Merged with mainline at revision 128810.
[official-gcc.git] / gcc / ada / freeze.adb
blobc55d46892fbb9f0d5ae158425603923349529cc3
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Pakd; use Exp_Pakd;
34 with Exp_Util; use Exp_Util;
35 with Exp_Tss; use Exp_Tss;
36 with Layout; use Layout;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch7; use Sem_Ch7;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Ch13; use Sem_Ch13;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Mech; use Sem_Mech;
52 with Sem_Prag; use Sem_Prag;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sinfo; use Sinfo;
56 with Snames; use Snames;
57 with Stand; use Stand;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Ttypes; use Ttypes;
61 with Uintp; use Uintp;
62 with Urealp; use Urealp;
64 package body Freeze is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
81 -- Build body for a renaming declaration, insert in tree and analyze
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
160 procedure Set_Debug_Info_Needed (T : Entity_Id);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
167 procedure Undelay_Type (T : Entity_Id);
168 -- T is a type of a component that we know to be an Itype.
169 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
170 -- Do the same for any Full_View or Corresponding_Record_Type.
172 procedure Warn_Overlay
173 (Expr : Node_Id;
174 Typ : Entity_Id;
175 Nam : Node_Id);
176 -- Expr is the expression for an address clause for entity Nam whose type
177 -- is Typ. If Typ has a default initialization, and there is no explicit
178 -- initialization in the source declaration, check whether the address
179 -- clause might cause overlaying of an entity, and emit a warning on the
180 -- side effect that the initialization will cause.
182 -------------------------------
183 -- Adjust_Esize_For_Alignment --
184 -------------------------------
186 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
187 Align : Uint;
189 begin
190 if Known_Esize (Typ) and then Known_Alignment (Typ) then
191 Align := Alignment_In_Bits (Typ);
193 if Align > Esize (Typ)
194 and then Align <= Standard_Long_Long_Integer_Size
195 then
196 Set_Esize (Typ, Align);
197 end if;
198 end if;
199 end Adjust_Esize_For_Alignment;
201 ------------------------------------
202 -- Build_And_Analyze_Renamed_Body --
203 ------------------------------------
205 procedure Build_And_Analyze_Renamed_Body
206 (Decl : Node_Id;
207 New_S : Entity_Id;
208 After : in out Node_Id)
210 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
222 function Build_Renamed_Body
223 (Decl : Node_Id;
224 New_S : Entity_Id) return Node_Id
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
246 begin
247 -- Determine the entity being renamed, which is the target of the
248 -- call statement. If the name is an explicit dereference, this is
249 -- a renaming of a subprogram type rather than a subprogram. The
250 -- name itself is fully analyzed.
252 if Nkind (Nam) = N_Selected_Component then
253 Old_S := Entity (Selector_Name (Nam));
255 elsif Nkind (Nam) = N_Explicit_Dereference then
256 Old_S := Etype (Nam);
258 elsif Nkind (Nam) = N_Indexed_Component then
259 if Is_Entity_Name (Prefix (Nam)) then
260 Old_S := Entity (Prefix (Nam));
261 else
262 Old_S := Entity (Selector_Name (Prefix (Nam)));
263 end if;
265 elsif Nkind (Nam) = N_Character_Literal then
266 Old_S := Etype (New_S);
268 else
269 Old_S := Entity (Nam);
270 end if;
272 if Is_Entity_Name (Nam) then
274 -- If the renamed entity is a predefined operator, retain full
275 -- name to ensure its visibility.
277 if Ekind (Old_S) = E_Operator
278 and then Nkind (Nam) = N_Expanded_Name
279 then
280 Call_Name := New_Copy (Name (N));
281 else
282 Call_Name := New_Reference_To (Old_S, Loc);
283 end if;
285 else
286 Call_Name := New_Copy (Name (N));
288 -- The original name may have been overloaded, but
289 -- is fully resolved now.
291 Set_Is_Overloaded (Call_Name, False);
292 end if;
294 -- For simple renamings, subsequent calls can be expanded directly
295 -- as called to the renamed entity. The body must be generated in
296 -- any case for calls they may appear elsewhere.
298 if (Ekind (Old_S) = E_Function
299 or else Ekind (Old_S) = E_Procedure)
300 and then Nkind (Decl) = N_Subprogram_Declaration
301 then
302 Set_Body_To_Inline (Decl, Old_S);
303 end if;
305 -- The body generated for this renaming is an internal artifact, and
306 -- does not constitute a freeze point for the called entity.
308 Set_Must_Not_Freeze (Call_Name);
310 Formal := First_Formal (Defining_Entity (Decl));
312 if Present (Formal) then
313 Actuals := New_List;
315 while Present (Formal) loop
316 Append (New_Reference_To (Formal, Loc), Actuals);
317 Next_Formal (Formal);
318 end loop;
319 end if;
321 -- If the renamed entity is an entry, inherit its profile. For
322 -- other renamings as bodies, both profiles must be subtype
323 -- conformant, so it is not necessary to replace the profile given
324 -- in the declaration. However, default values that are aggregates
325 -- are rewritten when partially analyzed, so we recover the original
326 -- aggregate to insure that subsequent conformity checking works.
327 -- Similarly, if the default expression was constant-folded, recover
328 -- the original expression.
330 Formal := First_Formal (Defining_Entity (Decl));
332 if Present (Formal) then
333 O_Formal := First_Formal (Old_S);
334 Param_Spec := First (Parameter_Specifications (Spec));
336 while Present (Formal) loop
337 if Is_Entry (Old_S) then
339 if Nkind (Parameter_Type (Param_Spec)) /=
340 N_Access_Definition
341 then
342 Set_Etype (Formal, Etype (O_Formal));
343 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
344 end if;
346 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
347 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
348 Nkind (Default_Value (O_Formal))
349 then
350 Set_Expression (Param_Spec,
351 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
352 end if;
354 Next_Formal (Formal);
355 Next_Formal (O_Formal);
356 Next (Param_Spec);
357 end loop;
358 end if;
360 -- If the renamed entity is a function, the generated body contains a
361 -- return statement. Otherwise, build a procedure call. If the entity is
362 -- an entry, subsequent analysis of the call will transform it into the
363 -- proper entry or protected operation call. If the renamed entity is
364 -- a character literal, return it directly.
366 if Ekind (Old_S) = E_Function
367 or else Ekind (Old_S) = E_Operator
368 or else (Ekind (Old_S) = E_Subprogram_Type
369 and then Etype (Old_S) /= Standard_Void_Type)
370 then
371 Call_Node :=
372 Make_Simple_Return_Statement (Loc,
373 Expression =>
374 Make_Function_Call (Loc,
375 Name => Call_Name,
376 Parameter_Associations => Actuals));
378 elsif Ekind (Old_S) = E_Enumeration_Literal then
379 Call_Node :=
380 Make_Simple_Return_Statement (Loc,
381 Expression => New_Occurrence_Of (Old_S, Loc));
383 elsif Nkind (Nam) = N_Character_Literal then
384 Call_Node :=
385 Make_Simple_Return_Statement (Loc,
386 Expression => Call_Name);
388 else
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => Call_Name,
392 Parameter_Associations => Actuals);
393 end if;
395 -- Create entities for subprogram body and formals
397 Set_Defining_Unit_Name (Spec,
398 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
400 Param_Spec := First (Parameter_Specifications (Spec));
402 while Present (Param_Spec) loop
403 Set_Defining_Identifier (Param_Spec,
404 Make_Defining_Identifier (Loc,
405 Chars => Chars (Defining_Identifier (Param_Spec))));
406 Next (Param_Spec);
407 end loop;
409 Body_Node :=
410 Make_Subprogram_Body (Loc,
411 Specification => Spec,
412 Declarations => New_List,
413 Handled_Statement_Sequence =>
414 Make_Handled_Sequence_Of_Statements (Loc,
415 Statements => New_List (Call_Node)));
417 if Nkind (Decl) /= N_Subprogram_Declaration then
418 Rewrite (N,
419 Make_Subprogram_Declaration (Loc,
420 Specification => Specification (N)));
421 end if;
423 -- Link the body to the entity whose declaration it completes. If
424 -- the body is analyzed when the renamed entity is frozen, it may be
425 -- necessary to restore the proper scope (see package Exp_Ch13).
427 if Nkind (N) = N_Subprogram_Renaming_Declaration
428 and then Present (Corresponding_Spec (N))
429 then
430 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
431 else
432 Set_Corresponding_Spec (Body_Node, New_S);
433 end if;
435 return Body_Node;
436 end Build_Renamed_Body;
438 --------------------------
439 -- Check_Address_Clause --
440 --------------------------
442 procedure Check_Address_Clause (E : Entity_Id) is
443 Addr : constant Node_Id := Address_Clause (E);
444 Expr : Node_Id;
445 Decl : constant Node_Id := Declaration_Node (E);
446 Typ : constant Entity_Id := Etype (E);
448 begin
449 if Present (Addr) then
450 Expr := Expression (Addr);
452 -- If we have no initialization of any kind, then we don't
453 -- need to place any restrictions on the address clause, because
454 -- the object will be elaborated after the address clause is
455 -- evaluated. This happens if the declaration has no initial
456 -- expression, or the type has no implicit initialization, or
457 -- the object is imported.
459 -- The same holds for all initialized scalar types and all
460 -- access types. Packed bit arrays of size up to 64 are
461 -- represented using a modular type with an initialization
462 -- (to zero) and can be processed like other initialized
463 -- scalar types.
465 -- If the type is controlled, code to attach the object to a
466 -- finalization chain is generated at the point of declaration,
467 -- and therefore the elaboration of the object cannot be delayed:
468 -- the address expression must be a constant.
470 if (No (Expression (Decl))
471 and then not Controlled_Type (Typ)
472 and then
473 (not Has_Non_Null_Base_Init_Proc (Typ)
474 or else Is_Imported (E)))
476 or else
477 (Present (Expression (Decl))
478 and then Is_Scalar_Type (Typ))
480 or else
481 Is_Access_Type (Typ)
483 or else
484 (Is_Bit_Packed_Array (Typ)
485 and then
486 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
487 then
488 null;
490 -- Otherwise, we require the address clause to be constant
491 -- because the call to the initialization procedure (or the
492 -- attach code) has to happen at the point of the declaration.
494 else
495 Check_Constant_Address_Clause (Expr, E);
496 Set_Has_Delayed_Freeze (E, False);
497 end if;
499 if not Error_Posted (Expr)
500 and then not Controlled_Type (Typ)
501 then
502 Warn_Overlay (Expr, Typ, Name (Addr));
503 end if;
504 end if;
505 end Check_Address_Clause;
507 -----------------------------
508 -- Check_Compile_Time_Size --
509 -----------------------------
511 procedure Check_Compile_Time_Size (T : Entity_Id) is
513 procedure Set_Small_Size (T : Entity_Id; S : Uint);
514 -- Sets the compile time known size (32 bits or less) in the Esize
515 -- field, of T checking for a size clause that was given which attempts
516 -- to give a smaller size.
518 function Size_Known (T : Entity_Id) return Boolean;
519 -- Recursive function that does all the work
521 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
522 -- If T is a constrained subtype, its size is not known if any of its
523 -- discriminant constraints is not static and it is not a null record.
524 -- The test is conservative and doesn't check that the components are
525 -- in fact constrained by non-static discriminant values. Could be made
526 -- more precise ???
528 --------------------
529 -- Set_Small_Size --
530 --------------------
532 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
533 begin
534 if S > 32 then
535 return;
537 elsif Has_Size_Clause (T) then
538 if RM_Size (T) < S then
539 Error_Msg_Uint_1 := S;
540 Error_Msg_NE
541 ("size for & too small, minimum allowed is ^",
542 Size_Clause (T), T);
544 elsif Unknown_Esize (T) then
545 Set_Esize (T, S);
546 end if;
548 -- Set sizes if not set already
550 else
551 if Unknown_Esize (T) then
552 Set_Esize (T, S);
553 end if;
555 if Unknown_RM_Size (T) then
556 Set_RM_Size (T, S);
557 end if;
558 end if;
559 end Set_Small_Size;
561 ----------------
562 -- Size_Known --
563 ----------------
565 function Size_Known (T : Entity_Id) return Boolean is
566 Index : Entity_Id;
567 Comp : Entity_Id;
568 Ctyp : Entity_Id;
569 Low : Node_Id;
570 High : Node_Id;
572 begin
573 if Size_Known_At_Compile_Time (T) then
574 return True;
576 elsif Is_Scalar_Type (T)
577 or else Is_Task_Type (T)
578 then
579 return not Is_Generic_Type (T);
581 elsif Is_Array_Type (T) then
582 if Ekind (T) = E_String_Literal_Subtype then
583 Set_Small_Size (T, Component_Size (T)
584 * String_Literal_Length (T));
585 return True;
587 elsif not Is_Constrained (T) then
588 return False;
590 -- Don't do any recursion on type with error posted, since
591 -- we may have a malformed type that leads us into a loop
593 elsif Error_Posted (T) then
594 return False;
596 elsif not Size_Known (Component_Type (T)) then
597 return False;
598 end if;
600 -- Check for all indexes static, and also compute possible
601 -- size (in case it is less than 32 and may be packable).
603 declare
604 Esiz : Uint := Component_Size (T);
605 Dim : Uint;
607 begin
608 Index := First_Index (T);
609 while Present (Index) loop
610 if Nkind (Index) = N_Range then
611 Get_Index_Bounds (Index, Low, High);
613 elsif Error_Posted (Scalar_Range (Etype (Index))) then
614 return False;
616 else
617 Low := Type_Low_Bound (Etype (Index));
618 High := Type_High_Bound (Etype (Index));
619 end if;
621 if not Compile_Time_Known_Value (Low)
622 or else not Compile_Time_Known_Value (High)
623 or else Etype (Index) = Any_Type
624 then
625 return False;
627 else
628 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
630 if Dim >= 0 then
631 Esiz := Esiz * Dim;
632 else
633 Esiz := Uint_0;
634 end if;
635 end if;
637 Next_Index (Index);
638 end loop;
640 Set_Small_Size (T, Esiz);
641 return True;
642 end;
644 elsif Is_Access_Type (T) then
645 return True;
647 elsif Is_Private_Type (T)
648 and then not Is_Generic_Type (T)
649 and then Present (Underlying_Type (T))
650 then
651 -- Don't do any recursion on type with error posted, since
652 -- we may have a malformed type that leads us into a loop
654 if Error_Posted (T) then
655 return False;
656 else
657 return Size_Known (Underlying_Type (T));
658 end if;
660 elsif Is_Record_Type (T) then
662 -- A class-wide type is never considered to have a known size
664 if Is_Class_Wide_Type (T) then
665 return False;
667 -- A subtype of a variant record must not have non-static
668 -- discriminanted components.
670 elsif T /= Base_Type (T)
671 and then not Static_Discriminated_Components (T)
672 then
673 return False;
675 -- Don't do any recursion on type with error posted, since
676 -- we may have a malformed type that leads us into a loop
678 elsif Error_Posted (T) then
679 return False;
680 end if;
682 -- Now look at the components of the record
684 declare
685 -- The following two variables are used to keep track of
686 -- the size of packed records if we can tell the size of
687 -- the packed record in the front end. Packed_Size_Known
688 -- is True if so far we can figure out the size. It is
689 -- initialized to True for a packed record, unless the
690 -- record has discriminants. The reason we eliminate the
691 -- discriminated case is that we don't know the way the
692 -- back end lays out discriminated packed records. If
693 -- Packed_Size_Known is True, then Packed_Size is the
694 -- size in bits so far.
696 Packed_Size_Known : Boolean :=
697 Is_Packed (T)
698 and then not Has_Discriminants (T);
700 Packed_Size : Uint := Uint_0;
702 begin
703 -- Test for variant part present
705 if Has_Discriminants (T)
706 and then Present (Parent (T))
707 and then Nkind (Parent (T)) = N_Full_Type_Declaration
708 and then Nkind (Type_Definition (Parent (T))) =
709 N_Record_Definition
710 and then not Null_Present (Type_Definition (Parent (T)))
711 and then Present (Variant_Part
712 (Component_List (Type_Definition (Parent (T)))))
713 then
714 -- If variant part is present, and type is unconstrained,
715 -- then we must have defaulted discriminants, or a size
716 -- clause must be present for the type, or else the size
717 -- is definitely not known at compile time.
719 if not Is_Constrained (T)
720 and then
721 No (Discriminant_Default_Value
722 (First_Discriminant (T)))
723 and then Unknown_Esize (T)
724 then
725 return False;
726 end if;
727 end if;
729 -- Loop through components
731 Comp := First_Component_Or_Discriminant (T);
732 while Present (Comp) loop
733 Ctyp := Etype (Comp);
735 -- We do not know the packed size if there is a component
736 -- clause present (we possibly could, but this would only
737 -- help in the case of a record with partial rep clauses.
738 -- That's because in the case of full rep clauses, the
739 -- size gets figured out anyway by a different circuit).
741 if Present (Component_Clause (Comp)) then
742 Packed_Size_Known := False;
743 end if;
745 -- We need to identify a component that is an array where
746 -- the index type is an enumeration type with non-standard
747 -- representation, and some bound of the type depends on a
748 -- discriminant.
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value in
752 -- the size expression for the base type, and gigi is not
753 -- clever enough to evaluate the resulting expression (which
754 -- involves a call to rep_to_pos) at compile time.
756 -- It would be nice if gigi would either recognize that
757 -- this expression can be computed at compile time, or
758 -- alternatively figured out the size from the subtype
759 -- directly, where all the information is at hand ???
761 if Is_Array_Type (Etype (Comp))
762 and then Present (Packed_Array_Type (Etype (Comp)))
763 then
764 declare
765 Ocomp : constant Entity_Id :=
766 Original_Record_Component (Comp);
767 OCtyp : constant Entity_Id := Etype (Ocomp);
768 Ind : Node_Id;
769 Indtyp : Entity_Id;
770 Lo, Hi : Node_Id;
772 begin
773 Ind := First_Index (OCtyp);
774 while Present (Ind) loop
775 Indtyp := Etype (Ind);
777 if Is_Enumeration_Type (Indtyp)
778 and then Has_Non_Standard_Rep (Indtyp)
779 then
780 Lo := Type_Low_Bound (Indtyp);
781 Hi := Type_High_Bound (Indtyp);
783 if Is_Entity_Name (Lo)
784 and then Ekind (Entity (Lo)) = E_Discriminant
785 then
786 return False;
788 elsif Is_Entity_Name (Hi)
789 and then Ekind (Entity (Hi)) = E_Discriminant
790 then
791 return False;
792 end if;
793 end if;
795 Next_Index (Ind);
796 end loop;
797 end;
798 end if;
800 -- Clearly size of record is not known if the size of
801 -- one of the components is not known.
803 if not Size_Known (Ctyp) then
804 return False;
805 end if;
807 -- Accumulate packed size if possible
809 if Packed_Size_Known then
811 -- We can only deal with elementary types, since for
812 -- non-elementary components, alignment enters into the
813 -- picture, and we don't know enough to handle proper
814 -- alignment in this context. Packed arrays count as
815 -- elementary if the representation is a modular type.
817 if Is_Elementary_Type (Ctyp)
818 or else (Is_Array_Type (Ctyp)
819 and then Present (Packed_Array_Type (Ctyp))
820 and then Is_Modular_Integer_Type
821 (Packed_Array_Type (Ctyp)))
822 then
823 -- If RM_Size is known and static, then we can
824 -- keep accumulating the packed size.
826 if Known_Static_RM_Size (Ctyp) then
828 -- A little glitch, to be removed sometime ???
829 -- gigi does not understand zero sizes yet.
831 if RM_Size (Ctyp) = Uint_0 then
832 Packed_Size_Known := False;
834 -- Normal case where we can keep accumulating the
835 -- packed array size.
837 else
838 Packed_Size := Packed_Size + RM_Size (Ctyp);
839 end if;
841 -- If we have a field whose RM_Size is not known then
842 -- we can't figure out the packed size here.
844 else
845 Packed_Size_Known := False;
846 end if;
848 -- If we have a non-elementary type we can't figure out
849 -- the packed array size (alignment issues).
