nasm.h: remove unused constants
[nasm.git] / include / nasm.h
blobbaa092d7e5153dc4db0dfd2853f8061659bac851
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2018 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <time.h>
46 #include "nasmlib.h"
47 #include "strlist.h"
48 #include "preproc.h"
49 #include "insnsi.h" /* For enum opcode */
50 #include "directiv.h" /* For enum directive */
51 #include "labels.h" /* For enum mangle_index, enum label_type */
52 #include "opflags.h"
53 #include "regs.h"
55 /* Time stamp for the official start of compilation */
56 struct compile_time {
57 time_t t;
58 bool have_local, have_gm, have_posix;
59 int64_t posix;
60 struct tm local;
61 struct tm gm;
63 extern struct compile_time official_compile_time;
65 #define NO_SEG INT32_C(-1) /* null segment value */
66 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
68 #define IDLEN_MAX 4096
69 #define DECOLEN_MAX 32
72 * Name pollution problems: <time.h> on Digital UNIX pulls in some
73 * strange hardware header file which sees fit to define R_SP. We
74 * undefine it here so as not to break the enum below.
76 #ifdef R_SP
77 #undef R_SP
78 #endif
81 * We must declare the existence of this structure type up here,
82 * since we have to reference it before we define it...
84 struct ofmt;
87 * Values for the `type' parameter to an output function.
89 enum out_type {
90 OUT_RAWDATA, /* Plain bytes */
91 OUT_RESERVE, /* Reserved bytes (RESB et al) */
92 OUT_ZERODATA, /* Initialized data, but all zero */
93 OUT_ADDRESS, /* An address (symbol value) */
94 OUT_RELADDR, /* A relative address */
95 OUT_SEGMENT, /* A segment number */
98 * These values are used by the legacy backend interface only;
99 * see output/legacy.c for more information. These should never
100 * be used otherwise. Once all backends have been migrated to the
101 * new interface they should be removed.
103 OUT_REL1ADR,
104 OUT_REL2ADR,
105 OUT_REL4ADR,
106 OUT_REL8ADR
109 enum out_sign {
110 OUT_WRAP, /* Undefined signedness (wraps) */
111 OUT_SIGNED, /* Value is signed */
112 OUT_UNSIGNED /* Value is unsigned */
116 * The data we send down to the backend.
117 * XXX: We still want to push down the base address symbol if
118 * available, and replace the segment numbers with a structure.
120 struct out_data {
121 int64_t offset; /* Offset within segment */
122 int32_t segment; /* Segment written to */
123 enum out_type type; /* See above */
124 enum out_sign sign; /* See above */
125 int inslen; /* Length of instruction */
126 int insoffs; /* Offset inside instruction */
127 int bits; /* Bits mode of compilation */
128 uint64_t size; /* Size of output */
129 const struct itemplate *itemp; /* Instruction template */
130 const void *data; /* Data for OUT_RAWDATA */
131 uint64_t toffset; /* Target address offset for relocation */
132 int32_t tsegment; /* Target segment for relocation */
133 int32_t twrt; /* Relocation with respect to */
134 int64_t relbase; /* Relative base for OUT_RELADDR */
138 * And a label-definition function. The boolean parameter
139 * `is_norm' states whether the label is a `normal' label (which
140 * should affect the local-label system), or something odder like
141 * an EQU or a segment-base symbol, which shouldn't.
143 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
144 char *special, bool is_norm);
147 * Token types returned by the scanner, in addition to ordinary
148 * ASCII character values, and zero for end-of-string.
