1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1..\4 - that many literal bytes follow in the code stream
11 * \5 - add 4 to the primary operand number (b, low octdigit)
12 * \6 - add 4 to the secondary operand number (a, middle octdigit)
13 * \7 - add 4 to both the primary and the secondary operand number
14 * \10..\13 - a literal byte follows in the code stream, to be added
15 * to the register value of operand 0..3
16 * \14..\17 - a signed byte immediate operand, from operand 0..3
17 * \20..\23 - a byte immediate operand, from operand 0..3
18 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
19 * \30..\33 - a word immediate operand, from operand 0..3
20 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
21 * assembly mode or the operand-size override on the operand
22 * \40..\43 - a long immediate operand, from operand 0..3
23 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
24 * depending on the address size of the instruction.
25 * \50..\53 - a byte relative operand, from operand 0..3
26 * \54..\57 - a qword immediate operand, from operand 0..3
27 * \60..\63 - a word relative operand, from operand 0..3
28 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
29 * assembly mode or the operand-size override on the operand
30 * \70..\73 - a long relative operand, from operand 0..3
31 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
32 * \1ab - a ModRM, calculated on EA in operand a, with the spare
33 * field the register value of operand b.
34 * \140..\143 - an immediate word or signed byte for operand 0..3
35 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
36 * is a signed byte rather than a word. Opcode byte follows.
37 * \150..\153 - an immediate dword or signed byte for operand 0..3
38 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
39 * is a signed byte rather than a dword. Opcode byte follows.
40 * \160..\163 - this instruction uses DREX rather than REX, with the
41 * OC0 field set to 0, and the dest field taken from
43 * \164..\167 - this instruction uses DREX rather than REX, with the
44 * OC0 field set to 1, and the dest field taken from
46 * \171 - placement of DREX suffix in the absence of an EA
47 * \172\ab - the register number from operand a in bits 7..4, with
48 * the 4-bit immediate from operand b in bits 3..0.
49 * \173\xab - the register number from operand a in bits 7..4, with
50 * the value b in bits 3..0.
51 * \174\a - the register number from operand a in bits 7..4, and
52 * an arbitrary value in bits 3..0 (assembled as zero.)
53 * \2ab - a ModRM, calculated on EA in operand a, with the spare
54 * field equal to digit b.
55 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
56 * is not equal to the truncated and sign-extended 32-bit
57 * operand; used for 32-bit immediates in 64-bit mode.
58 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
59 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX/XOP rather than REX, with the
62 * V field set to 1111b.
64 * VEX/XOP prefixes are followed by the sequence:
65 * \tmm\wlp where mm is the M field; and wlp is:
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
72 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
74 * \274..\277 - a signed byte immediate operand, from operand 0..3,
75 * which is to be extended to the operand size.
76 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
77 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
78 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
79 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
80 * \314 - (disassembler only) invalid with REX.B
81 * \315 - (disassembler only) invalid with REX.X
82 * \316 - (disassembler only) invalid with REX.R
83 * \317 - (disassembler only) invalid with REX.W
84 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
85 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
86 * \322 - indicates that this instruction is only valid when the
87 * operand size is the default (instruction to disassembler,
88 * generates no code in the assembler)
89 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
90 * \324 - indicates 64-bit operand size requiring REX prefix.
91 * \325 - instruction which always uses spl/bpl/sil/dil
92 * \330 - a literal byte follows in the code stream, to be added
93 * to the condition code value of the instruction.
94 * \331 - instruction not valid with REP prefix. Hint for
95 * disassembler only; for SSE instructions.
96 * \332 - REP prefix (0xF2 byte) used as opcode extension.
97 * \333 - REP prefix (0xF3 byte) used as opcode extension.
98 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
99 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
100 * \336 - force a REP(E) prefix (0xF2) even if not specified.
101 * \337 - force a REPNE prefix (0xF3) even if not specified.
102 * \336-\337 are still listed as prefixes in the disassembler.
103 * \340 - reserve <operand 0> bytes of uninitialized storage.
104 * Operand 0 had better be a segmentless constant.
105 * \341 - this instruction needs a WAIT "prefix"
106 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
107 * (POP is never used for CS) depending on operand 0
108 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
110 * \360 - no SSE prefix (== \364\331)
111 * \361 - 66 SSE prefix (== \366\331)
112 * \362 - F2 SSE prefix (== \364\332)
113 * \363 - F3 SSE prefix (== \364\333)
114 * \364 - operand-size prefix (0x66) not permitted
115 * \365 - address-size prefix (0x67) not permitted
116 * \366 - operand-size prefix (0x66) used as opcode extension
117 * \367 - address-size prefix (0x67) used as opcode extension
118 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
119 * 370 is used for Jcc, 371 is used for JMP.
