New backend interface - assembler internals #1
[nasm.git] / include / nasm.h
blobaf8036f9703ea77353becad207666cccfe246607
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include "nasmlib.h"
45 #include "preproc.h"
46 #include "insnsi.h" /* For enum opcode */
47 #include "directiv.h" /* For enum directive */
48 #include "opflags.h"
49 #include "regs.h"
51 #define NO_SEG -1L /* null segment value */
52 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
54 #ifndef FILENAME_MAX
55 #define FILENAME_MAX 256
56 #endif
58 #ifndef PREFIX_MAX
59 #define PREFIX_MAX 10
60 #endif
62 #ifndef POSTFIX_MAX
63 #define POSTFIX_MAX 10
64 #endif
66 #define IDLEN_MAX 4096
67 #define DECOLEN_MAX 32
70 * Name pollution problems: <time.h> on Digital UNIX pulls in some
71 * strange hardware header file which sees fit to define R_SP. We
72 * undefine it here so as not to break the enum below.
74 #ifdef R_SP
75 #undef R_SP
76 #endif
79 * We must declare the existence of this structure type up here,
80 * since we have to reference it before we define it...
82 struct ofmt;
85 * Values for the `type' parameter to an output function.
87 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
88 * which will be a relative jump. For this we need to know the
89 * distance in bytes from the start of the relocated record until
90 * the end of the containing instruction. _This_ is what is stored
91 * in the size part of the parameter, in this case.
93 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
94 * and the contents of the "data" parameter is irrelevant.
96 * The "data" parameter for the output function points to a "int32_t",
97 * containing the address in question, unless the type is
98 * OUT_RAWDATA, in which case it points to an "uint8_t"
99 * array.
101 enum out_type {
102 OUT_RAWDATA, /* Plain bytes */
103 OUT_RESERVE, /* Reserved bytes (RESB et al) */
104 OUT_ADDRESS, /* An address (symbol value) */
105 OUT_RELADDR, /* A relative address (relative to instruction end) */
106 OUT_SEGMENT, /* A segment number */
108 /* These are temporary until the backend change */
109 OUT_REL1ADR,
110 OUT_REL2ADR,
111 OUT_REL4ADR,
112 OUT_REL8ADR
115 enum out_sign {
116 OUT_WRAP, /* Undefined signedness (wraps) */
117 OUT_SIGNED, /* Value is signed */
118 OUT_UNSIGNED /* Value is unsigned */
122 * The data we send down to the backend.
123 * XXX: We still want to push down the base address symbol if
124 * available, and replace the segment numbers with a structure.
126 struct out_data {
127 int64_t offset; /* Offset within segment */
128 int32_t segment; /* Segment written to */
129 enum out_type type; /* See above */
130 enum out_sign sign; /* See above */
131 int inslen; /* Length of instruction */
132 int insoffs; /* Offset inside instruction */
133 int bits; /* Bits mode of compilation */
134 uint64_t size; /* Size of output */
135 const struct itemplate *itemp; /* Instruction template */
136 const void *data; /* Data for OUT_RAWDATA */
137 uint64_t toffset; /* Target address offset for relocation */
138 int32_t tsegment; /* Target segment for relocation */
139 int32_t twrt; /* Relocation with respect to */
143 * A label-lookup function.
145 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
148 * And a label-definition function. The boolean parameter
149 * `is_norm' states whether the label is a `normal' label (which
150 * should affect the local-label system), or something odder like
151 * an EQU or a segment-base symbol, which shouldn't.
153 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
154 char *special, bool is_norm, bool isextrn);
156 void define_label(char *label, int32_t segment, int64_t offset,
157 char *special, bool is_norm, bool isextrn);
160 * Token types returned by the scanner, in addition to ordinary
161 * ASCII character values, and zero for end-of-string.
