configure: smarter way to handle fseeko() searching
[nasm.git] / nasm.h
blob9e4fa9659304800fdf1d56a9b512157b5da6bf69
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
89 * which will be a relative jump. For this we need to know the
90 * distance in bytes from the start of the relocated record until
91 * the end of the containing instruction. _This_ is what is stored
92 * in the size part of the parameter, in this case.
94 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
95 * and the contents of the "data" parameter is irrelevant.
97 * The "data" parameter for the output function points to a "int32_t",
98 * containing the address in question, unless the type is
99 * OUT_RAWDATA, in which case it points to an "uint8_t"
100 * array.
102 enum out_type {
103 OUT_RAWDATA, /* Plain bytes */
104 OUT_ADDRESS, /* An address (symbol value) */
105 OUT_RESERVE, /* Reserved bytes (RESB et al) */
106 OUT_REL1ADR, /* 1-byte relative address */
107 OUT_REL2ADR, /* 2-byte relative address */
108 OUT_REL4ADR, /* 4-byte relative address */
109 OUT_REL8ADR, /* 8-byte relative address */
113 * A label-lookup function.
115 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
118 * And a label-definition function. The boolean parameter
119 * `is_norm' states whether the label is a `normal' label (which
120 * should affect the local-label system), or something odder like
121 * an EQU or a segment-base symbol, which shouldn't.
123 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
124 char *special, bool is_norm, bool isextrn);
126 void define_label(char *label, int32_t segment, int64_t offset,
127 char *special, bool is_norm, bool isextrn);
130 * Token types returned by the scanner, in addition to ordinary
131 * ASCII character values, and zero for end-of-string.
133 enum token_type { /* token types, other than chars */
134 TOKEN_INVALID = -1, /* a placeholder value */
135 TOKEN_EOS = 0, /* end of string */
136 TOKEN_EQ = '=',
137 TOKEN_GT = '>',
138 TOKEN_LT = '<', /* aliases */
139 TOKEN_ID = 256, /* identifier */
140 TOKEN_NUM, /* numeric constant */
141 TOKEN_ERRNUM, /* malformed numeric constant */
142 TOKEN_STR, /* string constant */
143 TOKEN_ERRSTR, /* unterminated string constant */
144 TOKEN_FLOAT, /* floating-point constant */
145 TOKEN_REG, /* register name */
146 TOKEN_INSN, /* instruction name */
147 TOKEN_HERE, /* $ */
148 TOKEN_BASE, /* $$ */
149 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
150 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
151 TOKEN_SHL, /* << */
152 TOKEN_SHR, /* >> */
153 TOKEN_SDIV, /* // */
154 TOKEN_SMOD, /* %% */
155 TOKEN_GE, /* >= */
156 TOKEN_LE, /* <= */
157 TOKEN_NE, /* <> (!= is same as <>) */
158 TOKEN_DBL_AND, /* && */
159 TOKEN_DBL_OR, /* || */
160 TOKEN_DBL_XOR, /* ^^ */
161 TOKEN_SEG, /* SEG */
162 TOKEN_WRT, /* WRT */
163 TOKEN_FLOATIZE, /* __floatX__ */
164 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
165 TOKEN_IFUNC, /* __ilog2*__ */
166 TOKEN_DECORATOR, /* decorators such as {...} */
167 TOKEN_OPMASK, /* translated token for opmask registers */
170 enum floatize {
171 FLOAT_8,
172 FLOAT_16,
173 FLOAT_32,
174 FLOAT_64,
175 FLOAT_80M,
176 FLOAT_80E,
177 FLOAT_128L,
178 FLOAT_128H,
181 /* Must match the list in string_transform(), in strfunc.c */
182 enum strfunc {
183 STRFUNC_UTF16,
184 STRFUNC_UTF16LE,
185 STRFUNC_UTF16BE,
186 STRFUNC_UTF32,
187 STRFUNC_UTF32LE,
188 STRFUNC_UTF32BE,
191 enum ifunc {
192 IFUNC_ILOG2E,
193 IFUNC_ILOG2W,
194 IFUNC_ILOG2F,
195 IFUNC_ILOG2C,
198 size_t string_transform(char *, size_t, char **, enum strfunc);
201 * The expression evaluator must be passed a scanner function; a
202 * standard scanner is provided as part of nasmlib.c. The
203 * preprocessor will use a different one. Scanners, and the
204 * token-value structures they return, look like this.
