1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
10 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
23 -- GNAT was originally developed by the GNAT team at New York University. --
24 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
26 ------------------------------------------------------------------------------
28 with Atree
; use Atree
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Ch7
; use Exp_Ch7
;
34 with Exp_Ch11
; use Exp_Ch11
;
35 with Exp_Pakd
; use Exp_Pakd
;
36 with Exp_Util
; use Exp_Util
;
37 with Layout
; use Layout
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
44 with Sem_Cat
; use Sem_Cat
;
45 with Sem_Ch6
; use Sem_Ch6
;
46 with Sem_Ch7
; use Sem_Ch7
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Ch13
; use Sem_Ch13
;
49 with Sem_Eval
; use Sem_Eval
;
50 with Sem_Mech
; use Sem_Mech
;
51 with Sem_Prag
; use Sem_Prag
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sinfo
; use Sinfo
;
55 with Snames
; use Snames
;
56 with Stand
; use Stand
;
57 with Targparm
; use Targparm
;
58 with Tbuild
; use Tbuild
;
59 with Ttypes
; use Ttypes
;
60 with Uintp
; use Uintp
;
61 with Urealp
; use Urealp
;
63 package body Freeze
is
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
69 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
70 -- Typ is a type that is being frozen. If no size clause is given,
71 -- but a default Esize has been computed, then this default Esize is
72 -- adjusted up if necessary to be consistent with a given alignment,
73 -- but never to a value greater than Long_Long_Integer'Size. This
74 -- is used for all discrete types and for fixed-point types.
76 procedure Build_And_Analyze_Renamed_Body
79 After
: in out Node_Id
);
80 -- Build body for a renaming declaration, insert in tree and analyze.
82 procedure Check_Strict_Alignment
(E
: Entity_Id
);
83 -- E is a base type. If E is tagged or has a component that is aliased
84 -- or tagged or contains something this is aliased or tagged, set
87 procedure Check_Unsigned_Type
(E
: Entity_Id
);
88 pragma Inline
(Check_Unsigned_Type
);
89 -- If E is a fixed-point or discrete type, then all the necessary work
90 -- to freeze it is completed except for possible setting of the flag
91 -- Is_Unsigned_Type, which is done by this procedure. The call has no
92 -- effect if the entity E is not a discrete or fixed-point type.
94 procedure Freeze_And_Append
97 Result
: in out List_Id
);
98 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
99 -- nodes to Result, modifying Result from No_List if necessary.
101 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
102 -- Freeze enumeration type. The Esize field is set as processing
103 -- proceeds (i.e. set by default when the type is declared and then
104 -- adjusted by rep clauses. What this procedure does is to make sure
105 -- that if a foreign convention is specified, and no specific size
106 -- is given, then the size must be at least Integer'Size.
108 procedure Freeze_Static_Object
(E
: Entity_Id
);
109 -- If an object is frozen which has Is_Statically_Allocated set, then
110 -- all referenced types must also be marked with this flag. This routine
111 -- is in charge of meeting this requirement for the object entity E.
113 procedure Freeze_Subprogram
(E
: Entity_Id
);
114 -- Perform freezing actions for a subprogram (create extra formals,
115 -- and set proper default mechanism values). Note that this routine
116 -- is not called for internal subprograms, for which neither of these
117 -- actions is needed (or desirable, we do not want for example to have
118 -- these extra formals present in initialization procedures, where they
119 -- would serve no purpose). In this call E is either a subprogram or
120 -- a subprogram type (i.e. an access to a subprogram).
122 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
123 -- true if T is not private, or has a full view.
125 procedure Process_Default_Expressions
127 After
: in out Node_Id
);
128 -- This procedure is called for each subprogram to complete processing
129 -- of default expressions at the point where all types are known to be
130 -- frozen. The expressions must be analyzed in full, to make sure that
131 -- all error processing is done (they have only been pre-analyzed). If
132 -- the expression is not an entity or literal, its analysis may generate
133 -- code which must not be executed. In that case we build a function
134 -- body to hold that code. This wrapper function serves no other purpose
135 -- (it used to be called to evaluate the default, but now the default is
136 -- inlined at each point of call).
138 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
139 -- Typ is a record or array type that is being frozen. This routine
140 -- sets the default component alignment from the scope stack values
141 -- if the alignment is otherwise not specified.
143 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
144 -- As each entity is frozen, this routine is called to deal with the
145 -- setting of Debug_Info_Needed for the entity. This flag is set if
146 -- the entity comes from source, or if we are in Debug_Generated_Code
147 -- mode or if the -gnatdV debug flag is set. However, it never sets
148 -- the flag if Debug_Info_Off is set.
150 procedure Set_Debug_Info_Needed
(T
: Entity_Id
);
151 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
152 -- also on any entities that are needed by T (for an object, the type
153 -- of the object is needed, and for a type, the subsidiary types are
154 -- needed -- see body for details). Never has any effect on T if the
155 -- Debug_Info_Off flag is set.
157 -------------------------------
158 -- Adjust_Esize_For_Alignment --
159 -------------------------------
161 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
165 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
166 Align
:= Alignment_In_Bits
(Typ
);
168 if Align
> Esize
(Typ
)
169 and then Align
<= Standard_Long_Long_Integer_Size
171 Set_Esize
(Typ
, Align
);
174 end Adjust_Esize_For_Alignment
;
176 ------------------------------------
177 -- Build_And_Analyze_Renamed_Body --
178 ------------------------------------
180 procedure Build_And_Analyze_Renamed_Body
183 After
: in out Node_Id
)
185 Body_Node
: constant Node_Id
:= Build_Renamed_Body
(Decl
, New_S
);
188 Insert_After
(After
, Body_Node
);
189 Mark_Rewrite_Insertion
(Body_Node
);
192 end Build_And_Analyze_Renamed_Body
;
194 ------------------------
195 -- Build_Renamed_Body --
196 ------------------------
198 function Build_Renamed_Body
203 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
204 -- We use for the source location of the renamed body, the location
205 -- of the spec entity. It might seem more natural to use the location
206 -- of the renaming declaration itself, but that would be wrong, since
207 -- then the body we create would look as though it was created far
208 -- too late, and this could cause problems with elaboration order
209 -- analysis, particularly in connection with instantiations.
211 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
212 Nam
: constant Node_Id
:= Name
(N
);
214 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
215 Actuals
: List_Id
:= No_List
;
220 O_Formal
: Entity_Id
;
221 Param_Spec
: Node_Id
;
224 -- Determine the entity being renamed, which is the target of the
225 -- call statement. If the name is an explicit dereference, this is
226 -- a renaming of a subprogram type rather than a subprogram. The
227 -- name itself is fully analyzed.
229 if Nkind
(Nam
) = N_Selected_Component
then
230 Old_S
:= Entity
(Selector_Name
(Nam
));
232 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
233 Old_S
:= Etype
(Nam
);
235 elsif Nkind
(Nam
) = N_Indexed_Component
then
237 if Is_Entity_Name
(Prefix
(Nam
)) then
238 Old_S
:= Entity
(Prefix
(Nam
));
240 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
243 elsif Nkind
(Nam
) = N_Character_Literal
then
244 Old_S
:= Etype
(New_S
);
247 Old_S
:= Entity
(Nam
);
250 if Is_Entity_Name
(Nam
) then
252 -- If the renamed entity is a predefined operator, retain full
253 -- name to ensure its visibility.
255 if Ekind
(Old_S
) = E_Operator
256 and then Nkind
(Nam
) = N_Expanded_Name
258 Call_Name
:= New_Copy
(Name
(N
));
260 Call_Name
:= New_Reference_To
(Old_S
, Loc
);
264 Call_Name
:= New_Copy
(Name
(N
));
266 -- The original name may have been overloaded, but
267 -- is fully resolved now.
269 Set_Is_Overloaded
(Call_Name
, False);
272 -- For simple renamings, subsequent calls can be expanded directly
273 -- as called to the renamed entity. The body must be generated in
274 -- any case for calls they may appear elsewhere.
276 if (Ekind
(Old_S
) = E_Function
277 or else Ekind
(Old_S
) = E_Procedure
)
278 and then Nkind
(Decl
) = N_Subprogram_Declaration
280 Set_Body_To_Inline
(Decl
, Old_S
);
283 -- The body generated for this renaming is an internal artifact, and
284 -- does not constitute a freeze point for the called entity.
286 Set_Must_Not_Freeze
(Call_Name
);
288 Formal
:= First_Formal
(Defining_Entity
(Decl
));
290 if Present
(Formal
) then
293 while Present
(Formal
) loop
294 Append
(New_Reference_To
(Formal
, Loc
), Actuals
);
295 Next_Formal
(Formal
);
299 -- If the renamed entity is an entry, inherit its profile. For
300 -- other renamings as bodies, both profiles must be subtype
301 -- conformant, so it is not necessary to replace the profile given
302 -- in the declaration. However, default values that are aggregates
303 -- are rewritten when partially analyzed, so we recover the original
304 -- aggregate to insure that subsequent conformity checking works.
305 -- Similarly, if the default expression was constant-folded, recover
306 -- the original expression.
308 Formal
:= First_Formal
(Defining_Entity
(Decl
));
310 if Present
(Formal
) then
311 O_Formal
:= First_Formal
(Old_S
);
312 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
314 while Present
(Formal
) loop
315 if Is_Entry
(Old_S
) then
317 if Nkind
(Parameter_Type
(Param_Spec
)) /=
320 Set_Etype
(Formal
, Etype
(O_Formal
));
321 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
324 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
325 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
326 Nkind
(Default_Value
(O_Formal
))
328 Set_Expression
(Param_Spec
,
329 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
332 Next_Formal
(Formal
);
333 Next_Formal
(O_Formal
);
338 -- If the renamed entity is a function, the generated body contains a
339 -- return statement. Otherwise, build a procedure call. If the entity is
340 -- an entry, subsequent analysis of the call will transform it into the
341 -- proper entry or protected operation call. If the renamed entity is
342 -- a character literal, return it directly.
344 if Ekind
(Old_S
) = E_Function
345 or else Ekind
(Old_S
) = E_Operator
346 or else (Ekind
(Old_S
) = E_Subprogram_Type
347 and then Etype
(Old_S
) /= Standard_Void_Type
)
350 Make_Return_Statement
(Loc
,
352 Make_Function_Call
(Loc
,
354 Parameter_Associations
=> Actuals
));
356 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
358 Make_Return_Statement
(Loc
,
359 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
361 elsif Nkind
(Nam
) = N_Character_Literal
then
363 Make_Return_Statement
(Loc
,
364 Expression
=> Call_Name
);
368 Make_Procedure_Call_Statement
(Loc
,
370 Parameter_Associations
=> Actuals
);
373 -- Create entities for subprogram body and formals.
375 Set_Defining_Unit_Name
(Spec
,
376 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
378 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
380 while Present
(Param_Spec
) loop
381 Set_Defining_Identifier
(Param_Spec
,
382 Make_Defining_Identifier
(Loc
,
383 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
388 Make_Subprogram_Body
(Loc
,
389 Specification
=> Spec
,
390 Declarations
=> New_List
,
391 Handled_Statement_Sequence
=>
392 Make_Handled_Sequence_Of_Statements
(Loc
,
393 Statements
=> New_List
(Call_Node
)));
395 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
397 Make_Subprogram_Declaration
(Loc
,
398 Specification
=> Specification
(N
)));
401 -- Link the body to the entity whose declaration it completes. If
402 -- the body is analyzed when the renamed entity is frozen, it may be
403 -- necessary to restore the proper scope (see package Exp_Ch13).
405 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
406 and then Present
(Corresponding_Spec
(N
))
408 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
410 Set_Corresponding_Spec
(Body_Node
, New_S
);
414 end Build_Renamed_Body
;
416 -----------------------------
417 -- Check_Compile_Time_Size --
418 -----------------------------
420 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
422 procedure Set_Small_Size
(S
: Uint
);
423 -- Sets the compile time known size (32 bits or less) in the Esize
424 -- field, checking for a size clause that was given which attempts
425 -- to give a smaller size.
427 function Size_Known
(T
: Entity_Id
) return Boolean;
428 -- Recursive function that does all the work
430 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
431 -- If T is a constrained subtype, its size is not known if any of its
432 -- discriminant constraints is not static and it is not a null record.
433 -- The test is conservative and doesn't check that the components are
434 -- in fact constrained by non-static discriminant values. Could be made
441 procedure Set_Small_Size
(S
: Uint
) is
446 elsif Has_Size_Clause
(T
) then
447 if RM_Size
(T
) < S
then
448 Error_Msg_Uint_1
:= S
;
450 ("size for & is too small, minimum is ^",
453 elsif Unknown_Esize
(T
) then
457 -- Set sizes if not set already
460 if Unknown_Esize
(T
) then
464 if Unknown_RM_Size
(T
) then
474 function Size_Known
(T
: Entity_Id
) return Boolean is
482 if Size_Known_At_Compile_Time
(T
) then
485 elsif Is_Scalar_Type
(T
)
486 or else Is_Task_Type
(T
)
488 return not Is_Generic_Type
(T
);
490 elsif Is_Array_Type
(T
) then
492 if Ekind
(T
) = E_String_Literal_Subtype
then
493 Set_Small_Size
(Component_Size
(T
) * String_Literal_Length
(T
));
496 elsif not Is_Constrained
(T
) then
499 -- Don't do any recursion on type with error posted, since
500 -- we may have a malformed type that leads us into a loop
502 elsif Error_Posted
(T
) then
505 elsif not Size_Known
(Component_Type
(T
)) then
509 -- Check for all indexes static, and also compute possible
510 -- size (in case it is less than 32 and may be packable).