163 enum token_type { /* token types, other than chars */
164 TOKEN_INVALID = -1, /* a placeholder value */
165 TOKEN_EOS = 0, /* end of string */
166 TOKEN_EQ = '=',
167 TOKEN_GT = '>',
168 TOKEN_LT = '<', /* aliases */
169 TOKEN_ID = 256, /* identifier */
170 TOKEN_NUM, /* numeric constant */
171 TOKEN_ERRNUM, /* malformed numeric constant */
172 TOKEN_STR, /* string constant */
173 TOKEN_ERRSTR, /* unterminated string constant */
174 TOKEN_FLOAT, /* floating-point constant */
175 TOKEN_REG, /* register name */
176 TOKEN_INSN, /* instruction name */
177 TOKEN_HERE, /* $ */
178 TOKEN_BASE, /* $$ */
179 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
180 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
181 TOKEN_SHL, /* << */
182 TOKEN_SHR, /* >> */
183 TOKEN_SDIV, /* // */
184 TOKEN_SMOD, /* %% */
185 TOKEN_GE, /* >= */
186 TOKEN_LE, /* <= */
187 TOKEN_NE, /* <> (!= is same as <>) */
188 TOKEN_DBL_AND, /* && */
189 TOKEN_DBL_OR, /* || */
190 TOKEN_DBL_XOR, /* ^^ */
191 TOKEN_SEG, /* SEG */
192 TOKEN_WRT, /* WRT */
193 TOKEN_FLOATIZE, /* __floatX__ */
194 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
195 TOKEN_IFUNC, /* __ilog2*__ */
196 TOKEN_DECORATOR, /* decorators such as {...} */
197 TOKEN_OPMASK /* translated token for opmask registers */
200 enum floatize {
201 FLOAT_8,
202 FLOAT_16,
203 FLOAT_32,
204 FLOAT_64,
205 FLOAT_80M,
206 FLOAT_80E,
207 FLOAT_128L,
208 FLOAT_128H
211 /* Must match the list in string_transform(), in strfunc.c */
212 enum strfunc {
213 STRFUNC_UTF16,
214 STRFUNC_UTF16LE,
215 STRFUNC_UTF16BE,
216 STRFUNC_UTF32,
217 STRFUNC_UTF32LE,
218 STRFUNC_UTF32BE
221 enum ifunc {
222 IFUNC_ILOG2E,
223 IFUNC_ILOG2W,
224 IFUNC_ILOG2F,
225 IFUNC_ILOG2C
228 size_t string_transform(char *, size_t, char **, enum strfunc);
231 * The expression evaluator must be passed a scanner function; a
232 * standard scanner is provided as part of nasmlib.c. The
233 * preprocessor will use a different one. Scanners, and the
234 * token-value structures they return, look like this.
236 * The return value from the scanner is always a copy of the
237 * `t_type' field in the structure.
239 struct tokenval {
240 char *t_charptr;
241 int64_t t_integer;
242 int64_t t_inttwo;
243 enum token_type t_type;
244 int8_t t_flag;
246 typedef int (*scanner)(void *private_data, struct tokenval *tv);
248 struct location {
249 int64_t offset;
250 int32_t segment;
251 int known;
253 extern struct location location;
256 * Expression-evaluator datatype. Expressions, within the
257 * evaluator, are stored as an array of these beasts, terminated by
258 * a record with type==0. Mostly, it's a vector type: each type
259 * denotes some kind of a component, and the value denotes the
260 * multiple of that component present in the expression. The
261 * exception is the WRT type, whose `value' field denotes the
262 * segment to which the expression is relative. These segments will
263 * be segment-base types, i.e. either odd segment values or SEG_ABS
264 * types. So it is still valid to assume that anything with a
265 * `value' field of zero is insignificant.
267 typedef struct {
268 int32_t type; /* a register, or EXPR_xxx */
269 int64_t value; /* must be >= 32 bits */
270 } expr;
273 * Library routines to manipulate expression data types.
275 int is_reloc(expr *vect);
276 int is_simple(expr *vect);
277 int is_really_simple(expr *vect);
278 int is_unknown(expr *vect);
279 int is_just_unknown(expr *vect);
280 int64_t reloc_value(expr *vect);
281 int32_t reloc_seg(expr *vect);
282 int32_t reloc_wrt(expr *vect);
285 * The evaluator can also return hints about which of two registers
286 * used in an expression should be the base register. See also the
287 * `operand' structure.
