Merge branch 'nasm-2.14.xx'
[nasm.git] / include / nasm.h
blob463b91bf769d3b4dc48de2227bdcce7c455a102b
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2018 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <time.h>
46 #include "nasmlib.h"
47 #include "strlist.h"
48 #include "preproc.h"
49 #include "insnsi.h" /* For enum opcode */
50 #include "directiv.h" /* For enum directive */
51 #include "labels.h" /* For enum mangle_index, enum label_type */
52 #include "opflags.h"
53 #include "regs.h"
55 /* Time stamp for the official start of compilation */
56 struct compile_time {
57 time_t t;
58 bool have_local, have_gm, have_posix;
59 int64_t posix;
60 struct tm local;
61 struct tm gm;
63 extern struct compile_time official_compile_time;
65 #define NO_SEG INT32_C(-1) /* null segment value */
66 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
68 #define IDLEN_MAX 4096
69 #define DECOLEN_MAX 32
72 * Name pollution problems: <time.h> on Digital UNIX pulls in some
73 * strange hardware header file which sees fit to define R_SP. We
74 * undefine it here so as not to break the enum below.
76 #ifdef R_SP
77 #undef R_SP
78 #endif
81 * We must declare the existence of this structure type up here,
82 * since we have to reference it before we define it...
84 struct ofmt;
87 * Values for the `type' parameter to an output function.
89 enum out_type {
90 OUT_RAWDATA, /* Plain bytes */
91 OUT_RESERVE, /* Reserved bytes (RESB et al) */
92 OUT_ZERODATA, /* Initialized data, but all zero */
93 OUT_ADDRESS, /* An address (symbol value) */
94 OUT_RELADDR, /* A relative address */
95 OUT_SEGMENT, /* A segment number */
98 * These values are used by the legacy backend interface only;
99 * see output/legacy.c for more information. These should never
100 * be used otherwise. Once all backends have been migrated to the
101 * new interface they should be removed.
103 OUT_REL1ADR,
104 OUT_REL2ADR,
105 OUT_REL4ADR,
106 OUT_REL8ADR
109 enum out_sign {
110 OUT_WRAP, /* Undefined signedness (wraps) */
111 OUT_SIGNED, /* Value is signed */
112 OUT_UNSIGNED /* Value is unsigned */
116 * The data we send down to the backend.
117 * XXX: We still want to push down the base address symbol if
118 * available, and replace the segment numbers with a structure.
120 struct out_data {
121 int64_t offset; /* Offset within segment */
122 int32_t segment; /* Segment written to */
123 enum out_type type; /* See above */
124 enum out_sign sign; /* See above */
125 int inslen; /* Length of instruction */
126 int insoffs; /* Offset inside instruction */
127 int bits; /* Bits mode of compilation */
128 uint64_t size; /* Size of output */
129 const struct itemplate *itemp; /* Instruction template */
130 const void *data; /* Data for OUT_RAWDATA */
131 uint64_t toffset; /* Target address offset for relocation */
132 int32_t tsegment; /* Target segment for relocation */
133 int32_t twrt; /* Relocation with respect to */
134 int64_t relbase; /* Relative base for OUT_RELADDR */
138 * And a label-definition function. The boolean parameter
139 * `is_norm' states whether the label is a `normal' label (which
140 * should affect the local-label system), or something odder like
141 * an EQU or a segment-base symbol, which shouldn't.
143 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
144 char *special, bool is_norm);
147 * Token types returned by the scanner, in addition to ordinary
148 * ASCII character values, and zero for end-of-string.