206 * The return value from the scanner is always a copy of the
207 * `t_type' field in the structure.
209 struct tokenval {
210 char *t_charptr;
211 int64_t t_integer;
212 int64_t t_inttwo;
213 enum token_type t_type;
214 int8_t t_flag;
216 typedef int (*scanner)(void *private_data, struct tokenval *tv);
218 struct location {
219 int64_t offset;
220 int32_t segment;
221 int known;
223 extern struct location location;
226 * Expression-evaluator datatype. Expressions, within the
227 * evaluator, are stored as an array of these beasts, terminated by
228 * a record with type==0. Mostly, it's a vector type: each type
229 * denotes some kind of a component, and the value denotes the
230 * multiple of that component present in the expression. The
231 * exception is the WRT type, whose `value' field denotes the
232 * segment to which the expression is relative. These segments will
233 * be segment-base types, i.e. either odd segment values or SEG_ABS
234 * types. So it is still valid to assume that anything with a
235 * `value' field of zero is insignificant.
237 typedef struct {
238 int32_t type; /* a register, or EXPR_xxx */
239 int64_t value; /* must be >= 32 bits */
240 } expr;
243 * Library routines to manipulate expression data types.
245 int is_reloc(expr *vect);
246 int is_simple(expr *vect);
247 int is_really_simple(expr *vect);
248 int is_unknown(expr *vect);
249 int is_just_unknown(expr *vect);
250 int64_t reloc_value(expr *vect);
251 int32_t reloc_seg(expr *vect);
252 int32_t reloc_wrt(expr *vect);
255 * The evaluator can also return hints about which of two registers
256 * used in an expression should be the base register. See also the
257 * `operand' structure.
259 struct eval_hints {
260 int64_t base;
261 int type;
265 * The actual expression evaluator function looks like this. When
266 * called, it expects the first token of its expression to already
267 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
268 * it will start by calling the scanner.
270 * If a forward reference happens during evaluation, the evaluator
271 * must set `*fwref' to true if `fwref' is non-NULL.
273 * `critical' is non-zero if the expression may not contain forward
274 * references. The evaluator will report its own error if this
275 * occurs; if `critical' is 1, the error will be "symbol not
276 * defined before use", whereas if `critical' is 2, the error will
277 * be "symbol undefined".
279 * If `critical' has bit 8 set (in addition to its main value: 0x101
280 * and 0x102 correspond to 1 and 2) then an extended expression
281 * syntax is recognised, in which relational operators such as =, <
282 * and >= are accepted, as well as low-precedence logical operators
283 * &&, ^^ and ||.
285 * If `hints' is non-NULL, it gets filled in with some hints as to
286 * the base register in complex effective addresses.
288 #define CRITICAL 0x100
289 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
290 struct tokenval *tv, int *fwref, int critical,
291 struct eval_hints *hints);
294 * Special values for expr->type.
295 * These come after EXPR_REG_END as defined in regs.h.
296 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
297 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
299 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
300 #define EXPR_SIMPLE (EXPR_REG_END+2)
301 #define EXPR_WRT (EXPR_REG_END+3)
302 #define EXPR_RDSAE (EXPR_REG_END+4)
303 #define EXPR_SEGBASE (EXPR_REG_END+5)
306 * Linked list of strings
308 typedef struct string_list {
309 struct string_list *next;
310 char str[1];
311 } StrList;
314 * preprocessors ought to look like this:
316 struct preproc_ops {
318 * Called at the start of a pass; given a file name, the number
319 * of the pass, an error reporting function, an evaluator
320 * function, and a listing generator to talk to.
322 void (*reset)(char *file, int pass, StrList **deplist);
325 * Called to fetch a line of preprocessed source. The line
326 * returned has been malloc'ed, and so should be freed after
327 * use.
329 char *(*getline)(void);
331 /* Called at the end of a pass */
332 void (*cleanup)(int pass);
334 /* Additional macros specific to output format */
335 void (*extra_stdmac)(macros_t *macros);
337 /* Early definitions and undefinitions for macros */
338 void (*pre_define)(char *definition);
339 void (*pre_undefine)(char *definition);
341 /* Include file from command line */
342 void (*pre_include)(char *fname);
344 /* Include path from command line */
345 void (*include_path)(char *path);
348 extern const struct preproc_ops nasmpp;
349 extern const struct preproc_ops preproc_nop;
352 * Some lexical properties of the NASM source language, included
353 * here because they are shared between the parser and preprocessor.
