rbtree: add rb_search_exact()
[nasm.git] / asm / parser.c
blob47b46ecd533969870541e0811c213d21d0af7cbd
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2020 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * parser.c source line parser for the Netwide Assembler
38 #include "compiler.h"
40 #include "nctype.h"
42 #include "nasm.h"
43 #include "insns.h"
44 #include "nasmlib.h"
45 #include "error.h"
46 #include "stdscan.h"
47 #include "eval.h"
48 #include "parser.h"
49 #include "floats.h"
50 #include "assemble.h"
51 #include "tables.h"
54 static int end_expression_next(void);
56 static struct tokenval tokval;
58 static int prefix_slot(int prefix)
60 switch (prefix) {
61 case P_WAIT:
62 return PPS_WAIT;
63 case R_CS:
64 case R_DS:
65 case R_SS:
66 case R_ES:
67 case R_FS:
68 case R_GS:
69 return PPS_SEG;
70 case P_LOCK:
71 return PPS_LOCK;
72 case P_REP:
73 case P_REPE:
74 case P_REPZ:
75 case P_REPNE:
76 case P_REPNZ:
77 case P_XACQUIRE:
78 case P_XRELEASE:
79 case P_BND:
80 case P_NOBND:
81 return PPS_REP;
82 case P_O16:
83 case P_O32:
84 case P_O64:
85 case P_OSP:
86 return PPS_OSIZE;
87 case P_A16:
88 case P_A32:
89 case P_A64:
90 case P_ASP:
91 return PPS_ASIZE;
92 case P_EVEX:
93 case P_VEX3:
94 case P_VEX2:
95 return PPS_VEX;
96 default:
97 nasm_panic("Invalid value %d passed to prefix_slot()", prefix);
98 return -1;
102 static void process_size_override(insn *result, operand *op)
104 if (tasm_compatible_mode) {
105 switch (tokval.t_integer) {
106 /* For TASM compatibility a size override inside the
107 * brackets changes the size of the operand, not the
108 * address type of the operand as it does in standard
109 * NASM syntax. Hence:
111 * mov eax,[DWORD val]
113 * is valid syntax in TASM compatibility mode. Note that
114 * you lose the ability to override the default address
115 * type for the instruction, but we never use anything
116 * but 32-bit flat model addressing in our code.
118 case S_BYTE:
119 op->type |= BITS8;
120 break;
121 case S_WORD:
122 op->type |= BITS16;
123 break;
124 case S_DWORD:
125 case S_LONG:
126 op->type |= BITS32;
127 break;
128 case S_QWORD:
129 op->type |= BITS64;
130 break;
131 case S_TWORD:
132 op->type |= BITS80;
133 break;
134 case S_OWORD:
135 op->type |= BITS128;
136 break;
137 default:
138 nasm_nonfatal("invalid operand size specification");
139 break;
141 } else {
142 /* Standard NASM compatible syntax */
143 switch (tokval.t_integer) {
144 case S_NOSPLIT:
145 op->eaflags |= EAF_TIMESTWO;
146 break;
147 case S_REL:
148 op->eaflags |= EAF_REL;
149 break;
150 case S_ABS:
151 op->eaflags |= EAF_ABS;
152 break;
153 case S_BYTE:
154 op->disp_size = 8;
155 op->eaflags |= EAF_BYTEOFFS;
156 break;
157 case P_A16:
158 case P_A32:
159 case P_A64:
160 if (result->prefixes[PPS_ASIZE] &&
161 result->prefixes[PPS_ASIZE] != tokval.t_integer)
162 nasm_nonfatal("conflicting address size specifications");
163 else
164 result->prefixes[PPS_ASIZE] = tokval.t_integer;
165 break;
166 case S_WORD:
167 op->disp_size = 16;
168 op->eaflags |= EAF_WORDOFFS;
169 break;
170 case S_DWORD:
171 case S_LONG:
172 op->disp_size = 32;
173 op->eaflags |= EAF_WORDOFFS;
174 break;
175 case S_QWORD:
176 op->disp_size = 64;
177 op->eaflags |= EAF_WORDOFFS;
178 break;
179 default:
180 nasm_nonfatal("invalid size specification in"
181 " effective address");
182 break;
188 * Brace decorators are are parsed here. opmask and zeroing
189 * decorators can be placed in any order. e.g. zmm1 {k2}{z} or zmm2
190 * {z}{k3} decorator(s) are placed at the end of an operand.