150 enum token_type { /* token types, other than chars */
151 TOKEN_INVALID = -1, /* a placeholder value */
152 TOKEN_EOS = 0, /* end of string */
153 TOKEN_EQ = '=',
154 TOKEN_GT = '>',
155 TOKEN_LT = '<', /* aliases */
156 TOKEN_ID = 256, /* identifier */
157 TOKEN_NUM, /* numeric constant */
158 TOKEN_ERRNUM, /* malformed numeric constant */
159 TOKEN_STR, /* string constant */
160 TOKEN_ERRSTR, /* unterminated string constant */
161 TOKEN_FLOAT, /* floating-point constant */
162 TOKEN_REG, /* register name */
163 TOKEN_INSN, /* instruction name */
164 TOKEN_HERE, /* $ */
165 TOKEN_BASE, /* $$ */
166 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
167 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
168 TOKEN_SHL, /* << */
169 TOKEN_SHR, /* >> */
170 TOKEN_SDIV, /* // */
171 TOKEN_SMOD, /* %% */
172 TOKEN_GE, /* >= */
173 TOKEN_LE, /* <= */
174 TOKEN_NE, /* <> (!= is same as <>) */
175 TOKEN_DBL_AND, /* && */
176 TOKEN_DBL_OR, /* || */
177 TOKEN_DBL_XOR, /* ^^ */
178 TOKEN_SEG, /* SEG */
179 TOKEN_WRT, /* WRT */
180 TOKEN_FLOATIZE, /* __floatX__ */
181 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
182 TOKEN_IFUNC, /* __ilog2*__ */
183 TOKEN_DECORATOR, /* decorators such as {...} */
184 TOKEN_OPMASK /* translated token for opmask registers */
187 enum floatize {
188 FLOAT_8,
189 FLOAT_16,
190 FLOAT_32,
191 FLOAT_64,
192 FLOAT_80M,
193 FLOAT_80E,
194 FLOAT_128L,
195 FLOAT_128H
198 /* Must match the list in string_transform(), in strfunc.c */
199 enum strfunc {
200 STRFUNC_UTF16,
201 STRFUNC_UTF16LE,
202 STRFUNC_UTF16BE,
203 STRFUNC_UTF32,
204 STRFUNC_UTF32LE,
205 STRFUNC_UTF32BE
208 enum ifunc {
209 IFUNC_ILOG2E,
210 IFUNC_ILOG2W,
211 IFUNC_ILOG2F,
212 IFUNC_ILOG2C
215 size_t string_transform(char *, size_t, char **, enum strfunc);
218 * The expression evaluator must be passed a scanner function; a
219 * standard scanner is provided as part of nasmlib.c. The
220 * preprocessor will use a different one. Scanners, and the
221 * token-value structures they return, look like this.
223 * The return value from the scanner is always a copy of the
224 * `t_type' field in the structure.
226 struct tokenval {
227 char *t_charptr;
228 int64_t t_integer;
229 int64_t t_inttwo;
230 enum token_type t_type;
231 int8_t t_flag;
233 typedef int (*scanner)(void *private_data, struct tokenval *tv);
235 struct location {
236 int64_t offset;
237 int32_t segment;
238 int known;
240 extern struct location location;
243 * Expression-evaluator datatype. Expressions, within the
244 * evaluator, are stored as an array of these beasts, terminated by
245 * a record with type==0. Mostly, it's a vector type: each type
246 * denotes some kind of a component, and the value denotes the
247 * multiple of that component present in the expression. The
248 * exception is the WRT type, whose `value' field denotes the
249 * segment to which the expression is relative. These segments will
250 * be segment-base types, i.e. either odd segment values or SEG_ABS
251 * types. So it is still valid to assume that anything with a
252 * `value' field of zero is insignificant.
254 typedef struct {
255 int32_t type; /* a register, or EXPR_xxx */
256 int64_t value; /* must be >= 32 bits */
257 } expr;
260 * Library routines to manipulate expression data types.
262 bool is_reloc(const expr *vect);
263 bool is_simple(const expr *vect);
264 bool is_really_simple(const expr *vect);
265 bool is_unknown(const expr *vect);
266 bool is_just_unknown(const expr *vect);
267 int64_t reloc_value(const expr *vect);
268 int32_t reloc_seg(const expr *vect);
269 int32_t reloc_wrt(const expr *vect);
270 bool is_self_relative(const expr *vect);
271 void dump_expr(const expr *vect);
274 * The evaluator can also return hints about which of two registers
275 * used in an expression should be the base register. See also the
276 * `operand' structure.
278 struct eval_hints {
279 int64_t base;
280 int type;
284 * The actual expression evaluator function looks like this. When
285 * called, it expects the first token of its expression to already
286 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
287 * it will start by calling the scanner.
289 * If a forward reference happens during evaluation, the evaluator
290 * must set `*fwref' to true if `fwref' is non-NULL.
292 * `critical' is non-zero if the expression may not contain forward
293 * references. The evaluator will report its own error if this
294 * occurs; if `critical' is 1, the error will be "symbol not
295 * defined before use", whereas if `critical' is 2, the error will
296 * be "symbol undefined".
298 * If `critical' has bit 8 set (in addition to its main value: 0x101
299 * and 0x102 correspond to 1 and 2) then an extended expression
300 * syntax is recognised, in which relational operators such as =, <
301 * and >= are accepted, as well as low-precedence logical operators
302 * &&, ^^ and ||.
