Fix handling of XCHG in 64-bit mode
[nasm.git] / float.c
blobeddb7191ff608769c7c2aa65f666c97f8cee930e
1 /* float.c floating-point constant support for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version 13/ix/96 by Simon Tatham
9 */
11 #include "compiler.h"
13 #include <ctype.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <inttypes.h>
19 #include "nasm.h"
20 #include "float.h"
23 * -----------------
24 * local variables
25 * -----------------
27 static efunc error;
28 static bool daz = false; /* denormals as zero */
29 static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
32 * -----------
33 * constants
34 * -----------
37 /* "A limb is like a digit but bigger */
38 typedef uint32_t fp_limb;
39 typedef uint64_t fp_2limb;
41 #define LIMB_BITS 32
42 #define LIMB_BYTES (LIMB_BITS/8)
43 #define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
44 #define LIMB_MASK ((fp_limb)(~0))
45 #define LIMB_ALL_BYTES ((fp_limb)0x01010101)
46 #define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
48 #if defined(__i386__) || defined(__x86_64__)
49 #define put(a,b) (*(uint32_t *)(a) = (b))
50 #else
51 #define put(a,b) (((a)[0] = (b)), \
52 ((a)[1] = (b) >> 8), \
53 ((a)[2] = (b) >> 16), \
54 ((a)[3] = (b) >> 24))
55 #endif
57 /* 112 bits + 64 bits for accuracy + 16 bits for rounding */
58 #define MANT_LIMBS 6
60 /* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
61 #define MANT_DIGITS 52
63 /* the format and the argument list depend on MANT_LIMBS */
64 #define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
65 #define MANT_ARG SOME_ARG(mant, 0)
67 #define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \
68 (a)[(i)+4], (a)[(i)+5]
71 * ---------------------------------------------------------------------------
72 * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
73 * ---------------------------------------------------------------------------
76 #ifdef DEBUG_FLOAT
77 #define dprintf(x) printf x
78 #else /* */
79 #define dprintf(x) do { } while (0)
80 #endif /* */
83 * ---------------------------------------------------------------------------
84 * multiply
85 * ---------------------------------------------------------------------------
87 static int float_multiply(fp_limb *to, fp_limb *from)
89 fp_2limb temp[MANT_LIMBS * 2];
90 int i, j;
93 * guaranteed that top bit of 'from' is set -- so we only have
94 * to worry about _one_ bit shift to the left
96 dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
97 dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
99 memset(temp, 0, sizeof temp);
101 for (i = 0; i < MANT_LIMBS; i++) {
102 for (j = 0; j < MANT_LIMBS; j++) {
103 fp_2limb n;
104 n = (fp_2limb) to[i] * (fp_2limb) from[j];
105 temp[i + j] += n >> LIMB_BITS;
106 temp[i + j + 1] += (fp_limb)n;
110 for (i = MANT_LIMBS * 2; --i;) {
111 temp[i - 1] += temp[i] >> LIMB_BITS;
112 temp[i] &= LIMB_MASK;
115 dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
116 SOME_ARG(temp, MANT_LIMBS)));
118 if (temp[0] & LIMB_TOP_BIT) {
119 for (i = 0; i < MANT_LIMBS; i++) {
120 to[i] = temp[i] & LIMB_MASK;
122 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
123 return 0;
124 } else {
125 for (i = 0; i < MANT_LIMBS; i++) {
126 to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
128 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
129 return -1;
134 * ---------------------------------------------------------------------------
135 * read an exponent; returns INT32_MAX on error
136 * ---------------------------------------------------------------------------
138 static int32_t read_exponent(const char *string, int32_t max)
140 int32_t i = 0;
141 bool neg = false;
143 if (*string == '+') {
144 string++;
145 } else if (*string == '-') {
146 neg = true;
147 string++;
149 while (*string) {
150 if (*string >= '0' && *string <= '9') {
151 i = (i * 10) + (*string - '0');
154 * To ensure that underflows and overflows are
155 * handled properly we must avoid wraparounds of
156 * the signed integer value that is used to hold
157 * the exponent. Therefore we cap the exponent at
158 * +/-5000, which is slightly more/less than
159 * what's required for normal and denormal numbers
160 * in single, double, and extended precision, but
161 * sufficient to avoid signed integer wraparound.