513 Esiz
: Uint
:= Component_Size
(T
);
517 Index
:= First_Index
(T
);
519 while Present
(Index
) loop
520 if Nkind
(Index
) = N_Range
then
521 Get_Index_Bounds
(Index
, Low
, High
);
523 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
527 Low
:= Type_Low_Bound
(Etype
(Index
));
528 High
:= Type_High_Bound
(Etype
(Index
));
531 if not Compile_Time_Known_Value
(Low
)
532 or else not Compile_Time_Known_Value
(High
)
533 or else Etype
(Index
) = Any_Type
538 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
550 Set_Small_Size
(Esiz
);
554 elsif Is_Access_Type
(T
) then
557 elsif Is_Private_Type
(T
)
558 and then not Is_Generic_Type
(T
)
559 and then Present
(Underlying_Type
(T
))
561 -- Don't do any recursion on type with error posted, since
562 -- we may have a malformed type that leads us into a loop
564 if Error_Posted
(T
) then
567 return Size_Known
(Underlying_Type
(T
));
570 elsif Is_Record_Type
(T
) then
571 if Is_Class_Wide_Type
(T
) then
574 elsif T
/= Base_Type
(T
) then
575 return Size_Known_At_Compile_Time
(Base_Type
(T
))
576 and then Static_Discriminated_Components
(T
);
578 -- Don't do any recursion on type with error posted, since
579 -- we may have a malformed type that leads us into a loop
581 elsif Error_Posted
(T
) then
586 Packed_Size_Known
: Boolean := Is_Packed
(T
);
587 Packed_Size
: Uint
:= Uint_0
;
590 -- Test for variant part present
592 if Has_Discriminants
(T
)
593 and then Present
(Parent
(T
))
594 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
595 and then Nkind
(Type_Definition
(Parent
(T
))) =
597 and then not Null_Present
(Type_Definition
(Parent
(T
)))
598 and then Present
(Variant_Part
599 (Component_List
(Type_Definition
(Parent
(T
)))))
601 -- If variant part is present, and type is unconstrained,
602 -- then we must have defaulted discriminants, or a size
603 -- clause must be present for the type, or else the size
604 -- is definitely not known at compile time.
606 if not Is_Constrained
(T
)
608 No
(Discriminant_Default_Value
609 (First_Discriminant
(T
)))
610 and then Unknown_Esize
(T
)
614 -- We do not know the packed size, it is too much
615 -- trouble to figure it out.
617 Packed_Size_Known
:= False;
621 Comp
:= First_Entity
(T
);
623 while Present
(Comp
) loop
624 if Ekind
(Comp
) = E_Component
626 Ekind
(Comp
) = E_Discriminant
628 Ctyp
:= Etype
(Comp
);
630 if Present
(Component_Clause
(Comp
)) then
631 Packed_Size_Known
:= False;
634 if not Size_Known
(Ctyp
) then
637 elsif Packed_Size_Known
then
639 -- If RM_Size is known and static, then we can
640 -- keep accumulating the packed size.
642 if Known_Static_RM_Size
(Ctyp
) then
644 -- A little glitch, to be removed sometime ???
645 -- gigi does not understand zero sizes yet.
647 if RM_Size
(Ctyp
) = Uint_0
then
648 Packed_Size_Known
:= False;
652 Packed_Size
+ RM_Size
(Ctyp
);
654 -- If we have a field whose RM_Size is not known
655 -- then we can't figure out the packed size here.
658 Packed_Size_Known
:= False;
666 if Packed_Size_Known
then
667 Set_Small_Size
(Packed_Size
);
679 -------------------------------------
680 -- Static_Discriminated_Components --
681 -------------------------------------
683 function Static_Discriminated_Components
687 Constraint
: Elmt_Id
;
690 if Has_Discriminants
(T
)
691 and then Present
(Discriminant_Constraint
(T
))
692 and then Present
(First_Component
(T
))
694 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
696 while Present
(Constraint
) loop
697 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
701 Next_Elmt
(Constraint
);
706 end Static_Discriminated_Components
;
708 -- Start of processing for Check_Compile_Time_Size
711 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
712 end Check_Compile_Time_Size
;
714 -----------------------------
715 -- Check_Debug_Info_Needed --
716 -----------------------------
718 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
720 if Needs_Debug_Info
(T
) or else Debug_Info_Off
(T
) then
723 elsif Comes_From_Source
(T
)
724 or else Debug_Generated_Code
725 or else Debug_Flag_VV
727 Set_Debug_Info_Needed
(T
);
729 end Check_Debug_Info_Needed
;
731 ----------------------------
732 -- Check_Strict_Alignment --
733 ----------------------------
735 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
739 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
740 Set_Strict_Alignment
(E
);
742 elsif Is_Array_Type
(E
) then
743 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
745 elsif Is_Record_Type
(E
) then
746 if Is_Limited_Record
(E
) then
747 Set_Strict_Alignment
(E
);
751 Comp
:= First_Component
(E
);
753 while Present
(Comp
) loop
754 if not Is_Type
(Comp
)
755 and then (Strict_Alignment
(Etype
(Comp
))
756 or else Is_Aliased
(Comp
))
758 Set_Strict_Alignment
(E
);
762 Next_Component
(Comp
);
765 end Check_Strict_Alignment
;
767 -------------------------
768 -- Check_Unsigned_Type --
769 -------------------------
771 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
772 Ancestor
: Entity_Id
;
777 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
781 -- Do not attempt to analyze case where range was in error
783 if Error_Posted
(Scalar_Range
(E
)) then
787 -- The situation that is non trivial is something like
789 -- subtype x1 is integer range -10 .. +10;
790 -- subtype x2 is x1 range 0 .. V1;
791 -- subtype x3 is x2 range V2 .. V3;
792 -- subtype x4 is x3 range V4 .. V5;
794 -- where Vn are variables. Here the base type is signed, but we still
795 -- know that x4 is unsigned because of the lower bound of x2.
797 -- The only way to deal with this is to look up the ancestor chain
801 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
805 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
807 if Compile_Time_Known_Value
(Lo_Bound
) then
809 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
810 Set_Is_Unsigned_Type
(E
, True);
816 Ancestor
:= Ancestor_Subtype
(Ancestor
);
818 -- If no ancestor had a static lower bound, go to base type
820 if No
(Ancestor
) then
822 -- Note: the reason we still check for a compile time known
823 -- value for the base type is that at least in the case of
824 -- generic formals, we can have bounds that fail this test,
825 -- and there may be other cases in error situations.
827 Btyp
:= Base_Type
(E
);
829 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
833 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
835 if Compile_Time_Known_Value
(Lo_Bound
)
836 and then Expr_Rep_Value
(Lo_Bound
) >= 0
838 Set_Is_Unsigned_Type
(E
, True);
846 end Check_Unsigned_Type
;
852 -- Note: the easy coding for this procedure would be to just build a
853 -- single list of freeze nodes and then insert them and analyze them
854 -- all at once. This won't work, because the analysis of earlier freeze
855 -- nodes may recursively freeze types which would otherwise appear later
856 -- on in the freeze list. So we must analyze and expand the freeze nodes
857 -- as they are generated.
859 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
860 Loc
: constant Source_Ptr
:= Sloc
(After
);
864 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
865 -- This is the internal recursive routine that does freezing of
866 -- entities (but NOT the analysis of default expressions, which
867 -- should not be recursive, we don't want to analyze those till
868 -- we are sure that ALL the types are frozen).
870 procedure Freeze_All_Ent
872 After
: in out Node_Id
)
878 procedure Process_Flist
;
879 -- If freeze nodes are present, insert and analyze, and reset
880 -- cursor for next insertion.
882 procedure Process_Flist
is
884 if Is_Non_Empty_List
(Flist
) then
885 Lastn
:= Next
(After
);
886 Insert_List_After_And_Analyze
(After
, Flist
);
888 if Present
(Lastn
) then
889 After
:= Prev
(Lastn
);
891 After
:= Last
(List_Containing
(After
));
898 while Present
(E
) loop
900 -- If the entity is an inner package which is not a package
901 -- renaming, then its entities must be frozen at this point.
902 -- Note that such entities do NOT get frozen at the end of
903 -- the nested package itself (only library packages freeze).
905 -- Same is true for task declarations, where anonymous records
906 -- created for entry parameters must be frozen.
908 if Ekind
(E
) = E_Package
909 and then No
(Renamed_Object
(E
))
910 and then not Is_Child_Unit
(E
)
911 and then not Is_Frozen
(E
)
914 Install_Visible_Declarations
(E
);
915 Install_Private_Declarations
(E
);
917 Freeze_All
(First_Entity
(E
), After
);
919 End_Package_Scope
(E
);
921 elsif Ekind
(E
) in Task_Kind
923 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
925 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
928 Freeze_All
(First_Entity
(E
), After
);
931 -- For a derived tagged type, we must ensure that all the
932 -- primitive operations of the parent have been frozen, so
933 -- that their addresses will be in the parent's dispatch table
934 -- at the point it is inherited.
936 elsif Ekind
(E
) = E_Record_Type
937 and then Is_Tagged_Type
(E
)
938 and then Is_Tagged_Type
(Etype
(E
))
939 and then Is_Derived_Type
(E
)
942 Prim_List
: constant Elist_Id
:=
943 Primitive_Operations
(Etype
(E
));
948 Prim
:= First_Elmt
(Prim_List
);
950 while Present
(Prim
) loop
953 if Comes_From_Source
(Subp
)
954 and then not Is_Frozen
(Subp
)
956 Flist
:= Freeze_Entity
(Subp
, Loc
);
965 if not Is_Frozen
(E
) then
966 Flist
:= Freeze_Entity
(E
, Loc
);
974 -- Start of processing for Freeze_All
977 Freeze_All_Ent
(From
, After
);
979 -- Now that all types are frozen, we can deal with default expressions
980 -- that require us to build a default expression functions. This is the
981 -- point at which such functions are constructed (after all types that
982 -- might be used in such expressions have been frozen).
983 -- We also add finalization chains to access types whose designated
984 -- types are controlled. This is normally done when freezing the type,
985 -- but this misses recursive type definitions where the later members
986 -- of the recursion introduce controlled components (e.g. 5624-001).
988 -- Loop through entities
991 while Present
(E
) loop
993 if Is_Subprogram
(E
) then
995 if not Default_Expressions_Processed
(E
) then
996 Process_Default_Expressions
(E
, After
);
999 if not Has_Completion
(E
) then
1000 Decl
:= Unit_Declaration_Node
(E
);
1002 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1003 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1005 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1006 and then Present
(Corresponding_Body
(Decl
))
1008 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1009 = N_Subprogram_Renaming_Declaration
1011 Build_And_Analyze_Renamed_Body
1012 (Decl
, Corresponding_Body
(Decl
), After
);
1016 elsif Ekind
(E
) in Task_Kind
1018 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1020 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1026 Ent
:= First_Entity
(E
);
1028 while Present
(Ent
) loop
1031 and then not Default_Expressions_Processed
(Ent
)
1033 Process_Default_Expressions
(Ent
, After
);
1040 elsif Is_Access_Type
(E
)
1041 and then Comes_From_Source
(E
)
1042 and then Ekind
(Directly_Designated_Type
(E
)) = E_Incomplete_Type
1043 and then Controlled_Type
(Designated_Type
(E
))
1044 and then No
(Associated_Final_Chain
(E
))
1046 Build_Final_List
(Parent
(E
), E
);
1054 -----------------------
1055 -- Freeze_And_Append --
1056 -----------------------
1058 procedure Freeze_And_Append
1061 Result
: in out List_Id
)
1063 L
: constant List_Id
:= Freeze_Entity
(Ent
, Loc
);
1066 if Is_Non_Empty_List
(L
) then
1067 if Result
= No_List
then
1070 Append_List
(L
, Result
);
1073 end Freeze_And_Append
;
1079 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1080 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, Sloc
(N
));
1084 if Is_Non_Empty_List
(Freeze_Nodes
) then
1085 F
:= First
(Freeze_Nodes
);
1088 Insert_Actions
(N
, Freeze_Nodes
);
1097 function Freeze_Entity
(E
: Entity_Id
; Loc
: Source_Ptr
) return List_Id
is
1105 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1106 -- Check that an Access or Unchecked_Access attribute with
1107 -- a prefix which is the current instance type can only be
1108 -- applied when the type is limited.
1110 function After_Last_Declaration
return Boolean;
1111 -- If Loc is a freeze_entity that appears after the last declaration
1112 -- in the scope, inhibit error messages on late completion.
1114 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1115 -- Freeze each component, handle some representation clauses, and
1116 -- freeze primitive operations if this is a tagged type.
1118 ----------------------------
1119 -- After_Last_Declaration --
1120 ----------------------------
1122 function After_Last_Declaration
return Boolean is
1123 Spec
: Node_Id
:= Parent
(Current_Scope
);
1126 if Nkind
(Spec
) = N_Package_Specification
then
1127 if Present
(Private_Declarations
(Spec
)) then
1128 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1130 elsif Present
(Visible_Declarations
(Spec
)) then
1131 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1139 end After_Last_Declaration
;
1141 ----------------------------
1142 -- Check_Current_Instance --
1143 ----------------------------
1145 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1147 function Process
(N
: Node_Id
) return Traverse_Result
;
1148 -- Process routine to apply check to given node.
