create the list of the actual parameters for the call. This list
6190 -- is the list of the discriminant fields of the record expression to
6191 -- be discriminant checked.
6194 Formal
:= First_Formal
(Discr_Fct
);
6195 Discr
:= First_Discriminant
(Pref_Type
);
6196 while Present
(Discr
) loop
6198 -- If we have a corresponding discriminant field, and a parent
6199 -- subtype is present, then we want to use the corresponding
6200 -- discriminant since this is the one with the useful value.
6202 if Present
(Corresponding_Discriminant
(Discr
))
6203 and then Ekind
(Pref_Type
) = E_Record_Type
6204 and then Present
(Parent_Subtype
(Pref_Type
))
6206 Real_Discr
:= Corresponding_Discriminant
(Discr
);
6208 Real_Discr
:= Discr
;
6211 -- Construct the reference to the discriminant
6214 Make_Selected_Component
(Loc
,
6216 Unchecked_Convert_To
(Pref_Type
,
6217 Duplicate_Subexpr
(Pref
)),
6218 Selector_Name
=> New_Occurrence_Of
(Real_Discr
, Loc
));
6220 -- Manually analyze and resolve this selected component. We really
6221 -- want it just as it appears above, and do not want the expander
6222 -- playing discriminal games etc with this reference. Then we append
6223 -- the argument to the list we are gathering.
6225 Set_Etype
(Scomp
, Etype
(Real_Discr
));
6226 Set_Analyzed
(Scomp
, True);
6227 Append_To
(Args
, Convert_To
(Etype
(Formal
), Scomp
));
6229 Next_Formal_With_Extras
(Formal
);
6230 Next_Discriminant
(Discr
);
6233 -- Now build and insert the call
6236 Make_Raise_Constraint_Error
(Loc
,
6238 Make_Function_Call
(Loc
,
6239 Name
=> New_Occurrence_Of
(Discr_Fct
, Loc
),
6240 Parameter_Associations
=> Args
),
6241 Reason
=> CE_Discriminant_Check_Failed
));
6242 end Generate_Discriminant_Check
;
6244 ---------------------------
6245 -- Generate_Index_Checks --
6246 ---------------------------
6248 procedure Generate_Index_Checks
(N
: Node_Id
) is
6250 function Entity_Of_Prefix
return Entity_Id
;
6251 -- Returns the entity of the prefix of N (or Empty if not found)
6253 ----------------------
6254 -- Entity_Of_Prefix --
6255 ----------------------
6257 function Entity_Of_Prefix
return Entity_Id
is
6262 while not Is_Entity_Name
(P
) loop
6263 if not Nkind_In
(P
, N_Selected_Component
,
6264 N_Indexed_Component
)
6273 end Entity_Of_Prefix
;
6277 Loc
: constant Source_Ptr
:= Sloc
(N
);
6278 A
: constant Node_Id
:= Prefix
(N
);
6279 A_Ent
: constant Entity_Id
:= Entity_Of_Prefix
;
6282 -- Start of processing for Generate_Index_Checks
6285 -- Ignore call if the prefix is not an array since we have a serious
6286 -- error in the sources. Ignore it also if index checks are suppressed
6287 -- for array object or type.
6289 if not Is_Array_Type
(Etype
(A
))
6290 or else (Present
(A_Ent
) and then Index_Checks_Suppressed
(A_Ent
))
6291 or else Index_Checks_Suppressed
(Etype
(A
))
6295 -- The indexed component we are dealing with contains 'Loop_Entry in its
6296 -- prefix. This case arises when analysis has determined that constructs
6299 -- Prefix'Loop_Entry (Expr)
6300 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6302 -- require rewriting for error detection purposes. A side effect of this
6303 -- action is the generation of index checks that mention 'Loop_Entry.
6304 -- Delay the generation of the check until 'Loop_Entry has been properly
6305 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6307 elsif Nkind
(Prefix
(N
)) = N_Attribute_Reference
6308 and then Attribute_Name
(Prefix
(N
)) = Name_Loop_Entry
6313 -- Generate a raise of constraint error with the appropriate reason and
6314 -- a condition of the form:
6316 -- Base_Type (Sub) not in Array'Range (Subscript)
6318 -- Note that the reason we generate the conversion to the base type here
6319 -- is that we definitely want the range check to take place, even if it
6320 -- looks like the subtype is OK. Optimization considerations that allow
6321 -- us to omit the check have already been taken into account in the
6322 -- setting of the Do_Range_Check flag earlier on.
6324 Sub
:= First
(Expressions
(N
));
6326 -- Handle string literals
6328 if Ekind
(Etype
(A
)) = E_String_Literal_Subtype
then
6329 if Do_Range_Check
(Sub
) then
6330 Set_Do_Range_Check
(Sub
, False);
6332 -- For string literals we obtain the bounds of the string from the
6333 -- associated subtype.
6336 Make_Raise_Constraint_Error
(Loc
,
6340 Convert_To
(Base_Type
(Etype
(Sub
)),
6341 Duplicate_Subexpr_Move_Checks
(Sub
)),
6343 Make_Attribute_Reference
(Loc
,
6344 Prefix
=> New_Occurrence_Of
(Etype
(A
), Loc
),
6345 Attribute_Name
=> Name_Range
)),
6346 Reason
=> CE_Index_Check_Failed
));
6353 A_Idx
: Node_Id
:= Empty
;
6360 A_Idx
:= First_Index
(Etype
(A
));
6362 while Present
(Sub
) loop
6363 if Do_Range_Check
(Sub
) then
6364 Set_Do_Range_Check
(Sub
, False);
6366 -- Force evaluation except for the case of a simple name of
6367 -- a nonvolatile entity.
6369 if not Is_Entity_Name
(Sub
)
6370 or else Treat_As_Volatile
(Entity
(Sub
))
6372 Force_Evaluation
(Sub
);
6375 if Nkind
(A_Idx
) = N_Range
then
6378 elsif Nkind
(A_Idx
) = N_Identifier
6379 or else Nkind
(A_Idx
) = N_Expanded_Name
6381 A_Range
:= Scalar_Range
(Entity
(A_Idx
));
6383 else pragma Assert
(Nkind
(A_Idx
) = N_Subtype_Indication
);
6384 A_Range
:= Range_Expression
(Constraint
(A_Idx
));
6387 -- For array objects with constant bounds we can generate
6388 -- the index check using the bounds of the type of the index
6391 and then Ekind
(A_Ent
) = E_Variable
6392 and then Is_Constant_Bound
(Low_Bound
(A_Range
))
6393 and then Is_Constant_Bound
(High_Bound
(A_Range
))
6396 Make_Attribute_Reference
(Loc
,
6398 New_Occurrence_Of
(Etype
(A_Idx
), Loc
),
6399 Attribute_Name
=> Name_Range
);
6401 -- For arrays with non-constant bounds we cannot generate
6402 -- the index check using the bounds of the type of the index
6403 -- since it may reference discriminants of some enclosing
6404 -- type. We obtain the bounds directly from the prefix
6411 Num
:= New_List
(Make_Integer_Literal
(Loc
, Ind
));
6415 Make_Attribute_Reference
(Loc
,
6417 Duplicate_Subexpr_Move_Checks
(A
, Name_Req
=> True),
6418 Attribute_Name
=> Name_Range
,
6419 Expressions
=> Num
);
6423 Make_Raise_Constraint_Error
(Loc
,
6427 Convert_To
(Base_Type
(Etype
(Sub
)),
6428 Duplicate_Subexpr_Move_Checks
(Sub
)),
6429 Right_Opnd
=> Range_N
),
6430 Reason
=> CE_Index_Check_Failed
));
6433 A_Idx
:= Next_Index
(A_Idx
);
6439 end Generate_Index_Checks
;
6441 --------------------------
6442 -- Generate_Range_Check --
6443 --------------------------
6445 procedure Generate_Range_Check
6447 Target_Type
: Entity_Id
;
6448 Reason
: RT_Exception_Code
)
6450 Loc
: constant Source_Ptr
:= Sloc
(N
);
6451 Source_Type
: constant Entity_Id
:= Etype
(N
);
6452 Source_Base_Type
: constant Entity_Id
:= Base_Type
(Source_Type
);
6453 Target_Base_Type
: constant Entity_Id
:= Base_Type
(Target_Type
);
6455 procedure Convert_And_Check_Range
;
6456 -- Convert the conversion operand to the target base type and save in
6457 -- a temporary. Then check the converted value against the range of the
6460 -----------------------------
6461 -- Convert_And_Check_Range --
6462 -----------------------------
6464 procedure Convert_And_Check_Range
is
6465 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6468 -- We make a temporary to hold the value of the converted value
6469 -- (converted to the base type), and then do the test against this
6470 -- temporary. The conversion itself is replaced by an occurrence of
6471 -- Tnn and followed by the explicit range check. Note that checks
6472 -- are suppressed for this code, since we don't want a recursive
6473 -- range check popping up.
6475 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6476 -- [constraint_error when Tnn not in Target_Type]
6478 Insert_Actions
(N
, New_List
(
6479 Make_Object_Declaration
(Loc
,
6480 Defining_Identifier
=> Tnn
,
6481 Object_Definition
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6482 Constant_Present
=> True,
6484 Make_Type_Conversion
(Loc
,
6485 Subtype_Mark
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6486 Expression
=> Duplicate_Subexpr
(N
))),
6488 Make_Raise_Constraint_Error
(Loc
,
6491 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6492 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6494 Suppress
=> All_Checks
);
6496 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6498 -- Set the type of N, because the declaration for Tnn might not
6499 -- be analyzed yet, as is the case if N appears within a record
6500 -- declaration, as a discriminant constraint or expression.
6502 Set_Etype
(N
, Target_Base_Type
);
6503 end Convert_And_Check_Range
;
6505 -- Start of processing for Generate_Range_Check
6508 -- First special case, if the source type is already within the range
6509 -- of the target type, then no check is needed (probably we should have
6510 -- stopped Do_Range_Check from being set in the first place, but better
6511 -- late than never in preventing junk code and junk flag settings.
6513 if In_Subrange_Of
(Source_Type
, Target_Type
)
6515 -- We do NOT apply this if the source node is a literal, since in this
6516 -- case the literal has already been labeled as having the subtype of
6520 (Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
, N_Character_Literal
)
6523 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
))
6525 Set_Do_Range_Check
(N
, False);
6529 -- Here a check is needed. If the expander is not active, or if we are
6530 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6531 -- are done. In both these cases, we just want to see the range check
6532 -- flag set, we do not want to generate the explicit range check code.
6534 if GNATprove_Mode
or else not Expander_Active
then
6535 Set_Do_Range_Check
(N
, True);
6539 -- Here we will generate an explicit range check, so we don't want to
6540 -- set the Do_Range check flag, since the range check is taken care of
6541 -- by the code we will generate.
6543 Set_Do_Range_Check
(N
, False);
6545 -- Force evaluation of the node, so that it does not get evaluated twice
6546 -- (once for the check, once for the actual reference). Such a double
6547 -- evaluation is always a potential source of inefficiency, and is
6548 -- functionally incorrect in the volatile case.
6550 if not Is_Entity_Name
(N
) or else Treat_As_Volatile
(Entity
(N
)) then
6551 Force_Evaluation
(N
);
6554 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6555 -- the same since in this case we can simply do a direct check of the
6556 -- value of N against the bounds of Target_Type.
6558 -- [constraint_error when N not in Target_Type]
6560 -- Note: this is by far the most common case, for example all cases of
6561 -- checks on the RHS of assignments are in this category, but not all
6562 -- cases are like this. Notably conversions can involve two types.
6564 if Source_Base_Type
= Target_Base_Type
then
6566 -- Insert the explicit range check. Note that we suppress checks for
6567 -- this code, since we don't want a recursive range check popping up.
6570 Make_Raise_Constraint_Error
(Loc
,
6573 Left_Opnd
=> Duplicate_Subexpr
(N
),
6574 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6576 Suppress
=> All_Checks
);
6578 -- Next test for the case where the target type is within the bounds
6579 -- of the base type of the source type, since in this case we can
6580 -- simply convert these bounds to the base type of T to do the test.
6582 -- [constraint_error when N not in
6583 -- Source_Base_Type (Target_Type'First)
6585 -- Source_Base_Type(Target_Type'Last))]
6587 -- The conversions will always work and need no check
6589 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6590 -- of converting from an enumeration value to an integer type, such as
6591 -- occurs for the case of generating a range check on Enum'Val(Exp)
6592 -- (which used to be handled by gigi). This is OK, since the conversion
6593 -- itself does not require a check.
6595 elsif In_Subrange_Of
(Target_Type
, Source_Base_Type
) then
6597 -- Insert the explicit range check. Note that we suppress checks for
6598 -- this code, since we don't want a recursive range check popping up.