851 else
852 Packed_Size_Known := False;
853 end if;
854 end if;
856 Next_Component_Or_Discriminant (Comp);
857 end loop;
859 if Packed_Size_Known then
860 Set_Small_Size (T, Packed_Size);
861 end if;
863 return True;
864 end;
866 else
867 return False;
868 end if;
869 end Size_Known;
871 -------------------------------------
872 -- Static_Discriminated_Components --
873 -------------------------------------
875 function Static_Discriminated_Components
876 (T : Entity_Id) return Boolean
878 Constraint : Elmt_Id;
880 begin
881 if Has_Discriminants (T)
882 and then Present (Discriminant_Constraint (T))
883 and then Present (First_Component (T))
884 then
885 Constraint := First_Elmt (Discriminant_Constraint (T));
886 while Present (Constraint) loop
887 if not Compile_Time_Known_Value (Node (Constraint)) then
888 return False;
889 end if;
891 Next_Elmt (Constraint);
892 end loop;
893 end if;
895 return True;
896 end Static_Discriminated_Components;
898 -- Start of processing for Check_Compile_Time_Size
900 begin
901 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
902 end Check_Compile_Time_Size;
904 -----------------------------
905 -- Check_Debug_Info_Needed --
906 -----------------------------
908 procedure Check_Debug_Info_Needed (T : Entity_Id) is
909 begin
910 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
911 return;
913 elsif Comes_From_Source (T)
914 or else Debug_Generated_Code
915 or else Debug_Flag_VV
916 then
917 Set_Debug_Info_Needed (T);
918 end if;
919 end Check_Debug_Info_Needed;
921 ----------------------------
922 -- Check_Strict_Alignment --
923 ----------------------------
925 procedure Check_Strict_Alignment (E : Entity_Id) is
926 Comp : Entity_Id;
928 begin
929 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
930 Set_Strict_Alignment (E);
932 elsif Is_Array_Type (E) then
933 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
935 elsif Is_Record_Type (E) then
936 if Is_Limited_Record (E) then
937 Set_Strict_Alignment (E);
938 return;
939 end if;
941 Comp := First_Component (E);
943 while Present (Comp) loop
944 if not Is_Type (Comp)
945 and then (Strict_Alignment (Etype (Comp))
946 or else Is_Aliased (Comp))
947 then
948 Set_Strict_Alignment (E);
949 return;
950 end if;
952 Next_Component (Comp);
953 end loop;
954 end if;
955 end Check_Strict_Alignment;
957 -------------------------
958 -- Check_Unsigned_Type --
959 -------------------------
961 procedure Check_Unsigned_Type (E : Entity_Id) is
962 Ancestor : Entity_Id;
963 Lo_Bound : Node_Id;
964 Btyp : Entity_Id;
966 begin
967 if not Is_Discrete_Or_Fixed_Point_Type (E) then
968 return;
969 end if;
971 -- Do not attempt to analyze case where range was in error
973 if Error_Posted (Scalar_Range (E)) then
974 return;
975 end if;
977 -- The situation that is non trivial is something like
979 -- subtype x1 is integer range -10 .. +10;
980 -- subtype x2 is x1 range 0 .. V1;
981 -- subtype x3 is x2 range V2 .. V3;
982 -- subtype x4 is x3 range V4 .. V5;
984 -- where Vn are variables. Here the base type is signed, but we still
985 -- know that x4 is unsigned because of the lower bound of x2.
987 -- The only way to deal with this is to look up the ancestor chain
989 Ancestor := E;
990 loop
991 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
992 return;
993 end if;
995 Lo_Bound := Type_Low_Bound (Ancestor);
997 if Compile_Time_Known_Value (Lo_Bound) then
999 if Expr_Rep_Value (Lo_Bound) >= 0 then
1000 Set_Is_Unsigned_Type (E, True);
1001 end if;
1003 return;
1005 else
1006 Ancestor := Ancestor_Subtype (Ancestor);
1008 -- If no ancestor had a static lower bound, go to base type
1010 if No (Ancestor) then
1012 -- Note: the reason we still check for a compile time known
1013 -- value for the base type is that at least in the case of
1014 -- generic formals, we can have bounds that fail this test,
1015 -- and there may be other cases in error situations.
1017 Btyp := Base_Type (E);
1019 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1020 return;
1021 end if;
1023 Lo_Bound := Type_Low_Bound (Base_Type (E));
1025 if Compile_Time_Known_Value (Lo_Bound)
1026 and then Expr_Rep_Value (Lo_Bound) >= 0
1027 then
1028 Set_Is_Unsigned_Type (E, True);
1029 end if;
1031 return;
1032 end if;
1033 end if;
1034 end loop;
1035 end Check_Unsigned_Type;
1037 -----------------------------
1038 -- Expand_Atomic_Aggregate --
1039 -----------------------------
1041 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1042 Loc : constant Source_Ptr := Sloc (E);
1043 New_N : Node_Id;
1044 Temp : Entity_Id;
1046 begin
1047 if (Nkind (Parent (E)) = N_Object_Declaration
1048 or else Nkind (Parent (E)) = N_Assignment_Statement)
1049 and then Comes_From_Source (Parent (E))
1050 and then Nkind (E) = N_Aggregate
1051 then
1052 Temp :=
1053 Make_Defining_Identifier (Loc,
1054 New_Internal_Name ('T'));
1056 New_N :=
1057 Make_Object_Declaration (Loc,
1058 Defining_Identifier => Temp,
1059 Object_definition => New_Occurrence_Of (Typ, Loc),
1060 Expression => Relocate_Node (E));
1061 Insert_Before (Parent (E), New_N);
1062 Analyze (New_N);
1064 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1066 -- To prevent the temporary from being constant-folded (which
1067 -- would lead to the same piecemeal assignment on the original
1068 -- target) indicate to the back-end that the temporary is a
1069 -- variable with real storage. See description of this flag
1070 -- in Einfo, and the notes on N_Assignment_Statement and
1071 -- N_Object_Declaration in Sinfo.
1073 Set_Is_True_Constant (Temp, False);
1074 end if;
1075 end Expand_Atomic_Aggregate;
1077 ----------------
1078 -- Freeze_All --
1079 ----------------
1081 -- Note: the easy coding for this procedure would be to just build a
1082 -- single list of freeze nodes and then insert them and analyze them
1083 -- all at once. This won't work, because the analysis of earlier freeze
1084 -- nodes may recursively freeze types which would otherwise appear later
1085 -- on in the freeze list. So we must analyze and expand the freeze nodes
1086 -- as they are generated.
1088 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1089 Loc : constant Source_Ptr := Sloc (After);
1090 E : Entity_Id;
1091 Decl : Node_Id;
1093 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1094 -- This is the internal recursive routine that does freezing of
1095 -- entities (but NOT the analysis of default expressions, which
1096 -- should not be recursive, we don't want to analyze those till
1097 -- we are sure that ALL the types are frozen).
1099 --------------------
1100 -- Freeze_All_Ent --
1101 --------------------
1103 procedure Freeze_All_Ent
1104 (From : Entity_Id;
1105 After : in out Node_Id)
1107 E : Entity_Id;
1108 Flist : List_Id;
1109 Lastn : Node_Id;
1111 procedure Process_Flist;
1112 -- If freeze nodes are present, insert and analyze, and reset
1113 -- cursor for next insertion.
1115 -------------------
1116 -- Process_Flist --
1117 -------------------
1119 procedure Process_Flist is
1120 begin
1121 if Is_Non_Empty_List (Flist) then
1122 Lastn := Next (After);
1123 Insert_List_After_And_Analyze (After, Flist);
1125 if Present (Lastn) then
1126 After := Prev (Lastn);
1127 else
1128 After := Last (List_Containing (After));
1129 end if;
1130 end if;
1131 end Process_Flist;
1133 -- Start or processing for Freeze_All_Ent
1135 begin
1136 E := From;
1137 while Present (E) loop
1139 -- If the entity is an inner package which is not a package
1140 -- renaming, then its entities must be frozen at this point.
1141 -- Note that such entities do NOT get frozen at the end of
1142 -- the nested package itself (only library packages freeze).
1144 -- Same is true for task declarations, where anonymous records
1145 -- created for entry parameters must be frozen.
1147 if Ekind (E) = E_Package
1148 and then No (Renamed_Object (E))
1149 and then not Is_Child_Unit (E)
1150 and then not Is_Frozen (E)
1151 then
1152 Push_Scope (E);
1153 Install_Visible_Declarations (E);
1154 Install_Private_Declarations (E);
1156 Freeze_All (First_Entity (E), After);
1158 End_Package_Scope (E);
1160 elsif Ekind (E) in Task_Kind
1161 and then
1162 (Nkind (Parent (E)) = N_Task_Type_Declaration
1163 or else
1164 Nkind (Parent (E)) = N_Single_Task_Declaration)
1165 then
1166 Push_Scope (E);
1167 Freeze_All (First_Entity (E), After);
1168 End_Scope;
1170 -- For a derived tagged type, we must ensure that all the
1171 -- primitive operations of the parent have been frozen, so
1172 -- that their addresses will be in the parent's dispatch table
1173 -- at the point it is inherited.
1175 elsif Ekind (E) = E_Record_Type
1176 and then Is_Tagged_Type (E)
1177 and then Is_Tagged_Type (Etype (E))
1178 and then Is_Derived_Type (E)
1179 then
1180 declare
1181 Prim_List : constant Elist_Id :=
1182 Primitive_Operations (Etype (E));
1184 Prim : Elmt_Id;
1185 Subp : Entity_Id;
1187 begin
1188 Prim := First_Elmt (Prim_List);
1190 while Present (Prim) loop
1191 Subp := Node (Prim);
1193 if Comes_From_Source (Subp)
1194 and then not Is_Frozen (Subp)
1195 then
1196 Flist := Freeze_Entity (Subp, Loc);
1197 Process_Flist;
1198 end if;
1200 Next_Elmt (Prim);
1201 end loop;
1202 end;
1203 end if;
1205 if not Is_Frozen (E) then
1206 Flist := Freeze_Entity (E, Loc);
1207 Process_Flist;
1208 end if;
1210 -- If an incomplete type is still not frozen, this may be
1211 -- a premature freezing because of a body declaration that
1212 -- follows. Indicate where the freezing took place.
1214 -- If the freezing is caused by the end of the current
1215 -- declarative part, it is a Taft Amendment type, and there
1216 -- is no error.
1218 if not Is_Frozen (E)
1219 and then Ekind (E) = E_Incomplete_Type
1220 then
1221 declare
1222 Bod : constant Node_Id := Next (After);
1224 begin
1225 if (Nkind (Bod) = N_Subprogram_Body
1226 or else Nkind (Bod) = N_Entry_Body
1227 or else Nkind (Bod) = N_Package_Body
1228 or else Nkind (Bod) = N_Protected_Body
1229 or else Nkind (Bod) = N_Task_Body
1230 or else Nkind (Bod) in N_Body_Stub)
1231 and then
1232 List_Containing (After) = List_Containing (Parent (E))
1233 then
1234 Error_Msg_Sloc := Sloc (Next (After));
1235 Error_Msg_NE
1236 ("type& is frozen# before its full declaration",
1237 Parent (E), E);
1238 end if;
1239 end;
1240 end if;
1242 Next_Entity (E);
1243 end loop;
1244 end Freeze_All_Ent;
1246 -- Start of processing for Freeze_All
1248 begin
1249 Freeze_All_Ent (From, After);
1251 -- Now that all types are frozen, we can deal with default expressions
1252 -- that require us to build a default expression functions. This is the
1253 -- point at which such functions are constructed (after all types that
1254 -- might be used in such expressions have been frozen).
1256 -- We also add finalization chains to access types whose designated
1257 -- types are controlled. This is normally done when freezing the type,
1258 -- but this misses recursive type definitions where the later members
1259 -- of the recursion introduce controlled components (e.g. 5624-001).
1261 -- Loop through entities
1263 E := From;
1264 while Present (E) loop
1265 if Is_Subprogram (E) then
1267 if not Default_Expressions_Processed (E) then
1268 Process_Default_Expressions (E, After);
1269 end if;
1271 if not Has_Completion (E) then
1272 Decl := Unit_Declaration_Node (E);
1274 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1275 Build_And_Analyze_Renamed_Body (Decl, E, After);
1277 elsif Nkind (Decl) = N_Subprogram_Declaration
1278 and then Present (Corresponding_Body (Decl))
1279 and then
1280 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1281 = N_Subprogram_Renaming_Declaration
1282 then
1283 Build_And_Analyze_Renamed_Body
1284 (Decl, Corresponding_Body (Decl), After);
1285 end if;
1286 end if;
1288 elsif Ekind (E) in Task_Kind
1289 and then
1290 (Nkind (Parent (E)) = N_Task_Type_Declaration
1291 or else
1292 Nkind (Parent (E)) = N_Single_Task_Declaration)
1293 then
1294 declare
1295 Ent : Entity_Id;
1296 begin
1297 Ent := First_Entity (E);
1299 while Present (Ent) loop
1301 if Is_Entry (Ent)
1302 and then not Default_Expressions_Processed (Ent)
1303 then
1304 Process_Default_Expressions (Ent, After);
1305 end if;
1307 Next_Entity (Ent);
1308 end loop;
1309 end;
1311 elsif Is_Access_Type (E)
1312 and then Comes_From_Source (E)
1313 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1314 and then Controlled_Type (Designated_Type (E))
1315 and then No (Associated_Final_Chain (E))
1316 then
1317 Build_Final_List (Parent (E), E);
1318 end if;
1320 Next_Entity (E);
1321 end loop;
1322 end Freeze_All;
1324 -----------------------
1325 -- Freeze_And_Append --
1326 -----------------------
1328 procedure Freeze_And_Append
1329 (Ent : Entity_Id;
1330 Loc : Source_Ptr;
1331 Result : in out List_Id)
1333 L : constant List_Id := Freeze_Entity (Ent, Loc);
1334 begin
1335 if Is_Non_Empty_List (L) then
1336 if Result = No_List then
1337 Result := L;
1338 else
1339 Append_List (L, Result);
1340 end if;
1341 end if;
1342 end Freeze_And_Append;
1344 -------------------
1345 -- Freeze_Before --
1346 -------------------
1348 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1349 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1350 begin
1351 if Is_Non_Empty_List (Freeze_Nodes) then
1352 Insert_Actions (N, Freeze_Nodes);
1353 end if;
1354 end Freeze_Before;
1356 -------------------
1357 -- Freeze_Entity --
1358 -------------------
1360 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1361 Test_E : Entity_Id := E;
1362 Comp : Entity_Id;
1363 F_Node : Node_Id;
1364 Result : List_Id;
1365 Indx : Node_Id;
1366 Formal : Entity_Id;
1367 Atype : Entity_Id;
1369 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1370 -- Check that an Access or Unchecked_Access attribute with a prefix
1371 -- which is the current instance type can only be applied when the type
1372 -- is limited.
1374 function After_Last_Declaration return Boolean;
1375 -- If Loc is a freeze_entity that appears after the last declaration
1376 -- in the scope, inhibit error messages on late completion.
1378 procedure Freeze_Record_Type (Rec : Entity_Id);
1379 -- Freeze each component, handle some representation clauses, and freeze
1380 -- primitive operations if this is a tagged type.
1382 ----------------------------
1383 -- After_Last_Declaration --
1384 ----------------------------
1386 function After_Last_Declaration return Boolean is
1387 Spec : constant Node_Id := Parent (Current_Scope);
1388 begin
1389 if Nkind (Spec) = N_Package_Specification then
1390 if Present (Private_Declarations (Spec)) then
1391 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1392 elsif Present (Visible_Declarations (Spec)) then
1393 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1394 else
1395 return False;
1396 end if;
1397 else
1398 return False;
1399 end if;
1400 end After_Last_Declaration;
1402 ----------------------------
1403 -- Check_Current_Instance --
1404 ----------------------------
1406 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1408 function Process (N : Node_Id) return Traverse_Result;
1409 -- Process routine to apply check to given node
1411 -------------
1412 -- Process --
1413 -------------
1415 function Process (N : Node_Id) return Traverse_Result is
1416 begin
1417 case Nkind (N) is
1418 when N_Attribute_Reference =>
1419 if (Attribute_Name (N) = Name_Access
1420 or else
1421 Attribute_Name (N) = Name_Unchecked_Access)
1422 and then Is_Entity_Name (Prefix (N))
1423 and then Is_Type (Entity (Prefix (N)))
1424 and then Entity (Prefix (N)) = E
1425 then
1426 Error_Msg_N
1427 ("current instance must be a limited type", Prefix (N));
1428 return Abandon;
1429 else
1430 return OK;
1431 end if;
1433 when others => return OK;
1434 end case;
1435 end Process;
1437 procedure Traverse is new Traverse_Proc (Process);
1439 -- Start of processing for Check_Current_Instance
1441 begin
1442 Traverse (Comp_Decl);
1443 end Check_Current_Instance;
1445 ------------------------
1446 -- Freeze_Record_Type --
1447 ------------------------
1449 procedure Freeze_Record_Type (Rec : Entity_Id) is
1450 Comp : Entity_Id;
1451 IR : Node_Id;
1452 Junk : Boolean;
1453 ADC : Node_Id;
1454 Prev : Entity_Id;
1456 Unplaced_Component : Boolean := False;
1457 -- Set True if we find at least one component with no component
1458 -- clause (used to warn about useless Pack pragmas).
1460 Placed_Component : Boolean := False;
1461 -- Set True if we find at least one component with a component
1462 -- clause (used to warn about useless Bit_Order pragmas).
1464 function Check_Allocator (N : Node_Id) return Node_Id;
1465 -- If N is an allocator, possibly wrapped in one or more level of
1466 -- qualified expression(s), return the inner allocator node, else
1467 -- return Empty.
1469 procedure Check_Itype (Typ : Entity_Id);
1470 -- If the component subtype is an access to a constrained subtype of
1471 -- an already frozen type, make the subtype frozen as well. It might
1472 -- otherwise be frozen in the wrong scope, and a freeze node on
1473 -- subtype has no effect. Similarly, if the component subtype is a
1474 -- regular (not protected) access to subprogram, set the anonymous
1475 -- subprogram type to frozen as well, to prevent an out-of-scope
1476 -- freeze node at some eventual point of call. Protected operations
1477 -- are handled elsewhere.
1479 ---------------------
1480 -- Check_Allocator --
1481 ---------------------
1483 function Check_Allocator (N : Node_Id) return Node_Id is
1484 Inner : Node_Id;
1485 begin
1486 Inner := N;
1487 loop
1488 if Nkind (Inner) = N_Allocator then
1489 return Inner;
1490 elsif Nkind (Inner) = N_Qualified_Expression then
1491 Inner := Expression (Inner);
1492 else
1493 return Empty;
1494 end if;
1495 end loop;
1496 end Check_Allocator;
1498 -----------------
1499 -- Check_Itype --
1500 -----------------
1502 procedure Check_Itype (Typ : Entity_Id) is
1503 Desig : constant Entity_Id := Designated_Type (Typ);
1505 begin
1506 if not Is_Frozen (Desig)
1507 and then Is_Frozen (Base_Type (Desig))
1508 then
1509 Set_Is_Frozen (Desig);
1511 -- In addition, add an Itype_Reference to ensure that the
1512 -- access subtype is elaborated early enough. This cannot be
1513 -- done if the subtype may depend on discriminants.
1515 if Ekind (Comp) = E_Component
1516 and then Is_Itype (Etype (Comp))
1517 and then not Has_Discriminants (Rec)
1518 then
1519 IR := Make_Itype_Reference (Sloc (Comp));
1520 Set_Itype (IR, Desig);
1522 if No (Result) then
1523 Result := New_List (IR);
1524 else
1525 Append (IR, Result);
1526 end if;
1527 end if;
1529 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1530 and then Convention (Desig) /= Convention_Protected
1531 then
1532 Set_Is_Frozen (Desig);
1533 end if;
1534 end Check_Itype;
1536 -- Start of processing for Freeze_Record_Type
1538 begin
1539 -- If this is a subtype of a controlled type, declared without a
1540 -- constraint, the _controller may not appear in the component list
1541 -- if the parent was not frozen at the point of subtype declaration.
1542 -- Inherit the _controller component now.
1544 if Rec /= Base_Type (Rec)
1545 and then Has_Controlled_Component (Rec)
1546 then
1547 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1548 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1549 then
1550 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1552 -- If this is an internal type without a declaration, as for
1553 -- record component, the base type may not yet be frozen, and its
1554 -- controller has not been created. Add an explicit freeze node
1555 -- for the itype, so it will be frozen after the base type. This
1556 -- freeze node is used to communicate with the expander, in order
1557 -- to create the controller for the enclosing record, and it is
1558 -- deleted afterwards (see exp_ch3). It must not be created when
1559 -- expansion is off, because it might appear in the wrong context
1560 -- for the back end.