120 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
121 * used for conditional jump over longer jump
124 #include "compiler.h"
128 #include <inttypes.h>
132 #include "assemble.h"
137 int sib_present
; /* is a SIB byte necessary? */
138 int bytes
; /* # of bytes of offset needed */
139 int size
; /* lazy - this is sib+bytes+1 */
140 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
143 static uint32_t cpu
; /* cpu level received from nasm.c */
144 static efunc errfunc
;
145 static struct ofmt
*outfmt
;
146 static ListGen
*list
;
148 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
149 static void gencode(int32_t segment
, int64_t offset
, int bits
,
150 insn
* ins
, const struct itemplate
*temp
,
152 static int matches(const struct itemplate
*, insn
*, int bits
);
153 static int32_t regflag(const operand
*);
154 static int32_t regval(const operand
*);
155 static int rexflags(int, int32_t, int);
156 static int op_rexflags(const operand
*, int);
157 static ea
*process_ea(operand
*, ea
*, int, int, int, int32_t);
158 static void add_asp(insn
*, int);
160 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
162 return ins
->prefixes
[pos
] == prefix
;
165 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
167 if (ins
->prefixes
[pos
])
168 errfunc(ERR_NONFATAL
, "invalid %s prefix",
169 prefix_name(ins
->prefixes
[pos
]));
172 static const char *size_name(int size
)
194 static void warn_overflow(int size
, const struct operand
*o
)
196 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
197 int64_t lim
= ((int64_t)1 << (size
*8))-1;
198 int64_t data
= o
->offset
;
200 if (data
< ~lim
|| data
> lim
)
201 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
202 "%s data exceeds bounds", size_name(size
));
206 * This routine wrappers the real output format's output routine,
207 * in order to pass a copy of the data off to the listing file
208 * generator at the same time.
210 static void out(int64_t offset
, int32_t segto
, const void *data
,
211 enum out_type type
, uint64_t size
,
212 int32_t segment
, int32_t wrt
)
214 static int32_t lineno
= 0; /* static!!! */
215 static char *lnfname
= NULL
;
218 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
220 * This is a non-relocated address, and we're going to
221 * convert it into RAWDATA format.
226 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
230 WRITEADDR(q
, *(int64_t *)data
, size
);
235 list
->output(offset
, data
, type
, size
);
238 * this call to src_get determines when we call the
239 * debug-format-specific "linenum" function
240 * it updates lineno and lnfname to the current values
241 * returning 0 if "same as last time", -2 if lnfname
242 * changed, and the amount by which lineno changed,
243 * if it did. thus, these variables must be static
246 if (src_get(&lineno
, &lnfname
)) {
247 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
250 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
253 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
254 insn
* ins
, const uint8_t *code
)
259 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
263 if (optimizing
< 0 && c
== 0371)
266 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
268 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
269 /* Be optimistic in pass 1 */
272 if (ins
->oprs
[0].segment
!= segment
)
275 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
276 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
279 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
280 insn
* instruction
, struct ofmt
*output
, efunc error
,
283 const struct itemplate
*temp
;
288 int64_t start
= offset
;
289 int64_t wsize
= 0; /* size for DB etc. */
291 errfunc
= error
; /* to pass to other functions */
293 outfmt
= output
; /* likewise */
294 list
= listgen
; /* and again */
296 switch (instruction
->opcode
) {
326 int32_t t
= instruction
->times
;
329 "instruction->times < 0 (%ld) in assemble()", t
);
331 while (t
--) { /* repeat TIMES times */
332 for (e
= instruction
->eops
; e
; e
= e
->next
) {
333 if (e
->type
== EOT_DB_NUMBER
) {
335 if (e
->segment
!= NO_SEG
)
336 errfunc(ERR_NONFATAL
,
337 "one-byte relocation attempted");
339 uint8_t out_byte
= e
->offset
;
340 out(offset
, segment
, &out_byte
,
341 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
343 } else if (wsize
> 8) {
344 errfunc(ERR_NONFATAL
,
345 "integer supplied to a DT, DO or DY"
348 out(offset
, segment
, &e
->offset
,
349 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
351 } else if (e
->type
== EOT_DB_STRING
||
352 e
->type
== EOT_DB_STRING_FREE
) {
355 out(offset
, segment
, e
->stringval
,
356 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
357 align
= e
->stringlen
% wsize
;
360 align
= wsize
- align
;
361 out(offset
, segment
, zero_buffer
,
362 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
364 offset
+= e
->stringlen
+ align
;
367 if (t
> 0 && t
== instruction
->times
- 1) {
369 * Dummy call to list->output to give the offset to the
372 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
373 list
->uplevel(LIST_TIMES
);
376 if (instruction
->times
> 1)
377 list
->downlevel(LIST_TIMES
);
378 return offset
- start
;
381 if (instruction
->opcode
== I_INCBIN
) {
382 const char *fname
= instruction
->eops
->stringval
;
385 fp
= fopen(fname
, "rb");
387 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
