nasmlib.h: slightly tidy up the definition of nasm_build_assert()
[nasm.git] / include / nasm.h
blobd1b13e132d5b11defe15a5825fd8f67cfd31ef76
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include "nasmlib.h"
45 #include "strlist.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
89 * which will be a relative jump. For this we need to know the
90 * distance in bytes from the start of the relocated record until
91 * the end of the containing instruction. _This_ is what is stored
92 * in the size part of the parameter, in this case.
94 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
95 * and the contents of the "data" parameter is irrelevant.
97 * The "data" parameter for the output function points to a "int32_t",
98 * containing the address in question, unless the type is
99 * OUT_RAWDATA, in which case it points to an "uint8_t"
100 * array.
102 enum out_type {
103 OUT_RAWDATA, /* Plain bytes */
104 OUT_RESERVE, /* Reserved bytes (RESB et al) */
105 OUT_ADDRESS, /* An address (symbol value) */
106 OUT_RELADDR, /* A relative address (relative to instruction end) */
107 OUT_SEGMENT, /* A segment number */
109 /* These are temporary until the backend change */
110 OUT_REL1ADR,
111 OUT_REL2ADR,
112 OUT_REL4ADR,
113 OUT_REL8ADR
116 enum out_sign {
117 OUT_WRAP, /* Undefined signedness (wraps) */
118 OUT_SIGNED, /* Value is signed */
119 OUT_UNSIGNED /* Value is unsigned */
123 * The data we send down to the backend.
124 * XXX: We still want to push down the base address symbol if
125 * available, and replace the segment numbers with a structure.
127 struct out_data {
128 int64_t offset; /* Offset within segment */
129 int32_t segment; /* Segment written to */
130 enum out_type type; /* See above */
131 enum out_sign sign; /* See above */
132 int inslen; /* Length of instruction */
133 int insoffs; /* Offset inside instruction */
134 int bits; /* Bits mode of compilation */
135 uint64_t size; /* Size of output */
136 const struct itemplate *itemp; /* Instruction template */
137 const void *data; /* Data for OUT_RAWDATA */
138 uint64_t toffset; /* Target address offset for relocation */
139 int32_t tsegment; /* Target segment for relocation */
140 int32_t twrt; /* Relocation with respect to */
144 * A label-lookup function.
146 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
149 * And a label-definition function. The boolean parameter
150 * `is_norm' states whether the label is a `normal' label (which
151 * should affect the local-label system), or something odder like
152 * an EQU or a segment-base symbol, which shouldn't.
154 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
155 char *special, bool is_norm, bool isextrn);
157 void define_label(char *label, int32_t segment, int64_t offset,
158 char *special, bool is_norm, bool isextrn);
161 * Token types returned by the scanner, in addition to ordinary
162 * ASCII character values, and zero for end-of-string.