304 * If `hints' is non-NULL, it gets filled in with some hints as to
305 * the base register in complex effective addresses.
307 #define CRITICAL 0x100
308 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
309 struct tokenval *tv, int *fwref, int critical,
310 struct eval_hints *hints);
313 * Special values for expr->type.
314 * These come after EXPR_REG_END as defined in regs.h.
315 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
316 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
318 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
319 #define EXPR_SIMPLE (EXPR_REG_END+2)
320 #define EXPR_WRT (EXPR_REG_END+3)
321 #define EXPR_RDSAE (EXPR_REG_END+4)
322 #define EXPR_SEGBASE (EXPR_REG_END+5)
325 * preprocessors ought to look like this:
327 struct preproc_ops {
329 * Called once at the very start of assembly.
331 void (*init)(void);
334 * Called at the start of a pass; given a file name, the number
335 * of the pass, an error reporting function, an evaluator
336 * function, and a listing generator to talk to.
338 void (*reset)(const char *file, int pass, StrList **deplist);
341 * Called to fetch a line of preprocessed source. The line
342 * returned has been malloc'ed, and so should be freed after
343 * use.
345 char *(*getline)(void);
347 /* Called at the end of a pass */
348 void (*cleanup)(int pass);
350 /* Additional macros specific to output format */
351 void (*extra_stdmac)(macros_t *macros);
353 /* Early definitions and undefinitions for macros */
354 void (*pre_define)(char *definition);
355 void (*pre_undefine)(char *definition);
357 /* Include file from command line */
358 void (*pre_include)(char *fname);
360 /* Add a command from the command line */
361 void (*pre_command)(const char *what, char *str);
363 /* Include path from command line */
364 void (*include_path)(char *path);
366 /* Unwind the macro stack when printing an error message */
367 void (*error_list_macros)(int severity);
370 extern const struct preproc_ops nasmpp;
371 extern const struct preproc_ops preproc_nop;
373 /* List of dependency files */
374 extern StrList *depend_list;
377 * Some lexical properties of the NASM source language, included
378 * here because they are shared between the parser and preprocessor.
382 * isidstart matches any character that may start an identifier, and isidchar
383 * matches any character that may appear at places other than the start of an
384 * identifier. E.g. a period may only appear at the start of an identifier
385 * (for local labels), whereas a number may appear anywhere *but* at the
386 * start.
387 * isbrcchar matches any character that may placed inside curly braces as a
388 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
391 #define isidstart(c) (nasm_isalpha(c) || \
392 (c) == '_' || \
393 (c) == '.' || \
394 (c) == '?' || \
395 (c) == '@')
397 #define isidchar(c) (isidstart(c) || \
398 nasm_isdigit(c) || \
399 (c) == '$' || \
400 (c) == '#' || \
401 (c) == '~')
403 #define isbrcchar(c) (isidchar(c) || \
404 (c) == '-')
406 /* Ditto for numeric constants. */
408 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
409 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
412 * inline function to skip past an identifier; returns the first character past
413 * the identifier if valid, otherwise NULL.
415 static inline char *nasm_skip_identifier(const char *str)
417 const char *p = str;
419 if (!isidstart(*p++)) {
420 p = NULL;
421 } else {
422 while (isidchar(*p++))
425 return (char *)p;
429 * Data-type flags that get passed to listing-file routines.
431 enum {
432 LIST_READ,
433 LIST_MACRO,
434 LIST_MACRO_NOLIST,
435 LIST_INCLUDE,
436 LIST_INCBIN,
437 LIST_TIMES
441 * -----------------------------------------------------------
442 * Format of the `insn' structure returned from `parser.c' and
443 * passed into `assemble.c'
444 * -----------------------------------------------------------
447 /* Verify value to be a valid register */
448 static inline bool is_register(int reg)
450 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
453 enum ccode { /* condition code names */
454 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
455 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
456 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
457 C_none = -1
461 * token flags
463 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
464 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
465 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
466 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
467 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
469 static inline uint8_t get_cond_opcode(enum ccode c)
471 static const uint8_t ccode_opcodes[] = {
472 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
473 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
474 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
477 return ccode_opcodes[(int)c];
481 * REX flags
483 #define REX_MASK 0x4f /* Actual REX prefix bits */
484 #define REX_B 0x01 /* ModRM r/m extension */
485 #define REX_X 0x02 /* SIB index extension */
486 #define REX_R 0x04 /* ModRM reg extension */
487 #define REX_W 0x08 /* 64-bit operand size */
488 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
489 #define REX_P 0x40 /* REX prefix present/required */
490 #define REX_H 0x80 /* High register present, REX forbidden */
491 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
492 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
493 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
496 * EVEX bit field
498 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
499 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
500 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
501 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
502 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
503 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
504 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
505 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
506 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
507 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
508 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
509 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
512 * REX_V "classes" (prefixes which behave like VEX)
514 enum vex_class {
515 RV_VEX = 0, /* C4/C5 */
516 RV_XOP = 1, /* 8F */
517 RV_EVEX = 2 /* 62 */
521 * Note that because segment registers may be used as instruction
522 * prefixes, we must ensure the enumerations for prefixes and
523 * register names do not overlap.