150 enum token_type { /* token types, other than chars */
151 TOKEN_INVALID = -1, /* a placeholder value */
152 TOKEN_EOS = 0, /* end of string */
153 TOKEN_EQ = '=',
154 TOKEN_GT = '>',
155 TOKEN_LT = '<', /* aliases */
156 TOKEN_ID = 256, /* identifier */
157 TOKEN_NUM, /* numeric constant */
158 TOKEN_ERRNUM, /* malformed numeric constant */
159 TOKEN_STR, /* string constant */
160 TOKEN_ERRSTR, /* unterminated string constant */
161 TOKEN_FLOAT, /* floating-point constant */
162 TOKEN_REG, /* register name */
163 TOKEN_INSN, /* instruction name */
164 TOKEN_HERE, /* $ */
165 TOKEN_BASE, /* $$ */
166 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
167 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
168 TOKEN_SHL, /* << or <<< */
169 TOKEN_SHR, /* >> */
170 TOKEN_SAR, /* >>> */
171 TOKEN_SDIV, /* // */
172 TOKEN_SMOD, /* %% */
173 TOKEN_GE, /* >= */
174 TOKEN_LE, /* <= */
175 TOKEN_NE, /* <> (!= is same as <>) */
176 TOKEN_DBL_AND, /* && */
177 TOKEN_DBL_OR, /* || */
178 TOKEN_DBL_XOR, /* ^^ */
179 TOKEN_SEG, /* SEG */
180 TOKEN_WRT, /* WRT */
181 TOKEN_FLOATIZE, /* __floatX__ */
182 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
183 TOKEN_IFUNC, /* __ilog2*__ */
184 TOKEN_DECORATOR, /* decorators such as {...} */
185 TOKEN_OPMASK /* translated token for opmask registers */
188 enum floatize {
189 FLOAT_8,
190 FLOAT_16,
191 FLOAT_32,
192 FLOAT_64,
193 FLOAT_80M,
194 FLOAT_80E,
195 FLOAT_128L,
196 FLOAT_128H
199 /* Must match the list in string_transform(), in strfunc.c */
200 enum strfunc {
201 STRFUNC_UTF16,
202 STRFUNC_UTF16LE,
203 STRFUNC_UTF16BE,
204 STRFUNC_UTF32,
205 STRFUNC_UTF32LE,
206 STRFUNC_UTF32BE
209 enum ifunc {
210 IFUNC_ILOG2E,
211 IFUNC_ILOG2W,
212 IFUNC_ILOG2F,
213 IFUNC_ILOG2C
216 size_t string_transform(char *, size_t, char **, enum strfunc);
219 * The expression evaluator must be passed a scanner function; a
220 * standard scanner is provided as part of nasmlib.c. The
221 * preprocessor will use a different one. Scanners, and the
222 * token-value structures they return, look like this.
224 * The return value from the scanner is always a copy of the
225 * `t_type' field in the structure.
227 struct tokenval {
228 char *t_charptr;
229 int64_t t_integer;
230 int64_t t_inttwo;
231 enum token_type t_type;
232 int8_t t_flag;
234 typedef int (*scanner)(void *private_data, struct tokenval *tv);
236 struct location {
237 int64_t offset;
238 int32_t segment;
239 int known;
241 extern struct location location;
244 * Expression-evaluator datatype. Expressions, within the
245 * evaluator, are stored as an array of these beasts, terminated by
246 * a record with type==0. Mostly, it's a vector type: each type
247 * denotes some kind of a component, and the value denotes the
248 * multiple of that component present in the expression. The
249 * exception is the WRT type, whose `value' field denotes the
250 * segment to which the expression is relative. These segments will
251 * be segment-base types, i.e. either odd segment values or SEG_ABS
252 * types. So it is still valid to assume that anything with a
253 * `value' field of zero is insignificant.
255 typedef struct {
256 int32_t type; /* a register, or EXPR_xxx */
257 int64_t value; /* must be >= 32 bits */
258 } expr;
261 * Library routines to manipulate expression data types.
263 bool is_reloc(const expr *vect);
264 bool is_simple(const expr *vect);
265 bool is_really_simple(const expr *vect);
266 bool is_unknown(const expr *vect);
267 bool is_just_unknown(const expr *vect);
268 int64_t reloc_value(const expr *vect);
269 int32_t reloc_seg(const expr *vect);
270 int32_t reloc_wrt(const expr *vect);
271 bool is_self_relative(const expr *vect);
272 void dump_expr(const expr *vect);
275 * The evaluator can also return hints about which of two registers
276 * used in an expression should be the base register. See also the
277 * `operand' structure.
279 struct eval_hints {
280 int64_t base;
281 int type;
285 * The actual expression evaluator function looks like this. When
286 * called, it expects the first token of its expression to already
287 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
288 * it will start by calling the scanner.
290 * If a forward reference happens during evaluation, the evaluator
291 * must set `*fwref' to true if `fwref' is non-NULL.
293 * `critical' is non-zero if the expression may not contain forward
294 * references. The evaluator will report its own error if this
295 * occurs; if `critical' is 1, the error will be "symbol not
296 * defined before use", whereas if `critical' is 2, the error will
297 * be "symbol undefined".
299 * If `critical' has bit 8 set (in addition to its main value: 0x101
300 * and 0x102 correspond to 1 and 2) then an extended expression
301 * syntax is recognised, in which relational operators such as =, <
302 * and >= are accepted, as well as low-precedence logical operators
303 * &&, ^^ and ||.
305 * If `hints' is non-NULL, it gets filled in with some hints as to
306 * the base register in complex effective addresses.
