1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Pakd
; use Exp_Pakd
;
37 with Exp_Util
; use Exp_Util
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Ghost
; use Ghost
;
40 with Layout
; use Layout
;
42 with Namet
; use Namet
;
43 with Nlists
; use Nlists
;
44 with Nmake
; use Nmake
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch7
; use Sem_Ch7
;
54 with Sem_Ch8
; use Sem_Ch8
;
55 with Sem_Ch13
; use Sem_Ch13
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Mech
; use Sem_Mech
;
58 with Sem_Prag
; use Sem_Prag
;
59 with Sem_Res
; use Sem_Res
;
60 with Sem_Util
; use Sem_Util
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Stand
; use Stand
;
64 with Targparm
; use Targparm
;
65 with Tbuild
; use Tbuild
;
66 with Ttypes
; use Ttypes
;
67 with Uintp
; use Uintp
;
68 with Urealp
; use Urealp
;
69 with Warnsw
; use Warnsw
;
71 package body Freeze
is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
78 -- Typ is a type that is being frozen. If no size clause is given,
79 -- but a default Esize has been computed, then this default Esize is
80 -- adjusted up if necessary to be consistent with a given alignment,
81 -- but never to a value greater than Long_Long_Integer'Size. This
82 -- is used for all discrete types and for fixed-point types.
84 procedure Build_And_Analyze_Renamed_Body
87 After
: in out Node_Id
);
88 -- Build body for a renaming declaration, insert in tree and analyze
90 procedure Check_Address_Clause
(E
: Entity_Id
);
91 -- Apply legality checks to address clauses for object declarations,
92 -- at the point the object is frozen. Also ensure any initialization is
93 -- performed only after the object has been frozen.
95 procedure Check_Component_Storage_Order
96 (Encl_Type
: Entity_Id
;
99 Comp_ADC_Present
: out Boolean);
100 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
101 -- clause, verify that the component type has an explicit and compatible
102 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
103 -- entity of the component under consideration. For an Encl_Type that
104 -- does not have a Scalar_Storage_Order attribute definition clause,
105 -- verify that the component also does not have such a clause.
106 -- ADC is the attribute definition clause if present (or Empty). On return,
107 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
108 -- attribute definition clause.
110 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
);
111 -- When an expression function is frozen by a use of it, the expression
112 -- itself is frozen. Check that the expression does not include references
113 -- to deferred constants without completion. We report this at the freeze
114 -- point of the function, to provide a better error message.
116 -- In most cases the expression itself is frozen by the time the function
117 -- itself is frozen, because the formals will be frozen by then. However,
118 -- Attribute references to outer types are freeze points for those types;
119 -- this routine generates the required freeze nodes for them.
121 procedure Check_Strict_Alignment
(E
: Entity_Id
);
122 -- E is a base type. If E is tagged or has a component that is aliased
123 -- or tagged or contains something this is aliased or tagged, set
126 procedure Check_Unsigned_Type
(E
: Entity_Id
);
127 pragma Inline
(Check_Unsigned_Type
);
128 -- If E is a fixed-point or discrete type, then all the necessary work
129 -- to freeze it is completed except for possible setting of the flag
130 -- Is_Unsigned_Type, which is done by this procedure. The call has no
131 -- effect if the entity E is not a discrete or fixed-point type.
133 procedure Freeze_And_Append
136 Result
: in out List_Id
);
137 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
138 -- nodes to Result, modifying Result from No_List if necessary. N has
139 -- the same usage as in Freeze_Entity.
141 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
142 -- Freeze enumeration type. The Esize field is set as processing
143 -- proceeds (i.e. set by default when the type is declared and then
144 -- adjusted by rep clauses. What this procedure does is to make sure
145 -- that if a foreign convention is specified, and no specific size
146 -- is given, then the size must be at least Integer'Size.
148 procedure Freeze_Static_Object
(E
: Entity_Id
);
149 -- If an object is frozen which has Is_Statically_Allocated set, then
150 -- all referenced types must also be marked with this flag. This routine
151 -- is in charge of meeting this requirement for the object entity E.
153 procedure Freeze_Subprogram
(E
: Entity_Id
);
154 -- Perform freezing actions for a subprogram (create extra formals,
155 -- and set proper default mechanism values). Note that this routine
156 -- is not called for internal subprograms, for which neither of these
157 -- actions is needed (or desirable, we do not want for example to have
158 -- these extra formals present in initialization procedures, where they
159 -- would serve no purpose). In this call E is either a subprogram or
160 -- a subprogram type (i.e. an access to a subprogram).
162 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
163 -- True if T is not private and has no private components, or has a full
164 -- view. Used to determine whether the designated type of an access type
165 -- should be frozen when the access type is frozen. This is done when an
166 -- allocator is frozen, or an expression that may involve attributes of
167 -- the designated type. Otherwise freezing the access type does not freeze
168 -- the designated type.
170 procedure Process_Default_Expressions
172 After
: in out Node_Id
);
173 -- This procedure is called for each subprogram to complete processing of
174 -- default expressions at the point where all types are known to be frozen.
175 -- The expressions must be analyzed in full, to make sure that all error
176 -- processing is done (they have only been pre-analyzed). If the expression
177 -- is not an entity or literal, its analysis may generate code which must
178 -- not be executed. In that case we build a function body to hold that
179 -- code. This wrapper function serves no other purpose (it used to be
180 -- called to evaluate the default, but now the default is inlined at each
183 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
184 -- Typ is a record or array type that is being frozen. This routine sets
185 -- the default component alignment from the scope stack values if the
186 -- alignment is otherwise not specified.
188 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
189 -- As each entity is frozen, this routine is called to deal with the
190 -- setting of Debug_Info_Needed for the entity. This flag is set if
191 -- the entity comes from source, or if we are in Debug_Generated_Code
192 -- mode or if the -gnatdV debug flag is set. However, it never sets
193 -- the flag if Debug_Info_Off is set. This procedure also ensures that
194 -- subsidiary entities have the flag set as required.
196 procedure Set_SSO_From_Default
(T
: Entity_Id
);
197 -- T is a record or array type that is being frozen. If it is a base type,
198 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
199 -- will be set appropriately. Note that an explicit occurrence of aspect
200 -- Scalar_Storage_Order or an explicit setting of this aspect with an
201 -- attribute definition clause occurs, then these two flags are reset in
202 -- any case, so call will have no effect.
204 procedure Undelay_Type
(T
: Entity_Id
);
205 -- T is a type of a component that we know to be an Itype. We don't want
206 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
207 -- Full_View or Corresponding_Record_Type.
209 procedure Warn_Overlay
213 -- Expr is the expression for an address clause for entity Nam whose type
214 -- is Typ. If Typ has a default initialization, and there is no explicit
215 -- initialization in the source declaration, check whether the address
216 -- clause might cause overlaying of an entity, and emit a warning on the
217 -- side effect that the initialization will cause.
219 -------------------------------
220 -- Adjust_Esize_For_Alignment --
221 -------------------------------
223 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
227 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
228 Align
:= Alignment_In_Bits
(Typ
);
230 if Align
> Esize
(Typ
)
231 and then Align
<= Standard_Long_Long_Integer_Size
233 Set_Esize
(Typ
, Align
);
236 end Adjust_Esize_For_Alignment
;
238 ------------------------------------
239 -- Build_And_Analyze_Renamed_Body --
240 ------------------------------------
242 procedure Build_And_Analyze_Renamed_Body
245 After
: in out Node_Id
)
247 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
248 Ent
: constant Entity_Id
:= Defining_Entity
(Decl
);
250 Renamed_Subp
: Entity_Id
;
253 -- If the renamed subprogram is intrinsic, there is no need for a
254 -- wrapper body: we set the alias that will be called and expanded which
255 -- completes the declaration. This transformation is only legal if the
256 -- renamed entity has already been elaborated.
258 -- Note that it is legal for a renaming_as_body to rename an intrinsic
259 -- subprogram, as long as the renaming occurs before the new entity
260 -- is frozen (RM 8.5.4 (5)).
262 if Nkind
(Body_Decl
) = N_Subprogram_Renaming_Declaration
263 and then Is_Entity_Name
(Name
(Body_Decl
))
265 Renamed_Subp
:= Entity
(Name
(Body_Decl
));
267 Renamed_Subp
:= Empty
;
270 if Present
(Renamed_Subp
)
271 and then Is_Intrinsic_Subprogram
(Renamed_Subp
)
273 (not In_Same_Source_Unit
(Renamed_Subp
, Ent
)
274 or else Sloc
(Renamed_Subp
) < Sloc
(Ent
))
276 -- We can make the renaming entity intrinsic if the renamed function
277 -- has an interface name, or if it is one of the shift/rotate
278 -- operations known to the compiler.
281 (Present
(Interface_Name
(Renamed_Subp
))
282 or else Nam_In
(Chars
(Renamed_Subp
), Name_Rotate_Left
,
286 Name_Shift_Right_Arithmetic
))
288 Set_Interface_Name
(Ent
, Interface_Name
(Renamed_Subp
));
290 if Present
(Alias
(Renamed_Subp
)) then
291 Set_Alias
(Ent
, Alias
(Renamed_Subp
));
293 Set_Alias
(Ent
, Renamed_Subp
);
296 Set_Is_Intrinsic_Subprogram
(Ent
);
297 Set_Has_Completion
(Ent
);
300 Body_Node
:= Build_Renamed_Body
(Decl
, New_S
);
301 Insert_After
(After
, Body_Node
);
302 Mark_Rewrite_Insertion
(Body_Node
);
306 end Build_And_Analyze_Renamed_Body
;
308 ------------------------
309 -- Build_Renamed_Body --
310 ------------------------
312 function Build_Renamed_Body
314 New_S
: Entity_Id
) return Node_Id
316 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
317 -- We use for the source location of the renamed body, the location of
318 -- the spec entity. It might seem more natural to use the location of
319 -- the renaming declaration itself, but that would be wrong, since then
320 -- the body we create would look as though it was created far too late,
321 -- and this could cause problems with elaboration order analysis,
322 -- particularly in connection with instantiations.
324 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
325 Nam
: constant Node_Id
:= Name
(N
);
327 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
328 Actuals
: List_Id
:= No_List
;
333 O_Formal
: Entity_Id
;
334 Param_Spec
: Node_Id
;
336 Pref
: Node_Id
:= Empty
;
337 -- If the renamed entity is a primitive operation given in prefix form,
338 -- the prefix is the target object and it has to be added as the first
339 -- actual in the generated call.
342 -- Determine the entity being renamed, which is the target of the call
343 -- statement. If the name is an explicit dereference, this is a renaming
344 -- of a subprogram type rather than a subprogram. The name itself is
347 if Nkind
(Nam
) = N_Selected_Component
then
348 Old_S
:= Entity
(Selector_Name
(Nam
));
350 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
351 Old_S
:= Etype
(Nam
);
353 elsif Nkind
(Nam
) = N_Indexed_Component
then
354 if Is_Entity_Name
(Prefix
(Nam
)) then
355 Old_S
:= Entity
(Prefix
(Nam
));
357 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
360 elsif Nkind
(Nam
) = N_Character_Literal
then
361 Old_S
:= Etype
(New_S
);
364 Old_S
:= Entity
(Nam
);
367 if Is_Entity_Name
(Nam
) then
369 -- If the renamed entity is a predefined operator, retain full name
370 -- to ensure its visibility.
372 if Ekind
(Old_S
) = E_Operator
373 and then Nkind
(Nam
) = N_Expanded_Name
375 Call_Name
:= New_Copy
(Name
(N
));
377 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
381 if Nkind
(Nam
) = N_Selected_Component
382 and then Present
(First_Formal
(Old_S
))
384 (Is_Controlling_Formal
(First_Formal
(Old_S
))
385 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
388 -- Retrieve the target object, to be added as a first actual
391 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
392 Pref
:= Prefix
(Nam
);
395 Call_Name
:= New_Copy
(Name
(N
));
398 -- Original name may have been overloaded, but is fully resolved now
400 Set_Is_Overloaded
(Call_Name
, False);
403 -- For simple renamings, subsequent calls can be expanded directly as
404 -- calls to the renamed entity. The body must be generated in any case
405 -- for calls that may appear elsewhere. This is not done in the case
406 -- where the subprogram is an instantiation because the actual proper
407 -- body has not been built yet.
409 if Ekind_In
(Old_S
, E_Function
, E_Procedure
)
410 and then Nkind
(Decl
) = N_Subprogram_Declaration
411 and then not Is_Generic_Instance
(Old_S
)
413 Set_Body_To_Inline
(Decl
, Old_S
);
416 -- Check whether the return type is a limited view. If the subprogram
417 -- is already frozen the generated body may have a non-limited view
418 -- of the type, that must be used, because it is the one in the spec
419 -- of the renaming declaration.
421 if Ekind
(Old_S
) = E_Function
422 and then Is_Entity_Name
(Result_Definition
(Spec
))
425 Ret_Type
: constant Entity_Id
:= Etype
(Result_Definition
(Spec
));
427 if Ekind
(Ret_Type
) = E_Incomplete_Type
428 and then Present
(Non_Limited_View
(Ret_Type
))
430 Set_Result_Definition
(Spec
,
431 New_Occurrence_Of
(Non_Limited_View
(Ret_Type
), Loc
));
436 -- The body generated for this renaming is an internal artifact, and
437 -- does not constitute a freeze point for the called entity.
439 Set_Must_Not_Freeze
(Call_Name
);
441 Formal
:= First_Formal
(Defining_Entity
(Decl
));
443 if Present
(Pref
) then
445 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
446 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
449 -- The controlling formal may be an access parameter, or the
450 -- actual may be an access value, so adjust accordingly.
452 if Is_Access_Type
(Pref_Type
)
453 and then not Is_Access_Type
(Form_Type
)
456 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
458 elsif Is_Access_Type
(Form_Type
)
459 and then not Is_Access_Type
(Pref
)
462 (Make_Attribute_Reference
(Loc
,
463 Attribute_Name
=> Name_Access
,
464 Prefix
=> Relocate_Node
(Pref
)));
466 Actuals
:= New_List
(Pref
);
470 elsif Present
(Formal
) then
477 if Present
(Formal
) then
478 while Present
(Formal
) loop
479 Append
(New_Occurrence_Of
(Formal
, Loc
), Actuals
);
480 Next_Formal
(Formal
);
484 -- If the renamed entity is an entry, inherit its profile. For other
485 -- renamings as bodies, both profiles must be subtype conformant, so it
486 -- is not necessary to replace the profile given in the declaration.
487 -- However, default values that are aggregates are rewritten when
488 -- partially analyzed, so we recover the original aggregate to insure
489 -- that subsequent conformity checking works. Similarly, if the default
490 -- expression was constant-folded, recover the original expression.
492 Formal
:= First_Formal
(Defining_Entity
(Decl
));
494 if Present
(Formal
) then
495 O_Formal
:= First_Formal
(Old_S
);
496 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
497 while Present
(Formal
) loop
498 if Is_Entry
(Old_S
) then
499 if Nkind
(Parameter_Type
(Param_Spec
)) /=
502 Set_Etype
(Formal
, Etype
(O_Formal
));
503 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
506 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
507 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
508 Nkind
(Default_Value
(O_Formal
))
510 Set_Expression
(Param_Spec
,
511 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
514 Next_Formal
(Formal
);
515 Next_Formal
(O_Formal
);
520 -- If the renamed entity is a function, the generated body contains a
521 -- return statement. Otherwise, build a procedure call. If the entity is
522 -- an entry, subsequent analysis of the call will transform it into the
523 -- proper entry or protected operation call. If the renamed entity is
524 -- a character literal, return it directly.
526 if Ekind
(Old_S
) = E_Function
527 or else Ekind
(Old_S
) = E_Operator
528 or else (Ekind
(Old_S
) = E_Subprogram_Type
529 and then Etype
(Old_S
) /= Standard_Void_Type
)
532 Make_Simple_Return_Statement
(Loc
,
534 Make_Function_Call
(Loc
,
536 Parameter_Associations
=> Actuals
));
538 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
540 Make_Simple_Return_Statement
(Loc
,
541 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
543 elsif Nkind
(Nam
) = N_Character_Literal
then
545 Make_Simple_Return_Statement
(Loc
,
546 Expression
=> Call_Name
);
550 Make_Procedure_Call_Statement
(Loc
,
552 Parameter_Associations
=> Actuals
);
555 -- Create entities for subprogram body and formals
557 Set_Defining_Unit_Name
(Spec
,
558 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
560 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
561 while Present
(Param_Spec
) loop
562 Set_Defining_Identifier
(Param_Spec
,
563 Make_Defining_Identifier
(Loc
,
564 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
569 Make_Subprogram_Body
(Loc
,
570 Specification
=> Spec
,
571 Declarations
=> New_List
,
572 Handled_Statement_Sequence
=>
573 Make_Handled_Sequence_Of_Statements
(Loc
,
574 Statements
=> New_List
(Call_Node
)));
576 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
578 Make_Subprogram_Declaration
(Loc
,
579 Specification
=> Specification
(N
)));
582 -- Link the body to the entity whose declaration it completes. If
583 -- the body is analyzed when the renamed entity is frozen, it may
584 -- be necessary to restore the proper scope (see package Exp_Ch13).
586 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
587 and then Present
(Corresponding_Spec
(N
))
589 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
591 Set_Corresponding_Spec
(Body_Node
, New_S
);
595 end Build_Renamed_Body
;
597 --------------------------
598 -- Check_Address_Clause --
599 --------------------------
601 procedure Check_Address_Clause
(E
: Entity_Id
) is
602 Addr
: constant Node_Id
:= Address_Clause
(E
);
604 Decl
: constant Node_Id
:= Declaration_Node
(E
);
605 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
606 Typ
: constant Entity_Id
:= Etype
(E
);
608 Tag_Assign
: Node_Id
;
611 if Present
(Addr
) then
612 Expr
:= Expression
(Addr
);
614 if Needs_Constant_Address
(Decl
, Typ
) then
615 Check_Constant_Address_Clause
(Expr
, E
);
617 -- Has_Delayed_Freeze was set on E when the address clause was
618 -- analyzed, and must remain set because we want the address
619 -- clause to be elaborated only after any entity it references
620 -- has been elaborated.
623 -- If Rep_Clauses are to be ignored, remove address clause from
624 -- list attached to entity, because it may be illegal for gigi,
625 -- for example by breaking order of elaboration..
627 if Ignore_Rep_Clauses
then
632 Rep
:= First_Rep_Item
(E
);
635 Set_First_Rep_Item
(E
, Next_Rep_Item
(Addr
));
639 and then Next_Rep_Item
(Rep
) /= Addr
641 Rep
:= Next_Rep_Item
(Rep
);
645 if Present
(Rep
) then
646 Set_Next_Rep_Item
(Rep
, Next_Rep_Item
(Addr
));
650 -- And now remove the address clause
652 Kill_Rep_Clause
(Addr
);
654 elsif not Error_Posted
(Expr
)
655 and then not Needs_Finalization
(Typ
)
657 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
660 if Present
(Expression
(Decl
)) then
662 -- Capture initialization value at point of declaration,
663 -- and make explicit assignment legal, because object may
666 Remove_Side_Effects
(Expression
(Decl
));
667 Lhs
:= New_Occurrence_Of
(E
, Loc
);
668 Set_Assignment_OK
(Lhs
);
670 -- Move initialization to freeze actions (once the object has
671 -- been frozen, and the address clause alignment check has been
674 Append_Freeze_Action
(E
,
675 Make_Assignment_Statement
(Loc
,
677 Expression
=> Expression
(Decl
)));
679 Set_No_Initialization
(Decl
);
681 -- If the objet is tagged, check whether the tag must be
682 -- reassigned expliitly.
684 Tag_Assign
:= Make_Tag_Assignment
(Decl
);
685 if Present
(Tag_Assign
) then
686 Append_Freeze_Action
(E
, Tag_Assign
);
690 end Check_Address_Clause
;
692 -----------------------------
693 -- Check_Compile_Time_Size --
694 -----------------------------
696 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
698 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
699 -- Sets the compile time known size (32 bits or less) in the Esize
700 -- field, of T checking for a size clause that was given which attempts
701 -- to give a smaller size, and also checking for an alignment clause.
703 function Size_Known
(T
: Entity_Id
) return Boolean;
704 -- Recursive function that does all the work
706 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
707 -- If T is a constrained subtype, its size is not known if any of its
708 -- discriminant constraints is not static and it is not a null record.
709 -- The test is conservative and doesn't check that the components are
710 -- in fact constrained by non-static discriminant values. Could be made
717 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
722 -- Check for bad size clause given
724 elsif Has_Size_Clause
(T
) then
725 if RM_Size
(T
) < S
then
726 Error_Msg_Uint_1
:= S
;
728 ("size for& too small, minimum allowed is ^",
732 -- Set size if not set already
734 elsif Unknown_RM_Size
(T
) then
743 function Size_Known
(T
: Entity_Id
) return Boolean is
751 if Size_Known_At_Compile_Time
(T
) then
754 -- Always True for scalar types. This is true even for generic formal
755 -- scalar types. We used to return False in the latter case, but the
756 -- size is known at compile time, even in the template, we just do
757 -- not know the exact size but that's not the point of this routine.
759 elsif Is_Scalar_Type
(T
)
760 or else Is_Task_Type
(T
)
766 elsif Is_Array_Type
(T
) then
768 -- String literals always have known size, and we can set it
770 if Ekind
(T
) = E_String_Literal_Subtype
then
771 Set_Small_Size
(T
, Component_Size
(T
)
772 * String_Literal_Length
(T
));
775 -- Unconstrained types never have known at compile time size
777 elsif not Is_Constrained
(T
) then
780 -- Don't do any recursion on type with error posted, since we may
781 -- have a malformed type that leads us into a loop.
783 elsif Error_Posted
(T
) then
786 -- Otherwise if component size unknown, then array size unknown
788 elsif not Size_Known
(Component_Type
(T
)) then
792 -- Check for all indexes static, and also compute possible size
793 -- (in case it is less than 32 and may be packable).
796 Esiz
: Uint
:= Component_Size
(T
);
800 Index
:= First_Index
(T
);
801 while Present
(Index
) loop
802 if Nkind
(Index
) = N_Range
then
803 Get_Index_Bounds
(Index
, Low
, High
);
805 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
809 Low
:= Type_Low_Bound
(Etype
(Index
));
810 High
:= Type_High_Bound
(Etype
(Index
));
813 if not Compile_Time_Known_Value
(Low
)
814 or else not Compile_Time_Known_Value
(High
)
815 or else Etype
(Index
) = Any_Type
820 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
832 Set_Small_Size
(T
, Esiz
);
836 -- Access types always have known at compile time sizes
838 elsif Is_Access_Type
(T
) then
841 -- For non-generic private types, go to underlying type if present
843 elsif Is_Private_Type
(T
)
844 and then not Is_Generic_Type
(T
)
845 and then Present
(Underlying_Type
(T
))
847 -- Don't do any recursion on type with error posted, since we may
848 -- have a malformed type that leads us into a loop.
850 if Error_Posted
(T
) then
853 return Size_Known
(Underlying_Type
(T
));
858 elsif Is_Record_Type
(T
) then
860 -- A class-wide type is never considered to have a known size
862 if Is_Class_Wide_Type
(T
) then
865 -- A subtype of a variant record must not have non-static
866 -- discriminated components.
868 elsif T
/= Base_Type
(T
)
869 and then not Static_Discriminated_Components
(T
)
873 -- Don't do any recursion on type with error posted, since we may
874 -- have a malformed type that leads us into a loop.
876 elsif Error_Posted
(T
) then
880 -- Now look at the components of the record
883 -- The following two variables are used to keep track of the
884 -- size of packed records if we can tell the size of the packed
885 -- record in the front end. Packed_Size_Known is True if so far
886 -- we can figure out the size. It is initialized to True for a
887 -- packed record, unless the record has discriminants or atomic
888 -- components or independent components.
890 -- The reason we eliminate the discriminated case is that
891 -- we don't know the way the back end lays out discriminated
892 -- packed records. If Packed_Size_Known is True, then
893 -- Packed_Size is the size in bits so far.
895 Packed_Size_Known
: Boolean :=
897 and then not Has_Discriminants
(T
)
898 and then not Has_Atomic_Components
(T
)
899 and then not Has_Independent_Components
(T
);
901 Packed_Size
: Uint
:= Uint_0
;
902 -- Size in bits so far
905 -- Test for variant part present
907 if Has_Discriminants
(T
)
908 and then Present
(Parent
(T
))
909 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
910 and then Nkind
(Type_Definition
(Parent
(T
))) =
912 and then not Null_Present
(Type_Definition
(Parent
(T
)))
914 Present
(Variant_Part
915 (Component_List
(Type_Definition
(Parent
(T
)))))
917 -- If variant part is present, and type is unconstrained,
918 -- then we must have defaulted discriminants, or a size
919 -- clause must be present for the type, or else the size
920 -- is definitely not known at compile time.
922 if not Is_Constrained
(T
)
924 No
(Discriminant_Default_Value
(First_Discriminant
(T
)))
925 and then Unknown_RM_Size
(T
)
931 -- Loop through components
933 Comp
:= First_Component_Or_Discriminant
(T
);
934 while Present
(Comp
) loop
935 Ctyp
:= Etype
(Comp
);
937 -- We do not know the packed size if there is a component
938 -- clause present (we possibly could, but this would only
939 -- help in the case of a record with partial rep clauses.
940 -- That's because in the case of full rep clauses, the
941 -- size gets figured out anyway by a different circuit).
943 if Present
(Component_Clause
(Comp
)) then
944 Packed_Size_Known
:= False;
947 -- We do not know the packed size if we have a by reference
948 -- type, or an atomic type or an atomic component, or an
949 -- aliased component (because packing does not touch these).
952 or else Is_Atomic
(Comp
)
953 or else Is_By_Reference_Type
(Ctyp
)
954 or else Is_Aliased
(Comp
)
956 Packed_Size_Known
:= False;
959 -- We need to identify a component that is an array where
960 -- the index type is an enumeration type with non-standard
961 -- representation, and some bound of the type depends on a
964 -- This is because gigi computes the size by doing a
965 -- substitution of the appropriate discriminant value in
966 -- the size expression for the base type, and gigi is not
967 -- clever enough to evaluate the resulting expression (which
968 -- involves a call to rep_to_pos) at compile time.
970 -- It would be nice if gigi would either recognize that
971 -- this expression can be computed at compile time, or
972 -- alternatively figured out the size from the subtype
973 -- directly, where all the information is at hand ???
975 if Is_Array_Type
(Etype
(Comp
))
976 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
979 Ocomp
: constant Entity_Id
:=
980 Original_Record_Component
(Comp
);
981 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
987 Ind
:= First_Index
(OCtyp
);
988 while Present
(Ind
) loop
989 Indtyp
:= Etype
(Ind
);
991 if Is_Enumeration_Type
(Indtyp
)
992 and then Has_Non_Standard_Rep
(Indtyp
)
994 Lo
:= Type_Low_Bound
(Indtyp
);
995 Hi
:= Type_High_Bound
(Indtyp
);
997 if Is_Entity_Name
(Lo
)
998 and then Ekind
(Entity
(Lo
)) = E_Discriminant
1002 elsif Is_Entity_Name
(Hi
)
1003 and then Ekind
(Entity
(Hi
)) = E_Discriminant
1014 -- Clearly size of record is not known if the size of one of
1015 -- the components is not known.
1017 if not Size_Known
(Ctyp
) then
1021 -- Accumulate packed size if possible
1023 if Packed_Size_Known
then
1025 -- We can only deal with elementary types, since for
1026 -- non-elementary components, alignment enters into the
1027 -- picture, and we don't know enough to handle proper
1028 -- alignment in this context. Packed arrays count as
1029 -- elementary if the representation is a modular type.
1031 if Is_Elementary_Type
(Ctyp
)
1032 or else (Is_Array_Type
(Ctyp
)
1034 (Packed_Array_Impl_Type
(Ctyp
))
1035 and then Is_Modular_Integer_Type
1036 (Packed_Array_Impl_Type
(Ctyp
)))
1038 -- Packed size unknown if we have an atomic type
1039 -- or a by reference type, since the back end
1040 -- knows how these are layed out.