525 enum prefixes { /* instruction prefixes */
526 P_none = 0,
527 PREFIX_ENUM_START = REG_ENUM_LIMIT,
528 P_A16 = PREFIX_ENUM_START,
529 P_A32,
530 P_A64,
531 P_ASP,
532 P_LOCK,
533 P_O16,
534 P_O32,
535 P_O64,
536 P_OSP,
537 P_REP,
538 P_REPE,
539 P_REPNE,
540 P_REPNZ,
541 P_REPZ,
542 P_TIMES,
543 P_WAIT,
544 P_XACQUIRE,
545 P_XRELEASE,
546 P_BND,
547 P_NOBND,
548 P_EVEX,
549 P_VEX3,
550 P_VEX2,
551 PREFIX_ENUM_LIMIT
554 enum extop_type { /* extended operand types */
555 EOT_NOTHING,
556 EOT_DB_STRING, /* Byte string */
557 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
558 EOT_DB_NUMBER /* Integer */
561 enum ea_flags { /* special EA flags */
562 EAF_BYTEOFFS = 1, /* force offset part to byte size */
563 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
564 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
565 EAF_REL = 8, /* IP-relative addressing */
566 EAF_ABS = 16, /* non-IP-relative addressing */
567 EAF_FSGS = 32, /* fs/gs segment override present */
568 EAF_MIB = 64 /* mib operand */
571 enum eval_hint { /* values for `hinttype' */
572 EAH_NOHINT = 0, /* no hint at all - our discretion */
573 EAH_MAKEBASE = 1, /* try to make given reg the base */
574 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
575 EAH_SUMMED = 3 /* base and index are summed into index */
578 typedef struct operand { /* operand to an instruction */
579 opflags_t type; /* type of operand */
580 int disp_size; /* 0 means default; 16; 32; 64 */
581 enum reg_enum basereg;
582 enum reg_enum indexreg; /* address registers */
583 int scale; /* index scale */
584 int hintbase;
585 enum eval_hint hinttype; /* hint as to real base register */
586 int32_t segment; /* immediate segment, if needed */
587 int64_t offset; /* any immediate number */
588 int32_t wrt; /* segment base it's relative to */
589 int eaflags; /* special EA flags */
590 int opflags; /* see OPFLAG_* defines below */
591 decoflags_t decoflags; /* decorator flags such as {...} */
592 } operand;
594 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
595 #define OPFLAG_EXTERN 2 /* operand is an external reference */
596 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
597 (always a forward reference also) */
598 #define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
599 where foo is not in the current segment */
601 typedef struct extop { /* extended operand */
602 struct extop *next; /* linked list */
603 char *stringval; /* if it's a string, then here it is */
604 size_t stringlen; /* ... and here's how long it is */
605 int64_t offset; /* ... it's given here ... */
606 int32_t segment; /* if it's a number/address, then... */
607 int32_t wrt; /* ... and here */
608 bool relative; /* self-relative expression */
609 enum extop_type type; /* defined above */
610 } extop;
612 enum ea_type {
613 EA_INVALID, /* Not a valid EA at all */
614 EA_SCALAR, /* Scalar EA */
615 EA_XMMVSIB, /* XMM vector EA */
616 EA_YMMVSIB, /* YMM vector EA */
617 EA_ZMMVSIB /* ZMM vector EA */
621 * Prefix positions: each type of prefix goes in a specific slot.
622 * This affects the final ordering of the assembled output, which
623 * shouldn't matter to the processor, but if you have stylistic
624 * preferences, you can change this. REX prefixes are handled
625 * differently for the time being.
627 * LOCK and REP used to be one slot; this is no longer the case since
628 * the introduction of HLE.