164 enum token_type { /* token types, other than chars */
165 TOKEN_INVALID = -1, /* a placeholder value */
166 TOKEN_EOS = 0, /* end of string */
167 TOKEN_EQ = '=',
168 TOKEN_GT = '>',
169 TOKEN_LT = '<', /* aliases */
170 TOKEN_ID = 256, /* identifier */
171 TOKEN_NUM, /* numeric constant */
172 TOKEN_ERRNUM, /* malformed numeric constant */
173 TOKEN_STR, /* string constant */
174 TOKEN_ERRSTR, /* unterminated string constant */
175 TOKEN_FLOAT, /* floating-point constant */
176 TOKEN_REG, /* register name */
177 TOKEN_INSN, /* instruction name */
178 TOKEN_HERE, /* $ */
179 TOKEN_BASE, /* $$ */
180 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
181 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
182 TOKEN_SHL, /* << */
183 TOKEN_SHR, /* >> */
184 TOKEN_SDIV, /* // */
185 TOKEN_SMOD, /* %% */
186 TOKEN_GE, /* >= */
187 TOKEN_LE, /* <= */
188 TOKEN_NE, /* <> (!= is same as <>) */
189 TOKEN_DBL_AND, /* && */
190 TOKEN_DBL_OR, /* || */
191 TOKEN_DBL_XOR, /* ^^ */
192 TOKEN_SEG, /* SEG */
193 TOKEN_WRT, /* WRT */
194 TOKEN_FLOATIZE, /* __floatX__ */
195 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
196 TOKEN_IFUNC, /* __ilog2*__ */
197 TOKEN_DECORATOR, /* decorators such as {...} */
198 TOKEN_OPMASK /* translated token for opmask registers */
201 enum floatize {
202 FLOAT_8,
203 FLOAT_16,
204 FLOAT_32,
205 FLOAT_64,
206 FLOAT_80M,
207 FLOAT_80E,
208 FLOAT_128L,
209 FLOAT_128H
212 /* Must match the list in string_transform(), in strfunc.c */
213 enum strfunc {
214 STRFUNC_UTF16,
215 STRFUNC_UTF16LE,
216 STRFUNC_UTF16BE,
217 STRFUNC_UTF32,
218 STRFUNC_UTF32LE,
219 STRFUNC_UTF32BE
222 enum ifunc {
223 IFUNC_ILOG2E,
224 IFUNC_ILOG2W,
225 IFUNC_ILOG2F,
226 IFUNC_ILOG2C
229 size_t string_transform(char *, size_t, char **, enum strfunc);
232 * The expression evaluator must be passed a scanner function; a
233 * standard scanner is provided as part of nasmlib.c. The
234 * preprocessor will use a different one. Scanners, and the
235 * token-value structures they return, look like this.
237 * The return value from the scanner is always a copy of the
238 * `t_type' field in the structure.
240 struct tokenval {
241 char *t_charptr;
242 int64_t t_integer;
243 int64_t t_inttwo;
244 enum token_type t_type;
245 int8_t t_flag;
247 typedef int (*scanner)(void *private_data, struct tokenval *tv);
249 struct location {
250 int64_t offset;
251 int32_t segment;
252 int known;
254 extern struct location location;
257 * Expression-evaluator datatype. Expressions, within the
258 * evaluator, are stored as an array of these beasts, terminated by
259 * a record with type==0. Mostly, it's a vector type: each type
260 * denotes some kind of a component, and the value denotes the
261 * multiple of that component present in the expression. The
262 * exception is the WRT type, whose `value' field denotes the
263 * segment to which the expression is relative. These segments will
264 * be segment-base types, i.e. either odd segment values or SEG_ABS
265 * types. So it is still valid to assume that anything with a
266 * `value' field of zero is insignificant.
268 typedef struct {
269 int32_t type; /* a register, or EXPR_xxx */
270 int64_t value; /* must be >= 32 bits */
271 } expr;
274 * Library routines to manipulate expression data types.
276 int is_reloc(expr *vect);
277 int is_simple(expr *vect);
278 int is_really_simple(expr *vect);
279 int is_unknown(expr *vect);
280 int is_just_unknown(expr *vect);
281 int64_t reloc_value(expr *vect);
282 int32_t reloc_seg(expr *vect);
283 int32_t reloc_wrt(expr *vect);
286 * The evaluator can also return hints about which of two registers
287 * used in an expression should be the base register. See also the
288 * `operand' structure.
290 struct eval_hints {
291 int64_t base;
292 int type;
296 * The actual expression evaluator function looks like this. When
297 * called, it expects the first token of its expression to already
298 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
299 * it will start by calling the scanner.
301 * If a forward reference happens during evaluation, the evaluator
302 * must set `*fwref' to true if `fwref' is non-NULL.
304 * `critical' is non-zero if the expression may not contain forward
305 * references. The evaluator will report its own error if this
306 * occurs; if `critical' is 1, the error will be "symbol not
307 * defined before use", whereas if `critical' is 2, the error will
308 * be "symbol undefined".