1043 or else Is_By_Reference_Type
(Ctyp
)
1045 Packed_Size_Known
:= False;
1047 -- If RM_Size is known and static, then we can keep
1048 -- accumulating the packed size
1050 elsif Known_Static_RM_Size
(Ctyp
) then
1052 -- A little glitch, to be removed sometime ???
1053 -- gigi does not understand zero sizes yet.
1055 if RM_Size
(Ctyp
) = Uint_0
then
1056 Packed_Size_Known
:= False;
1058 -- Normal case where we can keep accumulating the
1059 -- packed array size.
1062 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
1065 -- If we have a field whose RM_Size is not known then
1066 -- we can't figure out the packed size here.
1069 Packed_Size_Known
:= False;
1072 -- If we have a non-elementary type we can't figure out
1073 -- the packed array size (alignment issues).
1076 Packed_Size_Known
:= False;
1080 Next_Component_Or_Discriminant
(Comp
);
1083 if Packed_Size_Known
then
1084 Set_Small_Size
(T
, Packed_Size
);
1090 -- All other cases, size not known at compile time
1097 -------------------------------------
1098 -- Static_Discriminated_Components --
1099 -------------------------------------
1101 function Static_Discriminated_Components
1102 (T
: Entity_Id
) return Boolean
1104 Constraint
: Elmt_Id
;
1107 if Has_Discriminants
(T
)
1108 and then Present
(Discriminant_Constraint
(T
))
1109 and then Present
(First_Component
(T
))
1111 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
1112 while Present
(Constraint
) loop
1113 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
1117 Next_Elmt
(Constraint
);
1122 end Static_Discriminated_Components
;
1124 -- Start of processing for Check_Compile_Time_Size
1127 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
1128 end Check_Compile_Time_Size
;
1130 -----------------------------------
1131 -- Check_Component_Storage_Order --
1132 -----------------------------------
1134 procedure Check_Component_Storage_Order
1135 (Encl_Type
: Entity_Id
;
1138 Comp_ADC_Present
: out Boolean)
1140 Comp_Type
: Entity_Id
;
1144 Comp_Byte_Aligned
: Boolean;
1145 -- Set for the record case, True if Comp starts on a byte boundary
1146 -- (in which case it is allowed to have different storage order).
1148 Comp_SSO_Differs
: Boolean;
1149 -- Set True when the component is a nested composite, and it does not
1150 -- have the same scalar storage order as Encl_Type.
1152 Component_Aliased
: Boolean;
1157 if Present
(Comp
) then
1159 Comp_Type
:= Etype
(Comp
);
1161 if Is_Tag
(Comp
) then
1162 Comp_Byte_Aligned
:= True;
1163 Component_Aliased
:= False;
1166 -- If a component clause is present, check if the component starts
1167 -- on a storage element boundary. Otherwise conservatively assume
1168 -- it does so only in the case where the record is not packed.
1170 if Present
(Component_Clause
(Comp
)) then
1171 Comp_Byte_Aligned
:=
1172 Normalized_First_Bit
(Comp
) mod System_Storage_Unit
= 0;
1174 Comp_Byte_Aligned
:= not Is_Packed
(Encl_Type
);
1177 Component_Aliased
:= Is_Aliased
(Comp
);
1183 Err_Node
:= Encl_Type
;
1184 Comp_Type
:= Component_Type
(Encl_Type
);
1186 Component_Aliased
:= Has_Aliased_Components
(Encl_Type
);
1189 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1190 -- the attribute definition clause is attached to the first subtype.
1192 Comp_Type
:= Base_Type
(Comp_Type
);
1193 Comp_ADC
:= Get_Attribute_Definition_Clause
1194 (First_Subtype
(Comp_Type
),
1195 Attribute_Scalar_Storage_Order
);
1196 Comp_ADC_Present
:= Present
(Comp_ADC
);
1198 -- Case of record or array component: check storage order compatibility
1200 if Is_Record_Type
(Comp_Type
) or else Is_Array_Type
(Comp_Type
) then
1202 Reverse_Storage_Order
(Encl_Type
)
1204 Reverse_Storage_Order
(Comp_Type
);
1206 -- Parent and extension must have same storage order
1208 if Present
(Comp
) and then Chars
(Comp
) = Name_uParent
then
1209 if Comp_SSO_Differs
then
1211 ("record extension must have same scalar storage order as "
1212 & "parent", Err_Node
);
1215 -- If enclosing composite has explicit SSO then nested composite must
1216 -- have explicit SSO as well.
1218 elsif Present
(ADC
) and then No
(Comp_ADC
) then
1219 Error_Msg_N
("nested composite must have explicit scalar "
1220 & "storage order", Err_Node
);
1222 -- If component and composite SSO differs, check that component
1223 -- falls on byte boundaries and isn't packed.
1225 elsif Comp_SSO_Differs
then
1227 -- Component SSO differs from enclosing composite:
1229 -- Reject if component is a packed array, as it may be represented
1230 -- as a scalar internally.
1232 if Is_Packed_Array
(Comp_Type
) then
1234 ("type of packed component must have same scalar "
1235 & "storage order as enclosing composite", Err_Node
);
1237 -- Reject if composite is a packed array, as it may be rewritten
1238 -- into an array of scalars.
1240 elsif Is_Packed_Array
(Encl_Type
) then
1241 Error_Msg_N
("type of packed array must have same scalar "
1242 & "storage order as component", Err_Node
);
1244 -- Reject if not byte aligned
1246 elsif Is_Record_Type
(Encl_Type
)
1247 and then not Comp_Byte_Aligned
1250 ("type of non-byte-aligned component must have same scalar "
1251 & "storage order as enclosing composite", Err_Node
);
1255 -- Enclosing type has explicit SSO: non-composite component must not
1258 elsif Present
(ADC
) and then Component_Aliased
then
1260 ("aliased component not permitted for type with "
1261 & "explicit Scalar_Storage_Order", Err_Node
);
1263 end Check_Component_Storage_Order
;
1265 -----------------------------
1266 -- Check_Debug_Info_Needed --
1267 -----------------------------
1269 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
1271 if Debug_Info_Off
(T
) then
1274 elsif Comes_From_Source
(T
)
1275 or else Debug_Generated_Code
1276 or else Debug_Flag_VV
1277 or else Needs_Debug_Info
(T
)
1279 Set_Debug_Info_Needed
(T
);
1281 end Check_Debug_Info_Needed
;
1283 -------------------------------
1284 -- Check_Expression_Function --
1285 -------------------------------
1287 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
) is
1290 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
;
1291 -- Function to search for deferred constant
1297 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
is
1299 -- When a constant is initialized with the result of a dispatching
1300 -- call, the constant declaration is rewritten as a renaming of the
1301 -- displaced function result. This scenario is not a premature use of
1302 -- a constant even though the Has_Completion flag is not set.
1304 if Is_Entity_Name
(Nod
)
1305 and then Present
(Entity
(Nod
))
1306 and then Ekind
(Entity
(Nod
)) = E_Constant
1307 and then Scope
(Entity
(Nod
)) = Current_Scope
1308 and then Nkind
(Declaration_Node
(Entity
(Nod
))) =
1309 N_Object_Declaration
1310 and then not Is_Imported
(Entity
(Nod
))
1311 and then not Has_Completion
(Entity
(Nod
))
1314 ("premature use of& in call or instance", N
, Entity
(Nod
));
1316 elsif Nkind
(Nod
) = N_Attribute_Reference
then
1317 Analyze
(Prefix
(Nod
));
1319 if Is_Entity_Name
(Prefix
(Nod
))
1320 and then Is_Type
(Entity
(Prefix
(Nod
)))
1322 Freeze_Before
(N
, Entity
(Prefix
(Nod
)));
1329 procedure Check_Deferred
is new Traverse_Proc
(Find_Constant
);
1331 -- Start of processing for Check_Expression_Function
1334 Decl
:= Original_Node
(Unit_Declaration_Node
(Nam
));
1336 if Scope
(Nam
) = Current_Scope
1337 and then Nkind
(Decl
) = N_Expression_Function
1339 Check_Deferred
(Expression
(Decl
));
1341 end Check_Expression_Function
;
1343 ----------------------------
1344 -- Check_Strict_Alignment --
1345 ----------------------------
1347 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1351 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1352 Set_Strict_Alignment
(E
);
1354 elsif Is_Array_Type
(E
) then
1355 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1357 elsif Is_Record_Type
(E
) then
1358 if Is_Limited_Record
(E
) then
1359 Set_Strict_Alignment
(E
);
1363 Comp
:= First_Component
(E
);
1364 while Present
(Comp
) loop
1365 if not Is_Type
(Comp
)
1366 and then (Strict_Alignment
(Etype
(Comp
))
1367 or else Is_Aliased
(Comp
))
1369 Set_Strict_Alignment
(E
);
1373 Next_Component
(Comp
);
1376 end Check_Strict_Alignment
;
1378 -------------------------
1379 -- Check_Unsigned_Type --
1380 -------------------------
1382 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1383 Ancestor
: Entity_Id
;
1388 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1392 -- Do not attempt to analyze case where range was in error
1394 if No
(Scalar_Range
(E
)) or else Error_Posted
(Scalar_Range
(E
)) then
1398 -- The situation that is non trivial is something like
1400 -- subtype x1 is integer range -10 .. +10;
1401 -- subtype x2 is x1 range 0 .. V1;
1402 -- subtype x3 is x2 range V2 .. V3;
1403 -- subtype x4 is x3 range V4 .. V5;
1405 -- where Vn are variables. Here the base type is signed, but we still
1406 -- know that x4 is unsigned because of the lower bound of x2.
1408 -- The only way to deal with this is to look up the ancestor chain
1412 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1416 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1418 if Compile_Time_Known_Value
(Lo_Bound
) then
1419 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1420 Set_Is_Unsigned_Type
(E
, True);
1426 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1428 -- If no ancestor had a static lower bound, go to base type
1430 if No
(Ancestor
) then
1432 -- Note: the reason we still check for a compile time known
1433 -- value for the base type is that at least in the case of
1434 -- generic formals, we can have bounds that fail this test,
1435 -- and there may be other cases in error situations.
1437 Btyp
:= Base_Type
(E
);
1439 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1443 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1445 if Compile_Time_Known_Value
(Lo_Bound
)
1446 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1448 Set_Is_Unsigned_Type
(E
, True);
1455 end Check_Unsigned_Type
;
1457 -------------------------
1458 -- Is_Atomic_Aggregate --
1459 -------------------------
1461 function Is_Atomic_Aggregate
1463 Typ
: Entity_Id
) return Boolean
1465 Loc
: constant Source_Ptr
:= Sloc
(E
);
1473 -- Array may be qualified, so find outer context
1475 if Nkind
(Par
) = N_Qualified_Expression
then
1476 Par
:= Parent
(Par
);
1479 if Nkind_In
(Par
, N_Object_Declaration
, N_Assignment_Statement
)
1480 and then Comes_From_Source
(Par
)
1482 Temp
:= Make_Temporary
(Loc
, 'T', E
);
1484 Make_Object_Declaration
(Loc
,
1485 Defining_Identifier
=> Temp
,
1486 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1487 Expression
=> Relocate_Node
(E
));
1488 Insert_Before
(Par
, New_N
);
1491 Set_Expression
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1497 end Is_Atomic_Aggregate
;
1499 -----------------------------------------------
1500 -- Explode_Initialization_Compound_Statement --
1501 -----------------------------------------------
1503 procedure Explode_Initialization_Compound_Statement
(E
: Entity_Id
) is
1504 Init_Stmts
: constant Node_Id
:= Initialization_Statements
(E
);
1507 if Present
(Init_Stmts
)
1508 and then Nkind
(Init_Stmts
) = N_Compound_Statement
1510 Insert_List_Before
(Init_Stmts
, Actions
(Init_Stmts
));
1512 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1513 -- just removing it, because Freeze_All may rely on this particular
1514 -- Node_Id still being present in the enclosing list to know where to
1517 Rewrite
(Init_Stmts
, Make_Null_Statement
(Sloc
(Init_Stmts
)));
1519 Set_Initialization_Statements
(E
, Empty
);
1521 end Explode_Initialization_Compound_Statement
;
1527 -- Note: the easy coding for this procedure would be to just build a
1528 -- single list of freeze nodes and then insert them and analyze them
1529 -- all at once. This won't work, because the analysis of earlier freeze
1530 -- nodes may recursively freeze types which would otherwise appear later
1531 -- on in the freeze list. So we must analyze and expand the freeze nodes
1532 -- as they are generated.
1534 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1538 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1539 -- This is the internal recursive routine that does freezing of entities
1540 -- (but NOT the analysis of default expressions, which should not be
1541 -- recursive, we don't want to analyze those till we are sure that ALL
1542 -- the types are frozen).
1544 --------------------
1545 -- Freeze_All_Ent --
1546 --------------------
1548 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
) is
1553 procedure Process_Flist
;
1554 -- If freeze nodes are present, insert and analyze, and reset cursor
1555 -- for next insertion.
1561 procedure Process_Flist
is
1563 if Is_Non_Empty_List
(Flist
) then
1564 Lastn
:= Next
(After
);
1565 Insert_List_After_And_Analyze
(After
, Flist
);
1567 if Present
(Lastn
) then
1568 After
:= Prev
(Lastn
);
1570 After
:= Last
(List_Containing
(After
));
1575 -- Start or processing for Freeze_All_Ent
1579 while Present
(E
) loop
1581 -- If the entity is an inner package which is not a package
1582 -- renaming, then its entities must be frozen at this point. Note
1583 -- that such entities do NOT get frozen at the end of the nested
1584 -- package itself (only library packages freeze).
1586 -- Same is true for task declarations, where anonymous records
1587 -- created for entry parameters must be frozen.
1589 if Ekind
(E
) = E_Package
1590 and then No
(Renamed_Object
(E
))
1591 and then not Is_Child_Unit
(E
)
1592 and then not Is_Frozen
(E
)
1595 Install_Visible_Declarations
(E
);
1596 Install_Private_Declarations
(E
);
1598 Freeze_All
(First_Entity
(E
), After
);
1600 End_Package_Scope
(E
);
1602 if Is_Generic_Instance
(E
)
1603 and then Has_Delayed_Freeze
(E
)
1605 Set_Has_Delayed_Freeze
(E
, False);
1606 Expand_N_Package_Declaration
(Unit_Declaration_Node
(E
));
1609 elsif Ekind
(E
) in Task_Kind
1610 and then Nkind_In
(Parent
(E
), N_Task_Type_Declaration
,
1611 N_Single_Task_Declaration
)
1614 Freeze_All
(First_Entity
(E
), After
);
1617 -- For a derived tagged type, we must ensure that all the
1618 -- primitive operations of the parent have been frozen, so that
1619 -- their addresses will be in the parent's dispatch table at the
1620 -- point it is inherited.
1622 elsif Ekind
(E
) = E_Record_Type
1623 and then Is_Tagged_Type
(E
)
1624 and then Is_Tagged_Type
(Etype
(E
))
1625 and then Is_Derived_Type
(E
)
1628 Prim_List
: constant Elist_Id
:=
1629 Primitive_Operations
(Etype
(E
));
1635 Prim
:= First_Elmt
(Prim_List
);
1636 while Present
(Prim
) loop
1637 Subp
:= Node
(Prim
);
1639 if Comes_From_Source
(Subp
)
1640 and then not Is_Frozen
(Subp
)
1642 Flist
:= Freeze_Entity
(Subp
, After
);
1651 if not Is_Frozen
(E
) then
1652 Flist
:= Freeze_Entity
(E
, After
);
1655 -- If already frozen, and there are delayed aspects, this is where
1656 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1657 -- for a description of how we handle aspect visibility).
1659 elsif Has_Delayed_Aspects
(E
) then
1661 -- Retrieve the visibility to the discriminants in order to
1662 -- analyze properly the aspects.
1664 Push_Scope_And_Install_Discriminants
(E
);
1670 Ritem
:= First_Rep_Item
(E
);
1671 while Present
(Ritem
) loop
1672 if Nkind
(Ritem
) = N_Aspect_Specification
1673 and then Entity
(Ritem
) = E
1674 and then Is_Delayed_Aspect
(Ritem
)
1676 Check_Aspect_At_End_Of_Declarations
(Ritem
);
1679 Ritem
:= Next_Rep_Item
(Ritem
);
1683 Uninstall_Discriminants_And_Pop_Scope
(E
);
1686 -- If an incomplete type is still not frozen, this may be a
1687 -- premature freezing because of a body declaration that follows.
1688 -- Indicate where the freezing took place. Freezing will happen
1689 -- if the body comes from source, but not if it is internally
1690 -- generated, for example as the body of a type invariant.
1692 -- If the freezing is caused by the end of the current declarative
1693 -- part, it is a Taft Amendment type, and there is no error.
1695 if not Is_Frozen
(E
)
1696 and then Ekind
(E
) = E_Incomplete_Type
1699 Bod
: constant Node_Id
:= Next
(After
);
1702 -- The presence of a body freezes all entities previously
1703 -- declared in the current list of declarations, but this
1704 -- does not apply if the body does not come from source.
1705 -- A type invariant is transformed into a subprogram body
1706 -- which is placed at the end of the private part of the
1707 -- current package, but this body does not freeze incomplete
1708 -- types that may be declared in this private part.
1710 if (Nkind_In
(Bod
, N_Subprogram_Body
,
1715 or else Nkind
(Bod
) in N_Body_Stub
)
1717 List_Containing
(After
) = List_Containing
(Parent
(E
))
1718 and then Comes_From_Source
(Bod
)
1720 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1722 ("type& is frozen# before its full declaration",
1732 -- Start of processing for Freeze_All
1735 Freeze_All_Ent
(From
, After
);
1737 -- Now that all types are frozen, we can deal with default expressions
1738 -- that require us to build a default expression functions. This is the
1739 -- point at which such functions are constructed (after all types that
1740 -- might be used in such expressions have been frozen).
1742 -- For subprograms that are renaming_as_body, we create the wrapper
1743 -- bodies as needed.
1745 -- We also add finalization chains to access types whose designated
1746 -- types are controlled. This is normally done when freezing the type,
1747 -- but this misses recursive type definitions where the later members
1748 -- of the recursion introduce controlled components.
1750 -- Loop through entities
1753 while Present
(E
) loop
1754 if Is_Subprogram
(E
) then
1755 if not Default_Expressions_Processed
(E
) then
1756 Process_Default_Expressions
(E
, After
);
1759 if not Has_Completion
(E
) then
1760 Decl
:= Unit_Declaration_Node
(E
);
1762 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1763 if Error_Posted
(Decl
) then
1764 Set_Has_Completion
(E
);
1766 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1769 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1770 and then Present
(Corresponding_Body
(Decl
))
1772 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1773 = N_Subprogram_Renaming_Declaration
1775 Build_And_Analyze_Renamed_Body
1776 (Decl
, Corresponding_Body
(Decl
), After
);
1780 elsif Ekind
(E
) in Task_Kind
1781 and then Nkind_In
(Parent
(E
), N_Task_Type_Declaration
,
1782 N_Single_Task_Declaration
)
1788 Ent
:= First_Entity
(E
);
1789 while Present
(Ent
) loop
1791 and then not Default_Expressions_Processed
(Ent
)
1793 Process_Default_Expressions
(Ent
, After
);
1801 -- Historical note: We used to create a finalization master for an
1802 -- access type whose designated type is not controlled, but contains
1803 -- private controlled compoments. This form of postprocessing is no
1804 -- longer needed because the finalization master is now created when
1805 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1811 -----------------------
1812 -- Freeze_And_Append --
1813 -----------------------
1815 procedure Freeze_And_Append
1818 Result
: in out List_Id
)
1820 L
: constant List_Id
:= Freeze_Entity
(Ent
, N
);
1822 if Is_Non_Empty_List
(L
) then
1823 if Result
= No_List
then
1826 Append_List
(L
, Result
);
1829 end Freeze_And_Append
;
1835 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1836 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, N
);
1839 if Ekind
(T
) = E_Function
then
1840 Check_Expression_Function
(N
, T
);
1843 if Is_Non_Empty_List
(Freeze_Nodes
) then
1844 Insert_Actions
(N
, Freeze_Nodes
);
1852 function Freeze_Entity
(E
: Entity_Id
; N
: Node_Id
) return List_Id
is
1853 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1854 -- Save the current Ghost mode in effect in case the entity being frozen
1855 -- sets a different mode.
1857 Loc
: constant Source_Ptr
:= Sloc
(N
);
1864 Test_E
: Entity_Id
:= E
;
1865 -- This could use a comment ???
1867 Late_Freezing
: Boolean := False;
1868 -- Used to detect attempt to freeze function declared in another unit
1870 Result
: List_Id
:= No_List
;
1871 -- List of freezing actions, left at No_List if none
1873 Has_Default_Initialization
: Boolean := False;
1874 -- This flag gets set to true for a variable with default initialization
1876 procedure Add_To_Result
(N
: Node_Id
);
1877 -- N is a freezing action to be appended to the Result
1879 function After_Last_Declaration
return Boolean;
1880 -- If Loc is a freeze_entity that appears after the last declaration
1881 -- in the scope, inhibit error messages on late completion.
1883 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1884 -- Check that an Access or Unchecked_Access attribute with a prefix
1885 -- which is the current instance type can only be applied when the type
1888 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
);
1889 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1890 -- integer literal without an explicit corresponding size clause. The
1891 -- caller has checked that Utype is a modular integer type.
1893 procedure Freeze_Array_Type
(Arr
: Entity_Id
);
1894 -- Freeze array type, including freezing index and component types
1896 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
;
1897 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1898 -- package. Recurse on inner generic packages.
1900 function Freeze_Profile
(E
: Entity_Id
) return Boolean;
1901 -- Freeze formals and return type of subprogram. If some type in the
1902 -- profile is a limited view, freezing of the entity will take place
1903 -- elsewhere, and the function returns False. This routine will be
1904 -- modified if and when we can implement AI05-019 efficiently ???
1906 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1907 -- Freeze record type, including freezing component types, and freezing
1908 -- primitive operations if this is a tagged type.
1910 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean;
1911 -- Determine whether an arbitrary entity is subject to Boolean aspect
1912 -- Import and its value is specified as True.
1914 procedure Late_Freeze_Subprogram
(E
: Entity_Id
);
1915 -- Following AI05-151, a function can return a limited view of a type
1916 -- declared elsewhere. In that case the function cannot be frozen at
1917 -- the end of its enclosing package. If its first use is in a different
1918 -- unit, it cannot be frozen there, but if the call is legal the full
1919 -- view of the return type is available and the subprogram can now be
1920 -- frozen. However the freeze node cannot be inserted at the point of
1921 -- call, but rather must go in the package holding the function, so that
1922 -- the backend can process it in the proper context.
1924 procedure Restore_Globals
;
1925 -- Restore the values of all saved global variables
1927 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
);
1928 -- If E is an entity for an imported subprogram with pre/post-conditions
1929 -- then this procedure will create a wrapper to ensure that proper run-
1930 -- time checking of the pre/postconditions. See body for details.
1936 procedure Add_To_Result
(N
: Node_Id
) is
1939 Result
:= New_List
(N
);
1945 ----------------------------
1946 -- After_Last_Declaration --
1947 ----------------------------
1949 function After_Last_Declaration
return Boolean is
1950 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1953 if Nkind
(Spec
) = N_Package_Specification
then
1954 if Present
(Private_Declarations
(Spec
)) then
1955 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1956 elsif Present
(Visible_Declarations
(Spec
)) then
1957 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1965 end After_Last_Declaration
;
1967 ----------------------------
1968 -- Check_Current_Instance --
1969 ----------------------------
1971 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1973 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean;
1974 -- Determine whether Typ is compatible with the rules for aliased
1975 -- views of types as defined in RM 3.10 in the various dialects.
1977 function Process
(N
: Node_Id
) return Traverse_Result
;
1978 -- Process routine to apply check to given node
1980 -----------------------------
1981 -- Is_Aliased_View_Of_Type --
1982 -----------------------------
1984 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean is
1985 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
1990 if Nkind
(Typ_Decl
) = N_Full_Type_Declaration
1991 and then Limited_Present
(Type_Definition
(Typ_Decl
))
1995 -- The following paragraphs describe what a legal aliased view of
1996 -- a type is in the various dialects of Ada.
2000 -- The current instance of a limited type, and a formal parameter
2001 -- or generic formal object of a tagged type.
2003 -- Ada 95 limited type
2004 -- * Type with reserved word "limited"
2005 -- * A protected or task type
2006 -- * A composite type with limited component
2008 elsif Ada_Version
<= Ada_95
then
2009 return Is_Limited_Type
(Typ
);
2013 -- The current instance of a limited tagged type, a protected
2014 -- type, a task type, or a type that has the reserved word
2015 -- "limited" in its full definition ... a formal parameter or
2016 -- generic formal object of a tagged type.
2018 -- Ada 2005 limited type
2019 -- * Type with reserved word "limited", "synchronized", "task"
2021 -- * A composite type with limited component
2022 -- * A derived type whose parent is a non-interface limited type
2024 elsif Ada_Version
= Ada_2005
then
2026 (Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
))
2028 (Is_Derived_Type
(Typ
)
2029 and then not Is_Interface
(Etype
(Typ
))
2030 and then Is_Limited_Type
(Etype
(Typ
)));
2032 -- Ada 2012 and beyond
2034 -- The current instance of an immutably limited type ... a formal
2035 -- parameter or generic formal object of a tagged type.
2037 -- Ada 2012 limited type
2038 -- * Type with reserved word "limited", "synchronized", "task"
2040 -- * A composite type with limited component
2041 -- * A derived type whose parent is a non-interface limited type
2042 -- * An incomplete view
2044 -- Ada 2012 immutably limited type
2045 -- * Explicitly limited record type
2046 -- * Record extension with "limited" present
2047 -- * Non-formal limited private type that is either tagged
2048 -- or has at least one access discriminant with a default
2050 -- * Task type, protected type or synchronized interface
2051 -- * Type derived from immutably limited type
2055 Is_Immutably_Limited_Type
(Typ
)
2056 or else Is_Incomplete_Type
(Typ
);
2058 end Is_Aliased_View_Of_Type
;
2064 function Process
(N
: Node_Id
) return Traverse_Result
is
2067 when N_Attribute_Reference
=>
2068 if Nam_In
(Attribute_Name
(N
), Name_Access
,
2069 Name_Unchecked_Access
)
2070 and then Is_Entity_Name
(Prefix
(N
))
2071 and then Is_Type
(Entity
(Prefix
(N
)))
2072 and then Entity
(Prefix
(N
)) = E
2074 if Ada_Version
< Ada_2012
then
2076 ("current instance must be a limited type",
2080 ("current instance must be an immutably limited "
2081 & "type (RM-2012, 7.5 (8.1/3))", Prefix
(N
));
2090 when others => return OK
;
2094 procedure Traverse
is new Traverse_Proc
(Process
);
2098 Rec_Type
: constant Entity_Id
:=
2099 Scope
(Defining_Identifier
(Comp_Decl
));
2101 -- Start of processing for Check_Current_Instance
2104 if not Is_Aliased_View_Of_Type
(Rec_Type
) then
2105 Traverse
(Comp_Decl
);
2107 end Check_Current_Instance
;
2109 ------------------------------
2110 -- Check_Suspicious_Modulus --
2111 ------------------------------
2113 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
) is
2114 Decl
: constant Node_Id
:= Declaration_Node
(Underlying_Type
(Utype
));
2117 if not Warn_On_Suspicious_Modulus_Value
then
2121 if Nkind
(Decl
) = N_Full_Type_Declaration
then
2123 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
2126 if Nkind
(Tdef
) = N_Modular_Type_Definition
then
2128 Modulus
: constant Node_Id
:=
2129 Original_Node
(Expression
(Tdef
));
2132 if Nkind
(Modulus
) = N_Integer_Literal
then
2134 Modv
: constant Uint
:= Intval
(Modulus
);
2135 Sizv
: constant Uint
:= RM_Size
(Utype
);
2138 -- First case, modulus and size are the same. This
2139 -- happens if you have something like mod 32, with
2140 -- an explicit size of 32, this is for sure a case
2141 -- where the warning is given, since it is seems
2142 -- very unlikely that someone would want e.g. a
2143 -- five bit type stored in 32 bits. It is much
2144 -- more likely they wanted a 32-bit type.