630 enum prefix_pos {
631 PPS_WAIT, /* WAIT (technically not a prefix!) */
632 PPS_REP, /* REP/HLE prefix */
633 PPS_LOCK, /* LOCK prefix */
634 PPS_SEG, /* Segment override prefix */
635 PPS_OSIZE, /* Operand size prefix */
636 PPS_ASIZE, /* Address size prefix */
637 PPS_VEX, /* VEX type */
638 MAXPREFIX /* Total number of prefix slots */
642 * Tuple types that are used when determining Disp8*N eligibility
643 * The order must match with a hash %tuple_codes in insns.pl
645 enum ttypes {
646 FV = 001,
647 HV = 002,
648 FVM = 003,
649 T1S8 = 004,
650 T1S16 = 005,
651 T1S = 006,
652 T1F32 = 007,
653 T1F64 = 010,
654 T2 = 011,
655 T4 = 012,
656 T8 = 013,
657 HVM = 014,
658 QVM = 015,
659 OVM = 016,
660 M128 = 017,
661 DUP = 020
664 /* EVEX.L'L : Vector length on vector insns */
665 enum vectlens {
666 VL128 = 0,
667 VL256 = 1,
668 VL512 = 2,
669 VLMAX = 3
672 /* If you need to change this, also change it in insns.pl */
673 #define MAX_OPERANDS 5
675 typedef struct insn { /* an instruction itself */
676 char *label; /* the label defined, or NULL */
677 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
678 enum opcode opcode; /* the opcode - not just the string */
679 enum ccode condition; /* the condition code, if Jcc/SETcc */
680 int operands; /* how many operands? 0-3 (more if db et al) */
681 int addr_size; /* address size */
682 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
683 extop *eops; /* extended operands */
684 int eops_float; /* true if DD and floating */
685 int32_t times; /* repeat count (TIMES prefix) */
686 bool forw_ref; /* is there a forward reference? */
687 bool rex_done; /* REX prefix emitted? */
688 int rex; /* Special REX Prefix */
689 int vexreg; /* Register encoded in VEX prefix */
690 int vex_cm; /* Class and M field for VEX prefix */
691 int vex_wlp; /* W, P and L information for VEX prefix */
692 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
693 /* EVEX.P2: [z,L'L,b,V',aaa] */
694 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
695 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
696 int8_t evex_brerop; /* BR/ER/SAE operand position */
697 } insn;
699 /* Instruction flags type: IF_* flags are defined in insns.h */
700 typedef uint64_t iflags_t;
703 * What to return from a directive- or pragma-handling function.
704 * Currently DIRR_OK and DIRR_ERROR are treated the same way;
705 * in both cases the backend is expected to produce the appropriate
706 * error message on its own.
708 * DIRR_BADPARAM causes a generic error message to be printed. Note
709 * that it is an error, not a warning, even in the case of pragmas;
710 * don't use it where forward compatiblity would be compromised
711 * (instead consider adding a DIRR_WARNPARAM.)
713 enum directive_result {
714 DIRR_UNKNOWN, /* Directive not handled by backend */
715 DIRR_OK, /* Directive processed */
716 DIRR_ERROR, /* Directive processed unsuccessfully */
717 DIRR_BADPARAM /* Print bad argument error message */
721 * A pragma facility: this structure is used to request passing a
722 * parsed pragma directive for a specific facility. If the handler is
723 * NULL then this pragma facility is recognized but ignored; pragma
724 * processing stops at that point.
726 * Note that the handler is passed a pointer to the facility structure
727 * as part of the struct pragma.
729 struct pragma;
731 struct pragma_facility {
732 const char *name;
733 enum directive_result (*handler)(const struct pragma *);
737 * This structure defines how a pragma directive is passed to a
738 * facility. This structure may be augmented in the future.
740 * Any facility MAY, but is not required to, add its operations
741 * keywords or a subset thereof into asm/directiv.dat, in which case
742 * the "opcode" field will be set to the corresponding D_ constant
743 * from directiv.h; otherwise it will be D_unknown.
745 struct pragma {
746 const struct pragma_facility *facility;
747 const char *facility_name; /* Facility name exactly as entered by user */
748 const char *opname; /* First word after the facility name */
749 const char *tail; /* Anything after the operation */
750 enum directive opcode; /* Operation as a D_ directives constant */
754 * These are semi-arbitrary limits to keep the assembler from going
755 * into a black hole on certain kinds of bugs. They can be overridden
756 * by command-line options or %pragma.