289 struct eval_hints {
290 int64_t base;
291 int type;
295 * The actual expression evaluator function looks like this. When
296 * called, it expects the first token of its expression to already
297 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
298 * it will start by calling the scanner.
300 * If a forward reference happens during evaluation, the evaluator
301 * must set `*fwref' to true if `fwref' is non-NULL.
303 * `critical' is non-zero if the expression may not contain forward
304 * references. The evaluator will report its own error if this
305 * occurs; if `critical' is 1, the error will be "symbol not
306 * defined before use", whereas if `critical' is 2, the error will
307 * be "symbol undefined".
309 * If `critical' has bit 8 set (in addition to its main value: 0x101
310 * and 0x102 correspond to 1 and 2) then an extended expression
311 * syntax is recognised, in which relational operators such as =, <
312 * and >= are accepted, as well as low-precedence logical operators
313 * &&, ^^ and ||.
315 * If `hints' is non-NULL, it gets filled in with some hints as to
316 * the base register in complex effective addresses.
318 #define CRITICAL 0x100
319 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
320 struct tokenval *tv, int *fwref, int critical,
321 struct eval_hints *hints);
324 * Special values for expr->type.
325 * These come after EXPR_REG_END as defined in regs.h.
326 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
327 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
329 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
330 #define EXPR_SIMPLE (EXPR_REG_END+2)
331 #define EXPR_WRT (EXPR_REG_END+3)
332 #define EXPR_RDSAE (EXPR_REG_END+4)
333 #define EXPR_SEGBASE (EXPR_REG_END+5)
336 * Linked list of strings
338 typedef struct string_list {
339 struct string_list *next;
340 char str[1];
341 } StrList;
344 * preprocessors ought to look like this:
346 struct preproc_ops {
348 * Called at the start of a pass; given a file name, the number
349 * of the pass, an error reporting function, an evaluator
350 * function, and a listing generator to talk to.
352 void (*reset)(char *file, int pass, StrList **deplist);
355 * Called to fetch a line of preprocessed source. The line
356 * returned has been malloc'ed, and so should be freed after
357 * use.
359 char *(*getline)(void);
361 /* Called at the end of a pass */
362 void (*cleanup)(int pass);
364 /* Additional macros specific to output format */
365 void (*extra_stdmac)(macros_t *macros);
367 /* Early definitions and undefinitions for macros */
368 void (*pre_define)(char *definition);
369 void (*pre_undefine)(char *definition);
371 /* Include file from command line */
372 void (*pre_include)(char *fname);
374 /* Include path from command line */
375 void (*include_path)(char *path);
377 /* Unwind the macro stack when printing an error message */
378 void (*error_list_macros)(int severity);
381 extern const struct preproc_ops nasmpp;
382 extern const struct preproc_ops preproc_nop;
385 * Some lexical properties of the NASM source language, included
386 * here because they are shared between the parser and preprocessor.
390 * isidstart matches any character that may start an identifier, and isidchar
391 * matches any character that may appear at places other than the start of an
392 * identifier. E.g. a period may only appear at the start of an identifier
393 * (for local labels), whereas a number may appear anywhere *but* at the
394 * start.
395 * isbrcchar matches any character that may placed inside curly braces as a
396 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
399 #define isidstart(c) (nasm_isalpha(c) || \
400 (c) == '_' || \
401 (c) == '.' || \
402 (c) == '?' || \
403 (c) == '@')
405 #define isidchar(c) (isidstart(c) || \
406 nasm_isdigit(c) || \
407 (c) == '$' || \
408 (c) == '#' || \
409 (c) == '~')
411 #define isbrcchar(c) (isidchar(c) || \
412 (c) == '-')
414 /* Ditto for numeric constants. */
416 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
417 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
420 * Data-type flags that get passed to listing-file routines.