1562 elsif Is_Itype (Rec)
1563 and then Has_Delayed_Freeze (Base_Type (Rec))
1564 and then
1565 Nkind (Associated_Node_For_Itype (Rec)) =
1566 N_Component_Declaration
1567 and then Expander_Active
1568 then
1569 Ensure_Freeze_Node (Rec);
1570 end if;
1571 end if;
1573 -- Freeze components and embedded subtypes
1575 Comp := First_Entity (Rec);
1576 Prev := Empty;
1577 while Present (Comp) loop
1579 -- First handle the (real) component case
1581 if Ekind (Comp) = E_Component
1582 or else Ekind (Comp) = E_Discriminant
1583 then
1584 declare
1585 CC : constant Node_Id := Component_Clause (Comp);
1587 begin
1588 -- Freezing a record type freezes the type of each of its
1589 -- components. However, if the type of the component is
1590 -- part of this record, we do not want or need a separate
1591 -- Freeze_Node. Note that Is_Itype is wrong because that's
1592 -- also set in private type cases. We also can't check for
1593 -- the Scope being exactly Rec because of private types and
1594 -- record extensions.
1596 if Is_Itype (Etype (Comp))
1597 and then Is_Record_Type (Underlying_Type
1598 (Scope (Etype (Comp))))
1599 then
1600 Undelay_Type (Etype (Comp));
1601 end if;
1603 Freeze_And_Append (Etype (Comp), Loc, Result);
1605 -- Check for error of component clause given for variable
1606 -- sized type. We have to delay this test till this point,
1607 -- since the component type has to be frozen for us to know
1608 -- if it is variable length. We omit this test in a generic
1609 -- context, it will be applied at instantiation time.
1611 if Present (CC) then
1612 Placed_Component := True;
1614 if Inside_A_Generic then
1615 null;
1617 elsif not
1618 Size_Known_At_Compile_Time
1619 (Underlying_Type (Etype (Comp)))
1620 then
1621 Error_Msg_N
1622 ("component clause not allowed for variable " &
1623 "length component", CC);
1624 end if;
1626 else
1627 Unplaced_Component := True;
1628 end if;
1630 -- Case of component requires byte alignment
1632 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1634 -- Set the enclosing record to also require byte align
1636 Set_Must_Be_On_Byte_Boundary (Rec);
1638 -- Check for component clause that is inconsistent with
1639 -- the required byte boundary alignment.
1641 if Present (CC)
1642 and then Normalized_First_Bit (Comp) mod
1643 System_Storage_Unit /= 0
1644 then
1645 Error_Msg_N
1646 ("component & must be byte aligned",
1647 Component_Name (Component_Clause (Comp)));
1648 end if;
1649 end if;
1651 -- If component clause is present, then deal with the non-
1652 -- default bit order case for Ada 95 mode. The required
1653 -- processing for Ada 2005 mode is handled separately after
1654 -- processing all components.
1656 -- We only do this processing for the base type, and in
1657 -- fact that's important, since otherwise if there are
1658 -- record subtypes, we could reverse the bits once for
1659 -- each subtype, which would be incorrect.
1661 if Present (CC)
1662 and then Reverse_Bit_Order (Rec)
1663 and then Ekind (E) = E_Record_Type
1664 and then Ada_Version <= Ada_95
1665 then
1666 declare
1667 CFB : constant Uint := Component_Bit_Offset (Comp);
1668 CSZ : constant Uint := Esize (Comp);
1669 CLC : constant Node_Id := Component_Clause (Comp);
1670 Pos : constant Node_Id := Position (CLC);
1671 FB : constant Node_Id := First_Bit (CLC);
1673 Storage_Unit_Offset : constant Uint :=
1674 CFB / System_Storage_Unit;
1676 Start_Bit : constant Uint :=
1677 CFB mod System_Storage_Unit;
1679 begin
1680 -- Cases where field goes over storage unit boundary
1682 if Start_Bit + CSZ > System_Storage_Unit then
1684 -- Allow multi-byte field but generate warning
1686 if Start_Bit mod System_Storage_Unit = 0
1687 and then CSZ mod System_Storage_Unit = 0
1688 then
1689 Error_Msg_N
1690 ("multi-byte field specified with non-standard"
1691 & " Bit_Order?", CLC);
1693 if Bytes_Big_Endian then
1694 Error_Msg_N
1695 ("bytes are not reversed "
1696 & "(component is big-endian)?", CLC);
1697 else
1698 Error_Msg_N
1699 ("bytes are not reversed "
1700 & "(component is little-endian)?", CLC);
1701 end if;
1703 -- Do not allow non-contiguous field
1705 else
1706 Error_Msg_N
1707 ("attempt to specify non-contiguous field"
1708 & " not permitted", CLC);
1709 Error_Msg_N
1710 ("\(caused by non-standard Bit_Order "
1711 & "specified)", CLC);
1712 end if;
1714 -- Case where field fits in one storage unit
1716 else
1717 -- Give warning if suspicious component clause
1719 if Intval (FB) >= System_Storage_Unit
1720 and then Warn_On_Reverse_Bit_Order
1721 then
1722 Error_Msg_N
1723 ("?Bit_Order clause does not affect " &
1724 "byte ordering", Pos);
1725 Error_Msg_Uint_1 :=
1726 Intval (Pos) + Intval (FB) /
1727 System_Storage_Unit;
1728 Error_Msg_N
1729 ("?position normalized to ^ before bit " &
1730 "order interpreted", Pos);
1731 end if;
1733 -- Here is where we fix up the Component_Bit_Offset
1734 -- value to account for the reverse bit order.
1735 -- Some examples of what needs to be done are:
1737 -- First_Bit .. Last_Bit Component_Bit_Offset
1738 -- old new old new
1740 -- 0 .. 0 7 .. 7 0 7
1741 -- 0 .. 1 6 .. 7 0 6
1742 -- 0 .. 2 5 .. 7 0 5
1743 -- 0 .. 7 0 .. 7 0 4
1745 -- 1 .. 1 6 .. 6 1 6
1746 -- 1 .. 4 3 .. 6 1 3
1747 -- 4 .. 7 0 .. 3 4 0
1749 -- The general rule is that the first bit is
1750 -- is obtained by subtracting the old ending bit
1751 -- from storage_unit - 1.
1753 Set_Component_Bit_Offset
1754 (Comp,
1755 (Storage_Unit_Offset * System_Storage_Unit) +
1756 (System_Storage_Unit - 1) -
1757 (Start_Bit + CSZ - 1));
1759 Set_Normalized_First_Bit
1760 (Comp,
1761 Component_Bit_Offset (Comp) mod
1762 System_Storage_Unit);
1763 end if;
1764 end;
1765 end if;
1766 end;
1767 end if;
1769 -- If the component is an Itype with Delayed_Freeze and is either
1770 -- a record or array subtype and its base type has not yet been
1771 -- frozen, we must remove this from the entity list of this
1772 -- record and put it on the entity list of the scope of its base
1773 -- type. Note that we know that this is not the type of a
1774 -- component since we cleared Has_Delayed_Freeze for it in the
1775 -- previous loop. Thus this must be the Designated_Type of an
1776 -- access type, which is the type of a component.
1778 if Is_Itype (Comp)
1779 and then Is_Type (Scope (Comp))
1780 and then Is_Composite_Type (Comp)
1781 and then Base_Type (Comp) /= Comp
1782 and then Has_Delayed_Freeze (Comp)
1783 and then not Is_Frozen (Base_Type (Comp))
1784 then
1785 declare
1786 Will_Be_Frozen : Boolean := False;
1787 S : Entity_Id := Scope (Rec);
1789 begin
1790 -- We have a pretty bad kludge here. Suppose Rec is subtype
1791 -- being defined in a subprogram that's created as part of
1792 -- the freezing of Rec'Base. In that case, we know that
1793 -- Comp'Base must have already been frozen by the time we
1794 -- get to elaborate this because Gigi doesn't elaborate any
1795 -- bodies until it has elaborated all of the declarative
1796 -- part. But Is_Frozen will not be set at this point because
1797 -- we are processing code in lexical order.
1799 -- We detect this case by going up the Scope chain of Rec
1800 -- and seeing if we have a subprogram scope before reaching
1801 -- the top of the scope chain or that of Comp'Base. If we
1802 -- do, then mark that Comp'Base will actually be frozen. If
1803 -- so, we merely undelay it.
1805 while Present (S) loop
1806 if Is_Subprogram (S) then
1807 Will_Be_Frozen := True;
1808 exit;
1809 elsif S = Scope (Base_Type (Comp)) then
1810 exit;
1811 end if;
1813 S := Scope (S);
1814 end loop;
1816 if Will_Be_Frozen then
1817 Undelay_Type (Comp);
1818 else
1819 if Present (Prev) then
1820 Set_Next_Entity (Prev, Next_Entity (Comp));
1821 else
1822 Set_First_Entity (Rec, Next_Entity (Comp));
1823 end if;
1825 -- Insert in entity list of scope of base type (which
1826 -- must be an enclosing scope, because still unfrozen).
1828 Append_Entity (Comp, Scope (Base_Type (Comp)));
1829 end if;
1830 end;
1832 -- If the component is an access type with an allocator as
1833 -- default value, the designated type will be frozen by the
1834 -- corresponding expression in init_proc. In order to place the
1835 -- freeze node for the designated type before that for the
1836 -- current record type, freeze it now.
1838 -- Same process if the component is an array of access types,
1839 -- initialized with an aggregate. If the designated type is
1840 -- private, it cannot contain allocators, and it is premature to
1841 -- freeze the type, so we check for this as well.
1843 elsif Is_Access_Type (Etype (Comp))
1844 and then Present (Parent (Comp))
1845 and then Present (Expression (Parent (Comp)))
1846 then
1847 declare
1848 Alloc : constant Node_Id :=
1849 Check_Allocator (Expression (Parent (Comp)));
1851 begin
1852 if Present (Alloc) then
1854 -- If component is pointer to a classwide type, freeze
1855 -- the specific type in the expression being allocated.
1856 -- The expression may be a subtype indication, in which
1857 -- case freeze the subtype mark.
1859 if Is_Class_Wide_Type
1860 (Designated_Type (Etype (Comp)))
1861 then
1862 if Is_Entity_Name (Expression (Alloc)) then
1863 Freeze_And_Append
1864 (Entity (Expression (Alloc)), Loc, Result);
1865 elsif
1866 Nkind (Expression (Alloc)) = N_Subtype_Indication
1867 then
1868 Freeze_And_Append
1869 (Entity (Subtype_Mark (Expression (Alloc))),
1870 Loc, Result);
1871 end if;
1873 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1874 Check_Itype (Etype (Comp));
1876 else
1877 Freeze_And_Append
1878 (Designated_Type (Etype (Comp)), Loc, Result);
1879 end if;
1880 end if;
1881 end;
1883 elsif Is_Access_Type (Etype (Comp))
1884 and then Is_Itype (Designated_Type (Etype (Comp)))
1885 then
1886 Check_Itype (Etype (Comp));
1888 elsif Is_Array_Type (Etype (Comp))
1889 and then Is_Access_Type (Component_Type (Etype (Comp)))
1890 and then Present (Parent (Comp))
1891 and then Nkind (Parent (Comp)) = N_Component_Declaration
1892 and then Present (Expression (Parent (Comp)))
1893 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1894 and then Is_Fully_Defined
1895 (Designated_Type (Component_Type (Etype (Comp))))
1896 then
1897 Freeze_And_Append
1898 (Designated_Type
1899 (Component_Type (Etype (Comp))), Loc, Result);
1900 end if;
1902 Prev := Comp;
1903 Next_Entity (Comp);
1904 end loop;
1906 -- Deal with pragma Bit_Order
1908 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
1909 if not Placed_Component then
1910 ADC :=
1911 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1912 Error_Msg_N
1913 ("?Bit_Order specification has no effect", ADC);
1914 Error_Msg_N
1915 ("\?since no component clauses were specified", ADC);
1917 -- Here is where we do Ada 2005 processing for bit order (the
1918 -- Ada 95 case was already taken care of above).
1920 elsif Ada_Version >= Ada_05 then
1921 Adjust_Record_For_Reverse_Bit_Order (Rec);
1922 end if;
1923 end if;
1925 -- Check for useless pragma Pack when all components placed. We only
1926 -- do this check for record types, not subtypes, since a subtype may
1927 -- have all its components placed, and it still makes perfectly good
1928 -- sense to pack other subtypes or the parent type.
1930 if Ekind (Rec) = E_Record_Type
1931 and then Is_Packed (Rec)
1932 and then not Unplaced_Component
1933 then
1934 -- Reset packed status. Probably not necessary, but we do it
1935 -- so that there is no chance of the back end doing something
1936 -- strange with this redundant indication of packing.
1938 Set_Is_Packed (Rec, False);
1940 -- Give warning if redundant constructs warnings on
1942 if Warn_On_Redundant_Constructs then
1943 Error_Msg_N
1944 ("?pragma Pack has no effect, no unplaced components",
1945 Get_Rep_Pragma (Rec, Name_Pack));
1946 end if;
1947 end if;
1949 -- If this is the record corresponding to a remote type, freeze the
1950 -- remote type here since that is what we are semantically freezing.
1951 -- This prevents the freeze node for that type in an inner scope.
1953 -- Also, Check for controlled components and unchecked unions.
1954 -- Finally, enforce the restriction that access attributes with a
1955 -- current instance prefix can only apply to limited types.
1957 if Ekind (Rec) = E_Record_Type then
1958 if Present (Corresponding_Remote_Type (Rec)) then
1959 Freeze_And_Append
1960 (Corresponding_Remote_Type (Rec), Loc, Result);
1961 end if;
1963 Comp := First_Component (Rec);
1964 while Present (Comp) loop
1965 if Has_Controlled_Component (Etype (Comp))
1966 or else (Chars (Comp) /= Name_uParent
1967 and then Is_Controlled (Etype (Comp)))
1968 or else (Is_Protected_Type (Etype (Comp))
1969 and then Present
1970 (Corresponding_Record_Type (Etype (Comp)))
1971 and then Has_Controlled_Component
1972 (Corresponding_Record_Type (Etype (Comp))))
1973 then
1974 Set_Has_Controlled_Component (Rec);
1975 exit;
1976 end if;
1978 if Has_Unchecked_Union (Etype (Comp)) then
1979 Set_Has_Unchecked_Union (Rec);
1980 end if;
1982 if Has_Per_Object_Constraint (Comp)
1983 and then not Is_Limited_Type (Rec)
1984 then
1985 -- Scan component declaration for likely misuses of current
1986 -- instance, either in a constraint or a default expression.
1988 Check_Current_Instance (Parent (Comp));
1989 end if;
1991 Next_Component (Comp);
1992 end loop;
1993 end if;
1995 Set_Component_Alignment_If_Not_Set (Rec);
1997 -- For first subtypes, check if there are any fixed-point fields with
1998 -- component clauses, where we must check the size. This is not done
1999 -- till the freeze point, since for fixed-point types, we do not know
2000 -- the size until the type is frozen. Similar processing applies to
2001 -- bit packed arrays.
2003 if Is_First_Subtype (Rec) then
2004 Comp := First_Component (Rec);
2006 while Present (Comp) loop
2007 if Present (Component_Clause (Comp))
2008 and then (Is_Fixed_Point_Type (Etype (Comp))
2009 or else
2010 Is_Bit_Packed_Array (Etype (Comp)))
2011 then
2012 Check_Size
2013 (Component_Name (Component_Clause (Comp)),
2014 Etype (Comp),
2015 Esize (Comp),
2016 Junk);
2017 end if;
2019 Next_Component (Comp);
2020 end loop;
2021 end if;
2023 -- Generate warning for applying C or C++ convention to a record
2024 -- with discriminants. This is suppressed for the unchecked union
2025 -- case, since the whole point in this case is interface C.
2027 if Has_Discriminants (E)
2028 and then not Is_Unchecked_Union (E)
2029 and then not Warnings_Off (E)
2030 and then not Warnings_Off (Base_Type (E))
2031 and then (Convention (E) = Convention_C
2032 or else
2033 Convention (E) = Convention_CPP)
2034 and then Comes_From_Source (E)
2035 then
2036 declare
2037 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2038 A2 : Node_Id;
2040 begin
2041 if Present (Cprag) then
2042 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2044 if Convention (E) = Convention_C then
2045 Error_Msg_N
2046 ("?variant record has no direct equivalent in C", A2);
2047 else
2048 Error_Msg_N
2049 ("?variant record has no direct equivalent in C++", A2);
2050 end if;
2052 Error_Msg_NE
2053 ("\?use of convention for type& is dubious", A2, E);
2054 end if;
2055 end;
2056 end if;
2057 end Freeze_Record_Type;
2059 -- Start of processing for Freeze_Entity
2061 begin
2062 -- We are going to test for various reasons why this entity need not be
2063 -- frozen here, but in the case of an Itype that's defined within a
2064 -- record, that test actually applies to the record.
2066 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2067 Test_E := Scope (E);
2068 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2069 and then Is_Record_Type (Underlying_Type (Scope (E)))
2070 then
2071 Test_E := Underlying_Type (Scope (E));
2072 end if;
2074 -- Do not freeze if already frozen since we only need one freeze node
2076 if Is_Frozen (E) then
2077 return No_List;
2079 -- It is improper to freeze an external entity within a generic because
2080 -- its freeze node will appear in a non-valid context. The entity will
2081 -- be frozen in the proper scope after the current generic is analyzed.
2083 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2084 return No_List;
2086 -- Do not freeze a global entity within an inner scope created during
2087 -- expansion. A call to subprogram E within some internal procedure
2088 -- (a stream attribute for example) might require freezing E, but the
2089 -- freeze node must appear in the same declarative part as E itself.
2090 -- The two-pass elaboration mechanism in gigi guarantees that E will
2091 -- be frozen before the inner call is elaborated. We exclude constants
2092 -- from this test, because deferred constants may be frozen early, and
2093 -- must be diagnosed (e.g. in the case of a deferred constant being used
2094 -- in a default expression). If the enclosing subprogram comes from
2095 -- source, or is a generic instance, then the freeze point is the one
2096 -- mandated by the language, and we freeze the entity. A subprogram that
2097 -- is a child unit body that acts as a spec does not have a spec that
2098 -- comes from source, but can only come from source.
2100 elsif In_Open_Scopes (Scope (Test_E))
2101 and then Scope (Test_E) /= Current_Scope
2102 and then Ekind (Test_E) /= E_Constant
2103 then
2104 declare
2105 S : Entity_Id := Current_Scope;
2107 begin
2108 while Present (S) loop
2109 if Is_Overloadable (S) then
2110 if Comes_From_Source (S)
2111 or else Is_Generic_Instance (S)
2112 or else Is_Child_Unit (S)
2113 then
2114 exit;
2115 else
2116 return No_List;
2117 end if;
2118 end if;
2120 S := Scope (S);
2121 end loop;
2122 end;
2124 -- Similarly, an inlined instance body may make reference to global
2125 -- entities, but these references cannot be the proper freezing point
2126 -- for them, and in the absence of inlining freezing will take place
2127 -- in their own scope. Normally instance bodies are analyzed after
2128 -- the enclosing compilation, and everything has been frozen at the
2129 -- proper place, but with front-end inlining an instance body is
2130 -- compiled before the end of the enclosing scope, and as a result
2131 -- out-of-order freezing must be prevented.
2133 elsif Front_End_Inlining
2134 and then In_Instance_Body
2135 and then Present (Scope (Test_E))
2136 then
2137 declare
2138 S : Entity_Id := Scope (Test_E);
2140 begin
2141 while Present (S) loop
2142 if Is_Generic_Instance (S) then
2143 exit;
2144 else
2145 S := Scope (S);
2146 end if;
2147 end loop;
2149 if No (S) then
2150 return No_List;
2151 end if;
2152 end;
2153 end if;
2155 -- Here to freeze the entity
2157 Result := No_List;
2158 Set_Is_Frozen (E);
2160 -- Case of entity being frozen is other than a type
2162 if not Is_Type (E) then
2164 -- If entity is exported or imported and does not have an external
2165 -- name, now is the time to provide the appropriate default name.
2166 -- Skip this if the entity is stubbed, since we don't need a name
2167 -- for any stubbed routine.