6600 if Is_Discrete_Type
(Source_Base_Type
)
6602 Is_Discrete_Type
(Target_Base_Type
)
6605 Make_Raise_Constraint_Error
(Loc
,
6608 Left_Opnd
=> Duplicate_Subexpr
(N
),
6613 Unchecked_Convert_To
(Source_Base_Type
,
6614 Make_Attribute_Reference
(Loc
,
6616 New_Occurrence_Of
(Target_Type
, Loc
),
6617 Attribute_Name
=> Name_First
)),
6620 Unchecked_Convert_To
(Source_Base_Type
,
6621 Make_Attribute_Reference
(Loc
,
6623 New_Occurrence_Of
(Target_Type
, Loc
),
6624 Attribute_Name
=> Name_Last
)))),
6626 Suppress
=> All_Checks
);
6628 -- For conversions involving at least one type that is not discrete,
6629 -- first convert to target type and then generate the range check.
6630 -- This avoids problems with values that are close to a bound of the
6631 -- target type that would fail a range check when done in a larger
6632 -- source type before converting but would pass if converted with
6633 -- rounding and then checked (such as in float-to-float conversions).
6636 Convert_And_Check_Range
;
6639 -- Note that at this stage we now that the Target_Base_Type is not in
6640 -- the range of the Source_Base_Type (since even the Target_Type itself
6641 -- is not in this range). It could still be the case that Source_Type is
6642 -- in range of the target base type since we have not checked that case.
6644 -- If that is the case, we can freely convert the source to the target,
6645 -- and then test the target result against the bounds.
6647 elsif In_Subrange_Of
(Source_Type
, Target_Base_Type
) then
6648 Convert_And_Check_Range
;
6650 -- At this stage, we know that we have two scalar types, which are
6651 -- directly convertible, and where neither scalar type has a base
6652 -- range that is in the range of the other scalar type.
6654 -- The only way this can happen is with a signed and unsigned type.
6655 -- So test for these two cases:
6658 -- Case of the source is unsigned and the target is signed
6660 if Is_Unsigned_Type
(Source_Base_Type
)
6661 and then not Is_Unsigned_Type
(Target_Base_Type
)
6663 -- If the source is unsigned and the target is signed, then we
6664 -- know that the source is not shorter than the target (otherwise
6665 -- the source base type would be in the target base type range).
6667 -- In other words, the unsigned type is either the same size as
6668 -- the target, or it is larger. It cannot be smaller.
6671 (Esize
(Source_Base_Type
) >= Esize
(Target_Base_Type
));
6673 -- We only need to check the low bound if the low bound of the
6674 -- target type is non-negative. If the low bound of the target
6675 -- type is negative, then we know that we will fit fine.
6677 -- If the high bound of the target type is negative, then we
6678 -- know we have a constraint error, since we can't possibly
6679 -- have a negative source.
6681 -- With these two checks out of the way, we can do the check
6682 -- using the source type safely
6684 -- This is definitely the most annoying case.
6686 -- [constraint_error
6687 -- when (Target_Type'First >= 0
6689 -- N < Source_Base_Type (Target_Type'First))
6690 -- or else Target_Type'Last < 0
6691 -- or else N > Source_Base_Type (Target_Type'Last)];
6693 -- We turn off all checks since we know that the conversions
6694 -- will work fine, given the guards for negative values.
6697 Make_Raise_Constraint_Error
(Loc
,
6703 Left_Opnd
=> Make_Op_Ge
(Loc
,
6705 Make_Attribute_Reference
(Loc
,
6707 New_Occurrence_Of
(Target_Type
, Loc
),
6708 Attribute_Name
=> Name_First
),
6709 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6713 Left_Opnd
=> Duplicate_Subexpr
(N
),
6715 Convert_To
(Source_Base_Type
,
6716 Make_Attribute_Reference
(Loc
,
6718 New_Occurrence_Of
(Target_Type
, Loc
),
6719 Attribute_Name
=> Name_First
)))),
6724 Make_Attribute_Reference
(Loc
,
6725 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6726 Attribute_Name
=> Name_Last
),
6727 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
))),
6731 Left_Opnd
=> Duplicate_Subexpr
(N
),
6733 Convert_To
(Source_Base_Type
,
6734 Make_Attribute_Reference
(Loc
,
6735 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6736 Attribute_Name
=> Name_Last
)))),
6739 Suppress
=> All_Checks
);
6741 -- Only remaining possibility is that the source is signed and
6742 -- the target is unsigned.
6745 pragma Assert
(not Is_Unsigned_Type
(Source_Base_Type
)
6746 and then Is_Unsigned_Type
(Target_Base_Type
));
6748 -- If the source is signed and the target is unsigned, then we
6749 -- know that the target is not shorter than the source (otherwise
6750 -- the target base type would be in the source base type range).
6752 -- In other words, the unsigned type is either the same size as
6753 -- the target, or it is larger. It cannot be smaller.
6755 -- Clearly we have an error if the source value is negative since
6756 -- no unsigned type can have negative values. If the source type
6757 -- is non-negative, then the check can be done using the target
6760 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6762 -- [constraint_error
6763 -- when N < 0 or else Tnn not in Target_Type];
6765 -- We turn off all checks for the conversion of N to the target
6766 -- base type, since we generate the explicit check to ensure that
6767 -- the value is non-negative
6770 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6773 Insert_Actions
(N
, New_List
(
6774 Make_Object_Declaration
(Loc
,
6775 Defining_Identifier
=> Tnn
,
6776 Object_Definition
=>
6777 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6778 Constant_Present
=> True,
6780 Make_Unchecked_Type_Conversion
(Loc
,
6782 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6783 Expression
=> Duplicate_Subexpr
(N
))),
6785 Make_Raise_Constraint_Error
(Loc
,
6790 Left_Opnd
=> Duplicate_Subexpr
(N
),
6791 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6795 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6797 New_Occurrence_Of
(Target_Type
, Loc
))),
6800 Suppress
=> All_Checks
);
6802 -- Set the Etype explicitly, because Insert_Actions may have
6803 -- placed the declaration in the freeze list for an enclosing
6804 -- construct, and thus it is not analyzed yet.
6806 Set_Etype
(Tnn
, Target_Base_Type
);
6807 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6811 end Generate_Range_Check
;
6817 function Get_Check_Id
(N
: Name_Id
) return Check_Id
is
6819 -- For standard check name, we can do a direct computation
6821 if N
in First_Check_Name
.. Last_Check_Name
then
6822 return Check_Id
(N
- (First_Check_Name
- 1));
6824 -- For non-standard names added by pragma Check_Name, search table
6827 for J
in All_Checks
+ 1 .. Check_Names
.Last
loop
6828 if Check_Names
.Table
(J
) = N
then
6834 -- No matching name found
6839 ---------------------
6840 -- Get_Discriminal --
6841 ---------------------
6843 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
is
6844 Loc
: constant Source_Ptr
:= Sloc
(E
);
6849 -- The bound can be a bona fide parameter of a protected operation,
6850 -- rather than a prival encoded as an in-parameter.
6852 if No
(Discriminal_Link
(Entity
(Bound
))) then
6856 -- Climb the scope stack looking for an enclosing protected type. If
6857 -- we run out of scopes, return the bound itself.
6860 while Present
(Sc
) loop
6861 if Sc
= Standard_Standard
then
6863 elsif Ekind
(Sc
) = E_Protected_Type
then
6870 D
:= First_Discriminant
(Sc
);
6871 while Present
(D
) loop
6872 if Chars
(D
) = Chars
(Bound
) then
6873 return New_Occurrence_Of
(Discriminal
(D
), Loc
);
6876 Next_Discriminant
(D
);
6880 end Get_Discriminal
;
6882 ----------------------
6883 -- Get_Range_Checks --
6884 ----------------------
6886 function Get_Range_Checks
6888 Target_Typ
: Entity_Id
;
6889 Source_Typ
: Entity_Id
:= Empty
;
6890 Warn_Node
: Node_Id
:= Empty
) return Check_Result
6894 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Warn_Node
);
6895 end Get_Range_Checks
;
6901 function Guard_Access
6904 Ck_Node
: Node_Id
) return Node_Id
6907 if Nkind
(Cond
) = N_Or_Else
then
6908 Set_Paren_Count
(Cond
, 1);
6911 if Nkind
(Ck_Node
) = N_Allocator
then
6919 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
6920 Right_Opnd
=> Make_Null
(Loc
)),
6921 Right_Opnd
=> Cond
);
6925 -----------------------------
6926 -- Index_Checks_Suppressed --
6927 -----------------------------
6929 function Index_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
6931 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
6932 return Is_Check_Suppressed
(E
, Index_Check
);
6934 return Scope_Suppress
.Suppress
(Index_Check
);
6936 end Index_Checks_Suppressed
;
6942 procedure Initialize
is
6944 for J
in Determine_Range_Cache_N
'Range loop
6945 Determine_Range_Cache_N
(J
) := Empty
;
6950 for J
in Int
range 1 .. All_Checks
loop
6951 Check_Names
.Append
(Name_Id
(Int
(First_Check_Name
) + J
- 1));
6955 -------------------------
6956 -- Insert_Range_Checks --
6957 -------------------------
6959 procedure Insert_Range_Checks
6960 (Checks
: Check_Result
;
6962 Suppress_Typ
: Entity_Id
;
6963 Static_Sloc
: Source_Ptr
:= No_Location
;
6964 Flag_Node
: Node_Id
:= Empty
;
6965 Do_Before
: Boolean := False)
6967 Internal_Flag_Node
: Node_Id
:= Flag_Node
;
6968 Internal_Static_Sloc
: Source_Ptr
:= Static_Sloc
;
6970 Check_Node
: Node_Id
;
6971 Checks_On
: constant Boolean :=
6972 (not Index_Checks_Suppressed
(Suppress_Typ
))
6973 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
6976 -- For now we just return if Checks_On is false, however this should be
6977 -- enhanced to check for an always True value in the condition and to
6978 -- generate a compilation warning???
6980 if not Expander_Active
or not Checks_On
then
6984 if Static_Sloc
= No_Location
then
6985 Internal_Static_Sloc
:= Sloc
(Node
);
6988 if No
(Flag_Node
) then
6989 Internal_Flag_Node
:= Node
;
6992 for J
in 1 .. 2 loop
6993 exit when No
(Checks
(J
));
6995 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
6996 and then Present
(Condition
(Checks
(J
)))
6998 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
6999 Check_Node
:= Checks
(J
);
7000 Mark_Rewrite_Insertion
(Check_Node
);
7003 Insert_Before_And_Analyze
(Node
, Check_Node
);
7005 Insert_After_And_Analyze
(Node
, Check_Node
);
7008 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
7013 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
7014 Reason
=> CE_Range_Check_Failed
);
7015 Mark_Rewrite_Insertion
(Check_Node
);
7018 Insert_Before_And_Analyze
(Node
, Check_Node
);
7020 Insert_After_And_Analyze
(Node
, Check_Node
);
7024 end Insert_Range_Checks
;
7026 ------------------------
7027 -- Insert_Valid_Check --
7028 ------------------------
7030 procedure Insert_Valid_Check
7032 Related_Id
: Entity_Id
:= Empty
;
7033 Is_Low_Bound
: Boolean := False;
7034 Is_High_Bound
: Boolean := False)
7036 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7037 Typ
: constant Entity_Id
:= Etype
(Expr
);
7041 -- Do not insert if checks off, or if not checking validity or if
7042 -- expression is known to be valid.
7044 if not Validity_Checks_On
7045 or else Range_Or_Validity_Checks_Suppressed
(Expr
)
7046 or else Expr_Known_Valid
(Expr
)
7051 -- Do not insert checks within a predicate function. This will arise
7052 -- if the current unit and the predicate function are being compiled
7053 -- with validity checks enabled.
7055 if Present
(Predicate_Function
(Typ
))
7056 and then Current_Scope
= Predicate_Function
(Typ
)
7061 -- If the expression is a packed component of a modular type of the
7062 -- right size, the data is always valid.
7064 if Nkind
(Expr
) = N_Selected_Component
7065 and then Present
(Component_Clause
(Entity
(Selector_Name
(Expr
))))
7066 and then Is_Modular_Integer_Type
(Typ
)
7067 and then Modulus
(Typ
) = 2 ** Esize
(Entity
(Selector_Name
(Expr
)))
7072 -- If we have a checked conversion, then validity check applies to
7073 -- the expression inside the conversion, not the result, since if
7074 -- the expression inside is valid, then so is the conversion result.
7077 while Nkind
(Exp
) = N_Type_Conversion
loop
7078 Exp
:= Expression
(Exp
);
7081 -- We are about to insert the validity check for Exp. We save and
7082 -- reset the Do_Range_Check flag over this validity check, and then
7083 -- put it back for the final original reference (Exp may be rewritten).
