Merged with mainline at revision 128810.
[official-gcc.git] / gcc / config / sparc / sparc.h
blobfc154a4c3729c66fc2e0b21231c3f337bd6daecb
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #include "config/vxworks-dummy.h"
26 /* Note that some other tm.h files include this one and then override
27 whatever definitions are necessary. */
29 /* Define the specific costs for a given cpu */
31 struct processor_costs {
32 /* Integer load */
33 const int int_load;
35 /* Integer signed load */
36 const int int_sload;
38 /* Integer zeroed load */
39 const int int_zload;
41 /* Float load */
42 const int float_load;
44 /* fmov, fneg, fabs */
45 const int float_move;
47 /* fadd, fsub */
48 const int float_plusminus;
50 /* fcmp */
51 const int float_cmp;
53 /* fmov, fmovr */
54 const int float_cmove;
56 /* fmul */
57 const int float_mul;
59 /* fdivs */
60 const int float_div_sf;
62 /* fdivd */
63 const int float_div_df;
65 /* fsqrts */
66 const int float_sqrt_sf;
68 /* fsqrtd */
69 const int float_sqrt_df;
71 /* umul/smul */
72 const int int_mul;
74 /* mulX */
75 const int int_mulX;
77 /* integer multiply cost for each bit set past the most
78 significant 3, so the formula for multiply cost becomes:
80 if (rs1 < 0)
81 highest_bit = highest_clear_bit(rs1);
82 else
83 highest_bit = highest_set_bit(rs1);
84 if (highest_bit < 3)
85 highest_bit = 3;
86 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
88 A value of zero indicates that the multiply costs is fixed,
89 and not variable. */
90 const int int_mul_bit_factor;
92 /* udiv/sdiv */
93 const int int_div;
95 /* divX */
96 const int int_divX;
98 /* movcc, movr */
99 const int int_cmove;
101 /* penalty for shifts, due to scheduling rules etc. */
102 const int shift_penalty;
105 extern const struct processor_costs *sparc_costs;
107 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
108 Solaris only; otherwise just define __sparc__. Sadly the headers
109 are such a mess there is no Solaris-specific header. */
110 #define TARGET_CPU_CPP_BUILTINS() \
111 do \
113 builtin_define_std ("sparc"); \
114 if (TARGET_64BIT) \
116 builtin_assert ("cpu=sparc64"); \
117 builtin_assert ("machine=sparc64"); \
119 else \
121 builtin_assert ("cpu=sparc"); \
122 builtin_assert ("machine=sparc"); \
125 while (0)
127 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
128 /* #define SPARC_BI_ARCH */
130 /* Macro used later in this file to determine default architecture. */
131 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
133 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
134 architectures to compile for. We allow targets to choose compile time or
135 runtime selection. */
136 #ifdef IN_LIBGCC2
137 #if defined(__sparcv9) || defined(__arch64__)
138 #define TARGET_ARCH32 0
139 #else
140 #define TARGET_ARCH32 1
141 #endif /* sparc64 */
142 #else
143 #ifdef SPARC_BI_ARCH
144 #define TARGET_ARCH32 (! TARGET_64BIT)
145 #else
146 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
147 #endif /* SPARC_BI_ARCH */
148 #endif /* IN_LIBGCC2 */
149 #define TARGET_ARCH64 (! TARGET_ARCH32)
151 /* Code model selection in 64-bit environment.
153 The machine mode used for addresses is 32-bit wide:
155 TARGET_CM_32: 32-bit address space.
156 It is the code model used when generating 32-bit code.
158 The machine mode used for addresses is 64-bit wide:
160 TARGET_CM_MEDLOW: 32-bit address space.
161 The executable must be in the low 32 bits of memory.
162 This avoids generating %uhi and %ulo terms. Programs
163 can be statically or dynamically linked.
165 TARGET_CM_MEDMID: 44-bit address space.
166 The executable must be in the low 44 bits of memory,
167 and the %[hml]44 terms are used. The text and data
168 segments have a maximum size of 2GB (31-bit span).
169 The maximum offset from any instruction to the label
170 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
172 TARGET_CM_MEDANY: 64-bit address space.
173 The text and data segments have a maximum size of 2GB
174 (31-bit span) and may be located anywhere in memory.
175 The maximum offset from any instruction to the label
176 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
178 TARGET_CM_EMBMEDANY: 64-bit address space.
179 The text and data segments have a maximum size of 2GB
180 (31-bit span) and may be located anywhere in memory.
181 The global register %g4 contains the start address of
182 the data segment. Programs are statically linked and
183 PIC is not supported.
185 Different code models are not supported in 32-bit environment. */
187 enum cmodel {
188 CM_32,
189 CM_MEDLOW,
190 CM_MEDMID,
191 CM_MEDANY,
192 CM_EMBMEDANY
195 /* One of CM_FOO. */
196 extern enum cmodel sparc_cmodel;
198 /* V9 code model selection. */
199 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
200 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
201 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
202 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204 #define SPARC_DEFAULT_CMODEL CM_32
206 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
207 which requires the following macro to be true if enabled. Prior to V9,
208 there are no instructions to even talk about memory synchronization.
209 Note that the UltraSPARC III processors don't implement RMO, unlike the
210 UltraSPARC II processors. Niagara does not implement RMO either.
212 Default to false; for example, Solaris never enables RMO, only ever uses
213 total memory ordering (TMO). */
214 #define SPARC_RELAXED_ORDERING false
216 /* Do not use the .note.GNU-stack convention by default. */
217 #define NEED_INDICATE_EXEC_STACK 0
219 /* This is call-clobbered in the normal ABI, but is reserved in the
220 home grown (aka upward compatible) embedded ABI. */
221 #define EMBMEDANY_BASE_REG "%g4"
223 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
224 and specified by the user via --with-cpu=foo.
225 This specifies the cpu implementation, not the architecture size. */
226 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
227 capable cpu's. */
228 #define TARGET_CPU_sparc 0
229 #define TARGET_CPU_v7 0 /* alias for previous */
230 #define TARGET_CPU_sparclet 1
231 #define TARGET_CPU_sparclite 2
232 #define TARGET_CPU_v8 3 /* generic v8 implementation */
233 #define TARGET_CPU_supersparc 4
234 #define TARGET_CPU_hypersparc 5
235 #define TARGET_CPU_sparc86x 6
236 #define TARGET_CPU_sparclite86x 6
237 #define TARGET_CPU_v9 7 /* generic v9 implementation */
238 #define TARGET_CPU_sparcv9 7 /* alias */
239 #define TARGET_CPU_sparc64 7 /* alias */
240 #define TARGET_CPU_ultrasparc 8
241 #define TARGET_CPU_ultrasparc3 9
242 #define TARGET_CPU_niagara 10
244 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
245 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
246 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
247 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara
249 #define CPP_CPU32_DEFAULT_SPEC ""
250 #define ASM_CPU32_DEFAULT_SPEC ""
252 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
253 /* ??? What does Sun's CC pass? */
254 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
255 /* ??? It's not clear how other assemblers will handle this, so by default
256 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
257 is handled in sol2.h. */
258 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
259 #endif
260 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
261 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
262 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
263 #endif
264 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
265 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
266 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
267 #endif
268 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
269 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
270 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
271 #endif
273 #else
275 #define CPP_CPU64_DEFAULT_SPEC ""
276 #define ASM_CPU64_DEFAULT_SPEC ""
278 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
279 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
280 #define CPP_CPU32_DEFAULT_SPEC ""
281 #define ASM_CPU32_DEFAULT_SPEC ""
282 #endif
284 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
285 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
286 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
287 #endif
289 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
290 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
291 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
292 #endif
294 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
295 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
296 #define ASM_CPU32_DEFAULT_SPEC ""
297 #endif
299 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
300 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
301 #define ASM_CPU32_DEFAULT_SPEC ""
302 #endif
304 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
305 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
306 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
307 #endif
309 #endif
311 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
312 #error Unrecognized value in TARGET_CPU_DEFAULT.
313 #endif
315 #ifdef SPARC_BI_ARCH
317 #define CPP_CPU_DEFAULT_SPEC \
318 (DEFAULT_ARCH32_P ? "\
319 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
320 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
321 " : "\
322 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
323 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
325 #define ASM_CPU_DEFAULT_SPEC \
326 (DEFAULT_ARCH32_P ? "\
327 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
328 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
329 " : "\
330 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
331 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
334 #else /* !SPARC_BI_ARCH */
336 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
337 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
339 #endif /* !SPARC_BI_ARCH */
341 /* Define macros to distinguish architectures. */
343 /* Common CPP definitions used by CPP_SPEC amongst the various targets
344 for handling -mcpu=xxx switches. */
345 #define CPP_CPU_SPEC "\
346 %{msoft-float:-D_SOFT_FLOAT} \
347 %{mcypress:} \
348 %{msparclite:-D__sparclite__} \
349 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
350 %{mv8:-D__sparc_v8__} \
351 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
352 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
353 %{mcpu=sparclite:-D__sparclite__} \
354 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
355 %{mcpu=v8:-D__sparc_v8__} \
356 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
357 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
358 %{mcpu=sparclite86x:-D__sparclite86x__} \
359 %{mcpu=v9:-D__sparc_v9__} \
360 %{mcpu=ultrasparc:-D__sparc_v9__} \
361 %{mcpu=ultrasparc3:-D__sparc_v9__} \
362 %{mcpu=niagara:-D__sparc_v9__} \
363 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
365 #define CPP_ARCH32_SPEC ""
366 #define CPP_ARCH64_SPEC "-D__arch64__"
368 #define CPP_ARCH_DEFAULT_SPEC \
369 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
371 #define CPP_ARCH_SPEC "\
372 %{m32:%(cpp_arch32)} \
373 %{m64:%(cpp_arch64)} \
374 %{!m32:%{!m64:%(cpp_arch_default)}} \
377 /* Macros to distinguish endianness. */
378 #define CPP_ENDIAN_SPEC "\
379 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
380 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
382 /* Macros to distinguish the particular subtarget. */
383 #define CPP_SUBTARGET_SPEC ""
385 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
387 /* Prevent error on `-sun4' and `-target sun4' options. */
388 /* This used to translate -dalign to -malign, but that is no good
389 because it can't turn off the usual meaning of making debugging dumps. */
390 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
391 ??? Delete support for -m<cpu> for 2.9. */
393 #define CC1_SPEC "\
394 %{sun4:} %{target:} \
395 %{mcypress:-mcpu=cypress} \
396 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
397 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
400 /* Override in target specific files. */
401 #define ASM_CPU_SPEC "\
402 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
403 %{msparclite:-Asparclite} \
404 %{mf930:-Asparclite} %{mf934:-Asparclite} \
405 %{mcpu=sparclite:-Asparclite} \
406 %{mcpu=sparclite86x:-Asparclite} \
407 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
408 %{mv8plus:-Av8plus} \
409 %{mcpu=v9:-Av9} \
410 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
411 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
412 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
413 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
416 /* Word size selection, among other things.