2169 if (Is_Imported (E) or else Is_Exported (E))
2170 and then No (Interface_Name (E))
2171 and then Convention (E) /= Convention_Stubbed
2172 then
2173 Set_Encoded_Interface_Name
2174 (E, Get_Default_External_Name (E));
2176 -- Special processing for atomic objects appearing in object decls
2178 elsif Is_Atomic (E)
2179 and then Nkind (Parent (E)) = N_Object_Declaration
2180 and then Present (Expression (Parent (E)))
2181 then
2182 declare
2183 Expr : constant Node_Id := Expression (Parent (E));
2185 begin
2186 -- If expression is an aggregate, assign to a temporary to
2187 -- ensure that the actual assignment is done atomically rather
2188 -- than component-wise (the assignment to the temp may be done
2189 -- component-wise, but that is harmless).
2191 if Nkind (Expr) = N_Aggregate then
2192 Expand_Atomic_Aggregate (Expr, Etype (E));
2194 -- If the expression is a reference to a record or array object
2195 -- entity, then reset Is_True_Constant to False so that the
2196 -- compiler will not optimize away the intermediate object,
2197 -- which we need in this case for the same reason (to ensure
2198 -- that the actual assignment is atomic, rather than
2199 -- component-wise).
2201 elsif Is_Entity_Name (Expr)
2202 and then (Is_Record_Type (Etype (Expr))
2203 or else
2204 Is_Array_Type (Etype (Expr)))
2205 then
2206 Set_Is_True_Constant (Entity (Expr), False);
2207 end if;
2208 end;
2209 end if;
2211 -- For a subprogram, freeze all parameter types and also the return
2212 -- type (RM 13.14(14)). However skip this for internal subprograms.
2213 -- This is also the point where any extra formal parameters are
2214 -- created since we now know whether the subprogram will use
2215 -- a foreign convention.
2217 if Is_Subprogram (E) then
2218 if not Is_Internal (E) then
2219 declare
2220 F_Type : Entity_Id;
2221 Warn_Node : Node_Id;
2223 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
2224 -- Determines if given type entity is a fat pointer type
2225 -- used as an argument type or return type to a subprogram
2226 -- with C or C++ convention set.
2228 --------------------------
2229 -- Is_Fat_C_Access_Type --
2230 --------------------------
2232 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
2233 begin
2234 return (Convention (E) = Convention_C
2235 or else
2236 Convention (E) = Convention_CPP)
2237 and then Is_Access_Type (T)
2238 and then Esize (T) > Ttypes.System_Address_Size;
2239 end Is_Fat_C_Ptr_Type;
2241 begin
2242 -- Loop through formals
2244 Formal := First_Formal (E);
2245 while Present (Formal) loop
2246 F_Type := Etype (Formal);
2247 Freeze_And_Append (F_Type, Loc, Result);
2249 if Is_Private_Type (F_Type)
2250 and then Is_Private_Type (Base_Type (F_Type))
2251 and then No (Full_View (Base_Type (F_Type)))
2252 and then not Is_Generic_Type (F_Type)
2253 and then not Is_Derived_Type (F_Type)
2254 then
2255 -- If the type of a formal is incomplete, subprogram
2256 -- is being frozen prematurely. Within an instance
2257 -- (but not within a wrapper package) this is an
2258 -- an artifact of our need to regard the end of an
2259 -- instantiation as a freeze point. Otherwise it is
2260 -- a definite error.
2262 -- and then not Is_Wrapper_Package (Current_Scope) ???
2264 if In_Instance then
2265 Set_Is_Frozen (E, False);
2266 return No_List;
2268 elsif not After_Last_Declaration
2269 and then not Freezing_Library_Level_Tagged_Type
2270 then
2271 Error_Msg_Node_1 := F_Type;
2272 Error_Msg
2273 ("type& must be fully defined before this point",
2274 Loc);
2275 end if;
2276 end if;
2278 -- Check bad use of fat C pointer
2280 if Warn_On_Export_Import and then
2281 Is_Fat_C_Ptr_Type (F_Type)
2282 then
2283 Error_Msg_Qual_Level := 1;
2284 Error_Msg_N
2285 ("?type of & does not correspond to C pointer",
2286 Formal);
2287 Error_Msg_Qual_Level := 0;
2288 end if;
2290 -- Check for unconstrained array in exported foreign
2291 -- convention case.
2293 if Convention (E) in Foreign_Convention
2294 and then not Is_Imported (E)
2295 and then Is_Array_Type (F_Type)
2296 and then not Is_Constrained (F_Type)
2297 and then Warn_On_Export_Import
2298 then
2299 Error_Msg_Qual_Level := 1;
2301 -- If this is an inherited operation, place the
2302 -- warning on the derived type declaration, rather
2303 -- than on the original subprogram.
2305 if Nkind (Original_Node (Parent (E))) =
2306 N_Full_Type_Declaration
2307 then
2308 Warn_Node := Parent (E);
2310 if Formal = First_Formal (E) then
2311 Error_Msg_NE
2312 ("?in inherited operation&", Warn_Node, E);
2313 end if;
2314 else
2315 Warn_Node := Formal;
2316 end if;
2318 Error_Msg_NE
2319 ("?type of argument& is unconstrained array",
2320 Warn_Node, Formal);
2321 Error_Msg_NE
2322 ("?foreign caller must pass bounds explicitly",
2323 Warn_Node, Formal);
2324 Error_Msg_Qual_Level := 0;
2325 end if;
2327 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2328 -- types with unknown discriminants. For example:
2330 -- type T (<>) is tagged;
2331 -- procedure P (X : access T); -- ERROR
2332 -- procedure P (X : T); -- ERROR
2334 if not From_With_Type (F_Type) then
2335 if Is_Access_Type (F_Type) then
2336 F_Type := Designated_Type (F_Type);
2337 end if;
2339 if Ekind (F_Type) = E_Incomplete_Type
2340 and then Is_Tagged_Type (F_Type)
2341 and then not Is_Class_Wide_Type (F_Type)
2342 and then No (Full_View (F_Type))
2343 and then Unknown_Discriminants_Present
2344 (Parent (F_Type))
2345 and then No (Stored_Constraint (F_Type))
2346 then
2347 Error_Msg_N
2348 ("(Ada 2005): invalid use of unconstrained tagged"
2349 & " incomplete type", E);
2351 -- If the formal is an anonymous_access_to_subprogram
2352 -- freeze the subprogram type as well, to prevent
2353 -- scope anomalies in gigi, because there is no other
2354 -- clear point at which it could be frozen.
2356 elsif Is_Itype (Etype (Formal))
2357 and then Ekind (F_Type) = E_Subprogram_Type
2358 then
2359 Freeze_And_Append (F_Type, Loc, Result);
2360 end if;
2361 end if;
2363 Next_Formal (Formal);
2364 end loop;
2366 -- Check return type
2368 if Ekind (E) = E_Function then
2369 Freeze_And_Append (Etype (E), Loc, Result);
2371 if Warn_On_Export_Import
2372 and then Is_Fat_C_Ptr_Type (Etype (E))
2373 then
2374 Error_Msg_N
2375 ("?return type of& does not correspond to C pointer",
2378 elsif Is_Array_Type (Etype (E))
2379 and then not Is_Constrained (Etype (E))
2380 and then not Is_Imported (E)
2381 and then Convention (E) in Foreign_Convention
2382 and then Warn_On_Export_Import
2383 then
2384 Error_Msg_N
2385 ("?foreign convention function& should not " &
2386 "return unconstrained array", E);
2388 -- Ada 2005 (AI-326): Check wrong use of tagged
2389 -- incomplete type
2391 -- type T is tagged;
2392 -- function F (X : Boolean) return T; -- ERROR
2394 elsif Ekind (Etype (E)) = E_Incomplete_Type
2395 and then Is_Tagged_Type (Etype (E))
2396 and then No (Full_View (Etype (E)))
2397 and then not Is_Value_Type (Etype (E))
2398 then
2399 Error_Msg_N
2400 ("(Ada 2005): invalid use of tagged incomplete type",
2402 end if;
2403 end if;
2404 end;
2405 end if;
2407 -- Must freeze its parent first if it is a derived subprogram
2409 if Present (Alias (E)) then
2410 Freeze_And_Append (Alias (E), Loc, Result);
2411 end if;
2413 -- We don't freeze internal subprograms, because we don't normally
2414 -- want addition of extra formals or mechanism setting to happen
2415 -- for those. However we do pass through predefined dispatching
2416 -- cases, since extra formals may be needed in some cases, such as
2417 -- for the stream 'Input function (build-in-place formals).
2419 if not Is_Internal (E)
2420 or else Is_Predefined_Dispatching_Operation (E)
2421 then
2422 Freeze_Subprogram (E);
2423 end if;
2425 -- Here for other than a subprogram or type
2427 else
2428 -- If entity has a type, and it is not a generic unit, then
2429 -- freeze it first (RM 13.14(10)).
2431 if Present (Etype (E))
2432 and then Ekind (E) /= E_Generic_Function
2433 then
2434 Freeze_And_Append (Etype (E), Loc, Result);
2435 end if;
2437 -- Special processing for objects created by object declaration
2439 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2441 -- For object created by object declaration, perform required
2442 -- categorization (preelaborate and pure) checks. Defer these
2443 -- checks to freeze time since pragma Import inhibits default
2444 -- initialization and thus pragma Import affects these checks.
2446 Validate_Object_Declaration (Declaration_Node (E));
2448 -- If there is an address clause, check it is valid
2450 Check_Address_Clause (E);
2452 -- For imported objects, set Is_Public unless there is also
2453 -- an address clause, which means that there is no external
2454 -- symbol needed for the Import (Is_Public may still be set
2455 -- for other unrelated reasons). Note that we delayed this
2456 -- processing till freeze time so that we can be sure not
2457 -- to set the flag if there is an address clause. If there
2458 -- is such a clause, then the only purpose of the Import
2459 -- pragma is to suppress implicit initialization.
2461 if Is_Imported (E)
2462 and then No (Address_Clause (E))
2463 then
2464 Set_Is_Public (E);
2465 end if;
2467 -- For convention C objects of an enumeration type, warn if
2468 -- the size is not integer size and no explicit size given.
2469 -- Skip warning for Boolean, and Character, assume programmer
2470 -- expects 8-bit sizes for these cases.
2472 if (Convention (E) = Convention_C
2473 or else
2474 Convention (E) = Convention_CPP)
2475 and then Is_Enumeration_Type (Etype (E))
2476 and then not Is_Character_Type (Etype (E))
2477 and then not Is_Boolean_Type (Etype (E))
2478 and then Esize (Etype (E)) < Standard_Integer_Size
2479 and then not Has_Size_Clause (E)
2480 then
2481 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2482 Error_Msg_N
2483 ("?convention C enumeration object has size less than ^",
2485 Error_Msg_N ("\?use explicit size clause to set size", E);
2486 end if;
2487 end if;
2489 -- Check that a constant which has a pragma Volatile[_Components]
2490 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2492 -- Note: Atomic[_Components] also sets Volatile[_Components]
2494 if Ekind (E) = E_Constant
2495 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2496 and then not Is_Imported (E)
2497 then
2498 -- Make sure we actually have a pragma, and have not merely
2499 -- inherited the indication from elsewhere (e.g. an address
2500 -- clause, which is not good enough in RM terms!)
2502 if Has_Rep_Pragma (E, Name_Atomic)
2503 or else
2504 Has_Rep_Pragma (E, Name_Atomic_Components)
2505 then
2506 Error_Msg_N
2507 ("stand alone atomic constant must be " &
2508 "imported ('R'M C.6(13))", E);
2510 elsif Has_Rep_Pragma (E, Name_Volatile)
2511 or else
2512 Has_Rep_Pragma (E, Name_Volatile_Components)
2513 then
2514 Error_Msg_N
2515 ("stand alone volatile constant must be " &
2516 "imported (RM C.6(13))", E);
2517 end if;
2518 end if;
2520 -- Static objects require special handling
2522 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2523 and then Is_Statically_Allocated (E)
2524 then
2525 Freeze_Static_Object (E);
2526 end if;
2528 -- Remaining step is to layout objects
2530 if Ekind (E) = E_Variable
2531 or else
2532 Ekind (E) = E_Constant
2533 or else
2534 Ekind (E) = E_Loop_Parameter
2535 or else
2536 Is_Formal (E)
2537 then
2538 Layout_Object (E);
2539 end if;
2540 end if;
2542 -- Case of a type or subtype being frozen
2544 else
2545 -- We used to check here that a full type must have preelaborable
2546 -- initialization if it completes a private type specified with
2547 -- pragma Preelaborable_Intialization, but that missed cases where
2548 -- the types occur within a generic package, since the freezing
2549 -- that occurs within a containing scope generally skips traversal
2550 -- of a generic unit's declarations (those will be frozen within
2551 -- instances). This check was moved to Analyze_Package_Specification.
2553 -- The type may be defined in a generic unit. This can occur when
2554 -- freezing a generic function that returns the type (which is
2555 -- defined in a parent unit). It is clearly meaningless to freeze
2556 -- this type. However, if it is a subtype, its size may be determi-
2557 -- nable and used in subsequent checks, so might as well try to
2558 -- compute it.
2560 if Present (Scope (E))
2561 and then Is_Generic_Unit (Scope (E))
2562 then
2563 Check_Compile_Time_Size (E);
2564 return No_List;
2565 end if;
2567 -- Deal with special cases of freezing for subtype
2569 if E /= Base_Type (E) then
2571 -- Before we do anything else, a specialized test for the case of
2572 -- a size given for an array where the array needs to be packed,
2573 -- but was not so the size cannot be honored. This would of course
2574 -- be caught by the backend, and indeed we don't catch all cases.
2575 -- The point is that we can give a better error message in those
2576 -- cases that we do catch with the circuitry here. Also if pragma
2577 -- Implicit_Packing is set, this is where the packing occurs.
2579 -- The reason we do this so early is that the processing in the
2580 -- automatic packing case affects the layout of the base type, so
2581 -- it must be done before we freeze the base type.
2583 if Is_Array_Type (E) then
2584 declare
2585 Lo, Hi : Node_Id;
2586 Ctyp : constant Entity_Id := Component_Type (E);
2588 begin
2589 -- Check enabling conditions. These are straightforward
2590 -- except for the test for a limited composite type. This
2591 -- eliminates the rare case of a array of limited components
2592 -- where there are issues of whether or not we can go ahead
2593 -- and pack the array (since we can't freely pack and unpack
2594 -- arrays if they are limited).
2596 -- Note that we check the root type explicitly because the
2597 -- whole point is we are doing this test before we have had
2598 -- a chance to freeze the base type (and it is that freeze
2599 -- action that causes stuff to be inherited).
2601 if Present (Size_Clause (E))
2602 and then Known_Static_Esize (E)
2603 and then not Is_Packed (E)
2604 and then not Has_Pragma_Pack (E)
2605 and then Number_Dimensions (E) = 1
2606 and then not Has_Component_Size_Clause (E)
2607 and then Known_Static_Esize (Ctyp)
2608 and then not Is_Limited_Composite (E)
2609 and then not Is_Packed (Root_Type (E))
2610 and then not Has_Component_Size_Clause (Root_Type (E))
2611 then
2612 Get_Index_Bounds (First_Index (E), Lo, Hi);
2614 if Compile_Time_Known_Value (Lo)
2615 and then Compile_Time_Known_Value (Hi)
2616 and then Known_Static_RM_Size (Ctyp)
2617 and then RM_Size (Ctyp) < 64
2618 then
2619 declare
2620 Lov : constant Uint := Expr_Value (Lo);
2621 Hiv : constant Uint := Expr_Value (Hi);
2622 Len : constant Uint := UI_Max
2623 (Uint_0,
2624 Hiv - Lov + 1);
2625 Rsiz : constant Uint := RM_Size (Ctyp);
2626 SZ : constant Node_Id := Size_Clause (E);
2627 Btyp : constant Entity_Id := Base_Type (E);
2629 -- What we are looking for here is the situation where
2630 -- the RM_Size given would be exactly right if there
2631 -- was a pragma Pack (resulting in the component size
2632 -- being the same as the RM_Size). Furthermore, the
2633 -- component type size must be an odd size (not a
2634 -- multiple of storage unit)
2636 begin
2637 if RM_Size (E) = Len * Rsiz
2638 and then Rsiz mod System_Storage_Unit /= 0
2639 then
2640 -- For implicit packing mode, just set the
2641 -- component size silently
2643 if Implicit_Packing then
2644 Set_Component_Size (Btyp, Rsiz);
2645 Set_Is_Bit_Packed_Array (Btyp);
2646 Set_Is_Packed (Btyp);
2647 Set_Has_Non_Standard_Rep (Btyp);
2649 -- Otherwise give an error message
2651 else
2652 Error_Msg_NE
2653 ("size given for& too small", SZ, E);
2654 Error_Msg_N
2655 ("\use explicit pragma Pack "
2656 & "or use pragma Implicit_Packing", SZ);
2657 end if;
2658 end if;
2659 end;
2660 end if;
2661 end if;
2662 end;
2663 end if;
2665 -- If ancestor subtype present, freeze that first.
2666 -- Note that this will also get the base type frozen.
2668 Atype := Ancestor_Subtype (E);
2670 if Present (Atype) then
2671 Freeze_And_Append (Atype, Loc, Result);
2673 -- Otherwise freeze the base type of the entity before
2674 -- freezing the entity itself (RM 13.14(15)).
2676 elsif E /= Base_Type (E) then
2677 Freeze_And_Append (Base_Type (E), Loc, Result);
2678 end if;
2680 -- For a derived type, freeze its parent type first (RM 13.14(15))
2682 elsif Is_Derived_Type (E) then
2683 Freeze_And_Append (Etype (E), Loc, Result);
2684 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2685 end if;
2687 -- For array type, freeze index types and component type first
2688 -- before freezing the array (RM 13.14(15)).
2690 if Is_Array_Type (E) then
2691 declare
2692 Ctyp : constant Entity_Id := Component_Type (E);
2694 Non_Standard_Enum : Boolean := False;
2695 -- Set true if any of the index types is an enumeration type
2696 -- with a non-standard representation.
2698 begin
2699 Freeze_And_Append (Ctyp, Loc, Result);
2701 Indx := First_Index (E);
2702 while Present (Indx) loop
2703 Freeze_And_Append (Etype (Indx), Loc, Result);
2705 if Is_Enumeration_Type (Etype (Indx))
2706 and then Has_Non_Standard_Rep (Etype (Indx))
2707 then
2708 Non_Standard_Enum := True;
2709 end if;
2711 Next_Index (Indx);
2712 end loop;
2714 -- Processing that is done only for base types
2716 if Ekind (E) = E_Array_Type then
2718 -- Propagate flags for component type
2720 if Is_Controlled (Component_Type (E))
2721 or else Has_Controlled_Component (Ctyp)
2722 then
2723 Set_Has_Controlled_Component (E);
2724 end if;
2726 if Has_Unchecked_Union (Component_Type (E)) then
2727 Set_Has_Unchecked_Union (E);
2728 end if;
2730 -- If packing was requested or if the component size was set
2731 -- explicitly, then see if bit packing is required. This
2732 -- processing is only done for base types, since all the
2733 -- representation aspects involved are type-related. This
2734 -- is not just an optimization, if we start processing the
2735 -- subtypes, they intefere with the settings on the base
2736 -- type (this is because Is_Packed has a slightly different
2737 -- meaning before and after freezing).
2739 declare
2740 Csiz : Uint;
2741 Esiz : Uint;
2743 begin
2744 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2745 and then not Has_Atomic_Components (E)
2746 and then Known_Static_RM_Size (Ctyp)
2747 then
2748 Csiz := UI_Max (RM_Size (Ctyp), 1);
2750 elsif Known_Component_Size (E) then
2751 Csiz := Component_Size (E);
2753 elsif not Known_Static_Esize (Ctyp) then
2754 Csiz := Uint_0;
2756 else
2757 Esiz := Esize (Ctyp);
2759 -- We can set the component size if it is less than
2760 -- 16, rounding it up to the next storage unit size.
2762 if Esiz <= 8 then
2763 Csiz := Uint_8;
2764 elsif Esiz <= 16 then
2765 Csiz := Uint_16;
2766 else
2767 Csiz := Uint_0;
2768 end if;
2770 -- Set component size up to match alignment if it
2771 -- would otherwise be less than the alignment. This
2772 -- deals with cases of types whose alignment exceeds
2773 -- their size (padded types).