389 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
390 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
393 static char buf
[4096];
394 size_t t
= instruction
->times
;
399 if (instruction
->eops
->next
) {
400 base
= instruction
->eops
->next
->offset
;
402 if (instruction
->eops
->next
->next
&&
403 len
> (size_t)instruction
->eops
->next
->next
->offset
)
404 len
= (size_t)instruction
->eops
->next
->next
->offset
;
407 * Dummy call to list->output to give the offset to the
410 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
411 list
->uplevel(LIST_INCBIN
);
415 fseek(fp
, base
, SEEK_SET
);
419 fread(buf
, 1, (l
> (int32_t) sizeof(buf
) ? (int32_t) sizeof(buf
) : l
),
423 * This shouldn't happen unless the file
424 * actually changes while we are reading
428 "`incbin': unexpected EOF while"
429 " reading file `%s'", fname
);
430 t
= 0; /* Try to exit cleanly */
433 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
438 list
->downlevel(LIST_INCBIN
);
439 if (instruction
->times
> 1) {
441 * Dummy call to list->output to give the offset to the
444 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
445 list
->uplevel(LIST_TIMES
);
446 list
->downlevel(LIST_TIMES
);
449 return instruction
->times
* len
;
451 return 0; /* if we're here, there's an error */
454 /* Check to see if we need an address-size prefix */
455 add_asp(instruction
, bits
);
459 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++){
460 int m
= matches(temp
, instruction
, bits
);
462 (m
== 99 && jmp_match(segment
, offset
, bits
,
463 instruction
, temp
->code
))) {
465 int64_t insn_size
= calcsize(segment
, offset
, bits
,
466 instruction
, temp
->code
);
467 itimes
= instruction
->times
;
468 if (insn_size
< 0) /* shouldn't be, on pass two */
469 error(ERR_PANIC
, "errors made it through from pass one");
472 for (j
= 0; j
< MAXPREFIX
; j
++) {
474 switch (instruction
->prefixes
[j
]) {
492 error(ERR_WARNING
| ERR_PASS2
,
493 "cs segment base generated, but will be ignored in 64-bit mode");
499 error(ERR_WARNING
| ERR_PASS2
,
500 "ds segment base generated, but will be ignored in 64-bit mode");
506 error(ERR_WARNING
| ERR_PASS2
,
507 "es segment base generated, but will be ignored in 64-bit mode");
519 error(ERR_WARNING
| ERR_PASS2
,
520 "ss segment base generated, but will be ignored in 64-bit mode");
527 "segr6 and segr7 cannot be used as prefixes");
532 "16-bit addressing is not supported "
534 } else if (bits
!= 16)
544 "64-bit addressing is only supported "
568 error(ERR_PANIC
, "invalid instruction prefix");
571 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
576 insn_end
= offset
+ insn_size
;
577 gencode(segment
, offset
, bits
, instruction
,
580 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
582 * Dummy call to list->output to give the offset to the
585 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
586 list
->uplevel(LIST_TIMES
);
589 if (instruction
->times
> 1)
590 list
->downlevel(LIST_TIMES
);
591 return offset
- start
;
592 } else if (m
> 0 && m
> size_prob
) {
597 if (temp
->opcode
== -1) { /* didn't match any instruction */
600 error(ERR_NONFATAL
, "operation size not specified");
603 error(ERR_NONFATAL
, "mismatch in operand sizes");
606 error(ERR_NONFATAL
, "no instruction for this cpu level");
609 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
614 "invalid combination of opcode and operands");
621 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
622 insn
* instruction
, efunc error
)
624 const struct itemplate
*temp
;
626 errfunc
= error
; /* to pass to other functions */
629 if (instruction
->opcode
== -1)
632 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
633 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
634 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
635 instruction
->opcode
== I_DY
) {
637 int32_t isize
, osize
, wsize
= 0; /* placate gcc */
640 switch (instruction
->opcode
) {
666 for (e
= instruction
->eops
; e
; e
= e
->next
) {
670 if (e
->type
== EOT_DB_NUMBER
)
672 else if (e
->type
== EOT_DB_STRING
||
673 e
->type
== EOT_DB_STRING_FREE
)
674 osize
= e
->stringlen
;
676 align
= (-osize
) % wsize
;
679 isize
+= osize
+ align
;
681 return isize
* instruction
->times
;
684 if (instruction
->opcode
== I_INCBIN
) {
685 const char *fname
= instruction
->eops
->stringval
;
689 fp
= fopen(fname
, "rb");
691 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
693 else if (fseek(fp
, 0L, SEEK_END
) < 0)
694 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
699 if (instruction
->eops
->next
) {
700 len
-= instruction
->eops
->next
->offset
;
701 if (instruction
->eops
->next
->next
&&
702 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
703 len
= (size_t)instruction
->eops
->next
->next
->offset
;
706 return instruction
->times
* len
;
708 return 0; /* if we're here, there's an error */
711 /* Check to see if we need an address-size prefix */
712 add_asp(instruction
, bits
);
714 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++) {
715 int m
= matches(temp
, instruction
, bits
);
717 (m
== 99 && jmp_match(segment
, offset
, bits
,
718 instruction
, temp
->code
))) {
719 /* we've matched an instruction. */
721 const uint8_t *codes
= temp
->code
;
724 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
727 for (j
= 0; j
< MAXPREFIX
; j
++) {
728 switch (instruction
->prefixes
[j
]) {
754 return isize