422 enum {
423 LIST_READ,
424 LIST_MACRO,
425 LIST_MACRO_NOLIST,
426 LIST_INCLUDE,
427 LIST_INCBIN,
428 LIST_TIMES
432 * -----------------------------------------------------------
433 * Format of the `insn' structure returned from `parser.c' and
434 * passed into `assemble.c'
435 * -----------------------------------------------------------
438 /* Verify value to be a valid register */
439 static inline bool is_register(int reg)
441 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
444 enum ccode { /* condition code names */
445 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
446 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
447 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
448 C_none = -1
452 * token flags
454 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
455 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
456 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
457 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
458 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
460 static inline uint8_t get_cond_opcode(enum ccode c)
462 static const uint8_t ccode_opcodes[] = {
463 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
464 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
465 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
468 return ccode_opcodes[(int)c];
472 * REX flags
474 #define REX_MASK 0x4f /* Actual REX prefix bits */
475 #define REX_B 0x01 /* ModRM r/m extension */
476 #define REX_X 0x02 /* SIB index extension */
477 #define REX_R 0x04 /* ModRM reg extension */
478 #define REX_W 0x08 /* 64-bit operand size */
479 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
480 #define REX_P 0x40 /* REX prefix present/required */
481 #define REX_H 0x80 /* High register present, REX forbidden */
482 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
483 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
484 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
487 * EVEX bit field
489 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
490 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
491 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
492 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
493 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
494 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
495 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
496 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
497 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
498 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
499 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
500 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
503 * REX_V "classes" (prefixes which behave like VEX)
505 enum vex_class {
506 RV_VEX = 0, /* C4/C5 */
507 RV_XOP = 1, /* 8F */
508 RV_EVEX = 2 /* 62 */
512 * Note that because segment registers may be used as instruction
513 * prefixes, we must ensure the enumerations for prefixes and
514 * register names do not overlap.
516 enum prefixes { /* instruction prefixes */
517 P_none = 0,
518 PREFIX_ENUM_START = REG_ENUM_LIMIT,
519 P_A16 = PREFIX_ENUM_START,
520 P_A32,
521 P_A64,
522 P_ASP,
523 P_LOCK,
524 P_O16,
525 P_O32,
526 P_O64,
527 P_OSP,
528 P_REP,
529 P_REPE,
530 P_REPNE,
531 P_REPNZ,
532 P_REPZ,
533 P_TIMES,
534 P_WAIT,
535 P_XACQUIRE,
536 P_XRELEASE,
537 P_BND,
538 P_NOBND,
539 P_EVEX,
540 P_VEX3,
541 P_VEX2,
542 PREFIX_ENUM_LIMIT
545 enum extop_type { /* extended operand types */
546 EOT_NOTHING,
547 EOT_DB_STRING, /* Byte string */
548 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
549 EOT_DB_NUMBER /* Integer */
552 enum ea_flags { /* special EA flags */
553 EAF_BYTEOFFS = 1, /* force offset part to byte size */
554 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
555 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
556 EAF_REL = 8, /* IP-relative addressing */
557 EAF_ABS = 16, /* non-IP-relative addressing */
558 EAF_FSGS = 32, /* fs/gs segment override present */
559 EAF_MIB = 64 /* mib operand */
562 enum eval_hint { /* values for `hinttype' */
563 EAH_NOHINT = 0, /* no hint at all - our discretion */
564 EAH_MAKEBASE = 1, /* try to make given reg the base */
565 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
566 EAH_SUMMED = 3 /* base and index are summed into index */
569 typedef struct operand { /* operand to an instruction */
570 opflags_t type; /* type of operand */
571 int disp_size; /* 0 means default; 16; 32; 64 */
572 enum reg_enum basereg;
573 enum reg_enum indexreg; /* address registers */
574 int scale; /* index scale */
575 int hintbase;
576 enum eval_hint hinttype; /* hint as to real base register */
577 int32_t segment; /* immediate segment, if needed */
578 int64_t offset; /* any immediate number */
579 int32_t wrt; /* segment base it's relative to */
580 int eaflags; /* special EA flags */
581 int opflags; /* see OPFLAG_* defines below */
582 decoflags_t decoflags; /* decorator flags such as {...} */
583 } operand;
585 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
586 #define OPFLAG_EXTERN 2 /* operand is an external reference */
587 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
588 * (always a forward reference also)
591 typedef struct extop { /* extended operand */
592 struct extop *next; /* linked list */
593 char *stringval; /* if it's a string, then here it is */
594 size_t stringlen; /* ... and here's how long it is */
595 int64_t offset; /* ... it's given here ... */
596 int32_t segment; /* if it's a number/address, then... */
597 int32_t wrt; /* ... and here */
598 enum extop_type type; /* defined above */
599 } extop;
601 enum ea_type {
602 EA_INVALID, /* Not a valid EA at all */
603 EA_SCALAR, /* Scalar EA */
604 EA_XMMVSIB, /* XMM vector EA */
605 EA_YMMVSIB, /* YMM vector EA */
606 EA_ZMMVSIB /* ZMM vector EA */
610 * Prefix positions: each type of prefix goes in a specific slot.