310 * If `critical' has bit 8 set (in addition to its main value: 0x101
311 * and 0x102 correspond to 1 and 2) then an extended expression
312 * syntax is recognised, in which relational operators such as =, <
313 * and >= are accepted, as well as low-precedence logical operators
314 * &&, ^^ and ||.
316 * If `hints' is non-NULL, it gets filled in with some hints as to
317 * the base register in complex effective addresses.
319 #define CRITICAL 0x100
320 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
321 struct tokenval *tv, int *fwref, int critical,
322 struct eval_hints *hints);
325 * Special values for expr->type.
326 * These come after EXPR_REG_END as defined in regs.h.
327 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
328 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
330 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
331 #define EXPR_SIMPLE (EXPR_REG_END+2)
332 #define EXPR_WRT (EXPR_REG_END+3)
333 #define EXPR_RDSAE (EXPR_REG_END+4)
334 #define EXPR_SEGBASE (EXPR_REG_END+5)
337 * preprocessors ought to look like this:
339 struct preproc_ops {
341 * Called once at the very start of assembly.
343 void (*init)(void);
346 * Called at the start of a pass; given a file name, the number
347 * of the pass, an error reporting function, an evaluator
348 * function, and a listing generator to talk to.
350 void (*reset)(char *file, int pass, StrList **deplist);
353 * Called to fetch a line of preprocessed source. The line
354 * returned has been malloc'ed, and so should be freed after
355 * use.
357 char *(*getline)(void);
359 /* Called at the end of a pass */
360 void (*cleanup)(int pass);
362 /* Additional macros specific to output format */
363 void (*extra_stdmac)(macros_t *macros);
365 /* Early definitions and undefinitions for macros */
366 void (*pre_define)(char *definition);
367 void (*pre_undefine)(char *definition);
369 /* Include file from command line */
370 void (*pre_include)(char *fname);
372 /* Include path from command line */
373 void (*include_path)(char *path);
375 /* Unwind the macro stack when printing an error message */
376 void (*error_list_macros)(int severity);
379 extern const struct preproc_ops nasmpp;
380 extern const struct preproc_ops preproc_nop;
383 * Some lexical properties of the NASM source language, included
384 * here because they are shared between the parser and preprocessor.
388 * isidstart matches any character that may start an identifier, and isidchar
389 * matches any character that may appear at places other than the start of an
390 * identifier. E.g. a period may only appear at the start of an identifier
391 * (for local labels), whereas a number may appear anywhere *but* at the
392 * start.
393 * isbrcchar matches any character that may placed inside curly braces as a
394 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
397 #define isidstart(c) (nasm_isalpha(c) || \
398 (c) == '_' || \
399 (c) == '.' || \
400 (c) == '?' || \
401 (c) == '@')
403 #define isidchar(c) (isidstart(c) || \
404 nasm_isdigit(c) || \
405 (c) == '$' || \
406 (c) == '#' || \
407 (c) == '~')
409 #define isbrcchar(c) (isidchar(c) || \
410 (c) == '-')
412 /* Ditto for numeric constants. */
414 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
415 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
418 * Data-type flags that get passed to listing-file routines.
420 enum {
421 LIST_READ,
422 LIST_MACRO,
423 LIST_MACRO_NOLIST,
424 LIST_INCLUDE,
425 LIST_INCBIN,
426 LIST_TIMES
430 * -----------------------------------------------------------
431 * Format of the `insn' structure returned from `parser.c' and
432 * passed into `assemble.c'
433 * -----------------------------------------------------------
436 /* Verify value to be a valid register */
437 static inline bool is_register(int reg)
439 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
442 enum ccode { /* condition code names */
443 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
444 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
445 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
446 C_none = -1
450 * token flags
452 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
453 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
454 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
455 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
456 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
458 static inline uint8_t get_cond_opcode(enum ccode c)
460 static const uint8_t ccode_opcodes[] = {
461 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
462 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
463 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
466 return ccode_opcodes[(int)c];
470 * REX flags
472 #define REX_MASK 0x4f /* Actual REX prefix bits */
473 #define REX_B 0x01 /* ModRM r/m extension */
474 #define REX_X 0x02 /* SIB index extension */
475 #define REX_R 0x04 /* ModRM reg extension */
476 #define REX_W 0x08 /* 64-bit operand size */
477 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
478 #define REX_P 0x40 /* REX prefix present/required */
479 #define REX_H 0x80 /* High register present, REX forbidden */
480 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
481 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
482 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
485 * EVEX bit field
487 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
488 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
489 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
490 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
491 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
492 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
493 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
494 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
495 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
496 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
497 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
498 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
501 * REX_V "classes" (prefixes which behave like VEX)
503 enum vex_class {
504 RV_VEX = 0, /* C4/C5 */
505 RV_XOP = 1, /* 8F */
506 RV_EVEX = 2 /* 62 */
510 * Note that because segment registers may be used as instruction
511 * prefixes, we must ensure the enumerations for prefixes and
512 * register names do not overlap.