417 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
419 #define ASM_ARCH32_SPEC "-32"
420 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
421 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
422 #else
423 #define ASM_ARCH64_SPEC "-64"
424 #endif
425 #define ASM_ARCH_DEFAULT_SPEC \
426 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
428 #define ASM_ARCH_SPEC "\
429 %{m32:%(asm_arch32)} \
430 %{m64:%(asm_arch64)} \
431 %{!m32:%{!m64:%(asm_arch_default)}} \
434 #ifdef HAVE_AS_RELAX_OPTION
435 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
436 #else
437 #define ASM_RELAX_SPEC ""
438 #endif
440 /* Special flags to the Sun-4 assembler when using pipe for input. */
442 #define ASM_SPEC "\
443 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
444 %(asm_cpu) %(asm_relax)"
446 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
448 /* This macro defines names of additional specifications to put in the specs
449 that can be used in various specifications like CC1_SPEC. Its definition
450 is an initializer with a subgrouping for each command option.
452 Each subgrouping contains a string constant, that defines the
453 specification name, and a string constant that used by the GCC driver
454 program.
456 Do not define this macro if it does not need to do anything. */
458 #define EXTRA_SPECS \
459 { "cpp_cpu", CPP_CPU_SPEC }, \
460 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
461 { "cpp_arch32", CPP_ARCH32_SPEC }, \
462 { "cpp_arch64", CPP_ARCH64_SPEC }, \
463 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
464 { "cpp_arch", CPP_ARCH_SPEC }, \
465 { "cpp_endian", CPP_ENDIAN_SPEC }, \
466 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
467 { "asm_cpu", ASM_CPU_SPEC }, \
468 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
469 { "asm_arch32", ASM_ARCH32_SPEC }, \
470 { "asm_arch64", ASM_ARCH64_SPEC }, \
471 { "asm_relax", ASM_RELAX_SPEC }, \
472 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
473 { "asm_arch", ASM_ARCH_SPEC }, \
474 SUBTARGET_EXTRA_SPECS
476 #define SUBTARGET_EXTRA_SPECS
478 /* Because libgcc can generate references back to libc (via .umul etc.) we have
479 to list libc again after the second libgcc. */
480 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
483 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
484 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
486 /* ??? This should be 32 bits for v9 but what can we do? */
487 #define WCHAR_TYPE "short unsigned int"
488 #define WCHAR_TYPE_SIZE 16
490 /* Show we can debug even without a frame pointer. */
491 #define CAN_DEBUG_WITHOUT_FP
493 /* Option handling. */
495 #define OVERRIDE_OPTIONS sparc_override_options ()
497 /* Mask of all CPU selection flags. */
498 #define MASK_ISA \
499 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
501 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
502 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
503 to get high 32 bits. False in V8+ or V9 because multiply stores
504 a 64-bit result in a register. */
506 #define TARGET_HARD_MUL32 \
507 ((TARGET_V8 || TARGET_SPARCLITE \
508 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
509 && ! TARGET_V8PLUS && TARGET_ARCH32)
511 #define TARGET_HARD_MUL \
512 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
513 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
515 /* MASK_APP_REGS must always be the default because that's what
516 FIXED_REGISTERS is set to and -ffixed- is processed before
517 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
518 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
520 /* Processor type.
521 These must match the values for the cpu attribute in sparc.md. */
522 enum processor_type {
523 PROCESSOR_V7,
524 PROCESSOR_CYPRESS,
525 PROCESSOR_V8,
526 PROCESSOR_SUPERSPARC,
527 PROCESSOR_SPARCLITE,
528 PROCESSOR_F930,
529 PROCESSOR_F934,
530 PROCESSOR_HYPERSPARC,
531 PROCESSOR_SPARCLITE86X,
532 PROCESSOR_SPARCLET,
533 PROCESSOR_TSC701,
534 PROCESSOR_V9,
535 PROCESSOR_ULTRASPARC,
536 PROCESSOR_ULTRASPARC3,
537 PROCESSOR_NIAGARA
540 /* This is set from -m{cpu,tune}=xxx. */
541 extern enum processor_type sparc_cpu;
543 /* Recast the cpu class to be the cpu attribute.
544 Every file includes us, but not every file includes insn-attr.h. */
545 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
547 /* Support for a compile-time default CPU, et cetera. The rules are:
548 --with-cpu is ignored if -mcpu is specified.
549 --with-tune is ignored if -mtune is specified.
550 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
551 are specified. */
552 #define OPTION_DEFAULT_SPECS \
553 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
554 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
555 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
557 /* sparc_select[0] is reserved for the default cpu. */
558 struct sparc_cpu_select
560 const char *string;
561 const char *const name;
562 const int set_tune_p;
563 const int set_arch_p;
566 extern struct sparc_cpu_select sparc_select[];
568 /* target machine storage layout */
570 /* Define this if most significant bit is lowest numbered
571 in instructions that operate on numbered bit-fields. */
572 #define BITS_BIG_ENDIAN 1
574 /* Define this if most significant byte of a word is the lowest numbered. */
575 #define BYTES_BIG_ENDIAN 1
577 /* Define this if most significant word of a multiword number is the lowest
578 numbered. */
579 #define WORDS_BIG_ENDIAN 1
581 /* Define this to set the endianness to use in libgcc2.c, which can
582 not depend on target_flags. */
583 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
584 #define LIBGCC2_WORDS_BIG_ENDIAN 0
585 #else
586 #define LIBGCC2_WORDS_BIG_ENDIAN 1
587 #endif
589 #define MAX_BITS_PER_WORD 64
591 /* Width of a word, in units (bytes). */
592 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
593 #ifdef IN_LIBGCC2
594 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
595 #else
596 #define MIN_UNITS_PER_WORD 4
597 #endif
599 #define UNITS_PER_SIMD_WORD (TARGET_VIS ? 8 : UNITS_PER_WORD)
601 /* Now define the sizes of the C data types. */
603 #define SHORT_TYPE_SIZE 16
604 #define INT_TYPE_SIZE 32
605 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
606 #define LONG_LONG_TYPE_SIZE 64
607 #define FLOAT_TYPE_SIZE 32
608 #define DOUBLE_TYPE_SIZE 64
609 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
610 SPARC ABI says that it is 128-bit wide. */
611 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
613 /* Width in bits of a pointer.
614 See also the macro `Pmode' defined below. */
615 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
617 /* If we have to extend pointers (only when TARGET_ARCH64 and not
618 TARGET_PTR64), we want to do it unsigned. This macro does nothing
619 if ptr_mode and Pmode are the same. */
620 #define POINTERS_EXTEND_UNSIGNED 1
622 /* For TARGET_ARCH64 we need this, as we don't have instructions
623 for arithmetic operations which do zero/sign extension at the same time,
624 so without this we end up with a srl/sra after every assignment to an
625 user variable, which means very very bad code. */
626 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
627 if (TARGET_ARCH64 \
628 && GET_MODE_CLASS (MODE) == MODE_INT \
629 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
630 (MODE) = word_mode;
632 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
633 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
635 /* Boundary (in *bits*) on which stack pointer should be aligned. */
636 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
637 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
638 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
639 /* Temporary hack until the FIXME above is fixed. */
640 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
642 /* ALIGN FRAMES on double word boundaries */
644 #define SPARC_STACK_ALIGN(LOC) \
645 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
647 /* Allocation boundary (in *bits*) for the code of a function. */
648 #define FUNCTION_BOUNDARY 32
650 /* Alignment of field after `int : 0' in a structure. */
651 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
653 /* Every structure's size must be a multiple of this. */
654 #define STRUCTURE_SIZE_BOUNDARY 8
656 /* A bit-field declared as `int' forces `int' alignment for the struct. */
657 #define PCC_BITFIELD_TYPE_MATTERS 1
659 /* No data type wants to be aligned rounder than this. */
660 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
662 /* The best alignment to use in cases where we have a choice. */
663 #define FASTEST_ALIGNMENT 64
665 /* Define this macro as an expression for the alignment of a structure
666 (given by STRUCT as a tree node) if the alignment computed in the
667 usual way is COMPUTED and the alignment explicitly specified was
668 SPECIFIED.
670 The default is to use SPECIFIED if it is larger; otherwise, use
671 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
672 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
673 (TARGET_FASTER_STRUCTS ? \
674 ((TREE_CODE (STRUCT) == RECORD_TYPE \
675 || TREE_CODE (STRUCT) == UNION_TYPE \
676 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
677 && TYPE_FIELDS (STRUCT) != 0 \
678 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
679 : MAX ((COMPUTED), (SPECIFIED))) \
680 : MAX ((COMPUTED), (SPECIFIED)))
682 /* Make strings word-aligned so strcpy from constants will be faster. */
683 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
684 ((TREE_CODE (EXP) == STRING_CST \
685 && (ALIGN) < FASTEST_ALIGNMENT) \
686 ? FASTEST_ALIGNMENT : (ALIGN))
688 /* Make arrays of chars word-aligned for the same reasons. */
689 #define DATA_ALIGNMENT(TYPE, ALIGN) \
690 (TREE_CODE (TYPE) == ARRAY_TYPE \
691 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
692 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
694 /* Set this nonzero if move instructions will actually fail to work
695 when given unaligned data. */
696 #define STRICT_ALIGNMENT 1
698 /* Things that must be doubleword aligned cannot go in the text section,
699 because the linker fails to align the text section enough!