2149 -- Second case, the modulus is 32 or 64 and no
2150 -- size clause is present. This is a less clear
2151 -- case for giving the warning, but in the case
2152 -- of 32/64 (5-bit or 6-bit types) these seem rare
2153 -- enough that it is a likely error (and in any
2154 -- case using 2**5 or 2**6 in these cases seems
2155 -- clearer. We don't include 8 or 16 here, simply
2156 -- because in practice 3-bit and 4-bit types are
2157 -- more common and too many false positives if
2158 -- we warn in these cases.
2160 elsif not Has_Size_Clause
(Utype
)
2161 and then (Modv
= Uint_32
or else Modv
= Uint_64
)
2165 -- No warning needed
2171 -- If we fall through, give warning
2173 Error_Msg_Uint_1
:= Modv
;
2175 ("?M?2 '*'*^' may have been intended here",
2183 end Check_Suspicious_Modulus
;
2185 -----------------------
2186 -- Freeze_Array_Type --
2187 -----------------------
2189 procedure Freeze_Array_Type
(Arr
: Entity_Id
) is
2190 FS
: constant Entity_Id
:= First_Subtype
(Arr
);
2191 Ctyp
: constant Entity_Id
:= Component_Type
(Arr
);
2194 Non_Standard_Enum
: Boolean := False;
2195 -- Set true if any of the index types is an enumeration type with a
2196 -- non-standard representation.
2199 Freeze_And_Append
(Ctyp
, N
, Result
);
2201 Indx
:= First_Index
(Arr
);
2202 while Present
(Indx
) loop
2203 Freeze_And_Append
(Etype
(Indx
), N
, Result
);
2205 if Is_Enumeration_Type
(Etype
(Indx
))
2206 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2208 Non_Standard_Enum
:= True;
2214 -- Processing that is done only for base types
2216 if Ekind
(Arr
) = E_Array_Type
then
2218 -- Deal with default setting of reverse storage order
2220 Set_SSO_From_Default
(Arr
);
2222 -- Propagate flags for component type
2224 if Is_Controlled
(Component_Type
(Arr
))
2225 or else Has_Controlled_Component
(Ctyp
)
2227 Set_Has_Controlled_Component
(Arr
);
2230 if Has_Unchecked_Union
(Component_Type
(Arr
)) then
2231 Set_Has_Unchecked_Union
(Arr
);
2234 -- Warn for pragma Pack overriding foreign convention
2236 if Has_Foreign_Convention
(Ctyp
)
2237 and then Has_Pragma_Pack
(Arr
)
2240 CN
: constant Name_Id
:=
2241 Get_Convention_Name
(Convention
(Ctyp
));
2242 PP
: constant Node_Id
:=
2243 Get_Pragma
(First_Subtype
(Arr
), Pragma_Pack
);
2245 if Present
(PP
) then
2246 Error_Msg_Name_1
:= CN
;
2247 Error_Msg_Sloc
:= Sloc
(Arr
);
2249 ("pragma Pack affects convention % components #??", PP
);
2250 Error_Msg_Name_1
:= CN
;
2252 ("\array components may not have % compatible "
2253 & "representation??", PP
);
2258 -- If packing was requested or if the component size was
2259 -- set explicitly, then see if bit packing is required. This
2260 -- processing is only done for base types, since all of the
2261 -- representation aspects involved are type-related.
2263 -- This is not just an optimization, if we start processing the
2264 -- subtypes, they interfere with the settings on the base type
2265 -- (this is because Is_Packed has a slightly different meaning
2266 -- before and after freezing).
2273 if (Is_Packed
(Arr
) or else Has_Pragma_Pack
(Arr
))
2274 and then Known_Static_RM_Size
(Ctyp
)
2275 and then not Has_Component_Size_Clause
(Arr
)
2277 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2279 elsif Known_Component_Size
(Arr
) then
2280 Csiz
:= Component_Size
(Arr
);
2282 elsif not Known_Static_Esize
(Ctyp
) then
2286 Esiz
:= Esize
(Ctyp
);
2288 -- We can set the component size if it is less than 16,
2289 -- rounding it up to the next storage unit size.
2293 elsif Esiz
<= 16 then
2299 -- Set component size up to match alignment if it would
2300 -- otherwise be less than the alignment. This deals with
2301 -- cases of types whose alignment exceeds their size (the
2302 -- padded type cases).
2306 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2315 -- Case of component size that may result in packing
2317 if 1 <= Csiz
and then Csiz
<= 64 then
2319 Ent
: constant Entity_Id
:=
2320 First_Subtype
(Arr
);
2321 Pack_Pragma
: constant Node_Id
:=
2322 Get_Rep_Pragma
(Ent
, Name_Pack
);
2323 Comp_Size_C
: constant Node_Id
:=
2324 Get_Attribute_Definition_Clause
2325 (Ent
, Attribute_Component_Size
);
2328 -- Warn if we have pack and component size so that the
2331 -- Note: here we must check for the presence of a
2332 -- component size before checking for a Pack pragma to
2333 -- deal with the case where the array type is a derived
2334 -- type whose parent is currently private.
2336 if Present
(Comp_Size_C
)
2337 and then Has_Pragma_Pack
(Ent
)
2338 and then Warn_On_Redundant_Constructs
2340 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2342 ("?r?pragma Pack for& ignored!", Pack_Pragma
, Ent
);
2344 ("\?r?explicit component size given#!", Pack_Pragma
);
2345 Set_Is_Packed
(Base_Type
(Ent
), False);
2346 Set_Is_Bit_Packed_Array
(Base_Type
(Ent
), False);
2349 -- Set component size if not already set by a component
2352 if not Present
(Comp_Size_C
) then
2353 Set_Component_Size
(Arr
, Csiz
);
2356 -- Check for base type of 8, 16, 32 bits, where an
2357 -- unsigned subtype has a length one less than the
2358 -- base type (e.g. Natural subtype of Integer).
2360 -- In such cases, if a component size was not set
2361 -- explicitly, then generate a warning.
2363 if Has_Pragma_Pack
(Arr
)
2364 and then not Present
(Comp_Size_C
)
2365 and then (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2366 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2368 Error_Msg_Uint_1
:= Csiz
;
2370 if Present
(Pack_Pragma
) then
2372 ("??pragma Pack causes component size to be ^!",
2375 ("\??use Component_Size to set desired value!",
2380 -- Actual packing is not needed for 8, 16, 32, 64. Also
2381 -- not needed for 24 if alignment is 1.
2387 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
2389 -- Here the array was requested to be packed, but
2390 -- the packing request had no effect, so Is_Packed
2393 -- Note: semantically this means that we lose track
2394 -- of the fact that a derived type inherited a pragma
2395 -- Pack that was non- effective, but that seems fine.
2397 -- We regard a Pack pragma as a request to set a
2398 -- representation characteristic, and this request
2401 Set_Is_Packed
(Base_Type
(Arr
), False);
2402 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2404 if Known_Static_Esize
(Component_Type
(Arr
))
2405 and then Esize
(Component_Type
(Arr
)) = Csiz
2407 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), False);
2410 -- In all other cases, packing is indeed needed
2413 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2414 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), True);
2415 Set_Is_Packed
(Base_Type
(Arr
), True);
2421 -- Check for Aliased or Atomic_Components/Atomic with unsuitable
2422 -- packing or explicit component size clause given.
2424 if (Has_Aliased_Components
(Arr
)
2425 or else Has_Atomic_Components
(Arr
)
2426 or else Is_Atomic
(Ctyp
))
2428 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2430 Alias_Atomic_Check
: declare
2432 procedure Complain_CS
(T
: String);
2433 -- Outputs error messages for incorrect CS clause or pragma
2434 -- Pack for aliased or atomic components (T is "aliased" or
2441 procedure Complain_CS
(T
: String) is
2443 if Has_Component_Size_Clause
(Arr
) then
2445 Get_Attribute_Definition_Clause
2446 (FS
, Attribute_Component_Size
);
2449 ("incorrect component size for "
2450 & T
& " components", Clause
);
2451 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2453 ("\only allowed value is^", Clause
);
2457 ("cannot pack " & T
& " components",
2458 Get_Rep_Pragma
(FS
, Name_Pack
));
2462 -- Start of processing for Alias_Atomic_Check
2465 -- If object size of component type isn't known, we cannot
2466 -- be sure so we defer to the back end.
2468 if not Known_Static_Esize
(Ctyp
) then
2471 -- Case where component size has no effect. First check for
2472 -- object size of component type multiple of the storage
2475 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2477 -- OK in both packing case and component size case if RM
2478 -- size is known and static and same as the object size.
2481 ((Known_Static_RM_Size
(Ctyp
)
2482 and then Esize
(Ctyp
) = RM_Size
(Ctyp
))
2484 -- Or if we have an explicit component size clause and
2485 -- the component size and object size are equal.
2488 (Has_Component_Size_Clause
(Arr
)
2489 and then Component_Size
(Arr
) = Esize
(Ctyp
)))
2493 elsif Has_Aliased_Components
(Arr
) then
2494 Complain_CS
("aliased");
2496 elsif Has_Atomic_Components
(Arr
) or else Is_Atomic
(Ctyp
)
2498 Complain_CS
("atomic");
2500 end Alias_Atomic_Check
;
2503 -- Warn for case of atomic type
2505 Clause
:= Get_Rep_Pragma
(FS
, Name_Atomic
);
2508 and then not Addressable
(Component_Size
(FS
))
2511 ("non-atomic components of type& may not be "
2512 & "accessible by separate tasks??", Clause
, Arr
);
2514 if Has_Component_Size_Clause
(Arr
) then
2515 Error_Msg_Sloc
:= Sloc
(Get_Attribute_Definition_Clause
2516 (FS
, Attribute_Component_Size
));
2517 Error_Msg_N
("\because of component size clause#??", Clause
);
2519 elsif Has_Pragma_Pack
(Arr
) then
2520 Error_Msg_Sloc
:= Sloc
(Get_Rep_Pragma
(FS
, Name_Pack
));
2521 Error_Msg_N
("\because of pragma Pack#??", Clause
);
2525 -- Check for scalar storage order
2530 Check_Component_Storage_Order
2533 ADC
=> Get_Attribute_Definition_Clause
2534 (First_Subtype
(Arr
),
2535 Attribute_Scalar_Storage_Order
),
2536 Comp_ADC_Present
=> Dummy
);
2539 -- Processing that is done only for subtypes
2542 -- Acquire alignment from base type
2544 if Unknown_Alignment
(Arr
) then
2545 Set_Alignment
(Arr
, Alignment
(Base_Type
(Arr
)));
2546 Adjust_Esize_Alignment
(Arr
);
2550 -- Specific checks for bit-packed arrays
2552 if Is_Bit_Packed_Array
(Arr
) then
2554 -- Check number of elements for bit packed arrays that come from
2555 -- source and have compile time known ranges. The bit-packed
2556 -- arrays circuitry does not support arrays with more than
2557 -- Integer'Last + 1 elements, and when this restriction is
2558 -- violated, causes incorrect data access.
2560 -- For the case where this is not compile time known, a run-time
2561 -- check should be generated???
2563 if Comes_From_Source
(Arr
) and then Is_Constrained
(Arr
) then
2572 Index
:= First_Index
(Arr
);
2573 while Present
(Index
) loop
2574 Ityp
:= Etype
(Index
);
2576 -- Never generate an error if any index is of a generic
2577 -- type. We will check this in instances.
2579 if Is_Generic_Type
(Ityp
) then
2585 Make_Attribute_Reference
(Loc
,
2586 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2587 Attribute_Name
=> Name_Range_Length
);
2588 Analyze_And_Resolve
(Ilen
);
2590 -- No attempt is made to check number of elements if not
2591 -- compile time known.
2593 if Nkind
(Ilen
) /= N_Integer_Literal
then
2598 Elmts
:= Elmts
* Intval
(Ilen
);
2602 if Elmts
> Intval
(High_Bound
2603 (Scalar_Range
(Standard_Integer
))) + 1
2606 ("bit packed array type may not have "
2607 & "more than Integer''Last+1 elements", Arr
);
2614 if Known_RM_Size
(Arr
) then
2616 SizC
: constant Node_Id
:= Size_Clause
(Arr
);
2620 -- It is not clear if it is possible to have no size clause
2621 -- at this stage, but it is not worth worrying about. Post
2622 -- error on the entity name in the size clause if present,
2623 -- else on the type entity itself.
2625 if Present
(SizC
) then
2626 Check_Size
(Name
(SizC
), Arr
, RM_Size
(Arr
), Discard
);
2628 Check_Size
(Arr
, Arr
, RM_Size
(Arr
), Discard
);
2634 -- If any of the index types was an enumeration type with a non-
2635 -- standard rep clause, then we indicate that the array type is
2636 -- always packed (even if it is not bit packed).
2638 if Non_Standard_Enum
then
2639 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
));
2640 Set_Is_Packed
(Base_Type
(Arr
));
2643 Set_Component_Alignment_If_Not_Set
(Arr
);
2645 -- If the array is packed, we must create the packed array type to be
2646 -- used to actually implement the type. This is only needed for real
2647 -- array types (not for string literal types, since they are present
2648 -- only for the front end).
2651 and then Ekind
(Arr
) /= E_String_Literal_Subtype
2653 Create_Packed_Array_Impl_Type
(Arr
);
2654 Freeze_And_Append
(Packed_Array_Impl_Type
(Arr
), N
, Result
);
2656 -- Make sure that we have the necessary routines to implement the
2657 -- packing, and complain now if not. Note that we only test this
2658 -- for constrained array types.
2660 if Is_Constrained
(Arr
)
2661 and then Is_Bit_Packed_Array
(Arr
)
2662 and then Present
(Packed_Array_Impl_Type
(Arr
))
2663 and then Is_Array_Type
(Packed_Array_Impl_Type
(Arr
))
2666 CS
: constant Uint
:= Component_Size
(Arr
);
2667 RE
: constant RE_Id
:= Get_Id
(UI_To_Int
(CS
));
2671 and then not RTE_Available
(RE
)
2674 ("packing of " & UI_Image
(CS
) & "-bit components",
2675 First_Subtype
(Etype
(Arr
)));
2677 -- Cancel the packing
2679 Set_Is_Packed
(Base_Type
(Arr
), False);
2680 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2681 Set_Packed_Array_Impl_Type
(Arr
, Empty
);
2687 -- Size information of packed array type is copied to the array
2688 -- type, since this is really the representation. But do not
2689 -- override explicit existing size values. If the ancestor subtype
2690 -- is constrained the Packed_Array_Impl_Type will be inherited
2691 -- from it, but the size may have been provided already, and
2692 -- must not be overridden either.
2694 if not Has_Size_Clause
(Arr
)
2696 (No
(Ancestor_Subtype
(Arr
))
2697 or else not Has_Size_Clause
(Ancestor_Subtype
(Arr
)))
2699 Set_Esize
(Arr
, Esize
(Packed_Array_Impl_Type
(Arr
)));
2700 Set_RM_Size
(Arr
, RM_Size
(Packed_Array_Impl_Type
(Arr
)));
2703 if not Has_Alignment_Clause
(Arr
) then
2704 Set_Alignment
(Arr
, Alignment
(Packed_Array_Impl_Type
(Arr
)));
2710 -- For non-packed arrays set the alignment of the array to the
2711 -- alignment of the component type if it is unknown. Skip this
2712 -- in atomic case (atomic arrays may need larger alignments).
2714 if not Is_Packed
(Arr
)
2715 and then Unknown_Alignment
(Arr
)
2716 and then Known_Alignment
(Ctyp
)
2717 and then Known_Static_Component_Size
(Arr
)
2718 and then Known_Static_Esize
(Ctyp
)
2719 and then Esize
(Ctyp
) = Component_Size
(Arr
)
2720 and then not Is_Atomic
(Arr
)
2722 Set_Alignment
(Arr
, Alignment
(Component_Type
(Arr
)));
2724 end Freeze_Array_Type
;
2726 -----------------------------
2727 -- Freeze_Generic_Entities --
2728 -----------------------------
2730 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
is
2737 E
:= First_Entity
(Pack
);
2738 while Present
(E
) loop
2739 if Is_Type
(E
) and then not Is_Generic_Type
(E
) then
2740 F
:= Make_Freeze_Generic_Entity
(Sloc
(Pack
));
2742 Append_To
(Flist
, F
);
2744 elsif Ekind
(E
) = E_Generic_Package
then
2745 Append_List_To
(Flist
, Freeze_Generic_Entities
(E
));
2752 end Freeze_Generic_Entities
;
2754 --------------------
2755 -- Freeze_Profile --
2756 --------------------
2758 function Freeze_Profile
(E
: Entity_Id
) return Boolean is
2761 Warn_Node
: Node_Id
;
2764 -- Loop through formals
2766 Formal
:= First_Formal
(E
);
2767 while Present
(Formal
) loop
2768 F_Type
:= Etype
(Formal
);
2770 -- AI05-0151: incomplete types can appear in a profile. By the
2771 -- time the entity is frozen, the full view must be available,
2772 -- unless it is a limited view.
2774 if Is_Incomplete_Type
(F_Type
)
2775 and then Present
(Full_View
(F_Type
))
2776 and then not From_Limited_With
(F_Type
)
2778 F_Type
:= Full_View
(F_Type
);
2779 Set_Etype
(Formal
, F_Type
);
2782 Freeze_And_Append
(F_Type
, N
, Result
);
2784 if Is_Private_Type
(F_Type
)
2785 and then Is_Private_Type
(Base_Type
(F_Type
))
2786 and then No
(Full_View
(Base_Type
(F_Type
)))
2787 and then not Is_Generic_Type
(F_Type
)
2788 and then not Is_Derived_Type
(F_Type
)
2790 -- If the type of a formal is incomplete, subprogram is being
2791 -- frozen prematurely. Within an instance (but not within a
2792 -- wrapper package) this is an artifact of our need to regard
2793 -- the end of an instantiation as a freeze point. Otherwise it
2794 -- is a definite error.
2797 Set_Is_Frozen
(E
, False);
2801 elsif not After_Last_Declaration
2802 and then not Freezing_Library_Level_Tagged_Type
2804 Error_Msg_Node_1
:= F_Type
;
2806 ("type & must be fully defined before this point", Loc
);
2810 -- Check suspicious parameter for C function. These tests apply
2811 -- only to exported/imported subprograms.
2813 if Warn_On_Export_Import
2814 and then Comes_From_Source
(E
)
2815 and then (Convention
(E
) = Convention_C
2817 Convention
(E
) = Convention_CPP
)
2818 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2819 and then Convention
(E
) /= Convention
(Formal
)
2820 and then not Has_Warnings_Off
(E
)
2821 and then not Has_Warnings_Off
(F_Type
)
2822 and then not Has_Warnings_Off
(Formal
)
2824 -- Qualify mention of formals with subprogram name
2826 Error_Msg_Qual_Level
:= 1;
2828 -- Check suspicious use of fat C pointer
2830 if Is_Access_Type
(F_Type
)
2831 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
2834 ("?x?type of & does not correspond to C pointer!", Formal
);
2836 -- Check suspicious return of boolean
2838 elsif Root_Type
(F_Type
) = Standard_Boolean
2839 and then Convention
(F_Type
) = Convention_Ada
2840 and then not Has_Warnings_Off
(F_Type
)
2841 and then not Has_Size_Clause
(F_Type
)
2842 and then VM_Target
= No_VM
2845 ("& is an 8-bit Ada Boolean?x?", Formal
);
2847 ("\use appropriate corresponding type in C "
2848 & "(e.g. char)?x?", Formal
);
2850 -- Check suspicious tagged type
2852 elsif (Is_Tagged_Type
(F_Type
)
2854 (Is_Access_Type
(F_Type
)
2855 and then Is_Tagged_Type
(Designated_Type
(F_Type
))))
2856 and then Convention
(E
) = Convention_C
2859 ("?x?& involves a tagged type which does not "
2860 & "correspond to any C type!", Formal
);
2862 -- Check wrong convention subprogram pointer
2864 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
2865 and then not Has_Foreign_Convention
(F_Type
)
2868 ("?x?subprogram pointer & should "
2869 & "have foreign convention!", Formal
);
2870 Error_Msg_Sloc
:= Sloc
(F_Type
);
2872 ("\?x?add Convention pragma to declaration of &#",
2876 -- Turn off name qualification after message output
2878 Error_Msg_Qual_Level
:= 0;
2881 -- Check for unconstrained array in exported foreign convention
2884 if Has_Foreign_Convention
(E
)
2885 and then not Is_Imported
(E
)
2886 and then Is_Array_Type
(F_Type
)
2887 and then not Is_Constrained
(F_Type
)
2888 and then Warn_On_Export_Import
2890 -- Exclude VM case, since both .NET and JVM can handle
2891 -- unconstrained arrays without a problem.
2893 and then VM_Target
= No_VM
2895 Error_Msg_Qual_Level
:= 1;
2897 -- If this is an inherited operation, place the warning on
2898 -- the derived type declaration, rather than on the original
2901 if Nkind
(Original_Node
(Parent
(E
))) = N_Full_Type_Declaration
2903 Warn_Node
:= Parent
(E
);
2905 if Formal
= First_Formal
(E
) then
2906 Error_Msg_NE
("??in inherited operation&", Warn_Node
, E
);
2909 Warn_Node
:= Formal
;
2912 Error_Msg_NE
("?x?type of argument& is unconstrained array",
2914 Error_Msg_NE
("?x?foreign caller must pass bounds explicitly",
2916 Error_Msg_Qual_Level
:= 0;
2919 if not From_Limited_With
(F_Type
) then
2920 if Is_Access_Type
(F_Type
) then
2921 F_Type
:= Designated_Type
(F_Type
);
2924 -- If the formal is an anonymous_access_to_subprogram
2925 -- freeze the subprogram type as well, to prevent
2926 -- scope anomalies in gigi, because there is no other
2927 -- clear point at which it could be frozen.
2929 if Is_Itype
(Etype
(Formal
))
2930 and then Ekind
(F_Type
) = E_Subprogram_Type
2932 Freeze_And_Append
(F_Type
, N
, Result
);
2936 Next_Formal
(Formal
);
2939 -- Case of function: similar checks on return type
2941 if Ekind
(E
) = E_Function
then
2943 -- Check whether function is declared elsewhere.
2946 Get_Source_Unit
(E
) /= Get_Source_Unit
(N
)
2947 and then Returns_Limited_View
(E
)
2948 and then not In_Open_Scopes
(Scope
(E
));
2950 -- Freeze return type
2952 R_Type
:= Etype
(E
);
2954 -- AI05-0151: the return type may have been incomplete
2955 -- at the point of declaration. Replace it with the full
2956 -- view, unless the current type is a limited view. In
2957 -- that case the full view is in a different unit, and
2958 -- gigi finds the non-limited view after the other unit
2961 if Ekind
(R_Type
) = E_Incomplete_Type
2962 and then Present
(Full_View
(R_Type
))
2963 and then not From_Limited_With
(R_Type
)
2965 R_Type
:= Full_View
(R_Type
);
2966 Set_Etype
(E
, R_Type
);
2968 -- If the return type is a limited view and the non-
2969 -- limited view is still incomplete, the function has
2970 -- to be frozen at a later time.
2972 elsif Ekind
(R_Type
) = E_Incomplete_Type
2973 and then From_Limited_With
(R_Type
)
2975 Ekind
(Non_Limited_View
(R_Type
)) = E_Incomplete_Type
2977 Set_Is_Frozen
(E
, False);
2978 Set_Returns_Limited_View
(E
);
2982 Freeze_And_Append
(R_Type
, N
, Result
);
2984 -- Check suspicious return type for C function
2986 if Warn_On_Export_Import
2987 and then (Convention
(E
) = Convention_C
2989 Convention
(E
) = Convention_CPP
)
2990 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2992 -- Check suspicious return of fat C pointer
2994 if Is_Access_Type
(R_Type
)
2995 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
2996 and then not Has_Warnings_Off
(E
)
2997 and then not Has_Warnings_Off
(R_Type
)
2999 Error_Msg_N
("?x?return type of& does not "
3000 & "correspond to C pointer!", E
);
3002 -- Check suspicious return of boolean
3004 elsif Root_Type
(R_Type
) = Standard_Boolean
3005 and then Convention
(R_Type
) = Convention_Ada
3006 and then VM_Target
= No_VM
3007 and then not Has_Warnings_Off
(E
)
3008 and then not Has_Warnings_Off
(R_Type
)
3009 and then not Has_Size_Clause
(R_Type
)
3012 N
: constant Node_Id
:=
3013 Result_Definition
(Declaration_Node
(E
));
3016 ("return type of & is an 8-bit Ada Boolean?x?", N
, E
);
3018 ("\use appropriate corresponding type in C "
3019 & "(e.g. char)?x?", N
, E
);
3022 -- Check suspicious return tagged type
3024 elsif (Is_Tagged_Type
(R_Type
)
3025 or else (Is_Access_Type
(R_Type
)
3028 (Designated_Type
(R_Type
))))
3029 and then Convention
(E
) = Convention_C
3030 and then not Has_Warnings_Off
(E
)
3031 and then not Has_Warnings_Off
(R_Type
)
3033 Error_Msg_N
("?x?return type of & does not "
3034 & "correspond to C type!", E
);
3036 -- Check return of wrong convention subprogram pointer
3038 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
3039 and then not Has_Foreign_Convention
(R_Type
)
3040 and then not Has_Warnings_Off
(E
)
3041 and then not Has_Warnings_Off
(R_Type
)
3043 Error_Msg_N
("?x?& should return a foreign "
3044 & "convention subprogram pointer", E
);
3045 Error_Msg_Sloc
:= Sloc
(R_Type
);
3047 ("\?x?add Convention pragma to declaration of& #",
3052 -- Give warning for suspicious return of a result of an
3053 -- unconstrained array type in a foreign convention function.
3055 if Has_Foreign_Convention
(E
)
3057 -- We are looking for a return of unconstrained array
3059 and then Is_Array_Type
(R_Type
)
3060 and then not Is_Constrained
(R_Type
)
3062 -- Exclude imported routines, the warning does not belong on
3063 -- the import, but rather on the routine definition.
3065 and then not Is_Imported
(E
)
3067 -- Exclude VM case, since both .NET and JVM can handle return
3068 -- of unconstrained arrays without a problem.
3070 and then VM_Target
= No_VM
3072 -- Check that general warning is enabled, and that it is not
3073 -- suppressed for this particular case.
3075 and then Warn_On_Export_Import
3076 and then not Has_Warnings_Off
(E
)
3077 and then not Has_Warnings_Off
(R_Type
)
3079 Error_Msg_N
("?x?foreign convention function& should not " &
3080 "return unconstrained array!", E
);
3087 ------------------------
3088 -- Freeze_Record_Type --
3089 ------------------------
3091 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
3098 pragma Warnings
(Off
, Junk
);
3100 Rec_Pushed
: Boolean := False;
3101 -- Set True if the record type scope Rec has been pushed on the scope
3102 -- stack. Needed for the analysis of delayed aspects specified to the
3103 -- components of Rec.
3106 -- Scalar_Storage_Order attribute definition clause for the record
3108 Unplaced_Component
: Boolean := False;
3109 -- Set True if we find at least one component with no component
3110 -- clause (used to warn about useless Pack pragmas).
3112 Placed_Component
: Boolean := False;
3113 -- Set True if we find at least one component with a component
3114 -- clause (used to warn about useless Bit_Order pragmas, and also
3115 -- to detect cases where Implicit_Packing may have an effect).
3117 Aliased_Component
: Boolean := False;
3118 -- Set True if we find at least one component which is aliased. This
3119 -- is used to prevent Implicit_Packing of the record, since packing
3120 -- cannot modify the size of alignment of an aliased component.
3122 SSO_ADC_Component
: Boolean := False;
3123 -- Set True if we find at least one component whose type has a
3124 -- Scalar_Storage_Order attribute definition clause.
3126 All_Scalar_Components
: Boolean := True;
3127 -- Set False if we encounter a component of a non-scalar type
3129 Scalar_Component_Total_RM_Size
: Uint
:= Uint_0
;
3130 Scalar_Component_Total_Esize
: Uint
:= Uint_0
;
3131 -- Accumulates total RM_Size values and total Esize values of all
3132 -- scalar components. Used for processing of Implicit_Packing.