611 * This affects the final ordering of the assembled output, which
612 * shouldn't matter to the processor, but if you have stylistic
613 * preferences, you can change this. REX prefixes are handled
614 * differently for the time being.
616 * LOCK and REP used to be one slot; this is no longer the case since
617 * the introduction of HLE.
619 enum prefix_pos {
620 PPS_WAIT, /* WAIT (technically not a prefix!) */
621 PPS_REP, /* REP/HLE prefix */
622 PPS_LOCK, /* LOCK prefix */
623 PPS_SEG, /* Segment override prefix */
624 PPS_OSIZE, /* Operand size prefix */
625 PPS_ASIZE, /* Address size prefix */
626 PPS_VEX, /* VEX type */
627 MAXPREFIX /* Total number of prefix slots */
631 * Tuple types that are used when determining Disp8*N eligibility
632 * The order must match with a hash %tuple_codes in insns.pl
634 enum ttypes {
635 FV = 001,
636 HV = 002,
637 FVM = 003,
638 T1S8 = 004,
639 T1S16 = 005,
640 T1S = 006,
641 T1F32 = 007,
642 T1F64 = 010,
643 T2 = 011,
644 T4 = 012,
645 T8 = 013,
646 HVM = 014,
647 QVM = 015,
648 OVM = 016,
649 M128 = 017,
650 DUP = 020
653 /* EVEX.L'L : Vector length on vector insns */
654 enum vectlens {
655 VL128 = 0,
656 VL256 = 1,
657 VL512 = 2,
658 VLMAX = 3
661 /* If you need to change this, also change it in insns.pl */
662 #define MAX_OPERANDS 5
664 typedef struct insn { /* an instruction itself */
665 char *label; /* the label defined, or NULL */
666 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
667 enum opcode opcode; /* the opcode - not just the string */
668 enum ccode condition; /* the condition code, if Jcc/SETcc */
669 int operands; /* how many operands? 0-3 (more if db et al) */
670 int addr_size; /* address size */
671 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
672 extop *eops; /* extended operands */
673 int eops_float; /* true if DD and floating */
674 int32_t times; /* repeat count (TIMES prefix) */
675 bool forw_ref; /* is there a forward reference? */
676 bool rex_done; /* REX prefix emitted? */
677 int rex; /* Special REX Prefix */
678 int vexreg; /* Register encoded in VEX prefix */
679 int vex_cm; /* Class and M field for VEX prefix */
680 int vex_wlp; /* W, P and L information for VEX prefix */
681 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
682 /* EVEX.P2: [z,L'L,b,V',aaa] */
683 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
684 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
685 int8_t evex_brerop; /* BR/ER/SAE operand position */
686 } insn;
688 enum geninfo { GI_SWITCH };
690 /* Instruction flags type: IF_* flags are defined in insns.h */
691 typedef uint64_t iflags_t;
694 * The data structure defining an output format driver, and the
695 * interfaces to the functions therein.
697 struct ofmt {
699 * This is a short (one-liner) description of the type of
700 * output generated by the driver.
702 const char *fullname;
705 * This is a single keyword used to select the driver.