163 if (i > max)
164 i = max;
165 } else if (*string == '_') {
166 /* do nothing */
167 } else {
168 error(ERR_NONFATAL|ERR_PASS1,
169 "invalid character in floating-point constant %s: '%c'",
170 "exponent", *string);
171 return INT32_MAX;
173 string++;
176 return neg ? -i : i;
180 * ---------------------------------------------------------------------------
181 * convert
182 * ---------------------------------------------------------------------------
184 static bool ieee_flconvert(const char *string, fp_limb *mant,
185 int32_t * exponent)
187 char digits[MANT_DIGITS];
188 char *p, *q, *r;
189 fp_limb mult[MANT_LIMBS], bit;
190 fp_limb *m;
191 int32_t tenpwr, twopwr;
192 int32_t extratwos;
193 bool started, seendot, warned;
195 warned = false;
196 p = digits;
197 tenpwr = 0;
198 started = seendot = false;
200 while (*string && *string != 'E' && *string != 'e') {
201 if (*string == '.') {
202 if (!seendot) {
203 seendot = true;
204 } else {
205 error(ERR_NONFATAL|ERR_PASS1,
206 "too many periods in floating-point constant");
207 return false;
209 } else if (*string >= '0' && *string <= '9') {
210 if (*string == '0' && !started) {
211 if (seendot) {
212 tenpwr--;
214 } else {
215 started = true;
216 if (p < digits + sizeof(digits)) {
217 *p++ = *string - '0';
218 } else {
219 if (!warned) {
220 error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1,
221 "floating-point constant significand contains "
222 "more than %i digits", MANT_DIGITS);
223 warned = true;
226 if (!seendot) {
227 tenpwr++;
230 } else if (*string == '_') {
231 /* do nothing */
232 } else {
233 error(ERR_NONFATAL|ERR_PASS1,
234 "invalid character in floating-point constant %s: '%c'",
235 "significand", *string);
236 return false;
238 string++;
241 if (*string) {
242 int32_t e;
244 string++; /* eat the E */
245 e = read_exponent(string, 5000);
246 if (e == INT32_MAX)
247 return false;
248 tenpwr += e;
252 * At this point, the memory interval [digits,p) contains a
253 * series of decimal digits zzzzzzz, such that our number X
254 * satisfies X = 0.zzzzzzz * 10^tenpwr.
256 q = digits;
257 dprintf(("X = 0."));
258 while (q < p) {
259 dprintf(("%c", *q + '0'));
260 q++;
262 dprintf((" * 10^%i\n", tenpwr));
265 * Now convert [digits,p) to our internal representation.
267 bit = LIMB_TOP_BIT;
268 for (m = mant; m < mant + MANT_LIMBS; m++) {
269 *m = 0;
271 m = mant;
272 q = digits;
273 started = false;
274 twopwr = 0;
275 while (m < mant + MANT_LIMBS) {
276 fp_limb carry = 0;
277 while (p > q && !p[-1]) {
278 p--;
280 if (p <= q) {
281 break;
283 for (r = p; r-- > q;) {
284 int32_t i;
285 i = 2 * *r + carry;
286 if (i >= 10) {
287 carry = 1;
288 i -= 10;
289 } else {
290 carry = 0;
292 *r = i;
294 if (carry) {
295 *m |= bit;
296 started = true;
298 if (started) {
299 if (bit == 1) {
300 bit = LIMB_TOP_BIT;
301 m++;
302 } else {
303 bit >>= 1;
305 } else {
306 twopwr--;
309 twopwr += tenpwr;
312 * At this point, the 'mant' array contains the first frac-
313 * tional places of a base-2^16 real number which when mul-
314 * tiplied by 2^twopwr and 5^tenpwr gives X.
316 dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
317 tenpwr));
320 * Now multiply 'mant' by 5^tenpwr.