1150 function Process
(N
: Node_Id
) return Traverse_Result
is
1153 when N_Attribute_Reference
=>
1154 if (Attribute_Name
(N
) = Name_Access
1156 Attribute_Name
(N
) = Name_Unchecked_Access
)
1157 and then Is_Entity_Name
(Prefix
(N
))
1158 and then Is_Type
(Entity
(Prefix
(N
)))
1159 and then Entity
(Prefix
(N
)) = E
1162 ("current instance must be a limited type", Prefix
(N
));
1168 when others => return OK
;
1172 procedure Traverse
is new Traverse_Proc
(Process
);
1174 -- Start of processing for Check_Current_Instance
1177 Traverse
(Comp_Decl
);
1178 end Check_Current_Instance
;
1180 ------------------------
1181 -- Freeze_Record_Type --
1182 ------------------------
1184 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
1189 Unplaced_Component
: Boolean := False;
1190 -- Set True if we find at least one component with no component
1191 -- clause (used to warn about useless Pack pragmas).
1193 Placed_Component
: Boolean := False;
1194 -- Set True if we find at least one component with a component
1195 -- clause (used to warn about useless Bit_Order pragmas).
1198 -- Freeze components and embedded subtypes
1200 Comp
:= First_Entity
(Rec
);
1202 while Present
(Comp
) loop
1204 if not Is_Type
(Comp
) then
1205 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
1208 -- If the component is an access type with an allocator
1209 -- as default value, the designated type will be frozen
1210 -- by the corresponding expression in init_proc. In order
1211 -- to place the freeze node for the designated type before
1212 -- that for the current record type, freeze it now.
1214 -- Same process if the component is an array of access types,
1215 -- initialized with an aggregate. If the designated type is
1216 -- private, it cannot contain allocators, and it is premature
1217 -- to freeze the type, so we check for this as well.
1219 if Is_Access_Type
(Etype
(Comp
))
1220 and then Present
(Parent
(Comp
))
1221 and then Present
(Expression
(Parent
(Comp
)))
1222 and then Nkind
(Expression
(Parent
(Comp
))) = N_Allocator
1225 Alloc
: constant Node_Id
:= Expression
(Parent
(Comp
));
1228 -- If component is pointer to a classwide type, freeze
1229 -- the specific type in the expression being allocated.
1230 -- The expression may be a subtype indication, in which
1231 -- case freeze the subtype mark.
1233 if Is_Class_Wide_Type
(Designated_Type
(Etype
(Comp
))) then
1235 if Is_Entity_Name
(Expression
(Alloc
)) then
1237 (Entity
(Expression
(Alloc
)), Loc
, Result
);
1239 Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
1242 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
1247 (Designated_Type
(Etype
(Comp
)), Loc
, Result
);
1251 -- If this is a constrained subtype of an already frozen type,
1252 -- make the subtype frozen as well. It might otherwise be frozen
1253 -- in the wrong scope, and a freeze node on subtype has no effect.
1255 elsif Is_Access_Type
(Etype
(Comp
))
1256 and then not Is_Frozen
(Designated_Type
(Etype
(Comp
)))
1257 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
1258 and then Is_Frozen
(Base_Type
(Designated_Type
(Etype
(Comp
))))
1260 Set_Is_Frozen
(Designated_Type
(Etype
(Comp
)));
1262 elsif Is_Array_Type
(Etype
(Comp
))
1263 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
1264 and then Present
(Parent
(Comp
))
1265 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1266 and then Present
(Expression
(Parent
(Comp
)))
1267 and then Nkind
(Expression
(Parent
(Comp
))) = N_Aggregate
1268 and then Is_Fully_Defined
1269 (Designated_Type
(Component_Type
(Etype
(Comp
))))
1273 (Component_Type
(Etype
(Comp
))), Loc
, Result
);
1276 -- Processing for real components (exclude anonymous subtypes)
1278 if Ekind
(Comp
) = E_Component
1279 or else Ekind
(Comp
) = E_Discriminant
1281 -- Check for error of component clause given for variable
1282 -- sized type. We have to delay this test till this point,
1283 -- since the component type has to be frozen for us to know
1284 -- if it is variable length. We omit this test in a generic
1285 -- context, it will be applied at instantiation time.
1288 CC
: constant Node_Id
:= Component_Clause
(Comp
);
1291 if Present
(CC
) then
1292 Placed_Component
:= True;
1294 if Inside_A_Generic
then
1297 elsif not Size_Known_At_Compile_Time
1298 (Underlying_Type
(Etype
(Comp
)))
1301 ("component clause not allowed for variable " &
1302 "length component", CC
);
1306 Unplaced_Component
:= True;
1310 -- If component clause is present, then deal with the
1311 -- non-default bit order case. We cannot do this before
1312 -- the freeze point, because there is no required order
1313 -- for the component clause and the bit_order clause.
1315 -- We only do this processing for the base type, and in
1316 -- fact that's important, since otherwise if there are
1317 -- record subtypes, we could reverse the bits once for
1318 -- each subtype, which would be incorrect.
1320 if Present
(Component_Clause
(Comp
))
1321 and then Reverse_Bit_Order
(Rec
)
1322 and then Ekind
(E
) = E_Record_Type
1325 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
1326 CSZ
: constant Uint
:= Esize
(Comp
);
1327 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
1328 Pos
: constant Node_Id
:= Position
(CLC
);
1329 FB
: constant Node_Id
:= First_Bit
(CLC
);
1331 Storage_Unit_Offset
: constant Uint
:=
1332 CFB
/ System_Storage_Unit
;
1334 Start_Bit
: constant Uint
:=
1335 CFB
mod System_Storage_Unit
;
1338 -- Cases where field goes over storage unit boundary
1340 if Start_Bit
+ CSZ
> System_Storage_Unit
then
1342 -- Allow multi-byte field but generate warning
1344 if Start_Bit
mod System_Storage_Unit
= 0
1345 and then CSZ
mod System_Storage_Unit
= 0
1348 ("multi-byte field specified with non-standard"
1349 & " Bit_Order?", CLC
);
1351 if Bytes_Big_Endian
then
1353 ("bytes are not reversed "
1354 & "(component is big-endian)?", CLC
);
1357 ("bytes are not reversed "
1358 & "(component is little-endian)?", CLC
);
1361 -- Do not allow non-contiguous field
1365 ("attempt to specify non-contiguous field"
1366 & " not permitted", CLC
);
1368 ("\(caused by non-standard Bit_Order "
1369 & "specified)", CLC
);
1372 -- Case where field fits in one storage unit
1375 -- Give warning if suspicious component clause
1377 if Intval
(FB
) >= System_Storage_Unit
then
1379 ("?Bit_Order clause does not affect " &
1380 "byte ordering", Pos
);
1382 Intval
(Pos
) + Intval
(FB
) / System_Storage_Unit
;
1384 ("?position normalized to ^ before bit " &
1385 "order interpreted", Pos
);
1388 -- Here is where we fix up the Component_Bit_Offset
1389 -- value to account for the reverse bit order.
1390 -- Some examples of what needs to be done are:
1392 -- First_Bit .. Last_Bit Component_Bit_Offset
1395 -- 0 .. 0 7 .. 7 0 7
1396 -- 0 .. 1 6 .. 7 0 6
1397 -- 0 .. 2 5 .. 7 0 5
1398 -- 0 .. 7 0 .. 7 0 4
1400 -- 1 .. 1 6 .. 6 1 6
1401 -- 1 .. 4 3 .. 6 1 3
1402 -- 4 .. 7 0 .. 3 4 0
1404 -- The general rule is that the first bit is
1405 -- is obtained by subtracting the old ending bit
1406 -- from storage_unit - 1.
1408 Set_Component_Bit_Offset
(Comp
,
1409 (Storage_Unit_Offset
* System_Storage_Unit
)
1410 + (System_Storage_Unit
- 1)
1411 - (Start_Bit
+ CSZ
- 1));
1413 Set_Normalized_First_Bit
(Comp
,
1414 Component_Bit_Offset
(Comp
) mod System_Storage_Unit
);
1423 -- Check for useless pragma Bit_Order
1425 if not Placed_Component
and then Reverse_Bit_Order
(Rec
) then
1426 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
1427 Error_Msg_N
("?Bit_Order specification has no effect", ADC
);
1428 Error_Msg_N
("\?since no component clauses were specified", ADC
);
1431 -- Check for useless pragma Pack when all components placed
1434 and then not Unplaced_Component
1435 and then Warn_On_Redundant_Constructs
1438 ("?pragma Pack has no effect, no unplaced components",
1439 Get_Rep_Pragma
(Rec
, Name_Pack
));
1440 Set_Is_Packed
(Rec
, False);
1443 -- If this is the record corresponding to a remote type,
1444 -- freeze the remote type here since that is what we are
1445 -- semantically freeing. This prevents having the freeze node
1446 -- for that type in an inner scope.
1448 -- Also, Check for controlled components and unchecked unions.
1449 -- Finally, enforce the restriction that access attributes with
1450 -- a current instance prefix can only apply to limited types.
1452 if Ekind
(Rec
) = E_Record_Type
then
1454 if Present
(Corresponding_Remote_Type
(Rec
)) then
1456 (Corresponding_Remote_Type
(Rec
), Loc
, Result
);
1459 Comp
:= First_Component
(Rec
);
1461 while Present
(Comp
) loop
1462 if Has_Controlled_Component
(Etype
(Comp
))
1463 or else (Chars
(Comp
) /= Name_uParent
1464 and then Is_Controlled
(Etype
(Comp
)))
1465 or else (Is_Protected_Type
(Etype
(Comp
))
1467 (Corresponding_Record_Type
(Etype
(Comp
)))
1468 and then Has_Controlled_Component
1469 (Corresponding_Record_Type
(Etype
(Comp
))))
1471 Set_Has_Controlled_Component
(Rec
);
1475 if Has_Unchecked_Union
(Etype
(Comp
)) then
1476 Set_Has_Unchecked_Union
(Rec
);
1479 if Has_Per_Object_Constraint
(Comp
)
1480 and then not Is_Limited_Type
(Rec
)
1482 -- Scan component declaration for likely misuses of
1483 -- current instance, either in a constraint or in a
1484 -- default expression.
1486 Check_Current_Instance
(Parent
(Comp
));
1489 Next_Component
(Comp
);
1493 Set_Component_Alignment_If_Not_Set
(Rec
);
1495 -- For first subtypes, check if there are any fixed-point
1496 -- fields with component clauses, where we must check the size.
1497 -- This is not done till the freeze point, since for fixed-point
1498 -- types, we do not know the size until the type is frozen.
1500 if Is_First_Subtype
(Rec
) then
1501 Comp
:= First_Component
(Rec
);
1503 while Present
(Comp
) loop
1504 if Present
(Component_Clause
(Comp
))
1505 and then Is_Fixed_Point_Type
(Etype
(Comp
))
1508 (Component_Clause
(Comp
),
1514 Next_Component
(Comp
);
1517 end Freeze_Record_Type
;
1519 -- Start of processing for Freeze_Entity
1522 -- Do not freeze if already frozen since we only need one freeze node.
1524 if Is_Frozen
(E
) then
1527 -- It is improper to freeze an external entity within a generic
1528 -- because its freeze node will appear in a non-valid context.
1529 -- ??? We should probably freeze the entity at that point and insert
1530 -- the freeze node in a proper place but this proper place is not
1531 -- easy to find, and the proper scope is not easy to restore. For
1532 -- now, just wait to get out of the generic to freeze ???
1534 elsif Inside_A_Generic
and then External_Ref_In_Generic
(E
) then
1537 -- Do not freeze a global entity within an inner scope created during
1538 -- expansion. A call to subprogram E within some internal procedure
1539 -- (a stream attribute for example) might require freezing E, but the
1540 -- freeze node must appear in the same declarative part as E itself.
1541 -- The two-pass elaboration mechanism in gigi guarantees that E will
1542 -- be frozen before the inner call is elaborated. We exclude constants
1543 -- from this test, because deferred constants may be frozen early, and
1544 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1545 -- comes from source, or is a generic instance, then the freeze point
1546 -- is the one mandated by the language. and we freze the entity.
1548 elsif In_Open_Scopes
(Scope
(E
))
1549 and then Scope
(E
) /= Current_Scope
1550 and then Ekind
(E
) /= E_Constant
1553 S
: Entity_Id
:= Current_Scope
;
1556 while Present
(S
) loop
1557 if Is_Overloadable
(S
) then
1558 if Comes_From_Source
(S
)
1559 or else Is_Generic_Instance
(S
)
1572 -- Here to freeze the entity
1577 -- Case of entity being frozen is other than a type
1579 if not Is_Type
(E
) then
1581 -- If entity is exported or imported and does not have an external
1582 -- name, now is the time to provide the appropriate default name.
1583 -- Skip this if the entity is stubbed, since we don't need a name
1584 -- for any stubbed routine.
1586 if (Is_Imported
(E
) or else Is_Exported
(E
))
1587 and then No
(Interface_Name
(E
))
1588 and then Convention
(E
) /= Convention_Stubbed
1590 Set_Encoded_Interface_Name
1591 (E
, Get_Default_External_Name
(E
));
1594 -- For a subprogram, freeze all parameter types and also the return
1595 -- type (RM 13.14(13)). However skip this for internal subprograms.
1596 -- This is also the point where any extra formal parameters are
1597 -- created since we now know whether the subprogram will use
1598 -- a foreign convention.
1600 if Is_Subprogram
(E
) then
1602 if not Is_Internal
(E
) then
1607 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean;
1608 -- Determines if given type entity is a fat pointer type
1609 -- used as an argument type or return type to a subprogram
1610 -- with C or C++ convention set.