7086 DRC
: constant Boolean := Do_Range_Check
(Exp
);
7091 Set_Do_Range_Check
(Exp
, False);
7093 -- Force evaluation to avoid multiple reads for atomic/volatile
7095 -- Note: we set Name_Req to False. We used to set it to True, with
7096 -- the thinking that a name is required as the prefix of the 'Valid
7097 -- call, but in fact the check that the prefix of an attribute is
7098 -- a name is in the parser, and we just don't require it here.
7099 -- Moreover, when we set Name_Req to True, that interfered with the
7100 -- checking for Volatile, since we couldn't just capture the value.
7102 if Is_Entity_Name
(Exp
)
7103 and then Is_Volatile
(Entity
(Exp
))
7105 -- Same reasoning as above for setting Name_Req to False
7107 Force_Evaluation
(Exp
, Name_Req
=> False);
7110 -- Build the prefix for the 'Valid call
7113 Duplicate_Subexpr_No_Checks
7116 Related_Id
=> Related_Id
,
7117 Is_Low_Bound
=> Is_Low_Bound
,
7118 Is_High_Bound
=> Is_High_Bound
);
7120 -- A rather specialized test. If PV is an analyzed expression which
7121 -- is an indexed component of a packed array that has not been
7122 -- properly expanded, turn off its Analyzed flag to make sure it
7123 -- gets properly reexpanded. If the prefix is an access value,
7124 -- the dereference will be added later.
7126 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7127 -- an analyze with the old parent pointer. This may point e.g. to
7128 -- a subprogram call, which deactivates this expansion.
7131 and then Nkind
(PV
) = N_Indexed_Component
7132 and then Is_Array_Type
(Etype
(Prefix
(PV
)))
7133 and then Present
(Packed_Array_Impl_Type
(Etype
(Prefix
(PV
))))
7135 Set_Analyzed
(PV
, False);
7138 -- Build the raise CE node to check for validity. We build a type
7139 -- qualification for the prefix, since it may not be of the form of
7140 -- a name, and we don't care in this context!
7143 Make_Raise_Constraint_Error
(Loc
,
7147 Make_Attribute_Reference
(Loc
,
7149 Attribute_Name
=> Name_Valid
)),
7150 Reason
=> CE_Invalid_Data
);
7152 -- Insert the validity check. Note that we do this with validity
7153 -- checks turned off, to avoid recursion, we do not want validity
7154 -- checks on the validity checking code itself.
7156 Insert_Action
(Expr
, CE
, Suppress
=> Validity_Check
);
7158 -- If the expression is a reference to an element of a bit-packed
7159 -- array, then it is rewritten as a renaming declaration. If the
7160 -- expression is an actual in a call, it has not been expanded,
7161 -- waiting for the proper point at which to do it. The same happens
7162 -- with renamings, so that we have to force the expansion now. This
7163 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7166 if Is_Entity_Name
(Exp
)
7167 and then Nkind
(Parent
(Entity
(Exp
))) =
7168 N_Object_Renaming_Declaration
7171 Old_Exp
: constant Node_Id
:= Name
(Parent
(Entity
(Exp
)));
7173 if Nkind
(Old_Exp
) = N_Indexed_Component
7174 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Old_Exp
)))
7176 Expand_Packed_Element_Reference
(Old_Exp
);
7181 -- Put back the Do_Range_Check flag on the resulting (possibly
7182 -- rewritten) expression.
7184 -- Note: it might be thought that a validity check is not required
7185 -- when a range check is present, but that's not the case, because
7186 -- the back end is allowed to assume for the range check that the
7187 -- operand is within its declared range (an assumption that validity
7188 -- checking is all about NOT assuming).
7190 -- Note: no need to worry about Possible_Local_Raise here, it will
7191 -- already have been called if original node has Do_Range_Check set.
7193 Set_Do_Range_Check
(Exp
, DRC
);
7195 end Insert_Valid_Check
;
7197 -------------------------------------
7198 -- Is_Signed_Integer_Arithmetic_Op --
7199 -------------------------------------
7201 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean is
7204 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
7205 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
7206 N_Op_Rem | N_Op_Subtract
=>
7207 return Is_Signed_Integer_Type
(Etype
(N
));
7209 when N_If_Expression | N_Case_Expression
=>
7210 return Is_Signed_Integer_Type
(Etype
(N
));
7215 end Is_Signed_Integer_Arithmetic_Op
;
7217 ----------------------------------
7218 -- Install_Null_Excluding_Check --
7219 ----------------------------------
7221 procedure Install_Null_Excluding_Check
(N
: Node_Id
) is
7222 Loc
: constant Source_Ptr
:= Sloc
(Parent
(N
));
7223 Typ
: constant Entity_Id
:= Etype
(N
);
7225 function Safe_To_Capture_In_Parameter_Value
return Boolean;
7226 -- Determines if it is safe to capture Known_Non_Null status for an
7227 -- the entity referenced by node N. The caller ensures that N is indeed
7228 -- an entity name. It is safe to capture the non-null status for an IN
7229 -- parameter when the reference occurs within a declaration that is sure
7230 -- to be executed as part of the declarative region.
7232 procedure Mark_Non_Null
;
7233 -- After installation of check, if the node in question is an entity
7234 -- name, then mark this entity as non-null if possible.
7236 function Safe_To_Capture_In_Parameter_Value
return Boolean is
7237 E
: constant Entity_Id
:= Entity
(N
);
7238 S
: constant Entity_Id
:= Current_Scope
;
7242 if Ekind
(E
) /= E_In_Parameter
then
7246 -- Two initial context checks. We must be inside a subprogram body
7247 -- with declarations and reference must not appear in nested scopes.
7249 if (Ekind
(S
) /= E_Function
and then Ekind
(S
) /= E_Procedure
)
7250 or else Scope
(E
) /= S
7255 S_Par
:= Parent
(Parent
(S
));
7257 if Nkind
(S_Par
) /= N_Subprogram_Body
7258 or else No
(Declarations
(S_Par
))
7268 -- Retrieve the declaration node of N (if any). Note that N
7269 -- may be a part of a complex initialization expression.
7273 while Present
(P
) loop
7275 -- If we have a short circuit form, and we are within the right
7276 -- hand expression, we return false, since the right hand side
7277 -- is not guaranteed to be elaborated.
7279 if Nkind
(P
) in N_Short_Circuit
7280 and then N
= Right_Opnd
(P
)
7285 -- Similarly, if we are in an if expression and not part of the
7286 -- condition, then we return False, since neither the THEN or
7287 -- ELSE dependent expressions will always be elaborated.
7289 if Nkind
(P
) = N_If_Expression
7290 and then N
/= First
(Expressions
(P
))
7295 -- If within a case expression, and not part of the expression,
7296 -- then return False, since a particular dependent expression
7297 -- may not always be elaborated
7299 if Nkind
(P
) = N_Case_Expression
7300 and then N
/= Expression
(P
)
7305 -- While traversing the parent chain, if node N belongs to a
7306 -- statement, then it may never appear in a declarative region.
7308 if Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
7309 or else Nkind
(P
) = N_Procedure_Call_Statement
7314 -- If we are at a declaration, record it and exit
7316 if Nkind
(P
) in N_Declaration
7317 and then Nkind
(P
) not in N_Subprogram_Specification
7330 return List_Containing
(N_Decl
) = Declarations
(S_Par
);
7332 end Safe_To_Capture_In_Parameter_Value
;
7338 procedure Mark_Non_Null
is
7340 -- Only case of interest is if node N is an entity name
7342 if Is_Entity_Name
(N
) then
7344 -- For sure, we want to clear an indication that this is known to
7345 -- be null, since if we get past this check, it definitely is not.
7347 Set_Is_Known_Null
(Entity
(N
), False);
7349 -- We can mark the entity as known to be non-null if either it is
7350 -- safe to capture the value, or in the case of an IN parameter,
7351 -- which is a constant, if the check we just installed is in the
7352 -- declarative region of the subprogram body. In this latter case,
7353 -- a check is decisive for the rest of the body if the expression
7354 -- is sure to be elaborated, since we know we have to elaborate
7355 -- all declarations before executing the body.
7357 -- Couldn't this always be part of Safe_To_Capture_Value ???
7359 if Safe_To_Capture_Value
(N
, Entity
(N
))
7360 or else Safe_To_Capture_In_Parameter_Value
7362 Set_Is_Known_Non_Null
(Entity
(N
));
7367 -- Start of processing for Install_Null_Excluding_Check
7370 pragma Assert
(Is_Access_Type
(Typ
));
7372 -- No check inside a generic, check will be emitted in instance
7374 if Inside_A_Generic
then
7378 -- No check needed if known to be non-null
7380 if Known_Non_Null
(N
) then
7384 -- If known to be null, here is where we generate a compile time check
7386 if Known_Null
(N
) then
7388 -- Avoid generating warning message inside init procs. In SPARK mode
7389 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7390 -- since it will be turned into an error in any case.
7392 if (not Inside_Init_Proc
or else SPARK_Mode
= On
)
7394 -- Do not emit the warning within a conditional expression,
7395 -- where the expression might not be evaluated, and the warning
7396 -- appear as extraneous noise.
7398 and then not Within_Case_Or_If_Expression
(N
)
7400 Apply_Compile_Time_Constraint_Error
7401 (N
, "null value not allowed here??", CE_Access_Check_Failed
);
7403 -- Remaining cases, where we silently insert the raise
7407 Make_Raise_Constraint_Error
(Loc
,
7408 Reason
=> CE_Access_Check_Failed
));
7415 -- If entity is never assigned, for sure a warning is appropriate
7417 if Is_Entity_Name
(N
) then
7418 Check_Unset_Reference
(N
);
7421 -- No check needed if checks are suppressed on the range. Note that we
7422 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7423 -- so, since the program is erroneous, but we don't like to casually
7424 -- propagate such conclusions from erroneosity).
7426 if Access_Checks_Suppressed
(Typ
) then
7430 -- No check needed for access to concurrent record types generated by
7431 -- the expander. This is not just an optimization (though it does indeed
7432 -- remove junk checks). It also avoids generation of junk warnings.
7434 if Nkind
(N
) in N_Has_Chars
7435 and then Chars
(N
) = Name_uObject
7436 and then Is_Concurrent_Record_Type
7437 (Directly_Designated_Type
(Etype
(N
)))
7442 -- No check needed in interface thunks since the runtime check is
7443 -- already performed at the caller side.
7445 if Is_Thunk
(Current_Scope
) then
7449 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7450 -- the expander within exception handlers, since we know that the value
7451 -- can never be null.
7453 -- Is this really the right way to do this? Normally we generate such
7454 -- code in the expander with checks off, and that's how we suppress this
7455 -- kind of junk check ???
7457 if Nkind
(N
) = N_Function_Call
7458 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
7459 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
7460 and then Is_RTE
(Entity
(Prefix
(Name
(N
))), RE_Get_Current_Excep
)
7465 -- Otherwise install access check
7468 Make_Raise_Constraint_Error
(Loc
,
7471 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(N
),
7472 Right_Opnd
=> Make_Null
(Loc
)),
7473 Reason
=> CE_Access_Check_Failed
));
7476 end Install_Null_Excluding_Check
;
7478 --------------------------
7479 -- Install_Static_Check --
7480 --------------------------
7482 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
) is
7483 Stat
: constant Boolean := Is_OK_Static_Expression
(R_Cno
);
7484 Typ
: constant Entity_Id
:= Etype
(R_Cno
);
7488 Make_Raise_Constraint_Error
(Loc
,
7489 Reason
=> CE_Range_Check_Failed
));
7490 Set_Analyzed
(R_Cno
);
7491 Set_Etype
(R_Cno
, Typ
);
7492 Set_Raises_Constraint_Error
(R_Cno
);
7493 Set_Is_Static_Expression
(R_Cno
, Stat
);
7495 -- Now deal with possible local raise handling
7497 Possible_Local_Raise
(R_Cno
, Standard_Constraint_Error
);
7498 end Install_Static_Check
;
7500 -------------------------
7501 -- Is_Check_Suppressed --
7502 -------------------------
7504 function Is_Check_Suppressed
(E
: Entity_Id
; C
: Check_Id
) return Boolean is
7505 Ptr
: Suppress_Stack_Entry_Ptr
;
7508 -- First search the local entity suppress stack. We search this from the
7509 -- top of the stack down so that we get the innermost entry that applies
7510 -- to this case if there are nested entries.
7512 Ptr
:= Local_Suppress_Stack_Top
;
7513 while Ptr
/= null loop
7514 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7515 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7517 return Ptr
.Suppress
;
7523 -- Now search the global entity suppress table for a matching entry.
7524 -- We also search this from the top down so that if there are multiple
7525 -- pragmas for the same entity, the last one applies (not clear what
7526 -- or whether the RM specifies this handling, but it seems reasonable).