322 if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
323 for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
324 *m = LIMB_BYTE(0xcc);
326 mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
327 extratwos = -2;
328 tenpwr = -tenpwr;
331 * If tenpwr was 1000...000b, then it becomes 1000...000b. See
332 * the "ANSI C" comment below for more details on that case.
334 * Because we already truncated tenpwr to +5000...-5000 inside
335 * the exponent parsing code, this shouldn't happen though.
337 } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
338 mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
339 for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
340 *m = 0;
342 extratwos = 3;
343 } else {
344 extratwos = 0;
346 while (tenpwr) {
347 dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
348 twopwr, tenpwr, extratwos));
349 if (tenpwr & 1) {
350 dprintf(("mant*mult\n"));
351 twopwr += extratwos + float_multiply(mant, mult);
353 dprintf(("mult*mult\n"));
354 extratwos = extratwos * 2 + float_multiply(mult, mult);
355 tenpwr >>= 1;
358 * In ANSI C, the result of right-shifting a signed integer is
359 * considered implementation-specific. To ensure that the loop
360 * terminates even if tenpwr was 1000...000b to begin with, we
361 * manually clear the MSB, in case a 1 was shifted in.
363 * Because we already truncated tenpwr to +5000...-5000 inside
364 * the exponent parsing code, this shouldn't matter; neverthe-
365 * less it is the right thing to do here.
367 tenpwr &= (uint32_t) - 1 >> 1;
371 * At this point, the 'mant' array contains the first frac-
372 * tional places of a base-2^16 real number in [0.5,1) that
373 * when multiplied by 2^twopwr gives X. Or it contains zero
374 * of course. We are done.
376 *exponent = twopwr;
377 return true;
381 * ---------------------------------------------------------------------------
382 * operations of specific bits
383 * ---------------------------------------------------------------------------
386 /* Set a bit, using *bigendian* bit numbering (0 = MSB) */
387 static void set_bit(fp_limb *mant, int bit)
389 mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
392 /* Test a single bit */
393 static int test_bit(const fp_limb *mant, int bit)
395 return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
398 /* Report if the mantissa value is all zero */
399 static bool is_zero(const fp_limb *mant)
401 int i;
403 for (i = 0; i < MANT_LIMBS; i++)
404 if (mant[i])
405 return false;
407 return true;
411 * ---------------------------------------------------------------------------
412 * round a mantissa off after i words
413 * ---------------------------------------------------------------------------
416 #define ROUND_COLLECT_BITS \
417 do { \
418 m = mant[i] & (2*bit-1); \
419 for (j = i+1; j < MANT_LIMBS; j++) \
420 m = m | mant[j]; \
421 } while (0)
423 #define ROUND_ABS_DOWN \
424 do { \
425 mant[i] &= ~(bit-1); \
426 for (j = i+1; j < MANT_LIMBS; j++) \
427 mant[j] = 0; \
428 return false; \
429 } while (0)
431 #define ROUND_ABS_UP \
432 do { \
433 mant[i] = (mant[i] & ~(bit-1)) + bit; \
434 for (j = i+1; j < MANT_LIMBS; j++) \
435 mant[j] = 0; \
436 while (i > 0 && !mant[i]) \
437 ++mant[--i]; \
438 return !mant[0]; \
439 } while (0)
441 static bool ieee_round(bool minus, fp_limb *mant, int bits)
443 fp_limb m = 0;
444 int32_t j;
445 int i = bits / LIMB_BITS;
446 int p = bits % LIMB_BITS;
447 fp_limb bit = LIMB_TOP_BIT >> p;