2775 if Csiz /= 0 then
2776 declare
2777 A : constant Uint := Alignment_In_Bits (Ctyp);
2778 begin
2779 if Csiz < A then
2780 Csiz := A;
2781 end if;
2782 end;
2783 end if;
2784 end if;
2786 -- Case of component size that may result in packing
2788 if 1 <= Csiz and then Csiz <= 64 then
2789 declare
2790 Ent : constant Entity_Id :=
2791 First_Subtype (E);
2792 Pack_Pragma : constant Node_Id :=
2793 Get_Rep_Pragma (Ent, Name_Pack);
2794 Comp_Size_C : constant Node_Id :=
2795 Get_Attribute_Definition_Clause
2796 (Ent, Attribute_Component_Size);
2797 begin
2798 -- Warn if we have pack and component size so that
2799 -- the pack is ignored.
2801 -- Note: here we must check for the presence of a
2802 -- component size before checking for a Pack pragma
2803 -- to deal with the case where the array type is a
2804 -- derived type whose parent is currently private.
2806 if Present (Comp_Size_C)
2807 and then Has_Pragma_Pack (Ent)
2808 then
2809 Error_Msg_Sloc := Sloc (Comp_Size_C);
2810 Error_Msg_NE
2811 ("?pragma Pack for& ignored!",
2812 Pack_Pragma, Ent);
2813 Error_Msg_N
2814 ("\?explicit component size given#!",
2815 Pack_Pragma);
2816 end if;
2818 -- Set component size if not already set by a
2819 -- component size clause.
2821 if not Present (Comp_Size_C) then
2822 Set_Component_Size (E, Csiz);
2823 end if;
2825 -- Check for base type of 8, 16, 32 bits, where an
2826 -- unsigned subtype has a length one less than the
2827 -- base type (e.g. Natural subtype of Integer).
2829 -- In such cases, if a component size was not set
2830 -- explicitly, then generate a warning.
2832 if Has_Pragma_Pack (E)
2833 and then not Present (Comp_Size_C)
2834 and then
2835 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2836 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2837 then
2838 Error_Msg_Uint_1 := Csiz;
2840 if Present (Pack_Pragma) then
2841 Error_Msg_N
2842 ("?pragma Pack causes component size "
2843 & "to be ^!", Pack_Pragma);
2844 Error_Msg_N
2845 ("\?use Component_Size to set "
2846 & "desired value!", Pack_Pragma);
2847 end if;
2848 end if;
2850 -- Actual packing is not needed for 8, 16, 32, 64.
2851 -- Also not needed for 24 if alignment is 1.
2853 if Csiz = 8
2854 or else Csiz = 16
2855 or else Csiz = 32
2856 or else Csiz = 64
2857 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2858 then
2859 -- Here the array was requested to be packed,
2860 -- but the packing request had no effect, so
2861 -- Is_Packed is reset.
2863 -- Note: semantically this means that we lose
2864 -- track of the fact that a derived type
2865 -- inherited a pragma Pack that was non-
2866 -- effective, but that seems fine.
2868 -- We regard a Pack pragma as a request to set
2869 -- a representation characteristic, and this
2870 -- request may be ignored.
2872 Set_Is_Packed (Base_Type (E), False);
2874 -- In all other cases, packing is indeed needed
2876 else
2877 Set_Has_Non_Standard_Rep (Base_Type (E));
2878 Set_Is_Bit_Packed_Array (Base_Type (E));
2879 Set_Is_Packed (Base_Type (E));
2880 end if;
2881 end;
2882 end if;
2883 end;
2885 -- Processing that is done only for subtypes
2887 else
2888 -- Acquire alignment from base type
2890 if Unknown_Alignment (E) then
2891 Set_Alignment (E, Alignment (Base_Type (E)));
2892 Adjust_Esize_Alignment (E);
2893 end if;
2894 end if;
2896 -- For bit-packed arrays, check the size
2898 if Is_Bit_Packed_Array (E)
2899 and then Known_RM_Size (E)
2900 then
2901 declare
2902 Discard : Boolean;
2903 SizC : constant Node_Id := Size_Clause (E);
2905 begin
2906 -- It is not clear if it is possible to have no size
2907 -- clause at this stage, but it is not worth worrying
2908 -- about. Post error on the entity name in the size
2909 -- clause if present, else on the type entity itself.
2911 if Present (SizC) then
2912 Check_Size (Name (SizC), E, RM_Size (E), Discard);
2913 else
2914 Check_Size (E, E, RM_Size (E), Discard);
2915 end if;
2916 end;
2917 end if;
2919 -- If any of the index types was an enumeration type with
2920 -- a non-standard rep clause, then we indicate that the
2921 -- array type is always packed (even if it is not bit packed).
2923 if Non_Standard_Enum then
2924 Set_Has_Non_Standard_Rep (Base_Type (E));
2925 Set_Is_Packed (Base_Type (E));
2926 end if;
2928 Set_Component_Alignment_If_Not_Set (E);
2930 -- If the array is packed, we must create the packed array
2931 -- type to be used to actually implement the type. This is
2932 -- only needed for real array types (not for string literal
2933 -- types, since they are present only for the front end).
2935 if Is_Packed (E)
2936 and then Ekind (E) /= E_String_Literal_Subtype
2937 then
2938 Create_Packed_Array_Type (E);
2939 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
2941 -- Size information of packed array type is copied to the
2942 -- array type, since this is really the representation. But
2943 -- do not override explicit existing size values.
2945 if not Has_Size_Clause (E) then
2946 Set_Esize (E, Esize (Packed_Array_Type (E)));
2947 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2948 end if;
2950 if not Has_Alignment_Clause (E) then
2951 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
2952 end if;
2953 end if;
2955 -- For non-packed arrays set the alignment of the array
2956 -- to the alignment of the component type if it is unknown.
2957 -- Skip this in the atomic case, since atomic arrays may
2958 -- need larger alignments.
2960 if not Is_Packed (E)
2961 and then Unknown_Alignment (E)
2962 and then Known_Alignment (Ctyp)
2963 and then Known_Static_Component_Size (E)
2964 and then Known_Static_Esize (Ctyp)
2965 and then Esize (Ctyp) = Component_Size (E)
2966 and then not Is_Atomic (E)
2967 then
2968 Set_Alignment (E, Alignment (Component_Type (E)));
2969 end if;
2970 end;
2972 -- For a class-wide type, the corresponding specific type is
2973 -- frozen as well (RM 13.14(15))
2975 elsif Is_Class_Wide_Type (E) then
2976 Freeze_And_Append (Root_Type (E), Loc, Result);
2978 -- If the base type of the class-wide type is still incomplete,
2979 -- the class-wide remains unfrozen as well. This is legal when
2980 -- E is the formal of a primitive operation of some other type
2981 -- which is being frozen.
2983 if not Is_Frozen (Root_Type (E)) then
2984 Set_Is_Frozen (E, False);
2985 return Result;
2986 end if;
2988 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2989 -- parent of a derived type) and it is a library-level entity,
2990 -- generate an itype reference for it. Otherwise, its first
2991 -- explicit reference may be in an inner scope, which will be
2992 -- rejected by the back-end.
2994 if Is_Itype (E)
2995 and then Is_Compilation_Unit (Scope (E))
2996 then
2997 declare
2998 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3000 begin
3001 Set_Itype (Ref, E);
3002 if No (Result) then
3003 Result := New_List (Ref);
3004 else
3005 Append (Ref, Result);
3006 end if;
3007 end;
3008 end if;
3010 -- The equivalent type associated with a class-wide subtype
3011 -- needs to be frozen to ensure that its layout is done.
3012 -- Class-wide subtypes are currently only frozen on targets
3013 -- requiring front-end layout (see New_Class_Wide_Subtype
3014 -- and Make_CW_Equivalent_Type in exp_util.adb).
3016 if Ekind (E) = E_Class_Wide_Subtype
3017 and then Present (Equivalent_Type (E))
3018 then
3019 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3020 end if;
3022 -- For a record (sub)type, freeze all the component types (RM
3023 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
3024 -- using Is_Record_Type, because we don't want to attempt the
3025 -- freeze for the case of a private type with record extension
3026 -- (we will do that later when the full type is frozen).
3028 elsif Ekind (E) = E_Record_Type
3029 or else Ekind (E) = E_Record_Subtype
3030 then
3031 Freeze_Record_Type (E);
3033 -- For a concurrent type, freeze corresponding record type. This
3034 -- does not correpond to any specific rule in the RM, but the
3035 -- record type is essentially part of the concurrent type.
3036 -- Freeze as well all local entities. This includes record types
3037 -- created for entry parameter blocks, and whatever local entities
3038 -- may appear in the private part.
3040 elsif Is_Concurrent_Type (E) then
3041 if Present (Corresponding_Record_Type (E)) then
3042 Freeze_And_Append
3043 (Corresponding_Record_Type (E), Loc, Result);
3044 end if;
3046 Comp := First_Entity (E);
3048 while Present (Comp) loop
3049 if Is_Type (Comp) then
3050 Freeze_And_Append (Comp, Loc, Result);
3052 elsif (Ekind (Comp)) /= E_Function then
3053 if Is_Itype (Etype (Comp))
3054 and then Underlying_Type (Scope (Etype (Comp))) = E
3055 then
3056 Undelay_Type (Etype (Comp));
3057 end if;
3059 Freeze_And_Append (Etype (Comp), Loc, Result);
3060 end if;
3062 Next_Entity (Comp);
3063 end loop;
3065 -- Private types are required to point to the same freeze node as
3066 -- their corresponding full views. The freeze node itself has to
3067 -- point to the partial view of the entity (because from the partial
3068 -- view, we can retrieve the full view, but not the reverse).
3069 -- However, in order to freeze correctly, we need to freeze the full
3070 -- view. If we are freezing at the end of a scope (or within the
3071 -- scope of the private type), the partial and full views will have
3072 -- been swapped, the full view appears first in the entity chain and
3073 -- the swapping mechanism ensures that the pointers are properly set
3074 -- (on scope exit).
3076 -- If we encounter the partial view before the full view (e.g. when
3077 -- freezing from another scope), we freeze the full view, and then
3078 -- set the pointers appropriately since we cannot rely on swapping to
3079 -- fix things up (subtypes in an outer scope might not get swapped).
3081 elsif Is_Incomplete_Or_Private_Type (E)
3082 and then not Is_Generic_Type (E)
3083 then
3084 -- The construction of the dispatch table associated with library
3085 -- level tagged types forces freezing of all the primitives of the
3086 -- type, which may cause premature freezing of the partial view.
3087 -- For example:
3089 -- package Pkg is
3090 -- type T is tagged private;
3091 -- type DT is new T with private;
3092 -- procedure Prim (X : in out T; Y : in out DT'class);
3093 -- private
3094 -- type T is tagged null record;
3095 -- Obj : T;
3096 -- type DT is new T with null record;
3097 -- end;
3099 -- In this case the type will be frozen later by the usual
3100 -- mechanism: an object declaration, an instantiation, or the
3101 -- end of a declarative part.
3103 if Is_Library_Level_Tagged_Type (E)
3104 and then not Present (Full_View (E))
3105 then
3106 Set_Is_Frozen (E, False);
3107 return Result;
3109 -- Case of full view present
3111 elsif Present (Full_View (E)) then
3113 -- If full view has already been frozen, then no further
3114 -- processing is required
3116 if Is_Frozen (Full_View (E)) then
3118 Set_Has_Delayed_Freeze (E, False);
3119 Set_Freeze_Node (E, Empty);
3120 Check_Debug_Info_Needed (E);
3122 -- Otherwise freeze full view and patch the pointers so that
3123 -- the freeze node will elaborate both views in the back-end.
3125 else
3126 declare
3127 Full : constant Entity_Id := Full_View (E);
3129 begin
3130 if Is_Private_Type (Full)
3131 and then Present (Underlying_Full_View (Full))
3132 then
3133 Freeze_And_Append
3134 (Underlying_Full_View (Full), Loc, Result);
3135 end if;
3137 Freeze_And_Append (Full, Loc, Result);
3139 if Has_Delayed_Freeze (E) then
3140 F_Node := Freeze_Node (Full);
3142 if Present (F_Node) then
3143 Set_Freeze_Node (E, F_Node);
3144 Set_Entity (F_Node, E);
3146 else
3147 -- {Incomplete,Private}_Subtypes
3148 -- with Full_Views constrained by discriminants
3150 Set_Has_Delayed_Freeze (E, False);
3151 Set_Freeze_Node (E, Empty);
3152 end if;
3153 end if;
3154 end;
3156 Check_Debug_Info_Needed (E);
3157 end if;
3159 -- AI-117 requires that the convention of a partial view be the
3160 -- same as the convention of the full view. Note that this is a
3161 -- recognized breach of privacy, but it's essential for logical
3162 -- consistency of representation, and the lack of a rule in
3163 -- RM95 was an oversight.
3165 Set_Convention (E, Convention (Full_View (E)));
3167 Set_Size_Known_At_Compile_Time (E,
3168 Size_Known_At_Compile_Time (Full_View (E)));
3170 -- Size information is copied from the full view to the
3171 -- incomplete or private view for consistency
3173 -- We skip this is the full view is not a type. This is very
3174 -- strange of course, and can only happen as a result of
3175 -- certain illegalities, such as a premature attempt to derive
3176 -- from an incomplete type.
3178 if Is_Type (Full_View (E)) then
3179 Set_Size_Info (E, Full_View (E));
3180 Set_RM_Size (E, RM_Size (Full_View (E)));
3181 end if;
3183 return Result;
3185 -- Case of no full view present. If entity is derived or subtype,
3186 -- it is safe to freeze, correctness depends on the frozen status
3187 -- of parent. Otherwise it is either premature usage, or a Taft
3188 -- amendment type, so diagnosis is at the point of use and the
3189 -- type might be frozen later.
3191 elsif E /= Base_Type (E)
3192 or else Is_Derived_Type (E)
3193 then
3194 null;
3196 else
3197 Set_Is_Frozen (E, False);
3198 return No_List;
3199 end if;
3201 -- For access subprogram, freeze types of all formals, the return
3202 -- type was already frozen, since it is the Etype of the function.
3204 elsif Ekind (E) = E_Subprogram_Type then
3205 Formal := First_Formal (E);
3206 while Present (Formal) loop
3207 Freeze_And_Append (Etype (Formal), Loc, Result);
3208 Next_Formal (Formal);
3209 end loop;
3211 Freeze_Subprogram (E);
3213 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
3215 -- type T is tagged;
3216 -- type Acc is access function (X : T) return T; -- ERROR
3218 if Ekind (Etype (E)) = E_Incomplete_Type
3219 and then Is_Tagged_Type (Etype (E))
3220 and then No (Full_View (Etype (E)))
3221 and then not Is_Value_Type (Etype (E))
3222 then
3223 Error_Msg_N
3224 ("(Ada 2005): invalid use of tagged incomplete type", E);
3225 end if;
3227 -- For access to a protected subprogram, freeze the equivalent type
3228 -- (however this is not set if we are not generating code or if this
3229 -- is an anonymous type used just for resolution).
3231 elsif Is_Access_Protected_Subprogram_Type (E) then
3233 -- AI-326: Check wrong use of tagged incomplete types
3235 -- type T is tagged;
3236 -- type As3D is access protected
3237 -- function (X : Float) return T; -- ERROR
3239 declare
3240 Etyp : Entity_Id;
3242 begin
3243 Etyp := Etype (Directly_Designated_Type (E));
3245 if Is_Class_Wide_Type (Etyp) then
3246 Etyp := Etype (Etyp);
3247 end if;
3249 if Ekind (Etyp) = E_Incomplete_Type
3250 and then Is_Tagged_Type (Etyp)
3251 and then No (Full_View (Etyp))
3252 and then not Is_Value_Type (Etype (E))
3253 then
3254 Error_Msg_N
3255 ("(Ada 2005): invalid use of tagged incomplete type", E);
3256 end if;
3257 end;
3259 if Present (Equivalent_Type (E)) then
3260 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3261 end if;
3262 end if;
3264 -- Generic types are never seen by the back-end, and are also not
3265 -- processed by the expander (since the expander is turned off for
3266 -- generic processing), so we never need freeze nodes for them.
3268 if Is_Generic_Type (E) then
3269 return Result;
3270 end if;
3272 -- Some special processing for non-generic types to complete
3273 -- representation details not known till the freeze point.
3275 if Is_Fixed_Point_Type (E) then
3276 Freeze_Fixed_Point_Type (E);
3278 -- Some error checks required for ordinary fixed-point type. Defer
3279 -- these till the freeze-point since we need the small and range
3280 -- values. We only do these checks for base types
3282 if Is_Ordinary_Fixed_Point_Type (E)
3283 and then E = Base_Type (E)
3284 then
3285 if Small_Value (E) < Ureal_2_M_80 then
3286 Error_Msg_Name_1 := Name_Small;
3287 Error_Msg_N
3288 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3290 elsif Small_Value (E) > Ureal_2_80 then
3291 Error_Msg_Name_1 := Name_Small;
3292 Error_Msg_N
3293 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3294 end if;
3296 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3297 Error_Msg_Name_1 := Name_First;
3298 Error_Msg_N
3299 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3300 end if;
3302 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3303 Error_Msg_Name_1 := Name_Last;
3304 Error_Msg_N
3305 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3306 end if;
3307 end if;
3309 elsif Is_Enumeration_Type (E) then
3310 Freeze_Enumeration_Type (E);
3312 elsif Is_Integer_Type (E) then
3313 Adjust_Esize_For_Alignment (E);
3315 elsif Is_Access_Type (E) then
3317 -- Check restriction for standard storage pool
3319 if No (Associated_Storage_Pool (E)) then
3320 Check_Restriction (No_Standard_Storage_Pools, E);
3321 end if;
3323 -- Deal with error message for pure access type. This is not an
3324 -- error in Ada 2005 if there is no pool (see AI-366).
3326 if Is_Pure_Unit_Access_Type (E)
3327 and then (Ada_Version < Ada_05
3328 or else not No_Pool_Assigned (E))
3329 then
3330 Error_Msg_N ("named access type not allowed in pure unit", E);
3331 end if;
3332 end if;
3334 -- Case of composite types
3336 if Is_Composite_Type (E) then
3338 -- AI-117 requires that all new primitives of a tagged type must
3339 -- inherit the convention of the full view of the type. Inherited
3340 -- and overriding operations are defined to inherit the convention
3341 -- of their parent or overridden subprogram (also specified in
3342 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3343 -- and New_Overloaded_Entity). Here we set the convention of
3344 -- primitives that are still convention Ada, which will ensure
3345 -- that any new primitives inherit the type's convention.
3346 -- Class-wide types can have a foreign convention inherited from
3347 -- their specific type, but are excluded from this since they
3348 -- don't have any associated primitives.
3350 if Is_Tagged_Type (E)
3351 and then not Is_Class_Wide_Type (E)
3352 and then Convention (E) /= Convention_Ada
3353 then
3354 declare
3355 Prim_List : constant Elist_Id := Primitive_Operations (E);
3356 Prim : Elmt_Id;
3357 begin
3358 Prim := First_Elmt (Prim_List);
3359 while Present (Prim) loop
3360 if Convention (Node (Prim)) = Convention_Ada then
3361 Set_Convention (Node (Prim), Convention (E));
3362 end if;
3364 Next_Elmt (Prim);
3365 end loop;
3366 end;
3367 end if;
3368 end if;
3370 -- Generate primitive operation references for a tagged type
3372 if Is_Tagged_Type (E)
3373 and then not Is_Class_Wide_Type (E)
3374 then
3375 declare
3376 Prim_List : Elist_Id;
3377 Prim : Elmt_Id;
3378 Ent : Entity_Id;
3379 Aux_E : Entity_Id;
3381 begin
3382 -- Handle subtypes
3384 if Ekind (E) = E_Protected_Subtype
3385 or else Ekind (E) = E_Task_Subtype
3386 then
3387 Aux_E := Etype (E);
3388 else
3389 Aux_E := E;
3390 end if;
3392 -- Ada 2005 (AI-345): In case of concurrent type generate
3393 -- reference to the wrapper that allow us to dispatch calls
3394 -- through their implemented abstract interface types.
3396 -- The check for Present here is to protect against previously
3397 -- reported critical errors.