192 static bool parse_braces(decoflags_t *decoflags)
194 int i, j;
196 i = tokval.t_type;
198 while (true) {
199 switch (i) {
200 case TOKEN_OPMASK:
201 if (*decoflags & OPMASK_MASK) {
202 nasm_nonfatal("opmask k%"PRIu64" is already set",
203 *decoflags & OPMASK_MASK);
204 *decoflags &= ~OPMASK_MASK;
206 *decoflags |= VAL_OPMASK(nasm_regvals[tokval.t_integer]);
207 break;
208 case TOKEN_DECORATOR:
209 j = tokval.t_integer;
210 switch (j) {
211 case BRC_Z:
212 *decoflags |= Z_MASK;
213 break;
214 case BRC_1TO2:
215 case BRC_1TO4:
216 case BRC_1TO8:
217 case BRC_1TO16:
218 *decoflags |= BRDCAST_MASK | VAL_BRNUM(j - BRC_1TO2);
219 break;
220 default:
221 nasm_nonfatal("{%s} is not an expected decorator",
222 tokval.t_charptr);
223 break;
225 break;
226 case ',':
227 case TOKEN_EOS:
228 return false;
229 default:
230 nasm_nonfatal("only a series of valid decorators expected");
231 return true;
233 i = stdscan(NULL, &tokval);
237 static inline unused_func
238 const expr *next_expr(const expr *e, const expr **next_list)
240 e++;
241 if (!e->type) {
242 if (next_list) {
243 e = *next_list;
244 *next_list = NULL;
245 } else {
246 e = NULL;
249 return e;
252 static inline void init_operand(operand *op)
254 memset(op, 0, sizeof *op);
256 op->basereg = -1;
257 op->indexreg = -1;
258 op->segment = NO_SEG;
259 op->wrt = NO_SEG;
262 static int parse_mref(operand *op, const expr *e)
264 int b, i, s; /* basereg, indexreg, scale */
265 int64_t o; /* offset */
267 b = op->basereg;
268 i = op->indexreg;
269 s = op->scale;
270 o = op->offset;
272 for (; e->type; e++) {
273 if (e->type <= EXPR_REG_END) {
274 bool is_gpr = is_class(REG_GPR,nasm_reg_flags[e->type]);
276 if (is_gpr && e->value == 1 && b == -1) {
277 /* It can be basereg */
278 b = e->type;
279 } else if (i == -1) {
280 /* Must be index register */
281 i = e->type;
282 s = e->value;
283 } else {
284 if (b == -1)
285 nasm_nonfatal("invalid effective address: two index registers");
286 else if (!is_gpr)
287 nasm_nonfatal("invalid effective address: impossible register");
288 else
289 nasm_nonfatal("invalid effective address: too many registers");
290 return -1;
292 } else if (e->type == EXPR_UNKNOWN) {
293 op->opflags |= OPFLAG_UNKNOWN;
294 } else if (e->type == EXPR_SIMPLE) {
295 o += e->value;
296 } else if (e->type == EXPR_WRT) {
297 op->wrt = e->value;
298 } else if (e->type >= EXPR_SEGBASE) {
299 if (e->value == 1) {
300 if (op->segment != NO_SEG) {
301 nasm_nonfatal("invalid effective address: multiple base segments");
302 return -1;
304 op->segment = e->type - EXPR_SEGBASE;
305 } else if (e->value == -1 &&
306 e->type == location.segment + EXPR_SEGBASE &&
307 !(op->opflags & OPFLAG_RELATIVE)) {
308 op->opflags |= OPFLAG_RELATIVE;
309 } else {
310 nasm_nonfatal("invalid effective address: impossible segment base multiplier");
311 return -1;
313 } else {
314 nasm_nonfatal("invalid effective address: bad subexpression type");
315 return -1;
319 op->basereg = b;
320 op->indexreg = i;
321 op->scale = s;
322 op->offset = o;
323 return 0;
326 static void mref_set_optype(operand *op)
328 int b = op->basereg;
329 int i = op->indexreg;
330 int s = op->scale;
332 /* It is memory, but it can match any r/m operand */
333 op->type |= MEMORY_ANY;
335 if (b == -1 && (i == -1 || s == 0)) {
336 int is_rel = globalbits == 64 &&
337 !(op->eaflags & EAF_ABS) &&
338 ((globalrel &&
339 !(op->eaflags & EAF_FSGS)) ||
340 (op->eaflags & EAF_REL));
342 op->type |= is_rel ? IP_REL : MEM_OFFS;
345 if (i != -1) {
346 opflags_t iclass = nasm_reg_flags[i];
348 if (is_class(XMMREG,iclass))
349 op->type |= XMEM;
350 else if (is_class(YMMREG,iclass))
351 op->type |= YMEM;
352 else if (is_class(ZMMREG,iclass))
353 op->type |= ZMEM;
358 * Convert an expression vector returned from evaluate() into an
359 * extop structure. Return zero on success. Note that the eop
360 * already has dup and elem set, so we can't clear it here.