357 * isidstart matches any character that may start an identifier, and isidchar
358 * matches any character that may appear at places other than the start of an
359 * identifier. E.g. a period may only appear at the start of an identifier
360 * (for local labels), whereas a number may appear anywhere *but* at the
361 * start.
362 * isbrcchar matches any character that may placed inside curly braces as a
363 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
366 #define isidstart(c) (nasm_isalpha(c) || \
367 (c) == '_' || \
368 (c) == '.' || \
369 (c) == '?' || \
370 (c) == '@')
372 #define isidchar(c) (isidstart(c) || \
373 nasm_isdigit(c) || \
374 (c) == '$' || \
375 (c) == '#' || \
376 (c) == '~')
378 #define isbrcchar(c) (isidchar(c) || \
379 (c) == '-')
381 /* Ditto for numeric constants. */
383 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
384 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
387 * Data-type flags that get passed to listing-file routines.
389 enum {
390 LIST_READ,
391 LIST_MACRO,
392 LIST_MACRO_NOLIST,
393 LIST_INCLUDE,
394 LIST_INCBIN,
395 LIST_TIMES
399 * -----------------------------------------------------------
400 * Format of the `insn' structure returned from `parser.c' and
401 * passed into `assemble.c'
402 * -----------------------------------------------------------
405 /* Verify value to be a valid register */
406 static inline bool is_register(int reg)
408 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
411 enum ccode { /* condition code names */
412 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
413 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
414 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
415 C_none = -1
419 * token flags
421 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
422 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
423 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
424 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
426 static inline uint8_t get_cond_opcode(enum ccode c)
428 static const uint8_t ccode_opcodes[] = {
429 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
430 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
431 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
434 return ccode_opcodes[(int)c];
438 * REX flags
440 #define REX_MASK 0x4f /* Actual REX prefix bits */
441 #define REX_B 0x01 /* ModRM r/m extension */
442 #define REX_X 0x02 /* SIB index extension */
443 #define REX_R 0x04 /* ModRM reg extension */
444 #define REX_W 0x08 /* 64-bit operand size */
445 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
446 #define REX_P 0x40 /* REX prefix present/required */
447 #define REX_H 0x80 /* High register present, REX forbidden */
448 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
449 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
450 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
453 * EVEX bit field
455 #define EVEX_P0MM 0x03 /* EVEX P[1:0] : Legacy escape */
456 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
457 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
458 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
459 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
460 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
461 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
462 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
463 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
464 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
465 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
466 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
469 * REX_V "classes" (prefixes which behave like VEX)
471 enum vex_class {
472 RV_VEX = 0, /* C4/C5 */
473 RV_XOP = 1, /* 8F */
474 RV_EVEX = 2, /* 62 */
478 * Note that because segment registers may be used as instruction
479 * prefixes, we must ensure the enumerations for prefixes and
480 * register names do not overlap.
482 #ifdef P_WAIT
483 # undef P_WAIT /* Macro defined on some Windows versions */
484 #endif
486 enum prefixes { /* instruction prefixes */
487 P_none = 0,
488 PREFIX_ENUM_START = REG_ENUM_LIMIT,
489 P_A16 = PREFIX_ENUM_START,
490 P_A32,
491 P_A64,
492 P_ASP,
493 P_LOCK,
494 P_O16,
495 P_O32,
496 P_O64,
497 P_OSP,
498 P_REP,
499 P_REPE,
500 P_REPNE,
501 P_REPNZ,
502 P_REPZ,
503 P_TIMES,
504 P_WAIT,
505 P_XACQUIRE,
506 P_XRELEASE,
507 P_BND,
508 P_NOBND,
509 P_EVEX,
510 P_VEX3,
511 P_VEX2,
512 PREFIX_ENUM_LIMIT
515 enum extop_type { /* extended operand types */
516 EOT_NOTHING,
517 EOT_DB_STRING, /* Byte string */
518 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
519 EOT_DB_NUMBER, /* Integer */
522 enum ea_flags { /* special EA flags */
523 EAF_BYTEOFFS = 1, /* force offset part to byte size */
524 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