3399 if Is_Concurrent_Type (Aux_E)
3400 and then Present (Corresponding_Record_Type (Aux_E))
3401 then
3402 Prim_List := Primitive_Operations
3403 (Corresponding_Record_Type (Aux_E));
3404 else
3405 Prim_List := Primitive_Operations (Aux_E);
3406 end if;
3408 -- Loop to generate references for primitive operations
3410 if Present (Prim_List) then
3411 Prim := First_Elmt (Prim_List);
3412 while Present (Prim) loop
3414 -- If the operation is derived, get the original for
3415 -- cross-reference purposes (it is the original for
3416 -- which we want the xref, and for which the comes
3417 -- from source test needs to be performed).
3419 Ent := Node (Prim);
3420 while Present (Alias (Ent)) loop
3421 Ent := Alias (Ent);
3422 end loop;
3424 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3425 Next_Elmt (Prim);
3426 end loop;
3427 end if;
3428 end;
3429 end if;
3431 -- Now that all types from which E may depend are frozen, see if the
3432 -- size is known at compile time, if it must be unsigned, or if
3433 -- strict alignment is required
3435 Check_Compile_Time_Size (E);
3436 Check_Unsigned_Type (E);
3438 if Base_Type (E) = E then
3439 Check_Strict_Alignment (E);
3440 end if;
3442 -- Do not allow a size clause for a type which does not have a size
3443 -- that is known at compile time
3445 if Has_Size_Clause (E)
3446 and then not Size_Known_At_Compile_Time (E)
3447 then
3448 -- Supress this message if errors posted on E, even if we are
3449 -- in all errors mode, since this is often a junk message
3451 if not Error_Posted (E) then
3452 Error_Msg_N
3453 ("size clause not allowed for variable length type",
3454 Size_Clause (E));
3455 end if;
3456 end if;
3458 -- Remaining process is to set/verify the representation information,
3459 -- in particular the size and alignment values. This processing is
3460 -- not required for generic types, since generic types do not play
3461 -- any part in code generation, and so the size and alignment values
3462 -- for such types are irrelevant.
3464 if Is_Generic_Type (E) then
3465 return Result;
3467 -- Otherwise we call the layout procedure
3469 else
3470 Layout_Type (E);
3471 end if;
3473 -- End of freeze processing for type entities
3474 end if;
3476 -- Here is where we logically freeze the current entity. If it has a
3477 -- freeze node, then this is the point at which the freeze node is
3478 -- linked into the result list.
3480 if Has_Delayed_Freeze (E) then
3482 -- If a freeze node is already allocated, use it, otherwise allocate
3483 -- a new one. The preallocation happens in the case of anonymous base
3484 -- types, where we preallocate so that we can set First_Subtype_Link.
3485 -- Note that we reset the Sloc to the current freeze location.
3487 if Present (Freeze_Node (E)) then
3488 F_Node := Freeze_Node (E);
3489 Set_Sloc (F_Node, Loc);
3491 else
3492 F_Node := New_Node (N_Freeze_Entity, Loc);
3493 Set_Freeze_Node (E, F_Node);
3494 Set_Access_Types_To_Process (F_Node, No_Elist);
3495 Set_TSS_Elist (F_Node, No_Elist);
3496 Set_Actions (F_Node, No_List);
3497 end if;
3499 Set_Entity (F_Node, E);
3501 if Result = No_List then
3502 Result := New_List (F_Node);
3503 else
3504 Append (F_Node, Result);
3505 end if;
3507 -- A final pass over record types with discriminants. If the type
3508 -- has an incomplete declaration, there may be constrained access
3509 -- subtypes declared elsewhere, which do not depend on the discrimi-
3510 -- nants of the type, and which are used as component types (i.e.
3511 -- the full view is a recursive type). The designated types of these
3512 -- subtypes can only be elaborated after the type itself, and they
3513 -- need an itype reference.
3515 if Ekind (E) = E_Record_Type
3516 and then Has_Discriminants (E)
3517 then
3518 declare
3519 Comp : Entity_Id;
3520 IR : Node_Id;
3521 Typ : Entity_Id;
3523 begin
3524 Comp := First_Component (E);
3526 while Present (Comp) loop
3527 Typ := Etype (Comp);
3529 if Ekind (Comp) = E_Component
3530 and then Is_Access_Type (Typ)
3531 and then Scope (Typ) /= E
3532 and then Base_Type (Designated_Type (Typ)) = E
3533 and then Is_Itype (Designated_Type (Typ))
3534 then
3535 IR := Make_Itype_Reference (Sloc (Comp));
3536 Set_Itype (IR, Designated_Type (Typ));
3537 Append (IR, Result);
3538 end if;
3540 Next_Component (Comp);
3541 end loop;
3542 end;
3543 end if;
3544 end if;
3546 -- When a type is frozen, the first subtype of the type is frozen as
3547 -- well (RM 13.14(15)). This has to be done after freezing the type,
3548 -- since obviously the first subtype depends on its own base type.
3550 if Is_Type (E) then
3551 Freeze_And_Append (First_Subtype (E), Loc, Result);
3553 -- If we just froze a tagged non-class wide record, then freeze the
3554 -- corresponding class-wide type. This must be done after the tagged
3555 -- type itself is frozen, because the class-wide type refers to the
3556 -- tagged type which generates the class.
3558 if Is_Tagged_Type (E)
3559 and then not Is_Class_Wide_Type (E)
3560 and then Present (Class_Wide_Type (E))
3561 then
3562 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3563 end if;
3564 end if;
3566 Check_Debug_Info_Needed (E);
3568 -- Special handling for subprograms
3570 if Is_Subprogram (E) then
3572 -- If subprogram has address clause then reset Is_Public flag, since
3573 -- we do not want the backend to generate external references.
3575 if Present (Address_Clause (E))
3576 and then not Is_Library_Level_Entity (E)
3577 then
3578 Set_Is_Public (E, False);
3580 -- If no address clause and not intrinsic, then for imported
3581 -- subprogram in main unit, generate descriptor if we are in
3582 -- Propagate_Exceptions mode.
3584 elsif Propagate_Exceptions
3585 and then Is_Imported (E)
3586 and then not Is_Intrinsic_Subprogram (E)
3587 and then Convention (E) /= Convention_Stubbed
3588 then
3589 if Result = No_List then
3590 Result := Empty_List;
3591 end if;
3592 end if;
3593 end if;
3595 return Result;
3596 end Freeze_Entity;
3598 -----------------------------
3599 -- Freeze_Enumeration_Type --
3600 -----------------------------
3602 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3603 begin
3604 if Has_Foreign_Convention (Typ)
3605 and then not Has_Size_Clause (Typ)
3606 and then Esize (Typ) < Standard_Integer_Size
3607 then
3608 Init_Esize (Typ, Standard_Integer_Size);
3609 else
3610 Adjust_Esize_For_Alignment (Typ);
3611 end if;
3612 end Freeze_Enumeration_Type;
3614 -----------------------
3615 -- Freeze_Expression --
3616 -----------------------
3618 procedure Freeze_Expression (N : Node_Id) is
3619 In_Def_Exp : constant Boolean := In_Default_Expression;
3620 Typ : Entity_Id;
3621 Nam : Entity_Id;
3622 Desig_Typ : Entity_Id;
3623 P : Node_Id;
3624 Parent_P : Node_Id;
3626 Freeze_Outside : Boolean := False;
3627 -- This flag is set true if the entity must be frozen outside the
3628 -- current subprogram. This happens in the case of expander generated
3629 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3630 -- not freeze all entities like other bodies, but which nevertheless
3631 -- may reference entities that have to be frozen before the body and
3632 -- obviously cannot be frozen inside the body.
3634 function In_Exp_Body (N : Node_Id) return Boolean;
3635 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3636 -- it is the handled statement sequence of an expander-generated
3637 -- subprogram (init proc, stream subprogram, or renaming as body).
3638 -- If so, this is not a freezing context.
3640 -----------------
3641 -- In_Exp_Body --
3642 -----------------
3644 function In_Exp_Body (N : Node_Id) return Boolean is
3645 P : Node_Id;
3646 Id : Entity_Id;
3648 begin
3649 if Nkind (N) = N_Subprogram_Body then
3650 P := N;
3651 else
3652 P := Parent (N);
3653 end if;
3655 if Nkind (P) /= N_Subprogram_Body then
3656 return False;
3658 else
3659 Id := Defining_Unit_Name (Specification (P));
3661 if Nkind (Id) = N_Defining_Identifier
3662 and then (Is_Init_Proc (Id) or else
3663 Is_TSS (Id, TSS_Stream_Input) or else
3664 Is_TSS (Id, TSS_Stream_Output) or else
3665 Is_TSS (Id, TSS_Stream_Read) or else
3666 Is_TSS (Id, TSS_Stream_Write) or else
3667 Nkind (Original_Node (P)) =
3668 N_Subprogram_Renaming_Declaration)
3669 then
3670 return True;
3671 else
3672 return False;
3673 end if;
3674 end if;
3675 end In_Exp_Body;
3677 -- Start of processing for Freeze_Expression
3679 begin
3680 -- Immediate return if freezing is inhibited. This flag is set by the
3681 -- analyzer to stop freezing on generated expressions that would cause
3682 -- freezing if they were in the source program, but which are not
3683 -- supposed to freeze, since they are created.
3685 if Must_Not_Freeze (N) then
3686 return;
3687 end if;
3689 -- If expression is non-static, then it does not freeze in a default
3690 -- expression, see section "Handling of Default Expressions" in the
3691 -- spec of package Sem for further details. Note that we have to
3692 -- make sure that we actually have a real expression (if we have
3693 -- a subtype indication, we can't test Is_Static_Expression!)
3695 if In_Def_Exp
3696 and then Nkind (N) in N_Subexpr
3697 and then not Is_Static_Expression (N)
3698 then
3699 return;
3700 end if;
3702 -- Freeze type of expression if not frozen already
3704 Typ := Empty;
3706 if Nkind (N) in N_Has_Etype then
3707 if not Is_Frozen (Etype (N)) then
3708 Typ := Etype (N);
3710 -- Base type may be an derived numeric type that is frozen at
3711 -- the point of declaration, but first_subtype is still unfrozen.
3713 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3714 Typ := First_Subtype (Etype (N));
3715 end if;
3716 end if;
3718 -- For entity name, freeze entity if not frozen already. A special
3719 -- exception occurs for an identifier that did not come from source.
3720 -- We don't let such identifiers freeze a non-internal entity, i.e.
3721 -- an entity that did come from source, since such an identifier was
3722 -- generated by the expander, and cannot have any semantic effect on
3723 -- the freezing semantics. For example, this stops the parameter of
3724 -- an initialization procedure from freezing the variable.
3726 if Is_Entity_Name (N)
3727 and then not Is_Frozen (Entity (N))
3728 and then (Nkind (N) /= N_Identifier
3729 or else Comes_From_Source (N)
3730 or else not Comes_From_Source (Entity (N)))
3731 then
3732 Nam := Entity (N);
3733 else
3734 Nam := Empty;
3735 end if;
3737 -- For an allocator freeze designated type if not frozen already
3739 -- For an aggregate whose component type is an access type, freeze the
3740 -- designated type now, so that its freeze does not appear within the
3741 -- loop that might be created in the expansion of the aggregate. If the
3742 -- designated type is a private type without full view, the expression
3743 -- cannot contain an allocator, so the type is not frozen.
3745 Desig_Typ := Empty;
3747 case Nkind (N) is
3748 when N_Allocator =>
3749 Desig_Typ := Designated_Type (Etype (N));
3751 when N_Aggregate =>
3752 if Is_Array_Type (Etype (N))
3753 and then Is_Access_Type (Component_Type (Etype (N)))
3754 then
3755 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3756 end if;
3758 when N_Selected_Component |
3759 N_Indexed_Component |
3760 N_Slice =>
3762 if Is_Access_Type (Etype (Prefix (N))) then
3763 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3764 end if;
3766 when others =>
3767 null;
3768 end case;
3770 if Desig_Typ /= Empty
3771 and then (Is_Frozen (Desig_Typ)
3772 or else (not Is_Fully_Defined (Desig_Typ)))
3773 then
3774 Desig_Typ := Empty;
3775 end if;
3777 -- All done if nothing needs freezing
3779 if No (Typ)
3780 and then No (Nam)
3781 and then No (Desig_Typ)
3782 then
3783 return;
3784 end if;
3786 -- Loop for looking at the right place to insert the freeze nodes
3787 -- exiting from the loop when it is appropriate to insert the freeze
3788 -- node before the current node P.
3790 -- Also checks some special exceptions to the freezing rules. These
3791 -- cases result in a direct return, bypassing the freeze action.
3793 P := N;
3794 loop
3795 Parent_P := Parent (P);
3797 -- If we don't have a parent, then we are not in a well-formed tree.
3798 -- This is an unusual case, but there are some legitimate situations
3799 -- in which this occurs, notably when the expressions in the range of
3800 -- a type declaration are resolved. We simply ignore the freeze
3801 -- request in this case. Is this right ???
3803 if No (Parent_P) then
3804 return;
3805 end if;
3807 -- See if we have got to an appropriate point in the tree
3809 case Nkind (Parent_P) is
3811 -- A special test for the exception of (RM 13.14(8)) for the case
3812 -- of per-object expressions (RM 3.8(18)) occurring in component
3813 -- definition or a discrete subtype definition. Note that we test
3814 -- for a component declaration which includes both cases we are
3815 -- interested in, and furthermore the tree does not have explicit
3816 -- nodes for either of these two constructs.
3818 when N_Component_Declaration =>
3820 -- The case we want to test for here is an identifier that is
3821 -- a per-object expression, this is either a discriminant that
3822 -- appears in a context other than the component declaration
3823 -- or it is a reference to the type of the enclosing construct.
3825 -- For either of these cases, we skip the freezing
3827 if not In_Default_Expression
3828 and then Nkind (N) = N_Identifier
3829 and then (Present (Entity (N)))
3830 then
3831 -- We recognize the discriminant case by just looking for
3832 -- a reference to a discriminant. It can only be one for
3833 -- the enclosing construct. Skip freezing in this case.
3835 if Ekind (Entity (N)) = E_Discriminant then
3836 return;
3838 -- For the case of a reference to the enclosing record,
3839 -- (or task or protected type), we look for a type that
3840 -- matches the current scope.
3842 elsif Entity (N) = Current_Scope then
3843 return;
3844 end if;
3845 end if;
3847 -- If we have an enumeration literal that appears as the choice in
3848 -- the aggregate of an enumeration representation clause, then
3849 -- freezing does not occur (RM 13.14(10)).
3851 when N_Enumeration_Representation_Clause =>
3853 -- The case we are looking for is an enumeration literal
3855 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3856 and then Is_Enumeration_Type (Etype (N))
3857 then
3858 -- If enumeration literal appears directly as the choice,
3859 -- do not freeze (this is the normal non-overloade case)
3861 if Nkind (Parent (N)) = N_Component_Association
3862 and then First (Choices (Parent (N))) = N
3863 then
3864 return;
3866 -- If enumeration literal appears as the name of function
3867 -- which is the choice, then also do not freeze. This
3868 -- happens in the overloaded literal case, where the
3869 -- enumeration literal is temporarily changed to a function
3870 -- call for overloading analysis purposes.
3872 elsif Nkind (Parent (N)) = N_Function_Call
3873 and then
3874 Nkind (Parent (Parent (N))) = N_Component_Association
3875 and then
3876 First (Choices (Parent (Parent (N)))) = Parent (N)
3877 then
3878 return;
3879 end if;
3880 end if;
3882 -- Normally if the parent is a handled sequence of statements,
3883 -- then the current node must be a statement, and that is an
3884 -- appropriate place to insert a freeze node.
3886 when N_Handled_Sequence_Of_Statements =>
3888 -- An exception occurs when the sequence of statements is for
3889 -- an expander generated body that did not do the usual freeze
3890 -- all operation. In this case we usually want to freeze
3891 -- outside this body, not inside it, and we skip past the
3892 -- subprogram body that we are inside.
3894 if In_Exp_Body (Parent_P) then
3896 -- However, we *do* want to freeze at this point if we have
3897 -- an entity to freeze, and that entity is declared *inside*
3898 -- the body of the expander generated procedure. This case
3899 -- is recognized by the scope of the type, which is either
3900 -- the spec for some enclosing body, or (in the case of
3901 -- init_procs, for which there are no separate specs) the
3902 -- current scope.
3904 declare
3905 Subp : constant Node_Id := Parent (Parent_P);
3906 Cspc : Entity_Id;
3908 begin
3909 if Nkind (Subp) = N_Subprogram_Body then
3910 Cspc := Corresponding_Spec (Subp);
3912 if (Present (Typ) and then Scope (Typ) = Cspc)
3913 or else
3914 (Present (Nam) and then Scope (Nam) = Cspc)
3915 then
3916 exit;
3918 elsif Present (Typ)
3919 and then Scope (Typ) = Current_Scope
3920 and then Current_Scope = Defining_Entity (Subp)
3921 then
3922 exit;
3923 end if;
3924 end if;
3925 end;
3927 -- If not that exception to the exception, then this is
3928 -- where we delay the freeze till outside the body.
3930 Parent_P := Parent (Parent_P);
3931 Freeze_Outside := True;
3933 -- Here if normal case where we are in handled statement
3934 -- sequence and want to do the insertion right there.
3936 else
3937 exit;
3938 end if;
3940 -- If parent is a body or a spec or a block, then the current node
3941 -- is a statement or declaration and we can insert the freeze node
3942 -- before it.
3944 when N_Package_Specification |
3945 N_Package_Body |
3946 N_Subprogram_Body |
3947 N_Task_Body |
3948 N_Protected_Body |
3949 N_Entry_Body |
3950 N_Block_Statement => exit;
3952 -- The expander is allowed to define types in any statements list,
3953 -- so any of the following parent nodes also mark a freezing point
3954 -- if the actual node is in a list of statements or declarations.
3956 when N_Exception_Handler |
3957 N_If_Statement |
3958 N_Elsif_Part |
3959 N_Case_Statement_Alternative |
3960 N_Compilation_Unit_Aux |
3961 N_Selective_Accept |
3962 N_Accept_Alternative |
3963 N_Delay_Alternative |
3964 N_Conditional_Entry_Call |
3965 N_Entry_Call_Alternative |
3966 N_Triggering_Alternative |
3967 N_Abortable_Part |
3968 N_Freeze_Entity =>
3970 exit when Is_List_Member (P);
3972 -- Note: The N_Loop_Statement is a special case. A type that
3973 -- appears in the source can never be frozen in a loop (this
3974 -- occurs only because of a loop expanded by the expander), so we
3975 -- keep on going. Otherwise we terminate the search. Same is true
3976 -- of any entity which comes from source. (if they have predefined
3977 -- type, that type does not appear to come from source, but the
3978 -- entity should not be frozen here).
3980 when N_Loop_Statement =>
3981 exit when not Comes_From_Source (Etype (N))
3982 and then (No (Nam) or else not Comes_From_Source (Nam));
3984 -- For all other cases, keep looking at parents
3986 when others =>
3987 null;
3988 end case;
3990 -- We fall through the case if we did not yet find the proper
3991 -- place in the free for inserting the freeze node, so climb!
3993 P := Parent_P;
3994 end loop;
3996 -- If the expression appears in a record or an initialization procedure,
3997 -- the freeze nodes are collected and attached to the current scope, to
3998 -- be inserted and analyzed on exit from the scope, to insure that
3999 -- generated entities appear in the correct scope. If the expression is
4000 -- a default for a discriminant specification, the scope is still void.
4001 -- The expression can also appear in the discriminant part of a private
4002 -- or concurrent type.
4004 -- If the expression appears in a constrained subcomponent of an
4005 -- enclosing record declaration, the freeze nodes must be attached to
4006 -- the outer record type so they can eventually be placed in the
4007 -- enclosing declaration list.
4009 -- The other case requiring this special handling is if we are in a
4010 -- default expression, since in that case we are about to freeze a
4011 -- static type, and the freeze scope needs to be the outer scope, not
4012 -- the scope of the subprogram with the default parameter.
4014 -- For default expressions in generic units, the Move_Freeze_Nodes
4015 -- mechanism (see sem_ch12.adb) takes care of placing them at the proper
4016 -- place, after the generic unit.