3134 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
3135 -- If N is an allocator, possibly wrapped in one or more level of
3136 -- qualified expression(s), return the inner allocator node, else
3139 procedure Check_Itype
(Typ
: Entity_Id
);
3140 -- If the component subtype is an access to a constrained subtype of
3141 -- an already frozen type, make the subtype frozen as well. It might
3142 -- otherwise be frozen in the wrong scope, and a freeze node on
3143 -- subtype has no effect. Similarly, if the component subtype is a
3144 -- regular (not protected) access to subprogram, set the anonymous
3145 -- subprogram type to frozen as well, to prevent an out-of-scope
3146 -- freeze node at some eventual point of call. Protected operations
3147 -- are handled elsewhere.
3149 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
);
3150 -- Make sure that all types mentioned in Discrete_Choices of the
3151 -- variants referenceed by the Variant_Part VP are frozen. This is
3152 -- a recursive routine to deal with nested variants.
3154 ---------------------
3155 -- Check_Allocator --
3156 ---------------------
3158 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
3163 if Nkind
(Inner
) = N_Allocator
then
3165 elsif Nkind
(Inner
) = N_Qualified_Expression
then
3166 Inner
:= Expression
(Inner
);
3171 end Check_Allocator
;
3177 procedure Check_Itype
(Typ
: Entity_Id
) is
3178 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
3181 if not Is_Frozen
(Desig
)
3182 and then Is_Frozen
(Base_Type
(Desig
))
3184 Set_Is_Frozen
(Desig
);
3186 -- In addition, add an Itype_Reference to ensure that the
3187 -- access subtype is elaborated early enough. This cannot be
3188 -- done if the subtype may depend on discriminants.
3190 if Ekind
(Comp
) = E_Component
3191 and then Is_Itype
(Etype
(Comp
))
3192 and then not Has_Discriminants
(Rec
)
3194 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3195 Set_Itype
(IR
, Desig
);
3199 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
3200 and then Convention
(Desig
) /= Convention_Protected
3202 Set_Is_Frozen
(Desig
);
3206 ------------------------------------
3207 -- Freeze_Choices_In_Variant_Part --
3208 ------------------------------------
3210 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
) is
3211 pragma Assert
(Nkind
(VP
) = N_Variant_Part
);
3218 -- Loop through variants
3220 Variant
:= First_Non_Pragma
(Variants
(VP
));
3221 while Present
(Variant
) loop
3223 -- Loop through choices, checking that all types are frozen
3225 Choice
:= First_Non_Pragma
(Discrete_Choices
(Variant
));
3226 while Present
(Choice
) loop
3227 if Nkind
(Choice
) in N_Has_Etype
3228 and then Present
(Etype
(Choice
))
3230 Freeze_And_Append
(Etype
(Choice
), N
, Result
);
3233 Next_Non_Pragma
(Choice
);
3236 -- Check for nested variant part to process
3238 CL
:= Component_List
(Variant
);
3240 if not Null_Present
(CL
) then
3241 if Present
(Variant_Part
(CL
)) then
3242 Freeze_Choices_In_Variant_Part
(Variant_Part
(CL
));
3246 Next_Non_Pragma
(Variant
);
3248 end Freeze_Choices_In_Variant_Part
;
3250 -- Start of processing for Freeze_Record_Type
3253 -- Deal with delayed aspect specifications for components. The
3254 -- analysis of the aspect is required to be delayed to the freeze
3255 -- point, thus we analyze the pragma or attribute definition
3256 -- clause in the tree at this point. We also analyze the aspect
3257 -- specification node at the freeze point when the aspect doesn't
3258 -- correspond to pragma/attribute definition clause.
3260 Comp
:= First_Entity
(Rec
);
3261 while Present
(Comp
) loop
3262 if Ekind
(Comp
) = E_Component
3263 and then Has_Delayed_Aspects
(Comp
)
3265 if not Rec_Pushed
then
3269 -- The visibility to the discriminants must be restored in
3270 -- order to properly analyze the aspects.
3272 if Has_Discriminants
(Rec
) then
3273 Install_Discriminants
(Rec
);
3277 Analyze_Aspects_At_Freeze_Point
(Comp
);
3283 -- Pop the scope if Rec scope has been pushed on the scope stack
3284 -- during the delayed aspect analysis process.
3287 if Has_Discriminants
(Rec
) then
3288 Uninstall_Discriminants
(Rec
);
3294 -- Freeze components and embedded subtypes
3296 Comp
:= First_Entity
(Rec
);
3298 while Present
(Comp
) loop
3299 if Is_Aliased
(Comp
) then
3300 Aliased_Component
:= True;
3303 -- Handle the component and discriminant case
3305 if Ekind_In
(Comp
, E_Component
, E_Discriminant
) then
3307 CC
: constant Node_Id
:= Component_Clause
(Comp
);
3310 -- Freezing a record type freezes the type of each of its
3311 -- components. However, if the type of the component is
3312 -- part of this record, we do not want or need a separate
3313 -- Freeze_Node. Note that Is_Itype is wrong because that's
3314 -- also set in private type cases. We also can't check for
3315 -- the Scope being exactly Rec because of private types and
3316 -- record extensions.
3318 if Is_Itype
(Etype
(Comp
))
3319 and then Is_Record_Type
(Underlying_Type
3320 (Scope
(Etype
(Comp
))))
3322 Undelay_Type
(Etype
(Comp
));
3325 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
3327 -- Warn for pragma Pack overriding foreign convention
3329 if Has_Foreign_Convention
(Etype
(Comp
))
3330 and then Has_Pragma_Pack
(Rec
)
3332 -- Don't warn for aliased components, since override
3333 -- cannot happen in that case.
3335 and then not Is_Aliased
(Comp
)
3338 CN
: constant Name_Id
:=
3339 Get_Convention_Name
(Convention
(Etype
(Comp
)));
3340 PP
: constant Node_Id
:=
3341 Get_Pragma
(Rec
, Pragma_Pack
);
3343 if Present
(PP
) then
3344 Error_Msg_Name_1
:= CN
;
3345 Error_Msg_Sloc
:= Sloc
(Comp
);
3347 ("pragma Pack affects convention % component#??",
3349 Error_Msg_Name_1
:= CN
;
3351 ("\component & may not have % compatible "
3352 & "representation??", PP
, Comp
);
3357 -- Check for error of component clause given for variable
3358 -- sized type. We have to delay this test till this point,
3359 -- since the component type has to be frozen for us to know
3360 -- if it is variable length.
3362 if Present
(CC
) then
3363 Placed_Component
:= True;
3365 -- We omit this test in a generic context, it will be
3366 -- applied at instantiation time.
3368 if Inside_A_Generic
then
3371 -- Also omit this test in CodePeer mode, since we do not
3372 -- have sufficient info on size and rep clauses.
3374 elsif CodePeer_Mode
then
3377 -- Omit check if component has a generic type. This can
3378 -- happen in an instantiation within a generic in ASIS
3379 -- mode, where we force freeze actions without full
3382 elsif Is_Generic_Type
(Etype
(Comp
)) then
3388 Size_Known_At_Compile_Time
3389 (Underlying_Type
(Etype
(Comp
)))
3392 ("component clause not allowed for variable " &
3393 "length component", CC
);
3397 Unplaced_Component
:= True;
3400 -- Case of component requires byte alignment
3402 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
3404 -- Set the enclosing record to also require byte align
3406 Set_Must_Be_On_Byte_Boundary
(Rec
);
3408 -- Check for component clause that is inconsistent with
3409 -- the required byte boundary alignment.
3412 and then Normalized_First_Bit
(Comp
) mod
3413 System_Storage_Unit
/= 0
3416 ("component & must be byte aligned",
3417 Component_Name
(Component_Clause
(Comp
)));
3423 -- Gather data for possible Implicit_Packing later. Note that at
3424 -- this stage we might be dealing with a real component, or with
3425 -- an implicit subtype declaration.
3427 if not Is_Scalar_Type
(Etype
(Comp
)) then
3428 All_Scalar_Components
:= False;
3430 Scalar_Component_Total_RM_Size
:=
3431 Scalar_Component_Total_RM_Size
+ RM_Size
(Etype
(Comp
));
3432 Scalar_Component_Total_Esize
:=
3433 Scalar_Component_Total_Esize
+ Esize
(Etype
(Comp
));
3436 -- If the component is an Itype with Delayed_Freeze and is either
3437 -- a record or array subtype and its base type has not yet been
3438 -- frozen, we must remove this from the entity list of this record
3439 -- and put it on the entity list of the scope of its base type.
3440 -- Note that we know that this is not the type of a component
3441 -- since we cleared Has_Delayed_Freeze for it in the previous
3442 -- loop. Thus this must be the Designated_Type of an access type,
3443 -- which is the type of a component.
3446 and then Is_Type
(Scope
(Comp
))
3447 and then Is_Composite_Type
(Comp
)
3448 and then Base_Type
(Comp
) /= Comp
3449 and then Has_Delayed_Freeze
(Comp
)
3450 and then not Is_Frozen
(Base_Type
(Comp
))
3453 Will_Be_Frozen
: Boolean := False;
3457 -- We have a difficult case to handle here. Suppose Rec is
3458 -- subtype being defined in a subprogram that's created as
3459 -- part of the freezing of Rec'Base. In that case, we know
3460 -- that Comp'Base must have already been frozen by the time
3461 -- we get to elaborate this because Gigi doesn't elaborate
3462 -- any bodies until it has elaborated all of the declarative
3463 -- part. But Is_Frozen will not be set at this point because
3464 -- we are processing code in lexical order.
3466 -- We detect this case by going up the Scope chain of Rec
3467 -- and seeing if we have a subprogram scope before reaching
3468 -- the top of the scope chain or that of Comp'Base. If we
3469 -- do, then mark that Comp'Base will actually be frozen. If
3470 -- so, we merely undelay it.
3473 while Present
(S
) loop
3474 if Is_Subprogram
(S
) then
3475 Will_Be_Frozen
:= True;
3477 elsif S
= Scope
(Base_Type
(Comp
)) then
3484 if Will_Be_Frozen
then
3485 Undelay_Type
(Comp
);
3488 if Present
(Prev
) then
3489 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
3491 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
3494 -- Insert in entity list of scope of base type (which
3495 -- must be an enclosing scope, because still unfrozen).
3497 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
3501 -- If the component is an access type with an allocator as default
3502 -- value, the designated type will be frozen by the corresponding
3503 -- expression in init_proc. In order to place the freeze node for
3504 -- the designated type before that for the current record type,
3507 -- Same process if the component is an array of access types,
3508 -- initialized with an aggregate. If the designated type is
3509 -- private, it cannot contain allocators, and it is premature
3510 -- to freeze the type, so we check for this as well.
3512 elsif Is_Access_Type
(Etype
(Comp
))
3513 and then Present
(Parent
(Comp
))
3514 and then Present
(Expression
(Parent
(Comp
)))
3517 Alloc
: constant Node_Id
:=
3518 Check_Allocator
(Expression
(Parent
(Comp
)));
3521 if Present
(Alloc
) then
3523 -- If component is pointer to a class-wide type, freeze
3524 -- the specific type in the expression being allocated.
3525 -- The expression may be a subtype indication, in which
3526 -- case freeze the subtype mark.
3528 if Is_Class_Wide_Type
3529 (Designated_Type
(Etype
(Comp
)))
3531 if Is_Entity_Name
(Expression
(Alloc
)) then
3533 (Entity
(Expression
(Alloc
)), N
, Result
);
3535 elsif Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
3538 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
3542 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
3543 Check_Itype
(Etype
(Comp
));
3547 (Designated_Type
(Etype
(Comp
)), N
, Result
);
3552 elsif Is_Access_Type
(Etype
(Comp
))
3553 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
3555 Check_Itype
(Etype
(Comp
));
3557 -- Freeze the designated type when initializing a component with
3558 -- an aggregate in case the aggregate contains allocators.
3561 -- type T_Ptr is access all T;
3562 -- type T_Array is array ... of T_Ptr;
3564 -- type Rec is record
3565 -- Comp : T_Array := (others => ...);
3568 elsif Is_Array_Type
(Etype
(Comp
))
3569 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
3572 Comp_Par
: constant Node_Id
:= Parent
(Comp
);
3573 Desig_Typ
: constant Entity_Id
:=
3575 (Component_Type
(Etype
(Comp
)));
3578 -- The only case when this sort of freezing is not done is
3579 -- when the designated type is class-wide and the root type
3580 -- is the record owning the component. This scenario results
3581 -- in a circularity because the class-wide type requires
3582 -- primitives that have not been created yet as the root
3583 -- type is in the process of being frozen.
3585 -- type Rec is tagged;
3586 -- type Rec_Ptr is access all Rec'Class;
3587 -- type Rec_Array is array ... of Rec_Ptr;
3589 -- type Rec is record
3590 -- Comp : Rec_Array := (others => ...);
3593 if Is_Class_Wide_Type
(Desig_Typ
)
3594 and then Root_Type
(Desig_Typ
) = Rec
3598 elsif Is_Fully_Defined
(Desig_Typ
)
3599 and then Present
(Comp_Par
)
3600 and then Nkind
(Comp_Par
) = N_Component_Declaration
3601 and then Present
(Expression
(Comp_Par
))
3602 and then Nkind
(Expression
(Comp_Par
)) = N_Aggregate
3604 Freeze_And_Append
(Desig_Typ
, N
, Result
);
3613 -- Deal with default setting of reverse storage order
3615 Set_SSO_From_Default
(Rec
);
3617 -- Check consistent attribute setting on component types
3619 SSO_ADC
:= Get_Attribute_Definition_Clause
3620 (Rec
, Attribute_Scalar_Storage_Order
);
3623 Comp_ADC_Present
: Boolean;
3625 Comp
:= First_Component
(Rec
);
3626 while Present
(Comp
) loop
3627 Check_Component_Storage_Order
3631 Comp_ADC_Present
=> Comp_ADC_Present
);
3632 SSO_ADC_Component
:= SSO_ADC_Component
or Comp_ADC_Present
;
3633 Next_Component
(Comp
);
3637 -- Now deal with reverse storage order/bit order issues
3639 if Present
(SSO_ADC
) then
3641 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3642 -- the former is specified.
3644 if Reverse_Bit_Order
(Rec
) /= Reverse_Storage_Order
(Rec
) then
3646 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3647 -- to some ancestor type.
3649 Error_Msg_Sloc
:= Sloc
(SSO_ADC
);
3651 ("scalar storage order for& specified# inconsistent with "
3652 & "bit order", Rec
);
3655 -- Warn if there is an Scalar_Storage_Order attribute definition
3656 -- clause but no component clause, no component that itself has
3657 -- such an attribute definition, and no pragma Pack.
3659 if not (Placed_Component
3666 ("??scalar storage order specified but no component clause",
3671 -- Deal with Bit_Order aspect
3673 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
3675 if Present
(ADC
) and then Base_Type
(Rec
) = Rec
then
3676 if not (Placed_Component
3677 or else Present
(SSO_ADC
)
3678 or else Is_Packed
(Rec
))
3680 -- Warn if clause has no effect when no component clause is
3681 -- present, but suppress warning if the Bit_Order is required
3682 -- due to the presence of a Scalar_Storage_Order attribute.
3685 ("??bit order specification has no effect", ADC
);
3687 ("\??since no component clauses were specified", ADC
);
3689 -- Here is where we do the processing to adjust component clauses
3690 -- for reversed bit order, when not using reverse SSO.
3692 elsif Reverse_Bit_Order
(Rec
)
3693 and then not Reverse_Storage_Order
(Rec
)
3695 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
3697 -- Case where we have both an explicit Bit_Order and the same
3698 -- Scalar_Storage_Order: leave record untouched, the back-end
3699 -- will take care of required layout conversions.
3707 -- Complete error checking on record representation clause (e.g.
3708 -- overlap of components). This is called after adjusting the
3709 -- record for reverse bit order.
3712 RRC
: constant Node_Id
:= Get_Record_Representation_Clause
(Rec
);
3714 if Present
(RRC
) then
3715 Check_Record_Representation_Clause
(RRC
);
3719 -- Set OK_To_Reorder_Components depending on debug flags
3721 if Is_Base_Type
(Rec
) and then Convention
(Rec
) = Convention_Ada
then
3722 if (Has_Discriminants
(Rec
) and then Debug_Flag_Dot_V
)
3724 (not Has_Discriminants
(Rec
) and then Debug_Flag_Dot_R
)
3726 Set_OK_To_Reorder_Components
(Rec
);
3730 -- Check for useless pragma Pack when all components placed. We only
3731 -- do this check for record types, not subtypes, since a subtype may
3732 -- have all its components placed, and it still makes perfectly good
3733 -- sense to pack other subtypes or the parent type. We do not give
3734 -- this warning if Optimize_Alignment is set to Space, since the
3735 -- pragma Pack does have an effect in this case (it always resets
3736 -- the alignment to one).
3738 if Ekind
(Rec
) = E_Record_Type
3739 and then Is_Packed
(Rec
)
3740 and then not Unplaced_Component
3741 and then Optimize_Alignment
/= 'S'
3743 -- Reset packed status. Probably not necessary, but we do it so
3744 -- that there is no chance of the back end doing something strange
3745 -- with this redundant indication of packing.
3747 Set_Is_Packed
(Rec
, False);
3749 -- Give warning if redundant constructs warnings on
3751 if Warn_On_Redundant_Constructs
then
3752 Error_Msg_N
-- CODEFIX
3753 ("??pragma Pack has no effect, no unplaced components",
3754 Get_Rep_Pragma
(Rec
, Name_Pack
));
3758 -- If this is the record corresponding to a remote type, freeze the
3759 -- remote type here since that is what we are semantically freezing.
3760 -- This prevents the freeze node for that type in an inner scope.
3762 if Ekind
(Rec
) = E_Record_Type
then
3763 if Present
(Corresponding_Remote_Type
(Rec
)) then
3764 Freeze_And_Append
(Corresponding_Remote_Type
(Rec
), N
, Result
);
3767 -- Check for controlled components and unchecked unions.
3769 Comp
:= First_Component
(Rec
);
3770 while Present
(Comp
) loop
3772 -- Do not set Has_Controlled_Component on a class-wide
3773 -- equivalent type. See Make_CW_Equivalent_Type.
3775 if not Is_Class_Wide_Equivalent_Type
(Rec
)
3777 (Has_Controlled_Component
(Etype
(Comp
))
3779 (Chars
(Comp
) /= Name_uParent
3780 and then Is_Controlled
(Etype
(Comp
)))
3782 (Is_Protected_Type
(Etype
(Comp
))
3784 Present
(Corresponding_Record_Type
(Etype
(Comp
)))
3786 Has_Controlled_Component
3787 (Corresponding_Record_Type
(Etype
(Comp
)))))
3789 Set_Has_Controlled_Component
(Rec
);
3792 if Has_Unchecked_Union
(Etype
(Comp
)) then
3793 Set_Has_Unchecked_Union
(Rec
);
3796 -- Scan component declaration for likely misuses of current
3797 -- instance, either in a constraint or a default expression.
3799 if Has_Per_Object_Constraint
(Comp
) then
3800 Check_Current_Instance
(Parent
(Comp
));
3803 Next_Component
(Comp
);
3807 -- Enforce the restriction that access attributes with a current
3808 -- instance prefix can only apply to limited types. This comment
3809 -- is floating here, but does not seem to belong here???
3811 -- Set component alignment if not otherwise already set
3813 Set_Component_Alignment_If_Not_Set
(Rec
);
3815 -- For first subtypes, check if there are any fixed-point fields with
3816 -- component clauses, where we must check the size. This is not done
3817 -- till the freeze point since for fixed-point types, we do not know
3818 -- the size until the type is frozen. Similar processing applies to
3819 -- bit packed arrays.
3821 if Is_First_Subtype
(Rec
) then
3822 Comp
:= First_Component
(Rec
);
3823 while Present
(Comp
) loop
3824 if Present
(Component_Clause
(Comp
))
3825 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
3826 or else Is_Bit_Packed_Array
(Etype
(Comp
)))
3829 (Component_Name
(Component_Clause
(Comp
)),
3835 Next_Component
(Comp
);
3839 -- Generate warning for applying C or C++ convention to a record
3840 -- with discriminants. This is suppressed for the unchecked union
3841 -- case, since the whole point in this case is interface C. We also
3842 -- do not generate this within instantiations, since we will have
3843 -- generated a message on the template.
3845 if Has_Discriminants
(E
)
3846 and then not Is_Unchecked_Union
(E
)
3847 and then (Convention
(E
) = Convention_C
3849 Convention
(E
) = Convention_CPP
)
3850 and then Comes_From_Source
(E
)
3851 and then not In_Instance
3852 and then not Has_Warnings_Off
(E
)
3853 and then not Has_Warnings_Off
(Base_Type
(E
))
3856 Cprag
: constant Node_Id
:= Get_Rep_Pragma
(E
, Name_Convention
);
3860 if Present
(Cprag
) then
3861 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
3863 if Convention
(E
) = Convention_C
then
3865 ("?x?variant record has no direct equivalent in C",
3869 ("?x?variant record has no direct equivalent in C++",
3874 ("\?x?use of convention for type& is dubious", A2
, E
);
3879 -- See if Size is too small as is (and implicit packing might help)
3881 if not Is_Packed
(Rec
)
3883 -- No implicit packing if even one component is explicitly placed
3885 and then not Placed_Component
3887 -- Or even one component is aliased
3889 and then not Aliased_Component
3891 -- Must have size clause and all scalar components
3893 and then Has_Size_Clause
(Rec
)
3894 and then All_Scalar_Components
3896 -- Do not try implicit packing on records with discriminants, too
3897 -- complicated, especially in the variant record case.
3899 and then not Has_Discriminants
(Rec
)
3901 -- We can implicitly pack if the specified size of the record is
3902 -- less than the sum of the object sizes (no point in packing if
3903 -- this is not the case).
3905 and then RM_Size
(Rec
) < Scalar_Component_Total_Esize
3907 -- And the total RM size cannot be greater than the specified size
3908 -- since otherwise packing will not get us where we have to be.
3910 and then RM_Size
(Rec
) >= Scalar_Component_Total_RM_Size
3912 -- Never do implicit packing in CodePeer or SPARK modes since
3913 -- we don't do any packing in these modes, since this generates
3914 -- over-complex code that confuses static analysis, and in
3915 -- general, neither CodePeer not GNATprove care about the
3916 -- internal representation of objects.
3918 and then not (CodePeer_Mode
or GNATprove_Mode
)
3920 -- If implicit packing enabled, do it
3922 if Implicit_Packing
then
3923 Set_Is_Packed
(Rec
);
3925 -- Otherwise flag the size clause
3929 Sz
: constant Node_Id
:= Size_Clause
(Rec
);
3931 Error_Msg_NE
-- CODEFIX
3932 ("size given for& too small", Sz
, Rec
);
3933 Error_Msg_N
-- CODEFIX
3934 ("\use explicit pragma Pack "
3935 & "or use pragma Implicit_Packing", Sz
);
3940 -- The following checks are only relevant when SPARK_Mode is on as
3941 -- they are not standard Ada legality rules.
3943 if SPARK_Mode
= On
then
3944 if Is_Effectively_Volatile
(Rec
) then
3946 -- A discriminated type cannot be effectively volatile
3947 -- (SPARK RM C.6(4)).
3949 if Has_Discriminants
(Rec
) then
3950 Error_Msg_N
("discriminated type & cannot be volatile", Rec
);
3952 -- A tagged type cannot be effectively volatile
3953 -- (SPARK RM C.6(5)).
3955 elsif Is_Tagged_Type
(Rec
) then
3956 Error_Msg_N
("tagged type & cannot be volatile", Rec
);
3959 -- A non-effectively volatile record type cannot contain
3960 -- effectively volatile components (SPARK RM C.6(2)).
3963 Comp
:= First_Component
(Rec
);
3964 while Present
(Comp
) loop
3965 if Comes_From_Source
(Comp
)
3966 and then Is_Effectively_Volatile
(Etype
(Comp
))
3968 Error_Msg_Name_1
:= Chars
(Rec
);
3970 ("component & of non-volatile type % cannot be "
3971 & "volatile", Comp
);
3974 Next_Component
(Comp
);
3979 -- All done if not a full record definition
3981 if Ekind
(Rec
) /= E_Record_Type
then
3985 -- Finally we need to check the variant part to make sure that
3986 -- all types within choices are properly frozen as part of the
3987 -- freezing of the record type.
3989 Check_Variant_Part
: declare
3990 D
: constant Node_Id
:= Declaration_Node
(Rec
);
3995 -- Find component list
3999 if Nkind
(D
) = N_Full_Type_Declaration
then
4000 T
:= Type_Definition
(D
);
4002 if Nkind
(T
) = N_Record_Definition
then
4003 C
:= Component_List
(T
);
4005 elsif Nkind
(T
) = N_Derived_Type_Definition
4006 and then Present
(Record_Extension_Part
(T
))
4008 C
:= Component_List
(Record_Extension_Part
(T
));
4012 -- Case of variant part present
4014 if Present
(C
) and then Present
(Variant_Part
(C
)) then
4015 Freeze_Choices_In_Variant_Part
(Variant_Part
(C
));
4018 -- Note: we used to call Check_Choices here, but it is too early,
4019 -- since predicated subtypes are frozen here, but their freezing
4020 -- actions are in Analyze_Freeze_Entity, which has not been called
4021 -- yet for entities frozen within this procedure, so we moved that
4022 -- call to the Analyze_Freeze_Entity for the record type.
4024 end Check_Variant_Part
;
4026 -- Check that all the primitives of an interface type are abstract
4027 -- or null procedures.
4029 if Is_Interface
(Rec
)
4030 and then not Error_Posted
(Parent
(Rec
))
4037 Elmt
:= First_Elmt
(Primitive_Operations
(Rec
));
4038 while Present
(Elmt
) loop
4039 Subp
:= Node
(Elmt
);
4041 if not Is_Abstract_Subprogram
(Subp
)
4043 -- Avoid reporting the error on inherited primitives
4045 and then Comes_From_Source
(Subp
)
4047 Error_Msg_Name_1
:= Chars
(Subp
);
4049 if Ekind
(Subp
) = E_Procedure
then
4050 if not Null_Present
(Parent
(Subp
)) then
4052 ("interface procedure % must be abstract or null",
4057 ("interface function % must be abstract",
4066 end Freeze_Record_Type
;
4068 -------------------------------
4069 -- Has_Boolean_Aspect_Import --
4070 -------------------------------
4072 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean is
4073 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4078 if Has_Aspects
(Decl
) then
4079 Asp
:= First
(Aspect_Specifications
(Decl
));
4080 while Present
(Asp
) loop
4081 Expr
:= Expression
(Asp
);
4083 -- The value of aspect Import is True when the expression is
4084 -- either missing or it is explicitly set to True.
4086 if Get_Aspect_Id
(Asp
) = Aspect_Import
4088 or else (Compile_Time_Known_Value
(Expr
)
4089 and then Is_True
(Expr_Value
(Expr
))))
4099 end Has_Boolean_Aspect_Import
;
4101 ----------------------------
4102 -- Late_Freeze_Subprogram --
4103 ----------------------------
4105 procedure Late_Freeze_Subprogram
(E
: Entity_Id
) is
4106 Spec
: constant Node_Id
:=
4107 Specification
(Unit_Declaration_Node
(Scope
(E
)));
4111 if Present
(Private_Declarations
(Spec
)) then
4112 Decls
:= Private_Declarations
(Spec
);
4114 Decls
:= Visible_Declarations
(Spec
);
4117 Append_List
(Result
, Decls
);
4118 end Late_Freeze_Subprogram
;
4120 ---------------------
4121 -- Restore_Globals --
4122 ---------------------
4124 procedure Restore_Globals
is
4127 end Restore_Globals
;
4129 ------------------------------
4130 -- Wrap_Imported_Subprogram --
4131 ------------------------------
4133 -- The issue here is that our normal approach of checking preconditions
4134 -- and postconditions does not work for imported procedures, since we
4135 -- are not generating code for the body. To get around this we create
4136 -- a wrapper, as shown by the following example:
4138 -- procedure K (A : Integer);
4139 -- pragma Import (C, K);
4141 -- The spec is rewritten by removing the effects of pragma Import, but
4142 -- leaving the convention unchanged, as though the source had said:
4144 -- procedure K (A : Integer);
4145 -- pragma Convention (C, K);
4147 -- and we create a body, added to the entity K freeze actions, which
4150 -- procedure K (A : Integer) is
4151 -- procedure K (A : Integer);
4152 -- pragma Import (C, K);
4157 -- Now the contract applies in the normal way to the outer procedure,
4158 -- and the inner procedure has no contracts, so there is no problem
4159 -- in just calling it to get the original effect.