514 enum prefixes { /* instruction prefixes */
515 P_none = 0,
516 PREFIX_ENUM_START = REG_ENUM_LIMIT,
517 P_A16 = PREFIX_ENUM_START,
518 P_A32,
519 P_A64,
520 P_ASP,
521 P_LOCK,
522 P_O16,
523 P_O32,
524 P_O64,
525 P_OSP,
526 P_REP,
527 P_REPE,
528 P_REPNE,
529 P_REPNZ,
530 P_REPZ,
531 P_TIMES,
532 P_WAIT,
533 P_XACQUIRE,
534 P_XRELEASE,
535 P_BND,
536 P_NOBND,
537 P_EVEX,
538 P_VEX3,
539 P_VEX2,
540 PREFIX_ENUM_LIMIT
543 enum extop_type { /* extended operand types */
544 EOT_NOTHING,
545 EOT_DB_STRING, /* Byte string */
546 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
547 EOT_DB_NUMBER /* Integer */
550 enum ea_flags { /* special EA flags */
551 EAF_BYTEOFFS = 1, /* force offset part to byte size */
552 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
553 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
554 EAF_REL = 8, /* IP-relative addressing */
555 EAF_ABS = 16, /* non-IP-relative addressing */
556 EAF_FSGS = 32, /* fs/gs segment override present */
557 EAF_MIB = 64 /* mib operand */
560 enum eval_hint { /* values for `hinttype' */
561 EAH_NOHINT = 0, /* no hint at all - our discretion */
562 EAH_MAKEBASE = 1, /* try to make given reg the base */
563 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
564 EAH_SUMMED = 3 /* base and index are summed into index */
567 typedef struct operand { /* operand to an instruction */
568 opflags_t type; /* type of operand */
569 int disp_size; /* 0 means default; 16; 32; 64 */
570 enum reg_enum basereg;
571 enum reg_enum indexreg; /* address registers */
572 int scale; /* index scale */
573 int hintbase;
574 enum eval_hint hinttype; /* hint as to real base register */
575 int32_t segment; /* immediate segment, if needed */
576 int64_t offset; /* any immediate number */
577 int32_t wrt; /* segment base it's relative to */
578 bool relative; /* self-relative expression */
579 int eaflags; /* special EA flags */
580 int opflags; /* see OPFLAG_* defines below */
581 decoflags_t decoflags; /* decorator flags such as {...} */
582 } operand;
584 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
585 #define OPFLAG_EXTERN 2 /* operand is an external reference */
586 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
587 * (always a forward reference also)
590 typedef struct extop { /* extended operand */
591 struct extop *next; /* linked list */
592 char *stringval; /* if it's a string, then here it is */
593 size_t stringlen; /* ... and here's how long it is */
594 int64_t offset; /* ... it's given here ... */
595 int32_t segment; /* if it's a number/address, then... */
596 int32_t wrt; /* ... and here */
597 bool relative; /* self-relative expression */
598 enum extop_type type; /* defined above */
599 } extop;
601 enum ea_type {
602 EA_INVALID, /* Not a valid EA at all */
603 EA_SCALAR, /* Scalar EA */
604 EA_XMMVSIB, /* XMM vector EA */
605 EA_YMMVSIB, /* YMM vector EA */
606 EA_ZMMVSIB /* ZMM vector EA */
610 * Prefix positions: each type of prefix goes in a specific slot.