362 static int value_to_extop(expr *vect, extop *eop, int32_t myseg)
364 eop->type = EOT_DB_NUMBER;
365 eop->val.num.offset = 0;
366 eop->val.num.segment = eop->val.num.wrt = NO_SEG;
367 eop->val.num.relative = false;
369 for (; vect->type; vect++) {
370 if (!vect->value) /* zero term, safe to ignore */
371 continue;
373 if (vect->type <= EXPR_REG_END) /* false if a register is present */
374 return -1;
376 if (vect->type == EXPR_UNKNOWN) /* something we can't resolve yet */
377 return 0;
379 if (vect->type == EXPR_SIMPLE) {
380 /* Simple number expression */
381 eop->val.num.offset += vect->value;
382 continue;
384 if (eop->val.num.wrt == NO_SEG && !eop->val.num.relative &&
385 vect->type == EXPR_WRT) {
386 /* WRT term */
387 eop->val.num.wrt = vect->value;
388 continue;
391 if (!eop->val.num.relative &&
392 vect->type == EXPR_SEGBASE + myseg && vect->value == -1) {
393 /* Expression of the form: foo - $ */
394 eop->val.num.relative = true;
395 continue;
398 if (eop->val.num.segment == NO_SEG &&
399 vect->type >= EXPR_SEGBASE && vect->value == 1) {
400 eop->val.num.segment = vect->type - EXPR_SEGBASE;
401 continue;
404 /* Otherwise, badness */
405 return -1;
408 /* We got to the end and it was all okay */
409 return 0;
413 * Parse an extended expression, used by db et al. "elem" is the element
414 * size; initially comes from the specific opcode (e.g. db == 1) but
415 * can be overridden.
417 static int parse_eops(extop **result, bool critical, int elem)
419 extop *eop = NULL, *prev = NULL;
420 extop **tail = result;
421 int sign;
422 int i = tokval.t_type;
423 int oper_num = 0;
424 bool do_subexpr = false;
426 *tail = NULL;
428 /* End of string is obvious; ) ends a sub-expression list e.g. DUP */
429 for (i = tokval.t_type; i != TOKEN_EOS; i = stdscan(NULL, &tokval)) {
430 char endparen = ')'; /* Is a right paren the end of list? */
432 if (i == ')')
433 break;
435 if (!eop) {
436 nasm_new(eop);
437 eop->dup = 1;
438 eop->elem = elem;
439 do_subexpr = false;
441 sign = +1;
444 * end_expression_next() here is to distinguish this from
445 * a string used as part of an expression...
447 if (i == TOKEN_QMARK) {
448 eop->type = EOT_DB_RESERVE;
449 } else if (do_subexpr && i == '(') {
450 extop *subexpr;
452 stdscan(NULL, &tokval); /* Skip paren */
453 if (parse_eops(&eop->val.subexpr, critical, eop->elem) < 0)
454 goto fail;
456 subexpr = eop->val.subexpr;
457 if (!subexpr) {
458 /* Subexpression is empty */
459 eop->type = EOT_NOTHING;
460 } else if (!subexpr->next) {
461 /* Subexpression is a single element, flatten */
462 eop->val = subexpr->val;
463 eop->type = subexpr->type;
464 eop->dup *= subexpr->dup;
465 nasm_free(subexpr);
466 } else {
467 eop->type = EOT_EXTOP;
470 /* We should have ended on a closing paren */
471 if (tokval.t_type != ')') {
472 nasm_nonfatal("expected `)' after subexpression, got `%s'",
473 i == TOKEN_EOS ?