4161 -- In the case of a function, we create an appropriate return statement
4162 -- for the subprogram body that calls the inner procedure.
4164 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
) is
4165 Loc
: constant Source_Ptr
:= Sloc
(E
);
4166 CE
: constant Name_Id
:= Chars
(E
);
4175 -- Nothing to do if not imported
4177 if not Is_Imported
(E
) then
4180 -- Test enabling conditions for wrapping
4182 elsif Is_Subprogram
(E
)
4183 and then Present
(Contract
(E
))
4184 and then Present
(Pre_Post_Conditions
(Contract
(E
)))
4185 and then not GNATprove_Mode
4187 -- Here we do the wrap
4189 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4190 -- here are fully analyzed, but we definitely want fully syntactic
4191 -- unanalyzed trees in the body we construct, so that the analysis
4192 -- generates the right visibility, and that is exactly what the
4193 -- calls to Copy_Separate_Tree give us.
4195 -- Acquire copy of Inline pragma, and indicate that it does not
4196 -- come from an aspect, as it applies to an internal entity.
4198 Iprag
:= Copy_Separate_Tree
(Import_Pragma
(E
));
4199 Set_From_Aspect_Specification
(Iprag
, False);
4201 -- Fix up spec to be not imported any more
4203 Set_Is_Imported
(E
, False);
4204 Set_Interface_Name
(E
, Empty
);
4205 Set_Has_Completion
(E
, False);
4206 Set_Import_Pragma
(E
, Empty
);
4208 -- Grab the subprogram declaration and specification
4210 Spec
:= Declaration_Node
(E
);
4212 -- Build parameter list that we need
4215 Forml
:= First_Formal
(E
);
4216 while Present
(Forml
) loop
4217 Append_To
(Parms
, Make_Identifier
(Loc
, Chars
(Forml
)));
4218 Next_Formal
(Forml
);
4223 if Ekind_In
(E
, E_Function
, E_Generic_Function
) then
4225 Make_Simple_Return_Statement
(Loc
,
4227 Make_Function_Call
(Loc
,
4228 Name
=> Make_Identifier
(Loc
, CE
),
4229 Parameter_Associations
=> Parms
));
4233 Make_Procedure_Call_Statement
(Loc
,
4234 Name
=> Make_Identifier
(Loc
, CE
),
4235 Parameter_Associations
=> Parms
);
4238 -- Now build the body
4241 Make_Subprogram_Body
(Loc
,
4243 Copy_Separate_Tree
(Spec
),
4244 Declarations
=> New_List
(
4245 Make_Subprogram_Declaration
(Loc
,
4247 Copy_Separate_Tree
(Spec
)),
4249 Handled_Statement_Sequence
=>
4250 Make_Handled_Sequence_Of_Statements
(Loc
,
4251 Statements
=> New_List
(Stmt
),
4252 End_Label
=> Make_Identifier
(Loc
, CE
)));
4254 -- Append the body to freeze result
4256 Add_To_Result
(Bod
);
4259 -- Case of imported subprogram that does not get wrapped
4262 -- Set Is_Public. All imported entities need an external symbol
4263 -- created for them since they are always referenced from another
4264 -- object file. Note this used to be set when we set Is_Imported
4265 -- back in Sem_Prag, but now we delay it to this point, since we
4266 -- don't want to set this flag if we wrap an imported subprogram.
4270 end Wrap_Imported_Subprogram
;
4272 -- Start of processing for Freeze_Entity
4275 -- The entity being frozen may be subject to pragma Ghost with policy
4276 -- Ignore. Set the mode now to ensure that any nodes generated during
4277 -- freezing are properly flagged as ignored Ghost.
4279 Set_Ghost_Mode_For_Freeze
(E
, N
);
4281 -- We are going to test for various reasons why this entity need not be
4282 -- frozen here, but in the case of an Itype that's defined within a
4283 -- record, that test actually applies to the record.
4285 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
4286 Test_E
:= Scope
(E
);
4287 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
4288 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
4290 Test_E
:= Underlying_Type
(Scope
(E
));
4293 -- Do not freeze if already frozen since we only need one freeze node
4295 if Is_Frozen
(E
) then
4299 -- It is improper to freeze an external entity within a generic because
4300 -- its freeze node will appear in a non-valid context. The entity will
4301 -- be frozen in the proper scope after the current generic is analyzed.
4302 -- However, aspects must be analyzed because they may be queried later
4303 -- within the generic itself, and the corresponding pragma or attribute
4304 -- definition has not been analyzed yet.
4306 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
4307 if Has_Delayed_Aspects
(E
) then
4308 Analyze_Aspects_At_Freeze_Point
(E
);
4314 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4315 -- the instance, the same applies to the subtype renaming the actual.
4317 elsif Is_Private_Type
(E
)
4318 and then Is_Generic_Actual_Type
(E
)
4319 and then No
(Full_View
(Base_Type
(E
)))
4320 and then Ada_Version
>= Ada_2012
4325 -- Formal subprograms are never frozen
4327 elsif Is_Formal_Subprogram
(E
) then
4331 -- Generic types are never frozen as they lack delayed semantic checks
4333 elsif Is_Generic_Type
(E
) then
4337 -- Do not freeze a global entity within an inner scope created during
4338 -- expansion. A call to subprogram E within some internal procedure
4339 -- (a stream attribute for example) might require freezing E, but the
4340 -- freeze node must appear in the same declarative part as E itself.
4341 -- The two-pass elaboration mechanism in gigi guarantees that E will
4342 -- be frozen before the inner call is elaborated. We exclude constants
4343 -- from this test, because deferred constants may be frozen early, and
4344 -- must be diagnosed (e.g. in the case of a deferred constant being used
4345 -- in a default expression). If the enclosing subprogram comes from
4346 -- source, or is a generic instance, then the freeze point is the one
4347 -- mandated by the language, and we freeze the entity. A subprogram that
4348 -- is a child unit body that acts as a spec does not have a spec that
4349 -- comes from source, but can only come from source.
4351 elsif In_Open_Scopes
(Scope
(Test_E
))
4352 and then Scope
(Test_E
) /= Current_Scope
4353 and then Ekind
(Test_E
) /= E_Constant
4360 while Present
(S
) loop
4361 if Is_Overloadable
(S
) then
4362 if Comes_From_Source
(S
)
4363 or else Is_Generic_Instance
(S
)
4364 or else Is_Child_Unit
(S
)
4377 -- Similarly, an inlined instance body may make reference to global
4378 -- entities, but these references cannot be the proper freezing point
4379 -- for them, and in the absence of inlining freezing will take place in
4380 -- their own scope. Normally instance bodies are analyzed after the
4381 -- enclosing compilation, and everything has been frozen at the proper
4382 -- place, but with front-end inlining an instance body is compiled
4383 -- before the end of the enclosing scope, and as a result out-of-order
4384 -- freezing must be prevented.
4386 elsif Front_End_Inlining
4387 and then In_Instance_Body
4388 and then Present
(Scope
(Test_E
))
4394 S
:= Scope
(Test_E
);
4395 while Present
(S
) loop
4396 if Is_Generic_Instance
(S
) then
4409 elsif Ekind
(E
) = E_Generic_Package
then
4410 Result
:= Freeze_Generic_Entities
(E
);
4416 -- Add checks to detect proper initialization of scalars that may appear
4417 -- as subprogram parameters.
4419 if Is_Subprogram
(E
) and then Check_Validity_Of_Parameters
then
4420 Apply_Parameter_Validity_Checks
(E
);
4423 -- Deal with delayed aspect specifications. The analysis of the aspect
4424 -- is required to be delayed to the freeze point, thus we analyze the
4425 -- pragma or attribute definition clause in the tree at this point. We
4426 -- also analyze the aspect specification node at the freeze point when
4427 -- the aspect doesn't correspond to pragma/attribute definition clause.
4429 if Has_Delayed_Aspects
(E
) then
4430 Analyze_Aspects_At_Freeze_Point
(E
);
4433 -- Here to freeze the entity
4437 -- Case of entity being frozen is other than a type
4439 if not Is_Type
(E
) then
4441 -- If entity is exported or imported and does not have an external
4442 -- name, now is the time to provide the appropriate default name.
4443 -- Skip this if the entity is stubbed, since we don't need a name
4444 -- for any stubbed routine. For the case on intrinsics, if no
4445 -- external name is specified, then calls will be handled in
4446 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4447 -- external name is provided, then Expand_Intrinsic_Call leaves
4448 -- calls in place for expansion by GIGI.
4450 if (Is_Imported
(E
) or else Is_Exported
(E
))
4451 and then No
(Interface_Name
(E
))
4452 and then Convention
(E
) /= Convention_Stubbed
4453 and then Convention
(E
) /= Convention_Intrinsic
4455 Set_Encoded_Interface_Name
4456 (E
, Get_Default_External_Name
(E
));
4458 -- If entity is an atomic object appearing in a declaration and
4459 -- the expression is an aggregate, assign it to a temporary to
4460 -- ensure that the actual assignment is done atomically rather
4461 -- than component-wise (the assignment to the temp may be done
4462 -- component-wise, but that is harmless).
4465 and then Nkind
(Parent
(E
)) = N_Object_Declaration
4466 and then Present
(Expression
(Parent
(E
)))
4467 and then Nkind
(Expression
(Parent
(E
))) = N_Aggregate
4468 and then Is_Atomic_Aggregate
(Expression
(Parent
(E
)), Etype
(E
))
4475 if Is_Subprogram
(E
) then
4477 -- Check for needing to wrap imported subprogram
4479 Wrap_Imported_Subprogram
(E
);
4481 -- Freeze all parameter types and the return type (RM 13.14(14)).
4482 -- However skip this for internal subprograms. This is also where
4483 -- any extra formal parameters are created since we now know
4484 -- whether the subprogram will use a foreign convention.
4486 -- In Ada 2012, freezing a subprogram does not always freeze
4487 -- the corresponding profile (see AI05-019). An attribute
4488 -- reference is not a freezing point of the profile.
4489 -- Other constructs that should not freeze ???
4491 -- This processing doesn't apply to internal entities (see below)
4493 if not Is_Internal
(E
) then
4494 if not Freeze_Profile
(E
) then
4500 -- Must freeze its parent first if it is a derived subprogram
4502 if Present
(Alias
(E
)) then
4503 Freeze_And_Append
(Alias
(E
), N
, Result
);
4506 -- We don't freeze internal subprograms, because we don't normally
4507 -- want addition of extra formals or mechanism setting to happen
4508 -- for those. However we do pass through predefined dispatching
4509 -- cases, since extra formals may be needed in some cases, such as
4510 -- for the stream 'Input function (build-in-place formals).
4512 if not Is_Internal
(E
)
4513 or else Is_Predefined_Dispatching_Operation
(E
)
4515 Freeze_Subprogram
(E
);
4518 if Late_Freezing
then
4519 Late_Freeze_Subprogram
(E
);
4524 -- If warning on suspicious contracts then check for the case of
4525 -- a postcondition other than False for a No_Return subprogram.
4528 and then Warn_On_Suspicious_Contract
4529 and then Present
(Contract
(E
))
4532 Prag
: Node_Id
:= Pre_Post_Conditions
(Contract
(E
));
4536 while Present
(Prag
) loop
4537 if Nam_In
(Pragma_Name
(Prag
), Name_Post
,
4543 (First
(Pragma_Argument_Associations
(Prag
)));
4545 if Nkind
(Exp
) /= N_Identifier
4546 or else Chars
(Exp
) /= Name_False
4549 ("useless postcondition, & is marked "
4550 & "No_Return?T?", Exp
, E
);
4554 Prag
:= Next_Pragma
(Prag
);
4559 -- Here for other than a subprogram or type
4562 -- If entity has a type, and it is not a generic unit, then
4563 -- freeze it first (RM 13.14(10)).
4565 if Present
(Etype
(E
))
4566 and then Ekind
(E
) /= E_Generic_Function
4568 Freeze_And_Append
(Etype
(E
), N
, Result
);
4570 -- For an object of an anonymous array type, aspects on the
4571 -- object declaration apply to the type itself. This is the
4572 -- case for Atomic_Components, Volatile_Components, and
4573 -- Independent_Components. In these cases analysis of the
4574 -- generated pragma will mark the anonymous types accordingly,
4575 -- and the object itself does not require a freeze node.
4577 if Ekind
(E
) = E_Variable
4578 and then Is_Itype
(Etype
(E
))
4579 and then Is_Array_Type
(Etype
(E
))
4580 and then Has_Delayed_Aspects
(E
)
4582 Set_Has_Delayed_Aspects
(E
, False);
4583 Set_Has_Delayed_Freeze
(E
, False);
4584 Set_Freeze_Node
(E
, Empty
);
4588 -- Special processing for objects created by object declaration
4590 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
4592 -- Abstract type allowed only for C++ imported variables or
4595 -- Note: we inhibit this check for objects that do not come
4596 -- from source because there is at least one case (the
4597 -- expansion of x'Class'Input where x is abstract) where we
4598 -- legitimately generate an abstract object.
4600 if Is_Abstract_Type
(Etype
(E
))
4601 and then Comes_From_Source
(Parent
(E
))
4602 and then not (Is_Imported
(E
)
4603 and then Is_CPP_Class
(Etype
(E
)))
4605 Error_Msg_N
("type of object cannot be abstract",
4606 Object_Definition
(Parent
(E
)));
4608 if Is_CPP_Class
(Etype
(E
)) then
4610 ("\} may need a cpp_constructor",
4611 Object_Definition
(Parent
(E
)), Etype
(E
));
4613 elsif Present
(Expression
(Parent
(E
))) then
4614 Error_Msg_N
-- CODEFIX
4615 ("\maybe a class-wide type was meant",
4616 Object_Definition
(Parent
(E
)));
4620 -- For object created by object declaration, perform required
4621 -- categorization (preelaborate and pure) checks. Defer these
4622 -- checks to freeze time since pragma Import inhibits default
4623 -- initialization and thus pragma Import affects these checks.
4625 Validate_Object_Declaration
(Declaration_Node
(E
));
4627 -- If there is an address clause, check that it is valid
4629 Check_Address_Clause
(E
);
4631 -- Reset Is_True_Constant for non-constant aliased object. We
4632 -- consider that the fact that a non-constant object is aliased
4633 -- may indicate that some funny business is going on, e.g. an
4634 -- aliased object is passed by reference to a procedure which
4635 -- captures the address of the object, which is later used to
4636 -- assign a new value, even though the compiler thinks that
4637 -- it is not modified. Such code is highly dubious, but we
4638 -- choose to make it "work" for non-constant aliased objects.
4639 -- Note that we used to do this for all aliased objects,
4640 -- whether or not constant, but this caused anomalies down
4641 -- the line because we ended up with static objects that
4642 -- were not Is_True_Constant. Not resetting Is_True_Constant
4643 -- for (aliased) constant objects ensures that this anomaly
4646 -- However, we don't do that for internal entities. We figure
4647 -- that if we deliberately set Is_True_Constant for an internal
4648 -- entity, e.g. a dispatch table entry, then we mean it.
4650 if Ekind
(E
) /= E_Constant
4651 and then (Is_Aliased
(E
) or else Is_Aliased
(Etype
(E
)))
4652 and then not Is_Internal_Name
(Chars
(E
))
4654 Set_Is_True_Constant
(E
, False);
4657 -- If the object needs any kind of default initialization, an
4658 -- error must be issued if No_Default_Initialization applies.
4659 -- The check doesn't apply to imported objects, which are not
4660 -- ever default initialized, and is why the check is deferred
4661 -- until freezing, at which point we know if Import applies.
4662 -- Deferred constants are also exempted from this test because
4663 -- their completion is explicit, or through an import pragma.
4665 if Ekind
(E
) = E_Constant
4666 and then Present
(Full_View
(E
))
4670 elsif Comes_From_Source
(E
)
4671 and then not Is_Imported
(E
)
4672 and then not Has_Init_Expression
(Declaration_Node
(E
))
4674 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
4675 and then not No_Initialization
(Declaration_Node
(E
))
4676 and then not Is_Value_Type
(Etype
(E
))
4677 and then not Initialization_Suppressed
(Etype
(E
)))
4679 (Needs_Simple_Initialization
(Etype
(E
))
4680 and then not Is_Internal
(E
)))
4682 Has_Default_Initialization
:= True;
4684 (No_Default_Initialization
, Declaration_Node
(E
));
4687 -- Check that a Thread_Local_Storage variable does not have
4688 -- default initialization, and any explicit initialization must
4689 -- either be the null constant or a static constant.
4691 if Has_Pragma_Thread_Local_Storage
(E
) then
4693 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4695 if Has_Default_Initialization
4697 (Has_Init_Expression
(Decl
)
4699 (No
(Expression
(Decl
))
4701 (Is_OK_Static_Expression
(Expression
(Decl
))
4703 Nkind
(Expression
(Decl
)) = N_Null
)))
4706 ("Thread_Local_Storage variable& is "
4707 & "improperly initialized", Decl
, E
);
4709 ("\only allowed initialization is explicit "
4710 & "NULL or static expression", Decl
, E
);
4715 -- For imported objects, set Is_Public unless there is also an
4716 -- address clause, which means that there is no external symbol
4717 -- needed for the Import (Is_Public may still be set for other
4718 -- unrelated reasons). Note that we delayed this processing
4719 -- till freeze time so that we can be sure not to set the flag
4720 -- if there is an address clause. If there is such a clause,
4721 -- then the only purpose of the Import pragma is to suppress
4722 -- implicit initialization.
4724 if Is_Imported
(E
) and then No
(Address_Clause
(E
)) then
4728 -- For source objects that are not Imported and are library
4729 -- level, if no linker section pragma was given inherit the
4730 -- appropriate linker section from the corresponding type.
4732 if Comes_From_Source
(E
)
4733 and then not Is_Imported
(E
)
4734 and then Is_Library_Level_Entity
(E
)
4735 and then No
(Linker_Section_Pragma
(E
))
4737 Set_Linker_Section_Pragma
4738 (E
, Linker_Section_Pragma
(Etype
(E
)));
4741 -- For convention C objects of an enumeration type, warn if
4742 -- the size is not integer size and no explicit size given.
4743 -- Skip warning for Boolean, and Character, assume programmer
4744 -- expects 8-bit sizes for these cases.
4746 if (Convention
(E
) = Convention_C
4748 Convention
(E
) = Convention_CPP
)
4749 and then Is_Enumeration_Type
(Etype
(E
))
4750 and then not Is_Character_Type
(Etype
(E
))
4751 and then not Is_Boolean_Type
(Etype
(E
))
4752 and then Esize
(Etype
(E
)) < Standard_Integer_Size
4753 and then not Has_Size_Clause
(E
)
4755 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
4757 ("??convention C enumeration object has size less than ^",
4759 Error_Msg_N
("\??use explicit size clause to set size", E
);
4763 -- Check that a constant which has a pragma Volatile[_Components]
4764 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4766 -- Note: Atomic[_Components] also sets Volatile[_Components]
4768 if Ekind
(E
) = E_Constant
4769 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
4770 and then not Is_Imported
(E
)
4771 and then not Has_Boolean_Aspect_Import
(E
)
4773 -- Make sure we actually have a pragma, and have not merely
4774 -- inherited the indication from elsewhere (e.g. an address
4775 -- clause, which is not good enough in RM terms).
4777 if Has_Rep_Pragma
(E
, Name_Atomic
)
4779 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
4782 ("stand alone atomic constant must be " &
4783 "imported (RM C.6(13))", E
);
4785 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
4787 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
4790 ("stand alone volatile constant must be " &
4791 "imported (RM C.6(13))", E
);
4795 -- Static objects require special handling
4797 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
4798 and then Is_Statically_Allocated
(E
)
4800 Freeze_Static_Object
(E
);
4803 -- Remaining step is to layout objects
4805 if Ekind_In
(E
, E_Variable
, E_Constant
, E_Loop_Parameter
)
4806 or else Is_Formal
(E
)
4811 -- For an object that does not have delayed freezing, and whose
4812 -- initialization actions have been captured in a compound
4813 -- statement, move them back now directly within the enclosing
4814 -- statement sequence.
4816 if Ekind_In
(E
, E_Constant
, E_Variable
)
4817 and then not Has_Delayed_Freeze
(E
)
4819 Explode_Initialization_Compound_Statement
(E
);
4823 -- Case of a type or subtype being frozen
4826 -- We used to check here that a full type must have preelaborable
4827 -- initialization if it completes a private type specified with
4828 -- pragma Preelaborable_Initialization, but that missed cases where
4829 -- the types occur within a generic package, since the freezing
4830 -- that occurs within a containing scope generally skips traversal
4831 -- of a generic unit's declarations (those will be frozen within
4832 -- instances). This check was moved to Analyze_Package_Specification.
4834 -- The type may be defined in a generic unit. This can occur when
4835 -- freezing a generic function that returns the type (which is
4836 -- defined in a parent unit). It is clearly meaningless to freeze
4837 -- this type. However, if it is a subtype, its size may be determi-
4838 -- nable and used in subsequent checks, so might as well try to
4841 -- In Ada 2012, Freeze_Entities is also used in the front end to
4842 -- trigger the analysis of aspect expressions, so in this case we
4843 -- want to continue the freezing process.
4845 if Present
(Scope
(E
))
4846 and then Is_Generic_Unit
(Scope
(E
))
4848 (not Has_Predicates
(E
)
4849 and then not Has_Delayed_Freeze
(E
))
4851 Check_Compile_Time_Size
(E
);
4856 -- Check for error of Type_Invariant'Class applied to an untagged
4857 -- type (check delayed to freeze time when full type is available).
4860 Prag
: constant Node_Id
:= Get_Pragma
(E
, Pragma_Invariant
);
4863 and then Class_Present
(Prag
)
4864 and then not Is_Tagged_Type
(E
)
4867 ("Type_Invariant''Class cannot be specified for &",
4870 ("\can only be specified for a tagged type", Prag
);
4874 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
4876 if Is_Ghost_Entity
(E
)
4877 and then Is_Effectively_Volatile
(E
)
4879 Error_Msg_N
("ghost type & cannot be volatile", E
);
4882 -- Deal with special cases of freezing for subtype
4884 if E
/= Base_Type
(E
) then
4886 -- Before we do anything else, a specialized test for the case of
4887 -- a size given for an array where the array needs to be packed,
4888 -- but was not so the size cannot be honored. This is the case
4889 -- where implicit packing may apply. The reason we do this so
4890 -- early is that if we have implicit packing, the layout of the
4891 -- base type is affected, so we must do this before we freeze
4894 -- We could do this processing only if implicit packing is enabled
4895 -- since in all other cases, the error would be caught by the back
4896 -- end. However, we choose to do the check even if we do not have
4897 -- implicit packing enabled, since this allows us to give a more
4898 -- useful error message (advising use of pragmas Implicit_Packing
4901 if Is_Array_Type
(E
) then
4903 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
4904 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
4905 SZ
: constant Node_Id
:= Size_Clause
(E
);
4906 Btyp
: constant Entity_Id
:= Base_Type
(E
);
4913 -- Number of elements in array
4916 -- Check enabling conditions. These are straightforward
4917 -- except for the test for a limited composite type. This
4918 -- eliminates the rare case of a array of limited components
4919 -- where there are issues of whether or not we can go ahead
4920 -- and pack the array (since we can't freely pack and unpack
4921 -- arrays if they are limited).
4923 -- Note that we check the root type explicitly because the
4924 -- whole point is we are doing this test before we have had
4925 -- a chance to freeze the base type (and it is that freeze
4926 -- action that causes stuff to be inherited).
4928 if Has_Size_Clause
(E
)
4929 and then Known_Static_RM_Size
(E
)
4930 and then not Is_Packed
(E
)
4931 and then not Has_Pragma_Pack
(E
)
4932 and then not Has_Component_Size_Clause
(E
)
4933 and then Known_Static_RM_Size
(Ctyp
)
4934 and then RM_Size
(Ctyp
) < 64
4935 and then not Is_Limited_Composite
(E
)
4936 and then not Is_Packed
(Root_Type
(E
))
4937 and then not Has_Component_Size_Clause
(Root_Type
(E
))
4938 and then not (CodePeer_Mode
or GNATprove_Mode
)
4940 -- Compute number of elements in array
4942 Num_Elmts
:= Uint_1
;
4943 Indx
:= First_Index
(E
);
4944 while Present
(Indx
) loop
4945 Get_Index_Bounds
(Indx
, Lo
, Hi
);
4947 if not (Compile_Time_Known_Value
(Lo
)
4949 Compile_Time_Known_Value
(Hi
))
4951 goto No_Implicit_Packing
;
4957 Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1);
4961 -- What we are looking for here is the situation where
4962 -- the RM_Size given would be exactly right if there was
4963 -- a pragma Pack (resulting in the component size being
4964 -- the same as the RM_Size). Furthermore, the component
4965 -- type size must be an odd size (not a multiple of
4966 -- storage unit). If the component RM size is an exact
4967 -- number of storage units that is a power of two, the
4968 -- array is not packed and has a standard representation.
4970 if RM_Size
(E
) = Num_Elmts
* Rsiz
4971 and then Rsiz
mod System_Storage_Unit
/= 0
4973 -- For implicit packing mode, just set the component
4976 if Implicit_Packing
then
4977 Set_Component_Size
(Btyp
, Rsiz
);
4978 Set_Is_Bit_Packed_Array
(Btyp
);
4979 Set_Is_Packed
(Btyp
);
4980 Set_Has_Non_Standard_Rep
(Btyp
);
4982 -- Otherwise give an error message
4986 ("size given for& too small", SZ
, E
);
4987 Error_Msg_N
-- CODEFIX
4988 ("\use explicit pragma Pack "
4989 & "or use pragma Implicit_Packing", SZ
);
4992 elsif RM_Size
(E
) = Num_Elmts
* Rsiz
4993 and then Implicit_Packing
4995 (Rsiz
/ System_Storage_Unit
= 1
4997 Rsiz
/ System_Storage_Unit
= 2
4999 Rsiz
/ System_Storage_Unit
= 4)
5001 -- Not a packed array, but indicate the desired
5002 -- component size, for the back-end.
5004 Set_Component_Size
(Btyp
, Rsiz
);
5010 <<No_Implicit_Packing
>>
5012 -- If ancestor subtype present, freeze that first. Note that this
5013 -- will also get the base type frozen. Need RM reference ???
5015 Atype
:= Ancestor_Subtype
(E
);
5017 if Present
(Atype
) then
5018 Freeze_And_Append
(Atype
, N
, Result
);
5020 -- No ancestor subtype present
5023 -- See if we have a nearest ancestor that has a predicate.
5024 -- That catches the case of derived type with a predicate.
5025 -- Need RM reference here ???
5027 Atype
:= Nearest_Ancestor
(E
);
5029 if Present
(Atype
) and then Has_Predicates
(Atype
) then
5030 Freeze_And_Append
(Atype
, N
, Result
);
5033 -- Freeze base type before freezing the entity (RM 13.14(15))
5035 if E
/= Base_Type
(E
) then
5036 Freeze_And_Append
(Base_Type
(E
), N
, Result
);
5040 -- A subtype inherits all the type-related representation aspects
5041 -- from its parents (RM 13.1(8)).
5043 Inherit_Aspects_At_Freeze_Point
(E
);
5045 -- For a derived type, freeze its parent type first (RM 13.14(15))
5047 elsif Is_Derived_Type
(E
) then
5048 Freeze_And_Append
(Etype
(E
), N
, Result
);
5049 Freeze_And_Append
(First_Subtype
(Etype
(E
)), N
, Result
);
5051 -- A derived type inherits each type-related representation aspect
5052 -- of its parent type that was directly specified before the
5053 -- declaration of the derived type (RM 13.1(15)).
5055 Inherit_Aspects_At_Freeze_Point
(E
);
5058 -- Check for incompatible size and alignment for record type
5060 if Warn_On_Size_Alignment
5061 and then Is_Record_Type
(E
)
5062 and then Has_Size_Clause
(E
) and then Has_Alignment_Clause
(E
)
5064 -- If explicit Object_Size clause given assume that the programmer
5065 -- knows what he is doing, and expects the compiler behavior.