* instruction
->times
;
757 return -1; /* didn't match any instruction */
760 static bool possible_sbyte(operand
*o
)
762 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
763 !(o
->opflags
& OPFLAG_UNKNOWN
) &&
764 optimizing
>= 0 && !(o
->type
& STRICT
);
767 /* check that opn[op] is a signed byte of size 16 or 32 */
768 static bool is_sbyte16(operand
*o
)
772 if (!possible_sbyte(o
))
776 return v
>= -128 && v
<= 127;
779 static bool is_sbyte32(operand
*o
)
783 if (!possible_sbyte(o
))
787 return v
>= -128 && v
<= 127;
790 /* Common construct */
791 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
793 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
794 insn
* ins
, const uint8_t *codes
)
803 ins
->rex
= 0; /* Ensure REX is reset */
805 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
808 (void)segment
; /* Don't warn that this parameter is unused */
809 (void)offset
; /* Don't warn that this parameter is unused */
813 op1
= (c
& 3) + ((opex
& 1) << 2);
814 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
815 opx
= &ins
->oprs
[op1
];
816 opex
= 0; /* For the next iteration */
823 codes
+= c
, length
+= c
;
834 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
849 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
850 length
+= (opx
->type
& BITS16
) ? 2 : 4;
852 length
+= (bits
== 16) ? 2 : 4;
860 length
+= ins
->addr_size
>> 3;
868 length
+= 8; /* MOV reg64/imm */
876 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
877 length
+= (opx
->type
& BITS16
) ? 2 : 4;
879 length
+= (bits
== 16) ? 2 : 4;
891 length
+= is_sbyte16(opx
) ? 1 : 2;
900 length
+= is_sbyte32(opx
) ? 1 : 4;
911 ins
->drexdst
= regval(opx
);
916 ins
->rex
|= REX_D
|REX_OC
;
917 ins
->drexdst
= regval(opx
);
931 length
+= is_sbyte32(opx
) ? 1 : 4;
940 ins
->drexdst
= regval(opx
);
941 ins
->vex_cm
= *codes
++;
942 ins
->vex_wlp
= *codes
++;
948 ins
->vex_cm
= *codes
++;
949 ins
->vex_wlp
= *codes
++;
962 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
966 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
973 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
974 has_prefix(ins
, PPS_ASIZE
, P_A32
))
982 length
+= (bits
!= 16);
986 length
+= (bits
== 16);
1024 if (!ins
->prefixes
[PPS_LREP
])
1025 ins
->prefixes
[PPS_LREP
] = P_REP
;
1029 if (!ins
->prefixes
[PPS_LREP
])
1030 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1034 if (ins
->oprs
[0].segment
!= NO_SEG
)
1035 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1036 " quantity of BSS space");
1038 length
+= ins
->oprs
[0].offset
;
1042 if (!ins
->prefixes
[PPS_WAIT
])
1043 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1093 struct operand
*opy
= &ins
->oprs
[op2
];
1095 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1098 /* pick rfield from operand b (opx) */
1099 rflags
= regflag(opx
);
1100 rfield
= nasm_regvals
[opx
->basereg
];
1105 if (!process_ea(opy
, &ea_data
, bits
,
1106 ins
->addr_size
, rfield
, rflags
)) {
1107 errfunc(ERR_NONFATAL
, "invalid effective address");
1110 ins
->rex
|= ea_data
.rex
;
1111 length
+= ea_data
.size
;
1117 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1118 ": instruction code \\%o (0x%02X) given", c
, c
);
1123 ins
->rex
&= rex_mask
;
1125 if (ins
->rex
& REX_NH
) {
1126 if (ins
->rex
& REX_H
) {
1127 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1130 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1133 if (ins
->rex
& REX_V
) {
1134 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1136 if (ins
->rex
& REX_H
) {
1137 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1140 switch (ins
->vex_wlp
& 030) {
1154 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1155 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1158 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1162 } else if (ins
->rex
& REX_D
) {
1163 if (ins
->rex
& REX_H
) {
1164 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1167 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1168 ins
->drexdst
> 7)) {
1169 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1173 } else if (ins
->rex
& REX_REAL
) {
1174 if (ins
->rex
& REX_H
) {
1175 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1177 } else if (bits
== 64) {
1179 } else if ((ins
->rex
& REX_L
) &&
1180 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1183 assert_no_prefix(ins
, PPS_LREP
);
1186 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1194 #define EMIT_REX() \
1195 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1196 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1197 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1202 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1203 insn
* ins
, const struct itemplate
*temp
,
1206 static char condval
[] = { /* conditional opcodes */
1207 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1208 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1209 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1216 struct operand
*opx
;
1217 const uint8_t *codes
= temp
->code
;
1222 op1
= (c
& 3) + ((opex
& 1) << 2);
1223 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1224 opx
= &ins
->oprs
[op1
];
1225 opex
= 0; /* For the next iteration */
1233 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1246 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1247 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1252 /* The test for BITS8 and SBYTE here is intended to avoid