474 "end of line" : tokval.t_charptr);
475 goto fail;
477 endparen = 0; /* This time the paren is not the end */
478 } else if (i == '%') {
479 /* %(expression_list) */
480 do_subexpr = true;
481 continue;
482 } else if (i == TOKEN_SIZE) {
483 /* Element size override */
484 eop->elem = tokval.t_inttwo;
485 do_subexpr = true;
486 continue;
487 } else if (i == TOKEN_STR && end_expression_next()) {
488 eop->type = EOT_DB_STRING;
489 eop->val.string.data = tokval.t_charptr;
490 eop->val.string.len = tokval.t_inttwo;
491 } else if (i == TOKEN_STRFUNC) {
492 bool parens = false;
493 const char *funcname = tokval.t_charptr;
494 enum strfunc func = tokval.t_integer;
496 i = stdscan(NULL, &tokval);
497 if (i == '(') {
498 parens = true;
499 endparen = 0;
500 i = stdscan(NULL, &tokval);
502 if (i != TOKEN_STR) {
503 nasm_nonfatal("%s must be followed by a string constant",
504 funcname);
505 eop->type = EOT_NOTHING;
506 } else {
507 eop->type = EOT_DB_STRING_FREE;
508 eop->val.string.len =
509 string_transform(tokval.t_charptr, tokval.t_inttwo,
510 &eop->val.string.data, func);
511 if (eop->val.string.len == (size_t)-1) {
512 nasm_nonfatal("invalid input string to %s", funcname);
513 eop->type = EOT_NOTHING;
516 if (parens && i && i != ')') {
517 i = stdscan(NULL, &tokval);
518 if (i != ')')
519 nasm_nonfatal("unterminated %s function", funcname);
521 } else if (i == '-' || i == '+') {
522 char *save = stdscan_get();
523 struct tokenval tmptok;
525 sign = (i == '-') ? -1 : 1;
526 if (stdscan(NULL, &tmptok) != TOKEN_FLOAT) {
527 stdscan_set(save);
528 goto is_expression;
529 } else {
530 tokval = tmptok;
531 goto is_float;
533 } else if (i == TOKEN_FLOAT) {
534 is_float:
535 eop->type = EOT_DB_FLOAT;
537 if (eop->elem > 16) {
538 nasm_nonfatal("no %d-bit floating-point format supported",
539 eop->elem << 3);
540 eop->val.string.len = 0;
541 } else if (eop->elem < 1) {
542 nasm_nonfatal("floating-point constant"
543 " encountered in unknown instruction");
545 * fix suggested by Pedro Gimeno... original line was:
546 * eop->type = EOT_NOTHING;
548 eop->val.string.len = 0;
549 } else {
550 eop->val.string.len = eop->elem;
552 eop = nasm_realloc(eop, sizeof(extop) + eop->val.string.len);
553 eop->val.string.data = (char *)eop + sizeof(extop);
554 if (!float_const(tokval.t_charptr, sign,
555 (uint8_t *)eop->val.string.data,
556 eop->val.string.len))
557 eop->val.string.len = 0;
559 if (!eop->val.string.len)
560 eop->type = EOT_NOTHING;
561 } else {
562 /* anything else, assume it is an expression */
563 expr *value;
565 is_expression:
566 value = evaluate(stdscan, NULL, &tokval, NULL,
567 critical, NULL);
568 i = tokval.t_type;
569 if (!value) /* Error in evaluator */
570 goto fail;
571 if (tokval.t_flag & TFLAG_DUP) {
572 /* Expression followed by DUP */
573 if (!is_simple(value)) {
574 nasm_nonfatal("non-constant argument supplied to DUP");
575 goto fail;
576 } else if (value->value < 0) {
577 nasm_nonfatal("negative argument supplied to DUP");
578 goto fail;
580 eop->dup *= (size_t)value->value;
581 do_subexpr = true;
582 continue;
584 if (value_to_extop(value, eop, location.segment)) {
585 nasm_nonfatal("expression is not simple or relocatable");
589 if (eop->dup == 0 || eop->type == EOT_NOTHING) {
590 nasm_free(eop);
591 } else if (eop->type == EOT_DB_RESERVE &&
592 prev && prev->type == EOT_DB_RESERVE &&
593 prev->elem == eop->elem) {
594 /* Coalesce multiple EOT_DB_RESERVE */
595 prev->dup += eop->dup;
596 nasm_free(eop);
597 } else {
598 /* Add this eop to the end of the chain */
599 prev = eop;
600 *tail = eop;
601 tail = &eop->next;
604 oper_num++;
605 eop = NULL; /* Done with this operand */
608 * We're about to call stdscan(), which will eat the
609 * comma that we're currently sitting on between
610 * arguments. However, we'd better check first that it
611 * _is_ a comma.