5067 and then not Has_Object_Size_Clause
(E
)
5069 -- Check for size not a multiple of alignment
5071 and then RM_Size
(E
) mod (Alignment
(E
) * System_Storage_Unit
) /= 0
5074 SC
: constant Node_Id
:= Size_Clause
(E
);
5075 AC
: constant Node_Id
:= Alignment_Clause
(E
);
5077 Abits
: constant Uint
:= Alignment
(E
) * System_Storage_Unit
;
5080 if Present
(SC
) and then Present
(AC
) then
5084 if Sloc
(SC
) > Sloc
(AC
) then
5087 ("??size is not a multiple of alignment for &", Loc
, E
);
5088 Error_Msg_Sloc
:= Sloc
(AC
);
5089 Error_Msg_Uint_1
:= Alignment
(E
);
5090 Error_Msg_N
("\??alignment of ^ specified #", Loc
);
5095 ("??size is not a multiple of alignment for &", Loc
, E
);
5096 Error_Msg_Sloc
:= Sloc
(SC
);
5097 Error_Msg_Uint_1
:= RM_Size
(E
);
5098 Error_Msg_N
("\??size of ^ specified #", Loc
);
5101 Error_Msg_Uint_1
:= ((RM_Size
(E
) / Abits
) + 1) * Abits
;
5102 Error_Msg_N
("\??Object_Size will be increased to ^", Loc
);
5109 if Is_Array_Type
(E
) then
5110 Freeze_Array_Type
(E
);
5112 -- For a class-wide type, the corresponding specific type is
5113 -- frozen as well (RM 13.14(15))
5115 elsif Is_Class_Wide_Type
(E
) then
5116 Freeze_And_Append
(Root_Type
(E
), N
, Result
);
5118 -- If the base type of the class-wide type is still incomplete,
5119 -- the class-wide remains unfrozen as well. This is legal when
5120 -- E is the formal of a primitive operation of some other type
5121 -- which is being frozen.
5123 if not Is_Frozen
(Root_Type
(E
)) then
5124 Set_Is_Frozen
(E
, False);
5129 -- The equivalent type associated with a class-wide subtype needs
5130 -- to be frozen to ensure that its layout is done.
5132 if Ekind
(E
) = E_Class_Wide_Subtype
5133 and then Present
(Equivalent_Type
(E
))
5135 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5138 -- Generate an itype reference for a library-level class-wide type
5139 -- at the freeze point. Otherwise the first explicit reference to
5140 -- the type may appear in an inner scope which will be rejected by
5144 and then Is_Compilation_Unit
(Scope
(E
))
5147 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
5152 -- From a gigi point of view, a class-wide subtype derives
5153 -- from its record equivalent type. As a result, the itype
5154 -- reference must appear after the freeze node of the
5155 -- equivalent type or gigi will reject the reference.
5157 if Ekind
(E
) = E_Class_Wide_Subtype
5158 and then Present
(Equivalent_Type
(E
))
5160 Insert_After
(Freeze_Node
(Equivalent_Type
(E
)), Ref
);
5162 Add_To_Result
(Ref
);
5167 -- For a record type or record subtype, freeze all component types
5168 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5169 -- using Is_Record_Type, because we don't want to attempt the freeze
5170 -- for the case of a private type with record extension (we will do
5171 -- that later when the full type is frozen).
5173 elsif Ekind_In
(E
, E_Record_Type
, E_Record_Subtype
)
5174 and then not (Present
(Scope
(E
))
5175 and then Is_Generic_Unit
(Scope
(E
)))
5177 Freeze_Record_Type
(E
);
5179 -- For a concurrent type, freeze corresponding record type. This does
5180 -- not correspond to any specific rule in the RM, but the record type
5181 -- is essentially part of the concurrent type. Also freeze all local
5182 -- entities. This includes record types created for entry parameter
5183 -- blocks and whatever local entities may appear in the private part.
5185 elsif Is_Concurrent_Type
(E
) then
5186 if Present
(Corresponding_Record_Type
(E
)) then
5187 Freeze_And_Append
(Corresponding_Record_Type
(E
), N
, Result
);
5190 Comp
:= First_Entity
(E
);
5191 while Present
(Comp
) loop
5192 if Is_Type
(Comp
) then
5193 Freeze_And_Append
(Comp
, N
, Result
);
5195 elsif (Ekind
(Comp
)) /= E_Function
then
5197 -- The guard on the presence of the Etype seems to be needed
5198 -- for some CodePeer (-gnatcC) cases, but not clear why???
5200 if Present
(Etype
(Comp
)) then
5201 if Is_Itype
(Etype
(Comp
))
5202 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
5204 Undelay_Type
(Etype
(Comp
));
5207 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
5214 -- Private types are required to point to the same freeze node as
5215 -- their corresponding full views. The freeze node itself has to
5216 -- point to the partial view of the entity (because from the partial
5217 -- view, we can retrieve the full view, but not the reverse).
5218 -- However, in order to freeze correctly, we need to freeze the full
5219 -- view. If we are freezing at the end of a scope (or within the
5220 -- scope) of the private type, the partial and full views will have
5221 -- been swapped, the full view appears first in the entity chain and
5222 -- the swapping mechanism ensures that the pointers are properly set
5225 -- If we encounter the partial view before the full view (e.g. when
5226 -- freezing from another scope), we freeze the full view, and then
5227 -- set the pointers appropriately since we cannot rely on swapping to
5228 -- fix things up (subtypes in an outer scope might not get swapped).
5230 -- If the full view is itself private, the above requirements apply
5231 -- to the underlying full view instead of the full view. But there is
5232 -- no swapping mechanism for the underlying full view so we need to
5233 -- set the pointers appropriately in both cases.
5235 elsif Is_Incomplete_Or_Private_Type
(E
)
5236 and then not Is_Generic_Type
(E
)
5238 -- The construction of the dispatch table associated with library
5239 -- level tagged types forces freezing of all the primitives of the
5240 -- type, which may cause premature freezing of the partial view.
5244 -- type T is tagged private;
5245 -- type DT is new T with private;
5246 -- procedure Prim (X : in out T; Y : in out DT'Class);
5248 -- type T is tagged null record;
5250 -- type DT is new T with null record;
5253 -- In this case the type will be frozen later by the usual
5254 -- mechanism: an object declaration, an instantiation, or the
5255 -- end of a declarative part.
5257 if Is_Library_Level_Tagged_Type
(E
)
5258 and then not Present
(Full_View
(E
))
5260 Set_Is_Frozen
(E
, False);
5264 -- Case of full view present
5266 elsif Present
(Full_View
(E
)) then
5268 -- If full view has already been frozen, then no further
5269 -- processing is required
5271 if Is_Frozen
(Full_View
(E
)) then
5272 Set_Has_Delayed_Freeze
(E
, False);
5273 Set_Freeze_Node
(E
, Empty
);
5275 -- Otherwise freeze full view and patch the pointers so that
5276 -- the freeze node will elaborate both views in the back end.
5277 -- However, if full view is itself private, freeze underlying
5278 -- full view instead and patch the pointers so that the freeze
5279 -- node will elaborate the three views in the back end.
5283 Full
: Entity_Id
:= Full_View
(E
);
5286 if Is_Private_Type
(Full
)
5287 and then Present
(Underlying_Full_View
(Full
))
5289 Full
:= Underlying_Full_View
(Full
);
5292 Freeze_And_Append
(Full
, N
, Result
);
5294 if Full
/= Full_View
(E
)
5295 and then Has_Delayed_Freeze
(Full_View
(E
))
5297 F_Node
:= Freeze_Node
(Full
);
5299 if Present
(F_Node
) then
5300 Set_Freeze_Node
(Full_View
(E
), F_Node
);
5301 Set_Entity
(F_Node
, Full_View
(E
));
5304 Set_Has_Delayed_Freeze
(Full_View
(E
), False);
5305 Set_Freeze_Node
(Full_View
(E
), Empty
);
5309 if Has_Delayed_Freeze
(E
) then
5310 F_Node
:= Freeze_Node
(Full_View
(E
));
5312 if Present
(F_Node
) then
5313 Set_Freeze_Node
(E
, F_Node
);
5314 Set_Entity
(F_Node
, E
);
5317 -- {Incomplete,Private}_Subtypes with Full_Views
5318 -- constrained by discriminants.
5320 Set_Has_Delayed_Freeze
(E
, False);
5321 Set_Freeze_Node
(E
, Empty
);
5327 Check_Debug_Info_Needed
(E
);
5329 -- AI-117 requires that the convention of a partial view be the
5330 -- same as the convention of the full view. Note that this is a
5331 -- recognized breach of privacy, but it's essential for logical
5332 -- consistency of representation, and the lack of a rule in
5333 -- RM95 was an oversight.
5335 Set_Convention
(E
, Convention
(Full_View
(E
)));
5337 Set_Size_Known_At_Compile_Time
(E
,
5338 Size_Known_At_Compile_Time
(Full_View
(E
)));
5340 -- Size information is copied from the full view to the
5341 -- incomplete or private view for consistency.
5343 -- We skip this is the full view is not a type. This is very
5344 -- strange of course, and can only happen as a result of
5345 -- certain illegalities, such as a premature attempt to derive
5346 -- from an incomplete type.
5348 if Is_Type
(Full_View
(E
)) then
5349 Set_Size_Info
(E
, Full_View
(E
));
5350 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
5356 -- Case of underlying full view present
5358 elsif Is_Private_Type
(E
)
5359 and then Present
(Underlying_Full_View
(E
))
5361 if not Is_Frozen
(Underlying_Full_View
(E
)) then
5362 Freeze_And_Append
(Underlying_Full_View
(E
), N
, Result
);
5365 -- Patch the pointers so that the freeze node will elaborate
5366 -- both views in the back end.
5368 if Has_Delayed_Freeze
(E
) then
5369 F_Node
:= Freeze_Node
(Underlying_Full_View
(E
));
5371 if Present
(F_Node
) then
5372 Set_Freeze_Node
(E
, F_Node
);
5373 Set_Entity
(F_Node
, E
);
5376 Set_Has_Delayed_Freeze
(E
, False);
5377 Set_Freeze_Node
(E
, Empty
);
5381 Check_Debug_Info_Needed
(E
);
5386 -- Case of no full view present. If entity is derived or subtype,
5387 -- it is safe to freeze, correctness depends on the frozen status
5388 -- of parent. Otherwise it is either premature usage, or a Taft
5389 -- amendment type, so diagnosis is at the point of use and the
5390 -- type might be frozen later.
5392 elsif E
/= Base_Type
(E
) or else Is_Derived_Type
(E
) then
5396 Set_Is_Frozen
(E
, False);
5401 -- For access subprogram, freeze types of all formals, the return
5402 -- type was already frozen, since it is the Etype of the function.
5403 -- Formal types can be tagged Taft amendment types, but otherwise
5404 -- they cannot be incomplete.
5406 elsif Ekind
(E
) = E_Subprogram_Type
then
5407 Formal
:= First_Formal
(E
);
5408 while Present
(Formal
) loop
5409 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
5410 and then No
(Full_View
(Etype
(Formal
)))
5411 and then not Is_Value_Type
(Etype
(Formal
))
5413 if Is_Tagged_Type
(Etype
(Formal
)) then
5416 -- AI05-151: Incomplete types are allowed in access to
5417 -- subprogram specifications.
5419 elsif Ada_Version
< Ada_2012
then
5421 ("invalid use of incomplete type&", E
, Etype
(Formal
));
5425 Freeze_And_Append
(Etype
(Formal
), N
, Result
);
5426 Next_Formal
(Formal
);
5429 Freeze_Subprogram
(E
);
5431 -- For access to a protected subprogram, freeze the equivalent type
5432 -- (however this is not set if we are not generating code or if this
5433 -- is an anonymous type used just for resolution).
5435 elsif Is_Access_Protected_Subprogram_Type
(E
) then
5436 if Present
(Equivalent_Type
(E
)) then
5437 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5441 -- Generic types are never seen by the back-end, and are also not
5442 -- processed by the expander (since the expander is turned off for
5443 -- generic processing), so we never need freeze nodes for them.
5445 if Is_Generic_Type
(E
) then
5450 -- Some special processing for non-generic types to complete
5451 -- representation details not known till the freeze point.
5453 if Is_Fixed_Point_Type
(E
) then
5454 Freeze_Fixed_Point_Type
(E
);
5456 -- Some error checks required for ordinary fixed-point type. Defer
5457 -- these till the freeze-point since we need the small and range
5458 -- values. We only do these checks for base types
5460 if Is_Ordinary_Fixed_Point_Type
(E
) and then Is_Base_Type
(E
) then
5461 if Small_Value
(E
) < Ureal_2_M_80
then
5462 Error_Msg_Name_1
:= Name_Small
;
5464 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
5466 elsif Small_Value
(E
) > Ureal_2_80
then
5467 Error_Msg_Name_1
:= Name_Small
;
5469 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
5472 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
5473 Error_Msg_Name_1
:= Name_First
;
5475 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
5478 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
5479 Error_Msg_Name_1
:= Name_Last
;
5481 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
5485 elsif Is_Enumeration_Type
(E
) then
5486 Freeze_Enumeration_Type
(E
);
5488 elsif Is_Integer_Type
(E
) then
5489 Adjust_Esize_For_Alignment
(E
);
5491 if Is_Modular_Integer_Type
(E
)
5492 and then Warn_On_Suspicious_Modulus_Value
5494 Check_Suspicious_Modulus
(E
);
5497 -- The pool applies to named and anonymous access types, but not
5498 -- to subprogram and to internal types generated for 'Access
5501 elsif Is_Access_Type
(E
)
5502 and then not Is_Access_Subprogram_Type
(E
)
5503 and then Ekind
(E
) /= E_Access_Attribute_Type
5505 -- If a pragma Default_Storage_Pool applies, and this type has no
5506 -- Storage_Pool or Storage_Size clause (which must have occurred
5507 -- before the freezing point), then use the default. This applies
5508 -- only to base types.
5510 -- None of this applies to access to subprograms, for which there
5511 -- are clearly no pools.
5513 if Present
(Default_Pool
)
5514 and then Is_Base_Type
(E
)
5515 and then not Has_Storage_Size_Clause
(E
)
5516 and then No
(Associated_Storage_Pool
(E
))
5518 -- Case of pragma Default_Storage_Pool (null)
5520 if Nkind
(Default_Pool
) = N_Null
then
5521 Set_No_Pool_Assigned
(E
);
5523 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5526 Set_Associated_Storage_Pool
(E
, Entity
(Default_Pool
));
5530 -- Check restriction for standard storage pool
5532 if No
(Associated_Storage_Pool
(E
)) then
5533 Check_Restriction
(No_Standard_Storage_Pools
, E
);
5536 -- Deal with error message for pure access type. This is not an
5537 -- error in Ada 2005 if there is no pool (see AI-366).
5539 if Is_Pure_Unit_Access_Type
(E
)
5540 and then (Ada_Version
< Ada_2005
5541 or else not No_Pool_Assigned
(E
))
5542 and then not Is_Generic_Unit
(Scope
(E
))
5544 Error_Msg_N
("named access type not allowed in pure unit", E
);
5546 if Ada_Version
>= Ada_2005
then
5548 ("\would be legal if Storage_Size of 0 given??", E
);
5550 elsif No_Pool_Assigned
(E
) then
5552 ("\would be legal in Ada 2005??", E
);
5556 ("\would be legal in Ada 2005 if "
5557 & "Storage_Size of 0 given??", E
);
5562 -- Case of composite types
5564 if Is_Composite_Type
(E
) then
5566 -- AI-117 requires that all new primitives of a tagged type must
5567 -- inherit the convention of the full view of the type. Inherited
5568 -- and overriding operations are defined to inherit the convention
5569 -- of their parent or overridden subprogram (also specified in
5570 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5571 -- and New_Overloaded_Entity). Here we set the convention of
5572 -- primitives that are still convention Ada, which will ensure
5573 -- that any new primitives inherit the type's convention. Class-
5574 -- wide types can have a foreign convention inherited from their
5575 -- specific type, but are excluded from this since they don't have
5576 -- any associated primitives.
5578 if Is_Tagged_Type
(E
)
5579 and then not Is_Class_Wide_Type
(E
)
5580 and then Convention
(E
) /= Convention_Ada
5583 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
5587 Prim
:= First_Elmt
(Prim_List
);
5588 while Present
(Prim
) loop
5589 if Convention
(Node
(Prim
)) = Convention_Ada
then
5590 Set_Convention
(Node
(Prim
), Convention
(E
));
5598 -- If the type is a simple storage pool type, then this is where
5599 -- we attempt to locate and validate its Allocate, Deallocate, and
5600 -- Storage_Size operations (the first is required, and the latter
5601 -- two are optional). We also verify that the full type for a
5602 -- private type is allowed to be a simple storage pool type.
5604 if Present
(Get_Rep_Pragma
(E
, Name_Simple_Storage_Pool_Type
))
5605 and then (Is_Base_Type
(E
) or else Has_Private_Declaration
(E
))
5607 -- If the type is marked Has_Private_Declaration, then this is
5608 -- a full type for a private type that was specified with the
5609 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5610 -- pragma is allowed for the full type (for example, it can't
5611 -- be an array type, or a nonlimited record type).
5613 if Has_Private_Declaration
(E
) then
5614 if (not Is_Record_Type
(E
) or else not Is_Limited_View
(E
))
5615 and then not Is_Private_Type
(E
)
5617 Error_Msg_Name_1
:= Name_Simple_Storage_Pool_Type
;
5619 ("pragma% can only apply to full type that is an " &
5620 "explicitly limited type", E
);
5624 Validate_Simple_Pool_Ops
: declare
5625 Pool_Type
: Entity_Id
renames E
;
5626 Address_Type
: constant Entity_Id
:= RTE
(RE_Address
);
5627 Stg_Cnt_Type
: constant Entity_Id
:= RTE
(RE_Storage_Count
);
5629 procedure Validate_Simple_Pool_Op_Formal
5630 (Pool_Op
: Entity_Id
;
5631 Pool_Op_Formal
: in out Entity_Id
;
5632 Expected_Mode
: Formal_Kind
;
5633 Expected_Type
: Entity_Id
;
5634 Formal_Name
: String;
5635 OK_Formal
: in out Boolean);
5636 -- Validate one formal Pool_Op_Formal of the candidate pool
5637 -- operation Pool_Op. The formal must be of Expected_Type
5638 -- and have mode Expected_Mode. OK_Formal will be set to
5639 -- False if the formal doesn't match. If OK_Formal is False
5640 -- on entry, then the formal will effectively be ignored
5641 -- (because validation of the pool op has already failed).
5642 -- Upon return, Pool_Op_Formal will be updated to the next
5645 procedure Validate_Simple_Pool_Operation
5646 (Op_Name
: Name_Id
);
5647 -- Search for and validate a simple pool operation with the
5648 -- name Op_Name. If the name is Allocate, then there must be
5649 -- exactly one such primitive operation for the simple pool
5650 -- type. If the name is Deallocate or Storage_Size, then
5651 -- there can be at most one such primitive operation. The
5652 -- profile of the located primitive must conform to what
5653 -- is expected for each operation.
5655 ------------------------------------
5656 -- Validate_Simple_Pool_Op_Formal --
5657 ------------------------------------
5659 procedure Validate_Simple_Pool_Op_Formal
5660 (Pool_Op
: Entity_Id
;
5661 Pool_Op_Formal
: in out Entity_Id
;
5662 Expected_Mode
: Formal_Kind
;
5663 Expected_Type
: Entity_Id
;
5664 Formal_Name
: String;
5665 OK_Formal
: in out Boolean)
5668 -- If OK_Formal is False on entry, then simply ignore
5669 -- the formal, because an earlier formal has already
5672 if not OK_Formal
then
5675 -- If no formal is passed in, then issue an error for a
5678 elsif not Present
(Pool_Op_Formal
) then
5680 ("simple storage pool op missing formal " &
5681 Formal_Name
& " of type&", Pool_Op
, Expected_Type
);
5687 if Etype
(Pool_Op_Formal
) /= Expected_Type
then
5689 -- If the pool type was expected for this formal, then
5690 -- this will not be considered a candidate operation
5691 -- for the simple pool, so we unset OK_Formal so that
5692 -- the op and any later formals will be ignored.
5694 if Expected_Type
= Pool_Type
then
5701 ("wrong type for formal " & Formal_Name
&
5702 " of simple storage pool op; expected type&",
5703 Pool_Op_Formal
, Expected_Type
);
5707 -- Issue error if formal's mode is not the expected one
5709 if Ekind
(Pool_Op_Formal
) /= Expected_Mode
then
5711 ("wrong mode for formal of simple storage pool op",
5715 -- Advance to the next formal
5717 Next_Formal
(Pool_Op_Formal
);
5718 end Validate_Simple_Pool_Op_Formal
;
5720 ------------------------------------
5721 -- Validate_Simple_Pool_Operation --
5722 ------------------------------------
5724 procedure Validate_Simple_Pool_Operation
5728 Found_Op
: Entity_Id
:= Empty
;
5734 (Nam_In
(Op_Name
, Name_Allocate
,
5736 Name_Storage_Size
));
5738 Error_Msg_Name_1
:= Op_Name
;
5740 -- For each homonym declared immediately in the scope
5741 -- of the simple storage pool type, determine whether
5742 -- the homonym is an operation of the pool type, and,
5743 -- if so, check that its profile is as expected for
5744 -- a simple pool operation of that name.
5746 Op
:= Get_Name_Entity_Id
(Op_Name
);
5747 while Present
(Op
) loop
5748 if Ekind_In
(Op
, E_Function
, E_Procedure
)
5749 and then Scope
(Op
) = Current_Scope
5751 Formal
:= First_Entity
(Op
);
5755 -- The first parameter must be of the pool type
5756 -- in order for the operation to qualify.
5758 if Op_Name
= Name_Storage_Size
then
5759 Validate_Simple_Pool_Op_Formal
5760 (Op
, Formal
, E_In_Parameter
, Pool_Type
,
5763 Validate_Simple_Pool_Op_Formal
5764 (Op
, Formal
, E_In_Out_Parameter
, Pool_Type
,
5768 -- If another operation with this name has already
5769 -- been located for the type, then flag an error,
5770 -- since we only allow the type to have a single
5773 if Present
(Found_Op
) and then Is_OK
then
5775 ("only one % operation allowed for " &
5776 "simple storage pool type&", Op
, Pool_Type
);
5779 -- In the case of Allocate and Deallocate, a formal
5780 -- of type System.Address is required.
5782 if Op_Name
= Name_Allocate
then
5783 Validate_Simple_Pool_Op_Formal
5784 (Op
, Formal
, E_Out_Parameter
,
5785 Address_Type
, "Storage_Address", Is_OK
);
5787 elsif Op_Name
= Name_Deallocate
then
5788 Validate_Simple_Pool_Op_Formal
5789 (Op
, Formal
, E_In_Parameter
,
5790 Address_Type
, "Storage_Address", Is_OK
);
5793 -- In the case of Allocate and Deallocate, formals
5794 -- of type Storage_Count are required as the third
5795 -- and fourth parameters.
5797 if Op_Name
/= Name_Storage_Size
then
5798 Validate_Simple_Pool_Op_Formal
5799 (Op
, Formal
, E_In_Parameter
,
5800 Stg_Cnt_Type
, "Size_In_Storage_Units", Is_OK
);
5801 Validate_Simple_Pool_Op_Formal
5802 (Op
, Formal
, E_In_Parameter
,
5803 Stg_Cnt_Type
, "Alignment", Is_OK
);
5806 -- If no mismatched formals have been found (Is_OK)
5807 -- and no excess formals are present, then this
5808 -- operation has been validated, so record it.
5810 if not Present
(Formal
) and then Is_OK
then
5818 -- There must be a valid Allocate operation for the type,
5819 -- so issue an error if none was found.
5821 if Op_Name
= Name_Allocate
5822 and then not Present
(Found_Op
)
5824 Error_Msg_N
("missing % operation for simple " &
5825 "storage pool type", Pool_Type
);
5827 elsif Present
(Found_Op
) then
5829 -- Simple pool operations can't be abstract
5831 if Is_Abstract_Subprogram
(Found_Op
) then
5833 ("simple storage pool operation must not be " &
5834 "abstract", Found_Op
);
5837 -- The Storage_Size operation must be a function with
5838 -- Storage_Count as its result type.
5840 if Op_Name
= Name_Storage_Size
then
5841 if Ekind
(Found_Op
) = E_Procedure
then
5843 ("% operation must be a function", Found_Op
);
5845 elsif Etype
(Found_Op
) /= Stg_Cnt_Type
then
5847 ("wrong result type for%, expected type&",
5848 Found_Op
, Stg_Cnt_Type
);
5851 -- Allocate and Deallocate must be procedures
5853 elsif Ekind
(Found_Op
) = E_Function
then
5855 ("% operation must be a procedure", Found_Op
);
5858 end Validate_Simple_Pool_Operation
;
5860 -- Start of processing for Validate_Simple_Pool_Ops
5863 Validate_Simple_Pool_Operation
(Name_Allocate
);
5864 Validate_Simple_Pool_Operation
(Name_Deallocate
);
5865 Validate_Simple_Pool_Operation
(Name_Storage_Size
);
5866 end Validate_Simple_Pool_Ops
;
5870 -- Now that all types from which E may depend are frozen, see if the
5871 -- size is known at compile time, if it must be unsigned, or if
5872 -- strict alignment is required
5874 Check_Compile_Time_Size
(E
);
5875 Check_Unsigned_Type
(E
);
5877 if Base_Type
(E
) = E
then
5878 Check_Strict_Alignment
(E
);
5881 -- Do not allow a size clause for a type which does not have a size
5882 -- that is known at compile time
5884 if Has_Size_Clause
(E
)
5885 and then not Size_Known_At_Compile_Time
(E
)
5887 -- Suppress this message if errors posted on E, even if we are
5888 -- in all errors mode, since this is often a junk message
5890 if not Error_Posted
(E
) then
5892 ("size clause not allowed for variable length type",
5897 -- Now we set/verify the representation information, in particular
5898 -- the size and alignment values. This processing is not required for
5899 -- generic types, since generic types do not play any part in code
5900 -- generation, and so the size and alignment values for such types
5901 -- are irrelevant. Ditto for types declared within a generic unit,
5902 -- which may have components that depend on generic parameters, and
5903 -- that will be recreated in an instance.
5905 if Inside_A_Generic
then
5908 -- Otherwise we call the layout procedure
5914 -- If this is an access to subprogram whose designated type is itself
5915 -- a subprogram type, the return type of this anonymous subprogram
5916 -- type must be decorated as well.
5918 if Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
5919 and then Ekind
(Designated_Type
(E
)) = E_Subprogram_Type
5921 Layout_Type
(Etype
(Designated_Type
(E
)));
5924 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5925 -- this is where we analye the expression (after the type is frozen,
5926 -- since in the case of Default_Value, we are analyzing with the
5927 -- type itself, and we treat Default_Component_Value similarly for
5928 -- the sake of uniformity).
5930 if Is_First_Subtype
(E
) and then Has_Default_Aspect
(E
) then
5937 if Is_Scalar_Type
(E
) then
5938 Nam
:= Name_Default_Value
;
5940 Exp
:= Default_Aspect_Value
(Typ
);
5942 Nam
:= Name_Default_Component_Value
;
5943 Typ
:= Component_Type
(E
);
5944 Exp
:= Default_Aspect_Component_Value
(E
);
5947 Analyze_And_Resolve
(Exp
, Typ
);
5949 if Etype
(Exp
) /= Any_Type
then
5950 if not Is_OK_Static_Expression
(Exp
) then
5951 Error_Msg_Name_1
:= Nam
;
5952 Flag_Non_Static_Expr
5953 ("aspect% requires static expression", Exp
);
5959 -- End of freeze processing for type entities
5962 -- Here is where we logically freeze the current entity. If it has a
5963 -- freeze node, then this is the point at which the freeze node is
5964 -- linked into the result list.
5966 if Has_Delayed_Freeze
(E
) then
5968 -- If a freeze node is already allocated, use it, otherwise allocate
5969 -- a new one. The preallocation happens in the case of anonymous base
5970 -- types, where we preallocate so that we can set First_Subtype_Link.