758 enum nasm_limit {
759 LIMIT_PASSES,
760 LIMIT_STALLED,
761 LIMIT_MACROS,
762 LIMIT_REP,
763 LIMIT_EVAL
765 #define LIMIT_MAX LIMIT_EVAL
766 extern int nasm_limit[LIMIT_MAX+1];
767 extern enum directive_result nasm_set_limit(const char *, const char *);
770 * The data structure defining an output format driver, and the
771 * interfaces to the functions therein.
773 struct ofmt {
775 * This is a short (one-liner) description of the type of
776 * output generated by the driver.
778 const char *fullname;
781 * This is a single keyword used to select the driver.
783 const char *shortname;
786 * Default output filename extension, or a null string
788 const char *extension;
791 * Output format flags.
793 #define OFMT_TEXT 1 /* Text file format */
794 #define OFMT_KEEP_ADDR 2 /* Keep addr; no conversion to data */
796 unsigned int flags;
798 int maxbits; /* Maximum segment bits supported */
801 * this is a pointer to the first element of the debug information
803 const struct dfmt * const *debug_formats;
806 * the default debugging format if -F is not specified
808 const struct dfmt *default_dfmt;
811 * This, if non-NULL, is a NULL-terminated list of `char *'s
812 * pointing to extra standard macros supplied by the object
813 * format (e.g. a sensible initial default value of __SECT__,
814 * and user-level equivalents for any format-specific
815 * directives).
817 macros_t *stdmac;
820 * This procedure is called at the start of an output session to set
821 * up internal parameters.
823 void (*init)(void);
826 * This procedure is called at the start of each pass.
828 void (*reset)(void);
831 * This is the modern output function, which gets passed
832 * a struct out_data with much more information. See the
833 * definition of struct out_data.
835 void (*output)(const struct out_data *data);
838 * This procedure is called by assemble() to write actual
839 * generated code or data to the object file. Typically it
840 * doesn't have to actually _write_ it, just store it for
841 * later.
843 * The `type' argument specifies the type of output data, and
844 * usually the size as well: its contents are described below.
846 * This is used for backends which have not yet been ported to
847 * the new interface, and should be NULL on ported backends.
848 * To use this entry point, set the output pointer to
849 * nasm_do_legacy_output.
851 void (*legacy_output)(int32_t segto, const void *data,
852 enum out_type type, uint64_t size,
853 int32_t segment, int32_t wrt);
856 * This procedure is called once for every symbol defined in
857 * the module being assembled. It gives the name and value of
858 * the symbol, in NASM's terms, and indicates whether it has
859 * been declared to be global. Note that the parameter "name",
860 * when passed, will point to a piece of static storage
861 * allocated inside the label manager - it's safe to keep using
862 * that pointer, because the label manager doesn't clean up
863 * until after the output driver has.
865 * Values of `is_global' are: 0 means the symbol is local; 1
866 * means the symbol is global; 2 means the symbol is common (in
867 * which case `offset' holds the _size_ of the variable).
868 * Anything else is available for the output driver to use
869 * internally.
871 * This routine explicitly _is_ allowed to call the label
872 * manager to define further symbols, if it wants to, even
873 * though it's been called _from_ the label manager. That much
874 * re-entrancy is guaranteed in the label manager. However, the
875 * label manager will in turn call this routine, so it should
876 * be prepared to be re-entrant itself.
878 * The `special' parameter contains special information passed
879 * through from the command that defined the label: it may have
880 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
881 * be obvious to the output format from the other parameters.
883 void (*symdef)(char *name, int32_t segment, int64_t offset,
884 int is_global, char *special);
887 * This procedure is called when the source code requests a
888 * segment change. It should return the corresponding segment
889 * _number_ for the name, or NO_SEG if the name is not a valid
890 * segment name.
892 * It may also be called with NULL, in which case it is to
893 * return the _default_ section number for starting assembly in.
895 * It is allowed to modify the string it is given a pointer to.
897 * It is also allowed to specify a default instruction size for
898 * the segment, by setting `*bits' to 16 or 32. Or, if it
899 * doesn't wish to define a default, it can leave `bits' alone.
901 int32_t (*section)(char *name, int pass, int *bits);
904 * This function is called when a label is defined
905 * in the source code. It is allowed to change the section
906 * number as a result, but not the bits value.
907 * This is *only* called if the symbol defined is at the
908 * current offset, i.e. "foo:" or "foo equ $".
909 * The offset isn't passed; and may not be stable at this point.
910 * The subsection number is a field available for use by the
911 * backend. It is initialized to NO_SEG.