1612 --------------------------
1613 -- Is_Fat_C_Access_Type --
1614 --------------------------
1616 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean is
1618 return (Convention
(E
) = Convention_C
1620 Convention
(E
) = Convention_CPP
)
1621 and then Is_Access_Type
(T
)
1622 and then Esize
(T
) > Ttypes
.System_Address_Size
;
1623 end Is_Fat_C_Ptr_Type
;
1626 -- Loop through formals
1628 Formal
:= First_Formal
(E
);
1630 while Present
(Formal
) loop
1632 F_Type
:= Etype
(Formal
);
1633 Freeze_And_Append
(F_Type
, Loc
, Result
);
1635 if Is_Private_Type
(F_Type
)
1636 and then Is_Private_Type
(Base_Type
(F_Type
))
1637 and then No
(Full_View
(Base_Type
(F_Type
)))
1638 and then not Is_Generic_Type
(F_Type
)
1639 and then not Is_Derived_Type
(F_Type
)
1641 -- If the type of a formal is incomplete, subprogram
1642 -- is being frozen prematurely. Within an instance
1643 -- (but not within a wrapper package) this is an
1644 -- an artifact of our need to regard the end of an
1645 -- instantiation as a freeze point. Otherwise it is
1646 -- a definite error.
1647 -- and then not Is_Wrapper_Package (Current_Scope) ???
1650 Set_Is_Frozen
(E
, False);
1653 elsif not After_Last_Declaration
then
1654 Error_Msg_Node_1
:= F_Type
;
1656 ("type& must be fully defined before this point",
1661 -- Check bad use of fat C pointer
1663 if Is_Fat_C_Ptr_Type
(F_Type
) then
1664 Error_Msg_Qual_Level
:= 1;
1666 ("?type of & does not correspond to C pointer",
1668 Error_Msg_Qual_Level
:= 0;
1671 -- Check for unconstrained array in exported foreign
1674 if Convention
(E
) in Foreign_Convention
1675 and then not Is_Imported
(E
)
1676 and then Is_Array_Type
(F_Type
)
1677 and then not Is_Constrained
(F_Type
)
1679 Error_Msg_Qual_Level
:= 1;
1681 ("?type of argument& is unconstrained array",
1684 ("?foreign caller must pass bounds explicitly",
1686 Error_Msg_Qual_Level
:= 0;
1689 Next_Formal
(Formal
);
1692 -- Check return type
1694 if Ekind
(E
) = E_Function
then
1695 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
1697 if Is_Fat_C_Ptr_Type
(Etype
(E
)) then
1699 ("?return type of& does not correspond to C pointer",
1702 elsif Is_Array_Type
(Etype
(E
))
1703 and then not Is_Constrained
(Etype
(E
))
1704 and then not Is_Imported
(E
)
1705 and then Convention
(E
) in Foreign_Convention
1708 ("foreign convention function may not " &
1709 "return unconstrained array", E
);
1715 -- Must freeze its parent first if it is a derived subprogram
1717 if Present
(Alias
(E
)) then
1718 Freeze_And_Append
(Alias
(E
), Loc
, Result
);
1721 -- If the return type requires a transient scope, and we are on
1722 -- a target allowing functions to return with a depressed stack
1723 -- pointer, then we mark the function as requiring this treatment.
1725 if Ekind
(E
) = E_Function
1726 and then Functions_Return_By_DSP_On_Target
1727 and then Requires_Transient_Scope
(Etype
(E
))
1729 Set_Function_Returns_With_DSP
(E
);
1732 if not Is_Internal
(E
) then
1733 Freeze_Subprogram
(E
);
1736 -- Here for other than a subprogram or type
1739 -- If entity has a type, and it is not a generic unit, then
1740 -- freeze it first (RM 13.14(10))
1742 if Present
(Etype
(E
))
1743 and then Ekind
(E
) /= E_Generic_Function
1745 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
1748 -- For object created by object declaration, perform required
1749 -- categorization (preelaborate and pure) checks. Defer these
1750 -- checks to freeze time since pragma Import inhibits default
1751 -- initialization and thus pragma Import affects these checks.
1753 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
1754 Validate_Object_Declaration
(Declaration_Node
(E
));
1757 -- Check that a constant which has a pragma Volatile[_Components]
1758 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
1760 -- Note: Atomic[_Components] also sets Volatile[_Components]
1762 if Ekind
(E
) = E_Constant
1763 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
1764 and then not Is_Imported
(E
)
1766 -- Make sure we actually have a pragma, and have not merely
1767 -- inherited the indication from elsewhere (e.g. an address
1768 -- clause, which is not good enough in RM terms!)
1770 if Present
(Get_Rep_Pragma
(E
, Name_Atomic
)) or else
1771 Present
(Get_Rep_Pragma
(E
, Name_Atomic_Components
)) or else
1772 Present
(Get_Rep_Pragma
(E
, Name_Volatile
)) or else
1773 Present
(Get_Rep_Pragma
(E
, Name_Volatile_Components
))
1776 ("stand alone atomic/volatile constant must be imported",
1781 -- Static objects require special handling
1783 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
1784 and then Is_Statically_Allocated
(E
)
1786 Freeze_Static_Object
(E
);
1789 -- Remaining step is to layout objects
1791 if Ekind
(E
) = E_Variable
1793 Ekind
(E
) = E_Constant
1795 Ekind
(E
) = E_Loop_Parameter
1803 -- Case of a type or subtype being frozen
1806 -- The type may be defined in a generic unit. This can occur when
1807 -- freezing a generic function that returns the type (which is
1808 -- defined in a parent unit). It is clearly meaningless to freeze
1809 -- this type. However, if it is a subtype, its size may be determi-
1810 -- nable and used in subsequent checks, so might as well try to
1813 if Present
(Scope
(E
))
1814 and then Is_Generic_Unit
(Scope
(E
))
1816 Check_Compile_Time_Size
(E
);
1820 -- Deal with special cases of freezing for subtype
1822 if E
/= Base_Type
(E
) then
1824 -- If ancestor subtype present, freeze that first.
1825 -- Note that this will also get the base type frozen.
1827 Atype
:= Ancestor_Subtype
(E
);
1829 if Present
(Atype
) then
1830 Freeze_And_Append
(Atype
, Loc
, Result
);
1832 -- Otherwise freeze the base type of the entity before
1833 -- freezing the entity itself, (RM 13.14(14)).
1835 elsif E
/= Base_Type
(E
) then
1836 Freeze_And_Append
(Base_Type
(E
), Loc
, Result
);
1839 -- For a derived type, freeze its parent type first (RM 13.14(14))
1841 elsif Is_Derived_Type
(E
) then
1842 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
1843 Freeze_And_Append
(First_Subtype
(Etype
(E
)), Loc
, Result
);
1846 -- For array type, freeze index types and component type first
1847 -- before freezing the array (RM 13.14(14)).
1849 if Is_Array_Type
(E
) then
1851 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
1853 Non_Standard_Enum
: Boolean := False;
1854 -- Set true if any of the index types is an enumeration
1855 -- type with a non-standard representation.
1858 Freeze_And_Append
(Ctyp
, Loc
, Result
);
1860 Indx
:= First_Index
(E
);
1861 while Present
(Indx
) loop
1862 Freeze_And_Append
(Etype
(Indx
), Loc
, Result
);
1864 if Is_Enumeration_Type
(Etype
(Indx
))
1865 and then Has_Non_Standard_Rep
(Etype
(Indx
))
1867 Non_Standard_Enum
:= True;
1873 -- Processing that is done only for base types
1875 if Ekind
(E
) = E_Array_Type
then
1877 -- Propagate flags for component type
1879 if Is_Controlled
(Component_Type
(E
))
1880 or else Has_Controlled_Component
(Ctyp
)
1882 Set_Has_Controlled_Component
(E
);
1885 if Has_Unchecked_Union
(Component_Type
(E
)) then
1886 Set_Has_Unchecked_Union
(E
);
1889 -- If packing was requested or if the component size was set
1890 -- explicitly, then see if bit packing is required. This
1891 -- processing is only done for base types, since all the
1892 -- representation aspects involved are type-related. This
1893 -- is not just an optimization, if we start processing the
1894 -- subtypes, they intefere with the settings on the base
1895 -- type (this is because Is_Packed has a slightly different
1896 -- meaning before and after freezing).
1903 if (Is_Packed
(E
) or else Has_Pragma_Pack
(E
))
1904 and then not Has_Atomic_Components
(E
)
1905 and then Known_Static_RM_Size
(Ctyp
)
1907 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
1909 elsif Known_Component_Size
(E
) then
1910 Csiz
:= Component_Size
(E
);
1912 elsif not Known_Static_Esize
(Ctyp
) then
1916 Esiz
:= Esize
(Ctyp
);
1918 -- We can set the component size if it is less than
1919 -- 16, rounding it up to the next storage unit size.
1923 elsif Esiz
<= 16 then
1929 -- Set component size up to match alignment if
1930 -- it would otherwise be less than the alignment.
1931 -- This deals with cases of types whose alignment
1932 -- exceeds their sizes (padded types).
1936 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
1947 if 1 <= Csiz
and then Csiz
<= 64 then
1949 -- We set the component size for all cases 1-64
1951 Set_Component_Size
(Base_Type
(E
), Csiz
);
1953 -- Actual packing is not needed for 8,16,32,64
1954 -- Also not needed for 24 if alignment is 1
1960 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
1962 -- Here the array was requested to be packed, but
1963 -- the packing request had no effect, so Is_Packed
1966 -- Note: semantically this means that we lose
1967 -- track of the fact that a derived type inherited
1968 -- a pack pragma that was non-effective, but that
1971 -- We regard a Pack pragma as a request to set a
1972 -- representation characteristic, and this request
1975 Set_Is_Packed
(Base_Type
(E
), False);
1977 -- In all other cases, packing is indeed needed
1980 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
1981 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
1982 Set_Is_Packed
(Base_Type
(E
));
1987 -- Processing that is done only for subtypes
1990 -- Acquire alignment from base type
1992 if Unknown_Alignment
(E
) then
1993 Set_Alignment
(E
, Alignment
(Base_Type
(E
)));
1997 -- Check one common case of a size given where the array
1998 -- needs to be packed, but was not so the size cannot be
1999 -- honored. This would of course be caught by the backend,
2000 -- and indeed we don't catch all cases. The point is that
2001 -- we can give a better error message in those cases that
2002 -- we do catch with the circuitry here.
2004 if Present
(Size_Clause
(E
))
2005 and then Known_Static_Esize
(E
)
2006 and then not Has_Pragma_Pack
(E
)
2007 and then Number_Dimensions
(E
) = 1
2008 and then not Has_Component_Size_Clause
(E
)
2009 and then Known_Static_Component_Size
(E
)
2013 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2016 Get_Index_Bounds
(First_Index
(E
), Lo
, Hi
);
2018 if Compile_Time_Known_Value
(Lo
)
2019 and then Compile_Time_Known_Value
(Hi
)
2020 and then Known_Static_RM_Size
(Ctyp
)
2021 and then RM_Size
(Ctyp
) < 64
2024 Lov
: constant Uint
:= Expr_Value
(Lo
);
2025 Hiv
: constant Uint
:= Expr_Value
(Hi
);
2026 Len
: constant Uint
:=
2027 UI_Max
(Uint_0
, Hiv
- Lov
+ 1);
2030 if Esize
(E
) < Len
* Component_Size
(E
)
2031 and then Esize
(E
) = Len
* RM_Size
(Ctyp
)
2034 ("size given for& too small",
2035 Size_Clause
(E
), E
);
2037 ("\explicit pragma Pack is required",
2045 -- If any of the index types was an enumeration type with
2046 -- a non-standard rep clause, then we indicate that the
2047 -- array type is always packed (even if it is not bit packed).
2049 if Non_Standard_Enum
then
2050 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
2051 Set_Is_Packed
(Base_Type
(E
));
2055 Set_Component_Alignment_If_Not_Set
(E
);
2057 -- If the array is packed, we must create the packed array
2058 -- type to be used to actually implement the type. This is
2059 -- only needed for real array types (not for string literal
2060 -- types, since they are present only for the front end).
2063 and then Ekind
(E
) /= E_String_Literal_Subtype
2065 Create_Packed_Array_Type
(E
);
2066 Freeze_And_Append
(Packed_Array_Type
(E
), Loc
, Result
);
2068 -- Size information of packed array type is copied to the
2069 -- array type, since this is really the representation.
2071 Set_Size_Info
(E
, Packed_Array_Type
(E
));
2072 Set_RM_Size
(E
, RM_Size
(Packed_Array_Type
(E
)));
2075 -- For a class wide type, the corresponding specific type is
2076 -- frozen as well (RM 13.14(14))
2078 elsif Is_Class_Wide_Type
(E
) then
2079 Freeze_And_Append
(Root_Type
(E
), Loc
, Result
);
2081 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2082 -- parent of a derived type) and it is a library-level entity,
2083 -- generate an itype reference for it. Otherwise, its first
2084 -- explicit reference may be in an inner scope, which will be
2085 -- rejected by the back-end.
2088 and then Is_Compilation_Unit
(Scope
(E
))
2092 Ref
: Node_Id
:= Make_Itype_Reference
(Loc
);
2097 Result
:= New_List
(Ref
);
2099 Append
(Ref
, Result
);
2104 -- For record (sub)type, freeze all the component types (RM
2105 -- 13.14(14). We test for E_Record_(sub)Type here, rather than
2106 -- using Is_Record_Type, because we don't want to attempt the
2107 -- freeze for the case of a private type with record extension
2108 -- (we will do that later when the full type is frozen).