5971 -- Note that we reset the Sloc to the current freeze location.
5973 if Present
(Freeze_Node
(E
)) then
5974 F_Node
:= Freeze_Node
(E
);
5975 Set_Sloc
(F_Node
, Loc
);
5978 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
5979 Set_Freeze_Node
(E
, F_Node
);
5980 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
5981 Set_TSS_Elist
(F_Node
, No_Elist
);
5982 Set_Actions
(F_Node
, No_List
);
5985 Set_Entity
(F_Node
, E
);
5986 Add_To_Result
(F_Node
);
5988 -- A final pass over record types with discriminants. If the type
5989 -- has an incomplete declaration, there may be constrained access
5990 -- subtypes declared elsewhere, which do not depend on the discrimi-
5991 -- nants of the type, and which are used as component types (i.e.
5992 -- the full view is a recursive type). The designated types of these
5993 -- subtypes can only be elaborated after the type itself, and they
5994 -- need an itype reference.
5996 if Ekind
(E
) = E_Record_Type
5997 and then Has_Discriminants
(E
)
6005 Comp
:= First_Component
(E
);
6006 while Present
(Comp
) loop
6007 Typ
:= Etype
(Comp
);
6009 if Ekind
(Comp
) = E_Component
6010 and then Is_Access_Type
(Typ
)
6011 and then Scope
(Typ
) /= E
6012 and then Base_Type
(Designated_Type
(Typ
)) = E
6013 and then Is_Itype
(Designated_Type
(Typ
))
6015 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
6016 Set_Itype
(IR
, Designated_Type
(Typ
));
6017 Append
(IR
, Result
);
6020 Next_Component
(Comp
);
6026 -- When a type is frozen, the first subtype of the type is frozen as
6027 -- well (RM 13.14(15)). This has to be done after freezing the type,
6028 -- since obviously the first subtype depends on its own base type.
6031 Freeze_And_Append
(First_Subtype
(E
), N
, Result
);
6033 -- If we just froze a tagged non-class wide record, then freeze the
6034 -- corresponding class-wide type. This must be done after the tagged
6035 -- type itself is frozen, because the class-wide type refers to the
6036 -- tagged type which generates the class.
6038 if Is_Tagged_Type
(E
)
6039 and then not Is_Class_Wide_Type
(E
)
6040 and then Present
(Class_Wide_Type
(E
))
6042 Freeze_And_Append
(Class_Wide_Type
(E
), N
, Result
);
6046 Check_Debug_Info_Needed
(E
);
6048 -- Special handling for subprograms
6050 if Is_Subprogram
(E
) then
6052 -- If subprogram has address clause then reset Is_Public flag, since
6053 -- we do not want the backend to generate external references.
6055 if Present
(Address_Clause
(E
))
6056 and then not Is_Library_Level_Entity
(E
)
6058 Set_Is_Public
(E
, False);
6066 -----------------------------
6067 -- Freeze_Enumeration_Type --
6068 -----------------------------
6070 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
6072 -- By default, if no size clause is present, an enumeration type with
6073 -- Convention C is assumed to interface to a C enum, and has integer
6074 -- size. This applies to types. For subtypes, verify that its base
6075 -- type has no size clause either. Treat other foreign conventions
6076 -- in the same way, and also make sure alignment is set right.
6078 if Has_Foreign_Convention
(Typ
)
6079 and then not Has_Size_Clause
(Typ
)
6080 and then not Has_Size_Clause
(Base_Type
(Typ
))
6081 and then Esize
(Typ
) < Standard_Integer_Size
6083 -- Don't do this if Short_Enums on target
6085 and then not Target_Short_Enums
6087 Init_Esize
(Typ
, Standard_Integer_Size
);
6088 Set_Alignment
(Typ
, Alignment
(Standard_Integer
));
6090 -- Normal Ada case or size clause present or not Long_C_Enums on target
6093 -- If the enumeration type interfaces to C, and it has a size clause
6094 -- that specifies less than int size, it warrants a warning. The
6095 -- user may intend the C type to be an enum or a char, so this is
6096 -- not by itself an error that the Ada compiler can detect, but it
6097 -- it is a worth a heads-up. For Boolean and Character types we
6098 -- assume that the programmer has the proper C type in mind.
6100 if Convention
(Typ
) = Convention_C
6101 and then Has_Size_Clause
(Typ
)
6102 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
6103 and then not Is_Boolean_Type
(Typ
)
6104 and then not Is_Character_Type
(Typ
)
6106 -- Don't do this if Short_Enums on target
6108 and then not Target_Short_Enums
6111 ("C enum types have the size of a C int??", Size_Clause
(Typ
));
6114 Adjust_Esize_For_Alignment
(Typ
);
6116 end Freeze_Enumeration_Type
;
6118 -----------------------
6119 -- Freeze_Expression --
6120 -----------------------
6122 procedure Freeze_Expression
(N
: Node_Id
) is
6123 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
6126 Desig_Typ
: Entity_Id
;
6130 Freeze_Outside
: Boolean := False;
6131 -- This flag is set true if the entity must be frozen outside the
6132 -- current subprogram. This happens in the case of expander generated
6133 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6134 -- not freeze all entities like other bodies, but which nevertheless
6135 -- may reference entities that have to be frozen before the body and
6136 -- obviously cannot be frozen inside the body.
6138 function Find_Aggregate_Component_Desig_Type
return Entity_Id
;
6139 -- If the expression is an array aggregate, the type of the component
6140 -- expressions is also frozen. If the component type is an access type
6141 -- and the expressions include allocators, the designed type is frozen
6144 function In_Expanded_Body
(N
: Node_Id
) return Boolean;
6145 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6146 -- it is the handled statement sequence of an expander-generated
6147 -- subprogram (init proc, stream subprogram, or renaming as body).
6148 -- If so, this is not a freezing context.
6150 -----------------------------------------
6151 -- Find_Aggregate_Component_Desig_Type --
6152 -----------------------------------------
6154 function Find_Aggregate_Component_Desig_Type
return Entity_Id
is
6159 if Present
(Expressions
(N
)) then
6160 Exp
:= First
(Expressions
(N
));
6161 while Present
(Exp
) loop
6162 if Nkind
(Exp
) = N_Allocator
then
6163 return Designated_Type
(Component_Type
(Etype
(N
)));
6170 if Present
(Component_Associations
(N
)) then
6171 Assoc
:= First
(Component_Associations
(N
));
6172 while Present
(Assoc
) loop
6173 if Nkind
(Expression
(Assoc
)) = N_Allocator
then
6174 return Designated_Type
(Component_Type
(Etype
(N
)));
6182 end Find_Aggregate_Component_Desig_Type
;
6184 ----------------------
6185 -- In_Expanded_Body --
6186 ----------------------
6188 function In_Expanded_Body
(N
: Node_Id
) return Boolean is
6193 if Nkind
(N
) = N_Subprogram_Body
then
6199 if Nkind
(P
) /= N_Subprogram_Body
then
6203 Id
:= Defining_Unit_Name
(Specification
(P
));
6205 -- The following are expander-created bodies, or bodies that
6206 -- are not freeze points.
6208 if Nkind
(Id
) = N_Defining_Identifier
6209 and then (Is_Init_Proc
(Id
)
6210 or else Is_TSS
(Id
, TSS_Stream_Input
)
6211 or else Is_TSS
(Id
, TSS_Stream_Output
)
6212 or else Is_TSS
(Id
, TSS_Stream_Read
)
6213 or else Is_TSS
(Id
, TSS_Stream_Write
)
6214 or else Nkind_In
(Original_Node
(P
),
6215 N_Subprogram_Renaming_Declaration
,
6216 N_Expression_Function
))
6223 end In_Expanded_Body
;
6225 -- Start of processing for Freeze_Expression
6228 -- Immediate return if freezing is inhibited. This flag is set by the
6229 -- analyzer to stop freezing on generated expressions that would cause
6230 -- freezing if they were in the source program, but which are not
6231 -- supposed to freeze, since they are created.
6233 if Must_Not_Freeze
(N
) then
6237 -- If expression is non-static, then it does not freeze in a default
6238 -- expression, see section "Handling of Default Expressions" in the
6239 -- spec of package Sem for further details. Note that we have to make
6240 -- sure that we actually have a real expression (if we have a subtype
6241 -- indication, we can't test Is_OK_Static_Expression). However, we
6242 -- exclude the case of the prefix of an attribute of a static scalar
6243 -- subtype from this early return, because static subtype attributes
6244 -- should always cause freezing, even in default expressions, but
6245 -- the attribute may not have been marked as static yet (because in
6246 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6247 -- Freeze_Expression on the prefix).
6250 and then Nkind
(N
) in N_Subexpr
6251 and then not Is_OK_Static_Expression
(N
)
6252 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
6253 or else not (Is_Entity_Name
(N
)
6254 and then Is_Type
(Entity
(N
))
6255 and then Is_OK_Static_Subtype
(Entity
(N
))))
6260 -- Freeze type of expression if not frozen already
6264 if Nkind
(N
) in N_Has_Etype
then
6265 if not Is_Frozen
(Etype
(N
)) then
6268 -- Base type may be an derived numeric type that is frozen at
6269 -- the point of declaration, but first_subtype is still unfrozen.
6271 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
6272 Typ
:= First_Subtype
(Etype
(N
));
6276 -- For entity name, freeze entity if not frozen already. A special
6277 -- exception occurs for an identifier that did not come from source.
6278 -- We don't let such identifiers freeze a non-internal entity, i.e.
6279 -- an entity that did come from source, since such an identifier was
6280 -- generated by the expander, and cannot have any semantic effect on
6281 -- the freezing semantics. For example, this stops the parameter of
6282 -- an initialization procedure from freezing the variable.
6284 if Is_Entity_Name
(N
)
6285 and then not Is_Frozen
(Entity
(N
))
6286 and then (Nkind
(N
) /= N_Identifier
6287 or else Comes_From_Source
(N
)
6288 or else not Comes_From_Source
(Entity
(N
)))
6292 if Present
(Nam
) and then Ekind
(Nam
) = E_Function
then
6293 Check_Expression_Function
(N
, Nam
);
6300 -- For an allocator freeze designated type if not frozen already
6302 -- For an aggregate whose component type is an access type, freeze the
6303 -- designated type now, so that its freeze does not appear within the
6304 -- loop that might be created in the expansion of the aggregate. If the
6305 -- designated type is a private type without full view, the expression
6306 -- cannot contain an allocator, so the type is not frozen.
6308 -- For a function, we freeze the entity when the subprogram declaration
6309 -- is frozen, but a function call may appear in an initialization proc.
6310 -- before the declaration is frozen. We need to generate the extra
6311 -- formals, if any, to ensure that the expansion of the call includes
6312 -- the proper actuals. This only applies to Ada subprograms, not to
6319 Desig_Typ
:= Designated_Type
(Etype
(N
));
6322 if Is_Array_Type
(Etype
(N
))
6323 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
6326 -- Check whether aggregate includes allocators.
6328 Desig_Typ
:= Find_Aggregate_Component_Desig_Type
;
6331 when N_Selected_Component |
6332 N_Indexed_Component |
6335 if Is_Access_Type
(Etype
(Prefix
(N
))) then
6336 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
6339 when N_Identifier
=>
6341 and then Ekind
(Nam
) = E_Function
6342 and then Nkind
(Parent
(N
)) = N_Function_Call
6343 and then Convention
(Nam
) = Convention_Ada
6345 Create_Extra_Formals
(Nam
);
6352 if Desig_Typ
/= Empty
6353 and then (Is_Frozen
(Desig_Typ
)
6354 or else (not Is_Fully_Defined
(Desig_Typ
)))
6359 -- All done if nothing needs freezing
6363 and then No
(Desig_Typ
)
6368 -- Examine the enclosing context by climbing the parent chain. The
6369 -- traversal serves two purposes - to detect scenarios where freezeing
6370 -- is not needed and to find the proper insertion point for the freeze
6371 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6372 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6373 -- the tree may result in types being frozen too early.
6377 Parent_P
:= Parent
(P
);
6379 -- If we don't have a parent, then we are not in a well-formed tree.
6380 -- This is an unusual case, but there are some legitimate situations
6381 -- in which this occurs, notably when the expressions in the range of
6382 -- a type declaration are resolved. We simply ignore the freeze
6383 -- request in this case. Is this right ???
6385 if No
(Parent_P
) then
6389 -- See if we have got to an appropriate point in the tree
6391 case Nkind
(Parent_P
) is
6393 -- A special test for the exception of (RM 13.14(8)) for the case
6394 -- of per-object expressions (RM 3.8(18)) occurring in component
6395 -- definition or a discrete subtype definition. Note that we test
6396 -- for a component declaration which includes both cases we are
6397 -- interested in, and furthermore the tree does not have explicit
6398 -- nodes for either of these two constructs.
6400 when N_Component_Declaration
=>
6402 -- The case we want to test for here is an identifier that is
6403 -- a per-object expression, this is either a discriminant that
6404 -- appears in a context other than the component declaration
6405 -- or it is a reference to the type of the enclosing construct.
6407 -- For either of these cases, we skip the freezing
6409 if not In_Spec_Expression
6410 and then Nkind
(N
) = N_Identifier
6411 and then (Present
(Entity
(N
)))
6413 -- We recognize the discriminant case by just looking for
6414 -- a reference to a discriminant. It can only be one for
6415 -- the enclosing construct. Skip freezing in this case.
6417 if Ekind
(Entity
(N
)) = E_Discriminant
then
6420 -- For the case of a reference to the enclosing record,
6421 -- (or task or protected type), we look for a type that
6422 -- matches the current scope.
6424 elsif Entity
(N
) = Current_Scope
then
6429 -- If we have an enumeration literal that appears as the choice in
6430 -- the aggregate of an enumeration representation clause, then
6431 -- freezing does not occur (RM 13.14(10)).
6433 when N_Enumeration_Representation_Clause
=>
6435 -- The case we are looking for is an enumeration literal
6437 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
6438 and then Is_Enumeration_Type
(Etype
(N
))
6440 -- If enumeration literal appears directly as the choice,
6441 -- do not freeze (this is the normal non-overloaded case)
6443 if Nkind
(Parent
(N
)) = N_Component_Association
6444 and then First
(Choices
(Parent
(N
))) = N
6448 -- If enumeration literal appears as the name of function
6449 -- which is the choice, then also do not freeze. This
6450 -- happens in the overloaded literal case, where the
6451 -- enumeration literal is temporarily changed to a function
6452 -- call for overloading analysis purposes.
6454 elsif Nkind
(Parent
(N
)) = N_Function_Call
6456 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
6458 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
6464 -- Normally if the parent is a handled sequence of statements,
6465 -- then the current node must be a statement, and that is an
6466 -- appropriate place to insert a freeze node.
6468 when N_Handled_Sequence_Of_Statements
=>
6470 -- An exception occurs when the sequence of statements is for
6471 -- an expander generated body that did not do the usual freeze
6472 -- all operation. In this case we usually want to freeze
6473 -- outside this body, not inside it, and we skip past the
6474 -- subprogram body that we are inside.
6476 if In_Expanded_Body
(Parent_P
) then
6478 Subp
: constant Node_Id
:= Parent
(Parent_P
);
6482 -- Freeze the entity only when it is declared inside the
6483 -- body of the expander generated procedure. This case
6484 -- is recognized by the scope of the entity or its type,
6485 -- which is either the spec for some enclosing body, or
6486 -- (in the case of init_procs, for which there are no
6487 -- separate specs) the current scope.
6489 if Nkind
(Subp
) = N_Subprogram_Body
then
6490 Spec
:= Corresponding_Spec
(Subp
);
6492 if (Present
(Typ
) and then Scope
(Typ
) = Spec
)
6494 (Present
(Nam
) and then Scope
(Nam
) = Spec
)
6499 and then Scope
(Typ
) = Current_Scope
6500 and then Defining_Entity
(Subp
) = Current_Scope
6506 -- An expression function may act as a completion of
6507 -- a function declaration. As such, it can reference
6508 -- entities declared between the two views:
6511 -- function F return ...;
6513 -- function Hidden return ...;
6514 -- function F return ... is (Hidden); -- 2
6516 -- Refering to the example above, freezing the expression
6517 -- of F (2) would place Hidden's freeze node (1) in the
6518 -- wrong place. Avoid explicit freezing and let the usual
6519 -- scenarios do the job - for example, reaching the end
6520 -- of the private declarations, or a call to F.
6522 if Nkind
(Original_Node
(Subp
)) =
6523 N_Expression_Function
6527 -- Freeze outside the body
6530 Parent_P
:= Parent
(Parent_P
);
6531 Freeze_Outside
:= True;
6535 -- Here if normal case where we are in handled statement
6536 -- sequence and want to do the insertion right there.
6542 -- If parent is a body or a spec or a block, then the current node
6543 -- is a statement or declaration and we can insert the freeze node
6546 when N_Block_Statement |
6549 N_Package_Specification |
6552 N_Task_Body
=> exit;
6554 -- The expander is allowed to define types in any statements list,
6555 -- so any of the following parent nodes also mark a freezing point
6556 -- if the actual node is in a list of statements or declarations.
6558 when N_Abortable_Part |
6559 N_Accept_Alternative |
6561 N_Case_Statement_Alternative |
6562 N_Compilation_Unit_Aux |
6563 N_Conditional_Entry_Call |
6564 N_Delay_Alternative |
6566 N_Entry_Call_Alternative |
6567 N_Exception_Handler |
6568 N_Extended_Return_Statement |
6572 N_Selective_Accept |
6573 N_Triggering_Alternative
=>
6575 exit when Is_List_Member
(P
);
6577 -- Freeze nodes produced by an expression coming from the Actions
6578 -- list of a N_Expression_With_Actions node must remain within the
6579 -- Actions list. Inserting the freeze nodes further up the tree
6580 -- may lead to use before declaration issues in the case of array
6583 when N_Expression_With_Actions
=>
6584 if Is_List_Member
(P
)
6585 and then List_Containing
(P
) = Actions
(Parent_P
)
6590 -- Note: N_Loop_Statement is a special case. A type that appears
6591 -- in the source can never be frozen in a loop (this occurs only
6592 -- because of a loop expanded by the expander), so we keep on
6593 -- going. Otherwise we terminate the search. Same is true of any
6594 -- entity which comes from source. (if they have predefined type,
6595 -- that type does not appear to come from source, but the entity
6596 -- should not be frozen here).
6598 when N_Loop_Statement
=>
6599 exit when not Comes_From_Source
(Etype
(N
))
6600 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
6602 -- For all other cases, keep looking at parents
6608 -- We fall through the case if we did not yet find the proper
6609 -- place in the free for inserting the freeze node, so climb.
6614 -- If the expression appears in a record or an initialization procedure,
6615 -- the freeze nodes are collected and attached to the current scope, to
6616 -- be inserted and analyzed on exit from the scope, to insure that
6617 -- generated entities appear in the correct scope. If the expression is
6618 -- a default for a discriminant specification, the scope is still void.
6619 -- The expression can also appear in the discriminant part of a private
6620 -- or concurrent type.
6622 -- If the expression appears in a constrained subcomponent of an
6623 -- enclosing record declaration, the freeze nodes must be attached to
6624 -- the outer record type so they can eventually be placed in the
6625 -- enclosing declaration list.
6627 -- The other case requiring this special handling is if we are in a
6628 -- default expression, since in that case we are about to freeze a
6629 -- static type, and the freeze scope needs to be the outer scope, not
6630 -- the scope of the subprogram with the default parameter.
6632 -- For default expressions and other spec expressions in generic units,
6633 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6634 -- placing them at the proper place, after the generic unit.
6636 if (In_Spec_Exp
and not Inside_A_Generic
)
6637 or else Freeze_Outside
6638 or else (Is_Type
(Current_Scope
)
6639 and then (not Is_Concurrent_Type
(Current_Scope
)
6640 or else not Has_Completion
(Current_Scope
)))
6641 or else Ekind
(Current_Scope
) = E_Void
6644 N
: constant Node_Id
:= Current_Scope
;
6645 Freeze_Nodes
: List_Id
:= No_List
;
6646 Pos
: Int
:= Scope_Stack
.Last
;
6649 if Present
(Desig_Typ
) then
6650 Freeze_And_Append
(Desig_Typ
, N
, Freeze_Nodes
);
6653 if Present
(Typ
) then
6654 Freeze_And_Append
(Typ
, N
, Freeze_Nodes
);
6657 if Present
(Nam
) then
6658 Freeze_And_Append
(Nam
, N
, Freeze_Nodes
);
6661 -- The current scope may be that of a constrained component of
6662 -- an enclosing record declaration, or of a loop of an enclosing
6663 -- quantified expression, which is above the current scope in the
6664 -- scope stack. Indeed in the context of a quantified expression,
6665 -- a scope is created and pushed above the current scope in order
6666 -- to emulate the loop-like behavior of the quantified expression.
6667 -- If the expression is within a top-level pragma, as for a pre-
6668 -- condition on a library-level subprogram, nothing to do.
6670 if not Is_Compilation_Unit
(Current_Scope
)
6671 and then (Is_Record_Type
(Scope
(Current_Scope
))
6672 or else Nkind
(Parent
(Current_Scope
)) =
6673 N_Quantified_Expression
)
6678 if Is_Non_Empty_List
(Freeze_Nodes
) then
6679 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
6680 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
6683 Append_List
(Freeze_Nodes
,
6684 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
);
6692 -- Now we have the right place to do the freezing. First, a special
6693 -- adjustment, if we are in spec-expression analysis mode, these freeze
6694 -- actions must not be thrown away (normally all inserted actions are
6695 -- thrown away in this mode. However, the freeze actions are from static
6696 -- expressions and one of the important reasons we are doing this
6697 -- special analysis is to get these freeze actions. Therefore we turn
6698 -- off the In_Spec_Expression mode to propagate these freeze actions.
6699 -- This also means they get properly analyzed and expanded.
6701 In_Spec_Expression
:= False;
6703 -- Freeze the designated type of an allocator (RM 13.14(13))
6705 if Present
(Desig_Typ
) then
6706 Freeze_Before
(P
, Desig_Typ
);
6709 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6710 -- the enumeration representation clause exception in the loop above.
6712 if Present
(Typ
) then
6713 Freeze_Before
(P
, Typ
);
6716 -- Freeze name if one is present (RM 13.14(11))
6718 if Present
(Nam
) then
6719 Freeze_Before
(P
, Nam
);
6722 -- Restore In_Spec_Expression flag
6724 In_Spec_Expression
:= In_Spec_Exp
;
6725 end Freeze_Expression
;
6727 -----------------------------
6728 -- Freeze_Fixed_Point_Type --
6729 -----------------------------
6731 -- Certain fixed-point types and subtypes, including implicit base types
6732 -- and declared first subtypes, have not yet set up a range. This is
6733 -- because the range cannot be set until the Small and Size values are
6734 -- known, and these are not known till the type is frozen.
6736 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6737 -- whose bounds are unanalyzed real literals. This routine will recognize
6738 -- this case, and transform this range node into a properly typed range
6739 -- with properly analyzed and resolved values.
6741 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
6742 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
6743 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
6744 Hi
: constant Node_Id
:= High_Bound
(Rng
);
6745 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
6746 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
6747 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
6748 BHi
: constant Node_Id
:= High_Bound
(Brng
);
6749 Small
: constant Ureal
:= Small_Value
(Typ
);
6756 -- Save original bounds (for shaving tests)
6759 -- Actual size chosen
6761 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
6762 -- Returns size of type with given bounds. Also leaves these
6763 -- bounds set as the current bounds of the Typ.
6769 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
6771 Set_Realval
(Lo
, Lov
);
6772 Set_Realval
(Hi
, Hiv
);
6773 return Minimum_Size
(Typ
);
6776 -- Start of processing for Freeze_Fixed_Point_Type
6779 -- If Esize of a subtype has not previously been set, set it now
6781 if Unknown_Esize
(Typ
) then
6782 Atype
:= Ancestor_Subtype
(Typ
);
6784 if Present
(Atype
) then
6785 Set_Esize
(Typ
, Esize
(Atype
));
6787 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
6791 -- Immediate return if the range is already analyzed. This means that
6792 -- the range is already set, and does not need to be computed by this
6795 if Analyzed
(Rng
) then
6799 -- Immediate return if either of the bounds raises Constraint_Error
6801 if Raises_Constraint_Error
(Lo
)
6802 or else Raises_Constraint_Error
(Hi
)
6807 Loval
:= Realval
(Lo
);
6808 Hival
:= Realval
(Hi
);
6813 -- Ordinary fixed-point case
6815 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
6817 -- For the ordinary fixed-point case, we are allowed to fudge the
6818 -- end-points up or down by small. Generally we prefer to fudge up,
6819 -- i.e. widen the bounds for non-model numbers so that the end points
6820 -- are included. However there are cases in which this cannot be
6821 -- done, and indeed cases in which we may need to narrow the bounds.
6822 -- The following circuit makes the decision.
6824 -- Note: our terminology here is that Incl_EP means that the bounds
6825 -- are widened by Small if necessary to include the end points, and
6826 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6827 -- end-points if this reduces the size.
6829 -- Note that in the Incl case, all we care about is including the
6830 -- end-points. In the Excl case, we want to narrow the bounds as
6831 -- much as permitted by the RM, to give the smallest possible size.
6834 Loval_Incl_EP
: Ureal
;
6835 Hival_Incl_EP
: Ureal
;
6837 Loval_Excl_EP
: Ureal
;
6838 Hival_Excl_EP
: Ureal
;
6844 First_Subt
: Entity_Id
;
6849 -- First step. Base types are required to be symmetrical. Right
6850 -- now, the base type range is a copy of the first subtype range.
6851 -- This will be corrected before we are done, but right away we
6852 -- need to deal with the case where both bounds are non-negative.
6853 -- In this case, we set the low bound to the negative of the high
6854 -- bound, to make sure that the size is computed to include the
6855 -- required sign. Note that we do not need to worry about the
6856 -- case of both bounds negative, because the sign will be dealt
6857 -- with anyway. Furthermore we can't just go making such a bound
6858 -- symmetrical, since in a twos-complement system, there is an
6859 -- extra negative value which could not be accommodated on the
6863 and then not UR_Is_Negative
(Loval
)
6864 and then Hival
> Loval
6867 Set_Realval
(Lo
, Loval
);
6870 -- Compute the fudged bounds. If the number is a model number,
6871 -- then we do nothing to include it, but we are allowed to backoff
6872 -- to the next adjacent model number when we exclude it. If it is
6873 -- not a model number then we straddle the two values with the
6874 -- model numbers on either side.
6876 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
6878 if Loval
= Model_Num
then
6879 Loval_Incl_EP
:= Model_Num
;
6881 Loval_Incl_EP
:= Model_Num
- Small
;
6884 -- The low value excluding the end point is Small greater, but
6885 -- we do not do this exclusion if the low value is positive,
6886 -- since it can't help the size and could actually hurt by
6887 -- crossing the high bound.
6889 if UR_Is_Negative
(Loval_Incl_EP
) then
6890 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
6892 -- If the value went from negative to zero, then we have the
6893 -- case where Loval_Incl_EP is the model number just below
6894 -- zero, so we want to stick to the negative value for the
6895 -- base type to maintain the condition that the size will
6896 -- include signed values.
6899 and then UR_Is_Zero
(Loval_Excl_EP
)
6901 Loval_Excl_EP
:= Loval_Incl_EP
;
6905 Loval_Excl_EP
:= Loval_Incl_EP
;
6908 -- Similar processing for upper bound and high value
6910 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
6912 if Hival
= Model_Num
then
6913 Hival_Incl_EP
:= Model_Num
;
6915 Hival_Incl_EP
:= Model_Num
+ Small
;
6918 if UR_Is_Positive
(Hival_Incl_EP
) then
6919 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
6921 Hival_Excl_EP
:= Hival_Incl_EP
;
6924 -- One further adjustment is needed. In the case of subtypes, we
6925 -- cannot go outside the range of the base type, or we get
6926 -- peculiarities, and the base type range is already set. This
6927 -- only applies to the Incl values, since clearly the Excl values
6928 -- are already as restricted as they are allowed to be.