913 int32_t (*herelabel)(const char *name, enum label_type type,
914 int32_t seg, int32_t *subsection);
917 * This procedure is called to modify section alignment,
918 * note there is a trick, the alignment can only increase
920 void (*sectalign)(int32_t seg, unsigned int value);
923 * This procedure is called to modify the segment base values
924 * returned from the SEG operator. It is given a segment base
925 * value (i.e. a segment value with the low bit set), and is
926 * required to produce in return a segment value which may be
927 * different. It can map segment bases to absolute numbers by
928 * means of returning SEG_ABS types.
930 * It should return NO_SEG if the segment base cannot be
931 * determined; the evaluator (which calls this routine) is
932 * responsible for throwing an error condition if that occurs
933 * in pass two or in a critical expression.
935 int32_t (*segbase)(int32_t segment);
938 * This procedure is called to allow the output driver to
939 * process its own specific directives. When called, it has the
940 * directive word in `directive' and the parameter string in
941 * `value'. It is called in both assembly passes, and `pass'
942 * will be either 1 or 2.
944 * The following values are (currently) possible for
945 * directive_result:
947 * 0 - DIRR_UNKNOWN - directive not recognized by backend
948 * 1 - DIRR_OK - directive processed ok
949 * 2 - DIRR_ERROR - backend printed its own error message
950 * 3 - DIRR_BADPARAM - print the generic message
951 * "invalid parameter to [*] directive"
953 enum directive_result
954 (*directive)(enum directive directive, char *value, int pass);
957 * This procedure is called after assembly finishes, to allow
958 * the output driver to clean itself up and free its memory.
959 * Typically, it will also be the point at which the object
960 * file actually gets _written_.
962 * One thing the cleanup routine should always do is to close
963 * the output file pointer.
965 void (*cleanup)(void);
968 * List of pragma facility names that apply to this backend.
970 const struct pragma_facility *pragmas;
974 * Output format driver alias
976 struct ofmt_alias {
977 const char *shortname;
978 const char *fullname;
979 const struct ofmt *ofmt;
982 extern const struct ofmt *ofmt;
983 extern FILE *ofile;
986 * ------------------------------------------------------------
987 * The data structure defining a debug format driver, and the
988 * interfaces to the functions therein.
989 * ------------------------------------------------------------
992 struct dfmt {
994 * This is a short (one-liner) description of the type of
995 * output generated by the driver.
997 const char *fullname;
1000 * This is a single keyword used to select the driver.
1002 const char *shortname;
1005 * init - called initially to set up local pointer to object format.
1007 void (*init)(void);
1010 * linenum - called any time there is output with a change of
1011 * line number or file.
1013 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
1016 * debug_deflabel - called whenever a label is defined. Parameters
1017 * are the same as to 'symdef()' in the output format. This function
1018 * is called after the output format version.
1021 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
1022 int is_global, char *special);
1024 * debug_directive - called whenever a DEBUG directive other than 'LINE'
1025 * is encountered. 'directive' contains the first parameter to the
1026 * DEBUG directive, and params contains the rest. For example,
1027 * 'DEBUG VAR _somevar:int' would translate to a call to this
1028 * function with 'directive' equal to "VAR" and 'params' equal to
1029 * "_somevar:int".
1031 void (*debug_directive)(const char *directive, const char *params);
1034 * typevalue - called whenever the assembler wishes to register a type
1035 * for the last defined label. This routine MUST detect if a type was
1036 * already registered and not re-register it.
1038 void (*debug_typevalue)(int32_t type);
1041 * debug_output - called whenever output is required
1042 * 'type' is the type of info required, and this is format-specific
1044 void (*debug_output)(int type, void *param);
1047 * cleanup - called after processing of file is complete
1049 void (*cleanup)(void);
1052 * List of pragma facility names that apply to this backend.