308 #define CRITICAL 0x100
309 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
310 struct tokenval *tv, int *fwref, int critical,
311 struct eval_hints *hints);
314 * Special values for expr->type.
315 * These come after EXPR_REG_END as defined in regs.h.
316 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
317 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
319 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
320 #define EXPR_SIMPLE (EXPR_REG_END+2)
321 #define EXPR_WRT (EXPR_REG_END+3)
322 #define EXPR_RDSAE (EXPR_REG_END+4)
323 #define EXPR_SEGBASE (EXPR_REG_END+5)
326 * preprocessors ought to look like this:
328 struct preproc_ops {
330 * Called once at the very start of assembly.
332 void (*init)(void);
335 * Called at the start of a pass; given a file name, the number
336 * of the pass, an error reporting function, an evaluator
337 * function, and a listing generator to talk to.
339 void (*reset)(const char *file, int pass, StrList *deplist);
342 * Called to fetch a line of preprocessed source. The line
343 * returned has been malloc'ed, and so should be freed after
344 * use.
346 char *(*getline)(void);
348 /* Called at the end of a pass */
349 void (*cleanup)(int pass);
351 /* Additional macros specific to output format */
352 void (*extra_stdmac)(macros_t *macros);
354 /* Early definitions and undefinitions for macros */
355 void (*pre_define)(char *definition);
356 void (*pre_undefine)(char *definition);
358 /* Include file from command line */
359 void (*pre_include)(char *fname);
361 /* Add a command from the command line */
362 void (*pre_command)(const char *what, char *str);
364 /* Include path from command line */
365 void (*include_path)(const char *path);
367 /* Unwind the macro stack when printing an error message */
368 void (*error_list_macros)(int severity);
371 extern const struct preproc_ops nasmpp;
372 extern const struct preproc_ops preproc_nop;
374 /* List of dependency files */
375 extern StrList *depend_list;
378 * Some lexical properties of the NASM source language, included
379 * here because they are shared between the parser and preprocessor.
383 * isidstart matches any character that may start an identifier, and isidchar
384 * matches any character that may appear at places other than the start of an
385 * identifier. E.g. a period may only appear at the start of an identifier
386 * (for local labels), whereas a number may appear anywhere *but* at the
387 * start.
388 * isbrcchar matches any character that may placed inside curly braces as a
389 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
392 #define isidstart(c) (nasm_isalpha(c) || \
393 (c) == '_' || \
394 (c) == '.' || \
395 (c) == '?' || \
396 (c) == '@')
398 #define isidchar(c) (isidstart(c) || \
399 nasm_isdigit(c) || \
400 (c) == '$' || \
401 (c) == '#' || \
402 (c) == '~')
404 #define isbrcchar(c) (isidchar(c) || \
405 (c) == '-')
407 /* Ditto for numeric constants. */
409 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
410 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
413 * inline function to skip past an identifier; returns the first character past
414 * the identifier if valid, otherwise NULL.
416 static inline char *nasm_skip_identifier(const char *str)
418 const char *p = str;
420 if (!isidstart(*p++)) {
421 p = NULL;
422 } else {
423 while (isidchar(*p++))
426 return (char *)p;
430 * Data-type flags that get passed to listing-file routines.
432 enum {
433 LIST_READ,
434 LIST_MACRO,
435 LIST_MACRO_NOLIST,
436 LIST_INCLUDE,
437 LIST_INCBIN,
438 LIST_TIMES
442 * -----------------------------------------------------------
443 * Format of the `insn' structure returned from `parser.c' and
444 * passed into `assemble.c'
445 * -----------------------------------------------------------
448 /* Verify value to be a valid register */
449 static inline bool is_register(int reg)
451 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
454 enum ccode { /* condition code names */
455 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
456 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
457 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
458 C_none = -1
462 * token flags
464 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
465 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
466 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
467 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
468 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
470 static inline uint8_t get_cond_opcode(enum ccode c)
472 static const uint8_t ccode_opcodes[] = {
473 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
474 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
475 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
478 return ccode_opcodes[(int)c];
482 * REX flags
484 #define REX_MASK 0x4f /* Actual REX prefix bits */
485 #define REX_B 0x01 /* ModRM r/m extension */
486 #define REX_X 0x02 /* SIB index extension */
487 #define REX_R 0x04 /* ModRM reg extension */
488 #define REX_W 0x08 /* 64-bit operand size */
489 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
490 #define REX_P 0x40 /* REX prefix present/required */
491 #define REX_H 0x80 /* High register present, REX forbidden */
492 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
493 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
494 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
497 * EVEX bit field
499 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
500 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
501 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
502 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
503 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
504 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
505 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
506 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
507 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
508 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
509 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
510 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
513 * REX_V "classes" (prefixes which behave like VEX)
515 enum vex_class {
516 RV_VEX = 0, /* C4/C5 */
517 RV_XOP = 1, /* 8F */
518 RV_EVEX = 2 /* 62 */
522 * Note that because segment registers may be used as instruction
523 * prefixes, we must ensure the enumerations for prefixes and
524 * register names do not overlap.