7528 Ptr
:= Global_Suppress_Stack_Top
;
7529 while Ptr
/= null loop
7530 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7531 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7533 return Ptr
.Suppress
;
7539 -- If we did not find a matching entry, then use the normal scope
7540 -- suppress value after all (actually this will be the global setting
7541 -- since it clearly was not overridden at any point). For a predefined
7542 -- check, we test the specific flag. For a user defined check, we check
7543 -- the All_Checks flag. The Overflow flag requires special handling to
7544 -- deal with the General vs Assertion case
7546 if C
= Overflow_Check
then
7547 return Overflow_Checks_Suppressed
(Empty
);
7548 elsif C
in Predefined_Check_Id
then
7549 return Scope_Suppress
.Suppress
(C
);
7551 return Scope_Suppress
.Suppress
(All_Checks
);
7553 end Is_Check_Suppressed
;
7555 ---------------------
7556 -- Kill_All_Checks --
7557 ---------------------
7559 procedure Kill_All_Checks
is
7561 if Debug_Flag_CC
then
7562 w
("Kill_All_Checks");
7565 -- We reset the number of saved checks to zero, and also modify all
7566 -- stack entries for statement ranges to indicate that the number of
7567 -- checks at each level is now zero.
7569 Num_Saved_Checks
:= 0;
7571 -- Note: the Int'Min here avoids any possibility of J being out of
7572 -- range when called from e.g. Conditional_Statements_Begin.
7574 for J
in 1 .. Int
'Min (Saved_Checks_TOS
, Saved_Checks_Stack
'Last) loop
7575 Saved_Checks_Stack
(J
) := 0;
7577 end Kill_All_Checks
;
7583 procedure Kill_Checks
(V
: Entity_Id
) is
7585 if Debug_Flag_CC
then
7586 w
("Kill_Checks for entity", Int
(V
));
7589 for J
in 1 .. Num_Saved_Checks
loop
7590 if Saved_Checks
(J
).Entity
= V
then
7591 if Debug_Flag_CC
then
7592 w
(" Checks killed for saved check ", J
);
7595 Saved_Checks
(J
).Killed
:= True;
7600 ------------------------------
7601 -- Length_Checks_Suppressed --
7602 ------------------------------
7604 function Length_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7606 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7607 return Is_Check_Suppressed
(E
, Length_Check
);
7609 return Scope_Suppress
.Suppress
(Length_Check
);
7611 end Length_Checks_Suppressed
;
7613 -----------------------
7614 -- Make_Bignum_Block --
7615 -----------------------
7617 function Make_Bignum_Block
(Loc
: Source_Ptr
) return Node_Id
is
7618 M
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uM
);
7621 Make_Block_Statement
(Loc
,
7623 New_List
(Build_SS_Mark_Call
(Loc
, M
)),
7624 Handled_Statement_Sequence
=>
7625 Make_Handled_Sequence_Of_Statements
(Loc
,
7626 Statements
=> New_List
(Build_SS_Release_Call
(Loc
, M
))));
7627 end Make_Bignum_Block
;
7629 ----------------------------------
7630 -- Minimize_Eliminate_Overflows --
7631 ----------------------------------
7633 -- This is a recursive routine that is called at the top of an expression
7634 -- tree to properly process overflow checking for a whole subtree by making
7635 -- recursive calls to process operands. This processing may involve the use
7636 -- of bignum or long long integer arithmetic, which will change the types
7637 -- of operands and results. That's why we can't do this bottom up (since
7638 -- it would interfere with semantic analysis).
7640 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
7641 -- the operator expansion routines, as well as the expansion routines for
7642 -- if/case expression, do nothing (for the moment) except call the routine
7643 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7644 -- routine does nothing for non top-level nodes, so at the point where the
7645 -- call is made for the top level node, the entire expression subtree has
7646 -- not been expanded, or processed for overflow. All that has to happen as
7647 -- a result of the top level call to this routine.
7649 -- As noted above, the overflow processing works by making recursive calls
7650 -- for the operands, and figuring out what to do, based on the processing
7651 -- of these operands (e.g. if a bignum operand appears, the parent op has
7652 -- to be done in bignum mode), and the determined ranges of the operands.
7654 -- After possible rewriting of a constituent subexpression node, a call is
7655 -- made to either reexpand the node (if nothing has changed) or reanalyze
7656 -- the node (if it has been modified by the overflow check processing). The
7657 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7658 -- a recursive call into the whole overflow apparatus, an important rule
7659 -- for this call is that the overflow handling mode must be temporarily set
7662 procedure Minimize_Eliminate_Overflows
7666 Top_Level
: Boolean)
7668 Rtyp
: constant Entity_Id
:= Etype
(N
);
7669 pragma Assert
(Is_Signed_Integer_Type
(Rtyp
));
7670 -- Result type, must be a signed integer type
7672 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
7673 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
7675 Loc
: constant Source_Ptr
:= Sloc
(N
);
7678 -- Ranges of values for right operand (operator case)
7681 -- Ranges of values for left operand (operator case)
7683 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
7684 -- Operands and results are of this type when we convert
7686 LLLo
: constant Uint
:= Intval
(Type_Low_Bound
(LLIB
));
7687 LLHi
: constant Uint
:= Intval
(Type_High_Bound
(LLIB
));
7688 -- Bounds of Long_Long_Integer
7690 Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
7691 -- Indicates binary operator case
7694 -- Used in call to Determine_Range
7696 Bignum_Operands
: Boolean;
7697 -- Set True if one or more operands is already of type Bignum, meaning
7698 -- that for sure (regardless of Top_Level setting) we are committed to
7699 -- doing the operation in Bignum mode (or in the case of a case or if
7700 -- expression, converting all the dependent expressions to Bignum).
7702 Long_Long_Integer_Operands
: Boolean;
7703 -- Set True if one or more operands is already of type Long_Long_Integer
7704 -- which means that if the result is known to be in the result type
7705 -- range, then we must convert such operands back to the result type.
7707 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False);
7708 -- This is called when we have modified the node and we therefore need
7709 -- to reanalyze it. It is important that we reset the mode to STRICT for
7710 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
7711 -- we would reenter this routine recursively which would not be good.
7712 -- The argument Suppress is set True if we also want to suppress
7713 -- overflow checking for the reexpansion (this is set when we know
7714 -- overflow is not possible). Typ is the type for the reanalysis.
7716 procedure Reexpand
(Suppress
: Boolean := False);
7717 -- This is like Reanalyze, but does not do the Analyze step, it only
7718 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7719 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7720 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7721 -- Note that skipping reanalysis is not just an optimization, testing
7722 -- has showed up several complex cases in which reanalyzing an already
7723 -- analyzed node causes incorrect behavior.
7725 function In_Result_Range
return Boolean;
7726 -- Returns True iff Lo .. Hi are within range of the result type
7728 procedure Max
(A
: in out Uint
; B
: Uint
);
7729 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
7731 procedure Min
(A
: in out Uint
; B
: Uint
);
7732 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
7734 ---------------------
7735 -- In_Result_Range --
7736 ---------------------
7738 function In_Result_Range
return Boolean is
7740 if Lo
= No_Uint
or else Hi
= No_Uint
then
7743 elsif Is_OK_Static_Subtype
(Etype
(N
)) then
7744 return Lo
>= Expr_Value
(Type_Low_Bound
(Rtyp
))
7746 Hi
<= Expr_Value
(Type_High_Bound
(Rtyp
));
7749 return Lo
>= Expr_Value
(Type_Low_Bound
(Base_Type
(Rtyp
)))
7751 Hi
<= Expr_Value
(Type_High_Bound
(Base_Type
(Rtyp
)));
7753 end In_Result_Range
;
7759 procedure Max
(A
: in out Uint
; B
: Uint
) is
7761 if A
= No_Uint
or else B
> A
then
7770 procedure Min
(A
: in out Uint
; B
: Uint
) is
7772 if A
= No_Uint
or else B
< A
then
7781 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False) is
7782 Svg
: constant Overflow_Mode_Type
:=
7783 Scope_Suppress
.Overflow_Mode_General
;
7784 Sva
: constant Overflow_Mode_Type
:=
7785 Scope_Suppress
.Overflow_Mode_Assertions
;
7786 Svo
: constant Boolean :=
7787 Scope_Suppress
.Suppress
(Overflow_Check
);
7790 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7791 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7794 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7797 Analyze_And_Resolve
(N
, Typ
);
7799 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7800 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7801 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7808 procedure Reexpand
(Suppress
: Boolean := False) is
7809 Svg
: constant Overflow_Mode_Type
:=
7810 Scope_Suppress
.Overflow_Mode_General
;
7811 Sva
: constant Overflow_Mode_Type
:=
7812 Scope_Suppress
.Overflow_Mode_Assertions
;
7813 Svo
: constant Boolean :=
7814 Scope_Suppress
.Suppress
(Overflow_Check
);
7817 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7818 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7819 Set_Analyzed
(N
, False);
7822 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7827 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7828 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7829 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7832 -- Start of processing for Minimize_Eliminate_Overflows
7835 -- Case where we do not have a signed integer arithmetic operation
7837 if not Is_Signed_Integer_Arithmetic_Op
(N
) then
7839 -- Use the normal Determine_Range routine to get the range. We
7840 -- don't require operands to be valid, invalid values may result in
7841 -- rubbish results where the result has not been properly checked for
7842 -- overflow, that's fine.
7844 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> False);
7846 -- If Determine_Range did not work (can this in fact happen? Not
7847 -- clear but might as well protect), use type bounds.
7850 Lo
:= Intval
(Type_Low_Bound
(Base_Type
(Etype
(N
))));
7851 Hi
:= Intval
(Type_High_Bound
(Base_Type
(Etype
(N
))));
7854 -- If we don't have a binary operator, all we have to do is to set
7855 -- the Hi/Lo range, so we are done.
7859 -- Processing for if expression
7861 elsif Nkind
(N
) = N_If_Expression
then
7863 Then_DE
: constant Node_Id
:= Next
(First
(Expressions
(N
)));
7864 Else_DE
: constant Node_Id
:= Next
(Then_DE
);
7867 Bignum_Operands
:= False;
7869 Minimize_Eliminate_Overflows
7870 (Then_DE
, Lo
, Hi
, Top_Level
=> False);
7872 if Lo
= No_Uint
then
7873 Bignum_Operands
:= True;
7876 Minimize_Eliminate_Overflows
7877 (Else_DE
, Rlo
, Rhi
, Top_Level
=> False);
7879 if Rlo
= No_Uint
then
7880 Bignum_Operands
:= True;
7882 Long_Long_Integer_Operands
:=
7883 Etype
(Then_DE
) = LLIB
or else Etype
(Else_DE
) = LLIB
;
7889 -- If at least one of our operands is now Bignum, we must rebuild
7890 -- the if expression to use Bignum operands. We will analyze the
7891 -- rebuilt if expression with overflow checks off, since once we
7892 -- are in bignum mode, we are all done with overflow checks.
7894 if Bignum_Operands
then
7896 Make_If_Expression
(Loc
,
7897 Expressions
=> New_List
(
7898 Remove_Head
(Expressions
(N
)),
7899 Convert_To_Bignum
(Then_DE
),
7900 Convert_To_Bignum
(Else_DE
)),
7901 Is_Elsif
=> Is_Elsif
(N
)));
7903 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
7905 -- If we have no Long_Long_Integer operands, then we are in result
7906 -- range, since it means that none of our operands felt the need
7907 -- to worry about overflow (otherwise it would have already been
7908 -- converted to long long integer or bignum). We reexpand to
7909 -- complete the expansion of the if expression (but we do not
7910 -- need to reanalyze).
7912 elsif not Long_Long_Integer_Operands
then
7913 Set_Do_Overflow_Check
(N
, False);
7916 -- Otherwise convert us to long long integer mode. Note that we
7917 -- don't need any further overflow checking at this level.
7920 Convert_To_And_Rewrite
(LLIB
, Then_DE
);
7921 Convert_To_And_Rewrite
(LLIB
, Else_DE
);
7922 Set_Etype
(N
, LLIB
);
7924 -- Now reanalyze with overflow checks off
7926 Set_Do_Overflow_Check
(N
, False);
7927 Reanalyze
(LLIB
, Suppress
=> True);
7933 -- Here for case expression
7935 elsif Nkind
(N
) = N_Case_Expression
then
7936 Bignum_Operands
:= False;
7937 Long_Long_Integer_Operands
:= False;
7943 -- Loop through expressions applying recursive call
7945 Alt
:= First
(Alternatives
(N
));
7946 while Present
(Alt
) loop
7948 Aexp
: constant Node_Id
:= Expression
(Alt
);
7951 Minimize_Eliminate_Overflows
7952 (Aexp
, Lo
, Hi
, Top_Level
=> False);
7954 if Lo
= No_Uint
then
7955 Bignum_Operands
:= True;
7956 elsif Etype
(Aexp
) = LLIB
then
7957 Long_Long_Integer_Operands
:= True;
7964 -- If we have no bignum or long long integer operands, it means
7965 -- that none of our dependent expressions could raise overflow.