707 const char *shortname;
710 * Output format flags.
712 #define OFMT_TEXT 1 /* Text file format */
713 unsigned int flags;
715 int maxbits; /* Maximum segment bits supported */
718 * this is a pointer to the first element of the debug information
720 const struct dfmt * const *debug_formats;
723 * the default debugging format if -F is not specified
725 const struct dfmt *default_dfmt;
728 * This, if non-NULL, is a NULL-terminated list of `char *'s
729 * pointing to extra standard macros supplied by the object
730 * format (e.g. a sensible initial default value of __SECT__,
731 * and user-level equivalents for any format-specific
732 * directives).
734 macros_t *stdmac;
737 * This procedure is called at the start of an output session to set
738 * up internal parameters.
740 void (*init)(void);
743 * This procedure is called to pass generic information to the
744 * object file. The first parameter gives the information type
745 * (currently only command line switches)
746 * and the second parameter gives the value. This function returns
747 * 1 if recognized, 0 if unrecognized
749 int (*setinfo)(enum geninfo type, char **string);
752 * This procedure is called by assemble() to write actual
753 * generated code or data to the object file. Typically it
754 * doesn't have to actually _write_ it, just store it for
755 * later.
757 * The `type' argument specifies the type of output data, and
758 * usually the size as well: its contents are described below.
760 void (*output)(int32_t segto, const void *data,
761 enum out_type type, uint64_t size,
762 int32_t segment, int32_t wrt);
765 * This procedure is called once for every symbol defined in
766 * the module being assembled. It gives the name and value of
767 * the symbol, in NASM's terms, and indicates whether it has
768 * been declared to be global. Note that the parameter "name",
769 * when passed, will point to a piece of static storage
770 * allocated inside the label manager - it's safe to keep using
771 * that pointer, because the label manager doesn't clean up
772 * until after the output driver has.
774 * Values of `is_global' are: 0 means the symbol is local; 1
775 * means the symbol is global; 2 means the symbol is common (in
776 * which case `offset' holds the _size_ of the variable).
777 * Anything else is available for the output driver to use
778 * internally.
780 * This routine explicitly _is_ allowed to call the label
781 * manager to define further symbols, if it wants to, even
782 * though it's been called _from_ the label manager. That much
783 * re-entrancy is guaranteed in the label manager. However, the
784 * label manager will in turn call this routine, so it should
785 * be prepared to be re-entrant itself.
787 * The `special' parameter contains special information passed
788 * through from the command that defined the label: it may have
789 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
790 * be obvious to the output format from the other parameters.
792 void (*symdef)(char *name, int32_t segment, int64_t offset,
793 int is_global, char *special);
796 * This procedure is called when the source code requests a
797 * segment change. It should return the corresponding segment
798 * _number_ for the name, or NO_SEG if the name is not a valid
799 * segment name.
801 * It may also be called with NULL, in which case it is to
802 * return the _default_ section number for starting assembly in.
804 * It is allowed to modify the string it is given a pointer to.
806 * It is also allowed to specify a default instruction size for
807 * the segment, by setting `*bits' to 16 or 32. Or, if it
808 * doesn't wish to define a default, it can leave `bits' alone.
810 int32_t (*section)(char *name, int pass, int *bits);
813 * This procedure is called to modify section alignment,
814 * note there is a trick, the alignment can only increase
816 void (*sectalign)(int32_t seg, unsigned int value);
819 * This procedure is called to modify the segment base values
820 * returned from the SEG operator. It is given a segment base
821 * value (i.e. a segment value with the low bit set), and is
822 * required to produce in return a segment value which may be
823 * different. It can map segment bases to absolute numbers by
824 * means of returning SEG_ABS types.
826 * It should return NO_SEG if the segment base cannot be
827 * determined; the evaluator (which calls this routine) is
828 * responsible for throwing an error condition if that occurs
829 * in pass two or in a critical expression.
831 int32_t (*segbase)(int32_t segment);
834 * This procedure is called to allow the output driver to
835 * process its own specific directives. When called, it has the
836 * directive word in `directive' and the parameter string in
837 * `value'. It is called in both assembly passes, and `pass'
838 * will be either 1 or 2.