525 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
526 EAF_REL = 8, /* IP-relative addressing */
527 EAF_ABS = 16, /* non-IP-relative addressing */
528 EAF_FSGS = 32, /* fs/gs segment override present */
529 EAF_MIB = 64, /* mib operand */
532 enum eval_hint { /* values for `hinttype' */
533 EAH_NOHINT = 0, /* no hint at all - our discretion */
534 EAH_MAKEBASE = 1, /* try to make given reg the base */
535 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
536 EAH_SUMMED = 3, /* base and index are summed into index */
539 typedef struct operand { /* operand to an instruction */
540 opflags_t type; /* type of operand */
541 int disp_size; /* 0 means default; 16; 32; 64 */
542 enum reg_enum basereg;
543 enum reg_enum indexreg; /* address registers */
544 int scale; /* index scale */
545 int hintbase;
546 enum eval_hint hinttype; /* hint as to real base register */
547 int32_t segment; /* immediate segment, if needed */
548 int64_t offset; /* any immediate number */
549 int32_t wrt; /* segment base it's relative to */
550 int eaflags; /* special EA flags */
551 int opflags; /* see OPFLAG_* defines below */
552 decoflags_t decoflags; /* decorator flags such as {...} */
553 } operand;
555 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
556 #define OPFLAG_EXTERN 2 /* operand is an external reference */
557 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
558 * (always a forward reference also)
561 typedef struct extop { /* extended operand */
562 struct extop *next; /* linked list */
563 char *stringval; /* if it's a string, then here it is */
564 size_t stringlen; /* ... and here's how long it is */
565 int64_t offset; /* ... it's given here ... */
566 int32_t segment; /* if it's a number/address, then... */
567 int32_t wrt; /* ... and here */
568 enum extop_type type; /* defined above */
569 } extop;
571 enum ea_type {
572 EA_INVALID, /* Not a valid EA at all */
573 EA_SCALAR, /* Scalar EA */
574 EA_XMMVSIB, /* XMM vector EA */
575 EA_YMMVSIB, /* YMM vector EA */
576 EA_ZMMVSIB, /* ZMM vector EA */
580 * Prefix positions: each type of prefix goes in a specific slot.
581 * This affects the final ordering of the assembled output, which
582 * shouldn't matter to the processor, but if you have stylistic
583 * preferences, you can change this. REX prefixes are handled
584 * differently for the time being.
586 * LOCK and REP used to be one slot; this is no longer the case since
587 * the introduction of HLE.
589 enum prefix_pos {
590 PPS_WAIT, /* WAIT (technically not a prefix!) */
591 PPS_REP, /* REP/HLE prefix */
592 PPS_LOCK, /* LOCK prefix */
593 PPS_SEG, /* Segment override prefix */
594 PPS_OSIZE, /* Operand size prefix */
595 PPS_ASIZE, /* Address size prefix */
596 PPS_VEX, /* VEX type */
597 MAXPREFIX /* Total number of prefix slots */
601 * Tuple types that are used when determining Disp8*N eligibility
602 * The order must match with a hash %tuple_codes in insns.pl
604 enum ttypes {
605 FV = 001,
606 HV = 002,
607 FVM = 003,
608 T1S8 = 004,
609 T1S16 = 005,
610 T1S = 006,
611 T1F32 = 007,
612 T1F64 = 010,
613 T2 = 011,
614 T4 = 012,
615 T8 = 013,
616 HVM = 014,
617 QVM = 015,
618 OVM = 016,
619 M128 = 017,
620 DUP = 020,
623 /* EVEX.L'L : Vector length on vector insns */
624 enum vectlens {
625 VL128 = 0,
626 VL256 = 1,
627 VL512 = 2,
628 VLMAX = 3,
631 /* If you need to change this, also change it in insns.pl */
632 #define MAX_OPERANDS 5
634 typedef struct insn { /* an instruction itself */
635 char *label; /* the label defined, or NULL */
636 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
637 enum opcode opcode; /* the opcode - not just the string */
638 enum ccode condition; /* the condition code, if Jcc/SETcc */
639 int operands; /* how many operands? 0-3 (more if db et al) */
640 int addr_size; /* address size */
641 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
642 extop *eops; /* extended operands */
643 int eops_float; /* true if DD and floating */
644 int32_t times; /* repeat count (TIMES prefix) */
645 bool forw_ref; /* is there a forward reference? */
646 bool rex_done; /* REX prefix emitted? */
647 int rex; /* Special REX Prefix */
648 int vexreg; /* Register encoded in VEX prefix */
649 int vex_cm; /* Class and M field for VEX prefix */
650 int vex_wlp; /* W, P and L information for VEX prefix */
651 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
652 /* EVEX.P2: [z,L'L,b,V',aaa] */
653 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
654 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
655 int8_t evex_brerop; /* BR/ER/SAE operand position */
656 } insn;
658 enum geninfo { GI_SWITCH };
660 /* Instruction flags type: IF_* flags are defined in insns.h */
661 typedef uint64_t iflags_t;
664 * The data structure defining an output format driver, and the
665 * interfaces to the functions therein.