700 Put them in the data section. This macro is only used in this file. */
701 #define MAX_TEXT_ALIGN 32
703 /* Standard register usage. */
705 /* Number of actual hardware registers.
706 The hardware registers are assigned numbers for the compiler
707 from 0 to just below FIRST_PSEUDO_REGISTER.
708 All registers that the compiler knows about must be given numbers,
709 even those that are not normally considered general registers.
711 SPARC has 32 integer registers and 32 floating point registers.
712 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
713 accessible. We still account for them to simplify register computations
714 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
715 32+32+32+4 == 100.
716 Register 100 is used as the integer condition code register.
717 Register 101 is used as the soft frame pointer register. */
719 #define FIRST_PSEUDO_REGISTER 102
721 #define SPARC_FIRST_FP_REG 32
722 /* Additional V9 fp regs. */
723 #define SPARC_FIRST_V9_FP_REG 64
724 #define SPARC_LAST_V9_FP_REG 95
725 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
726 #define SPARC_FIRST_V9_FCC_REG 96
727 #define SPARC_LAST_V9_FCC_REG 99
728 /* V8 fcc reg. */
729 #define SPARC_FCC_REG 96
730 /* Integer CC reg. We don't distinguish %icc from %xcc. */
731 #define SPARC_ICC_REG 100
733 /* Nonzero if REGNO is an fp reg. */
734 #define SPARC_FP_REG_P(REGNO) \
735 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
737 /* Argument passing regs. */
738 #define SPARC_OUTGOING_INT_ARG_FIRST 8
739 #define SPARC_INCOMING_INT_ARG_FIRST 24
740 #define SPARC_FP_ARG_FIRST 32
742 /* 1 for registers that have pervasive standard uses
743 and are not available for the register allocator.
745 On non-v9 systems:
746 g1 is free to use as temporary.
747 g2-g4 are reserved for applications. Gcc normally uses them as
748 temporaries, but this can be disabled via the -mno-app-regs option.
749 g5 through g7 are reserved for the operating system.
751 On v9 systems:
752 g1,g5 are free to use as temporaries, and are free to use between calls
753 if the call is to an external function via the PLT.
754 g4 is free to use as a temporary in the non-embedded case.
755 g4 is reserved in the embedded case.
756 g2-g3 are reserved for applications. Gcc normally uses them as
757 temporaries, but this can be disabled via the -mno-app-regs option.
758 g6-g7 are reserved for the operating system (or application in
759 embedded case).
760 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
761 currently be a fixed register until this pattern is rewritten.
762 Register 1 is also used when restoring call-preserved registers in large
763 stack frames.
765 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
766 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
769 #define FIXED_REGISTERS \
770 {1, 0, 2, 2, 2, 2, 1, 1, \
771 0, 0, 0, 0, 0, 0, 1, 0, \
772 0, 0, 0, 0, 0, 0, 0, 0, \
773 0, 0, 0, 0, 0, 0, 1, 1, \
775 0, 0, 0, 0, 0, 0, 0, 0, \
776 0, 0, 0, 0, 0, 0, 0, 0, \
777 0, 0, 0, 0, 0, 0, 0, 0, \
778 0, 0, 0, 0, 0, 0, 0, 0, \
780 0, 0, 0, 0, 0, 0, 0, 0, \
781 0, 0, 0, 0, 0, 0, 0, 0, \
782 0, 0, 0, 0, 0, 0, 0, 0, \
783 0, 0, 0, 0, 0, 0, 0, 0, \
785 0, 0, 0, 0, 0, 1}
787 /* 1 for registers not available across function calls.
788 These must include the FIXED_REGISTERS and also any
789 registers that can be used without being saved.
790 The latter must include the registers where values are returned
791 and the register where structure-value addresses are passed.
792 Aside from that, you can include as many other registers as you like. */
794 #define CALL_USED_REGISTERS \
795 {1, 1, 1, 1, 1, 1, 1, 1, \
796 1, 1, 1, 1, 1, 1, 1, 1, \
797 0, 0, 0, 0, 0, 0, 0, 0, \
798 0, 0, 0, 0, 0, 0, 1, 1, \
800 1, 1, 1, 1, 1, 1, 1, 1, \
801 1, 1, 1, 1, 1, 1, 1, 1, \
802 1, 1, 1, 1, 1, 1, 1, 1, \
803 1, 1, 1, 1, 1, 1, 1, 1, \
805 1, 1, 1, 1, 1, 1, 1, 1, \
806 1, 1, 1, 1, 1, 1, 1, 1, \
807 1, 1, 1, 1, 1, 1, 1, 1, \
808 1, 1, 1, 1, 1, 1, 1, 1, \
810 1, 1, 1, 1, 1, 1}
812 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
813 they won't be allocated. */
815 #define CONDITIONAL_REGISTER_USAGE \
816 do \
818 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
820 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
821 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
823 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
824 /* then honor it. */ \
825 if (TARGET_ARCH32 && fixed_regs[5]) \
826 fixed_regs[5] = 1; \
827 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
828 fixed_regs[5] = 0; \
829 if (! TARGET_V9) \
831 int regno; \
832 for (regno = SPARC_FIRST_V9_FP_REG; \
833 regno <= SPARC_LAST_V9_FP_REG; \
834 regno++) \
835 fixed_regs[regno] = 1; \
836 /* %fcc0 is used by v8 and v9. */ \
837 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
838 regno <= SPARC_LAST_V9_FCC_REG; \
839 regno++) \
840 fixed_regs[regno] = 1; \
842 if (! TARGET_FPU) \
844 int regno; \
845 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
846 fixed_regs[regno] = 1; \
848 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
849 /* then honor it. Likewise with g3 and g4. */ \
850 if (fixed_regs[2] == 2) \
851 fixed_regs[2] = ! TARGET_APP_REGS; \
852 if (fixed_regs[3] == 2) \
853 fixed_regs[3] = ! TARGET_APP_REGS; \
854 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
855 fixed_regs[4] = ! TARGET_APP_REGS; \
856 else if (TARGET_CM_EMBMEDANY) \
857 fixed_regs[4] = 1; \
858 else if (fixed_regs[4] == 2) \
859 fixed_regs[4] = 0; \
861 while (0)
863 /* Return number of consecutive hard regs needed starting at reg REGNO
864 to hold something of mode MODE.
865 This is ordinarily the length in words of a value of mode MODE
866 but can be less for certain modes in special long registers.
868 On SPARC, ordinary registers hold 32 bits worth;
869 this means both integer and floating point registers.
870 On v9, integer regs hold 64 bits worth; floating point regs hold
871 32 bits worth (this includes the new fp regs as even the odd ones are
872 included in the hard register count). */
874 #define HARD_REGNO_NREGS(REGNO, MODE) \
875 (TARGET_ARCH64 \
876 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
877 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
878 : (GET_MODE_SIZE (MODE) + 3) / 4) \
879 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
881 /* Due to the ARCH64 discrepancy above we must override this next
882 macro too. */
883 #define REGMODE_NATURAL_SIZE(MODE) \
884 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
886 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
887 See sparc.c for how we initialize this. */
888 extern const int *hard_regno_mode_classes;
889 extern int sparc_mode_class[];
891 /* ??? Because of the funny way we pass parameters we should allow certain
892 ??? types of float/complex values to be in integer registers during
893 ??? RTL generation. This only matters on arch32. */
894 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
895 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
897 /* Value is 1 if it is OK to rename a hard register FROM to another hard
898 register TO. We cannot rename %g1 as it may be used before the save
899 register window instruction in the prologue. */
900 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
902 /* Value is 1 if it is a good idea to tie two pseudo registers
903 when one has mode MODE1 and one has mode MODE2.
904 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
905 for any hard reg, then this must be 0 for correct output.
907 For V9: SFmode can't be combined with other float modes, because they can't
908 be allocated to the %d registers. Also, DFmode won't fit in odd %f
909 registers, but SFmode will. */
910 #define MODES_TIEABLE_P(MODE1, MODE2) \
911 ((MODE1) == (MODE2) \
912 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
913 && (! TARGET_V9 \
914 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
915 || (MODE1 != SFmode && MODE2 != SFmode)))))
917 /* Specify the registers used for certain standard purposes.
918 The values of these macros are register numbers. */
920 /* Register to use for pushing function arguments. */
921 #define STACK_POINTER_REGNUM 14
923 /* The stack bias (amount by which the hardware register is offset by). */
924 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
926 /* Actual top-of-stack address is 92/176 greater than the contents of the
927 stack pointer register for !v9/v9. That is:
928 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
929 address, and 6*4 bytes for the 6 register parameters.