840 * This procedure should return zero if it does not _recognise_
841 * the directive, so that the main program can report an error.
842 * If it recognises the directive but then has its own errors,
843 * it should report them itself and then return non-zero. It
844 * should also return non-zero if it correctly processes the
845 * directive.
847 int (*directive)(enum directives directive, char *value, int pass);
850 * This procedure is called before anything else - even before
851 * the "init" routine - and is passed the name of the input
852 * file from which this output file is being generated. It
853 * should return its preferred name for the output file in
854 * `outname', if outname[0] is not '\0', and do nothing to
855 * `outname' otherwise. Since it is called before the driver is
856 * properly initialized, it has to be passed its error handler
857 * separately.
859 * This procedure may also take its own copy of the input file
860 * name for use in writing the output file: it is _guaranteed_
861 * that it will be called before the "init" routine.
863 * The parameter `outname' points to an area of storage
864 * guaranteed to be at least FILENAME_MAX in size.
866 void (*filename)(char *inname, char *outname);
869 * This procedure is called after assembly finishes, to allow
870 * the output driver to clean itself up and free its memory.
871 * Typically, it will also be the point at which the object
872 * file actually gets _written_.
874 * One thing the cleanup routine should always do is to close
875 * the output file pointer.
877 void (*cleanup)(void);
881 * Output format driver alias
883 struct ofmt_alias {
884 const char *shortname;
885 const char *fullname;
886 const struct ofmt *ofmt;
889 extern const struct ofmt *ofmt;
890 extern FILE *ofile;
893 * ------------------------------------------------------------
894 * The data structure defining a debug format driver, and the
895 * interfaces to the functions therein.
896 * ------------------------------------------------------------
899 struct dfmt {
901 * This is a short (one-liner) description of the type of
902 * output generated by the driver.
904 const char *fullname;
907 * This is a single keyword used to select the driver.
909 const char *shortname;
912 * init - called initially to set up local pointer to object format.
914 void (*init)(void);
917 * linenum - called any time there is output with a change of
918 * line number or file.
920 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
923 * debug_deflabel - called whenever a label is defined. Parameters
924 * are the same as to 'symdef()' in the output format. This function
925 * is called after the output format version.
928 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
929 int is_global, char *special);
931 * debug_directive - called whenever a DEBUG directive other than 'LINE'
932 * is encountered. 'directive' contains the first parameter to the
933 * DEBUG directive, and params contains the rest. For example,
934 * 'DEBUG VAR _somevar:int' would translate to a call to this
935 * function with 'directive' equal to "VAR" and 'params' equal to
936 * "_somevar:int".
938 void (*debug_directive)(const char *directive, const char *params);
941 * typevalue - called whenever the assembler wishes to register a type
942 * for the last defined label. This routine MUST detect if a type was
943 * already registered and not re-register it.