526 enum prefixes { /* instruction prefixes */
527 P_none = 0,
528 PREFIX_ENUM_START = REG_ENUM_LIMIT,
529 P_A16 = PREFIX_ENUM_START,
530 P_A32,
531 P_A64,
532 P_ASP,
533 P_LOCK,
534 P_O16,
535 P_O32,
536 P_O64,
537 P_OSP,
538 P_REP,
539 P_REPE,
540 P_REPNE,
541 P_REPNZ,
542 P_REPZ,
543 P_TIMES,
544 P_WAIT,
545 P_XACQUIRE,
546 P_XRELEASE,
547 P_BND,
548 P_NOBND,
549 P_EVEX,
550 P_VEX3,
551 P_VEX2,
552 PREFIX_ENUM_LIMIT
555 enum extop_type { /* extended operand types */
556 EOT_NOTHING,
557 EOT_DB_STRING, /* Byte string */
558 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
559 EOT_DB_NUMBER /* Integer */
562 enum ea_flags { /* special EA flags */
563 EAF_BYTEOFFS = 1, /* force offset part to byte size */
564 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
565 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
566 EAF_REL = 8, /* IP-relative addressing */
567 EAF_ABS = 16, /* non-IP-relative addressing */
568 EAF_FSGS = 32, /* fs/gs segment override present */
569 EAF_MIB = 64 /* mib operand */
572 enum eval_hint { /* values for `hinttype' */
573 EAH_NOHINT = 0, /* no hint at all - our discretion */
574 EAH_MAKEBASE = 1, /* try to make given reg the base */
575 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
576 EAH_SUMMED = 3 /* base and index are summed into index */
579 typedef struct operand { /* operand to an instruction */
580 opflags_t type; /* type of operand */
581 int disp_size; /* 0 means default; 16; 32; 64 */
582 enum reg_enum basereg;
583 enum reg_enum indexreg; /* address registers */
584 int scale; /* index scale */
585 int hintbase;
586 enum eval_hint hinttype; /* hint as to real base register */
587 int32_t segment; /* immediate segment, if needed */
588 int64_t offset; /* any immediate number */
589 int32_t wrt; /* segment base it's relative to */
590 int eaflags; /* special EA flags */
591 int opflags; /* see OPFLAG_* defines below */
592 decoflags_t decoflags; /* decorator flags such as {...} */
593 } operand;
595 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
596 #define OPFLAG_EXTERN 2 /* operand is an external reference */
597 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
598 (always a forward reference also) */
599 #define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
600 where foo is not in the current segment */
602 typedef struct extop { /* extended operand */
603 struct extop *next; /* linked list */
604 char *stringval; /* if it's a string, then here it is */
605 size_t stringlen; /* ... and here's how long it is */
606 int64_t offset; /* ... it's given here ... */
607 int32_t segment; /* if it's a number/address, then... */
608 int32_t wrt; /* ... and here */
609 bool relative; /* self-relative expression */
610 enum extop_type type; /* defined above */
611 } extop;
613 enum ea_type {
614 EA_INVALID, /* Not a valid EA at all */
615 EA_SCALAR, /* Scalar EA */
616 EA_XMMVSIB, /* XMM vector EA */
617 EA_YMMVSIB, /* YMM vector EA */
618 EA_ZMMVSIB /* ZMM vector EA */
622 * Prefix positions: each type of prefix goes in a specific slot.
623 * This affects the final ordering of the assembled output, which
624 * shouldn't matter to the processor, but if you have stylistic
625 * preferences, you can change this. REX prefixes are handled
626 * differently for the time being.
628 * LOCK and REP used to be one slot; this is no longer the case since
629 * the introduction of HLE.