1253 warning on optimizer actions due to SBYTE, while still
1254 warn on explicit BYTE directives. Also warn, obviously,
1255 if the optimizer isn't enabled. */
1256 if (((opx
->type
& BITS8
) ||
1257 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1258 (opx
->offset
< -128 || opx
->offset
> 127)) {
1259 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1260 "signed byte value exceeds bounds");
1262 if (opx
->segment
!= NO_SEG
) {
1264 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1265 opx
->segment
, opx
->wrt
);
1267 bytes
[0] = opx
->offset
;
1268 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1275 if (opx
->offset
< -256 || opx
->offset
> 255) {
1276 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1277 "byte value exceeds bounds");
1279 if (opx
->segment
!= NO_SEG
) {
1281 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1282 opx
->segment
, opx
->wrt
);
1284 bytes
[0] = opx
->offset
;
1285 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1292 if (opx
->offset
< 0 || opx
->offset
> 255)
1293 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1294 "unsigned byte value exceeds bounds");
1295 if (opx
->segment
!= NO_SEG
) {
1297 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1298 opx
->segment
, opx
->wrt
);
1300 bytes
[0] = opx
->offset
;
1301 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1308 warn_overflow(2, opx
);
1310 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1311 opx
->segment
, opx
->wrt
);
1316 if (opx
->type
& (BITS16
| BITS32
))
1317 size
= (opx
->type
& BITS16
) ? 2 : 4;
1319 size
= (bits
== 16) ? 2 : 4;
1320 warn_overflow(size
, opx
);
1322 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1323 opx
->segment
, opx
->wrt
);
1328 warn_overflow(4, opx
);
1330 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1331 opx
->segment
, opx
->wrt
);
1337 size
= ins
->addr_size
>> 3;
1338 warn_overflow(size
, opx
);
1339 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1340 opx
->segment
, opx
->wrt
);
1345 if (opx
->segment
!= segment
)
1346 errfunc(ERR_NONFATAL
,
1347 "short relative jump outside segment");
1348 data
= opx
->offset
- insn_end
;
1349 if (data
> 127 || data
< -128)
1350 errfunc(ERR_NONFATAL
, "short jump is out of range");
1352 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1357 data
= (int64_t)opx
->offset
;
1358 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1359 opx
->segment
, opx
->wrt
);
1364 if (opx
->segment
!= segment
) {
1366 out(offset
, segment
, &data
,
1367 OUT_REL2ADR
, insn_end
- offset
,
1368 opx
->segment
, opx
->wrt
);
1370 data
= opx
->offset
- insn_end
;
1371 out(offset
, segment
, &data
,
1372 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1378 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1379 size
= (opx
->type
& BITS16
) ? 2 : 4;
1381 size
= (bits
== 16) ? 2 : 4;
1382 if (opx
->segment
!= segment
) {
1384 out(offset
, segment
, &data
,
1385 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1386 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1388 data
= opx
->offset
- insn_end
;
1389 out(offset
, segment
, &data
,
1390 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1396 if (opx
->segment
!= segment
) {
1398 out(offset
, segment
, &data
,
1399 OUT_REL4ADR
, insn_end
- offset
,
1400 opx
->segment
, opx
->wrt
);
1402 data
= opx
->offset
- insn_end
;
1403 out(offset
, segment
, &data
,
1404 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1410 if (opx
->segment
== NO_SEG
)
1411 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1414 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1415 outfmt
->segbase(1 + opx
->segment
),
1422 warn_overflow(2, opx
);
1423 if (is_sbyte16(opx
)) {
1425 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1429 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1430 opx
->segment
, opx
->wrt
);
1437 bytes
[0] = *codes
++;
1438 if (is_sbyte16(opx
))
1439 bytes
[0] |= 2; /* s-bit */
1440 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1446 warn_overflow(4, opx
);
1447 if (is_sbyte32(opx
)) {
1449 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1453 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1454 opx
->segment
, opx
->wrt
);
1461 bytes
[0] = *codes
++;
1462 if (is_sbyte32(opx
))
1463 bytes
[0] |= 2; /* s-bit */
1464 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1474 (ins
->drexdst
<< 4) |
1475 (ins
->rex
& REX_OC
? 0x08 : 0) |
1476 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1478 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1484 opx
= &ins
->oprs
[c
>> 3];
1485 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1486 opx
= &ins
->oprs
[c
& 7];
1487 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1488 errfunc(ERR_NONFATAL
,
1489 "non-absolute expression not permitted as argument %d",
1492 if (opx
->offset
& ~15) {
1493 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1494 "four-bit argument exceeds bounds");
1496 bytes
[0] |= opx
->offset
& 15;
1498 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1504 opx
= &ins
->oprs
[c
>> 4];
1505 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1507 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1513 opx
= &ins
->oprs
[c
];
1514 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1515 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1521 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1522 (int32_t)data