2110 elsif Ekind
(E
) = E_Record_Type
2111 or else Ekind
(E
) = E_Record_Subtype
2113 Freeze_Record_Type
(E
);
2115 -- For a concurrent type, freeze corresponding record type. This
2116 -- does not correpond to any specific rule in the RM, but the
2117 -- record type is essentially part of the concurrent type.
2118 -- Freeze as well all local entities. This includes record types
2119 -- created for entry parameter blocks, and whatever local entities
2120 -- may appear in the private part.
2122 elsif Is_Concurrent_Type
(E
) then
2123 if Present
(Corresponding_Record_Type
(E
)) then
2125 (Corresponding_Record_Type
(E
), Loc
, Result
);
2128 Comp
:= First_Entity
(E
);
2130 while Present
(Comp
) loop
2131 if Is_Type
(Comp
) then
2132 Freeze_And_Append
(Comp
, Loc
, Result
);
2134 elsif (Ekind
(Comp
)) /= E_Function
then
2135 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
2141 -- Private types are required to point to the same freeze node
2142 -- as their corresponding full views. The freeze node itself
2143 -- has to point to the partial view of the entity (because
2144 -- from the partial view, we can retrieve the full view, but
2145 -- not the reverse). However, in order to freeze correctly,
2146 -- we need to freeze the full view. If we are freezing at the
2147 -- end of a scope (or within the scope of the private type),
2148 -- the partial and full views will have been swapped, the
2149 -- full view appears first in the entity chain and the swapping
2150 -- mechanism enusres that the pointers are properly set (on
2153 -- If we encounter the partial view before the full view
2154 -- (e.g. when freezing from another scope), we freeze the
2155 -- full view, and then set the pointers appropriately since
2156 -- we cannot rely on swapping to fix things up (subtypes in an
2157 -- outer scope might not get swapped).
2159 elsif Is_Incomplete_Or_Private_Type
(E
)
2160 and then not Is_Generic_Type
(E
)
2162 -- Case of full view present
2164 if Present
(Full_View
(E
)) then
2166 -- If full view has already been frozen, then no
2167 -- further processing is required
2169 if Is_Frozen
(Full_View
(E
)) then
2171 Set_Has_Delayed_Freeze
(E
, False);
2172 Set_Freeze_Node
(E
, Empty
);
2173 Check_Debug_Info_Needed
(E
);
2175 -- Otherwise freeze full view and patch the pointers
2178 if Is_Private_Type
(Full_View
(E
))
2179 and then Present
(Underlying_Full_View
(Full_View
(E
)))
2182 (Underlying_Full_View
(Full_View
(E
)), Loc
, Result
);
2185 Freeze_And_Append
(Full_View
(E
), Loc
, Result
);
2187 if Has_Delayed_Freeze
(E
) then
2188 F_Node
:= Freeze_Node
(Full_View
(E
));
2190 if Present
(F_Node
) then
2191 Set_Freeze_Node
(E
, F_Node
);
2192 Set_Entity
(F_Node
, E
);
2194 -- {Incomplete,Private}_Subtypes
2195 -- with Full_Views constrained by discriminants
2197 Set_Has_Delayed_Freeze
(E
, False);
2198 Set_Freeze_Node
(E
, Empty
);
2202 Check_Debug_Info_Needed
(E
);
2205 -- AI-117 requires that the convention of a partial view
2206 -- be the same as the convention of the full view. Note
2207 -- that this is a recognized breach of privacy, but it's
2208 -- essential for logical consistency of representation,
2209 -- and the lack of a rule in RM95 was an oversight.
2211 Set_Convention
(E
, Convention
(Full_View
(E
)));
2213 Set_Size_Known_At_Compile_Time
(E
,
2214 Size_Known_At_Compile_Time
(Full_View
(E
)));
2216 -- Size information is copied from the full view to the
2217 -- incomplete or private view for consistency
2219 -- We skip this is the full view is not a type. This is
2220 -- very strange of course, and can only happen as a result
2221 -- of certain illegalities, such as a premature attempt to
2222 -- derive from an incomplete type.
2224 if Is_Type
(Full_View
(E
)) then
2225 Set_Size_Info
(E
, Full_View
(E
));
2226 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
2231 -- Case of no full view present. If entity is derived or subtype,
2232 -- it is safe to freeze, correctness depends on the frozen status
2233 -- of parent. Otherwise it is either premature usage, or a Taft
2234 -- amendment type, so diagnosis is at the point of use and the
2235 -- type might be frozen later.
2237 elsif E
/= Base_Type
(E
)
2238 or else Is_Derived_Type
(E
)
2243 Set_Is_Frozen
(E
, False);
2247 -- For access subprogram, freeze types of all formals, the return
2248 -- type was already frozen, since it is the Etype of the function.
2250 elsif Ekind
(E
) = E_Subprogram_Type
then
2251 Formal
:= First_Formal
(E
);
2252 while Present
(Formal
) loop
2253 Freeze_And_Append
(Etype
(Formal
), Loc
, Result
);
2254 Next_Formal
(Formal
);
2257 -- If the return type requires a transient scope, and we are on
2258 -- a target allowing functions to return with a depressed stack
2259 -- pointer, then we mark the function as requiring this treatment.
2261 if Functions_Return_By_DSP_On_Target
2262 and then Requires_Transient_Scope
(Etype
(E
))
2264 Set_Function_Returns_With_DSP
(E
);
2267 Freeze_Subprogram
(E
);
2269 -- For access to a protected subprogram, freeze the equivalent
2270 -- type (however this is not set if we are not generating code)
2271 -- or if this is an anonymous type used just for resolution).
2273 elsif Ekind
(E
) = E_Access_Protected_Subprogram_Type
2274 and then Operating_Mode
= Generate_Code
2275 and then Present
(Equivalent_Type
(E
))
2277 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
2280 -- Generic types are never seen by the back-end, and are also not
2281 -- processed by the expander (since the expander is turned off for
2282 -- generic processing), so we never need freeze nodes for them.
2284 if Is_Generic_Type
(E
) then
2288 -- Some special processing for non-generic types to complete
2289 -- representation details not known till the freeze point.
2291 if Is_Fixed_Point_Type
(E
) then
2292 Freeze_Fixed_Point_Type
(E
);
2294 elsif Is_Enumeration_Type
(E
) then
2295 Freeze_Enumeration_Type
(E
);
2297 elsif Is_Integer_Type
(E
) then
2298 Adjust_Esize_For_Alignment
(E
);
2300 elsif Is_Access_Type
(E
)
2301 and then No
(Associated_Storage_Pool
(E
))
2303 Check_Restriction
(No_Standard_Storage_Pools
, E
);
2306 -- If the current entity is an array or record subtype and has
2307 -- discriminants used to constrain it, it must not freeze, because
2308 -- Freeze_Entity nodes force Gigi to process the frozen type.
2310 if Is_Composite_Type
(E
) then
2312 if Is_Array_Type
(E
) then
2315 Index
: Node_Id
:= First_Index
(E
);
2320 while Present
(Index
) loop
2321 if Etype
(Index
) /= Any_Type
then
2322 Get_Index_Bounds
(Index
, Expr1
, Expr2
);
2324 for J
in 1 .. 2 loop
2325 if Nkind
(Expr1
) = N_Identifier
2326 and then Ekind
(Entity
(Expr1
)) = E_Discriminant
2328 Set_Has_Delayed_Freeze
(E
, False);
2329 Set_Freeze_Node
(E
, Empty
);
2330 Check_Debug_Info_Needed
(E
);
2342 elsif Has_Discriminants
(E
)
2343 and Is_Constrained
(E
)
2346 Constraint
: Elmt_Id
;
2350 Constraint
:= First_Elmt
(Discriminant_Constraint
(E
));
2352 while Present
(Constraint
) loop
2354 Expr
:= Node
(Constraint
);
2355 if Nkind
(Expr
) = N_Identifier
2356 and then Ekind
(Entity
(Expr
)) = E_Discriminant
2358 Set_Has_Delayed_Freeze
(E
, False);
2359 Set_Freeze_Node
(E
, Empty
);
2360 Check_Debug_Info_Needed
(E
);
2364 Next_Elmt
(Constraint
);
2370 -- AI-117 requires that all new primitives of a tagged type
2371 -- must inherit the convention of the full view of the type.
2372 -- Inherited and overriding operations are defined to inherit
2373 -- the convention of their parent or overridden subprogram
2374 -- (also specified in AI-117), and that will have occurred
2375 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2376 -- Here we set the convention of primitives that are still
2377 -- convention Ada, which will ensure that any new primitives
2378 -- inherit the type's convention. Class-wide types can have
2379 -- a foreign convention inherited from their specific type,
2380 -- but are excluded from this since they don't have any
2381 -- associated primitives.
2383 if Is_Tagged_Type
(E
)
2384 and then not Is_Class_Wide_Type
(E
)
2385 and then Convention
(E
) /= Convention_Ada
2388 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
2392 Prim
:= First_Elmt
(Prim_List
);
2393 while Present
(Prim
) loop
2394 if Convention
(Node
(Prim
)) = Convention_Ada
then
2395 Set_Convention
(Node
(Prim
), Convention
(E
));
2404 -- Generate primitive operation references for a tagged type
2406 if Is_Tagged_Type
(E
)
2407 and then not Is_Class_Wide_Type
(E
)
2410 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
2415 Prim
:= First_Elmt
(Prim_List
);
2416 while Present
(Prim
) loop
2419 -- If the operation is derived, get the original for
2420 -- cross-reference purposes (it is the original for
2421 -- which we want the xref, and for which the comes
2422 -- from source test needs to be performed).
2424 while Present
(Alias
(Ent
)) loop
2428 Generate_Reference
(E
, Ent
, 'p', Set_Ref
=> False);
2432 -- If we get an exception, then something peculiar has happened
2433 -- probably as a result of a previous error. Since this is only
2434 -- for non-critical cross-references, ignore the error.
2437 when others => null;
2441 -- Now that all types from which E may depend are frozen, see
2442 -- if the size is known at compile time, if it must be unsigned,
2443 -- or if strict alignent is required
2445 Check_Compile_Time_Size
(E
);
2446 Check_Unsigned_Type
(E
);
2448 if Base_Type
(E
) = E
then
2449 Check_Strict_Alignment
(E
);
2452 -- Do not allow a size clause for a type which does not have a size
2453 -- that is known at compile time
2455 if Has_Size_Clause
(E
)
2456 and then not Size_Known_At_Compile_Time
(E
)
2458 -- Supress this message if errors posted on E, even if we are
2459 -- in all errors mode, since this is often a junk message
2461 if not Error_Posted
(E
) then
2463 ("size clause not allowed for variable length type",
2468 -- Remaining process is to set/verify the representation information,
2469 -- in particular the size and alignment values. This processing is
2470 -- not required for generic types, since generic types do not play
2471 -- any part in code generation, and so the size and alignment values
2472 -- for suhc types are irrelevant.
2474 if Is_Generic_Type
(E
) then
2477 -- Otherwise we call the layout procedure
2483 -- End of freeze processing for type entities
2486 -- Here is where we logically freeze the current entity. If it has a
2487 -- freeze node, then this is the point at which the freeze node is
2488 -- linked into the result list.
2490 if Has_Delayed_Freeze
(E
) then
2492 -- If a freeze node is already allocated, use it, otherwise allocate
2493 -- a new one. The preallocation happens in the case of anonymous base
2494 -- types, where we preallocate so that we can set First_Subtype_Link.
2495 -- Note that we reset the Sloc to the current freeze location.
2497 if Present
(Freeze_Node
(E
)) then
2498 F_Node
:= Freeze_Node
(E
);
2499 Set_Sloc
(F_Node
, Loc
);
2502 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
2503 Set_Freeze_Node
(E
, F_Node
);
2504 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
2505 Set_TSS_Elist
(F_Node
, No_Elist
);
2506 Set_Actions
(F_Node
, No_List
);
2509 Set_Entity
(F_Node
, E
);
2511 if Result
= No_List
then
2512 Result
:= New_List
(F_Node
);
2514 Append
(F_Node
, Result
);
2519 -- When a type is frozen, the first subtype of the type is frozen as
2520 -- well (RM 13.14(15)). This has to be done after freezing the type,
2521 -- since obviously the first subtype depends on its own base type.
2524 Freeze_And_Append
(First_Subtype
(E
), Loc
, Result
);
2526 -- If we just froze a tagged non-class wide record, then freeze the
2527 -- corresponding class-wide type. This must be done after the tagged
2528 -- type itself is frozen, because the class-wide type refers to the
2529 -- tagged type which generates the class.
2531 if Is_Tagged_Type
(E
)
2532 and then not Is_Class_Wide_Type
(E
)
2533 and then Present
(Class_Wide_Type
(E
))
2535 Freeze_And_Append
(Class_Wide_Type
(E
), Loc
, Result
);
2539 Check_Debug_Info_Needed
(E
);
2541 -- Special handling for subprograms
2543 if Is_Subprogram
(E
) then
2545 -- If subprogram has address clause then reset Is_Public flag, since
2546 -- we do not want the backend to generate external references.
2548 if Present
(Address_Clause
(E
))
2549 and then not Is_Library_Level_Entity
(E
)
2551 Set_Is_Public
(E
, False);
2553 -- If no address clause and not intrinsic, then for imported
2554 -- subprogram in main unit, generate descriptor if we are in
2555 -- Propagate_Exceptions mode.