631 enum prefix_pos {
632 PPS_WAIT, /* WAIT (technically not a prefix!) */
633 PPS_REP, /* REP/HLE prefix */
634 PPS_LOCK, /* LOCK prefix */
635 PPS_SEG, /* Segment override prefix */
636 PPS_OSIZE, /* Operand size prefix */
637 PPS_ASIZE, /* Address size prefix */
638 PPS_VEX, /* VEX type */
639 MAXPREFIX /* Total number of prefix slots */
643 * Tuple types that are used when determining Disp8*N eligibility
644 * The order must match with a hash %tuple_codes in insns.pl
646 enum ttypes {
647 FV = 001,
648 HV = 002,
649 FVM = 003,
650 T1S8 = 004,
651 T1S16 = 005,
652 T1S = 006,
653 T1F32 = 007,
654 T1F64 = 010,
655 T2 = 011,
656 T4 = 012,
657 T8 = 013,
658 HVM = 014,
659 QVM = 015,
660 OVM = 016,
661 M128 = 017,
662 DUP = 020
665 /* EVEX.L'L : Vector length on vector insns */
666 enum vectlens {
667 VL128 = 0,
668 VL256 = 1,
669 VL512 = 2,
670 VLMAX = 3
673 /* If you need to change this, also change it in insns.pl */
674 #define MAX_OPERANDS 5
676 typedef struct insn { /* an instruction itself */
677 char *label; /* the label defined, or NULL */
678 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
679 enum opcode opcode; /* the opcode - not just the string */
680 enum ccode condition; /* the condition code, if Jcc/SETcc */
681 int operands; /* how many operands? 0-3 (more if db et al) */
682 int addr_size; /* address size */
683 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
684 extop *eops; /* extended operands */
685 int eops_float; /* true if DD and floating */
686 int32_t times; /* repeat count (TIMES prefix) */
687 bool forw_ref; /* is there a forward reference? */
688 bool rex_done; /* REX prefix emitted? */
689 int rex; /* Special REX Prefix */
690 int vexreg; /* Register encoded in VEX prefix */
691 int vex_cm; /* Class and M field for VEX prefix */
692 int vex_wlp; /* W, P and L information for VEX prefix */
693 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
694 /* EVEX.P2: [z,L'L,b,V',aaa] */
695 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
696 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
697 int8_t evex_brerop; /* BR/ER/SAE operand position */
698 } insn;
700 /* Instruction flags type: IF_* flags are defined in insns.h */
701 typedef uint64_t iflags_t;
704 * What to return from a directive- or pragma-handling function.
705 * Currently DIRR_OK and DIRR_ERROR are treated the same way;
706 * in both cases the backend is expected to produce the appropriate
707 * error message on its own.
709 * DIRR_BADPARAM causes a generic error message to be printed. Note
710 * that it is an error, not a warning, even in the case of pragmas;
711 * don't use it where forward compatiblity would be compromised
712 * (instead consider adding a DIRR_WARNPARAM.)
714 enum directive_result {
715 DIRR_UNKNOWN, /* Directive not handled by backend */
716 DIRR_OK, /* Directive processed */
717 DIRR_ERROR, /* Directive processed unsuccessfully */
718 DIRR_BADPARAM /* Print bad argument error message */
722 * A pragma facility: this structure is used to request passing a
723 * parsed pragma directive for a specific facility. If the handler is
724 * NULL then this pragma facility is recognized but ignored; pragma
725 * processing stops at that point.
727 * Note that the handler is passed a pointer to the facility structure
728 * as part of the struct pragma.
730 struct pragma;
731 typedef enum directive_result (*pragma_handler)(const struct pragma *);
733 struct pragma_facility {
734 const char *name;
735 pragma_handler handler;
739 * This structure defines how a pragma directive is passed to a
740 * facility. This structure may be augmented in the future.
742 * Any facility MAY, but is not required to, add its operations
743 * keywords or a subset thereof into asm/directiv.dat, in which case
744 * the "opcode" field will be set to the corresponding D_ constant
745 * from directiv.h; otherwise it will be D_unknown.
747 struct pragma {
748 const struct pragma_facility *facility;
749 const char *facility_name; /* Facility name exactly as entered by user */
750 const char *opname; /* First word after the facility name */
751 const char *tail; /* Anything after the operation */
752 enum directive opcode; /* Operation as a D_ directives constant */
756 * These are semi-arbitrary limits to keep the assembler from going
757 * into a black hole on certain kinds of bugs. They can be overridden
758 * by command-line options or %pragma.
760 enum nasm_limit {
761 LIMIT_PASSES,
762 LIMIT_STALLED,
763 LIMIT_MACROS,
764 LIMIT_REP,
765 LIMIT_EVAL,
766 LIMIT_LINES
768 #define LIMIT_MAX LIMIT_LINES
769 extern int64_t nasm_limit[LIMIT_MAX+1];
770 extern enum directive_result nasm_set_limit(const char *, const char *);
773 * The data structure defining an output format driver, and the
774 * interfaces to the functions therein.