930 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
931 parameter regs. */
932 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
934 /* Base register for access to local variables of the function. */
935 #define HARD_FRAME_POINTER_REGNUM 30
937 /* The soft frame pointer does not have the stack bias applied. */
938 #define FRAME_POINTER_REGNUM 101
940 /* Given the stack bias, the stack pointer isn't actually aligned. */
941 #define INIT_EXPANDERS \
942 do { \
943 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
945 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
946 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
948 } while (0)
950 /* Value should be nonzero if functions must have frame pointers.
951 Zero means the frame pointer need not be set up (and parms
952 may be accessed via the stack pointer) in functions that seem suitable.
953 Used in flow.c, global.c, ra.c and reload1.c. */
954 #define FRAME_POINTER_REQUIRED \
955 (! (leaf_function_p () && only_leaf_regs_used ()))
957 /* Base register for access to arguments of the function. */
958 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
960 /* Register in which static-chain is passed to a function. This must
961 not be a register used by the prologue. */
962 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
964 /* Register which holds offset table for position-independent
965 data references. */
967 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
969 /* Pick a default value we can notice from override_options:
970 !v9: Default is on.
971 v9: Default is off. */
973 #define DEFAULT_PCC_STRUCT_RETURN -1
975 /* Functions which return large structures get the address
976 to place the wanted value at offset 64 from the frame.
977 Must reserve 64 bytes for the in and local registers.
978 v9: Functions which return large structures get the address to place the
979 wanted value from an invisible first argument. */
980 #define STRUCT_VALUE_OFFSET 64
982 /* Define the classes of registers for register constraints in the
983 machine description. Also define ranges of constants.
985 One of the classes must always be named ALL_REGS and include all hard regs.
986 If there is more than one class, another class must be named NO_REGS
987 and contain no registers.
989 The name GENERAL_REGS must be the name of a class (or an alias for
990 another name such as ALL_REGS). This is the class of registers
991 that is allowed by "g" or "r" in a register constraint.
992 Also, registers outside this class are allocated only when
993 instructions express preferences for them.
995 The classes must be numbered in nondecreasing order; that is,
996 a larger-numbered class must never be contained completely
997 in a smaller-numbered class.
999 For any two classes, it is very desirable that there be another
1000 class that represents their union. */
1002 /* The SPARC has various kinds of registers: general, floating point,
1003 and condition codes [well, it has others as well, but none that we
1004 care directly about].
1006 For v9 we must distinguish between the upper and lower floating point
1007 registers because the upper ones can't hold SFmode values.
1008 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1009 satisfying a group need for a class will also satisfy a single need for
1010 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1011 regs.
1013 It is important that one class contains all the general and all the standard
1014 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1015 because reg_class_record() will bias the selection in favor of fp regs,
1016 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1017 because FP_REGS > GENERAL_REGS.
1019 It is also important that one class contain all the general and all
1020 the fp regs. Otherwise when spilling a DFmode reg, it may be from
1021 EXTRA_FP_REGS but find_reloads() may use class
1022 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1023 because the compiler thinks it doesn't have a spill reg when in
1024 fact it does.
1026 v9 also has 4 floating point condition code registers. Since we don't
1027 have a class that is the union of FPCC_REGS with either of the others,
1028 it is important that it appear first. Otherwise the compiler will die
1029 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1030 constraints.
1032 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1033 may try to use it to hold an SImode value. See register_operand.
1034 ??? Should %fcc[0123] be handled similarly?
1037 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1038 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1039 ALL_REGS, LIM_REG_CLASSES };
1041 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1043 /* Give names of register classes as strings for dump file. */
1045 #define REG_CLASS_NAMES \
1046 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1047 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1048 "ALL_REGS" }
1050 /* Define which registers fit in which classes.
1051 This is an initializer for a vector of HARD_REG_SET
1052 of length N_REG_CLASSES. */
1054 #define REG_CLASS_CONTENTS \
1055 {{0, 0, 0, 0}, /* NO_REGS */ \
1056 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1057 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1058 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1059 {0, -1, 0, 0}, /* FP_REGS */ \
1060 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1061 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1062 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1063 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1065 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1067 SImode loads to floating-point registers are not zero-extended.
1068 The definition for LOAD_EXTEND_OP specifies that integer loads
1069 narrower than BITS_PER_WORD will be zero-extended. As a result,
1070 we inhibit changes from SImode unless they are to a mode that is
1071 identical in size. */
1073 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1074 (TARGET_ARCH64 \
1075 && (FROM) == SImode \
1076 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1077 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1079 /* The same information, inverted:
1080 Return the class number of the smallest class containing
1081 reg number REGNO. This could be a conditional expression
1082 or could index an array. */
1084 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1086 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1088 /* This is the order in which to allocate registers normally.
1090 We put %f0-%f7 last among the float registers, so as to make it more
1091 likely that a pseudo-register which dies in the float return register
1092 area will get allocated to the float return register, thus saving a move
1093 instruction at the end of the function.
1095 Similarly for integer return value registers.
1097 We know in this case that we will not end up with a leaf function.
1099 The register allocator is given the global and out registers first
1100 because these registers are call clobbered and thus less useful to
1101 global register allocation.
1103 Next we list the local and in registers. They are not call clobbered
1104 and thus very useful for global register allocation. We list the input
1105 registers before the locals so that it is more likely the incoming
1106 arguments received in those registers can just stay there and not be
1107 reloaded. */
1109 #define REG_ALLOC_ORDER \
1110 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1111 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1112 15, /* %o7 */ \
1113 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1114 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1115 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1116 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1117 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1118 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1119 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1120 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1121 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1122 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1123 96, 97, 98, 99, /* %fcc0-3 */ \
1124 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1126 /* This is the order in which to allocate registers for
1127 leaf functions. If all registers can fit in the global and
1128 output registers, then we have the possibility of having a leaf
1129 function.
1131 The macro actually mentioned the input registers first,
1132 because they get renumbered into the output registers once
1133 we know really do have a leaf function.
1135 To be more precise, this register allocation order is used
1136 when %o7 is found to not be clobbered right before register
1137 allocation. Normally, the reason %o7 would be clobbered is
1138 due to a call which could not be transformed into a sibling
1139 call.
1141 As a consequence, it is possible to use the leaf register
1142 allocation order and not end up with a leaf function. We will
1143 not get suboptimal register allocation in that case because by
1144 definition of being potentially leaf, there were no function
1145 calls. Therefore, allocation order within the local register
1146 window is not critical like it is when we do have function calls. */
1148 #define REG_LEAF_ALLOC_ORDER \
1149 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1150 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1151 15, /* %o7 */ \
1152 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1153 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1154 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1155 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1156 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1157 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1158 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1159 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1160 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1161 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1162 96, 97, 98, 99, /* %fcc0-3 */ \
1163 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1165 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1167 extern char sparc_leaf_regs[];
1168 #define LEAF_REGISTERS sparc_leaf_regs
1170 extern char leaf_reg_remap[];
1171 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1173 /* The class value for index registers, and the one for base regs. */
1174 #define INDEX_REG_CLASS GENERAL_REGS
1175 #define BASE_REG_CLASS GENERAL_REGS
1177 /* Local macro to handle the two v9 classes of FP regs. */
1178 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1180 /* Get reg_class from a letter such as appears in the machine description.
1181 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1182 .md file for v8 and v9.
1183 'd' and 'b' are used for single and double precision VIS operations,
1184 if TARGET_VIS.
1185 'h' is used for V8+ 64 bit global and out registers. */
1187 #define REG_CLASS_FROM_LETTER(C) \
1188 (TARGET_V9 \
1189 ? ((C) == 'f' ? FP_REGS \
1190 : (C) == 'e' ? EXTRA_FP_REGS \
1191 : (C) == 'c' ? FPCC_REGS \
1192 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1193 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1194 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1195 : NO_REGS) \
1196 : ((C) == 'f' ? FP_REGS \
1197 : (C) == 'e' ? FP_REGS \
1198 : (C) == 'c' ? FPCC_REGS \
1199 : NO_REGS))
1201 /* The letters I, J, K, L, M, N, O, P in a register constraint string
1202 can be used to stand for particular ranges of CONST_INTs.
1203 This macro defines what the ranges are.
1204 C is the letter, and VALUE is a constant value.
1205 Return 1 if VALUE is in the range specified by C.
1207 `I' is used for the range of constants an insn can actually contain.
1208 `J' is used for the range which is just zero (since that is R0).
1209 `K' is used for constants which can be loaded with a single sethi insn.
1210 `L' is used for the range of constants supported by the movcc insns.
1211 `M' is used for the range of constants supported by the movrcc insns.
1212 `N' is like K, but for constants wider than 32 bits.
1213 `O' is used for the range which is just 4096.
1214 `P' is free. */
1216 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1217 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1218 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1219 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1221 /* 10- and 11-bit immediates are only used for a few specific insns.
1222 SMALL_INT is used throughout the port so we continue to use it. */
1223 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1225 /* Predicate for constants that can be loaded with a sethi instruction.