7966 -- In this case, we simply return with no changes except for
7967 -- resetting the overflow flag, since we are done with overflow
7968 -- checks for this node. We will reexpand to get the needed
7969 -- expansion for the case expression, but we do not need to
7970 -- reanalyze, since nothing has changed.
7972 if not (Bignum_Operands
or Long_Long_Integer_Operands
) then
7973 Set_Do_Overflow_Check
(N
, False);
7974 Reexpand
(Suppress
=> True);
7976 -- Otherwise we are going to rebuild the case expression using
7977 -- either bignum or long long integer operands throughout.
7986 New_Alts
:= New_List
;
7987 Alt
:= First
(Alternatives
(N
));
7988 while Present
(Alt
) loop
7989 if Bignum_Operands
then
7990 New_Exp
:= Convert_To_Bignum
(Expression
(Alt
));
7991 Rtype
:= RTE
(RE_Bignum
);
7993 New_Exp
:= Convert_To
(LLIB
, Expression
(Alt
));
7997 Append_To
(New_Alts
,
7998 Make_Case_Expression_Alternative
(Sloc
(Alt
),
8000 Discrete_Choices
=> Discrete_Choices
(Alt
),
8001 Expression
=> New_Exp
));
8007 Make_Case_Expression
(Loc
,
8008 Expression
=> Expression
(N
),
8009 Alternatives
=> New_Alts
));
8011 Reanalyze
(Rtype
, Suppress
=> True);
8019 -- If we have an arithmetic operator we make recursive calls on the
8020 -- operands to get the ranges (and to properly process the subtree
8021 -- that lies below us).
8023 Minimize_Eliminate_Overflows
8024 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
8027 Minimize_Eliminate_Overflows
8028 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
8031 -- Record if we have Long_Long_Integer operands
8033 Long_Long_Integer_Operands
:=
8034 Etype
(Right_Opnd
(N
)) = LLIB
8035 or else (Binary
and then Etype
(Left_Opnd
(N
)) = LLIB
);
8037 -- If either operand is a bignum, then result will be a bignum and we
8038 -- don't need to do any range analysis. As previously discussed we could
8039 -- do range analysis in such cases, but it could mean working with giant
8040 -- numbers at compile time for very little gain (the number of cases
8041 -- in which we could slip back from bignum mode is small).
8043 if Rlo
= No_Uint
or else (Binary
and then Llo
= No_Uint
) then
8046 Bignum_Operands
:= True;
8048 -- Otherwise compute result range
8051 Bignum_Operands
:= False;
8059 Hi
:= UI_Max
(abs Rlo
, abs Rhi
);
8071 -- If the right operand can only be zero, set 0..0
8073 if Rlo
= 0 and then Rhi
= 0 then
8077 -- Possible bounds of division must come from dividing end
8078 -- values of the input ranges (four possibilities), provided
8079 -- zero is not included in the possible values of the right
8082 -- Otherwise, we just consider two intervals of values for
8083 -- the right operand: the interval of negative values (up to
8084 -- -1) and the interval of positive values (starting at 1).
8085 -- Since division by 1 is the identity, and division by -1
8086 -- is negation, we get all possible bounds of division in that
8087 -- case by considering:
8088 -- - all values from the division of end values of input
8090 -- - the end values of the left operand;
8091 -- - the negation of the end values of the left operand.
8095 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8096 -- Mark so we can release the RR and Ev values
8104 -- Discard extreme values of zero for the divisor, since
8105 -- they will simply result in an exception in any case.
8113 -- Compute possible bounds coming from dividing end
8114 -- values of the input ranges.
8121 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8122 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8124 -- If the right operand can be both negative or positive,
8125 -- include the end values of the left operand in the
8126 -- extreme values, as well as their negation.
8128 if Rlo
< 0 and then Rhi
> 0 then
8135 UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
)));
8137 UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
)));
8140 -- Release the RR and Ev values
8142 Release_And_Save
(Mrk
, Lo
, Hi
);
8150 -- Discard negative values for the exponent, since they will
8151 -- simply result in an exception in any case.
8159 -- Estimate number of bits in result before we go computing
8160 -- giant useless bounds. Basically the number of bits in the
8161 -- result is the number of bits in the base multiplied by the
8162 -- value of the exponent. If this is big enough that the result
8163 -- definitely won't fit in Long_Long_Integer, switch to bignum
8164 -- mode immediately, and avoid computing giant bounds.
8166 -- The comparison here is approximate, but conservative, it
8167 -- only clicks on cases that are sure to exceed the bounds.
8169 if Num_Bits
(UI_Max
(abs Llo
, abs Lhi
)) * Rhi
+ 1 > 100 then
8173 -- If right operand is zero then result is 1
8180 -- High bound comes either from exponentiation of largest
8181 -- positive value to largest exponent value, or from
8182 -- the exponentiation of most negative value to an
8196 if Rhi
mod 2 = 0 then
8199 Hi2
:= Llo
** (Rhi
- 1);
8205 Hi
:= UI_Max
(Hi1
, Hi2
);
8208 -- Result can only be negative if base can be negative
8211 if Rhi
mod 2 = 0 then
8212 Lo
:= Llo
** (Rhi
- 1);
8217 -- Otherwise low bound is minimum ** minimum
8234 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8235 -- This is the maximum absolute value of the result
8241 -- The result depends only on the sign and magnitude of
8242 -- the right operand, it does not depend on the sign or
8243 -- magnitude of the left operand.
8256 when N_Op_Multiply
=>
8258 -- Possible bounds of multiplication must come from multiplying
8259 -- end values of the input ranges (four possibilities).
8262 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8263 -- Mark so we can release the Ev values
8265 Ev1
: constant Uint
:= Llo
* Rlo
;
8266 Ev2
: constant Uint
:= Llo
* Rhi
;
8267 Ev3
: constant Uint
:= Lhi
* Rlo
;
8268 Ev4
: constant Uint
:= Lhi
* Rhi
;
8271 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8272 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8274 -- Release the Ev values
8276 Release_And_Save
(Mrk
, Lo
, Hi
);
8279 -- Plus operator (affirmation)
8289 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8290 -- This is the maximum absolute value of the result. Note
8291 -- that the result range does not depend on the sign of the
8298 -- Case of left operand negative, which results in a range
8299 -- of -Maxabs .. 0 for those negative values. If there are
8300 -- no negative values then Lo value of result is always 0.
8306 -- Case of left operand positive
8315 when N_Op_Subtract
=>
8319 -- Nothing else should be possible
8322 raise Program_Error
;
8326 -- Here for the case where we have not rewritten anything (no bignum
8327 -- operands or long long integer operands), and we know the result.
8328 -- If we know we are in the result range, and we do not have Bignum
8329 -- operands or Long_Long_Integer operands, we can just reexpand with
8330 -- overflow checks turned off (since we know we cannot have overflow).
8331 -- As always the reexpansion is required to complete expansion of the
8332 -- operator, but we do not need to reanalyze, and we prevent recursion
8333 -- by suppressing the check.
8335 if not (Bignum_Operands
or Long_Long_Integer_Operands
)
8336 and then In_Result_Range
8338 Set_Do_Overflow_Check
(N
, False);
8339 Reexpand
(Suppress
=> True);
8342 -- Here we know that we are not in the result range, and in the general
8343 -- case we will move into either the Bignum or Long_Long_Integer domain
8344 -- to compute the result. However, there is one exception. If we are
8345 -- at the top level, and we do not have Bignum or Long_Long_Integer
8346 -- operands, we will have to immediately convert the result back to
8347 -- the result type, so there is no point in Bignum/Long_Long_Integer
8351 and then not (Bignum_Operands
or Long_Long_Integer_Operands
)
8353 -- One further refinement. If we are at the top level, but our parent
8354 -- is a type conversion, then go into bignum or long long integer node
8355 -- since the result will be converted to that type directly without
8356 -- going through the result type, and we may avoid an overflow. This
8357 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8358 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8359 -- but does not fit in Integer.
8361 and then Nkind
(Parent
(N
)) /= N_Type_Conversion
8363 -- Here keep original types, but we need to complete analysis
8365 -- One subtlety. We can't just go ahead and do an analyze operation
8366 -- here because it will cause recursion into the whole MINIMIZED/
8367 -- ELIMINATED overflow processing which is not what we want. Here
8368 -- we are at the top level, and we need a check against the result
8369 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8370 -- Also, we have not modified the node, so this is a case where
8371 -- we need to reexpand, but not reanalyze.
8376 -- Cases where we do the operation in Bignum mode. This happens either
8377 -- because one of our operands is in Bignum mode already, or because
8378 -- the computed bounds are outside the bounds of Long_Long_Integer,
8379 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8381 -- Note: we could do better here and in some cases switch back from
8382 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8383 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8384 -- Failing to do this switching back is only an efficiency issue.
8386 elsif Lo
= No_Uint
or else Lo
< LLLo
or else Hi
> LLHi
then
8388 -- OK, we are definitely outside the range of Long_Long_Integer. The
8389 -- question is whether to move to Bignum mode, or stay in the domain
8390 -- of Long_Long_Integer, signalling that an overflow check is needed.
8392 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8393 -- the Bignum business. In ELIMINATED mode, we will normally move
8394 -- into Bignum mode, but there is an exception if neither of our
8395 -- operands is Bignum now, and we are at the top level (Top_Level
8396 -- set True). In this case, there is no point in moving into Bignum
8397 -- mode to prevent overflow if the caller will immediately convert
8398 -- the Bignum value back to LLI with an overflow check. It's more
8399 -- efficient to stay in LLI mode with an overflow check (if needed)
8401 if Check_Mode
= Minimized
8402 or else (Top_Level
and not Bignum_Operands
)
8404 if Do_Overflow_Check
(N
) then
8405 Enable_Overflow_Check
(N
);
8408 -- The result now has to be in Long_Long_Integer mode, so adjust
8409 -- the possible range to reflect this. Note these calls also
8410 -- change No_Uint values from the top level case to LLI bounds.
8415 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8418 pragma Assert
(Check_Mode
= Eliminated
);
8427 Fent
:= RTE
(RE_Big_Abs
);
8430 Fent
:= RTE
(RE_Big_Add
);
8433 Fent
:= RTE
(RE_Big_Div
);
8436 Fent
:= RTE
(RE_Big_Exp
);
8439 Fent
:= RTE
(RE_Big_Neg
);
8442 Fent
:= RTE
(RE_Big_Mod
);
8444 when N_Op_Multiply
=>
8445 Fent
:= RTE
(RE_Big_Mul
);
8448 Fent
:= RTE
(RE_Big_Rem
);
8450 when N_Op_Subtract
=>
8451 Fent
:= RTE
(RE_Big_Sub
);
8453 -- Anything else is an internal error, this includes the
8454 -- N_Op_Plus case, since how can plus cause the result
8455 -- to be out of range if the operand is in range?
8458 raise Program_Error
;
8461 -- Construct argument list for Bignum call, converting our
8462 -- operands to Bignum form if they are not already there.
8467 Append_To
(Args
, Convert_To_Bignum
(Left_Opnd
(N
)));
8470 Append_To
(Args
, Convert_To_Bignum
(Right_Opnd
(N
)));
8472 -- Now rewrite the arithmetic operator with a call to the
8473 -- corresponding bignum function.
8476 Make_Function_Call
(Loc
,
8477 Name
=> New_Occurrence_Of
(Fent
, Loc
),
8478 Parameter_Associations
=> Args
));
8479 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
8481 -- Indicate result is Bignum mode
8489 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8490 -- check is required, at least not yet.
8493 Set_Do_Overflow_Check
(N
, False);
8496 -- Here we are not in Bignum territory, but we may have long long
8497 -- integer operands that need special handling. First a special check:
8498 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8499 -- it means we converted it to prevent overflow, but exponentiation
8500 -- requires a Natural right operand, so convert it back to Natural.
8501 -- This conversion may raise an exception which is fine.
8503 if Nkind
(N
) = N_Op_Expon
and then Etype
(Right_Opnd
(N
)) = LLIB
then
8504 Convert_To_And_Rewrite
(Standard_Natural
, Right_Opnd
(N
));
8507 -- Here we will do the operation in Long_Long_Integer. We do this even
8508 -- if we know an overflow check is required, better to do this in long
8509 -- long integer mode, since we are less likely to overflow.
8511 -- Convert right or only operand to Long_Long_Integer, except that
8512 -- we do not touch the exponentiation right operand.
8514 if Nkind
(N
) /= N_Op_Expon
then
8515 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
8518 -- Convert left operand to Long_Long_Integer for binary case
8521 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
8524 -- Reset node to unanalyzed
8526 Set_Analyzed
(N
, False);
8527 Set_Etype
(N
, Empty
);
8528 Set_Entity
(N
, Empty
);
8530 -- Now analyze this new node. This reanalysis will complete processing
8531 -- for the node. In particular we will complete the expansion of an
8532 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8533 -- we will complete any division checks (since we have not changed the
8534 -- setting of the Do_Division_Check flag).