945 void (*debug_typevalue)(int32_t type);
948 * debug_output - called whenever output is required
949 * 'type' is the type of info required, and this is format-specific
951 void (*debug_output)(int type, void *param);
954 * cleanup - called after processing of file is complete
956 void (*cleanup)(void);
959 extern const struct dfmt *dfmt;
962 * The type definition macros
963 * for debugging
965 * low 3 bits: reserved
966 * next 5 bits: type
967 * next 24 bits: number of elements for arrays (0 for labels)
970 #define TY_UNKNOWN 0x00
971 #define TY_LABEL 0x08
972 #define TY_BYTE 0x10
973 #define TY_WORD 0x18
974 #define TY_DWORD 0x20
975 #define TY_FLOAT 0x28
976 #define TY_QWORD 0x30
977 #define TY_TBYTE 0x38
978 #define TY_OWORD 0x40
979 #define TY_YWORD 0x48
980 #define TY_COMMON 0xE0
981 #define TY_SEG 0xE8
982 #define TY_EXTERN 0xF0
983 #define TY_EQU 0xF8
985 #define TYM_TYPE(x) ((x) & 0xF8)
986 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
988 #define TYS_ELEMENTS(x) ((x) << 8)
990 enum special_tokens {
991 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
992 S_ABS = SPECIAL_ENUM_START,
993 S_BYTE,
994 S_DWORD,
995 S_FAR,
996 S_LONG,
997 S_NEAR,
998 S_NOSPLIT,
999 S_OWORD,
1000 S_QWORD,
1001 S_REL,
1002 S_SHORT,
1003 S_STRICT,
1004 S_TO,
1005 S_TWORD,
1006 S_WORD,
1007 S_YWORD,
1008 S_ZWORD,
1009 SPECIAL_ENUM_LIMIT
1012 enum decorator_tokens {
1013 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1014 BRC_1TO2 = DECORATOR_ENUM_START,
1015 BRC_1TO4,
1016 BRC_1TO8,
1017 BRC_1TO16,
1018 BRC_RN,
1019 BRC_RD,
1020 BRC_RU,
1021 BRC_RZ,
1022 BRC_SAE,
1023 BRC_Z,
1024 DECORATOR_ENUM_LIMIT
1028 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1029 * 3 2 1
1030 * 10987654321098765432109876543210
1032 * | word boundary
1033 * ............................1111 opmask
1034 * ...........................1.... zeroing / merging
1035 * ..........................1..... broadcast
1036 * .........................1...... static rounding
1037 * ........................1....... SAE
1038 * ......................11........ broadcast element size
1039 * ....................11.......... number of broadcast elements
1041 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1044 * Opmask register number
1045 * identical to EVEX.aaa
1047 * Bits: 0 - 3
1049 #define OPMASK_SHIFT (0)
1050 #define OPMASK_BITS (4)
1051 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1052 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1053 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1056 * zeroing / merging control available
1057 * matching to EVEX.z
1059 * Bits: 4
1061 #define Z_SHIFT (4)
1062 #define Z_BITS (1)
1063 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1064 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1067 * broadcast - Whether this operand can be broadcasted
1069 * Bits: 5
1071 #define BRDCAST_SHIFT (5)
1072 #define BRDCAST_BITS (1)
1073 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1074 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1077 * Whether this instruction can have a static rounding mode.
1078 * It goes with the last simd operand because the static rounding mode
1079 * decorator is located between the last simd operand and imm8 (if any).
1081 * Bits: 6
1083 #define STATICRND_SHIFT (6)
1084 #define STATICRND_BITS (1)
1085 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1086 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1089 * SAE(Suppress all exception) available
1091 * Bits: 7
1093 #define SAE_SHIFT (7)
1094 #define SAE_BITS (1)
1095 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1096 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1099 * Broadcasting element size.
1101 * Bits: 8 - 9
1103 #define BRSIZE_SHIFT (8)
1104 #define BRSIZE_BITS (2)
1105 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1106 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1108 #define BR_BITS32 GEN_BRSIZE(0)
1109 #define BR_BITS64 GEN_BRSIZE(1)
1112 * Number of broadcasting elements
1114 * Bits: 10 - 11
1116 #define BRNUM_SHIFT (10)
1117 #define BRNUM_BITS (2)
1118 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1119 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1121 #define BR_1TO2 VAL_BRNUM(0)
1122 #define BR_1TO4 VAL_BRNUM(1)
1123 #define BR_1TO8 VAL_BRNUM(2)
1124 #define BR_1TO16 VAL_BRNUM(3)
1126 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1127 #define Z Z_MASK
1128 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1129 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1130 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1131 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1134 * Global modes
1138 * This declaration passes the "pass" number to all other modules
1139 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1140 * where 0 = optimizing pass
1141 * 1 = pass 1
1142 * 2 = pass 2
1145 extern int pass0;
1146 extern int passn; /* Actual pass number */
1148 extern bool tasm_compatible_mode;
1149 extern int optimizing;
1150 extern int globalbits; /* 16, 32 or 64-bit mode */
1151 extern int globalrel; /* default to relative addressing? */
1152 extern int globalbnd; /* default to using bnd prefix? */
1154 #endif