776 struct ofmt {
778 * This is a short (one-liner) description of the type of
779 * output generated by the driver.
781 const char *fullname;
784 * This is a single keyword used to select the driver.
786 const char *shortname;
789 * Default output filename extension, or a null string
791 const char *extension;
794 * Output format flags.
796 #define OFMT_TEXT 1 /* Text file format */
797 #define OFMT_KEEP_ADDR 2 /* Keep addr; no conversion to data */
799 unsigned int flags;
801 int maxbits; /* Maximum segment bits supported */
804 * this is a pointer to the first element of the debug information
806 const struct dfmt * const *debug_formats;
809 * the default debugging format if -F is not specified
811 const struct dfmt *default_dfmt;
814 * This, if non-NULL, is a NULL-terminated list of `char *'s
815 * pointing to extra standard macros supplied by the object
816 * format (e.g. a sensible initial default value of __SECT__,
817 * and user-level equivalents for any format-specific
818 * directives).
820 macros_t *stdmac;
823 * This procedure is called at the start of an output session to set
824 * up internal parameters.
826 void (*init)(void);
829 * This procedure is called at the start of each pass.
831 void (*reset)(void);
834 * This is the modern output function, which gets passed
835 * a struct out_data with much more information. See the
836 * definition of struct out_data.
838 void (*output)(const struct out_data *data);
841 * This procedure is called by assemble() to write actual
842 * generated code or data to the object file. Typically it
843 * doesn't have to actually _write_ it, just store it for
844 * later.
846 * The `type' argument specifies the type of output data, and
847 * usually the size as well: its contents are described below.
849 * This is used for backends which have not yet been ported to
850 * the new interface, and should be NULL on ported backends.
851 * To use this entry point, set the output pointer to
852 * nasm_do_legacy_output.
854 void (*legacy_output)(int32_t segto, const void *data,
855 enum out_type type, uint64_t size,
856 int32_t segment, int32_t wrt);
859 * This procedure is called once for every symbol defined in
860 * the module being assembled. It gives the name and value of
861 * the symbol, in NASM's terms, and indicates whether it has
862 * been declared to be global. Note that the parameter "name",
863 * when passed, will point to a piece of static storage
864 * allocated inside the label manager - it's safe to keep using
865 * that pointer, because the label manager doesn't clean up
866 * until after the output driver has.
868 * Values of `is_global' are: 0 means the symbol is local; 1
869 * means the symbol is global; 2 means the symbol is common (in
870 * which case `offset' holds the _size_ of the variable).
871 * Anything else is available for the output driver to use
872 * internally.
874 * This routine explicitly _is_ allowed to call the label
875 * manager to define further symbols, if it wants to, even
876 * though it's been called _from_ the label manager. That much
877 * re-entrancy is guaranteed in the label manager. However, the
878 * label manager will in turn call this routine, so it should
879 * be prepared to be re-entrant itself.
881 * The `special' parameter contains special information passed
882 * through from the command that defined the label: it may have
883 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
884 * be obvious to the output format from the other parameters.
886 void (*symdef)(char *name, int32_t segment, int64_t offset,
887 int is_global, char *special);
890 * This procedure is called when the source code requests a
891 * segment change. It should return the corresponding segment
892 * _number_ for the name, or NO_SEG if the name is not a valid
893 * segment name.
895 * It may also be called with NULL, in which case it is to
896 * return the _default_ section number for starting assembly in.
898 * It is allowed to modify the string it is given a pointer to.
900 * It is also allowed to specify a default instruction size for
901 * the segment, by setting `*bits' to 16 or 32. Or, if it
902 * doesn't wish to define a default, it can leave `bits' alone.
904 int32_t (*section)(char *name, int pass, int *bits);
907 * This function is called when a label is defined
908 * in the source code. It is allowed to change the section
909 * number as a result, but not the bits value.
910 * This is *only* called if the symbol defined is at the
911 * current offset, i.e. "foo:" or "foo equ $".
912 * The offset isn't passed; and may not be stable at this point.
913 * The subsection number is a field available for use by the
914 * backend. It is initialized to NO_SEG.
916 * If "copyoffset" is set by the backend then the offset is
917 * copied from the previous segment, otherwise the new segment
918 * is treated as a new segment the normal way.
920 int32_t (*herelabel)(const char *name, enum label_type type,
921 int32_t seg, int32_t *subsection,
922 bool *copyoffset);
925 * This procedure is called to modify section alignment,
926 * note there is a trick, the alignment can only increase
928 void (*sectalign)(int32_t seg, unsigned int value);
931 * This procedure is called to modify the segment base values
932 * returned from the SEG operator. It is given a segment base
933 * value (i.e. a segment value with the low bit set), and is
934 * required to produce in return a segment value which may be
935 * different. It can map segment bases to absolute numbers by
936 * means of returning SEG_ABS types.