!= (int64_t)data
) {
1523 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1524 "signed dword immediate exceeds bounds");
1526 if (is_sbyte32(opx
)) {
1528 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1532 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1533 opx
->segment
, opx
->wrt
);
1540 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1541 (int32_t)data
!= (int64_t)data
) {
1542 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1543 "signed dword immediate exceeds bounds");
1545 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1546 opx
->segment
, opx
->wrt
);
1553 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1554 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1555 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1556 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1557 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1558 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1562 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1563 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1564 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1574 if (ins
->rex
& REX_W
)
1576 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1578 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1583 um
= (uint64_t)2 << (s
-1);
1586 if (uv
> 127 && uv
< (uint64_t)-128 &&
1587 (uv
< um
-128 || uv
> um
-1)) {
1588 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1589 "signed byte value exceeds bounds");
1591 if (opx
->segment
!= NO_SEG
) {
1593 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1594 opx
->segment
, opx
->wrt
);
1597 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1608 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1610 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1617 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1619 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1638 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1647 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1665 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1666 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1675 *bytes
= c
- 0332 + 0xF2;
1676 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1681 if (ins
->rex
& REX_R
) {
1683 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1686 ins
->rex
&= ~(REX_L
|REX_R
);
1697 if (ins
->oprs
[0].segment
!= NO_SEG
)
1698 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1700 int64_t size
= ins
->oprs
[0].offset
;
1702 out(offset
, segment
, NULL
,
1703 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1714 switch (ins
->oprs
[0].basereg
) {
1729 "bizarre 8086 segment register received");
1731 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1738 switch (ins
->oprs
[0].basereg
) {
1747 "bizarre 386 segment register received");
1749 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1758 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1764 bytes
[0] = c
- 0362 + 0xf2;
1765 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1775 *bytes
= c
- 0366 + 0x66;
1776 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1786 *bytes
= bits
== 16 ? 3 : 5;
1787 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1810 struct operand
*opy
= &ins
->oprs
[op2
];
1813 /* pick rfield from operand b (opx) */
1814 rflags
= regflag(opx
);
1815 rfield
= nasm_regvals
[opx
->basereg
];
1817 /* rfield is constant */
1822 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1824 errfunc(ERR_NONFATAL
, "invalid effective address");
1829 *p
++ = ea_data
.modrm
;
1830 if (ea_data
.sib_present
)
1833 /* DREX suffixes come between the SIB and the displacement */
1834 if (ins
->rex
& REX_D
) {
1835 *p
++ = (ins
->drexdst
<< 4) |
1836 (ins
->rex
& REX_OC
? 0x08 : 0) |
1837 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1842 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1845 * Make sure the address gets the right offset in case
1846 * the line breaks in the .lst file (BR 1197827)
1851 switch (ea_data
.bytes
) {
1859 warn_overflow(ea_data
.bytes
, opy
);
1862 if (opy
->segment
== segment
) {
1864 out(offset
, segment
, &data
, OUT_ADDRESS
,
1865 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1867 out(offset
, segment
, &data
, OUT_REL4ADR
,
1868 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1872 out(offset
, segment
, &data
, OUT_ADDRESS
,
1873 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1879 "Invalid amount of bytes (%d) for offset?!",
1888 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1889 ": instruction code \\%o (0x%02X) given", c
, c
);
1895 static int32_t regflag(const operand
* o
)
1897 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1898 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1900 return nasm_reg_flags
[o
->basereg
];
1903 static int32_t regval(const operand
* o
)
1905 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1906 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1908 return nasm_regvals
[o
->basereg
];
1911 static int op_rexflags(const operand
* o
, int mask
)
1916 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1917 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1920 flags
= nasm_reg_flags
[o
->basereg
];
1921 val
= nasm_regvals
[o
->basereg
];
1923 return rexflags(val
, flags
, mask