4018 if (In_Def_Exp and not Inside_A_Generic)
4019 or else Freeze_Outside
4020 or else (Is_Type (Current_Scope)
4021 and then (not Is_Concurrent_Type (Current_Scope)
4022 or else not Has_Completion (Current_Scope)))
4023 or else Ekind (Current_Scope) = E_Void
4024 then
4025 declare
4026 Loc : constant Source_Ptr := Sloc (Current_Scope);
4027 Freeze_Nodes : List_Id := No_List;
4028 Pos : Int := Scope_Stack.Last;
4030 begin
4031 if Present (Desig_Typ) then
4032 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4033 end if;
4035 if Present (Typ) then
4036 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4037 end if;
4039 if Present (Nam) then
4040 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4041 end if;
4043 -- The current scope may be that of a constrained component of
4044 -- an enclosing record declaration, which is above the current
4045 -- scope in the scope stack.
4047 if Is_Record_Type (Scope (Current_Scope)) then
4048 Pos := Pos - 1;
4049 end if;
4051 if Is_Non_Empty_List (Freeze_Nodes) then
4052 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4053 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4054 Freeze_Nodes;
4055 else
4056 Append_List (Freeze_Nodes, Scope_Stack.Table
4057 (Pos).Pending_Freeze_Actions);
4058 end if;
4059 end if;
4060 end;
4062 return;
4063 end if;
4065 -- Now we have the right place to do the freezing. First, a special
4066 -- adjustment, if we are in default expression analysis mode, these
4067 -- freeze actions must not be thrown away (normally all inserted actions
4068 -- are thrown away in this mode. However, the freeze actions are from
4069 -- static expressions and one of the important reasons we are doing this
4070 -- special analysis is to get these freeze actions. Therefore we turn
4071 -- off the In_Default_Expression mode to propagate these freeze actions.
4072 -- This also means they get properly analyzed and expanded.
4074 In_Default_Expression := False;
4076 -- Freeze the designated type of an allocator (RM 13.14(13))
4078 if Present (Desig_Typ) then
4079 Freeze_Before (P, Desig_Typ);
4080 end if;
4082 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4083 -- the enumeration representation clause exception in the loop above.
4085 if Present (Typ) then
4086 Freeze_Before (P, Typ);
4087 end if;
4089 -- Freeze name if one is present (RM 13.14(11))
4091 if Present (Nam) then
4092 Freeze_Before (P, Nam);
4093 end if;
4095 In_Default_Expression := In_Def_Exp;
4096 end Freeze_Expression;
4098 -----------------------------
4099 -- Freeze_Fixed_Point_Type --
4100 -----------------------------
4102 -- Certain fixed-point types and subtypes, including implicit base types
4103 -- and declared first subtypes, have not yet set up a range. This is
4104 -- because the range cannot be set until the Small and Size values are
4105 -- known, and these are not known till the type is frozen.
4107 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4108 -- whose bounds are unanalyzed real literals. This routine will recognize
4109 -- this case, and transform this range node into a properly typed range
4110 -- with properly analyzed and resolved values.
4112 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4113 Rng : constant Node_Id := Scalar_Range (Typ);
4114 Lo : constant Node_Id := Low_Bound (Rng);
4115 Hi : constant Node_Id := High_Bound (Rng);
4116 Btyp : constant Entity_Id := Base_Type (Typ);
4117 Brng : constant Node_Id := Scalar_Range (Btyp);
4118 BLo : constant Node_Id := Low_Bound (Brng);
4119 BHi : constant Node_Id := High_Bound (Brng);
4120 Small : constant Ureal := Small_Value (Typ);
4121 Loval : Ureal;
4122 Hival : Ureal;
4123 Atype : Entity_Id;
4125 Actual_Size : Nat;
4127 function Fsize (Lov, Hiv : Ureal) return Nat;
4128 -- Returns size of type with given bounds. Also leaves these
4129 -- bounds set as the current bounds of the Typ.
4131 -----------
4132 -- Fsize --
4133 -----------
4135 function Fsize (Lov, Hiv : Ureal) return Nat is
4136 begin
4137 Set_Realval (Lo, Lov);
4138 Set_Realval (Hi, Hiv);
4139 return Minimum_Size (Typ);
4140 end Fsize;
4142 -- Start of processing for Freeze_Fixed_Point_Type
4144 begin
4145 -- If Esize of a subtype has not previously been set, set it now
4147 if Unknown_Esize (Typ) then
4148 Atype := Ancestor_Subtype (Typ);
4150 if Present (Atype) then
4151 Set_Esize (Typ, Esize (Atype));
4152 else
4153 Set_Esize (Typ, Esize (Base_Type (Typ)));
4154 end if;
4155 end if;
4157 -- Immediate return if the range is already analyzed. This means that
4158 -- the range is already set, and does not need to be computed by this
4159 -- routine.
4161 if Analyzed (Rng) then
4162 return;
4163 end if;
4165 -- Immediate return if either of the bounds raises Constraint_Error
4167 if Raises_Constraint_Error (Lo)
4168 or else Raises_Constraint_Error (Hi)
4169 then
4170 return;
4171 end if;
4173 Loval := Realval (Lo);
4174 Hival := Realval (Hi);
4176 -- Ordinary fixed-point case
4178 if Is_Ordinary_Fixed_Point_Type (Typ) then
4180 -- For the ordinary fixed-point case, we are allowed to fudge the
4181 -- end-points up or down by small. Generally we prefer to fudge up,
4182 -- i.e. widen the bounds for non-model numbers so that the end points
4183 -- are included. However there are cases in which this cannot be
4184 -- done, and indeed cases in which we may need to narrow the bounds.
4185 -- The following circuit makes the decision.
4187 -- Note: our terminology here is that Incl_EP means that the bounds
4188 -- are widened by Small if necessary to include the end points, and
4189 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4190 -- end-points if this reduces the size.
4192 -- Note that in the Incl case, all we care about is including the
4193 -- end-points. In the Excl case, we want to narrow the bounds as
4194 -- much as permitted by the RM, to give the smallest possible size.
4196 Fudge : declare
4197 Loval_Incl_EP : Ureal;
4198 Hival_Incl_EP : Ureal;
4200 Loval_Excl_EP : Ureal;
4201 Hival_Excl_EP : Ureal;
4203 Size_Incl_EP : Nat;
4204 Size_Excl_EP : Nat;
4206 Model_Num : Ureal;
4207 First_Subt : Entity_Id;
4208 Actual_Lo : Ureal;
4209 Actual_Hi : Ureal;
4211 begin
4212 -- First step. Base types are required to be symmetrical. Right
4213 -- now, the base type range is a copy of the first subtype range.
4214 -- This will be corrected before we are done, but right away we
4215 -- need to deal with the case where both bounds are non-negative.
4216 -- In this case, we set the low bound to the negative of the high
4217 -- bound, to make sure that the size is computed to include the
4218 -- required sign. Note that we do not need to worry about the
4219 -- case of both bounds negative, because the sign will be dealt
4220 -- with anyway. Furthermore we can't just go making such a bound
4221 -- symmetrical, since in a twos-complement system, there is an
4222 -- extra negative value which could not be accomodated on the
4223 -- positive side.
4225 if Typ = Btyp
4226 and then not UR_Is_Negative (Loval)
4227 and then Hival > Loval
4228 then
4229 Loval := -Hival;
4230 Set_Realval (Lo, Loval);
4231 end if;
4233 -- Compute the fudged bounds. If the number is a model number,
4234 -- then we do nothing to include it, but we are allowed to backoff
4235 -- to the next adjacent model number when we exclude it. If it is
4236 -- not a model number then we straddle the two values with the
4237 -- model numbers on either side.
4239 Model_Num := UR_Trunc (Loval / Small) * Small;
4241 if Loval = Model_Num then
4242 Loval_Incl_EP := Model_Num;
4243 else
4244 Loval_Incl_EP := Model_Num - Small;
4245 end if;
4247 -- The low value excluding the end point is Small greater, but
4248 -- we do not do this exclusion if the low value is positive,
4249 -- since it can't help the size and could actually hurt by
4250 -- crossing the high bound.
4252 if UR_Is_Negative (Loval_Incl_EP) then
4253 Loval_Excl_EP := Loval_Incl_EP + Small;
4254 else
4255 Loval_Excl_EP := Loval_Incl_EP;
4256 end if;
4258 -- Similar processing for upper bound and high value
4260 Model_Num := UR_Trunc (Hival / Small) * Small;
4262 if Hival = Model_Num then
4263 Hival_Incl_EP := Model_Num;
4264 else
4265 Hival_Incl_EP := Model_Num + Small;
4266 end if;
4268 if UR_Is_Positive (Hival_Incl_EP) then
4269 Hival_Excl_EP := Hival_Incl_EP - Small;
4270 else
4271 Hival_Excl_EP := Hival_Incl_EP;
4272 end if;
4274 -- One further adjustment is needed. In the case of subtypes, we
4275 -- cannot go outside the range of the base type, or we get
4276 -- peculiarities, and the base type range is already set. This
4277 -- only applies to the Incl values, since clearly the Excl values
4278 -- are already as restricted as they are allowed to be.
4280 if Typ /= Btyp then
4281 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4282 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4283 end if;
4285 -- Get size including and excluding end points
4287 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4288 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4290 -- No need to exclude end-points if it does not reduce size
4292 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4293 Loval_Excl_EP := Loval_Incl_EP;
4294 end if;
4296 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4297 Hival_Excl_EP := Hival_Incl_EP;
4298 end if;
4300 -- Now we set the actual size to be used. We want to use the
4301 -- bounds fudged up to include the end-points but only if this
4302 -- can be done without violating a specifically given size
4303 -- size clause or causing an unacceptable increase in size.
4305 -- Case of size clause given
4307 if Has_Size_Clause (Typ) then
4309 -- Use the inclusive size only if it is consistent with
4310 -- the explicitly specified size.
4312 if Size_Incl_EP <= RM_Size (Typ) then
4313 Actual_Lo := Loval_Incl_EP;
4314 Actual_Hi := Hival_Incl_EP;
4315 Actual_Size := Size_Incl_EP;
4317 -- If the inclusive size is too large, we try excluding
4318 -- the end-points (will be caught later if does not work).
4320 else
4321 Actual_Lo := Loval_Excl_EP;
4322 Actual_Hi := Hival_Excl_EP;
4323 Actual_Size := Size_Excl_EP;
4324 end if;
4326 -- Case of size clause not given
4328 else
4329 -- If we have a base type whose corresponding first subtype
4330 -- has an explicit size that is large enough to include our
4331 -- end-points, then do so. There is no point in working hard
4332 -- to get a base type whose size is smaller than the specified
4333 -- size of the first subtype.
4335 First_Subt := First_Subtype (Typ);
4337 if Has_Size_Clause (First_Subt)
4338 and then Size_Incl_EP <= Esize (First_Subt)
4339 then
4340 Actual_Size := Size_Incl_EP;
4341 Actual_Lo := Loval_Incl_EP;
4342 Actual_Hi := Hival_Incl_EP;
4344 -- If excluding the end-points makes the size smaller and
4345 -- results in a size of 8,16,32,64, then we take the smaller
4346 -- size. For the 64 case, this is compulsory. For the other
4347 -- cases, it seems reasonable. We like to include end points
4348 -- if we can, but not at the expense of moving to the next
4349 -- natural boundary of size.
4351 elsif Size_Incl_EP /= Size_Excl_EP
4352 and then
4353 (Size_Excl_EP = 8 or else
4354 Size_Excl_EP = 16 or else
4355 Size_Excl_EP = 32 or else
4356 Size_Excl_EP = 64)
4357 then
4358 Actual_Size := Size_Excl_EP;
4359 Actual_Lo := Loval_Excl_EP;
4360 Actual_Hi := Hival_Excl_EP;
4362 -- Otherwise we can definitely include the end points
4364 else
4365 Actual_Size := Size_Incl_EP;
4366 Actual_Lo := Loval_Incl_EP;
4367 Actual_Hi := Hival_Incl_EP;
4368 end if;
4370 -- One pathological case: normally we never fudge a low bound
4371 -- down, since it would seem to increase the size (if it has
4372 -- any effect), but for ranges containing single value, or no
4373 -- values, the high bound can be small too large. Consider:
4375 -- type t is delta 2.0**(-14)
4376 -- range 131072.0 .. 0;
4378 -- That lower bound is *just* outside the range of 32 bits, and
4379 -- does need fudging down in this case. Note that the bounds
4380 -- will always have crossed here, since the high bound will be
4381 -- fudged down if necessary, as in the case of:
4383 -- type t is delta 2.0**(-14)
4384 -- range 131072.0 .. 131072.0;
4386 -- So we detect the situation by looking for crossed bounds,
4387 -- and if the bounds are crossed, and the low bound is greater
4388 -- than zero, we will always back it off by small, since this
4389 -- is completely harmless.
4391 if Actual_Lo > Actual_Hi then
4392 if UR_Is_Positive (Actual_Lo) then
4393 Actual_Lo := Loval_Incl_EP - Small;
4394 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4396 -- And of course, we need to do exactly the same parallel
4397 -- fudge for flat ranges in the negative region.
4399 elsif UR_Is_Negative (Actual_Hi) then
4400 Actual_Hi := Hival_Incl_EP + Small;
4401 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4402 end if;
4403 end if;
4404 end if;
4406 Set_Realval (Lo, Actual_Lo);
4407 Set_Realval (Hi, Actual_Hi);
4408 end Fudge;
4410 -- For the decimal case, none of this fudging is required, since there
4411 -- are no end-point problems in the decimal case (the end-points are
4412 -- always included).
4414 else
4415 Actual_Size := Fsize (Loval, Hival);
4416 end if;
4418 -- At this stage, the actual size has been calculated and the proper
4419 -- required bounds are stored in the low and high bounds.
4421 if Actual_Size > 64 then
4422 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4423 Error_Msg_N
4424 ("size required (^) for type& too large, maximum allowed is 64",
4425 Typ);
4426 Actual_Size := 64;
4427 end if;
4429 -- Check size against explicit given size
4431 if Has_Size_Clause (Typ) then
4432 if Actual_Size > RM_Size (Typ) then
4433 Error_Msg_Uint_1 := RM_Size (Typ);
4434 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4435 Error_Msg_NE
4436 ("size given (^) for type& too small, minimum allowed is ^",
4437 Size_Clause (Typ), Typ);
4439 else
4440 Actual_Size := UI_To_Int (Esize (Typ));
4441 end if;
4443 -- Increase size to next natural boundary if no size clause given
4445 else
4446 if Actual_Size <= 8 then
4447 Actual_Size := 8;
4448 elsif Actual_Size <= 16 then
4449 Actual_Size := 16;
4450 elsif Actual_Size <= 32 then
4451 Actual_Size := 32;
4452 else
4453 Actual_Size := 64;
4454 end if;
4456 Init_Esize (Typ, Actual_Size);
4457 Adjust_Esize_For_Alignment (Typ);
4458 end if;
4460 -- If we have a base type, then expand the bounds so that they extend to
4461 -- the full width of the allocated size in bits, to avoid junk range
4462 -- checks on intermediate computations.
4464 if Base_Type (Typ) = Typ then
4465 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4466 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4467 end if;
4469 -- Final step is to reanalyze the bounds using the proper type
4470 -- and set the Corresponding_Integer_Value fields of the literals.
4472 Set_Etype (Lo, Empty);
4473 Set_Analyzed (Lo, False);
4474 Analyze (Lo);
4476 -- Resolve with universal fixed if the base type, and the base type if
4477 -- it is a subtype. Note we can't resolve the base type with itself,
4478 -- that would be a reference before definition.
4480 if Typ = Btyp then
4481 Resolve (Lo, Universal_Fixed);
4482 else
4483 Resolve (Lo, Btyp);
4484 end if;
4486 -- Set corresponding integer value for bound
4488 Set_Corresponding_Integer_Value
4489 (Lo, UR_To_Uint (Realval (Lo) / Small));
4491 -- Similar processing for high bound
4493 Set_Etype (Hi, Empty);
4494 Set_Analyzed (Hi, False);
4495 Analyze (Hi);
4497 if Typ = Btyp then
4498 Resolve (Hi, Universal_Fixed);
4499 else
4500 Resolve (Hi, Btyp);
4501 end if;
4503 Set_Corresponding_Integer_Value
4504 (Hi, UR_To_Uint (Realval (Hi) / Small));
4506 -- Set type of range to correspond to bounds
4508 Set_Etype (Rng, Etype (Lo));
4510 -- Set Esize to calculated size if not set already
4512 if Unknown_Esize (Typ) then
4513 Init_Esize (Typ, Actual_Size);
4514 end if;
4516 -- Set RM_Size if not already set. If already set, check value
4518 declare
4519 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4521 begin
4522 if RM_Size (Typ) /= Uint_0 then
4523 if RM_Size (Typ) < Minsiz then
4524 Error_Msg_Uint_1 := RM_Size (Typ);
4525 Error_Msg_Uint_2 := Minsiz;
4526 Error_Msg_NE
4527 ("size given (^) for type& too small, minimum allowed is ^",
4528 Size_Clause (Typ), Typ);
4529 end if;
4531 else
4532 Set_RM_Size (Typ, Minsiz);
4533 end if;
4534 end;
4535 end Freeze_Fixed_Point_Type;
4537 ------------------
4538 -- Freeze_Itype --
4539 ------------------
4541 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4542 L : List_Id;
4544 begin
4545 Set_Has_Delayed_Freeze (T);
4546 L := Freeze_Entity (T, Sloc (N));
4548 if Is_Non_Empty_List (L) then
4549 Insert_Actions (N, L);
4550 end if;
4551 end Freeze_Itype;
4553 --------------------------
4554 -- Freeze_Static_Object --
4555 --------------------------
4557 procedure Freeze_Static_Object (E : Entity_Id) is
4559 Cannot_Be_Static : exception;
4560 -- Exception raised if the type of a static object cannot be made
4561 -- static. This happens if the type depends on non-global objects.
4563 procedure Ensure_Expression_Is_SA (N : Node_Id);
4564 -- Called to ensure that an expression used as part of a type definition
4565 -- is statically allocatable, which means that the expression type is
4566 -- statically allocatable, and the expression is either static, or a
4567 -- reference to a library level constant.
4569 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4570 -- Called to mark a type as static, checking that it is possible
4571 -- to set the type as static. If it is not possible, then the
4572 -- exception Cannot_Be_Static is raised.
4574 -----------------------------
4575 -- Ensure_Expression_Is_SA --
4576 -----------------------------
4578 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4579 Ent : Entity_Id;
4581 begin
4582 Ensure_Type_Is_SA (Etype (N));
4584 if Is_Static_Expression (N) then
4585 return;
4587 elsif Nkind (N) = N_Identifier then
4588 Ent := Entity (N);
4590 if Present (Ent)
4591 and then Ekind (Ent) = E_Constant
4592 and then Is_Library_Level_Entity (Ent)
4593 then
4594 return;
4595 end if;
4596 end if;
4598 raise Cannot_Be_Static;
4599 end Ensure_Expression_Is_SA;
4601 -----------------------
4602 -- Ensure_Type_Is_SA --
4603 -----------------------
4605 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4606 N : Node_Id;
4607 C : Entity_Id;
4609 begin
4610 -- If type is library level, we are all set
4612 if Is_Library_Level_Entity (Typ) then
4613 return;
4614 end if;
4616 -- We are also OK if the type already marked as statically allocated,
4617 -- which means we processed it before.
4619 if Is_Statically_Allocated (Typ) then
4620 return;
4621 end if;
4623 -- Mark type as statically allocated
4625 Set_Is_Statically_Allocated (Typ);
4627 -- Check that it is safe to statically allocate this type
4629 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4630 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4631 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4633 elsif Is_Array_Type (Typ) then
4634 N := First_Index (Typ);
4635 while Present (N) loop
4636 Ensure_Type_Is_SA (Etype (N));
4637 Next_Index (N);
4638 end loop;
4640 Ensure_Type_Is_SA (Component_Type (Typ));
4642 elsif Is_Access_Type (Typ) then
4643 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4645 declare
4646 F : Entity_Id;
4647 T : constant Entity_Id := Etype (Designated_Type (Typ));
4649 begin
4650 if T /= Standard_Void_Type then
4651 Ensure_Type_Is_SA (T);
4652 end if;
4654 F := First_Formal (Designated_Type (Typ));
4656 while Present (F) loop
4657 Ensure_Type_Is_SA (Etype (F));
4658 Next_Formal (F);
4659 end loop;
4660 end;
4662 else
4663 Ensure_Type_Is_SA (Designated_Type (Typ));
4664 end if;
4666 elsif Is_Record_Type (Typ) then
4667 C := First_Entity (Typ);
4668 while Present (C) loop
4669 if Ekind (C) = E_Discriminant
4670 or else Ekind (C) = E_Component
4671 then
4672 Ensure_Type_Is_SA (Etype (C));
4674 elsif Is_Type (C) then
4675 Ensure_Type_Is_SA (C);
4676 end if;
4678 Next_Entity (C);
4679 end loop;
4681 elsif Ekind (Typ) = E_Subprogram_Type then
4682 Ensure_Type_Is_SA (Etype (Typ));
4684 C := First_Formal (Typ);
4685 while Present (C) loop
4686 Ensure_Type_Is_SA (Etype (C));
4687 Next_Formal (C);
4688 end loop;
4690 else
4691 raise Cannot_Be_Static;
4692 end if;
4693 end Ensure_Type_Is_SA;
4695 -- Start of processing for Freeze_Static_Object
4697 begin
4698 Ensure_Type_Is_SA (Etype (E));
4700 exception
4701 when Cannot_Be_Static =>
4703 -- If the object that cannot be static is imported or exported,
4704 -- then we give an error message saying that this object cannot
4705 -- be imported or exported.