938 * It should return NO_SEG if the segment base cannot be
939 * determined; the evaluator (which calls this routine) is
940 * responsible for throwing an error condition if that occurs
941 * in pass two or in a critical expression.
943 int32_t (*segbase)(int32_t segment);
946 * This procedure is called to allow the output driver to
947 * process its own specific directives. When called, it has the
948 * directive word in `directive' and the parameter string in
949 * `value'. It is called in both assembly passes, and `pass'
950 * will be either 1 or 2.
952 * The following values are (currently) possible for
953 * directive_result:
955 * 0 - DIRR_UNKNOWN - directive not recognized by backend
956 * 1 - DIRR_OK - directive processed ok
957 * 2 - DIRR_ERROR - backend printed its own error message
958 * 3 - DIRR_BADPARAM - print the generic message
959 * "invalid parameter to [*] directive"
961 enum directive_result
962 (*directive)(enum directive directive, char *value, int pass);
965 * This procedure is called after assembly finishes, to allow
966 * the output driver to clean itself up and free its memory.
967 * Typically, it will also be the point at which the object
968 * file actually gets _written_.
970 * One thing the cleanup routine should always do is to close
971 * the output file pointer.
973 void (*cleanup)(void);
976 * List of pragma facility names that apply to this backend.
978 const struct pragma_facility *pragmas;
982 * Output format driver alias
984 struct ofmt_alias {
985 const char *shortname;
986 const char *fullname;
987 const struct ofmt *ofmt;
990 extern const struct ofmt *ofmt;
991 extern FILE *ofile;
994 * ------------------------------------------------------------
995 * The data structure defining a debug format driver, and the
996 * interfaces to the functions therein.
997 * ------------------------------------------------------------
1000 struct dfmt {
1002 * This is a short (one-liner) description of the type of
1003 * output generated by the driver.
1005 const char *fullname;
1008 * This is a single keyword used to select the driver.
1010 const char *shortname;
1013 * init - called initially to set up local pointer to object format.
1015 void (*init)(void);
1018 * linenum - called any time there is output with a change of
1019 * line number or file.
1021 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
1024 * debug_deflabel - called whenever a label is defined. Parameters
1025 * are the same as to 'symdef()' in the output format. This function
1026 * is called after the output format version.
1029 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
1030 int is_global, char *special);
1032 * debug_directive - called whenever a DEBUG directive other than 'LINE'
1033 * is encountered. 'directive' contains the first parameter to the
1034 * DEBUG directive, and params contains the rest. For example,
1035 * 'DEBUG VAR _somevar:int' would translate to a call to this
1036 * function with 'directive' equal to "VAR" and 'params' equal to
1037 * "_somevar:int".
1039 void (*debug_directive)(const char *directive, const char *params);
1042 * typevalue - called whenever the assembler wishes to register a type
1043 * for the last defined label. This routine MUST detect if a type was
1044 * already registered and not re-register it.
1046 void (*debug_typevalue)(int32_t type);
1049 * debug_output - called whenever output is required
1050 * 'type' is the type of info required, and this is format-specific
1052 void (*debug_output)(int type, void *param);
1055 * cleanup - called after processing of file is complete
1057 void (*cleanup)(void);
1060 * List of pragma facility names that apply to this backend.