613 if (i == TOKEN_EOS || i == endparen) /* Already at end? */
614 break;
615 if (i != ',') {
616 i = stdscan(NULL, &tokval); /* eat the comma or final paren */
617 if (i == TOKEN_EOS || i == ')') /* got end of expression */
618 break;
619 if (i != ',') {
620 nasm_nonfatal("comma expected after operand");
621 goto fail;
626 return oper_num;
628 fail:
629 if (eop)
630 nasm_free(eop);
631 return -1;
634 insn *parse_line(char *buffer, insn *result)
636 bool insn_is_label = false;
637 struct eval_hints hints;
638 int opnum;
639 bool critical;
640 bool first;
641 bool recover;
642 bool far_jmp_ok;
643 int i;
645 nasm_static_assert(P_none == 0);
647 restart_parse:
648 first = true;
649 result->forw_ref = false;
651 stdscan_reset();
652 stdscan_set(buffer);
653 i = stdscan(NULL, &tokval);
655 memset(result->prefixes, P_none, sizeof(result->prefixes));
656 result->times = 1; /* No TIMES either yet */
657 result->label = NULL; /* Assume no label */
658 result->eops = NULL; /* must do this, whatever happens */
659 result->operands = 0; /* must initialize this */
660 result->evex_rm = 0; /* Ensure EVEX rounding mode is reset */
661 result->evex_brerop = -1; /* Reset EVEX broadcasting/ER op position */
663 /* Ignore blank lines */
664 if (i == TOKEN_EOS)
665 goto fail;
667 if (i != TOKEN_ID &&
668 i != TOKEN_INSN &&
669 i != TOKEN_PREFIX &&
670 (i != TOKEN_REG || !IS_SREG(tokval.t_integer))) {
671 nasm_nonfatal("label or instruction expected at start of line");
672 goto fail;
675 if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) {
676 /* there's a label here */
677 first = false;
678 result->label = tokval.t_charptr;
679 i = stdscan(NULL, &tokval);
680 if (i == ':') { /* skip over the optional colon */
681 i = stdscan(NULL, &tokval);
682 } else if (i == 0) {
684 *!label-orphan [on] labels alone on lines without trailing `:'
685 *!=orphan-labels
686 *! warns about source lines which contain no instruction but define
687 *! a label without a trailing colon. This is most likely indicative
688 *! of a typo, but is technically correct NASM syntax (see \k{syntax}.)
690 nasm_warn(WARN_LABEL_ORPHAN ,
691 "label alone on a line without a colon might be in error");
693 if (i != TOKEN_INSN || tokval.t_integer != I_EQU) {
695 * FIXME: location.segment could be NO_SEG, in which case
696 * it is possible we should be passing 'absolute.segment'. Look into this.
697 * Work out whether that is *really* what we should be doing.
698 * Generally fix things. I think this is right as it is, but
699 * am still not certain.
701 define_label(result->label,
702 in_absolute ? absolute.segment : location.segment,
703 location.offset, true);
707 /* Just a label here */
708 if (i == TOKEN_EOS)
709 goto fail;
711 while (i == TOKEN_PREFIX ||
712 (i == TOKEN_REG && IS_SREG(tokval.t_integer))) {
713 first = false;
716 * Handle special case: the TIMES prefix.