667 struct ofmt {
669 * This is a short (one-liner) description of the type of
670 * output generated by the driver.
672 const char *fullname;
675 * This is a single keyword used to select the driver.
677 const char *shortname;
680 * Output format flags.
682 #define OFMT_TEXT 1 /* Text file format */
683 unsigned int flags;
685 int maxbits; /* Maximum segment bits supported */
688 * this is a pointer to the first element of the debug information
690 const struct dfmt * const *debug_formats;
693 * the default debugging format if -F is not specified
695 const struct dfmt *default_dfmt;
698 * This, if non-NULL, is a NULL-terminated list of `char *'s
699 * pointing to extra standard macros supplied by the object
700 * format (e.g. a sensible initial default value of __SECT__,
701 * and user-level equivalents for any format-specific
702 * directives).
704 macros_t *stdmac;
707 * This procedure is called at the start of an output session to set
708 * up internal parameters.
710 void (*init)(void);
713 * This procedure is called to pass generic information to the
714 * object file. The first parameter gives the information type
715 * (currently only command line switches)
716 * and the second parameter gives the value. This function returns
717 * 1 if recognized, 0 if unrecognized
719 int (*setinfo)(enum geninfo type, char **string);
722 * This procedure is called by assemble() to write actual
723 * generated code or data to the object file. Typically it
724 * doesn't have to actually _write_ it, just store it for
725 * later.
727 * The `type' argument specifies the type of output data, and
728 * usually the size as well: its contents are described below.
730 void (*output)(int32_t segto, const void *data,
731 enum out_type type, uint64_t size,
732 int32_t segment, int32_t wrt);
735 * This procedure is called once for every symbol defined in
736 * the module being assembled. It gives the name and value of
737 * the symbol, in NASM's terms, and indicates whether it has
738 * been declared to be global. Note that the parameter "name",
739 * when passed, will point to a piece of static storage
740 * allocated inside the label manager - it's safe to keep using
741 * that pointer, because the label manager doesn't clean up
742 * until after the output driver has.
744 * Values of `is_global' are: 0 means the symbol is local; 1
745 * means the symbol is global; 2 means the symbol is common (in
746 * which case `offset' holds the _size_ of the variable).
747 * Anything else is available for the output driver to use
748 * internally.
750 * This routine explicitly _is_ allowed to call the label
751 * manager to define further symbols, if it wants to, even
752 * though it's been called _from_ the label manager. That much
753 * re-entrancy is guaranteed in the label manager. However, the
754 * label manager will in turn call this routine, so it should
755 * be prepared to be re-entrant itself.
757 * The `special' parameter contains special information passed
758 * through from the command that defined the label: it may have
759 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
760 * be obvious to the output format from the other parameters.
762 void (*symdef)(char *name, int32_t segment, int64_t offset,
763 int is_global, char *special);
766 * This procedure is called when the source code requests a
767 * segment change. It should return the corresponding segment
768 * _number_ for the name, or NO_SEG if the name is not a valid
769 * segment name.
771 * It may also be called with NULL, in which case it is to
772 * return the _default_ section number for starting assembly in.
774 * It is allowed to modify the string it is given a pointer to.
776 * It is also allowed to specify a default instruction size for
777 * the segment, by setting `*bits' to 16 or 32. Or, if it
778 * doesn't wish to define a default, it can leave `bits' alone.
780 int32_t (*section)(char *name, int pass, int *bits);
783 * This procedure is called to modify section alignment,
784 * note there is a trick, the alignment can only increase
786 void (*sectalign)(int32_t seg, unsigned int value);
789 * This procedure is called to modify the segment base values
790 * returned from the SEG operator. It is given a segment base
791 * value (i.e. a segment value with the low bit set), and is
792 * required to produce in return a segment value which may be
793 * different. It can map segment bases to absolute numbers by
794 * means of returning SEG_ABS types.