);
1926 static int rexflags(int val
, int32_t flags
, int mask
)
1931 rex
|= REX_B
|REX_X
|REX_R
;
1934 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1936 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1942 static int matches(const struct itemplate
*itemp
, insn
* instruction
, int bits
)
1944 int i
, size
[MAX_OPERANDS
], asize
, oprs
, ret
;
1951 if (itemp
->opcode
!= instruction
->opcode
)
1955 * Count the operands
1957 if (itemp
->operands
!= instruction
->operands
)
1961 * Check that no spurious colons or TOs are present
1963 for (i
= 0; i
< itemp
->operands
; i
++)
1964 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
1968 * Process size flags
1970 if (itemp
->flags
& IF_ARMASK
) {
1971 memset(size
, 0, sizeof size
);
1973 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
1975 switch (itemp
->flags
& IF_SMASK
) {
2012 switch (itemp
->flags
& IF_SMASK
) {
2047 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2052 * Check that the operand flags all match up
2054 for (i
= 0; i
< itemp
->operands
; i
++) {
2055 int32_t type
= instruction
->oprs
[i
].type
;
2056 if (!(type
& SIZE_MASK
))
2059 if (itemp
->opd
[i
] & SAME_AS
) {
2060 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2061 if (type
!= instruction
->oprs
[j
].type
||
2062 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2064 } else if (itemp
->opd
[i
] & ~type
||
2065 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2066 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2067 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) ||
2076 * Check operand sizes
2078 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2079 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2081 for (i
= 0; i
< oprs
; i
++) {
2082 if ((asize
= itemp
->opd
[i
] & SIZE_MASK
) != 0) {
2084 for (j
= 0; j
< oprs
; j
++)
2090 oprs
= itemp
->operands
;
2093 for (i
= 0; i
< itemp
->operands
; i
++) {
2094 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2095 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2100 * Check template is okay at the set cpu level
2102 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2106 * Verify the appropriate long mode flag.
2108 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2112 * Check if special handling needed for Jumps
2114 if ((uint8_t)(itemp
->code
[0]) >= 0370)
2120 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2121 int addrbits
, int rfield
, int32_t rflags
)
2123 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2125 output
->rip
= false;
2127 /* REX flags for the rfield operand */
2128 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2130 if (!(REGISTER
& ~input
->type
)) { /* register direct */
2134 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2135 || input
->basereg
>= REG_ENUM_LIMIT
)
2138 i
= nasm_regvals
[input
->basereg
];
2141 return NULL
; /* Invalid EA register */
2143 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2145 output
->sib_present
= false; /* no SIB necessary */
2146 output
->bytes
= 0; /* no offset necessary either */
2147 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2148 } else { /* it's a memory reference */
2149 if (input
->basereg
== -1
2150 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2151 /* it's a pure offset */
2152 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2153 int scale
, index
, base
;
2154 output
->sib_present
= true;
2158 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2160 output
->modrm
= 4 | ((rfield
& 7) << 3);
2161 output
->rip
= false;
2163 output
->sib_present
= false;
2164 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2165 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2166 output
->rip
= bits
== 64;
2168 } else { /* it's an indirection */
2169 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2170 int32_t o
= input
->offset
, seg
= input
->segment
;
2171 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2174 int32_t ix
, bx
; /* register flags */
2177 i
= -1; /* make this easy, at least */
2179 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2180 it
= nasm_regvals
[i
];
2181 ix
= nasm_reg_flags
[i
];
2187 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2188 bt
= nasm_regvals
[b
];
2189 bx
= nasm_reg_flags
[b
];
2195 /* check for a 32/64-bit memory reference... */
2196 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2197 /* it must be a 32/64-bit memory reference. Firstly we have
2198 * to check that all registers involved are type E/Rxx. */
2199 int32_t sok
= BITS32
|BITS64
;
2202 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2210 return NULL
; /* Invalid register */
2211 if (~sok
& bx
& SIZE_MASK
)
2212 return NULL
; /* Invalid size */
2216 /* While we're here, ensure the user didn't specify
2218 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2221 if (addrbits
== 16 ||
2222 (addrbits
== 32 && !(sok
& BITS32
)) ||
2223 (addrbits
== 64 && !(sok
& BITS64
)))
2226 /* now reorganize base/index */
2227 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2228 ((hb
== b
&& ht
== EAH_NOTBASE
)
2229 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2230 /* swap if hints say so */
2231 t
= bt
, bt
= it
, it
= t
;
2232 t
= bx
, bx
= ix
, ix
= t
;
2234 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2235 bt
= -1, bx
= 0, s
++;
2236 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2237 /* make single reg base, unless hint */