718 if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) {
719 expr *value;
721 i = stdscan(NULL, &tokval);
722 value = evaluate(stdscan, NULL, &tokval, NULL, pass_stable(), NULL);
723 i = tokval.t_type;
724 if (!value) /* Error in evaluator */
725 goto fail;
726 if (!is_simple(value)) {
727 nasm_nonfatal("non-constant argument supplied to TIMES");
728 result->times = 1L;
729 } else {
730 result->times = value->value;
731 if (value->value < 0) {
732 nasm_nonfatalf(ERR_PASS2, "TIMES value %"PRId64" is negative", value->value);
733 result->times = 0;
736 } else {
737 int slot = prefix_slot(tokval.t_integer);
738 if (result->prefixes[slot]) {
739 if (result->prefixes[slot] == tokval.t_integer)
740 nasm_warn(WARN_OTHER, "instruction has redundant prefixes");
741 else
742 nasm_nonfatal("instruction has conflicting prefixes");
744 result->prefixes[slot] = tokval.t_integer;
745 i = stdscan(NULL, &tokval);
749 if (i != TOKEN_INSN) {
750 int j;
751 enum prefixes pfx;
753 for (j = 0; j < MAXPREFIX; j++) {
754 if ((pfx = result->prefixes[j]) != P_none)
755 break;
758 if (i == 0 && pfx != P_none) {
760 * Instruction prefixes are present, but no actual
761 * instruction. This is allowed: at this point we
762 * invent a notional instruction of RESB 0.
764 result->opcode = I_RESB;
765 result->operands = 1;
766 nasm_zero(result->oprs);
767 result->oprs[0].type = IMMEDIATE;
768 result->oprs[0].offset = 0L;
769 result->oprs[0].segment = result->oprs[0].wrt = NO_SEG;
770 return result;
771 } else {
772 nasm_nonfatal("parser: instruction expected");
773 goto fail;
777 result->opcode = tokval.t_integer;
778 result->condition = tokval.t_inttwo;
781 * INCBIN cannot be satisfied with incorrectly
782 * evaluated operands, since the correct values _must_ be known
783 * on the first pass. Hence, even in pass one, we set the
784 * `critical' flag on calling evaluate(), so that it will bomb
785 * out on undefined symbols.
787 critical = pass_final() || (result->opcode == I_INCBIN);
789 if (opcode_is_db(result->opcode) || result->opcode == I_INCBIN) {
790 int oper_num;
792 i = stdscan(NULL, &tokval);
794 if (first && i == ':') {
795 /* Really a label */
796 insn_is_label = true;
797 goto restart_parse;
799 first = false;
800 oper_num = parse_eops(&result->eops, critical, db_bytes(result->opcode));
801 if (oper_num < 0)
802 goto fail;
804 if (result->opcode == I_INCBIN) {
806 * Correct syntax for INCBIN is that there should be
807 * one string operand, followed by one or two numeric
808 * operands.
810 if (!result->eops || result->eops->type != EOT_DB_STRING)
811 nasm_nonfatal("`incbin' expects a file name");
812 else if (result->eops->next &&
813 result->eops->next->type != EOT_DB_NUMBER)
814 nasm_nonfatal("`incbin': second parameter is"
815 " non-numeric");
816 else if (result->eops->next && result->eops->next->next &&
817 result->eops->next->next->type != EOT_DB_NUMBER)
818 nasm_nonfatal("`incbin': third parameter is"
819 " non-numeric");
820 else if (result->eops->next && result->eops->next->next &&
821 result->eops->next->next->next)
822 nasm_nonfatal("`incbin': more than three parameters");
823 else
824 return result;
826 * If we reach here, one of the above errors happened.
827 * Throw the instruction away.
829 goto fail;
830 } else {
831 /* DB et al */
832 result->operands = oper_num;
833 if (oper_num == 0)
835 *!db-empty [on] no operand for data declaration
836 *! warns about a \c{DB}, \c{DW}, etc declaration
837 *! with no operands, producing no output.
838 *! This is permitted, but often indicative of an error.
839 *! See \k{db}.
841 nasm_warn(WARN_DB_EMPTY, "no operand for data declaration");
843 return result;
847 * Now we begin to parse the operands. There may be up to four
848 * of these, separated by commas, and terminated by a zero token.