8536 -- We do this reanalysis in STRICT mode to avoid recursion into the
8537 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
8540 SG
: constant Overflow_Mode_Type
:=
8541 Scope_Suppress
.Overflow_Mode_General
;
8542 SA
: constant Overflow_Mode_Type
:=
8543 Scope_Suppress
.Overflow_Mode_Assertions
;
8546 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
8547 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
8549 if not Do_Overflow_Check
(N
) then
8550 Reanalyze
(LLIB
, Suppress
=> True);
8555 Scope_Suppress
.Overflow_Mode_General
:= SG
;
8556 Scope_Suppress
.Overflow_Mode_Assertions
:= SA
;
8558 end Minimize_Eliminate_Overflows
;
8560 -------------------------
8561 -- Overflow_Check_Mode --
8562 -------------------------
8564 function Overflow_Check_Mode
return Overflow_Mode_Type
is
8566 if In_Assertion_Expr
= 0 then
8567 return Scope_Suppress
.Overflow_Mode_General
;
8569 return Scope_Suppress
.Overflow_Mode_Assertions
;
8571 end Overflow_Check_Mode
;
8573 --------------------------------
8574 -- Overflow_Checks_Suppressed --
8575 --------------------------------
8577 function Overflow_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8579 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8580 return Is_Check_Suppressed
(E
, Overflow_Check
);
8582 return Scope_Suppress
.Suppress
(Overflow_Check
);
8584 end Overflow_Checks_Suppressed
;
8586 ---------------------------------
8587 -- Predicate_Checks_Suppressed --
8588 ---------------------------------
8590 function Predicate_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8592 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8593 return Is_Check_Suppressed
(E
, Predicate_Check
);
8595 return Scope_Suppress
.Suppress
(Predicate_Check
);
8597 end Predicate_Checks_Suppressed
;
8599 -----------------------------
8600 -- Range_Checks_Suppressed --
8601 -----------------------------
8603 function Range_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8606 if Kill_Range_Checks
(E
) then
8609 elsif Checks_May_Be_Suppressed
(E
) then
8610 return Is_Check_Suppressed
(E
, Range_Check
);
8614 return Scope_Suppress
.Suppress
(Range_Check
);
8615 end Range_Checks_Suppressed
;
8617 -----------------------------------------
8618 -- Range_Or_Validity_Checks_Suppressed --
8619 -----------------------------------------
8621 -- Note: the coding would be simpler here if we simply made appropriate
8622 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8623 -- duplicated checks which we prefer to avoid.
8625 function Range_Or_Validity_Checks_Suppressed
8626 (Expr
: Node_Id
) return Boolean
8629 -- Immediate return if scope checks suppressed for either check
8631 if Scope_Suppress
.Suppress
(Range_Check
)
8633 Scope_Suppress
.Suppress
(Validity_Check
)
8638 -- If no expression, that's odd, decide that checks are suppressed,
8639 -- since we don't want anyone trying to do checks in this case, which
8640 -- is most likely the result of some other error.
8646 -- Expression is present, so perform suppress checks on type
8649 Typ
: constant Entity_Id
:= Etype
(Expr
);
8651 if Checks_May_Be_Suppressed
(Typ
)
8652 and then (Is_Check_Suppressed
(Typ
, Range_Check
)
8654 Is_Check_Suppressed
(Typ
, Validity_Check
))
8660 -- If expression is an entity name, perform checks on this entity
8662 if Is_Entity_Name
(Expr
) then
8664 Ent
: constant Entity_Id
:= Entity
(Expr
);
8666 if Checks_May_Be_Suppressed
(Ent
) then
8667 return Is_Check_Suppressed
(Ent
, Range_Check
)
8668 or else Is_Check_Suppressed
(Ent
, Validity_Check
);
8673 -- If we fall through, no checks suppressed
8676 end Range_Or_Validity_Checks_Suppressed
;
8682 procedure Remove_Checks
(Expr
: Node_Id
) is
8683 function Process
(N
: Node_Id
) return Traverse_Result
;
8684 -- Process a single node during the traversal
8686 procedure Traverse
is new Traverse_Proc
(Process
);
8687 -- The traversal procedure itself
8693 function Process
(N
: Node_Id
) return Traverse_Result
is
8695 if Nkind
(N
) not in N_Subexpr
then
8699 Set_Do_Range_Check
(N
, False);
8703 Traverse
(Left_Opnd
(N
));
8706 when N_Attribute_Reference
=>
8707 Set_Do_Overflow_Check
(N
, False);
8709 when N_Function_Call
=>
8710 Set_Do_Tag_Check
(N
, False);
8713 Set_Do_Overflow_Check
(N
, False);
8717 Set_Do_Division_Check
(N
, False);
8720 Set_Do_Length_Check
(N
, False);
8723 Set_Do_Division_Check
(N
, False);
8726 Set_Do_Length_Check
(N
, False);
8729 Set_Do_Division_Check
(N
, False);
8732 Set_Do_Length_Check
(N
, False);
8739 Traverse
(Left_Opnd
(N
));
8742 when N_Selected_Component
=>
8743 Set_Do_Discriminant_Check
(N
, False);
8745 when N_Type_Conversion
=>
8746 Set_Do_Length_Check
(N
, False);
8747 Set_Do_Tag_Check
(N
, False);
8748 Set_Do_Overflow_Check
(N
, False);
8757 -- Start of processing for Remove_Checks
8763 ----------------------------
8764 -- Selected_Length_Checks --
8765 ----------------------------
8767 function Selected_Length_Checks
8769 Target_Typ
: Entity_Id
;
8770 Source_Typ
: Entity_Id
;
8771 Warn_Node
: Node_Id
) return Check_Result
8773 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
8776 Expr_Actual
: Node_Id
;
8778 Cond
: Node_Id
:= Empty
;
8779 Do_Access
: Boolean := False;
8780 Wnode
: Node_Id
:= Warn_Node
;
8781 Ret_Result
: Check_Result
:= (Empty
, Empty
);
8782 Num_Checks
: Natural := 0;
8784 procedure Add_Check
(N
: Node_Id
);
8785 -- Adds the action given to Ret_Result if N is non-Empty
8787 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
;
8788 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
8789 -- Comments required ???
8791 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean;
8792 -- True for equal literals and for nodes that denote the same constant
8793 -- entity, even if its value is not a static constant. This includes the
8794 -- case of a discriminal reference within an init proc. Removes some
8795 -- obviously superfluous checks.
8797 function Length_E_Cond
8798 (Exptyp
: Entity_Id
;
8800 Indx
: Nat
) return Node_Id
;
8801 -- Returns expression to compute:
8802 -- Typ'Length /= Exptyp'Length
8804 function Length_N_Cond
8807 Indx
: Nat
) return Node_Id
;
8808 -- Returns expression to compute:
8809 -- Typ'Length /= Expr'Length
8815 procedure Add_Check
(N
: Node_Id
) is
8819 -- For now, ignore attempt to place more than two checks ???
8820 -- This is really worrisome, are we really discarding checks ???
8822 if Num_Checks
= 2 then
8826 pragma Assert
(Num_Checks
<= 1);
8827 Num_Checks
:= Num_Checks
+ 1;
8828 Ret_Result
(Num_Checks
) := N
;
8836 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
is
8837 SE
: constant Entity_Id
:= Scope
(E
);
8839 E1
: Entity_Id
:= E
;
8842 if Ekind
(Scope
(E
)) = E_Record_Type
8843 and then Has_Discriminants
(Scope
(E
))
8845 N
:= Build_Discriminal_Subtype_Of_Component
(E
);
8848 Insert_Action
(Ck_Node
, N
);
8849 E1
:= Defining_Identifier
(N
);
8853 if Ekind
(E1
) = E_String_Literal_Subtype
then
8855 Make_Integer_Literal
(Loc
,
8856 Intval
=> String_Literal_Length
(E1
));
8858 elsif SE
/= Standard_Standard
8859 and then Ekind
(Scope
(SE
)) = E_Protected_Type
8860 and then Has_Discriminants
(Scope
(SE
))
8861 and then Has_Completion
(Scope
(SE
))
8862 and then not Inside_Init_Proc
8864 -- If the type whose length is needed is a private component
8865 -- constrained by a discriminant, we must expand the 'Length
8866 -- attribute into an explicit computation, using the discriminal
8867 -- of the current protected operation. This is because the actual
8868 -- type of the prival is constructed after the protected opera-
8869 -- tion has been fully expanded.
8872 Indx_Type
: Node_Id
;
8875 Do_Expand
: Boolean := False;
8878 Indx_Type
:= First_Index
(E
);
8880 for J
in 1 .. Indx
- 1 loop
8881 Next_Index
(Indx_Type
);
8884 Get_Index_Bounds
(Indx_Type
, Lo
, Hi
);
8886 if Nkind
(Lo
) = N_Identifier
8887 and then Ekind
(Entity
(Lo
)) = E_In_Parameter
8889 Lo
:= Get_Discriminal
(E
, Lo
);
8893 if Nkind
(Hi
) = N_Identifier
8894 and then Ekind
(Entity
(Hi
)) = E_In_Parameter
8896 Hi
:= Get_Discriminal
(E
, Hi
);
8901 if not Is_Entity_Name
(Lo
) then
8902 Lo
:= Duplicate_Subexpr_No_Checks
(Lo
);
8905 if not Is_Entity_Name
(Hi
) then
8906 Lo
:= Duplicate_Subexpr_No_Checks
(Hi
);
8912 Make_Op_Subtract
(Loc
,
8916 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
8921 Make_Attribute_Reference
(Loc
,
8922 Attribute_Name
=> Name_Length
,
8924 New_Occurrence_Of
(E1
, Loc
));
8927 Set_Expressions
(N
, New_List
(
8928 Make_Integer_Literal
(Loc
, Indx
)));
8937 Make_Attribute_Reference
(Loc
,
8938 Attribute_Name
=> Name_Length
,
8940 New_Occurrence_Of
(E1
, Loc
));
8943 Set_Expressions
(N
, New_List
(
8944 Make_Integer_Literal
(Loc
, Indx
)));
8955 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
8958 Make_Attribute_Reference
(Loc
,
8959 Attribute_Name
=> Name_Length
,
8961 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
8962 Expressions
=> New_List
(
8963 Make_Integer_Literal
(Loc
, Indx
)));
8970 function Length_E_Cond
8971 (Exptyp
: Entity_Id
;
8973 Indx
: Nat
) return Node_Id
8978 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
8979 Right_Opnd
=> Get_E_Length
(Exptyp
, Indx
));
8986 function Length_N_Cond
8989 Indx
: Nat
) return Node_Id
8994 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
8995 Right_Opnd
=> Get_N_Length
(Expr
, Indx
));
9002 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean is
9005 (Nkind
(L
) = N_Integer_Literal
9006 and then Nkind
(R
) = N_Integer_Literal
9007 and then Intval
(L
) = Intval
(R
))
9011 and then Ekind
(Entity
(L
)) = E_Constant
9012 and then ((Is_Entity_Name
(R
)
9013 and then Entity
(L
) = Entity
(R
))
9015 (Nkind
(R
) = N_Type_Conversion
9016 and then Is_Entity_Name
(Expression
(R
))
9017 and then Entity
(L
) = Entity
(Expression
(R
)))))
9021 and then Ekind
(Entity
(R
)) = E_Constant
9022 and then Nkind
(L
) = N_Type_Conversion
9023 and then Is_Entity_Name
(Expression
(L
))
9024 and then Entity
(R
) = Entity
(Expression
(L
)))
9028 and then Is_Entity_Name
(R
)
9029 and then Entity
(L
) = Entity
(R
)
9030 and then Ekind
(Entity
(L
)) = E_In_Parameter
9031 and then Inside_Init_Proc
);
9034 -- Start of processing for Selected_Length_Checks
9037 if not Expander_Active
then
9041 if Target_Typ
= Any_Type
9042 or else Target_Typ
= Any_Composite
9043 or else Raises_Constraint_Error
(Ck_Node
)
9052 T_Typ
:= Target_Typ
;
9054 if No
(Source_Typ
) then
9055 S_Typ
:= Etype
(Ck_Node
);
9057 S_Typ
:= Source_Typ
;
9060 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9064 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9065 S_Typ
:= Designated_Type
(S_Typ
);
9066 T_Typ
:= Designated_Type
(T_Typ
);
9069 -- A simple optimization for the null case
9071 if Known_Null
(Ck_Node
) then
9076 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
9077 if Is_Constrained
(T_Typ
) then
9079 -- The checking code to be generated will freeze the corresponding
9080 -- array type. However, we must freeze the type now, so that the
9081 -- freeze node does not appear within the generated if expression,
9084 Freeze_Before
(Ck_Node
, T_Typ
);
9086 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
9087 Exptyp
:= Get_Actual_Subtype
(Ck_Node
);
9089 if Is_Access_Type
(Exptyp
) then
9090 Exptyp
:= Designated_Type
(Exptyp
);
9093 -- String_Literal case. This needs to be handled specially be-
9094 -- cause no index types are available for string literals. The
9095 -- condition is simply:
9097 -- T_Typ'Length = string-literal-length
9099 if Nkind
(Expr_Actual
) = N_String_Literal
9100 and then Ekind
(Etype
(Expr_Actual
)) = E_String_Literal_Subtype
9104 Left_Opnd
=> Get_E_Length
(T_Typ
, 1),
9106 Make_Integer_Literal
(Loc
,
9108 String_Literal_Length
(Etype
(Expr_Actual
))));
9110 -- General array case. Here we have a usable actual subtype for
9111 -- the expression, and the condition is built from the two types
9114 -- T_Typ'Length /= Exptyp'Length or else
9115 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9116 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9119 elsif Is_Constrained
(Exptyp
) then
9121 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9134 -- At the library level, we need to ensure that the type of
9135 -- the object is elaborated before the check itself is
9136 -- emitted. This is only done if the object is in the
9137 -- current compilation unit, otherwise the type is frozen
9138 -- and elaborated in its unit.