611 * This affects the final ordering of the assembled output, which
612 * shouldn't matter to the processor, but if you have stylistic
613 * preferences, you can change this. REX prefixes are handled
614 * differently for the time being.
616 * LOCK and REP used to be one slot; this is no longer the case since
617 * the introduction of HLE.
619 enum prefix_pos {
620 PPS_WAIT, /* WAIT (technically not a prefix!) */
621 PPS_REP, /* REP/HLE prefix */
622 PPS_LOCK, /* LOCK prefix */
623 PPS_SEG, /* Segment override prefix */
624 PPS_OSIZE, /* Operand size prefix */
625 PPS_ASIZE, /* Address size prefix */
626 PPS_VEX, /* VEX type */
627 MAXPREFIX /* Total number of prefix slots */
631 * Tuple types that are used when determining Disp8*N eligibility
632 * The order must match with a hash %tuple_codes in insns.pl
634 enum ttypes {
635 FV = 001,
636 HV = 002,
637 FVM = 003,
638 T1S8 = 004,
639 T1S16 = 005,
640 T1S = 006,
641 T1F32 = 007,
642 T1F64 = 010,
643 T2 = 011,
644 T4 = 012,
645 T8 = 013,
646 HVM = 014,
647 QVM = 015,
648 OVM = 016,
649 M128 = 017,
650 DUP = 020
653 /* EVEX.L'L : Vector length on vector insns */
654 enum vectlens {
655 VL128 = 0,
656 VL256 = 1,
657 VL512 = 2,
658 VLMAX = 3
661 /* If you need to change this, also change it in insns.pl */
662 #define MAX_OPERANDS 5
664 typedef struct insn { /* an instruction itself */
665 char *label; /* the label defined, or NULL */
666 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
667 enum opcode opcode; /* the opcode - not just the string */
668 enum ccode condition; /* the condition code, if Jcc/SETcc */
669 int operands; /* how many operands? 0-3 (more if db et al) */
670 int addr_size; /* address size */
671 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
672 extop *eops; /* extended operands */
673 int eops_float; /* true if DD and floating */
674 int32_t times; /* repeat count (TIMES prefix) */
675 bool forw_ref; /* is there a forward reference? */
676 bool rex_done; /* REX prefix emitted? */
677 int rex; /* Special REX Prefix */
678 int vexreg; /* Register encoded in VEX prefix */
679 int vex_cm; /* Class and M field for VEX prefix */
680 int vex_wlp; /* W, P and L information for VEX prefix */
681 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
682 /* EVEX.P2: [z,L'L,b,V',aaa] */
683 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
684 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
685 int8_t evex_brerop; /* BR/ER/SAE operand position */
686 } insn;
688 enum geninfo { GI_SWITCH };
690 /* Instruction flags type: IF_* flags are defined in insns.h */
691 typedef uint64_t iflags_t;
694 * The data structure defining an output format driver, and the
695 * interfaces to the functions therein.
697 struct ofmt {
699 * This is a short (one-liner) description of the type of
700 * output generated by the driver.
702 const char *fullname;
705 * This is a single keyword used to select the driver.
707 const char *shortname;
710 * Output format flags.
712 #define OFMT_TEXT 1 /* Text file format */
713 unsigned int flags;
715 int maxbits; /* Maximum segment bits supported */
718 * this is a pointer to the first element of the debug information
720 const struct dfmt * const *debug_formats;
723 * the default debugging format if -F is not specified
725 const struct dfmt *default_dfmt;
728 * This, if non-NULL, is a NULL-terminated list of `char *'s
729 * pointing to extra standard macros supplied by the object
730 * format (e.g. a sensible initial default value of __SECT__,
731 * and user-level equivalents for any format-specific
732 * directives).