4707 if Is_Imported (E) then
4708 Error_Msg_N
4709 ("& cannot be imported (local type is not constant)", E);
4711 -- Otherwise must be exported, something is wrong if compiler
4712 -- is marking something as statically allocated which cannot be).
4714 else pragma Assert (Is_Exported (E));
4715 Error_Msg_N
4716 ("& cannot be exported (local type is not constant)", E);
4717 end if;
4718 end Freeze_Static_Object;
4720 -----------------------
4721 -- Freeze_Subprogram --
4722 -----------------------
4724 procedure Freeze_Subprogram (E : Entity_Id) is
4725 Retype : Entity_Id;
4726 F : Entity_Id;
4728 begin
4729 -- Subprogram may not have an address clause unless it is imported
4731 if Present (Address_Clause (E)) then
4732 if not Is_Imported (E) then
4733 Error_Msg_N
4734 ("address clause can only be given " &
4735 "for imported subprogram",
4736 Name (Address_Clause (E)));
4737 end if;
4738 end if;
4740 -- Reset the Pure indication on an imported subprogram unless an
4741 -- explicit Pure_Function pragma was present. We do this because
4742 -- otherwise it is an insidious error to call a non-pure function from
4743 -- pure unit and have calls mysteriously optimized away. What happens
4744 -- here is that the Import can bypass the normal check to ensure that
4745 -- pure units call only pure subprograms.
4747 if Is_Imported (E)
4748 and then Is_Pure (E)
4749 and then not Has_Pragma_Pure_Function (E)
4750 then
4751 Set_Is_Pure (E, False);
4752 end if;
4754 -- For non-foreign convention subprograms, this is where we create
4755 -- the extra formals (for accessibility level and constrained bit
4756 -- information). We delay this till the freeze point precisely so
4757 -- that we know the convention!
4759 if not Has_Foreign_Convention (E) then
4760 Create_Extra_Formals (E);
4761 Set_Mechanisms (E);
4763 -- If this is convention Ada and a Valued_Procedure, that's odd
4765 if Ekind (E) = E_Procedure
4766 and then Is_Valued_Procedure (E)
4767 and then Convention (E) = Convention_Ada
4768 and then Warn_On_Export_Import
4769 then
4770 Error_Msg_N
4771 ("?Valued_Procedure has no effect for convention Ada", E);
4772 Set_Is_Valued_Procedure (E, False);
4773 end if;
4775 -- Case of foreign convention
4777 else
4778 Set_Mechanisms (E);
4780 -- For foreign conventions, warn about return of an
4781 -- unconstrained array.
4783 -- Note: we *do* allow a return by descriptor for the VMS case,
4784 -- though here there is probably more to be done ???
4786 if Ekind (E) = E_Function then
4787 Retype := Underlying_Type (Etype (E));
4789 -- If no return type, probably some other error, e.g. a
4790 -- missing full declaration, so ignore.
4792 if No (Retype) then
4793 null;
4795 -- If the return type is generic, we have emitted a warning
4796 -- earlier on, and there is nothing else to check here. Specific
4797 -- instantiations may lead to erroneous behavior.
4799 elsif Is_Generic_Type (Etype (E)) then
4800 null;
4802 elsif Is_Array_Type (Retype)
4803 and then not Is_Constrained (Retype)
4804 and then Mechanism (E) not in Descriptor_Codes
4805 and then Warn_On_Export_Import
4806 then
4807 Error_Msg_N
4808 ("?foreign convention function& should not return " &
4809 "unconstrained array", E);
4810 return;
4811 end if;
4812 end if;
4814 -- If any of the formals for an exported foreign convention
4815 -- subprogram have defaults, then emit an appropriate warning since
4816 -- this is odd (default cannot be used from non-Ada code)
4818 if Is_Exported (E) then
4819 F := First_Formal (E);
4820 while Present (F) loop
4821 if Warn_On_Export_Import
4822 and then Present (Default_Value (F))
4823 then
4824 Error_Msg_N
4825 ("?parameter cannot be defaulted in non-Ada call",
4826 Default_Value (F));
4827 end if;
4829 Next_Formal (F);
4830 end loop;
4831 end if;
4832 end if;
4834 -- For VMS, descriptor mechanisms for parameters are allowed only
4835 -- for imported/exported subprograms. Moreover, the NCA descriptor
4836 -- is not allowed for parameters of exported subprograms.
4838 if OpenVMS_On_Target then
4839 if Is_Exported (E) then
4840 F := First_Formal (E);
4841 while Present (F) loop
4842 if Mechanism (F) = By_Descriptor_NCA then
4843 Error_Msg_N
4844 ("'N'C'A' descriptor for parameter not permitted", F);
4845 Error_Msg_N
4846 ("\can only be used for imported subprogram", F);
4847 end if;
4849 Next_Formal (F);
4850 end loop;
4852 elsif not Is_Imported (E) then
4853 F := First_Formal (E);
4854 while Present (F) loop
4855 if Mechanism (F) in Descriptor_Codes then
4856 Error_Msg_N
4857 ("descriptor mechanism for parameter not permitted", F);
4858 Error_Msg_N
4859 ("\can only be used for imported/exported subprogram", F);
4860 end if;
4862 Next_Formal (F);
4863 end loop;
4864 end if;
4865 end if;
4867 -- Pragma Inline_Always is disallowed for dispatching subprograms
4868 -- because the address of such subprograms is saved in the dispatch
4869 -- table to support dispatching calls, and dispatching calls cannot
4870 -- be inlined. This is consistent with the restriction against using
4871 -- 'Access or 'Address on an Inline_Always subprogram.
4873 if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then
4874 Error_Msg_N
4875 ("pragma Inline_Always not allowed for dispatching subprograms", E);
4876 end if;
4877 end Freeze_Subprogram;
4879 ----------------------
4880 -- Is_Fully_Defined --
4881 ----------------------
4883 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4884 begin
4885 if Ekind (T) = E_Class_Wide_Type then
4886 return Is_Fully_Defined (Etype (T));
4888 elsif Is_Array_Type (T) then
4889 return Is_Fully_Defined (Component_Type (T));
4891 elsif Is_Record_Type (T)
4892 and not Is_Private_Type (T)
4893 then
4894 -- Verify that the record type has no components with private types
4895 -- without completion.
4897 declare
4898 Comp : Entity_Id;
4900 begin
4901 Comp := First_Component (T);
4903 while Present (Comp) loop
4904 if not Is_Fully_Defined (Etype (Comp)) then
4905 return False;
4906 end if;
4908 Next_Component (Comp);
4909 end loop;
4910 return True;
4911 end;
4913 else
4914 return not Is_Private_Type (T)
4915 or else Present (Full_View (Base_Type (T)));
4916 end if;
4917 end Is_Fully_Defined;
4919 ---------------------------------
4920 -- Process_Default_Expressions --
4921 ---------------------------------
4923 procedure Process_Default_Expressions
4924 (E : Entity_Id;
4925 After : in out Node_Id)
4927 Loc : constant Source_Ptr := Sloc (E);
4928 Dbody : Node_Id;
4929 Formal : Node_Id;
4930 Dcopy : Node_Id;
4931 Dnam : Entity_Id;
4933 begin
4934 Set_Default_Expressions_Processed (E);
4936 -- A subprogram instance and its associated anonymous subprogram share
4937 -- their signature. The default expression functions are defined in the
4938 -- wrapper packages for the anonymous subprogram, and should not be
4939 -- generated again for the instance.
4941 if Is_Generic_Instance (E)
4942 and then Present (Alias (E))
4943 and then Default_Expressions_Processed (Alias (E))
4944 then
4945 return;
4946 end if;
4948 Formal := First_Formal (E);
4949 while Present (Formal) loop
4950 if Present (Default_Value (Formal)) then
4952 -- We work with a copy of the default expression because we
4953 -- do not want to disturb the original, since this would mess
4954 -- up the conformance checking.
4956 Dcopy := New_Copy_Tree (Default_Value (Formal));
4958 -- The analysis of the expression may generate insert actions,
4959 -- which of course must not be executed. We wrap those actions
4960 -- in a procedure that is not called, and later on eliminated.
4961 -- The following cases have no side-effects, and are analyzed
4962 -- directly.
4964 if Nkind (Dcopy) = N_Identifier
4965 or else Nkind (Dcopy) = N_Expanded_Name
4966 or else Nkind (Dcopy) = N_Integer_Literal
4967 or else (Nkind (Dcopy) = N_Real_Literal
4968 and then not Vax_Float (Etype (Dcopy)))
4969 or else Nkind (Dcopy) = N_Character_Literal
4970 or else Nkind (Dcopy) = N_String_Literal
4971 or else Known_Null (Dcopy)
4972 or else (Nkind (Dcopy) = N_Attribute_Reference
4973 and then
4974 Attribute_Name (Dcopy) = Name_Null_Parameter)
4975 then
4977 -- If there is no default function, we must still do a full
4978 -- analyze call on the default value, to ensure that all error
4979 -- checks are performed, e.g. those associated with static
4980 -- evaluation. Note: this branch will always be taken if the
4981 -- analyzer is turned off (but we still need the error checks).
4983 -- Note: the setting of parent here is to meet the requirement
4984 -- that we can only analyze the expression while attached to
4985 -- the tree. Really the requirement is that the parent chain
4986 -- be set, we don't actually need to be in the tree.
4988 Set_Parent (Dcopy, Declaration_Node (Formal));
4989 Analyze (Dcopy);
4991 -- Default expressions are resolved with their own type if the
4992 -- context is generic, to avoid anomalies with private types.
4994 if Ekind (Scope (E)) = E_Generic_Package then
4995 Resolve (Dcopy);
4996 else
4997 Resolve (Dcopy, Etype (Formal));
4998 end if;
5000 -- If that resolved expression will raise constraint error,
5001 -- then flag the default value as raising constraint error.
5002 -- This allows a proper error message on the calls.
5004 if Raises_Constraint_Error (Dcopy) then
5005 Set_Raises_Constraint_Error (Default_Value (Formal));
5006 end if;
5008 -- If the default is a parameterless call, we use the name of
5009 -- the called function directly, and there is no body to build.
5011 elsif Nkind (Dcopy) = N_Function_Call
5012 and then No (Parameter_Associations (Dcopy))
5013 then
5014 null;
5016 -- Else construct and analyze the body of a wrapper procedure
5017 -- that contains an object declaration to hold the expression.
5018 -- Given that this is done only to complete the analysis, it
5019 -- simpler to build a procedure than a function which might
5020 -- involve secondary stack expansion.
5022 else
5023 Dnam :=
5024 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5026 Dbody :=
5027 Make_Subprogram_Body (Loc,
5028 Specification =>
5029 Make_Procedure_Specification (Loc,
5030 Defining_Unit_Name => Dnam),
5032 Declarations => New_List (
5033 Make_Object_Declaration (Loc,
5034 Defining_Identifier =>
5035 Make_Defining_Identifier (Loc,
5036 New_Internal_Name ('T')),
5037 Object_Definition =>
5038 New_Occurrence_Of (Etype (Formal), Loc),
5039 Expression => New_Copy_Tree (Dcopy))),
5041 Handled_Statement_Sequence =>
5042 Make_Handled_Sequence_Of_Statements (Loc,
5043 Statements => New_List));
5045 Set_Scope (Dnam, Scope (E));
5046 Set_Assignment_OK (First (Declarations (Dbody)));
5047 Set_Is_Eliminated (Dnam);
5048 Insert_After (After, Dbody);
5049 Analyze (Dbody);
5050 After := Dbody;
5051 end if;
5052 end if;
5054 Next_Formal (Formal);
5055 end loop;
5057 end Process_Default_Expressions;
5059 ----------------------------------------
5060 -- Set_Component_Alignment_If_Not_Set --
5061 ----------------------------------------
5063 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5064 begin
5065 -- Ignore if not base type, subtypes don't need anything
5067 if Typ /= Base_Type (Typ) then
5068 return;
5069 end if;
5071 -- Do not override existing representation
5073 if Is_Packed (Typ) then
5074 return;
5076 elsif Has_Specified_Layout (Typ) then
5077 return;
5079 elsif Component_Alignment (Typ) /= Calign_Default then
5080 return;
5082 else
5083 Set_Component_Alignment
5084 (Typ, Scope_Stack.Table
5085 (Scope_Stack.Last).Component_Alignment_Default);
5086 end if;
5087 end Set_Component_Alignment_If_Not_Set;
5089 ---------------------------
5090 -- Set_Debug_Info_Needed --
5091 ---------------------------
5093 procedure Set_Debug_Info_Needed (T : Entity_Id) is
5094 begin
5095 if No (T)
5096 or else Needs_Debug_Info (T)
5097 or else Debug_Info_Off (T)
5098 then
5099 return;
5100 else
5101 Set_Needs_Debug_Info (T);
5102 end if;
5104 if Is_Object (T) then
5105 Set_Debug_Info_Needed (Etype (T));
5107 elsif Is_Type (T) then
5108 Set_Debug_Info_Needed (Etype (T));
5110 if Is_Record_Type (T) then
5111 declare
5112 Ent : Entity_Id := First_Entity (T);
5113 begin
5114 while Present (Ent) loop
5115 Set_Debug_Info_Needed (Ent);
5116 Next_Entity (Ent);
5117 end loop;
5118 end;
5120 elsif Is_Array_Type (T) then
5121 Set_Debug_Info_Needed (Component_Type (T));
5123 declare
5124 Indx : Node_Id := First_Index (T);
5125 begin
5126 while Present (Indx) loop
5127 Set_Debug_Info_Needed (Etype (Indx));
5128 Indx := Next_Index (Indx);
5129 end loop;
5130 end;
5132 if Is_Packed (T) then
5133 Set_Debug_Info_Needed (Packed_Array_Type (T));
5134 end if;
5136 elsif Is_Access_Type (T) then
5137 Set_Debug_Info_Needed (Directly_Designated_Type (T));
5139 elsif Is_Private_Type (T) then
5140 Set_Debug_Info_Needed (Full_View (T));
5142 elsif Is_Protected_Type (T) then
5143 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
5144 end if;
5145 end if;
5146 end Set_Debug_Info_Needed;
5148 ------------------
5149 -- Undelay_Type --
5150 ------------------
5152 procedure Undelay_Type (T : Entity_Id) is
5153 begin
5154 Set_Has_Delayed_Freeze (T, False);
5155 Set_Freeze_Node (T, Empty);
5157 -- Since we don't want T to have a Freeze_Node, we don't want its
5158 -- Full_View or Corresponding_Record_Type to have one either.
5160 -- ??? Fundamentally, this whole handling is a kludge. What we really
5161 -- want is to be sure that for an Itype that's part of record R and is a
5162 -- subtype of type T, that it's frozen after the later of the freeze
5163 -- points of R and T. We have no way of doing that directly, so what we
5164 -- do is force most such Itypes to be frozen as part of freezing R via
5165 -- this procedure and only delay the ones that need to be delayed
5166 -- (mostly the designated types of access types that are defined as part
5167 -- of the record).
5169 if Is_Private_Type (T)
5170 and then Present (Full_View (T))
5171 and then Is_Itype (Full_View (T))
5172 and then Is_Record_Type (Scope (Full_View (T)))
5173 then
5174 Undelay_Type (Full_View (T));
5175 end if;
5177 if Is_Concurrent_Type (T)
5178 and then Present (Corresponding_Record_Type (T))
5179 and then Is_Itype (Corresponding_Record_Type (T))
5180 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5181 then
5182 Undelay_Type (Corresponding_Record_Type (T));
5183 end if;
5184 end Undelay_Type;
5186 ------------------
5187 -- Warn_Overlay --
5188 ------------------
5190 procedure Warn_Overlay
5191 (Expr : Node_Id;
5192 Typ : Entity_Id;
5193 Nam : Entity_Id)
5195 Ent : constant Entity_Id := Entity (Nam);
5196 -- The object to which the address clause applies
5198 Init : Node_Id;
5199 Old : Entity_Id := Empty;
5200 Decl : Node_Id;
5202 begin
5203 -- No warning if address clause overlay warnings are off
5205 if not Address_Clause_Overlay_Warnings then
5206 return;
5207 end if;
5209 -- No warning if there is an explicit initialization
5211 Init := Original_Node (Expression (Declaration_Node (Ent)));
5213 if Present (Init) and then Comes_From_Source (Init) then
5214 return;
5215 end if;
5217 -- We only give the warning for non-imported entities of a type for
5218 -- which a non-null base init proc is defined (or for access types which
5219 -- have implicit null initialization).
5221 if Present (Expr)
5222 and then (Has_Non_Null_Base_Init_Proc (Typ)
5223 or else Is_Access_Type (Typ))
5224 and then not Is_Imported (Ent)
5225 then
5226 if Nkind (Expr) = N_Attribute_Reference
5227 and then Is_Entity_Name (Prefix (Expr))
5228 then
5229 Old := Entity (Prefix (Expr));
5231 elsif Is_Entity_Name (Expr)
5232 and then Ekind (Entity (Expr)) = E_Constant
5233 then
5234 Decl := Declaration_Node (Entity (Expr));
5236 if Nkind (Decl) = N_Object_Declaration
5237 and then Present (Expression (Decl))
5238 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5239 and then Is_Entity_Name (Prefix (Expression (Decl)))
5240 then
5241 Old := Entity (Prefix (Expression (Decl)));
5243 elsif Nkind (Expr) = N_Function_Call then
5244 return;
5245 end if;
5247 -- A function call (most likely to To_Address) is probably not an
5248 -- overlay, so skip warning. Ditto if the function call was inlined
5249 -- and transformed into an entity.
5251 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5252 return;
5253 end if;
5255 Decl := Next (Parent (Expr));
5257 -- If a pragma Import follows, we assume that it is for the current
5258 -- target of the address clause, and skip the warning.
5260 if Present (Decl)
5261 and then Nkind (Decl) = N_Pragma
5262 and then Chars (Decl) = Name_Import
5263 then
5264 return;
5265 end if;
5267 if Present (Old) then
5268 Error_Msg_Node_2 := Old;
5269 Error_Msg_N
5270 ("default initialization of & may modify &?",
5271 Nam);
5272 else
5273 Error_Msg_N
5274 ("default initialization of & may modify overlaid storage?",
5275 Nam);
5276 end if;
5278 -- Add friendly warning if initialization comes from a packed array
5279 -- component.
5281 if Is_Record_Type (Typ) then
5282 declare
5283 Comp : Entity_Id;
5285 begin
5286 Comp := First_Component (Typ);
5288 while Present (Comp) loop
5289 if Nkind (Parent (Comp)) = N_Component_Declaration
5290 and then Present (Expression (Parent (Comp)))
5291 then
5292 exit;
5293 elsif Is_Array_Type (Etype (Comp))
5294 and then Present (Packed_Array_Type (Etype (Comp)))
5295 then
5296 Error_Msg_NE
5297 ("\packed array component& " &
5298 "will be initialized to zero?",
5299 Nam, Comp);
5300 exit;
5301 else
5302 Next_Component (Comp);
5303 end if;
5304 end loop;
5305 end;
5306 end if;
5308 Error_Msg_N
5309 ("\use pragma Import for & to " &
5310 "suppress initialization (RM B.1(24))?",
5311 Nam);
5312 end if;
5313 end Warn_Overlay;
5315 end Freeze;