2557 elsif Propagate_Exceptions
2558 and then Is_Imported
(E
)
2559 and then not Is_Intrinsic_Subprogram
(E
)
2560 and then Convention
(E
) /= Convention_Stubbed
2562 if Result
= No_List
then
2563 Result
:= Empty_List
;
2566 Generate_Subprogram_Descriptor_For_Imported_Subprogram
2575 -----------------------------
2576 -- Freeze_Enumeration_Type --
2577 -----------------------------
2579 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
2581 if Has_Foreign_Convention
(Typ
)
2582 and then not Has_Size_Clause
(Typ
)
2583 and then Esize
(Typ
) < Standard_Integer_Size
2585 Init_Esize
(Typ
, Standard_Integer_Size
);
2588 Adjust_Esize_For_Alignment
(Typ
);
2590 end Freeze_Enumeration_Type
;
2592 -----------------------
2593 -- Freeze_Expression --
2594 -----------------------
2596 procedure Freeze_Expression
(N
: Node_Id
) is
2597 In_Def_Exp
: constant Boolean := In_Default_Expression
;
2600 Desig_Typ
: Entity_Id
;
2604 Freeze_Outside
: Boolean := False;
2605 -- This flag is set true if the entity must be frozen outside the
2606 -- current subprogram. This happens in the case of expander generated
2607 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
2608 -- not freeze all entities like other bodies, but which nevertheless
2609 -- may reference entities that have to be frozen before the body and
2610 -- obviously cannot be frozen inside the body.
2612 function In_Exp_Body
(N
: Node_Id
) return Boolean;
2613 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
2614 -- it is the handled statement sequence of an expander generated
2615 -- subprogram (init proc, or stream subprogram). If so, it returns
2616 -- True, otherwise False.
2618 function In_Exp_Body
(N
: Node_Id
) return Boolean is
2622 if Nkind
(N
) = N_Subprogram_Body
then
2628 if Nkind
(P
) /= N_Subprogram_Body
then
2632 P
:= Defining_Unit_Name
(Specification
(P
));
2634 if Nkind
(P
) = N_Defining_Identifier
2635 and then (Chars
(P
) = Name_uInit_Proc
or else
2636 Chars
(P
) = Name_uInput
or else
2637 Chars
(P
) = Name_uOutput
or else
2638 Chars
(P
) = Name_uRead
or else
2639 Chars
(P
) = Name_uWrite
)
2649 -- Start of processing for Freeze_Expression
2652 -- Immediate return if freezing is inhibited. This flag is set by
2653 -- the analyzer to stop freezing on generated expressions that would
2654 -- cause freezing if they were in the source program, but which are
2655 -- not supposed to freeze, since they are created.
2657 if Must_Not_Freeze
(N
) then
2661 -- If expression is non-static, then it does not freeze in a default
2662 -- expression, see section "Handling of Default Expressions" in the
2663 -- spec of package Sem for further details. Note that we have to
2664 -- make sure that we actually have a real expression (if we have
2665 -- a subtype indication, we can't test Is_Static_Expression!)
2668 and then Nkind
(N
) in N_Subexpr
2669 and then not Is_Static_Expression
(N
)
2674 -- Freeze type of expression if not frozen already
2676 if Nkind
(N
) in N_Has_Etype
2677 and then not Is_Frozen
(Etype
(N
))
2684 -- For entity name, freeze entity if not frozen already. A special
2685 -- exception occurs for an identifier that did not come from source.
2686 -- We don't let such identifiers freeze a non-internal entity, i.e.
2687 -- an entity that did come from source, since such an identifier was
2688 -- generated by the expander, and cannot have any semantic effect on
2689 -- the freezing semantics. For example, this stops the parameter of
2690 -- an initialization procedure from freezing the variable.
2692 if Is_Entity_Name
(N
)
2693 and then not Is_Frozen
(Entity
(N
))
2694 and then (Nkind
(N
) /= N_Identifier
2695 or else Comes_From_Source
(N
)
2696 or else not Comes_From_Source
(Entity
(N
)))
2704 -- For an allocator freeze designated type if not frozen already.
2706 -- For an aggregate whose component type is an access type, freeze
2707 -- the designated type now, so that its freeze does not appear within
2708 -- the loop that might be created in the expansion of the aggregate.
2709 -- If the designated type is a private type without full view, the
2710 -- expression cannot contain an allocator, so the type is not frozen.
2716 Desig_Typ
:= Designated_Type
(Etype
(N
));
2719 if Is_Array_Type
(Etype
(N
))
2720 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
2722 Desig_Typ
:= Designated_Type
(Component_Type
(Etype
(N
)));
2725 when N_Selected_Component |
2726 N_Indexed_Component |
2729 if Is_Access_Type
(Etype
(Prefix
(N
))) then
2730 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
2738 if Desig_Typ
/= Empty
2739 and then (Is_Frozen
(Desig_Typ
)
2740 or else (not Is_Fully_Defined
(Desig_Typ
)))
2745 -- All done if nothing needs freezing
2749 and then No
(Desig_Typ
)
2754 -- Loop for looking at the right place to insert the freeze nodes
2755 -- exiting from the loop when it is appropriate to insert the freeze
2756 -- node before the current node P.
2758 -- Also checks some special exceptions to the freezing rules. These
2759 -- cases result in a direct return, bypassing the freeze action.
2763 Parent_P
:= Parent
(P
);
2765 -- If we don't have a parent, then we are not in a well-formed
2766 -- tree. This is an unusual case, but there are some legitimate
2767 -- situations in which this occurs, notably when the expressions
2768 -- in the range of a type declaration are resolved. We simply
2769 -- ignore the freeze request in this case. Is this right ???
2771 if No
(Parent_P
) then
2775 -- See if we have got to an appropriate point in the tree
2777 case Nkind
(Parent_P
) is
2779 -- A special test for the exception of (RM 13.14(8)) for the
2780 -- case of per-object expressions (RM 3.8(18)) occurring in a
2781 -- component definition or a discrete subtype definition. Note
2782 -- that we test for a component declaration which includes both
2783 -- cases we are interested in, and furthermore the tree does not
2784 -- have explicit nodes for either of these two constructs.
2786 when N_Component_Declaration
=>
2788 -- The case we want to test for here is an identifier that is
2789 -- a per-object expression, this is either a discriminant that
2790 -- appears in a context other than the component declaration
2791 -- or it is a reference to the type of the enclosing construct.
2793 -- For either of these cases, we skip the freezing
2795 if not In_Default_Expression
2796 and then Nkind
(N
) = N_Identifier
2797 and then (Present
(Entity
(N
)))
2799 -- We recognize the discriminant case by just looking for
2800 -- a reference to a discriminant. It can only be one for
2801 -- the enclosing construct. Skip freezing in this case.
2803 if Ekind
(Entity
(N
)) = E_Discriminant
then
2806 -- For the case of a reference to the enclosing record,
2807 -- (or task or protected type), we look for a type that
2808 -- matches the current scope.
2810 elsif Entity
(N
) = Current_Scope
then
2815 -- If we have an enumeration literal that appears as the
2816 -- choice in the aggregate of an enumeration representation
2817 -- clause, then freezing does not occur (RM 13.14(9)).
2819 when N_Enumeration_Representation_Clause
=>
2821 -- The case we are looking for is an enumeration literal
2823 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
2824 and then Is_Enumeration_Type
(Etype
(N
))
2826 -- If enumeration literal appears directly as the choice,
2827 -- do not freeze (this is the normal non-overloade case)
2829 if Nkind
(Parent
(N
)) = N_Component_Association
2830 and then First
(Choices
(Parent
(N
))) = N
2834 -- If enumeration literal appears as the name of a
2835 -- function which is the choice, then also do not freeze.
2836 -- This happens in the overloaded literal case, where the
2837 -- enumeration literal is temporarily changed to a function
2838 -- call for overloading analysis purposes.
2840 elsif Nkind
(Parent
(N
)) = N_Function_Call
2842 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
2844 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
2850 -- Normally if the parent is a handled sequence of statements,
2851 -- then the current node must be a statement, and that is an
2852 -- appropriate place to insert a freeze node.
2854 when N_Handled_Sequence_Of_Statements
=>
2856 -- An exception occurs when the sequence of statements is
2857 -- for an expander generated body that did not do the usual
2858 -- freeze all operation. In this case we usually want to
2859 -- freeze outside this body, not inside it, and we skip
2860 -- past the subprogram body that we are inside.
2862 if In_Exp_Body
(Parent_P
) then
2864 -- However, we *do* want to freeze at this point if we have
2865 -- an entity to freeze, and that entity is declared *inside*
2866 -- the body of the expander generated procedure. This case
2867 -- is recognized by the scope of the type, which is either
2868 -- the spec for some enclosing body, or (in the case of
2869 -- init_procs, for which there are no separate specs) the
2873 Subp
: constant Node_Id
:= Parent
(Parent_P
);
2877 if Nkind
(Subp
) = N_Subprogram_Body
then
2878 Cspc
:= Corresponding_Spec
(Subp
);
2880 if (Present
(Typ
) and then Scope
(Typ
) = Cspc
)
2882 (Present
(Nam
) and then Scope
(Nam
) = Cspc
)
2887 and then Scope
(Typ
) = Current_Scope
2888 and then Current_Scope
= Defining_Entity
(Subp
)
2895 -- If not that exception to the exception, then this is
2896 -- where we delay the freeze till outside the body.
2898 Parent_P
:= Parent
(Parent_P
);
2899 Freeze_Outside
:= True;
2901 -- Here if normal case where we are in handled statement
2902 -- sequence and want to do the insertion right there.
2908 -- If parent is a body or a spec or a block, then the current
2909 -- node is a statement or declaration and we can insert the
2910 -- freeze node before it.
2912 when N_Package_Specification |
2918 N_Block_Statement
=> exit;
2920 -- The expander is allowed to define types in any statements list,
2921 -- so any of the following parent nodes also mark a freezing point
2922 -- if the actual node is in a list of statements or declarations.
2924 when N_Exception_Handler |
2927 N_Case_Statement_Alternative |
2928 N_Compilation_Unit_Aux |
2929 N_Selective_Accept |
2930 N_Accept_Alternative |
2931 N_Delay_Alternative |
2932 N_Conditional_Entry_Call |
2933 N_Entry_Call_Alternative |
2934 N_Triggering_Alternative |
2938 exit when Is_List_Member
(P
);
2940 -- Note: The N_Loop_Statement is a special case. A type that
2941 -- appears in the source can never be frozen in a loop (this
2942 -- occurs only because of a loop expanded by the expander),
2943 -- so we keep on going. Otherwise we terminate the search.
2944 -- Same is true of any entity which comes from source. (if they
2945 -- have a predefined type, that type does not appear to come
2946 -- from source, but the entity should not be frozen here).
2948 when N_Loop_Statement
=>
2949 exit when not Comes_From_Source
(Etype
(N
))
2950 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
2952 -- For all other cases, keep looking at parents
2958 -- We fall through the case if we did not yet find the proper
2959 -- place in the free for inserting the freeze node, so climb!
2964 -- If the expression appears in a record or an initialization
2965 -- procedure, the freeze nodes are collected and attached to
2966 -- the current scope, to be inserted and analyzed on exit from
2967 -- the scope, to insure that generated entities appear in the
2968 -- correct scope. If the expression is a default for a discriminant
2969 -- specification, the scope is still void. The expression can also
2970 -- appear in the discriminant part of a private or concurrent type.
2972 -- The other case requiring this special handling is if we are in
2973 -- a default expression, since in that case we are about to freeze
2974 -- a static type, and the freeze scope needs to be the outer scope,
2975 -- not the scope of the subprogram with the default parameter.
2977 -- For default expressions in generic units, the Move_Freeze_Nodes
2978 -- mechanism (see sem_ch12.adb) takes care of placing them at the
2979 -- proper place, after the generic unit.
2981 if (In_Def_Exp
and not Inside_A_Generic
)
2982 or else Freeze_Outside
2983 or else (Is_Type
(Current_Scope
)
2984 and then (not Is_Concurrent_Type
(Current_Scope
)
2985 or else not Has_Completion
(Current_Scope
)))
2986 or else Ekind
(Current_Scope
) = E_Void
2989 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
2990 Freeze_Nodes
: List_Id
:= No_List
;
2993 if Present
(Desig_Typ
) then
2994 Freeze_And_Append
(Desig_Typ
, Loc
, Freeze_Nodes
);
2997 if Present
(Typ
) then
2998 Freeze_And_Append
(Typ
, Loc
, Freeze_Nodes
);
3001 if Present
(Nam
) then
3002 Freeze_And_Append
(Nam
, Loc
, Freeze_Nodes
);
3005 if Is_Non_Empty_List
(Freeze_Nodes
) then
3007 if No
(Scope_Stack
.Table
3008 (Scope_Stack
.Last
).Pending_Freeze_Actions
)
3011 (Scope_Stack
.Last
).Pending_Freeze_Actions
:=
3014 Append_List
(Freeze_Nodes
, Scope_Stack
.Table
3015 (Scope_Stack
.Last
).Pending_Freeze_Actions
);
3023 -- Now we have the right place to do the freezing. First, a special
3024 -- adjustment, if we are in default expression analysis mode, these
3025 -- freeze actions must not be thrown away (normally all inserted
3026 -- actions are thrown away in this mode. However, the freeze actions
3027 -- are from static expressions and one of the important reasons we
3028 -- are doing this special analysis is to get these freeze actions.
3029 -- Therefore we turn off the In_Default_Expression mode to propagate
3030 -- these freeze actions. This also means they get properly analyzed
3033 In_Default_Expression
:= False;
3035 -- Freeze the designated type of an allocator (RM 13.14(12))
3037 if Present
(Desig_Typ
) then
3038 Freeze_Before
(P
, Desig_Typ
);
3041 -- Freeze type of expression (RM 13.14(9)). Note that we took care of
3042 -- the enumeration representation clause exception in the loop above.