1226 This is the general, 64-bit aware, bitwise version that ensures that
1227 only constants whose representation fits in the mask
1229 0x00000000fffffc00
1231 are accepted. It will reject, for example, negative SImode constants
1232 on 64-bit hosts, so correct handling is to mask the value beforehand
1233 according to the mode of the instruction. */
1234 #define SPARC_SETHI_P(X) \
1235 (((unsigned HOST_WIDE_INT) (X) \
1236 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1238 /* Version of the above predicate for SImode constants and below. */
1239 #define SPARC_SETHI32_P(X) \
1240 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1242 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1243 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1244 : (C) == 'J' ? (VALUE) == 0 \
1245 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1246 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1247 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1248 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1249 : (C) == 'O' ? (VALUE) == 4096 \
1250 : 0)
1252 /* Similar, but for CONST_DOUBLEs, and defining letters G and H.
1253 Here VALUE is the CONST_DOUBLE rtx itself. */
1255 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1256 ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE)) \
1257 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1258 : 0)
1260 /* Given an rtx X being reloaded into a reg required to be
1261 in class CLASS, return the class of reg to actually use.
1262 In general this is just CLASS; but on some machines
1263 in some cases it is preferable to use a more restrictive class. */
1264 /* - We can't load constants into FP registers.
1265 - We can't load FP constants into integer registers when soft-float,
1266 because there is no soft-float pattern with a r/F constraint.
1267 - We can't load FP constants into integer registers for TFmode unless
1268 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1269 - Try and reload integer constants (symbolic or otherwise) back into
1270 registers directly, rather than having them dumped to memory. */
1272 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1273 (CONSTANT_P (X) \
1274 ? ((FP_REG_CLASS_P (CLASS) \
1275 || (CLASS) == GENERAL_OR_FP_REGS \
1276 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1277 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1278 && ! TARGET_FPU) \
1279 || (GET_MODE (X) == TFmode \
1280 && ! const_zero_operand (X, TFmode))) \
1281 ? NO_REGS \
1282 : (!FP_REG_CLASS_P (CLASS) \
1283 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1284 ? GENERAL_REGS \
1285 : (CLASS)) \
1286 : (CLASS))
1288 /* Return the register class of a scratch register needed to load IN into
1289 a register of class CLASS in MODE.
1291 We need a temporary when loading/storing a HImode/QImode value
1292 between memory and the FPU registers. This can happen when combine puts
1293 a paradoxical subreg in a float/fix conversion insn.
1295 We need a temporary when loading/storing a DFmode value between
1296 unaligned memory and the upper FPU registers. */
1298 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1299 ((FP_REG_CLASS_P (CLASS) \
1300 && ((MODE) == HImode || (MODE) == QImode) \
1301 && (GET_CODE (IN) == MEM \
1302 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1303 && true_regnum (IN) == -1))) \
1304 ? GENERAL_REGS \
1305 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1306 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1307 && ! mem_min_alignment ((IN), 8)) \
1308 ? FP_REGS \
1309 : (((TARGET_CM_MEDANY \
1310 && symbolic_operand ((IN), (MODE))) \
1311 || (TARGET_CM_EMBMEDANY \
1312 && text_segment_operand ((IN), (MODE)))) \
1313 && !flag_pic) \
1314 ? GENERAL_REGS \
1315 : NO_REGS)
1317 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1318 ((FP_REG_CLASS_P (CLASS) \
1319 && ((MODE) == HImode || (MODE) == QImode) \
1320 && (GET_CODE (IN) == MEM \
1321 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1322 && true_regnum (IN) == -1))) \
1323 ? GENERAL_REGS \
1324 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1325 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1326 && ! mem_min_alignment ((IN), 8)) \
1327 ? FP_REGS \
1328 : (((TARGET_CM_MEDANY \
1329 && symbolic_operand ((IN), (MODE))) \
1330 || (TARGET_CM_EMBMEDANY \
1331 && text_segment_operand ((IN), (MODE)))) \
1332 && !flag_pic) \
1333 ? GENERAL_REGS \
1334 : NO_REGS)
1336 /* On SPARC it is not possible to directly move data between
1337 GENERAL_REGS and FP_REGS. */
1338 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1339 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1341 /* Return the stack location to use for secondary memory needed reloads.
1342 We want to use the reserved location just below the frame pointer.
1343 However, we must ensure that there is a frame, so use assign_stack_local
1344 if the frame size is zero. */
1345 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1346 (get_frame_size () == 0 \
1347 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1348 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1349 STARTING_FRAME_OFFSET)))
1351 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1352 because the movsi and movsf patterns don't handle r/f moves.
1353 For v8 we copy the default definition. */
1354 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1355 (TARGET_ARCH64 \
1356 ? (GET_MODE_BITSIZE (MODE) < 32 \
1357 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1358 : MODE) \
1359 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1360 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1361 : MODE))
1363 /* Return the maximum number of consecutive registers
1364 needed to represent mode MODE in a register of class CLASS. */
1365 /* On SPARC, this is the size of MODE in words. */
1366 #define CLASS_MAX_NREGS(CLASS, MODE) \
1367 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1368 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1370 /* Stack layout; function entry, exit and calling. */
1372 /* Define this if pushing a word on the stack
1373 makes the stack pointer a smaller address. */
1374 #define STACK_GROWS_DOWNWARD
1376 /* Define this to nonzero if the nominal address of the stack frame
1377 is at the high-address end of the local variables;
1378 that is, each additional local variable allocated
1379 goes at a more negative offset in the frame. */
1380 #define FRAME_GROWS_DOWNWARD 1
1382 /* Offset within stack frame to start allocating local variables at.
1383 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1384 first local allocated. Otherwise, it is the offset to the BEGINNING
1385 of the first local allocated. */
1386 /* This allows space for one TFmode floating point value, which is used
1387 by SECONDARY_MEMORY_NEEDED_RTX. */
1388 #define STARTING_FRAME_OFFSET \
1389 (TARGET_ARCH64 ? -16 \
1390 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1392 /* Offset of first parameter from the argument pointer register value.
1393 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1394 even if this function isn't going to use it.
1395 v9: This is 128 for the ins and locals. */
1396 #define FIRST_PARM_OFFSET(FNDECL) \
1397 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1399 /* Offset from the argument pointer register value to the CFA.
1400 This is different from FIRST_PARM_OFFSET because the register window
1401 comes between the CFA and the arguments. */
1402 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1404 /* When a parameter is passed in a register, stack space is still
1405 allocated for it.
1406 !v9: All 6 possible integer registers have backing store allocated.
1407 v9: Only space for the arguments passed is allocated. */
1408 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1409 meaning to the backend. Further, we need to be able to detect if a
1410 varargs/unprototyped function is called, as they may want to spill more
1411 registers than we've provided space. Ugly, ugly. So for now we retain
1412 all 6 slots even for v9. */
1413 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1415 /* Definitions for register elimination. */
1417 #define ELIMINABLE_REGS \
1418 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1419 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1421 /* The way this is structured, we can't eliminate SFP in favor of SP
1422 if the frame pointer is required: we want to use the SFP->HFP elimination
1423 in that case. But the test in update_eliminables doesn't know we are
1424 assuming below that we only do the former elimination. */
1425 #define CAN_ELIMINATE(FROM, TO) \
1426 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1428 /* We always pretend that this is a leaf function because if it's not,
1429 there's no point in trying to eliminate the frame pointer. If it
1430 is a leaf function, we guessed right! */
1431 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1432 do { \
1433 if ((TO) == STACK_POINTER_REGNUM) \
1434 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1435 else \
1436 (OFFSET) = 0; \
1437 (OFFSET) += SPARC_STACK_BIAS; \
1438 } while (0)
1440 /* Keep the stack pointer constant throughout the function.
1441 This is both an optimization and a necessity: longjmp
1442 doesn't behave itself when the stack pointer moves within
1443 the function! */
1444 #define ACCUMULATE_OUTGOING_ARGS 1
1446 /* Value is the number of bytes of arguments automatically
1447 popped when returning from a subroutine call.
1448 FUNDECL is the declaration node of the function (as a tree),
1449 FUNTYPE is the data type of the function (as a tree),
1450 or for a library call it is an identifier node for the subroutine name.
1451 SIZE is the number of bytes of arguments passed on the stack. */
1453 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1455 /* Define this macro if the target machine has "register windows". This
1456 C expression returns the register number as seen by the called function
1457 corresponding to register number OUT as seen by the calling function.
1458 Return OUT if register number OUT is not an outbound register. */
1460 #define INCOMING_REGNO(OUT) \
1461 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1463 /* Define this macro if the target machine has "register windows". This
1464 C expression returns the register number as seen by the calling function
1465 corresponding to register number IN as seen by the called function.
1466 Return IN if register number IN is not an inbound register. */
1468 #define OUTGOING_REGNO(IN) \
1469 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1471 /* Define this macro if the target machine has register windows. This
1472 C expression returns true if the register is call-saved but is in the
1473 register window. */
1475 #define LOCAL_REGNO(REGNO) \
1476 ((REGNO) >= 16 && (REGNO) <= 31)
1478 /* Define how to find the value returned by a function.
1479 VALTYPE is the data type of the value (as a tree).
1480 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1481 otherwise, FUNC is 0. */
1483 /* On SPARC the value is found in the first "output" register. */
1485 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1486 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1488 /* But the called function leaves it in the first "input" register. */
1490 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1491 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1493 /* Define how to find the value returned by a library function
1494 assuming the value has mode MODE. */
1496 #define LIBCALL_VALUE(MODE) \
1497 function_value (NULL_TREE, (MODE), 1)
1499 /* 1 if N is a possible register number for a function value
1500 as seen by the caller.
1501 On SPARC, the first "output" reg is used for integer values,
1502 and the first floating point register is used for floating point values. */
1504 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1506 /* Define the size of space to allocate for the return value of an
1507 untyped_call. */
1509 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1511 /* 1 if N is a possible register number for function argument passing.