6931 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
6932 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
6935 -- Get size including and excluding end points
6937 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
6938 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
6940 -- No need to exclude end-points if it does not reduce size
6942 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
6943 Loval_Excl_EP
:= Loval_Incl_EP
;
6946 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
6947 Hival_Excl_EP
:= Hival_Incl_EP
;
6950 -- Now we set the actual size to be used. We want to use the
6951 -- bounds fudged up to include the end-points but only if this
6952 -- can be done without violating a specifically given size
6953 -- size clause or causing an unacceptable increase in size.
6955 -- Case of size clause given
6957 if Has_Size_Clause
(Typ
) then
6959 -- Use the inclusive size only if it is consistent with
6960 -- the explicitly specified size.
6962 if Size_Incl_EP
<= RM_Size
(Typ
) then
6963 Actual_Lo
:= Loval_Incl_EP
;
6964 Actual_Hi
:= Hival_Incl_EP
;
6965 Actual_Size
:= Size_Incl_EP
;
6967 -- If the inclusive size is too large, we try excluding
6968 -- the end-points (will be caught later if does not work).
6971 Actual_Lo
:= Loval_Excl_EP
;
6972 Actual_Hi
:= Hival_Excl_EP
;
6973 Actual_Size
:= Size_Excl_EP
;
6976 -- Case of size clause not given
6979 -- If we have a base type whose corresponding first subtype
6980 -- has an explicit size that is large enough to include our
6981 -- end-points, then do so. There is no point in working hard
6982 -- to get a base type whose size is smaller than the specified
6983 -- size of the first subtype.
6985 First_Subt
:= First_Subtype
(Typ
);
6987 if Has_Size_Clause
(First_Subt
)
6988 and then Size_Incl_EP
<= Esize
(First_Subt
)
6990 Actual_Size
:= Size_Incl_EP
;
6991 Actual_Lo
:= Loval_Incl_EP
;
6992 Actual_Hi
:= Hival_Incl_EP
;
6994 -- If excluding the end-points makes the size smaller and
6995 -- results in a size of 8,16,32,64, then we take the smaller
6996 -- size. For the 64 case, this is compulsory. For the other
6997 -- cases, it seems reasonable. We like to include end points
6998 -- if we can, but not at the expense of moving to the next
6999 -- natural boundary of size.
7001 elsif Size_Incl_EP
/= Size_Excl_EP
7002 and then Addressable
(Size_Excl_EP
)
7004 Actual_Size
:= Size_Excl_EP
;
7005 Actual_Lo
:= Loval_Excl_EP
;
7006 Actual_Hi
:= Hival_Excl_EP
;
7008 -- Otherwise we can definitely include the end points
7011 Actual_Size
:= Size_Incl_EP
;
7012 Actual_Lo
:= Loval_Incl_EP
;
7013 Actual_Hi
:= Hival_Incl_EP
;
7016 -- One pathological case: normally we never fudge a low bound
7017 -- down, since it would seem to increase the size (if it has
7018 -- any effect), but for ranges containing single value, or no
7019 -- values, the high bound can be small too large. Consider:
7021 -- type t is delta 2.0**(-14)
7022 -- range 131072.0 .. 0;
7024 -- That lower bound is *just* outside the range of 32 bits, and
7025 -- does need fudging down in this case. Note that the bounds
7026 -- will always have crossed here, since the high bound will be
7027 -- fudged down if necessary, as in the case of:
7029 -- type t is delta 2.0**(-14)
7030 -- range 131072.0 .. 131072.0;
7032 -- So we detect the situation by looking for crossed bounds,
7033 -- and if the bounds are crossed, and the low bound is greater
7034 -- than zero, we will always back it off by small, since this
7035 -- is completely harmless.
7037 if Actual_Lo
> Actual_Hi
then
7038 if UR_Is_Positive
(Actual_Lo
) then
7039 Actual_Lo
:= Loval_Incl_EP
- Small
;
7040 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7042 -- And of course, we need to do exactly the same parallel
7043 -- fudge for flat ranges in the negative region.
7045 elsif UR_Is_Negative
(Actual_Hi
) then
7046 Actual_Hi
:= Hival_Incl_EP
+ Small
;
7047 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7052 Set_Realval
(Lo
, Actual_Lo
);
7053 Set_Realval
(Hi
, Actual_Hi
);
7056 -- For the decimal case, none of this fudging is required, since there
7057 -- are no end-point problems in the decimal case (the end-points are
7058 -- always included).
7061 Actual_Size
:= Fsize
(Loval
, Hival
);
7064 -- At this stage, the actual size has been calculated and the proper
7065 -- required bounds are stored in the low and high bounds.
7067 if Actual_Size
> 64 then
7068 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
7070 ("size required (^) for type& too large, maximum allowed is 64",
7075 -- Check size against explicit given size
7077 if Has_Size_Clause
(Typ
) then
7078 if Actual_Size
> RM_Size
(Typ
) then
7079 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7080 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
7082 ("size given (^) for type& too small, minimum allowed is ^",
7083 Size_Clause
(Typ
), Typ
);
7086 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
7089 -- Increase size to next natural boundary if no size clause given
7092 if Actual_Size
<= 8 then
7094 elsif Actual_Size
<= 16 then
7096 elsif Actual_Size
<= 32 then
7102 Init_Esize
(Typ
, Actual_Size
);
7103 Adjust_Esize_For_Alignment
(Typ
);
7106 -- If we have a base type, then expand the bounds so that they extend to
7107 -- the full width of the allocated size in bits, to avoid junk range
7108 -- checks on intermediate computations.
7110 if Base_Type
(Typ
) = Typ
then
7111 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
7112 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
7115 -- Final step is to reanalyze the bounds using the proper type
7116 -- and set the Corresponding_Integer_Value fields of the literals.
7118 Set_Etype
(Lo
, Empty
);
7119 Set_Analyzed
(Lo
, False);
7122 -- Resolve with universal fixed if the base type, and the base type if
7123 -- it is a subtype. Note we can't resolve the base type with itself,
7124 -- that would be a reference before definition.
7127 Resolve
(Lo
, Universal_Fixed
);
7132 -- Set corresponding integer value for bound
7134 Set_Corresponding_Integer_Value
7135 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
7137 -- Similar processing for high bound
7139 Set_Etype
(Hi
, Empty
);
7140 Set_Analyzed
(Hi
, False);
7144 Resolve
(Hi
, Universal_Fixed
);
7149 Set_Corresponding_Integer_Value
7150 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
7152 -- Set type of range to correspond to bounds
7154 Set_Etype
(Rng
, Etype
(Lo
));
7156 -- Set Esize to calculated size if not set already
7158 if Unknown_Esize
(Typ
) then
7159 Init_Esize
(Typ
, Actual_Size
);
7162 -- Set RM_Size if not already set. If already set, check value
7165 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
7168 if RM_Size
(Typ
) /= Uint_0
then
7169 if RM_Size
(Typ
) < Minsiz
then
7170 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7171 Error_Msg_Uint_2
:= Minsiz
;
7173 ("size given (^) for type& too small, minimum allowed is ^",
7174 Size_Clause
(Typ
), Typ
);
7178 Set_RM_Size
(Typ
, Minsiz
);
7182 -- Check for shaving
7184 if Comes_From_Source
(Typ
) then
7185 if Orig_Lo
< Expr_Value_R
(Lo
) then
7187 ("declared low bound of type & is outside type range??", Typ
);
7189 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ
);
7192 if Orig_Hi
> Expr_Value_R
(Hi
) then
7194 ("declared high bound of type & is outside type range??", Typ
);
7196 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ
);
7199 end Freeze_Fixed_Point_Type
;
7205 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
7209 Set_Has_Delayed_Freeze
(T
);
7210 L
:= Freeze_Entity
(T
, N
);
7212 if Is_Non_Empty_List
(L
) then
7213 Insert_Actions
(N
, L
);
7217 --------------------------
7218 -- Freeze_Static_Object --
7219 --------------------------
7221 procedure Freeze_Static_Object
(E
: Entity_Id
) is
7223 Cannot_Be_Static
: exception;
7224 -- Exception raised if the type of a static object cannot be made
7225 -- static. This happens if the type depends on non-global objects.
7227 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
7228 -- Called to ensure that an expression used as part of a type definition
7229 -- is statically allocatable, which means that the expression type is
7230 -- statically allocatable, and the expression is either static, or a
7231 -- reference to a library level constant.
7233 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
7234 -- Called to mark a type as static, checking that it is possible
7235 -- to set the type as static. If it is not possible, then the
7236 -- exception Cannot_Be_Static is raised.
7238 -----------------------------
7239 -- Ensure_Expression_Is_SA --
7240 -----------------------------
7242 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
7246 Ensure_Type_Is_SA
(Etype
(N
));
7248 if Is_OK_Static_Expression
(N
) then
7251 elsif Nkind
(N
) = N_Identifier
then
7255 and then Ekind
(Ent
) = E_Constant
7256 and then Is_Library_Level_Entity
(Ent
)
7262 raise Cannot_Be_Static
;
7263 end Ensure_Expression_Is_SA
;
7265 -----------------------
7266 -- Ensure_Type_Is_SA --
7267 -----------------------
7269 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
7274 -- If type is library level, we are all set
7276 if Is_Library_Level_Entity
(Typ
) then
7280 -- We are also OK if the type already marked as statically allocated,
7281 -- which means we processed it before.
7283 if Is_Statically_Allocated
(Typ
) then
7287 -- Mark type as statically allocated
7289 Set_Is_Statically_Allocated
(Typ
);
7291 -- Check that it is safe to statically allocate this type
7293 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
7294 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
7295 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
7297 elsif Is_Array_Type
(Typ
) then
7298 N
:= First_Index
(Typ
);
7299 while Present
(N
) loop
7300 Ensure_Type_Is_SA
(Etype
(N
));
7304 Ensure_Type_Is_SA
(Component_Type
(Typ
));
7306 elsif Is_Access_Type
(Typ
) then
7307 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
7311 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
7314 if T
/= Standard_Void_Type
then
7315 Ensure_Type_Is_SA
(T
);
7318 F
:= First_Formal
(Designated_Type
(Typ
));
7319 while Present
(F
) loop
7320 Ensure_Type_Is_SA
(Etype
(F
));
7326 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
7329 elsif Is_Record_Type
(Typ
) then
7330 C
:= First_Entity
(Typ
);
7331 while Present
(C
) loop
7332 if Ekind
(C
) = E_Discriminant
7333 or else Ekind
(C
) = E_Component
7335 Ensure_Type_Is_SA
(Etype
(C
));
7337 elsif Is_Type
(C
) then
7338 Ensure_Type_Is_SA
(C
);
7344 elsif Ekind
(Typ
) = E_Subprogram_Type
then
7345 Ensure_Type_Is_SA
(Etype
(Typ
));
7347 C
:= First_Formal
(Typ
);
7348 while Present
(C
) loop
7349 Ensure_Type_Is_SA
(Etype
(C
));
7354 raise Cannot_Be_Static
;
7356 end Ensure_Type_Is_SA
;
7358 -- Start of processing for Freeze_Static_Object
7361 Ensure_Type_Is_SA
(Etype
(E
));
7364 when Cannot_Be_Static
=>
7366 -- If the object that cannot be static is imported or exported, then
7367 -- issue an error message saying that this object cannot be imported
7368 -- or exported. If it has an address clause it is an overlay in the
7369 -- current partition and the static requirement is not relevant.
7370 -- Do not issue any error message when ignoring rep clauses.
7372 if Ignore_Rep_Clauses
then
7375 elsif Is_Imported
(E
) then
7376 if No
(Address_Clause
(E
)) then
7378 ("& cannot be imported (local type is not constant)", E
);
7381 -- Otherwise must be exported, something is wrong if compiler
7382 -- is marking something as statically allocated which cannot be).
7384 else pragma Assert
(Is_Exported
(E
));
7386 ("& cannot be exported (local type is not constant)", E
);
7388 end Freeze_Static_Object
;
7390 -----------------------
7391 -- Freeze_Subprogram --
7392 -----------------------
7394 procedure Freeze_Subprogram
(E
: Entity_Id
) is
7399 -- Subprogram may not have an address clause unless it is imported
7401 if Present
(Address_Clause
(E
)) then
7402 if not Is_Imported
(E
) then
7404 ("address clause can only be given " &
7405 "for imported subprogram",
7406 Name
(Address_Clause
(E
)));
7410 -- Reset the Pure indication on an imported subprogram unless an
7411 -- explicit Pure_Function pragma was present or the subprogram is an
7412 -- intrinsic. We do this because otherwise it is an insidious error
7413 -- to call a non-pure function from pure unit and have calls
7414 -- mysteriously optimized away. What happens here is that the Import
7415 -- can bypass the normal check to ensure that pure units call only pure
7418 -- The reason for the intrinsic exception is that in general, intrinsic
7419 -- functions (such as shifts) are pure anyway. The only exceptions are
7420 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7421 -- in any case, so no problem arises.
7424 and then Is_Pure
(E
)
7425 and then not Has_Pragma_Pure_Function
(E
)
7426 and then not Is_Intrinsic_Subprogram
(E
)
7428 Set_Is_Pure
(E
, False);
7431 -- For non-foreign convention subprograms, this is where we create
7432 -- the extra formals (for accessibility level and constrained bit
7433 -- information). We delay this till the freeze point precisely so
7434 -- that we know the convention.
7436 if not Has_Foreign_Convention
(E
) then
7437 Create_Extra_Formals
(E
);
7440 -- If this is convention Ada and a Valued_Procedure, that's odd
7442 if Ekind
(E
) = E_Procedure
7443 and then Is_Valued_Procedure
(E
)
7444 and then Convention
(E
) = Convention_Ada
7445 and then Warn_On_Export_Import
7448 ("??Valued_Procedure has no effect for convention Ada", E
);
7449 Set_Is_Valued_Procedure
(E
, False);
7452 -- Case of foreign convention
7457 -- For foreign conventions, warn about return of unconstrained array
7459 if Ekind
(E
) = E_Function
then
7460 Retype
:= Underlying_Type
(Etype
(E
));
7462 -- If no return type, probably some other error, e.g. a
7463 -- missing full declaration, so ignore.
7468 -- If the return type is generic, we have emitted a warning
7469 -- earlier on, and there is nothing else to check here. Specific
7470 -- instantiations may lead to erroneous behavior.
7472 elsif Is_Generic_Type
(Etype
(E
)) then
7475 -- Display warning if returning unconstrained array
7477 elsif Is_Array_Type
(Retype
)
7478 and then not Is_Constrained
(Retype
)
7480 -- Check appropriate warning is enabled (should we check for
7481 -- Warnings (Off) on specific entities here, probably so???)
7483 and then Warn_On_Export_Import
7485 -- Exclude the VM case, since return of unconstrained arrays
7486 -- is properly handled in both the JVM and .NET cases.
7488 and then VM_Target
= No_VM
7491 ("?x?foreign convention function& should not return " &
7492 "unconstrained array", E
);
7497 -- If any of the formals for an exported foreign convention
7498 -- subprogram have defaults, then emit an appropriate warning since
7499 -- this is odd (default cannot be used from non-Ada code)
7501 if Is_Exported
(E
) then
7502 F
:= First_Formal
(E
);
7503 while Present
(F
) loop
7504 if Warn_On_Export_Import
7505 and then Present
(Default_Value
(F
))
7508 ("?x?parameter cannot be defaulted in non-Ada call",
7517 -- Pragma Inline_Always is disallowed for dispatching subprograms
7518 -- because the address of such subprograms is saved in the dispatch
7519 -- table to support dispatching calls, and dispatching calls cannot
7520 -- be inlined. This is consistent with the restriction against using
7521 -- 'Access or 'Address on an Inline_Always subprogram.
7523 if Is_Dispatching_Operation
(E
)
7524 and then Has_Pragma_Inline_Always
(E
)
7527 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
7530 -- Because of the implicit representation of inherited predefined
7531 -- operators in the front-end, the overriding status of the operation
7532 -- may be affected when a full view of a type is analyzed, and this is
7533 -- not captured by the analysis of the corresponding type declaration.
7534 -- Therefore the correctness of a not-overriding indicator must be
7535 -- rechecked when the subprogram is frozen.
7537 if Nkind
(E
) = N_Defining_Operator_Symbol
7538 and then not Error_Posted
(Parent
(E
))
7540 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
7542 end Freeze_Subprogram
;
7544 ----------------------
7545 -- Is_Fully_Defined --
7546 ----------------------
7548 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
7550 if Ekind
(T
) = E_Class_Wide_Type
then
7551 return Is_Fully_Defined
(Etype
(T
));
7553 elsif Is_Array_Type
(T
) then
7554 return Is_Fully_Defined
(Component_Type
(T
));
7556 elsif Is_Record_Type
(T
)
7557 and not Is_Private_Type
(T
)
7559 -- Verify that the record type has no components with private types
7560 -- without completion.
7566 Comp
:= First_Component
(T
);
7567 while Present
(Comp
) loop
7568 if not Is_Fully_Defined
(Etype
(Comp
)) then
7572 Next_Component
(Comp
);
7577 -- For the designated type of an access to subprogram, all types in
7578 -- the profile must be fully defined.
7580 elsif Ekind
(T
) = E_Subprogram_Type
then
7585 F
:= First_Formal
(T
);
7586 while Present
(F
) loop
7587 if not Is_Fully_Defined
(Etype
(F
)) then
7594 return Is_Fully_Defined
(Etype
(T
));
7598 return not Is_Private_Type
(T
)
7599 or else Present
(Full_View
(Base_Type
(T
)));
7601 end Is_Fully_Defined
;
7603 ---------------------------------
7604 -- Process_Default_Expressions --
7605 ---------------------------------
7607 procedure Process_Default_Expressions
7609 After
: in out Node_Id
)
7611 Loc
: constant Source_Ptr
:= Sloc
(E
);
7618 Set_Default_Expressions_Processed
(E
);
7620 -- A subprogram instance and its associated anonymous subprogram share
7621 -- their signature. The default expression functions are defined in the
7622 -- wrapper packages for the anonymous subprogram, and should not be
7623 -- generated again for the instance.
7625 if Is_Generic_Instance
(E
)
7626 and then Present
(Alias
(E
))
7627 and then Default_Expressions_Processed
(Alias
(E
))
7632 Formal
:= First_Formal
(E
);
7633 while Present
(Formal
) loop
7634 if Present
(Default_Value
(Formal
)) then
7636 -- We work with a copy of the default expression because we
7637 -- do not want to disturb the original, since this would mess
7638 -- up the conformance checking.
7640 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
7642 -- The analysis of the expression may generate insert actions,
7643 -- which of course must not be executed. We wrap those actions
7644 -- in a procedure that is not called, and later on eliminated.
7645 -- The following cases have no side-effects, and are analyzed
7648 if Nkind
(Dcopy
) = N_Identifier
7649 or else Nkind_In
(Dcopy
, N_Expanded_Name
,
7651 N_Character_Literal
,
7654 or else (Nkind
(Dcopy
) = N_Attribute_Reference
7655 and then Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
7656 or else Known_Null
(Dcopy
)
7658 -- If there is no default function, we must still do a full
7659 -- analyze call on the default value, to ensure that all error
7660 -- checks are performed, e.g. those associated with static
7661 -- evaluation. Note: this branch will always be taken if the
7662 -- analyzer is turned off (but we still need the error checks).
7664 -- Note: the setting of parent here is to meet the requirement
7665 -- that we can only analyze the expression while attached to
7666 -- the tree. Really the requirement is that the parent chain
7667 -- be set, we don't actually need to be in the tree.
7669 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
7672 -- Default expressions are resolved with their own type if the
7673 -- context is generic, to avoid anomalies with private types.
7675 if Ekind
(Scope
(E
)) = E_Generic_Package
then
7678 Resolve
(Dcopy
, Etype
(Formal
));
7681 -- If that resolved expression will raise constraint error,
7682 -- then flag the default value as raising constraint error.
7683 -- This allows a proper error message on the calls.
7685 if Raises_Constraint_Error
(Dcopy
) then
7686 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
7689 -- If the default is a parameterless call, we use the name of
7690 -- the called function directly, and there is no body to build.
7692 elsif Nkind
(Dcopy
) = N_Function_Call
7693 and then No
(Parameter_Associations
(Dcopy
))
7697 -- Else construct and analyze the body of a wrapper procedure
7698 -- that contains an object declaration to hold the expression.
7699 -- Given that this is done only to complete the analysis, it
7700 -- simpler to build a procedure than a function which might
7701 -- involve secondary stack expansion.
7704 Dnam
:= Make_Temporary
(Loc
, 'D');
7707 Make_Subprogram_Body
(Loc
,
7709 Make_Procedure_Specification
(Loc
,
7710 Defining_Unit_Name
=> Dnam
),
7712 Declarations
=> New_List
(
7713 Make_Object_Declaration
(Loc
,
7714 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
7715 Object_Definition
=>
7716 New_Occurrence_Of
(Etype
(Formal
), Loc
),
7717 Expression
=> New_Copy_Tree
(Dcopy
))),
7719 Handled_Statement_Sequence
=>
7720 Make_Handled_Sequence_Of_Statements
(Loc
,
7721 Statements
=> Empty_List
));
7723 Set_Scope
(Dnam
, Scope
(E
));
7724 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
7725 Set_Is_Eliminated
(Dnam
);
7726 Insert_After
(After
, Dbody
);
7732 Next_Formal
(Formal
);
7734 end Process_Default_Expressions
;
7736 ----------------------------------------
7737 -- Set_Component_Alignment_If_Not_Set --
7738 ----------------------------------------
7740 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
7742 -- Ignore if not base type, subtypes don't need anything
7744 if Typ
/= Base_Type
(Typ
) then
7748 -- Do not override existing representation
7750 if Is_Packed
(Typ
) then
7753 elsif Has_Specified_Layout
(Typ
) then
7756 elsif Component_Alignment
(Typ
) /= Calign_Default
then
7760 Set_Component_Alignment
7761 (Typ
, Scope_Stack
.Table
7762 (Scope_Stack
.Last
).Component_Alignment_Default
);
7764 end Set_Component_Alignment_If_Not_Set
;
7766 --------------------------
7767 -- Set_SSO_From_Default --
7768 --------------------------
7770 procedure Set_SSO_From_Default
(T
: Entity_Id
) is
7774 -- Set default SSO for an array or record base type, except in case of
7775 -- a type extension (which always inherits the SSO of its parent type).
7778 and then (Is_Array_Type
(T
)
7779 or else (Is_Record_Type
(T
)
7780 and then not (Is_Tagged_Type
(T
)
7781 and then Is_Derived_Type
(T
))))
7784 (Bytes_Big_Endian
and then SSO_Set_Low_By_Default
(T
))
7786 (not Bytes_Big_Endian
and then SSO_Set_High_By_Default
(T
));
7788 if (SSO_Set_Low_By_Default
(T
) or else SSO_Set_High_By_Default
(T
))
7790 -- For a record type, if bit order is specified explicitly,
7791 -- then do not set SSO from default if not consistent. Note that
7792 -- we do not want to look at a Bit_Order attribute definition
7793 -- for a parent: if we were to inherit Bit_Order, then both
7794 -- SSO_Set_*_By_Default flags would have been cleared already
7795 -- (by Inherit_Aspects_At_Freeze_Point).
7800 Has_Rep_Item
(T
, Name_Bit_Order
, Check_Parents
=> False)
7801 and then Reverse_Bit_Order
(T
) /= Reversed
)
7803 -- If flags cause reverse storage order, then set the result. Note
7804 -- that we would have ignored the pragma setting the non default
7805 -- storage order in any case, hence the assertion at this point.
7808 (not Reversed
or else Support_Nondefault_SSO_On_Target
);
7810 Set_Reverse_Storage_Order
(T
, Reversed
);
7812 -- For a record type, also set reversed bit order. Note: if a bit
7813 -- order has been specified explicitly, then this is a no-op.
7815 if Is_Record_Type
(T
) then
7816 Set_Reverse_Bit_Order
(T
, Reversed
);
7820 end Set_SSO_From_Default
;
7826 procedure Undelay_Type
(T
: Entity_Id
) is
7828 Set_Has_Delayed_Freeze
(T
, False);
7829 Set_Freeze_Node
(T
, Empty
);
7831 -- Since we don't want T to have a Freeze_Node, we don't want its
7832 -- Full_View or Corresponding_Record_Type to have one either.
7834 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7835 -- want is to be sure that for an Itype that's part of record R and is a
7836 -- subtype of type T, that it's frozen after the later of the freeze
7837 -- points of R and T. We have no way of doing that directly, so what we
7838 -- do is force most such Itypes to be frozen as part of freezing R via
7839 -- this procedure and only delay the ones that need to be delayed
7840 -- (mostly the designated types of access types that are defined as part
7843 if Is_Private_Type
(T
)
7844 and then Present
(Full_View
(T
))
7845 and then Is_Itype
(Full_View
(T
))
7846 and then Is_Record_Type
(Scope
(Full_View
(T
)))
7848 Undelay_Type
(Full_View
(T
));
7851 if Is_Concurrent_Type
(T
)
7852 and then Present
(Corresponding_Record_Type
(T
))
7853 and then Is_Itype
(Corresponding_Record_Type
(T
))
7854 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
7856 Undelay_Type
(Corresponding_Record_Type
(T
));
7864 procedure Warn_Overlay
7869 Ent
: constant Entity_Id
:= Entity
(Nam
);
7870 -- The object to which the address clause applies
7873 Old
: Entity_Id
:= Empty
;
7877 -- No warning if address clause overlay warnings are off
7879 if not Address_Clause_Overlay_Warnings
then
7883 -- No warning if there is an explicit initialization
7885 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
7887 if Present
(Init
) and then Comes_From_Source
(Init
) then
7891 -- We only give the warning for non-imported entities of a type for
7892 -- which a non-null base init proc is defined, or for objects of access
7893 -- types with implicit null initialization, or when Normalize_Scalars
7894 -- applies and the type is scalar or a string type (the latter being
7895 -- tested for because predefined String types are initialized by inline
7896 -- code rather than by an init_proc). Note that we do not give the
7897 -- warning for Initialize_Scalars, since we suppressed initialization
7898 -- in this case. Also, do not warn if Suppress_Initialization is set.
7901 and then not Is_Imported
(Ent
)
7902 and then not Initialization_Suppressed
(Typ
)
7903 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
7904 or else Is_Access_Type
(Typ
)
7905 or else (Normalize_Scalars
7906 and then (Is_Scalar_Type
(Typ
)
7907 or else Is_String_Type
(Typ
))))
7909 if Nkind
(Expr
) = N_Attribute_Reference
7910 and then Is_Entity_Name
(Prefix
(Expr
))
7912 Old
:= Entity
(Prefix
(Expr
));
7914 elsif Is_Entity_Name
(Expr
)
7915 and then Ekind
(Entity
(Expr
)) = E_Constant
7917 Decl
:= Declaration_Node
(Entity
(Expr
));
7919 if Nkind
(Decl
) = N_Object_Declaration
7920 and then Present
(Expression
(Decl
))
7921 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
7922 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
7924 Old
:= Entity
(Prefix
(Expression
(Decl
)));
7926 elsif Nkind
(Expr
) = N_Function_Call
then
7930 -- A function call (most likely to To_Address) is probably not an
7931 -- overlay, so skip warning. Ditto if the function call was inlined
7932 -- and transformed into an entity.
7934 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
7938 Decl
:= Next
(Parent
(Expr
));
7940 -- If a pragma Import follows, we assume that it is for the current
7941 -- target of the address clause, and skip the warning.
7944 and then Nkind
(Decl
) = N_Pragma
7945 and then Pragma_Name
(Decl
) = Name_Import
7950 if Present
(Old
) then
7951 Error_Msg_Node_2
:= Old
;
7953 ("default initialization of & may modify &??",
7957 ("default initialization of & may modify overlaid storage??",
7961 -- Add friendly warning if initialization comes from a packed array
7964 if Is_Record_Type
(Typ
) then
7969 Comp
:= First_Component
(Typ
);
7970 while Present
(Comp
) loop
7971 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
7972 and then Present
(Expression
(Parent
(Comp
)))
7975 elsif Is_Array_Type
(Etype
(Comp
))
7976 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
7979 ("\packed array component& " &
7980 "will be initialized to zero??",
7984 Next_Component
(Comp
);
7991 ("\use pragma Import for & to " &
7992 "suppress initialization (RM B.1(24))??",