9140 if Is_Itype
(Exptyp
)
9142 Ekind
(Cunit_Entity
(Current_Sem_Unit
)) = E_Package
9144 not In_Package_Body
(Cunit_Entity
(Current_Sem_Unit
))
9145 and then In_Open_Scopes
(Scope
(Exptyp
))
9147 Ref_Node
:= Make_Itype_Reference
(Sloc
(Ck_Node
));
9148 Set_Itype
(Ref_Node
, Exptyp
);
9149 Insert_Action
(Ck_Node
, Ref_Node
);
9152 L_Index
:= First_Index
(T_Typ
);
9153 R_Index
:= First_Index
(Exptyp
);
9155 for Indx
in 1 .. Ndims
loop
9156 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
9158 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
9160 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
9161 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
9163 -- Deal with compile time length check. Note that we
9164 -- skip this in the access case, because the access
9165 -- value may be null, so we cannot know statically.
9168 and then Compile_Time_Known_Value
(L_Low
)
9169 and then Compile_Time_Known_Value
(L_High
)
9170 and then Compile_Time_Known_Value
(R_Low
)
9171 and then Compile_Time_Known_Value
(R_High
)
9173 if Expr_Value
(L_High
) >= Expr_Value
(L_Low
) then
9174 L_Length
:= Expr_Value
(L_High
) -
9175 Expr_Value
(L_Low
) + 1;
9177 L_Length
:= UI_From_Int
(0);
9180 if Expr_Value
(R_High
) >= Expr_Value
(R_Low
) then
9181 R_Length
:= Expr_Value
(R_High
) -
9182 Expr_Value
(R_Low
) + 1;
9184 R_Length
:= UI_From_Int
(0);
9187 if L_Length
> R_Length
then
9189 (Compile_Time_Constraint_Error
9190 (Wnode
, "too few elements for}??", T_Typ
));
9192 elsif L_Length
< R_Length
then
9194 (Compile_Time_Constraint_Error
9195 (Wnode
, "too many elements for}??", T_Typ
));
9198 -- The comparison for an individual index subtype
9199 -- is omitted if the corresponding index subtypes
9200 -- statically match, since the result is known to
9201 -- be true. Note that this test is worth while even
9202 -- though we do static evaluation, because non-static
9203 -- subtypes can statically match.
9206 Subtypes_Statically_Match
9207 (Etype
(L_Index
), Etype
(R_Index
))
9210 (Same_Bounds
(L_Low
, R_Low
)
9211 and then Same_Bounds
(L_High
, R_High
))
9214 (Cond
, Length_E_Cond
(Exptyp
, T_Typ
, Indx
));
9223 -- Handle cases where we do not get a usable actual subtype that
9224 -- is constrained. This happens for example in the function call
9225 -- and explicit dereference cases. In these cases, we have to get
9226 -- the length or range from the expression itself, making sure we
9227 -- do not evaluate it more than once.
9229 -- Here Ck_Node is the original expression, or more properly the
9230 -- result of applying Duplicate_Expr to the original tree, forcing
9231 -- the result to be a name.
9235 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9238 -- Build the condition for the explicit dereference case
9240 for Indx
in 1 .. Ndims
loop
9242 (Cond
, Length_N_Cond
(Ck_Node
, T_Typ
, Indx
));
9249 -- Construct the test and insert into the tree
9251 if Present
(Cond
) then
9253 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
9257 (Make_Raise_Constraint_Error
(Loc
,
9259 Reason
=> CE_Length_Check_Failed
));
9263 end Selected_Length_Checks
;
9265 ---------------------------
9266 -- Selected_Range_Checks --
9267 ---------------------------
9269 function Selected_Range_Checks
9271 Target_Typ
: Entity_Id
;
9272 Source_Typ
: Entity_Id
;
9273 Warn_Node
: Node_Id
) return Check_Result
9275 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
9278 Expr_Actual
: Node_Id
;
9280 Cond
: Node_Id
:= Empty
;
9281 Do_Access
: Boolean := False;
9282 Wnode
: Node_Id
:= Warn_Node
;
9283 Ret_Result
: Check_Result
:= (Empty
, Empty
);
9284 Num_Checks
: Integer := 0;
9286 procedure Add_Check
(N
: Node_Id
);
9287 -- Adds the action given to Ret_Result if N is non-Empty
9289 function Discrete_Range_Cond
9291 Typ
: Entity_Id
) return Node_Id
;
9292 -- Returns expression to compute:
9293 -- Low_Bound (Expr) < Typ'First
9295 -- High_Bound (Expr) > Typ'Last
9297 function Discrete_Expr_Cond
9299 Typ
: Entity_Id
) return Node_Id
;
9300 -- Returns expression to compute:
9305 function Get_E_First_Or_Last
9309 Nam
: Name_Id
) return Node_Id
;
9310 -- Returns an attribute reference
9311 -- E'First or E'Last
9312 -- with a source location of Loc.
9314 -- Nam is Name_First or Name_Last, according to which attribute is
9315 -- desired. If Indx is non-zero, it is passed as a literal in the
9316 -- Expressions of the attribute reference (identifying the desired
9317 -- array dimension).
9319 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9320 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9321 -- Returns expression to compute:
9322 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9324 function Range_E_Cond
9325 (Exptyp
: Entity_Id
;
9329 -- Returns expression to compute:
9330 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9332 function Range_Equal_E_Cond
9333 (Exptyp
: Entity_Id
;
9335 Indx
: Nat
) return Node_Id
;
9336 -- Returns expression to compute:
9337 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9339 function Range_N_Cond
9342 Indx
: Nat
) return Node_Id
;
9343 -- Return expression to compute:
9344 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9350 procedure Add_Check
(N
: Node_Id
) is
9354 -- For now, ignore attempt to place more than 2 checks ???
9356 if Num_Checks
= 2 then
9360 pragma Assert
(Num_Checks
<= 1);
9361 Num_Checks
:= Num_Checks
+ 1;
9362 Ret_Result
(Num_Checks
) := N
;
9366 -------------------------
9367 -- Discrete_Expr_Cond --
9368 -------------------------
9370 function Discrete_Expr_Cond
9372 Typ
: Entity_Id
) return Node_Id
9380 Convert_To
(Base_Type
(Typ
),
9381 Duplicate_Subexpr_No_Checks
(Expr
)),
9383 Convert_To
(Base_Type
(Typ
),
9384 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
))),
9389 Convert_To
(Base_Type
(Typ
),
9390 Duplicate_Subexpr_No_Checks
(Expr
)),
9394 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
))));
9395 end Discrete_Expr_Cond
;
9397 -------------------------
9398 -- Discrete_Range_Cond --
9399 -------------------------
9401 function Discrete_Range_Cond
9403 Typ
: Entity_Id
) return Node_Id
9405 LB
: Node_Id
:= Low_Bound
(Expr
);
9406 HB
: Node_Id
:= High_Bound
(Expr
);
9408 Left_Opnd
: Node_Id
;
9409 Right_Opnd
: Node_Id
;
9412 if Nkind
(LB
) = N_Identifier
9413 and then Ekind
(Entity
(LB
)) = E_Discriminant
9415 LB
:= New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9422 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(LB
)),
9427 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
)));
9429 if Nkind
(HB
) = N_Identifier
9430 and then Ekind
(Entity
(HB
)) = E_Discriminant
9432 HB
:= New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9439 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(HB
)),
9444 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
)));
9446 return Make_Or_Else
(Loc
, Left_Opnd
, Right_Opnd
);
9447 end Discrete_Range_Cond
;
9449 -------------------------
9450 -- Get_E_First_Or_Last --
9451 -------------------------
9453 function Get_E_First_Or_Last
9457 Nam
: Name_Id
) return Node_Id
9462 Exprs
:= New_List
(Make_Integer_Literal
(Loc
, UI_From_Int
(Indx
)));
9467 return Make_Attribute_Reference
(Loc
,
9468 Prefix
=> New_Occurrence_Of
(E
, Loc
),
9469 Attribute_Name
=> Nam
,
9470 Expressions
=> Exprs
);
9471 end Get_E_First_Or_Last
;
9477 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9480 Make_Attribute_Reference
(Loc
,
9481 Attribute_Name
=> Name_First
,
9483 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9484 Expressions
=> New_List
(
9485 Make_Integer_Literal
(Loc
, Indx
)));
9492 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9495 Make_Attribute_Reference
(Loc
,
9496 Attribute_Name
=> Name_Last
,
9498 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9499 Expressions
=> New_List
(
9500 Make_Integer_Literal
(Loc
, Indx
)));
9507 function Range_E_Cond
9508 (Exptyp
: Entity_Id
;
9510 Indx
: Nat
) return Node_Id
9518 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9520 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9525 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9527 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9530 ------------------------
9531 -- Range_Equal_E_Cond --
9532 ------------------------
9534 function Range_Equal_E_Cond
9535 (Exptyp
: Entity_Id
;
9537 Indx
: Nat
) return Node_Id
9545 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9547 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9552 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9554 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9555 end Range_Equal_E_Cond
;
9561 function Range_N_Cond
9564 Indx
: Nat
) return Node_Id
9572 Get_N_First
(Expr
, Indx
),
9574 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9579 Get_N_Last
(Expr
, Indx
),
9581 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9584 -- Start of processing for Selected_Range_Checks
9587 if not Expander_Active
then
9591 if Target_Typ
= Any_Type
9592 or else Target_Typ
= Any_Composite
9593 or else Raises_Constraint_Error
(Ck_Node
)
9602 T_Typ
:= Target_Typ
;
9604 if No
(Source_Typ
) then
9605 S_Typ
:= Etype
(Ck_Node
);
9607 S_Typ
:= Source_Typ
;
9610 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9614 -- The order of evaluating T_Typ before S_Typ seems to be critical
9615 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9616 -- in, and since Node can be an N_Range node, it might be invalid.
9617 -- Should there be an assert check somewhere for taking the Etype of
9618 -- an N_Range node ???
9620 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9621 S_Typ
:= Designated_Type
(S_Typ
);
9622 T_Typ
:= Designated_Type
(T_Typ
);
9625 -- A simple optimization for the null case
9627 if Known_Null
(Ck_Node
) then
9632 -- For an N_Range Node, check for a null range and then if not
9633 -- null generate a range check action.
9635 if Nkind
(Ck_Node
) = N_Range
then
9637 -- There's no point in checking a range against itself
9639 if Ck_Node
= Scalar_Range
(T_Typ
) then
9644 T_LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9645 T_HB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9646 Known_T_LB
: constant Boolean := Compile_Time_Known_Value
(T_LB
);
9647 Known_T_HB
: constant Boolean := Compile_Time_Known_Value
(T_HB
);
9649 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9650 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9651 Known_LB
: Boolean := False;
9652 Known_HB
: Boolean := False;
9654 Null_Range
: Boolean;
9655 Out_Of_Range_L
: Boolean;
9656 Out_Of_Range_H
: Boolean;
9659 -- Compute what is known at compile time
9661 if Known_T_LB
and Known_T_HB
then
9662 if Compile_Time_Known_Value
(LB
) then
9665 -- There's no point in checking that a bound is within its
9666 -- own range so pretend that it is known in this case. First
9667 -- deal with low bound.
9669 elsif Ekind
(Etype
(LB
)) = E_Signed_Integer_Subtype
9670 and then Scalar_Range
(Etype
(LB
)) = Scalar_Range
(T_Typ
)
9676 -- Likewise for the high bound
9678 if Compile_Time_Known_Value
(HB
) then
9681 elsif Ekind
(Etype
(HB
)) = E_Signed_Integer_Subtype
9682 and then Scalar_Range
(Etype
(HB
)) = Scalar_Range
(T_Typ
)
9689 -- Check for case where everything is static and we can do the
9690 -- check at compile time. This is skipped if we have an access
9691 -- type, since the access value may be null.