2238 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2240 if (((s
== 2 && it
!= REG_NUM_ESP
2241 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2242 || s
== 5 || s
== 9) && bt
== -1)
2243 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2244 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2245 && (input
->eaflags
& EAF_TIMESTWO
))
2246 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2247 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2248 if (s
== 1 && it
== REG_NUM_ESP
) {
2249 /* swap ESP into base if scale is 1 */
2250 t
= it
, it
= bt
, bt
= t
;
2251 t
= ix
, ix
= bx
, bx
= t
;
2253 if (it
== REG_NUM_ESP
2254 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2255 return NULL
; /* wrong, for various reasons */
2257 output
->rex
|= rexflags(it
, ix
, REX_X
);
2258 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2260 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2269 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2270 seg
== NO_SEG
&& !forw_ref
&&
2272 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2274 else if (input
->eaflags
& EAF_BYTEOFFS
||
2275 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2277 && !(input
->eaflags
& EAF_WORDOFFS
)))
2283 output
->sib_present
= false;
2284 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2285 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2288 int mod
, scale
, index
, base
;
2308 default: /* then what the smeg is it? */
2309 return NULL
; /* panic */
2317 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2318 seg
== NO_SEG
&& !forw_ref
&&
2320 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2322 else if (input
->eaflags
& EAF_BYTEOFFS
||
2323 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2325 && !(input
->eaflags
& EAF_WORDOFFS
)))
2331 output
->sib_present
= true;
2332 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2333 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2334 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2336 } else { /* it's 16-bit */
2339 /* check for 64-bit long mode */
2343 /* check all registers are BX, BP, SI or DI */
2344 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2345 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2346 && i
!= R_SI
&& i
!= R_DI
))
2349 /* ensure the user didn't specify DWORD/QWORD */
2350 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2353 if (s
!= 1 && i
!= -1)
2354 return NULL
; /* no can do, in 16-bit EA */
2355 if (b
== -1 && i
!= -1) {
2360 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2365 /* have BX/BP as base, SI/DI index */
2367 return NULL
; /* shouldn't ever happen, in theory */
2368 if (i
!= -1 && b
!= -1 &&
2369 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2370 return NULL
; /* invalid combinations */
2371 if (b
== -1) /* pure offset: handled above */
2372 return NULL
; /* so if it gets to here, panic! */
2376 switch (i
* 256 + b
) {
2377 case R_SI
* 256 + R_BX
:
2380 case R_DI
* 256 + R_BX
:
2383 case R_SI
* 256 + R_BP
:
2386 case R_DI
* 256 + R_BP
:
2404 if (rm
== -1) /* can't happen, in theory */
2405 return NULL
; /* so panic if it does */
2407 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2408 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2410 else if (input
->eaflags
& EAF_BYTEOFFS
||
2411 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2413 && !(input
->eaflags
& EAF_WORDOFFS
)))
2418 output
->sib_present
= false; /* no SIB - it's 16-bit */
2419 output
->bytes
= mod
; /* bytes of offset needed */
2420 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2425 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2429 static void add_asp(insn
*ins
, int addrbits
)
2434 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2436 switch (ins
->prefixes
[PPS_ASIZE
]) {
2447 valid
&= (addrbits
== 32) ? 16 : 32;
2453 for (j
= 0; j
< ins
->operands
; j
++) {
2454 if (!(MEMORY
& ~ins
->oprs
[j
].type
)) {
2457 /* Verify as Register */
2458 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2459 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2462 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2464 /* Verify as Register */
2465 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2466 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2469 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2471 if (ins
->oprs
[j
].scale
== 0)
2475 int ds
= ins
->oprs
[j
].disp_size
;
2476 if ((addrbits
!= 64 && ds
> 8) ||
2477 (addrbits
== 64 && ds
== 16))
2497 if (valid
& addrbits
) {
2498 ins
->addr_size
= addrbits
;
2499 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2500 /* Add an address size prefix */
2501 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2502 ins
->prefixes
[PPS_ASIZE
] = pref
;
2503 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2506 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2507 ins
->addr_size
= addrbits
; /* Error recovery */
2510 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2512 for (j
= 0; j
< ins
->operands
; j
++) {
2513 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2514 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2515 != ins
->addr_size
) {
2516 /* mem_offs sizes must match the address size; if not,
2517 strip the MEM_OFFS bit and match only EA instructions */
2518 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);