734 macros_t *stdmac;
737 * This procedure is called at the start of an output session to set
738 * up internal parameters.
740 void (*init)(void);
743 * This procedure is called to pass generic information to the
744 * object file. The first parameter gives the information type
745 * (currently only command line switches)
746 * and the second parameter gives the value. This function returns
747 * 1 if recognized, 0 if unrecognized
749 int (*setinfo)(enum geninfo type, char **string);
752 * This is the modern output function, which gets passed
753 * a struct out_data with much more information. See the
754 * definition of struct out_data.
756 void (*output)(const struct out_data *data);
759 * This procedure is called by assemble() to write actual
760 * generated code or data to the object file. Typically it
761 * doesn't have to actually _write_ it, just store it for
762 * later.
764 * The `type' argument specifies the type of output data, and
765 * usually the size as well: its contents are described below.
767 * This is used for backends which have not yet been ported to
768 * the new interface, and should be NULL on ported backends.
769 * To use this entry point, set the output pointer to
770 * nasm_do_legacy_output.
772 void (*legacy_output)(int32_t segto, const void *data,
773 enum out_type type, uint64_t size,
774 int32_t segment, int32_t wrt);
777 * This procedure is called once for every symbol defined in
778 * the module being assembled. It gives the name and value of
779 * the symbol, in NASM's terms, and indicates whether it has
780 * been declared to be global. Note that the parameter "name",
781 * when passed, will point to a piece of static storage
782 * allocated inside the label manager - it's safe to keep using
783 * that pointer, because the label manager doesn't clean up
784 * until after the output driver has.
786 * Values of `is_global' are: 0 means the symbol is local; 1
787 * means the symbol is global; 2 means the symbol is common (in
788 * which case `offset' holds the _size_ of the variable).
789 * Anything else is available for the output driver to use
790 * internally.
792 * This routine explicitly _is_ allowed to call the label
793 * manager to define further symbols, if it wants to, even
794 * though it's been called _from_ the label manager. That much
795 * re-entrancy is guaranteed in the label manager. However, the
796 * label manager will in turn call this routine, so it should
797 * be prepared to be re-entrant itself.
799 * The `special' parameter contains special information passed
800 * through from the command that defined the label: it may have
801 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
802 * be obvious to the output format from the other parameters.
804 void (*symdef)(char *name, int32_t segment, int64_t offset,
805 int is_global, char *special);
808 * This procedure is called when the source code requests a
809 * segment change. It should return the corresponding segment
810 * _number_ for the name, or NO_SEG if the name is not a valid
811 * segment name.
813 * It may also be called with NULL, in which case it is to
814 * return the _default_ section number for starting assembly in.
816 * It is allowed to modify the string it is given a pointer to.
818 * It is also allowed to specify a default instruction size for
819 * the segment, by setting `*bits' to 16 or 32. Or, if it
820 * doesn't wish to define a default, it can leave `bits' alone.
822 int32_t (*section)(char *name, int pass, int *bits);
825 * This procedure is called to modify section alignment,
826 * note there is a trick, the alignment can only increase
828 void (*sectalign)(int32_t seg, unsigned int value);
831 * This procedure is called to modify the segment base values
832 * returned from the SEG operator. It is given a segment base
833 * value (i.e. a segment value with the low bit set), and is
834 * required to produce in return a segment value which may be
835 * different. It can map segment bases to absolute numbers by
836 * means of returning SEG_ABS types.
838 * It should return NO_SEG if the segment base cannot be
839 * determined; the evaluator (which calls this routine) is
840 * responsible for throwing an error condition if that occurs
841 * in pass two or in a critical expression.
843 int32_t (*segbase)(int32_t segment);
846 * This procedure is called to allow the output driver to
847 * process its own specific directives. When called, it has the
848 * directive word in `directive' and the parameter string in
849 * `value'. It is called in both assembly passes, and `pass'
850 * will be either 1 or 2.
852 * This procedure should return zero if it does not _recognise_
853 * the directive, so that the main program can report an error.