9693 -- ??? This code can be improved since you only need to know that
9694 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9695 -- compile time to emit pertinent messages.
9697 if Known_T_LB
and Known_T_HB
and Known_LB
and Known_HB
9700 -- Floating-point case
9702 if Is_Floating_Point_Type
(S_Typ
) then
9703 Null_Range
:= Expr_Value_R
(HB
) < Expr_Value_R
(LB
);
9705 (Expr_Value_R
(LB
) < Expr_Value_R
(T_LB
))
9707 (Expr_Value_R
(LB
) > Expr_Value_R
(T_HB
));
9710 (Expr_Value_R
(HB
) > Expr_Value_R
(T_HB
))
9712 (Expr_Value_R
(HB
) < Expr_Value_R
(T_LB
));
9714 -- Fixed or discrete type case
9717 Null_Range
:= Expr_Value
(HB
) < Expr_Value
(LB
);
9719 (Expr_Value
(LB
) < Expr_Value
(T_LB
))
9721 (Expr_Value
(LB
) > Expr_Value
(T_HB
));
9724 (Expr_Value
(HB
) > Expr_Value
(T_HB
))
9726 (Expr_Value
(HB
) < Expr_Value
(T_LB
));
9729 if not Null_Range
then
9730 if Out_Of_Range_L
then
9731 if No
(Warn_Node
) then
9733 (Compile_Time_Constraint_Error
9734 (Low_Bound
(Ck_Node
),
9735 "static value out of range of}??", T_Typ
));
9739 (Compile_Time_Constraint_Error
9741 "static range out of bounds of}??", T_Typ
));
9745 if Out_Of_Range_H
then
9746 if No
(Warn_Node
) then
9748 (Compile_Time_Constraint_Error
9749 (High_Bound
(Ck_Node
),
9750 "static value out of range of}??", T_Typ
));
9754 (Compile_Time_Constraint_Error
9756 "static range out of bounds of}??", T_Typ
));
9763 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9764 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9767 -- If either bound is a discriminant and we are within the
9768 -- record declaration, it is a use of the discriminant in a
9769 -- constraint of a component, and nothing can be checked
9770 -- here. The check will be emitted within the init proc.
9771 -- Before then, the discriminal has no real meaning.
9772 -- Similarly, if the entity is a discriminal, there is no
9773 -- check to perform yet.
9775 -- The same holds within a discriminated synchronized type,
9776 -- where the discriminant may constrain a component or an
9779 if Nkind
(LB
) = N_Identifier
9780 and then Denotes_Discriminant
(LB
, True)
9782 if Current_Scope
= Scope
(Entity
(LB
))
9783 or else Is_Concurrent_Type
(Current_Scope
)
9784 or else Ekind
(Entity
(LB
)) /= E_Discriminant
9789 New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9793 if Nkind
(HB
) = N_Identifier
9794 and then Denotes_Discriminant
(HB
, True)
9796 if Current_Scope
= Scope
(Entity
(HB
))
9797 or else Is_Concurrent_Type
(Current_Scope
)
9798 or else Ekind
(Entity
(HB
)) /= E_Discriminant
9803 New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9807 Cond
:= Discrete_Range_Cond
(Ck_Node
, T_Typ
);
9808 Set_Paren_Count
(Cond
, 1);
9815 Convert_To
(Base_Type
(Etype
(HB
)),
9816 Duplicate_Subexpr_No_Checks
(HB
)),
9818 Convert_To
(Base_Type
(Etype
(LB
)),
9819 Duplicate_Subexpr_No_Checks
(LB
))),
9820 Right_Opnd
=> Cond
);
9825 elsif Is_Scalar_Type
(S_Typ
) then
9827 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9828 -- except the above simply sets a flag in the node and lets
9829 -- gigi generate the check base on the Etype of the expression.
9830 -- Sometimes, however we want to do a dynamic check against an
9831 -- arbitrary target type, so we do that here.
9833 if Ekind
(Base_Type
(S_Typ
)) /= Ekind
(Base_Type
(T_Typ
)) then
9834 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9836 -- For literals, we can tell if the constraint error will be
9837 -- raised at compile time, so we never need a dynamic check, but
9838 -- if the exception will be raised, then post the usual warning,
9839 -- and replace the literal with a raise constraint error
9840 -- expression. As usual, skip this for access types
9842 elsif Compile_Time_Known_Value
(Ck_Node
) and then not Do_Access
then
9844 LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9845 UB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9847 Out_Of_Range
: Boolean;
9848 Static_Bounds
: constant Boolean :=
9849 Compile_Time_Known_Value
(LB
)
9850 and Compile_Time_Known_Value
(UB
);
9853 -- Following range tests should use Sem_Eval routine ???
9855 if Static_Bounds
then
9856 if Is_Floating_Point_Type
(S_Typ
) then
9858 (Expr_Value_R
(Ck_Node
) < Expr_Value_R
(LB
))
9860 (Expr_Value_R
(Ck_Node
) > Expr_Value_R
(UB
));
9862 -- Fixed or discrete type
9866 Expr_Value
(Ck_Node
) < Expr_Value
(LB
)
9868 Expr_Value
(Ck_Node
) > Expr_Value
(UB
);
9871 -- Bounds of the type are static and the literal is out of
9872 -- range so output a warning message.
9874 if Out_Of_Range
then
9875 if No
(Warn_Node
) then
9877 (Compile_Time_Constraint_Error
9879 "static value out of range of}??", T_Typ
));
9883 (Compile_Time_Constraint_Error
9885 "static value out of range of}??", T_Typ
));
9890 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9894 -- Here for the case of a non-static expression, we need a runtime
9895 -- check unless the source type range is guaranteed to be in the
9896 -- range of the target type.
9899 if not In_Subrange_Of
(S_Typ
, T_Typ
) then
9900 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9905 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
9906 if Is_Constrained
(T_Typ
) then
9908 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
9909 Exptyp
:= Get_Actual_Subtype
(Expr_Actual
);
9911 if Is_Access_Type
(Exptyp
) then
9912 Exptyp
:= Designated_Type
(Exptyp
);
9915 -- String_Literal case. This needs to be handled specially be-
9916 -- cause no index types are available for string literals. The
9917 -- condition is simply:
9919 -- T_Typ'Length = string-literal-length
9921 if Nkind
(Expr_Actual
) = N_String_Literal
then
9924 -- General array case. Here we have a usable actual subtype for
9925 -- the expression, and the condition is built from the two types
9927 -- T_Typ'First < Exptyp'First or else
9928 -- T_Typ'Last > Exptyp'Last or else
9929 -- T_Typ'First(1) < Exptyp'First(1) or else
9930 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9933 elsif Is_Constrained
(Exptyp
) then
9935 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9941 L_Index
:= First_Index
(T_Typ
);
9942 R_Index
:= First_Index
(Exptyp
);
9944 for Indx
in 1 .. Ndims
loop
9945 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
9947 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
9949 -- Deal with compile time length check. Note that we
9950 -- skip this in the access case, because the access
9951 -- value may be null, so we cannot know statically.
9954 Subtypes_Statically_Match
9955 (Etype
(L_Index
), Etype
(R_Index
))
9957 -- If the target type is constrained then we
9958 -- have to check for exact equality of bounds
9959 -- (required for qualified expressions).
9961 if Is_Constrained
(T_Typ
) then
9964 Range_Equal_E_Cond
(Exptyp
, T_Typ
, Indx
));
9967 (Cond
, Range_E_Cond
(Exptyp
, T_Typ
, Indx
));
9977 -- Handle cases where we do not get a usable actual subtype that
9978 -- is constrained. This happens for example in the function call
9979 -- and explicit dereference cases. In these cases, we have to get
9980 -- the length or range from the expression itself, making sure we
9981 -- do not evaluate it more than once.
9983 -- Here Ck_Node is the original expression, or more properly the
9984 -- result of applying Duplicate_Expr to the original tree,
9985 -- forcing the result to be a name.
9989 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9992 -- Build the condition for the explicit dereference case
9994 for Indx
in 1 .. Ndims
loop
9996 (Cond
, Range_N_Cond
(Ck_Node
, T_Typ
, Indx
));
10002 -- For a conversion to an unconstrained array type, generate an
10003 -- Action to check that the bounds of the source value are within
10004 -- the constraints imposed by the target type (RM 4.6(38)). No
10005 -- check is needed for a conversion to an access to unconstrained
10006 -- array type, as 4.6(24.15/2) requires the designated subtypes
10007 -- of the two access types to statically match.
10009 if Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
10010 and then not Do_Access
10013 Opnd_Index
: Node_Id
;
10014 Targ_Index
: Node_Id
;
10015 Opnd_Range
: Node_Id
;
10018 Opnd_Index
:= First_Index
(Get_Actual_Subtype
(Ck_Node
));
10019 Targ_Index
:= First_Index
(T_Typ
);
10020 while Present
(Opnd_Index
) loop
10022 -- If the index is a range, use its bounds. If it is an
10023 -- entity (as will be the case if it is a named subtype
10024 -- or an itype created for a slice) retrieve its range.
10026 if Is_Entity_Name
(Opnd_Index
)
10027 and then Is_Type
(Entity
(Opnd_Index
))
10029 Opnd_Range
:= Scalar_Range
(Entity
(Opnd_Index
));
10031 Opnd_Range
:= Opnd_Index
;
10034 if Nkind
(Opnd_Range
) = N_Range
then
10036 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10037 Assume_Valid
=> True)
10040 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10041 Assume_Valid
=> True)
10045 -- If null range, no check needed
10048 Compile_Time_Known_Value
(High_Bound
(Opnd_Range
))
10050 Compile_Time_Known_Value
(Low_Bound
(Opnd_Range
))
10052 Expr_Value
(High_Bound
(Opnd_Range
)) <
10053 Expr_Value
(Low_Bound
(Opnd_Range
))
10057 elsif Is_Out_Of_Range
10058 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10059 Assume_Valid
=> True)
10062 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10063 Assume_Valid
=> True)
10066 (Compile_Time_Constraint_Error
10067 (Wnode
, "value out of range of}??", T_Typ
));
10072 Discrete_Range_Cond
10073 (Opnd_Range
, Etype
(Targ_Index
)));
10077 Next_Index
(Opnd_Index
);
10078 Next_Index
(Targ_Index
);
10085 -- Construct the test and insert into the tree
10087 if Present
(Cond
) then
10089 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
10093 (Make_Raise_Constraint_Error
(Loc
,
10095 Reason
=> CE_Range_Check_Failed
));
10099 end Selected_Range_Checks
;
10101 -------------------------------
10102 -- Storage_Checks_Suppressed --
10103 -------------------------------
10105 function Storage_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10107 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10108 return Is_Check_Suppressed
(E
, Storage_Check
);
10110 return Scope_Suppress
.Suppress
(Storage_Check
);
10112 end Storage_Checks_Suppressed
;
10114 ---------------------------
10115 -- Tag_Checks_Suppressed --
10116 ---------------------------
10118 function Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10121 and then Checks_May_Be_Suppressed
(E
)
10123 return Is_Check_Suppressed
(E
, Tag_Check
);
10125 return Scope_Suppress
.Suppress
(Tag_Check
);
10127 end Tag_Checks_Suppressed
;
10129 ---------------------------------------
10130 -- Validate_Alignment_Check_Warnings --
10131 ---------------------------------------
10133 procedure Validate_Alignment_Check_Warnings
is
10135 for J
in Alignment_Warnings
.First
.. Alignment_Warnings
.Last
loop
10137 AWR
: Alignment_Warnings_Record
10138 renames Alignment_Warnings
.Table
(J
);
10140 if Known_Alignment
(AWR
.E
)
10141 and then AWR
.A
mod Alignment
(AWR
.E
) = 0
10143 Delete_Warning_And_Continuations
(AWR
.W
);
10147 end Validate_Alignment_Check_Warnings
;
10149 --------------------------
10150 -- Validity_Check_Range --
10151 --------------------------
10153 procedure Validity_Check_Range
10155 Related_Id
: Entity_Id
:= Empty
)
10158 if Validity_Checks_On
and Validity_Check_Operands
then
10159 if Nkind
(N
) = N_Range
then
10161 (Expr
=> Low_Bound
(N
),
10162 Related_Id
=> Related_Id
,
10163 Is_Low_Bound
=> True);
10166 (Expr
=> High_Bound
(N
),
10167 Related_Id
=> Related_Id
,
10168 Is_High_Bound
=> True);
10171 end Validity_Check_Range
;
10173 --------------------------------
10174 -- Validity_Checks_Suppressed --
10175 --------------------------------
10177 function Validity_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10179 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10180 return Is_Check_Suppressed
(E
, Validity_Check
);
10182 return Scope_Suppress
.Suppress
(Validity_Check
);
10184 end Validity_Checks_Suppressed
;