449 if (rc == FLOAT_RC_NEAR) {
450 if (mant[i] & bit) {
451 mant[i] &= ~bit;
452 ROUND_COLLECT_BITS;
453 mant[i] |= bit;
454 if (m) {
455 ROUND_ABS_UP;
456 } else {
457 if (test_bit(mant, bits-1)) {
458 ROUND_ABS_UP;
459 } else {
460 ROUND_ABS_DOWN;
463 } else {
464 ROUND_ABS_DOWN;
466 } else if (rc == FLOAT_RC_ZERO ||
467 rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
468 ROUND_ABS_DOWN;
469 } else {
470 /* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
471 /* Round toward +/- infinity */
472 ROUND_COLLECT_BITS;
473 if (m) {
474 ROUND_ABS_UP;
475 } else {
476 ROUND_ABS_DOWN;
479 return false;
482 /* Returns a value >= 16 if not a valid hex digit */
483 static unsigned int hexval(char c)
485 unsigned int v = (unsigned char) c;
487 if (v >= '0' && v <= '9')
488 return v - '0';
489 else
490 return (v|0x20) - 'a' + 10;
493 /* Handle floating-point numbers with radix 2^bits and binary exponent */
494 static bool ieee_flconvert_bin(const char *string, int bits,
495 fp_limb *mant, int32_t *exponent)
497 static const int log2tbl[16] =
498 { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
499 fp_limb mult[MANT_LIMBS + 1], *mp;
500 int ms;
501 int32_t twopwr;
502 bool seendot, seendigit;
503 unsigned char c;
504 int radix = 1 << bits;
505 fp_limb v;
507 twopwr = 0;
508 seendot = seendigit = false;
509 ms = 0;
510 mp = NULL;
512 memset(mult, 0, sizeof mult);
514 while ((c = *string++) != '\0') {
515 if (c == '.') {
516 if (!seendot)
517 seendot = true;
518 else {
519 error(ERR_NONFATAL|ERR_PASS1,
520 "too many periods in floating-point constant");
521 return false;
523 } else if ((v = hexval(c)) < (unsigned int)radix) {
524 if (!seendigit && v) {
525 int l = log2tbl[v];
527 seendigit = true;
528 mp = mult;
529 ms = (LIMB_BITS-1)-l;
531 twopwr = seendot ? twopwr-bits+l : l+1-bits;
534 if (seendigit) {
535 if (ms <= 0) {
536 *mp |= v >> -ms;
537 mp++;
538 if (mp > &mult[MANT_LIMBS])
539 mp = &mult[MANT_LIMBS]; /* Guard slot */
540 ms += LIMB_BITS;
542 *mp |= v << ms;
543 ms -= bits;
545 if (!seendot)
546 twopwr += bits;
547 } else {
548 if (seendot)
549 twopwr -= bits;
551 } else if (c == 'p' || c == 'P') {
552 int32_t e;
553 e = read_exponent(string, 20000);
554 if (e == INT32_MAX)
555 return false;
556 twopwr += e;
557 break;
558 } else if (c == '_') {
559 /* ignore */
560 } else {
561 error(ERR_NONFATAL|ERR_PASS1,
562 "floating-point constant: `%c' is invalid character", c);
563 return false;
567 if (!seendigit) {
568 memset(mant, 0, sizeof mult); /* Zero */
569 *exponent = 0;
570 } else {
571 memcpy(mant, mult, sizeof mult);
572 *exponent = twopwr;
575 return true;
579 * Shift a mantissa to the right by i bits.
581 static void ieee_shr(fp_limb *mant, int i)
583 fp_limb n, m;
584 int j = 0;
585 int sr, sl, offs;
587 sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
588 offs = i/LIMB_BITS;
590 if (sr == 0) {
591 if (offs)
592 for (j = MANT_LIMBS-1; j >= offs; j--)
593 mant[j] = mant[j-offs];
594 } else {
595 n = mant[MANT_LIMBS-1-offs] >> sr;
596 for (j = MANT_LIMBS-1; j > offs; j--) {
597 m = mant[j-offs-1];
598 mant[j] = (m << sl) | n;
599 n = m >> sr;
601 mant[j--] = n;
603 while (j >= 0)
604 mant[j--] = 0;
607 /* Produce standard IEEE formats, with implicit or explicit integer
608 bit; this makes the following assumptions:
610 - the sign bit is the MSB, followed by the exponent,
611 followed by the integer bit if present.
612 - the sign bit plus exponent fit in 16 bits.