1054 const struct pragma_facility *pragmas;
1057 extern const struct dfmt *dfmt;
1060 * The type definition macros
1061 * for debugging
1063 * low 3 bits: reserved
1064 * next 5 bits: type
1065 * next 24 bits: number of elements for arrays (0 for labels)
1068 #define TY_UNKNOWN 0x00
1069 #define TY_LABEL 0x08
1070 #define TY_BYTE 0x10
1071 #define TY_WORD 0x18
1072 #define TY_DWORD 0x20
1073 #define TY_FLOAT 0x28
1074 #define TY_QWORD 0x30
1075 #define TY_TBYTE 0x38
1076 #define TY_OWORD 0x40
1077 #define TY_YWORD 0x48
1078 #define TY_ZWORD 0x50
1079 #define TY_COMMON 0xE0
1080 #define TY_SEG 0xE8
1081 #define TY_EXTERN 0xF0
1082 #define TY_EQU 0xF8
1084 #define TYM_TYPE(x) ((x) & 0xF8)
1085 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1087 #define TYS_ELEMENTS(x) ((x) << 8)
1089 enum special_tokens {
1090 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1091 S_ABS = SPECIAL_ENUM_START,
1092 S_BYTE,
1093 S_DWORD,
1094 S_FAR,
1095 S_LONG,
1096 S_NEAR,
1097 S_NOSPLIT,
1098 S_OWORD,
1099 S_QWORD,
1100 S_REL,
1101 S_SHORT,
1102 S_STRICT,
1103 S_TO,
1104 S_TWORD,
1105 S_WORD,
1106 S_YWORD,
1107 S_ZWORD,
1108 SPECIAL_ENUM_LIMIT
1111 enum decorator_tokens {
1112 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1113 BRC_1TO2 = DECORATOR_ENUM_START,
1114 BRC_1TO4,
1115 BRC_1TO8,
1116 BRC_1TO16,
1117 BRC_RN,
1118 BRC_RD,
1119 BRC_RU,
1120 BRC_RZ,
1121 BRC_SAE,
1122 BRC_Z,
1123 DECORATOR_ENUM_LIMIT
1127 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1128 * 3 2 1
1129 * 10987654321098765432109876543210
1131 * | word boundary
1132 * ............................1111 opmask
1133 * ...........................1.... zeroing / merging
1134 * ..........................1..... broadcast
1135 * .........................1...... static rounding
1136 * ........................1....... SAE
1137 * ......................11........ broadcast element size
1138 * ....................11.......... number of broadcast elements
1140 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1143 * Opmask register number
1144 * identical to EVEX.aaa
1146 * Bits: 0 - 3
1148 #define OPMASK_SHIFT (0)
1149 #define OPMASK_BITS (4)
1150 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1151 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1152 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1155 * zeroing / merging control available
1156 * matching to EVEX.z
1158 * Bits: 4
1160 #define Z_SHIFT (4)
1161 #define Z_BITS (1)
1162 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1163 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1166 * broadcast - Whether this operand can be broadcasted
1168 * Bits: 5
1170 #define BRDCAST_SHIFT (5)
1171 #define BRDCAST_BITS (1)
1172 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1173 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1176 * Whether this instruction can have a static rounding mode.
1177 * It goes with the last simd operand because the static rounding mode
1178 * decorator is located between the last simd operand and imm8 (if any).
1180 * Bits: 6
1182 #define STATICRND_SHIFT (6)
1183 #define STATICRND_BITS (1)
1184 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1185 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1188 * SAE(Suppress all exception) available
1190 * Bits: 7
1192 #define SAE_SHIFT (7)
1193 #define SAE_BITS (1)
1194 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1195 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1198 * Broadcasting element size.
1200 * Bits: 8 - 9
1202 #define BRSIZE_SHIFT (8)
1203 #define BRSIZE_BITS (2)
1204 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1205 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1207 #define BR_BITS32 GEN_BRSIZE(0)
1208 #define BR_BITS64 GEN_BRSIZE(1)
1211 * Number of broadcasting elements
1213 * Bits: 10 - 11
1215 #define BRNUM_SHIFT (10)
1216 #define BRNUM_BITS (2)
1217 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1218 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1220 #define BR_1TO2 VAL_BRNUM(0)
1221 #define BR_1TO4 VAL_BRNUM(1)
1222 #define BR_1TO8 VAL_BRNUM(2)
1223 #define BR_1TO16 VAL_BRNUM(3)
1225 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1226 #define Z Z_MASK
1227 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1228 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1229 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1230 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1233 * Global modes
1237 * This declaration passes the "pass" number to all other modules
1238 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1239 * where 0 = optimizing pass
1240 * 1 = pass 1
1241 * 2 = pass 2
1244 extern int pass0;
1245 extern int passn; /* Actual pass number */
1247 extern bool tasm_compatible_mode;
1248 extern int optimizing;
1249 extern int globalbits; /* 16, 32 or 64-bit mode */
1250 extern int globalrel; /* default to relative addressing? */
1251 extern int globalbnd; /* default to using bnd prefix? */
1253 extern const char *inname; /* primary input filename */
1254 extern const char *outname; /* output filename */
1257 * Switch to a different segment and return the current offset
1259 int64_t switch_segment(int32_t segment);
1261 #endif