796 * It should return NO_SEG if the segment base cannot be
797 * determined; the evaluator (which calls this routine) is
798 * responsible for throwing an error condition if that occurs
799 * in pass two or in a critical expression.
801 int32_t (*segbase)(int32_t segment);
804 * This procedure is called to allow the output driver to
805 * process its own specific directives. When called, it has the
806 * directive word in `directive' and the parameter string in
807 * `value'. It is called in both assembly passes, and `pass'
808 * will be either 1 or 2.
810 * This procedure should return zero if it does not _recognise_
811 * the directive, so that the main program can report an error.
812 * If it recognises the directive but then has its own errors,
813 * it should report them itself and then return non-zero. It
814 * should also return non-zero if it correctly processes the
815 * directive.
817 int (*directive)(enum directives directive, char *value, int pass);
820 * This procedure is called before anything else - even before
821 * the "init" routine - and is passed the name of the input
822 * file from which this output file is being generated. It
823 * should return its preferred name for the output file in
824 * `outname', if outname[0] is not '\0', and do nothing to
825 * `outname' otherwise. Since it is called before the driver is
826 * properly initialized, it has to be passed its error handler
827 * separately.
829 * This procedure may also take its own copy of the input file
830 * name for use in writing the output file: it is _guaranteed_
831 * that it will be called before the "init" routine.
833 * The parameter `outname' points to an area of storage
834 * guaranteed to be at least FILENAME_MAX in size.
836 void (*filename)(char *inname, char *outname);
839 * This procedure is called after assembly finishes, to allow
840 * the output driver to clean itself up and free its memory.
841 * Typically, it will also be the point at which the object
842 * file actually gets _written_.
844 * One thing the cleanup routine should always do is to close
845 * the output file pointer.
847 void (*cleanup)(int debuginfo);
851 * Output format driver alias
853 struct ofmt_alias {
854 const char *shortname;
855 const char *fullname;
856 const struct ofmt *ofmt;
859 extern const struct ofmt *ofmt;
860 extern FILE *ofile;
863 * ------------------------------------------------------------
864 * The data structure defining a debug format driver, and the
865 * interfaces to the functions therein.
866 * ------------------------------------------------------------
869 struct dfmt {
871 * This is a short (one-liner) description of the type of
872 * output generated by the driver.
874 const char *fullname;
877 * This is a single keyword used to select the driver.
879 const char *shortname;
882 * init - called initially to set up local pointer to object format.
884 void (*init)(void);
887 * linenum - called any time there is output with a change of
888 * line number or file.
890 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
893 * debug_deflabel - called whenever a label is defined. Parameters
894 * are the same as to 'symdef()' in the output format. This function
895 * would be called before the output format version.
898 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
899 int is_global, char *special);
901 * debug_directive - called whenever a DEBUG directive other than 'LINE'
902 * is encountered. 'directive' contains the first parameter to the
903 * DEBUG directive, and params contains the rest. For example,
904 * 'DEBUG VAR _somevar:int' would translate to a call to this
905 * function with 'directive' equal to "VAR" and 'params' equal to
906 * "_somevar:int".
908 void (*debug_directive)(const char *directive, const char *params);
911 * typevalue - called whenever the assembler wishes to register a type
912 * for the last defined label. This routine MUST detect if a type was
913 * already registered and not re-register it.