613 - the exponent bias is 2^(n-1)-1 for an n-bit exponent */
615 struct ieee_format {
616 int bytes;
617 int mantissa; /* Fractional bits in the mantissa */
618 int explicit; /* Explicit integer */
619 int exponent; /* Bits in the exponent */
623 * The 16- and 128-bit formats are expected to be in IEEE 754r.
624 * AMD SSE5 uses the 16-bit format.
626 * The 32- and 64-bit formats are the original IEEE 754 formats.
628 * The 80-bit format is x87-specific, but widely used.
630 * The 8-bit format appears to be the consensus 8-bit floating-point
631 * format. It is apparently used in graphics applications.
633 static const struct ieee_format ieee_8 = { 1, 3, 0, 4 };
634 static const struct ieee_format ieee_16 = { 2, 10, 0, 5 };
635 static const struct ieee_format ieee_32 = { 4, 23, 0, 8 };
636 static const struct ieee_format ieee_64 = { 8, 52, 0, 11 };
637 static const struct ieee_format ieee_80 = { 10, 63, 1, 15 };
638 static const struct ieee_format ieee_128 = { 16, 112, 0, 15 };
640 /* Types of values we can generate */
641 enum floats {
642 FL_ZERO,
643 FL_DENORMAL,
644 FL_NORMAL,
645 FL_INFINITY,
646 FL_QNAN,
647 FL_SNAN
650 static int to_float(const char *str, int s, uint8_t * result,
651 const struct ieee_format *fmt)
653 fp_limb mant[MANT_LIMBS], *mp, m;
654 int32_t exponent = 0;
655 int32_t expmax = 1 << (fmt->exponent - 1);
656 fp_limb one_mask = LIMB_TOP_BIT >>
657 ((fmt->exponent+fmt->explicit) % LIMB_BITS);
658 int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
659 int i;
660 int shift;
661 enum floats type;
662 bool ok;
663 bool minus = s < 0;
664 int bits = fmt->bytes * 8;
666 if (str[0] == '_') {
667 /* Special tokens */
669 switch (str[2]) {
670 case 'n': /* __nan__ */
671 case 'N':
672 case 'q': /* __qnan__ */
673 case 'Q':
674 type = FL_QNAN;
675 break;
676 case 's': /* __snan__ */
677 case 'S':
678 type = FL_SNAN;
679 break;
680 case 'i': /* __infinity__ */
681 case 'I':
682 type = FL_INFINITY;
683 break;
684 default:
685 error(ERR_NONFATAL|ERR_PASS1,
686 "internal error: unknown FP constant token `%s'\n", str);
687 type = FL_QNAN;
688 break;
690 } else {
691 if (str[0] == '0') {
692 switch (str[1]) {
693 case 'x': case 'X':
694 case 'h': case 'H':
695 ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
696 break;
697 case 'o': case 'O':
698 case 'q': case 'Q':
699 ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
700 break;
701 case 'b': case 'B':
702 case 'y': case 'Y':
703 ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
704 break;
705 case 'd': case 'D':
706 case 't': case 'T':
707 ok = ieee_flconvert(str+2, mant, &exponent);
708 break;
709 default:
710 /* Leading zero was just a zero? */
711 ok = ieee_flconvert(str, mant, &exponent);
712 break;
714 } else if (str[0] == '$') {
715 ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
716 } else {
717 ok = ieee_flconvert(str, mant, &exponent);
720 if (!ok) {
721 type = FL_QNAN;
722 } else if (mant[0] & LIMB_TOP_BIT) {
724 * Non-zero.