854 * If it recognises the directive but then has its own errors,
855 * it should report them itself and then return non-zero. It
856 * should also return non-zero if it correctly processes the
857 * directive.
859 int (*directive)(enum directives directive, char *value, int pass);
862 * This procedure is called before anything else - even before
863 * the "init" routine - and is passed the name of the input
864 * file from which this output file is being generated. It
865 * should return its preferred name for the output file in
866 * `outname', if outname[0] is not '\0', and do nothing to
867 * `outname' otherwise. Since it is called before the driver is
868 * properly initialized, it has to be passed its error handler
869 * separately.
871 * This procedure may also take its own copy of the input file
872 * name for use in writing the output file: it is _guaranteed_
873 * that it will be called before the "init" routine.
875 * The parameter `outname' points to an area of storage
876 * guaranteed to be at least FILENAME_MAX in size.
878 void (*filename)(char *inname, char *outname);
881 * This procedure is called after assembly finishes, to allow
882 * the output driver to clean itself up and free its memory.
883 * Typically, it will also be the point at which the object
884 * file actually gets _written_.
886 * One thing the cleanup routine should always do is to close
887 * the output file pointer.
889 void (*cleanup)(void);
893 * Output format driver alias
895 struct ofmt_alias {
896 const char *shortname;
897 const char *fullname;
898 const struct ofmt *ofmt;
901 extern const struct ofmt *ofmt;
902 extern FILE *ofile;
905 * ------------------------------------------------------------
906 * The data structure defining a debug format driver, and the
907 * interfaces to the functions therein.
908 * ------------------------------------------------------------
911 struct dfmt {
913 * This is a short (one-liner) description of the type of
914 * output generated by the driver.
916 const char *fullname;
919 * This is a single keyword used to select the driver.
921 const char *shortname;
924 * init - called initially to set up local pointer to object format.
926 void (*init)(void);
929 * linenum - called any time there is output with a change of
930 * line number or file.
932 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
935 * debug_deflabel - called whenever a label is defined. Parameters
936 * are the same as to 'symdef()' in the output format. This function
937 * is called after the output format version.
940 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
941 int is_global, char *special);
943 * debug_directive - called whenever a DEBUG directive other than 'LINE'
944 * is encountered. 'directive' contains the first parameter to the
945 * DEBUG directive, and params contains the rest. For example,
946 * 'DEBUG VAR _somevar:int' would translate to a call to this
947 * function with 'directive' equal to "VAR" and 'params' equal to
948 * "_somevar:int".
950 void (*debug_directive)(const char *directive, const char *params);
953 * typevalue - called whenever the assembler wishes to register a type
954 * for the last defined label. This routine MUST detect if a type was
955 * already registered and not re-register it.
957 void (*debug_typevalue)(int32_t type);
960 * debug_output - called whenever output is required
961 * 'type' is the type of info required, and this is format-specific
963 void (*debug_output)(int type, void *param);
966 * cleanup - called after processing of file is complete
968 void (*cleanup)(void);
971 extern const struct dfmt *dfmt;
974 * The type definition macros
975 * for debugging
977 * low 3 bits: reserved
978 * next 5 bits: type
979 * next 24 bits: number of elements for arrays (0 for labels)
982 #define TY_UNKNOWN 0x00
983 #define TY_LABEL 0x08
984 #define TY_BYTE 0x10
985 #define TY_WORD 0x18
986 #define TY_DWORD 0x20
987 #define TY_FLOAT 0x28
988 #define TY_QWORD 0x30
989 #define TY_TBYTE 0x38
990 #define TY_OWORD 0x40
991 #define TY_YWORD 0x48
992 #define TY_COMMON 0xE0
993 #define TY_SEG 0xE8
994 #define TY_EXTERN 0xF0
995 #define TY_EQU 0xF8
997 #define TYM_TYPE(x) ((x) & 0xF8)
998 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1000 #define TYS_ELEMENTS(x) ((x) << 8)