1062 const struct pragma_facility *pragmas;
1065 extern const struct dfmt *dfmt;
1068 * The type definition macros
1069 * for debugging
1071 * low 3 bits: reserved
1072 * next 5 bits: type
1073 * next 24 bits: number of elements for arrays (0 for labels)
1076 #define TY_UNKNOWN 0x00
1077 #define TY_LABEL 0x08
1078 #define TY_BYTE 0x10
1079 #define TY_WORD 0x18
1080 #define TY_DWORD 0x20
1081 #define TY_FLOAT 0x28
1082 #define TY_QWORD 0x30
1083 #define TY_TBYTE 0x38
1084 #define TY_OWORD 0x40
1085 #define TY_YWORD 0x48
1086 #define TY_ZWORD 0x50
1087 #define TY_COMMON 0xE0
1088 #define TY_SEG 0xE8
1089 #define TY_EXTERN 0xF0
1090 #define TY_EQU 0xF8
1092 #define TYM_TYPE(x) ((x) & 0xF8)
1093 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1095 #define TYS_ELEMENTS(x) ((x) << 8)
1097 enum special_tokens {
1098 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1099 S_ABS = SPECIAL_ENUM_START,
1100 S_BYTE,
1101 S_DWORD,
1102 S_FAR,
1103 S_LONG,
1104 S_NEAR,
1105 S_NOSPLIT,
1106 S_OWORD,
1107 S_QWORD,
1108 S_REL,
1109 S_SHORT,
1110 S_STRICT,
1111 S_TO,
1112 S_TWORD,
1113 S_WORD,
1114 S_YWORD,
1115 S_ZWORD,
1116 SPECIAL_ENUM_LIMIT
1119 enum decorator_tokens {
1120 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1121 BRC_1TO2 = DECORATOR_ENUM_START,
1122 BRC_1TO4,
1123 BRC_1TO8,
1124 BRC_1TO16,
1125 BRC_RN,
1126 BRC_RD,
1127 BRC_RU,
1128 BRC_RZ,
1129 BRC_SAE,
1130 BRC_Z,
1131 DECORATOR_ENUM_LIMIT
1135 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1136 * 3 2 1
1137 * 10987654321098765432109876543210
1139 * | word boundary
1140 * ............................1111 opmask
1141 * ...........................1.... zeroing / merging
1142 * ..........................1..... broadcast
1143 * .........................1...... static rounding
1144 * ........................1....... SAE
1145 * ......................11........ broadcast element size
1146 * ....................11.......... number of broadcast elements
1148 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1151 * Opmask register number
1152 * identical to EVEX.aaa
1154 * Bits: 0 - 3
1156 #define OPMASK_SHIFT (0)
1157 #define OPMASK_BITS (4)
1158 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1159 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1160 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1163 * zeroing / merging control available
1164 * matching to EVEX.z
1166 * Bits: 4
1168 #define Z_SHIFT (4)
1169 #define Z_BITS (1)
1170 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1171 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1174 * broadcast - Whether this operand can be broadcasted
1176 * Bits: 5
1178 #define BRDCAST_SHIFT (5)
1179 #define BRDCAST_BITS (1)
1180 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1181 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1184 * Whether this instruction can have a static rounding mode.
1185 * It goes with the last simd operand because the static rounding mode
1186 * decorator is located between the last simd operand and imm8 (if any).
1188 * Bits: 6
1190 #define STATICRND_SHIFT (6)
1191 #define STATICRND_BITS (1)
1192 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1193 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1196 * SAE(Suppress all exception) available
1198 * Bits: 7
1200 #define SAE_SHIFT (7)
1201 #define SAE_BITS (1)
1202 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1203 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1206 * Broadcasting element size.
1208 * Bits: 8 - 9
1210 #define BRSIZE_SHIFT (8)
1211 #define BRSIZE_BITS (2)
1212 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1213 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1215 #define BR_BITS32 GEN_BRSIZE(0)
1216 #define BR_BITS64 GEN_BRSIZE(1)
1219 * Number of broadcasting elements
1221 * Bits: 10 - 11
1223 #define BRNUM_SHIFT (10)
1224 #define BRNUM_BITS (2)
1225 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1226 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1228 #define BR_1TO2 VAL_BRNUM(0)
1229 #define BR_1TO4 VAL_BRNUM(1)
1230 #define BR_1TO8 VAL_BRNUM(2)
1231 #define BR_1TO16 VAL_BRNUM(3)
1233 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1234 #define Z Z_MASK
1235 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1236 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1237 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1238 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1241 * Global modes
1245 * This declaration passes the "pass" number to all other modules
1246 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1247 * where 0 = optimizing pass
1248 * 1 = pass 1
1249 * 2 = pass 2
1253 * flag to disable optimizations selectively
1254 * this is useful to turn-off certain optimizations
1256 enum optimization_disable_flag {
1257 OPTIM_ALL_ENABLED = 0,
1258 OPTIM_DISABLE_JMP_MATCH = 1
1261 struct optimization {
1262 int level;
1263 int flag;
1266 extern int pass0;
1267 extern int64_t passn; /* Actual pass number */
1269 extern bool tasm_compatible_mode;
1270 extern struct optimization optimizing;
1271 extern int globalbits; /* 16, 32 or 64-bit mode */
1272 extern int globalrel; /* default to relative addressing? */
1273 extern int globalbnd; /* default to using bnd prefix? */
1275 extern const char *inname; /* primary input filename */
1276 extern const char *outname; /* output filename */
1279 * Switch to a different segment and return the current offset
1281 int64_t switch_segment(int32_t segment);
1283 #endif