1512 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1514 #define FUNCTION_ARG_REGNO_P(N) \
1515 (TARGET_ARCH64 \
1516 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1517 : ((N) >= 8 && (N) <= 13))
1519 /* Define a data type for recording info about an argument list
1520 during the scan of that argument list. This data type should
1521 hold all necessary information about the function itself
1522 and about the args processed so far, enough to enable macros
1523 such as FUNCTION_ARG to determine where the next arg should go.
1525 On SPARC (!v9), this is a single integer, which is a number of words
1526 of arguments scanned so far (including the invisible argument,
1527 if any, which holds the structure-value-address).
1528 Thus 7 or more means all following args should go on the stack.
1530 For v9, we also need to know whether a prototype is present. */
1532 struct sparc_args {
1533 int words; /* number of words passed so far */
1534 int prototype_p; /* nonzero if a prototype is present */
1535 int libcall_p; /* nonzero if a library call */
1537 #define CUMULATIVE_ARGS struct sparc_args
1539 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1540 for a call to a function whose data type is FNTYPE.
1541 For a library call, FNTYPE is 0. */
1543 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1544 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1546 /* Update the data in CUM to advance over an argument
1547 of mode MODE and data type TYPE.
1548 TYPE is null for libcalls where that information may not be available. */
1550 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1551 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1553 /* Determine where to put an argument to a function.
1554 Value is zero to push the argument on the stack,
1555 or a hard register in which to store the argument.
1557 MODE is the argument's machine mode.
1558 TYPE is the data type of the argument (as a tree).
1559 This is null for libcalls where that information may
1560 not be available.
1561 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1562 the preceding args and about the function being called.
1563 NAMED is nonzero if this argument is a named parameter
1564 (otherwise it is an extra parameter matching an ellipsis). */
1566 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1567 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1569 /* Define where a function finds its arguments.
1570 This is different from FUNCTION_ARG because of register windows. */
1572 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1573 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1575 /* If defined, a C expression which determines whether, and in which direction,
1576 to pad out an argument with extra space. The value should be of type
1577 `enum direction': either `upward' to pad above the argument,
1578 `downward' to pad below, or `none' to inhibit padding. */
1580 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1581 function_arg_padding ((MODE), (TYPE))
1583 /* If defined, a C expression that gives the alignment boundary, in bits,
1584 of an argument with the specified mode and type. If it is not defined,
1585 PARM_BOUNDARY is used for all arguments.
1586 For sparc64, objects requiring 16 byte alignment are passed that way. */
1588 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1589 ((TARGET_ARCH64 \
1590 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1591 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1592 ? 128 : PARM_BOUNDARY)
1594 /* Define the information needed to generate branch and scc insns. This is
1595 stored from the compare operation. Note that we can't use "rtx" here
1596 since it hasn't been defined! */
1598 extern GTY(()) rtx sparc_compare_op0;
1599 extern GTY(()) rtx sparc_compare_op1;
1600 extern GTY(()) rtx sparc_compare_emitted;
1603 /* Generate the special assembly code needed to tell the assembler whatever
1604 it might need to know about the return value of a function.
1606 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1607 information to the assembler relating to peephole optimization (done in
1608 the assembler). */
1610 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1611 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1613 /* Output the special assembly code needed to tell the assembler some
1614 register is used as global register variable.
1616 SPARC 64bit psABI declares registers %g2 and %g3 as application
1617 registers and %g6 and %g7 as OS registers. Any object using them
1618 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1619 and how they are used (scratch or some global variable).
1620 Linker will then refuse to link together objects which use those
1621 registers incompatibly.
1623 Unless the registers are used for scratch, two different global
1624 registers cannot be declared to the same name, so in the unlikely
1625 case of a global register variable occupying more than one register
1626 we prefix the second and following registers with .gnu.part1. etc. */
1628 extern GTY(()) char sparc_hard_reg_printed[8];
1630 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1631 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1632 do { \
1633 if (TARGET_ARCH64) \
1635 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1636 int reg; \
1637 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1638 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1640 if (reg == (REGNO)) \
1641 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1642 else \
1643 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1644 reg, reg - (REGNO), (NAME)); \
1645 sparc_hard_reg_printed[reg] = 1; \
1648 } while (0)
1649 #endif
1652 /* Emit rtl for profiling. */
1653 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1655 /* All the work done in PROFILE_HOOK, but still required. */
1656 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1658 /* Set the name of the mcount function for the system. */
1659 #define MCOUNT_FUNCTION "*mcount"
1661 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1662 the stack pointer does not matter. The value is tested only in
1663 functions that have frame pointers.
1664 No definition is equivalent to always zero. */
1666 #define EXIT_IGNORE_STACK \
1667 (get_frame_size () != 0 \
1668 || current_function_calls_alloca || current_function_outgoing_args_size)
1670 /* Define registers used by the epilogue and return instruction. */
1671 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1672 || (current_function_calls_eh_return && (REGNO) == 1))
1674 /* Length in units of the trampoline for entering a nested function. */
1676 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1678 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1680 /* Emit RTL insns to initialize the variable parts of a trampoline.
1681 FNADDR is an RTX for the address of the function's pure code.
1682 CXT is an RTX for the static chain value for the function. */
1684 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1685 if (TARGET_ARCH64) \
1686 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1687 else \
1688 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1690 /* Implement `va_start' for varargs and stdarg. */
1691 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1692 sparc_va_start (valist, nextarg)
1694 /* Generate RTL to flush the register windows so as to make arbitrary frames
1695 available. */
1696 #define SETUP_FRAME_ADDRESSES() \
1697 emit_insn (gen_flush_register_windows ())
1699 /* Given an rtx for the address of a frame,
1700 return an rtx for the address of the word in the frame
1701 that holds the dynamic chain--the previous frame's address. */
1702 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1703 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1705 /* Given an rtx for the frame pointer,
1706 return an rtx for the address of the frame. */
1707 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1709 /* The return address isn't on the stack, it is in a register, so we can't
1710 access it from the current frame pointer. We can access it from the
1711 previous frame pointer though by reading a value from the register window
1712 save area. */
1713 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1715 /* This is the offset of the return address to the true next instruction to be
1716 executed for the current function. */
1717 #define RETURN_ADDR_OFFSET \
1718 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1720 /* The current return address is in %i7. The return address of anything
1721 farther back is in the register window save area at [%fp+60]. */
1722 /* ??? This ignores the fact that the actual return address is +8 for normal
1723 returns, and +12 for structure returns. */
1724 #define RETURN_ADDR_RTX(count, frame) \
1725 ((count == -1) \
1726 ? gen_rtx_REG (Pmode, 31) \
1727 : gen_rtx_MEM (Pmode, \
1728 memory_address (Pmode, plus_constant (frame, \
1729 15 * UNITS_PER_WORD \
1730 + SPARC_STACK_BIAS))))
1732 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1733 +12, but always using +8 is close enough for frame unwind purposes.
1734 Actually, just using %o7 is close enough for unwinding, but %o7+8
1735 is something you can return to. */
1736 #define INCOMING_RETURN_ADDR_RTX \
1737 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1738 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1740 /* The offset from the incoming value of %sp to the top of the stack frame
1741 for the current function. On sparc64, we have to account for the stack
1742 bias if present. */
1743 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1745 /* Describe how we implement __builtin_eh_return. */
1746 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1747 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1748 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1750 /* Select a format to encode pointers in exception handling data. CODE
1751 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1752 true if the symbol may be affected by dynamic relocations.
1754 If assembler and linker properly support .uaword %r_disp32(foo),
1755 then use PC relative 32-bit relocations instead of absolute relocs
1756 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1757 for binaries, to save memory.
1759 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1760 symbol %r_disp32() is against was not local, but .hidden. In that
1761 case, we have to use DW_EH_PE_absptr for pic personality. */
1762 #ifdef HAVE_AS_SPARC_UA_PCREL
1763 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1764 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1765 (flag_pic \
1766 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1767 : ((TARGET_ARCH64 && ! GLOBAL) \
1768 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1769 : DW_EH_PE_absptr))
1770 #else
1771 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1772 (flag_pic \
1773 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1774 : ((TARGET_ARCH64 && ! GLOBAL) \
1775 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1776 : DW_EH_PE_absptr))
1777 #endif
1779 /* Emit a PC-relative relocation. */
1780 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1781 do { \
1782 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1783 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1784 assemble_name (FILE, LABEL); \
1785 fputc (')', FILE); \
1786 } while (0)
1787 #endif
1789 /* Addressing modes, and classification of registers for them. */
1791 /* Macros to check register numbers against specific register classes. */
1793 /* These assume that REGNO is a hard or pseudo reg number.
1794 They give nonzero only if REGNO is a hard reg of the suitable class
1795 or a pseudo reg currently allocated to a suitable hard reg.
1796 Since they use reg_renumber, they are safe only once reg_renumber
1797 has been allocated, which happens in local-alloc.c. */
1799 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1800 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1801 || (REGNO) == FRAME_POINTER_REGNUM \
1802 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1804 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1806 #define REGNO_OK_FOR_FP_P(REGNO) \
1807 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1808 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1809 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1810 (TARGET_V9 \
1811 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1812 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1814 /* Now macros that check whether X is a register and also,
1815 strictly, whether it is in a specified class.
1817 These macros are specific to the SPARC, and may be used only
1818 in code for printing assembler insns and in conditions for
1819 define_optimization. */
1821 /* 1 if X is an fp register. */
1823 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1825 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1826 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1828 /* Maximum number of registers that can appear in a valid memory address. */
1830 #define MAX_REGS_PER_ADDRESS 2
1832 /* Recognize any constant value that is a valid address.