1002 enum special_tokens {
1003 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1004 S_ABS = SPECIAL_ENUM_START,
1005 S_BYTE,
1006 S_DWORD,
1007 S_FAR,
1008 S_LONG,
1009 S_NEAR,
1010 S_NOSPLIT,
1011 S_OWORD,
1012 S_QWORD,
1013 S_REL,
1014 S_SHORT,
1015 S_STRICT,
1016 S_TO,
1017 S_TWORD,
1018 S_WORD,
1019 S_YWORD,
1020 S_ZWORD,
1021 SPECIAL_ENUM_LIMIT
1024 enum decorator_tokens {
1025 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1026 BRC_1TO2 = DECORATOR_ENUM_START,
1027 BRC_1TO4,
1028 BRC_1TO8,
1029 BRC_1TO16,
1030 BRC_RN,
1031 BRC_RD,
1032 BRC_RU,
1033 BRC_RZ,
1034 BRC_SAE,
1035 BRC_Z,
1036 DECORATOR_ENUM_LIMIT
1040 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1041 * 3 2 1
1042 * 10987654321098765432109876543210
1044 * | word boundary
1045 * ............................1111 opmask
1046 * ...........................1.... zeroing / merging
1047 * ..........................1..... broadcast
1048 * .........................1...... static rounding
1049 * ........................1....... SAE
1050 * ......................11........ broadcast element size
1051 * ....................11.......... number of broadcast elements
1053 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1056 * Opmask register number
1057 * identical to EVEX.aaa
1059 * Bits: 0 - 3
1061 #define OPMASK_SHIFT (0)
1062 #define OPMASK_BITS (4)
1063 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1064 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1065 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1068 * zeroing / merging control available
1069 * matching to EVEX.z
1071 * Bits: 4
1073 #define Z_SHIFT (4)
1074 #define Z_BITS (1)
1075 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1076 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1079 * broadcast - Whether this operand can be broadcasted
1081 * Bits: 5
1083 #define BRDCAST_SHIFT (5)
1084 #define BRDCAST_BITS (1)
1085 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1086 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1089 * Whether this instruction can have a static rounding mode.
1090 * It goes with the last simd operand because the static rounding mode
1091 * decorator is located between the last simd operand and imm8 (if any).
1093 * Bits: 6
1095 #define STATICRND_SHIFT (6)
1096 #define STATICRND_BITS (1)
1097 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1098 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1101 * SAE(Suppress all exception) available
1103 * Bits: 7
1105 #define SAE_SHIFT (7)
1106 #define SAE_BITS (1)
1107 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1108 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1111 * Broadcasting element size.
1113 * Bits: 8 - 9
1115 #define BRSIZE_SHIFT (8)
1116 #define BRSIZE_BITS (2)
1117 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1118 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1120 #define BR_BITS32 GEN_BRSIZE(0)
1121 #define BR_BITS64 GEN_BRSIZE(1)
1124 * Number of broadcasting elements
1126 * Bits: 10 - 11
1128 #define BRNUM_SHIFT (10)
1129 #define BRNUM_BITS (2)
1130 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1131 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1133 #define BR_1TO2 VAL_BRNUM(0)
1134 #define BR_1TO4 VAL_BRNUM(1)
1135 #define BR_1TO8 VAL_BRNUM(2)
1136 #define BR_1TO16 VAL_BRNUM(3)
1138 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1139 #define Z Z_MASK
1140 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1141 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1142 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1143 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1146 * Global modes
1150 * This declaration passes the "pass" number to all other modules
1151 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1152 * where 0 = optimizing pass
1153 * 1 = pass 1
1154 * 2 = pass 2
1157 extern int pass0;
1158 extern int passn; /* Actual pass number */
1160 extern bool tasm_compatible_mode;
1161 extern int optimizing;
1162 extern int globalbits; /* 16, 32 or 64-bit mode */
1163 extern int globalrel; /* default to relative addressing? */
1164 extern int globalbnd; /* default to using bnd prefix? */
1166 #endif