3044 if Present
(Typ
) then
3045 Freeze_Before
(P
, Typ
);
3048 -- Freeze name if one is present (RM 13.14(10))
3050 if Present
(Nam
) then
3051 Freeze_Before
(P
, Nam
);
3054 In_Default_Expression
:= In_Def_Exp
;
3055 end Freeze_Expression
;
3057 -----------------------------
3058 -- Freeze_Fixed_Point_Type --
3059 -----------------------------
3061 -- Certain fixed-point types and subtypes, including implicit base
3062 -- types and declared first subtypes, have not yet set up a range.
3063 -- This is because the range cannot be set until the Small and Size
3064 -- values are known, and these are not known till the type is frozen.
3066 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3067 -- range whose bounds are unanalyzed real literals. This routine will
3068 -- recognize this case, and transform this range node into a properly
3069 -- typed range with properly analyzed and resolved values.
3071 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
3072 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
3073 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
3074 Hi
: constant Node_Id
:= High_Bound
(Rng
);
3075 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
3076 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
3077 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
3078 BHi
: constant Node_Id
:= High_Bound
(Brng
);
3079 Small
: constant Ureal
:= Small_Value
(Typ
);
3086 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
3087 -- Returns size of type with given bounds. Also leaves these
3088 -- bounds set as the current bounds of the Typ.
3090 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
3092 Set_Realval
(Lo
, Lov
);
3093 Set_Realval
(Hi
, Hiv
);
3094 return Minimum_Size
(Typ
);
3097 -- Start of processing for Freeze_Fixed_Point_Type;
3100 -- If Esize of a subtype has not previously been set, set it now
3102 if Unknown_Esize
(Typ
) then
3103 Atype
:= Ancestor_Subtype
(Typ
);
3105 if Present
(Atype
) then
3106 Set_Size_Info
(Typ
, Atype
);
3108 Set_Size_Info
(Typ
, Base_Type
(Typ
));
3112 -- Immediate return if the range is already analyzed. This means
3113 -- that the range is already set, and does not need to be computed
3116 if Analyzed
(Rng
) then
3120 -- Immediate return if either of the bounds raises Constraint_Error
3122 if Raises_Constraint_Error
(Lo
)
3123 or else Raises_Constraint_Error
(Hi
)
3128 Loval
:= Realval
(Lo
);
3129 Hival
:= Realval
(Hi
);
3131 -- Ordinary fixed-point case
3133 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
3135 -- For the ordinary fixed-point case, we are allowed to fudge the
3136 -- end-points up or down by small. Generally we prefer to fudge
3137 -- up, i.e. widen the bounds for non-model numbers so that the
3138 -- end points are included. However there are cases in which this
3139 -- cannot be done, and indeed cases in which we may need to narrow
3140 -- the bounds. The following circuit makes the decision.
3142 -- Note: our terminology here is that Incl_EP means that the
3143 -- bounds are widened by Small if necessary to include the end
3144 -- points, and Excl_EP means that the bounds are narrowed by
3145 -- Small to exclude the end-points if this reduces the size.
3147 -- Note that in the Incl case, all we care about is including the
3148 -- end-points. In the Excl case, we want to narrow the bounds as
3149 -- much as permitted by the RM, to give the smallest possible size.
3152 Loval_Incl_EP
: Ureal
;
3153 Hival_Incl_EP
: Ureal
;
3155 Loval_Excl_EP
: Ureal
;
3156 Hival_Excl_EP
: Ureal
;
3162 First_Subt
: Entity_Id
;
3167 -- First step. Base types are required to be symmetrical. Right
3168 -- now, the base type range is a copy of the first subtype range.
3169 -- This will be corrected before we are done, but right away we
3170 -- need to deal with the case where both bounds are non-negative.
3171 -- In this case, we set the low bound to the negative of the high
3172 -- bound, to make sure that the size is computed to include the
3173 -- required sign. Note that we do not need to worry about the
3174 -- case of both bounds negative, because the sign will be dealt
3175 -- with anyway. Furthermore we can't just go making such a bound
3176 -- symmetrical, since in a twos-complement system, there is an
3177 -- extra negative value which could not be accomodated on the
3181 and then not UR_Is_Negative
(Loval
)
3182 and then Hival
> Loval
3185 Set_Realval
(Lo
, Loval
);
3188 -- Compute the fudged bounds. If the number is a model number,
3189 -- then we do nothing to include it, but we are allowed to
3190 -- backoff to the next adjacent model number when we exclude
3191 -- it. If it is not a model number then we straddle the two
3192 -- values with the model numbers on either side.
3194 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
3196 if Loval
= Model_Num
then
3197 Loval_Incl_EP
:= Model_Num
;
3199 Loval_Incl_EP
:= Model_Num
- Small
;
3202 -- The low value excluding the end point is Small greater, but
3203 -- we do not do this exclusion if the low value is positive,
3204 -- since it can't help the size and could actually hurt by
3205 -- crossing the high bound.
3207 if UR_Is_Negative
(Loval_Incl_EP
) then
3208 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
3210 Loval_Excl_EP
:= Loval_Incl_EP
;
3213 -- Similar processing for upper bound and high value
3215 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
3217 if Hival
= Model_Num
then
3218 Hival_Incl_EP
:= Model_Num
;
3220 Hival_Incl_EP
:= Model_Num
+ Small
;
3223 if UR_Is_Positive
(Hival_Incl_EP
) then
3224 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
3226 Hival_Excl_EP
:= Hival_Incl_EP
;
3229 -- One further adjustment is needed. In the case of subtypes,
3230 -- we cannot go outside the range of the base type, or we get
3231 -- peculiarities, and the base type range is already set. This
3232 -- only applies to the Incl values, since clearly the Excl
3233 -- values are already as restricted as they are allowed to be.
3236 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
3237 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
3240 -- Get size including and excluding end points
3242 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
3243 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
3245 -- No need to exclude end-points if it does not reduce size
3247 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
3248 Loval_Excl_EP
:= Loval_Incl_EP
;
3251 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
3252 Hival_Excl_EP
:= Hival_Incl_EP
;
3255 -- Now we set the actual size to be used. We want to use the
3256 -- bounds fudged up to include the end-points but only if this
3257 -- can be done without violating a specifically given size
3258 -- size clause or causing an unacceptable increase in size.
3260 -- Case of size clause given
3262 if Has_Size_Clause
(Typ
) then
3264 -- Use the inclusive size only if it is consistent with
3265 -- the explicitly specified size.
3267 if Size_Incl_EP
<= RM_Size
(Typ
) then
3268 Actual_Lo
:= Loval_Incl_EP
;
3269 Actual_Hi
:= Hival_Incl_EP
;
3270 Actual_Size
:= Size_Incl_EP
;
3272 -- If the inclusive size is too large, we try excluding
3273 -- the end-points (will be caught later if does not work).
3276 Actual_Lo
:= Loval_Excl_EP
;
3277 Actual_Hi
:= Hival_Excl_EP
;
3278 Actual_Size
:= Size_Excl_EP
;
3281 -- Case of size clause not given
3284 -- If we have a base type whose corresponding first subtype
3285 -- has an explicit size that is large enough to include our
3286 -- end-points, then do so. There is no point in working hard
3287 -- to get a base type whose size is smaller than the specified
3288 -- size of the first subtype.
3290 First_Subt
:= First_Subtype
(Typ
);
3292 if Has_Size_Clause
(First_Subt
)
3293 and then Size_Incl_EP
<= Esize
(First_Subt
)
3295 Actual_Size
:= Size_Incl_EP
;
3296 Actual_Lo
:= Loval_Incl_EP
;
3297 Actual_Hi
:= Hival_Incl_EP
;
3299 -- If excluding the end-points makes the size smaller and
3300 -- results in a size of 8,16,32,64, then we take the smaller
3301 -- size. For the 64 case, this is compulsory. For the other
3302 -- cases, it seems reasonable. We like to include end points
3303 -- if we can, but not at the expense of moving to the next
3304 -- natural boundary of size.
3306 elsif Size_Incl_EP
/= Size_Excl_EP
3308 (Size_Excl_EP
= 8 or else
3309 Size_Excl_EP
= 16 or else
3310 Size_Excl_EP
= 32 or else
3313 Actual_Size
:= Size_Excl_EP
;
3314 Actual_Lo
:= Loval_Excl_EP
;
3315 Actual_Hi
:= Hival_Excl_EP
;
3317 -- Otherwise we can definitely include the end points
3320 Actual_Size
:= Size_Incl_EP
;
3321 Actual_Lo
:= Loval_Incl_EP
;
3322 Actual_Hi
:= Hival_Incl_EP
;
3325 -- One pathological case: normally we never fudge a low
3326 -- bound down, since it would seem to increase the size
3327 -- (if it has any effect), but for ranges containing a
3328 -- single value, or no values, the high bound can be
3329 -- small too large. Consider:
3331 -- type t is delta 2.0**(-14)
3332 -- range 131072.0 .. 0;
3334 -- That lower bound is *just* outside the range of 32
3335 -- bits, and does need fudging down in this case. Note
3336 -- that the bounds will always have crossed here, since
3337 -- the high bound will be fudged down if necessary, as
3340 -- type t is delta 2.0**(-14)
3341 -- range 131072.0 .. 131072.0;
3343 -- So we can detect the situation by looking for crossed
3344 -- bounds, and if the bounds are crossed, and the low
3345 -- bound is greater than zero, we will always back it
3346 -- off by small, since this is completely harmless.
3348 if Actual_Lo
> Actual_Hi
then
3349 if UR_Is_Positive
(Actual_Lo
) then
3350 Actual_Lo
:= Loval_Incl_EP
- Small
;
3351 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
3353 -- And of course, we need to do exactly the same parallel
3354 -- fudge for flat ranges in the negative region.
3356 elsif UR_Is_Negative
(Actual_Hi
) then
3357 Actual_Hi
:= Hival_Incl_EP
+ Small
;
3358 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
3363 Set_Realval
(Lo
, Actual_Lo
);
3364 Set_Realval
(Hi
, Actual_Hi
);
3367 -- For the decimal case, none of this fudging is required, since there
3368 -- are no end-point problems in the decimal case (the end-points are
3369 -- always included).
3372 Actual_Size
:= Fsize
(Loval
, Hival
);
3375 -- At this stage, the actual size has been calculated and the proper
3376 -- required bounds are stored in the low and high bounds.
3378 if Actual_Size
> 64 then
3379 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
3381 ("size required (^) for type& too large, maximum is 64", Typ
);
3385 -- Check size against explicit given size
3387 if Has_Size_Clause
(Typ
) then
3388 if Actual_Size
> RM_Size
(Typ
) then
3389 Error_Msg_Uint_1
:= RM_Size
(Typ
);
3390 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
3392 ("size given (^) for type& too small, minimum is ^",
3393 Size_Clause
(Typ
), Typ
);
3396 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
3399 -- Increase size to next natural boundary if no size clause given
3402 if Actual_Size
<= 8 then
3404 elsif Actual_Size
<= 16 then
3406 elsif Actual_Size
<= 32 then
3412 Init_Esize
(Typ
, Actual_Size
);
3413 Adjust_Esize_For_Alignment
(Typ
);
3416 -- If we have a base type, then expand the bounds so that they
3417 -- extend to the full width of the allocated size in bits, to
3418 -- avoid junk range checks on intermediate computations.
3420 if Base_Type
(Typ
) = Typ
then
3421 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
3422 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
3425 -- Final step is to reanalyze the bounds using the proper type
3426 -- and set the Corresponding_Integer_Value fields of the literals.
3428 Set_Etype
(Lo
, Empty
);
3429 Set_Analyzed
(Lo
, False);
3432 -- Resolve with universal fixed if the base type, and the base
3433 -- type if it is a subtype. Note we can't resolve the base type
3434 -- with itself, that would be a reference before definition.
3437 Resolve
(Lo
, Universal_Fixed
);
3442 -- Set corresponding integer value for bound
3444 Set_Corresponding_Integer_Value
3445 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
3447 -- Similar processing for high bound
3449 Set_Etype
(Hi
, Empty
);
3450 Set_Analyzed
(Hi
, False);
3454 Resolve
(Hi
, Universal_Fixed
);
3459 Set_Corresponding_Integer_Value
3460 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
3462 -- Set type of range to correspond to bounds
3464 Set_Etype
(Rng
, Etype
(Lo
));
3466 -- Set Esize to calculated size and also set RM_Size
3468 Init_Esize
(Typ
, Actual_Size
);
3470 -- Set RM_Size if not already set. If already set, check value
3473 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
3476 if RM_Size
(Typ
) /= Uint_0
then
3477 if RM_Size
(Typ
) < Minsiz
then
3478 Error_Msg_Uint_1
:= RM_Size
(Typ
);
3479 Error_Msg_Uint_2
:= Minsiz
;
3481 ("size given (^) for type& too small, minimum is ^",
3482 Size_Clause
(Typ
), Typ
);
3486 Set_RM_Size
(Typ
, Minsiz
);
3490 end Freeze_Fixed_Point_Type
;
3496 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
3500 Set_Has_Delayed_Freeze
(T
);
3501 L
:= Freeze_Entity
(T
, Sloc
(N
));
3503 if Is_Non_Empty_List
(L
) then
3504 Insert_Actions
(N
, L
);
3508 --------------------------
3509 -- Freeze_Static_Object --
3510 --------------------------
3512 procedure Freeze_Static_Object
(E
: Entity_Id
) is
3514 Cannot_Be_Static
: exception;
3515 -- Exception raised if the type of a static object cannot be made
3516 -- static. This happens if the type depends on non-global objects.