726 exponent--;
727 if (exponent >= 2 - expmax && exponent <= expmax) {
728 type = FL_NORMAL;
729 } else if (exponent > 0) {
730 if (pass0 == 1)
731 error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
732 "overflow in floating-point constant");
733 type = FL_INFINITY;
734 } else {
735 /* underflow or denormal; the denormal code handles
736 actual underflow. */
737 type = FL_DENORMAL;
739 } else {
740 /* Zero */
741 type = FL_ZERO;
745 switch (type) {
746 case FL_ZERO:
747 zero:
748 memset(mant, 0, sizeof mant);
749 break;
751 case FL_DENORMAL:
753 shift = -(exponent + expmax - 2 - fmt->exponent)
754 + fmt->explicit;
755 ieee_shr(mant, shift);
756 ieee_round(minus, mant, bits);
757 if (mant[one_pos] & one_mask) {
758 /* One's position is set, we rounded up into normal range */
759 exponent = 1;
760 if (!fmt->explicit)
761 mant[one_pos] &= ~one_mask; /* remove explicit one */
762 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
763 } else {
764 if (daz || is_zero(mant)) {
765 /* Flush denormals to zero */
766 error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1,
767 "underflow in floating-point constant");
768 goto zero;
769 } else {
770 error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1,
771 "denormal floating-point constant");
774 break;
777 case FL_NORMAL:
778 exponent += expmax - 1;
779 ieee_shr(mant, fmt->exponent+fmt->explicit);
780 ieee_round(minus, mant, bits);
781 /* did we scale up by one? */
782 if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
783 ieee_shr(mant, 1);
784 exponent++;
785 if (exponent >= (expmax << 1)-1) {
786 error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
787 "overflow in floating-point constant");
788 type = FL_INFINITY;
789 goto overflow;
793 if (!fmt->explicit)
794 mant[one_pos] &= ~one_mask; /* remove explicit one */
795 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
796 break;
798 case FL_INFINITY:
799 case FL_QNAN:
800 case FL_SNAN:
801 overflow:
802 memset(mant, 0, sizeof mant);
803 mant[0] = (((fp_limb)1 << fmt->exponent)-1)
804 << (LIMB_BITS-1 - fmt->exponent);
805 if (fmt->explicit)
806 mant[one_pos] |= one_mask;
807 if (type == FL_QNAN)
808 set_bit(mant, fmt->exponent+fmt->explicit+1);
809 else if (type == FL_SNAN)
810 set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
811 break;
814 mant[0] |= minus ? LIMB_TOP_BIT : 0;
816 m = mant[fmt->bytes/LIMB_BYTES];
817 for (i = LIMB_BYTES-(fmt->bytes % LIMB_BYTES); i < LIMB_BYTES; i++)
818 *result++ = m >> (i*8);
820 for (mp = &mant[fmt->bytes/LIMB_BYTES], i = 0;
821 i < fmt->bytes; i += LIMB_BYTES) {
822 m = *--mp;
823 put(result, m);
824 result += LIMB_BYTES;
827 return 1; /* success */
830 int float_const(const char *number, int32_t sign, uint8_t * result,
831 int bytes, efunc err)
833 error = err;
835 switch (bytes) {
836 case 1:
837 return to_float(number, sign, result, &ieee_8);
838 case 2:
839 return to_float(number, sign, result, &ieee_16);
840 case 4:
841 return to_float(number, sign, result, &ieee_32);
842 case 8:
843 return to_float(number, sign, result, &ieee_64);
844 case 10:
845 return to_float(number, sign, result, &ieee_80);
846 case 16:
847 return to_float(number, sign, result, &ieee_128);
848 default:
849 error(ERR_PANIC, "strange value %d passed to float_const", bytes);
850 return 0;
854 /* Set floating-point options */
855 int float_option(const char *option)
857 if (!nasm_stricmp(option, "daz")) {
858 daz = true;
859 return 0;
860 } else if (!nasm_stricmp(option, "nodaz")) {
861 daz = false;
862 return 0;
863 } else if (!nasm_stricmp(option, "near")) {
864 rc = FLOAT_RC_NEAR;
865 return 0;
866 } else if (!nasm_stricmp(option, "down")) {
867 rc = FLOAT_RC_DOWN;
868 return 0;
869 } else if (!nasm_stricmp(option, "up")) {
870 rc = FLOAT_RC_UP;
871 return 0;
872 } else if (!nasm_stricmp(option, "zero")) {
873 rc = FLOAT_RC_ZERO;
874 return 0;
875 } else if (!nasm_stricmp(option, "default")) {
876 rc = FLOAT_RC_NEAR;
877 daz = false;
878 return 0;
879 } else {
880 return -1; /* Unknown option */