850 far_jmp_ok = result->opcode == I_JMP || result->opcode == I_CALL;
852 for (opnum = 0; opnum < MAX_OPERANDS; opnum++) {
853 operand *op = &result->oprs[opnum];
854 expr *value; /* used most of the time */
855 bool mref = false; /* is this going to be a memory ref? */
856 int bracket = 0; /* is it a [] mref, or a "naked" mref? */
857 bool mib; /* compound (mib) mref? */
858 int setsize = 0;
859 decoflags_t brace_flags = 0; /* flags for decorators in braces */
861 init_operand(op);
863 i = stdscan(NULL, &tokval);
864 if (i == TOKEN_EOS)
865 break; /* end of operands: get out of here */
866 else if (first && i == ':') {
867 insn_is_label = true;
868 goto restart_parse;
870 first = false;
871 op->type = 0; /* so far, no override */
872 /* size specifiers */
873 while (i == TOKEN_SPECIAL || i == TOKEN_SIZE) {
874 switch (tokval.t_integer) {
875 case S_BYTE:
876 if (!setsize) /* we want to use only the first */
877 op->type |= BITS8;
878 setsize = 1;
879 break;
880 case S_WORD:
881 if (!setsize)
882 op->type |= BITS16;
883 setsize = 1;
884 break;
885 case S_DWORD:
886 case S_LONG:
887 if (!setsize)
888 op->type |= BITS32;
889 setsize = 1;
890 break;
891 case S_QWORD:
892 if (!setsize)
893 op->type |= BITS64;
894 setsize = 1;
895 break;
896 case S_TWORD:
897 if (!setsize)
898 op->type |= BITS80;
899 setsize = 1;
900 break;
901 case S_OWORD:
902 if (!setsize)
903 op->type |= BITS128;
904 setsize = 1;
905 break;
906 case S_YWORD:
907 if (!setsize)
908 op->type |= BITS256;
909 setsize = 1;
910 break;
911 case S_ZWORD:
912 if (!setsize)
913 op->type |= BITS512;
914 setsize = 1;
915 break;
916 case S_TO:
917 op->type |= TO;
918 break;
919 case S_STRICT:
920 op->type |= STRICT;
921 break;
922 case S_FAR:
923 op->type |= FAR;
924 break;
925 case S_NEAR:
926 op->type |= NEAR;
927 break;
928 case S_SHORT:
929 op->type |= SHORT;
930 break;
931 default:
932 nasm_nonfatal("invalid operand size specification");
934 i = stdscan(NULL, &tokval);
937 if (i == '[' || i == TOKEN_MASM_PTR || i == '&') {
938 /* memory reference */
939 mref = true;
940 bracket += (i == '[');
941 i = stdscan(NULL, &tokval);
944 mref_more:
945 if (mref) {
946 bool done = false;
947 bool nofw = false;
949 while (!done) {
950 switch (i) {
951 case TOKEN_SPECIAL:
952 case TOKEN_SIZE:
953 case TOKEN_PREFIX:
954 process_size_override(result, op);
955 break;
957 case '[':
958 bracket++;
959 break;
961 case ',':
962 tokval.t_type = TOKEN_NUM;
963 tokval.t_integer = 0;
964 stdscan_set(stdscan_get() - 1); /* rewind the comma */
965 done = nofw = true;
966 break;
968 case TOKEN_MASM_FLAT:
969 i = stdscan(NULL, &tokval);
970 if (i != ':') {
971 nasm_nonfatal("unknown use of FLAT in MASM emulation");
972 nofw = true;
974 done = true;
975 break;
977 default:
978 done = nofw = true;
979 break;
982 if (!nofw)
983 i = stdscan(NULL, &tokval);
987 value = evaluate(stdscan, NULL, &tokval,
988 &op->opflags, critical, &hints);
989 i = tokval.t_type;
990 if (op->opflags & OPFLAG_FORWARD) {
991 result->forw_ref = true;
993 if (!value) /* Error in evaluator */
994 goto fail;
996 if (i == '[' && !bracket) {
997 /* displacement[regs] syntax */
998 mref = true;
999 parse_mref(op, value); /* Process what we have so far */
1000 goto mref_more;
1003 if (i == ':' && (mref || !far_jmp_ok)) {
1004 /* segment override? */
1005 mref = true;
1008 * Process the segment override.