3518 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
3519 -- Called to ensure that an expression used as part of a type
3520 -- definition is statically allocatable, which means that the type
3521 -- of the expression is statically allocatable, and the expression
3522 -- is either static, or a reference to a library level constant.
3524 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
3525 -- Called to mark a type as static, checking that it is possible
3526 -- to set the type as static. If it is not possible, then the
3527 -- exception Cannot_Be_Static is raised.
3529 -----------------------------
3530 -- Ensure_Expression_Is_SA --
3531 -----------------------------
3533 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
3537 Ensure_Type_Is_SA
(Etype
(N
));
3539 if Is_Static_Expression
(N
) then
3542 elsif Nkind
(N
) = N_Identifier
then
3546 and then Ekind
(Ent
) = E_Constant
3547 and then Is_Library_Level_Entity
(Ent
)
3553 raise Cannot_Be_Static
;
3554 end Ensure_Expression_Is_SA
;
3556 -----------------------
3557 -- Ensure_Type_Is_SA --
3558 -----------------------
3560 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
3565 -- If type is library level, we are all set
3567 if Is_Library_Level_Entity
(Typ
) then
3571 -- We are also OK if the type is already marked as statically
3572 -- allocated, which means we processed it before.
3574 if Is_Statically_Allocated
(Typ
) then
3578 -- Mark type as statically allocated
3580 Set_Is_Statically_Allocated
(Typ
);
3582 -- Check that it is safe to statically allocate this type
3584 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
3585 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
3586 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
3588 elsif Is_Array_Type
(Typ
) then
3589 N
:= First_Index
(Typ
);
3590 while Present
(N
) loop
3591 Ensure_Type_Is_SA
(Etype
(N
));
3595 Ensure_Type_Is_SA
(Component_Type
(Typ
));
3597 elsif Is_Access_Type
(Typ
) then
3598 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
3602 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
3605 if T
/= Standard_Void_Type
then
3606 Ensure_Type_Is_SA
(T
);
3609 F
:= First_Formal
(Designated_Type
(Typ
));
3611 while Present
(F
) loop
3612 Ensure_Type_Is_SA
(Etype
(F
));
3618 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
3621 elsif Is_Record_Type
(Typ
) then
3622 C
:= First_Entity
(Typ
);
3624 while Present
(C
) loop
3625 if Ekind
(C
) = E_Discriminant
3626 or else Ekind
(C
) = E_Component
3628 Ensure_Type_Is_SA
(Etype
(C
));
3630 elsif Is_Type
(C
) then
3631 Ensure_Type_Is_SA
(C
);
3637 elsif Ekind
(Typ
) = E_Subprogram_Type
then
3638 Ensure_Type_Is_SA
(Etype
(Typ
));
3640 C
:= First_Formal
(Typ
);
3641 while Present
(C
) loop
3642 Ensure_Type_Is_SA
(Etype
(C
));
3647 raise Cannot_Be_Static
;
3649 end Ensure_Type_Is_SA
;
3651 -- Start of processing for Freeze_Static_Object
3654 Ensure_Type_Is_SA
(Etype
(E
));
3657 when Cannot_Be_Static
=>
3659 -- If the object that cannot be static is imported or exported,
3660 -- then we give an error message saying that this object cannot
3661 -- be imported or exported.
3663 if Is_Imported
(E
) then
3665 ("& cannot be imported (local type is not constant)", E
);
3667 -- Otherwise must be exported, something is wrong if compiler
3668 -- is marking something as statically allocated which cannot be).
3670 else pragma Assert
(Is_Exported
(E
));
3672 ("& cannot be exported (local type is not constant)", E
);
3674 end Freeze_Static_Object
;
3676 -----------------------
3677 -- Freeze_Subprogram --
3678 -----------------------
3680 procedure Freeze_Subprogram
(E
: Entity_Id
) is
3685 -- Subprogram may not have an address clause unless it is imported
3687 if Present
(Address_Clause
(E
)) then
3688 if not Is_Imported
(E
) then
3690 ("address clause can only be given " &
3691 "for imported subprogram",
3692 Name
(Address_Clause
(E
)));
3696 -- For non-foreign convention subprograms, this is where we create
3697 -- the extra formals (for accessibility level and constrained bit
3698 -- information). We delay this till the freeze point precisely so
3699 -- that we know the convention!
3701 if not Has_Foreign_Convention
(E
) then
3702 Create_Extra_Formals
(E
);
3705 -- If this is convention Ada and a Valued_Procedure, that's odd
3707 if Ekind
(E
) = E_Procedure
3708 and then Is_Valued_Procedure
(E
)
3709 and then Convention
(E
) = Convention_Ada
3712 ("?Valued_Procedure has no effect for convention Ada", E
);
3713 Set_Is_Valued_Procedure
(E
, False);
3716 -- Case of foreign convention
3721 -- For foreign conventions, do not permit return of an
3722 -- unconstrained array.
3724 -- Note: we *do* allow a return by descriptor for the VMS case,
3725 -- though here there is probably more to be done ???
3727 if Ekind
(E
) = E_Function
then
3728 Retype
:= Underlying_Type
(Etype
(E
));
3730 -- If no return type, probably some other error, e.g. a
3731 -- missing full declaration, so ignore.
3736 -- If the return type is generic, we have emitted a warning
3737 -- earlier on, and there is nothing else to check here.
3738 -- Specific instantiations may lead to erroneous behavior.
3740 elsif Is_Generic_Type
(Etype
(E
)) then
3743 elsif Is_Array_Type
(Retype
)
3744 and then not Is_Constrained
(Retype
)
3745 and then Mechanism
(E
) not in Descriptor_Codes
3748 ("convention for& does not permit returning " &
3749 "unconstrained array type", E
, E
);
3754 -- If any of the formals for an exported foreign convention
3755 -- subprogram have defaults, then emit an appropriate warning
3756 -- since this is odd (default cannot be used from non-Ada code)
3758 if Is_Exported
(E
) then
3759 F
:= First_Formal
(E
);
3760 while Present
(F
) loop
3761 if Present
(Default_Value
(F
)) then
3763 ("?parameter cannot be defaulted in non-Ada call",
3772 -- For VMS, descriptor mechanisms for parameters are allowed only
3773 -- for imported subprograms.
3775 if OpenVMS_On_Target
then
3776 if not Is_Imported
(E
) then
3777 F
:= First_Formal
(E
);
3778 while Present
(F
) loop
3779 if Mechanism
(F
) in Descriptor_Codes
then
3781 ("descriptor mechanism for parameter not permitted", F
);
3783 ("\can only be used for imported subprogram", F
);
3791 end Freeze_Subprogram
;
3793 -----------------------
3794 -- Is_Fully_Defined --
3795 -----------------------
3797 -- Should this be in Sem_Util ???
3799 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
3801 if Ekind
(T
) = E_Class_Wide_Type
then
3802 return Is_Fully_Defined
(Etype
(T
));
3804 return not Is_Private_Type
(T
)
3805 or else Present
(Full_View
(Base_Type
(T
)));
3807 end Is_Fully_Defined
;
3809 ---------------------------------
3810 -- Process_Default_Expressions --
3811 ---------------------------------
3813 procedure Process_Default_Expressions
3815 After
: in out Node_Id
)
3817 Loc
: constant Source_Ptr
:= Sloc
(E
);
3824 Set_Default_Expressions_Processed
(E
);
3826 -- A subprogram instance and its associated anonymous subprogram
3827 -- share their signature. The default expression functions are defined
3828 -- in the wrapper packages for the anonymous subprogram, and should
3829 -- not be generated again for the instance.
3831 if Is_Generic_Instance
(E
)
3832 and then Present
(Alias
(E
))
3833 and then Default_Expressions_Processed
(Alias
(E
))
3838 Formal
:= First_Formal
(E
);
3840 while Present
(Formal
) loop
3841 if Present
(Default_Value
(Formal
)) then
3843 -- We work with a copy of the default expression because we
3844 -- do not want to disturb the original, since this would mess
3845 -- up the conformance checking.
3847 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
3849 -- The analysis of the expression may generate insert actions,
3850 -- which of course must not be executed. We wrap those actions
3851 -- in a procedure that is not called, and later on eliminated.
3852 -- The following cases have no side-effects, and are analyzed
3855 if Nkind
(Dcopy
) = N_Identifier
3856 or else Nkind
(Dcopy
) = N_Expanded_Name
3857 or else Nkind
(Dcopy
) = N_Integer_Literal
3858 or else (Nkind
(Dcopy
) = N_Real_Literal
3859 and then not Vax_Float
(Etype
(Dcopy
)))
3860 or else Nkind
(Dcopy
) = N_Character_Literal
3861 or else Nkind
(Dcopy
) = N_String_Literal
3862 or else Nkind
(Dcopy
) = N_Null
3863 or else (Nkind
(Dcopy
) = N_Attribute_Reference
3865 Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
3869 -- If there is no default function, we must still do a full
3870 -- analyze call on the default value, to ensure that all
3871 -- error checks are performed, e.g. those associated with
3872 -- static evaluation. Note that this branch will always be
3873 -- taken if the analyzer is turned off (but we still need the
3876 -- Note: the setting of parent here is to meet the requirement
3877 -- that we can only analyze the expression while attached to
3878 -- the tree. Really the requirement is that the parent chain
3879 -- be set, we don't actually need to be in the tree.
3881 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
3884 -- Default expressions are resolved with their own type if the
3885 -- context is generic, to avoid anomalies with private types.
3887 if Ekind
(Scope
(E
)) = E_Generic_Package
then
3888 Resolve
(Dcopy
, Etype
(Dcopy
));
3890 Resolve
(Dcopy
, Etype
(Formal
));
3893 -- If that resolved expression will raise constraint error,
3894 -- then flag the default value as raising constraint error.
3895 -- This allows a proper error message on the calls.
3897 if Raises_Constraint_Error
(Dcopy
) then
3898 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
3901 -- If the default is a parameterless call, we use the name of
3902 -- the called function directly, and there is no body to build.
3904 elsif Nkind
(Dcopy
) = N_Function_Call
3905 and then No
(Parameter_Associations
(Dcopy
))
3909 -- Else construct and analyze the body of a wrapper procedure
3910 -- that contains an object declaration to hold the expression.
3911 -- Given that this is done only to complete the analysis, it
3912 -- simpler to build a procedure than a function which might
3913 -- involve secondary stack expansion.
3917 Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
3920 Make_Subprogram_Body
(Loc
,
3922 Make_Procedure_Specification
(Loc
,
3923 Defining_Unit_Name
=> Dnam
),
3925 Declarations
=> New_List
(
3926 Make_Object_Declaration
(Loc
,
3927 Defining_Identifier
=>
3928 Make_Defining_Identifier
(Loc
,
3929 New_Internal_Name
('T')),
3930 Object_Definition
=>
3931 New_Occurrence_Of
(Etype
(Formal
), Loc
),
3932 Expression
=> New_Copy_Tree
(Dcopy
))),
3934 Handled_Statement_Sequence
=>
3935 Make_Handled_Sequence_Of_Statements
(Loc
,
3936 Statements
=> New_List
));
3938 Set_Scope
(Dnam
, Scope
(E
));
3939 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
3940 Set_Is_Eliminated
(Dnam
);
3941 Insert_After
(After
, Dbody
);
3947 Next_Formal
(Formal
);
3950 end Process_Default_Expressions
;
3952 ----------------------------------------
3953 -- Set_Component_Alignment_If_Not_Set --
3954 ----------------------------------------
3956 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
3958 -- Ignore if not base type, subtypes don't need anything
3960 if Typ
/= Base_Type
(Typ
) then
3964 -- Do not override existing representation
3966 if Is_Packed
(Typ
) then
3969 elsif Has_Specified_Layout
(Typ
) then
3972 elsif Component_Alignment
(Typ
) /= Calign_Default
then
3976 Set_Component_Alignment
3977 (Typ
, Scope_Stack
.Table
3978 (Scope_Stack
.Last
).Component_Alignment_Default
);
3980 end Set_Component_Alignment_If_Not_Set
;
3982 ---------------------------
3983 -- Set_Debug_Info_Needed --
3984 ---------------------------
3986 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
3989 or else Needs_Debug_Info
(T
)
3990 or else Debug_Info_Off
(T
)
3994 Set_Needs_Debug_Info
(T
);
3997 if Is_Object
(T
) then
3998 Set_Debug_Info_Needed
(Etype
(T
));
4000 elsif Is_Type
(T
) then
4001 Set_Debug_Info_Needed
(Etype
(T
));
4003 if Is_Record_Type
(T
) then
4005 Ent
: Entity_Id
:= First_Entity
(T
);
4007 while Present
(Ent
) loop
4008 Set_Debug_Info_Needed
(Ent
);
4013 elsif Is_Array_Type
(T
) then
4014 Set_Debug_Info_Needed
(Component_Type
(T
));
4017 Indx
: Node_Id
:= First_Index
(T
);
4019 while Present
(Indx
) loop
4020 Set_Debug_Info_Needed
(Etype
(Indx
));
4021 Indx
:= Next_Index
(Indx
);
4025 if Is_Packed
(T
) then
4026 Set_Debug_Info_Needed
(Packed_Array_Type
(T
));
4029 elsif Is_Access_Type
(T
) then
4030 Set_Debug_Info_Needed
(Directly_Designated_Type
(T
));
4032 elsif Is_Private_Type
(T
) then
4033 Set_Debug_Info_Needed
(Full_View
(T
));
4035 elsif Is_Protected_Type
(T
) then
4036 Set_Debug_Info_Needed
(Corresponding_Record_Type
(T
));
4040 end Set_Debug_Info_Needed
;