1833 When PIC, we do not accept an address that would require a scratch reg
1834 to load into a register. */
1836 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1838 /* Define this, so that when PIC, reload won't try to reload invalid
1839 addresses which require two reload registers. */
1841 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1843 /* Nonzero if the constant value X is a legitimate general operand.
1844 Anything can be made to work except floating point constants.
1845 If TARGET_VIS, 0.0 can be made to work as well. */
1847 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1849 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1850 and check its validity for a certain class.
1851 We have two alternate definitions for each of them.
1852 The usual definition accepts all pseudo regs; the other rejects
1853 them unless they have been allocated suitable hard regs.
1854 The symbol REG_OK_STRICT causes the latter definition to be used.
1856 Most source files want to accept pseudo regs in the hope that
1857 they will get allocated to the class that the insn wants them to be in.
1858 Source files for reload pass need to be strict.
1859 After reload, it makes no difference, since pseudo regs have
1860 been eliminated by then. */
1862 /* Optional extra constraints for this machine.
1864 'Q' handles floating point constants which can be moved into
1865 an integer register with a single sethi instruction.
1867 'R' handles floating point constants which can be moved into
1868 an integer register with a single mov instruction.
1870 'S' handles floating point constants which can be moved into
1871 an integer register using a high/lo_sum sequence.
1873 'T' handles memory addresses where the alignment is known to
1874 be at least 8 bytes.
1876 `U' handles all pseudo registers or a hard even numbered
1877 integer register, needed for ldd/std instructions.
1879 'W' handles the memory operand when moving operands in/out
1880 of 'e' constraint floating point registers.
1882 'Y' handles the zero vector constant. */
1884 #ifndef REG_OK_STRICT
1886 /* Nonzero if X is a hard reg that can be used as an index
1887 or if it is a pseudo reg. */
1888 #define REG_OK_FOR_INDEX_P(X) \
1889 (REGNO (X) < 32 \
1890 || REGNO (X) == FRAME_POINTER_REGNUM \
1891 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1893 /* Nonzero if X is a hard reg that can be used as a base reg
1894 or if it is a pseudo reg. */
1895 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
1897 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
1898 'W' is like 'T' but is assumed true on arch64.
1900 Remember to accept pseudo-registers for memory constraints if reload is
1901 in progress. */
1903 #define EXTRA_CONSTRAINT(OP, C) \
1904 sparc_extra_constraint_check(OP, C, 0)
1906 #else
1908 /* Nonzero if X is a hard reg that can be used as an index. */
1909 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1910 /* Nonzero if X is a hard reg that can be used as a base reg. */
1911 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1913 #define EXTRA_CONSTRAINT(OP, C) \
1914 sparc_extra_constraint_check(OP, C, 1)
1916 #endif
1918 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1920 #ifdef HAVE_AS_OFFSETABLE_LO10
1921 #define USE_AS_OFFSETABLE_LO10 1
1922 #else
1923 #define USE_AS_OFFSETABLE_LO10 0
1924 #endif
1926 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1927 that is a valid memory address for an instruction.
1928 The MODE argument is the machine mode for the MEM expression
1929 that wants to use this address.
1931 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1932 ordinarily. This changes a bit when generating PIC.
1934 If you change this, execute "rm explow.o recog.o reload.o". */
1936 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1938 #define RTX_OK_FOR_BASE_P(X) \
1939 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1940 || (GET_CODE (X) == SUBREG \
1941 && GET_CODE (SUBREG_REG (X)) == REG \
1942 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1944 #define RTX_OK_FOR_INDEX_P(X) \
1945 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1946 || (GET_CODE (X) == SUBREG \
1947 && GET_CODE (SUBREG_REG (X)) == REG \
1948 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1950 #define RTX_OK_FOR_OFFSET_P(X) \
1951 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1953 #define RTX_OK_FOR_OLO10_P(X) \
1954 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1956 #ifdef REG_OK_STRICT
1957 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1959 if (legitimate_address_p (MODE, X, 1)) \
1960 goto ADDR; \
1962 #else
1963 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1965 if (legitimate_address_p (MODE, X, 0)) \
1966 goto ADDR; \
1968 #endif
1970 /* Go to LABEL if ADDR (a legitimate address expression)
1971 has an effect that depends on the machine mode it is used for.
1973 In PIC mode,
1975 (mem:HI [%l7+a])
1977 is not equivalent to
1979 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1981 because [%l7+a+1] is interpreted as the address of (a+1). */
1983 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1985 if (flag_pic == 1) \
1987 if (GET_CODE (ADDR) == PLUS) \
1989 rtx op0 = XEXP (ADDR, 0); \
1990 rtx op1 = XEXP (ADDR, 1); \
1991 if (op0 == pic_offset_table_rtx \
1992 && SYMBOLIC_CONST (op1)) \
1993 goto LABEL; \
1998 /* Try machine-dependent ways of modifying an illegitimate address
1999 to be legitimate. If we find one, return the new, valid address.
2000 This macro is used in only one place: `memory_address' in explow.c.
2002 OLDX is the address as it was before break_out_memory_refs was called.
2003 In some cases it is useful to look at this to decide what needs to be done.
2005 MODE and WIN are passed so that this macro can use
2006 GO_IF_LEGITIMATE_ADDRESS.
2008 It is always safe for this macro to do nothing. It exists to recognize
2009 opportunities to optimize the output. */
2011 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2012 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2014 (X) = legitimize_address (X, OLDX, MODE); \
2015 if (memory_address_p (MODE, X)) \
2016 goto WIN; \
2019 /* Try a machine-dependent way of reloading an illegitimate address
2020 operand. If we find one, push the reload and jump to WIN. This
2021 macro is used in only one place: `find_reloads_address' in reload.c.
2023 For SPARC 32, we wish to handle addresses by splitting them into
2024 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2025 This cuts the number of extra insns by one.
2027 Do nothing when generating PIC code and the address is a
2028 symbolic operand or requires a scratch register. */
2030 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2031 do { \
2032 /* Decompose SImode constants into hi+lo_sum. We do have to \
2033 rerecognize what we produce, so be careful. */ \
2034 if (CONSTANT_P (X) \
2035 && (MODE != TFmode || TARGET_ARCH64) \
2036 && GET_MODE (X) == SImode \
2037 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2038 && ! (flag_pic \
2039 && (symbolic_operand (X, Pmode) \
2040 || pic_address_needs_scratch (X))) \
2041 && sparc_cmodel <= CM_MEDLOW) \
2043 X = gen_rtx_LO_SUM (GET_MODE (X), \
2044 gen_rtx_HIGH (GET_MODE (X), X), X); \
2045 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2046 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2047 OPNUM, TYPE); \
2048 goto WIN; \
2050 /* ??? 64-bit reloads. */ \
2051 } while (0)
2053 /* Specify the machine mode that this machine uses
2054 for the index in the tablejump instruction. */
2055 /* If we ever implement any of the full models (such as CM_FULLANY),
2056 this has to be DImode in that case */
2057 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2058 #define CASE_VECTOR_MODE \
2059 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2060 #else
2061 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2062 we have to sign extend which slows things down. */
2063 #define CASE_VECTOR_MODE \
2064 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2065 #endif
2067 /* Define this as 1 if `char' should by default be signed; else as 0. */
2068 #define DEFAULT_SIGNED_CHAR 1
2070 /* Max number of bytes we can move from memory to memory
2071 in one reasonably fast instruction. */
2072 #define MOVE_MAX 8
2074 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2075 move-instruction pairs, we will do a movmem or libcall instead. */
2077 #define MOVE_RATIO (optimize_size ? 3 : 8)
2079 /* Define if operations between registers always perform the operation
2080 on the full register even if a narrower mode is specified. */
2081 #define WORD_REGISTER_OPERATIONS
2083 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2084 will either zero-extend or sign-extend. The value of this macro should
2085 be the code that says which one of the two operations is implicitly
2086 done, UNKNOWN if none. */
2087 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2089 /* Nonzero if access to memory by bytes is slow and undesirable.
2090 For RISC chips, it means that access to memory by bytes is no
2091 better than access by words when possible, so grab a whole word
2092 and maybe make use of that. */
2093 #define SLOW_BYTE_ACCESS 1
2095 /* Define this to be nonzero if shift instructions ignore all but the low-order
2096 few bits. */
2097 #define SHIFT_COUNT_TRUNCATED 1
2099 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2100 is done just by pretending it is already truncated. */
2101 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2103 /* Specify the machine mode used for addresses. */
2104 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2106 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2107 return the mode to be used for the comparison. For floating-point,
2108 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2109 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2110 processing is needed. */
2111 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2113 /* Return nonzero if MODE implies a floating point inequality can be
2114 reversed. For SPARC this is always true because we have a full
2115 compliment of ordered and unordered comparisons, but until generic
2116 code knows how to reverse it correctly we keep the old definition. */
2117 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2119 /* A function address in a call instruction for indexing purposes. */
2120 #define FUNCTION_MODE Pmode
2122 /* Define this if addresses of constant functions
2123 shouldn't be put through pseudo regs where they can be cse'd.