915 void (*debug_typevalue)(int32_t type);
918 * debug_output - called whenever output is required
919 * 'type' is the type of info required, and this is format-specific
921 void (*debug_output)(int type, void *param);
924 * cleanup - called after processing of file is complete
926 void (*cleanup)(void);
929 extern const struct dfmt *dfmt;
932 * The type definition macros
933 * for debugging
935 * low 3 bits: reserved
936 * next 5 bits: type
937 * next 24 bits: number of elements for arrays (0 for labels)
940 #define TY_UNKNOWN 0x00
941 #define TY_LABEL 0x08
942 #define TY_BYTE 0x10
943 #define TY_WORD 0x18
944 #define TY_DWORD 0x20
945 #define TY_FLOAT 0x28
946 #define TY_QWORD 0x30
947 #define TY_TBYTE 0x38
948 #define TY_OWORD 0x40
949 #define TY_YWORD 0x48
950 #define TY_COMMON 0xE0
951 #define TY_SEG 0xE8
952 #define TY_EXTERN 0xF0
953 #define TY_EQU 0xF8
955 #define TYM_TYPE(x) ((x) & 0xF8)
956 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
958 #define TYS_ELEMENTS(x) ((x) << 8)
960 enum special_tokens {
961 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
962 S_ABS = SPECIAL_ENUM_START,
963 S_BYTE,
964 S_DWORD,
965 S_FAR,
966 S_LONG,
967 S_NEAR,
968 S_NOSPLIT,
969 S_OWORD,
970 S_QWORD,
971 S_REL,
972 S_SHORT,
973 S_STRICT,
974 S_TO,
975 S_TWORD,
976 S_WORD,
977 S_YWORD,
978 S_ZWORD,
979 SPECIAL_ENUM_LIMIT
982 enum decorator_tokens {
983 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
984 BRC_1TO2 = DECORATOR_ENUM_START,
985 BRC_1TO4,
986 BRC_1TO8,
987 BRC_1TO16,
988 BRC_RN,
989 BRC_RD,
990 BRC_RU,
991 BRC_RZ,
992 BRC_SAE,
993 BRC_Z,
994 DECORATOR_ENUM_LIMIT
998 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
999 * 3 2 1
1000 * 10987654321098765432109876543210
1002 * | word boundary
1003 * ............................1111 opmask
1004 * ...........................1.... zeroing / merging
1005 * ..........................1..... broadcast
1006 * .........................1...... static rounding
1007 * ........................1....... SAE
1008 * ......................11........ broadcast element size
1009 * ....................11.......... number of broadcast elements
1011 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1014 * Opmask register number
1015 * identical to EVEX.aaa
1017 * Bits: 0 - 3
1019 #define OPMASK_SHIFT (0)
1020 #define OPMASK_BITS (4)
1021 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1022 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1023 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1026 * zeroing / merging control available
1027 * matching to EVEX.z
1029 * Bits: 4
1031 #define Z_SHIFT (4)
1032 #define Z_BITS (1)
1033 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1034 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1037 * broadcast - Whether this operand can be broadcasted
1039 * Bits: 5
1041 #define BRDCAST_SHIFT (5)
1042 #define BRDCAST_BITS (1)
1043 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1044 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1047 * Whether this instruction can have a static rounding mode.
1048 * It goes with the last simd operand because the static rounding mode
1049 * decorator is located between the last simd operand and imm8 (if any).
1051 * Bits: 6
1053 #define STATICRND_SHIFT (6)
1054 #define STATICRND_BITS (1)
1055 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1056 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1059 * SAE(Suppress all exception) available
1061 * Bits: 7
1063 #define SAE_SHIFT (7)
1064 #define SAE_BITS (1)
1065 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1066 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1069 * Broadcasting element size.
1071 * Bits: 8 - 9
1073 #define BRSIZE_SHIFT (8)
1074 #define BRSIZE_BITS (2)
1075 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1076 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1078 #define BR_BITS32 GEN_BRSIZE(0)
1079 #define BR_BITS64 GEN_BRSIZE(1)
1082 * Number of broadcasting elements
1084 * Bits: 10 - 11
1086 #define BRNUM_SHIFT (10)
1087 #define BRNUM_BITS (2)
1088 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1089 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1091 #define BR_1TO2 VAL_BRNUM(0)
1092 #define BR_1TO4 VAL_BRNUM(1)
1093 #define BR_1TO8 VAL_BRNUM(2)
1094 #define BR_1TO16 VAL_BRNUM(3)
1096 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1097 #define Z Z_MASK
1098 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1099 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1100 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1101 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1104 * Global modes
1108 * This declaration passes the "pass" number to all other modules
1109 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1110 * where 0 = optimizing pass
1111 * 1 = pass 1
1112 * 2 = pass 2
1115 extern int pass0;
1116 extern int passn; /* Actual pass number */
1118 extern bool tasm_compatible_mode;
1119 extern int optimizing;
1120 extern int globalbits; /* 16, 32 or 64-bit mode */
1121 extern int globalrel; /* default to relative addressing? */
1122 extern int globalbnd; /* default to using bnd prefix? */
1125 * NASM version strings, defined in ver.c
1127 extern const char nasm_version[];
1128 extern const char nasm_date[];
1129 extern const char nasm_compile_options[];
1130 extern const char nasm_comment[];
1131 extern const char nasm_signature[];
1133 #endif