2124 Desirable on machines where ordinary constants are expensive
2125 but a CALL with constant address is cheap. */
2126 #define NO_FUNCTION_CSE
2128 /* alloca should avoid clobbering the old register save area. */
2129 #define SETJMP_VIA_SAVE_AREA
2131 /* The _Q_* comparison libcalls return booleans. */
2132 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2134 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2135 that the inputs are fully consumed before the output memory is clobbered. */
2137 #define TARGET_BUGGY_QP_LIB 0
2139 /* Assume by default that we do not have the Solaris-specific conversion
2140 routines nor 64-bit integer multiply and divide routines. */
2142 #define SUN_CONVERSION_LIBFUNCS 0
2143 #define DITF_CONVERSION_LIBFUNCS 0
2144 #define SUN_INTEGER_MULTIPLY_64 0
2146 /* Compute extra cost of moving data between one register class
2147 and another. */
2148 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2149 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2150 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2151 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2152 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2153 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2154 || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2155 || sparc_cpu == PROCESSOR_NIAGARA) ? 12 : 6) : 2)
2157 /* Provide the cost of a branch. For pre-v9 processors we use
2158 a value of 3 to take into account the potential annulling of
2159 the delay slot (which ends up being a bubble in the pipeline slot)
2160 plus a cycle to take into consideration the instruction cache
2161 effects.
2163 On v9 and later, which have branch prediction facilities, we set
2164 it to the depth of the pipeline as that is the cost of a
2165 mispredicted branch.
2167 On Niagara, normal branches insert 3 bubbles into the pipe
2168 and annulled branches insert 4 bubbles. */
2170 #define BRANCH_COST \
2171 ((sparc_cpu == PROCESSOR_V9 \
2172 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2173 ? 7 \
2174 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2175 ? 9 \
2176 : (sparc_cpu == PROCESSOR_NIAGARA \
2177 ? 4 \
2178 : 3)))
2180 /* Control the assembler format that we output. */
2182 /* A C string constant describing how to begin a comment in the target
2183 assembler language. The compiler assumes that the comment will end at
2184 the end of the line. */
2186 #define ASM_COMMENT_START "!"
2188 /* Output to assembler file text saying following lines
2189 may contain character constants, extra white space, comments, etc. */
2191 #define ASM_APP_ON ""
2193 /* Output to assembler file text saying following lines
2194 no longer contain unusual constructs. */
2196 #define ASM_APP_OFF ""
2198 /* How to refer to registers in assembler output.
2199 This sequence is indexed by compiler's hard-register-number (see above). */
2201 #define REGISTER_NAMES \
2202 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2203 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2204 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2205 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2206 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2207 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2208 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2209 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2210 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2211 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2212 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2213 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2214 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2216 /* Define additional names for use in asm clobbers and asm declarations. */
2218 #define ADDITIONAL_REGISTER_NAMES \
2219 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2221 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2222 can run past this up to a continuation point. Once we used 1500, but
2223 a single entry in C++ can run more than 500 bytes, due to the length of
2224 mangled symbol names. dbxout.c should really be fixed to do
2225 continuations when they are actually needed instead of trying to
2226 guess... */
2227 #define DBX_CONTIN_LENGTH 1000
2229 /* This is how to output a command to make the user-level label named NAME
2230 defined for reference from other files. */
2232 /* Globalizing directive for a label. */
2233 #define GLOBAL_ASM_OP "\t.global "
2235 /* The prefix to add to user-visible assembler symbols. */
2237 #define USER_LABEL_PREFIX "_"
2239 /* This is how to store into the string LABEL
2240 the symbol_ref name of an internal numbered label where
2241 PREFIX is the class of label and NUM is the number within the class.
2242 This is suitable for output with `assemble_name'. */
2244 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2245 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2247 /* This is how we hook in and defer the case-vector until the end of
2248 the function. */
2249 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2250 sparc_defer_case_vector ((LAB),(VEC), 0)
2252 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2253 sparc_defer_case_vector ((LAB),(VEC), 1)
2255 /* This is how to output an element of a case-vector that is absolute. */
2257 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2258 do { \
2259 char label[30]; \
2260 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2261 if (CASE_VECTOR_MODE == SImode) \
2262 fprintf (FILE, "\t.word\t"); \
2263 else \
2264 fprintf (FILE, "\t.xword\t"); \
2265 assemble_name (FILE, label); \
2266 fputc ('\n', FILE); \
2267 } while (0)
2269 /* This is how to output an element of a case-vector that is relative.
2270 (SPARC uses such vectors only when generating PIC.) */
2272 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2273 do { \
2274 char label[30]; \
2275 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2276 if (CASE_VECTOR_MODE == SImode) \
2277 fprintf (FILE, "\t.word\t"); \
2278 else \
2279 fprintf (FILE, "\t.xword\t"); \
2280 assemble_name (FILE, label); \
2281 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2282 fputc ('-', FILE); \
2283 assemble_name (FILE, label); \
2284 fputc ('\n', FILE); \
2285 } while (0)
2287 /* This is what to output before and after case-vector (both
2288 relative and absolute). If .subsection -1 works, we put case-vectors
2289 at the beginning of the current section. */
2291 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2293 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2294 fprintf(FILE, "\t.subsection\t-1\n")
2296 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2297 fprintf(FILE, "\t.previous\n")
2299 #endif
2301 /* This is how to output an assembler line
2302 that says to advance the location counter
2303 to a multiple of 2**LOG bytes. */
2305 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2306 if ((LOG) != 0) \
2307 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2309 /* This is how to output an assembler line that says to advance
2310 the location counter to a multiple of 2**LOG bytes using the
2311 "nop" instruction as padding. */
2312 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2313 if ((LOG) != 0) \
2314 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2316 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2317 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2319 /* This says how to output an assembler line
2320 to define a global common symbol. */
2322 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2323 ( fputs ("\t.common ", (FILE)), \
2324 assemble_name ((FILE), (NAME)), \
2325 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2327 /* This says how to output an assembler line to define a local common
2328 symbol. */
2330 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2331 ( fputs ("\t.reserve ", (FILE)), \
2332 assemble_name ((FILE), (NAME)), \
2333 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2334 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2336 /* A C statement (sans semicolon) to output to the stdio stream
2337 FILE the assembler definition of uninitialized global DECL named
2338 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2339 Try to use asm_output_aligned_bss to implement this macro. */
2341 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2342 do { \
2343 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2344 } while (0)
2346 #define IDENT_ASM_OP "\t.ident\t"
2348 /* Output #ident as a .ident. */
2350 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2351 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2353 /* Prettify the assembly. */
2355 extern int sparc_indent_opcode;
2357 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2358 do { \
2359 if (sparc_indent_opcode) \
2361 putc (' ', FILE); \
2362 sparc_indent_opcode = 0; \
2364 } while (0)
2366 #define SPARC_SYMBOL_REF_TLS_P(RTX) \
2367 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2369 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2370 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2371 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2373 /* Print operand X (an rtx) in assembler syntax to file FILE.
2374 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2375 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2377 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2379 /* Print a memory address as an operand to reference that memory location. */
2381 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2382 { register rtx base, index = 0; \
2383 int offset = 0; \
2384 register rtx addr = ADDR; \
2385 if (GET_CODE (addr) == REG) \
2386 fputs (reg_names[REGNO (addr)], FILE); \
2387 else if (GET_CODE (addr) == PLUS) \
2389 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2390 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2391 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2392 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2393 else \
2394 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2395 if (GET_CODE (base) == LO_SUM) \
2397 gcc_assert (USE_AS_OFFSETABLE_LO10 \
2398 && TARGET_ARCH64 \
2399 && ! TARGET_CM_MEDMID); \
2400 output_operand (XEXP (base, 0), 0); \
2401 fputs ("+%lo(", FILE); \
2402 output_address (XEXP (base, 1)); \
2403 fprintf (FILE, ")+%d", offset); \
2405 else \
2407 fputs (reg_names[REGNO (base)], FILE); \
2408 if (index == 0) \
2409 fprintf (FILE, "%+d", offset); \
2410 else if (GET_CODE (index) == REG) \
2411 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2412 else if (GET_CODE (index) == SYMBOL_REF \
2413 || GET_CODE (index) == LABEL_REF \
2414 || GET_CODE (index) == CONST) \
2415 fputc ('+', FILE), output_addr_const (FILE, index); \
2416 else gcc_unreachable (); \
2419 else if (GET_CODE (addr) == MINUS \
2420 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2422 output_addr_const (FILE, XEXP (addr, 0)); \
2423 fputs ("-(", FILE); \
2424 output_addr_const (FILE, XEXP (addr, 1)); \
2425 fputs ("-.)", FILE); \
2427 else if (GET_CODE (addr) == LO_SUM) \
2429 output_operand (XEXP (addr, 0), 0); \
2430 if (TARGET_CM_MEDMID) \
2431 fputs ("+%l44(", FILE); \
2432 else \
2433 fputs ("+%lo(", FILE); \
2434 output_address (XEXP (addr, 1)); \
2435 fputc (')', FILE); \
2437 else if (flag_pic && GET_CODE (addr) == CONST \
2438 && GET_CODE (XEXP (addr, 0)) == MINUS \
2439 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2440 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2441 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2443 addr = XEXP (addr, 0); \
2444 output_addr_const (FILE, XEXP (addr, 0)); \
2445 /* Group the args of the second CONST in parenthesis. */ \
2446 fputs ("-(", FILE); \
2447 /* Skip past the second CONST--it does nothing for us. */\
2448 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2449 /* Close the parenthesis. */ \
2450 fputc (')', FILE); \
2452 else \
2454 output_addr_const (FILE, addr); \
2458 /* TLS support defaulting to original Sun flavor. GNU extensions
2459 must be activated in separate configuration files. */
2460 #ifdef HAVE_AS_TLS
2461 #define TARGET_TLS 1
2462 #else
2463 #define TARGET_TLS 0
2464 #endif
2466 #define TARGET_SUN_TLS TARGET_TLS
2467 #define TARGET_GNU_TLS 0
2469 /* The number of Pmode words for the setjmp buffer. */
2470 #define JMP_BUF_SIZE 12