1010 if (value[1].type != 0 ||
1011 value->value != 1 ||
1012 !IS_SREG(value->type))
1013 nasm_nonfatal("invalid segment override");
1014 else if (result->prefixes[PPS_SEG])
1015 nasm_nonfatal("instruction has conflicting segment overrides");
1016 else {
1017 result->prefixes[PPS_SEG] = value->type;
1018 if (IS_FSGS(value->type))
1019 op->eaflags |= EAF_FSGS;
1022 i = stdscan(NULL, &tokval); /* then skip the colon */
1023 goto mref_more;
1026 mib = false;
1027 if (mref && bracket && i == ',') {
1028 /* [seg:base+offset,index*scale] syntax (mib) */
1029 operand o2; /* Index operand */
1031 if (parse_mref(op, value))
1032 goto fail;
1034 i = stdscan(NULL, &tokval); /* Eat comma */
1035 value = evaluate(stdscan, NULL, &tokval, &op->opflags,
1036 critical, &hints);
1037 i = tokval.t_type;
1038 if (!value)
1039 goto fail;
1041 init_operand(&o2);
1042 if (parse_mref(&o2, value))
1043 goto fail;
1045 if (o2.basereg != -1 && o2.indexreg == -1) {
1046 o2.indexreg = o2.basereg;
1047 o2.scale = 1;
1048 o2.basereg = -1;
1051 if (op->indexreg != -1 || o2.basereg != -1 || o2.offset != 0 ||
1052 o2.segment != NO_SEG || o2.wrt != NO_SEG) {
1053 nasm_nonfatal("invalid mib expression");
1054 goto fail;
1057 op->indexreg = o2.indexreg;
1058 op->scale = o2.scale;
1060 if (op->basereg != -1) {
1061 op->hintbase = op->basereg;
1062 op->hinttype = EAH_MAKEBASE;
1063 } else if (op->indexreg != -1) {
1064 op->hintbase = op->indexreg;
1065 op->hinttype = EAH_NOTBASE;
1066 } else {
1067 op->hintbase = -1;
1068 op->hinttype = EAH_NOHINT;
1071 mib = true;
1074 recover = false;
1075 if (mref) {
1076 if (bracket == 1) {
1077 if (i == ']') {
1078 bracket--;
1079 i = stdscan(NULL, &tokval);
1080 } else {
1081 nasm_nonfatal("expecting ] at end of memory operand");
1082 recover = true;
1084 } else if (bracket == 0) {
1085 /* Do nothing */
1086 } else if (bracket > 0) {
1087 nasm_nonfatal("excess brackets in memory operand");
1088 recover = true;
1089 } else if (bracket < 0) {
1090 nasm_nonfatal("unmatched ] in memory operand");
1091 recover = true;
1094 if (i == TOKEN_DECORATOR || i == TOKEN_OPMASK) {
1095 /* parse opmask (and zeroing) after an operand */
1096 recover = parse_braces(&brace_flags);
1097 i = tokval.t_type;
1099 if (!recover && i != 0 && i != ',') {
1100 nasm_nonfatal("comma, decorator or end of line expected, got %d", i);
1101 recover = true;
1103 } else { /* immediate operand */
1104 if (i != 0 && i != ',' && i != ':' &&
1105 i != TOKEN_DECORATOR && i != TOKEN_OPMASK) {
1106 nasm_nonfatal("comma, colon, decorator or end of "
1107 "line expected after operand");
1108 recover = true;
1109 } else if (i == ':') {
1110 op->type |= COLON;
1111 } else if (i == TOKEN_DECORATOR || i == TOKEN_OPMASK) {
1112 /* parse opmask (and zeroing) after an operand */
1113 recover = parse_braces(&brace_flags);
1116 if (recover) {
1117 do { /* error recovery */
1118 i = stdscan(NULL, &tokval);
1119 } while (i != 0 && i != ',');
1123 * now convert the exprs returned from evaluate()
1124 * into operand descriptions...
1126 op->decoflags |= brace_flags;
1128 if (mref) { /* it's a memory reference */
1129 /* A mib reference was fully parsed already */
1130 if (!mib) {
1131 if (parse_mref(op, value))
1132 goto fail;
1133 op->hintbase = hints.base;
1134 op->hinttype = hints.type;
1136 mref_set_optype(op);
1137 } else if ((op->type & FAR) && !far_jmp_ok) {
1138 nasm_nonfatal("invalid use of FAR operand specifier");
1139 recover = true;
1140 } else { /* it's not a memory reference */
1141 if (is_just_unknown(value)) { /* it's immediate but unknown */
1142 op->type |= IMMEDIATE;
1143 op->opflags |= OPFLAG_UNKNOWN;
1144 op->offset = 0; /* don't care */
1145 op->segment = NO_SEG; /* don't care again */
1146 op->wrt = NO_SEG; /* still don't care */
1148 if(optimizing.level >= 0 && !(op->type & STRICT)) {
1149 /* Be optimistic */
1150 op->type |=
1151 UNITY | SBYTEWORD | SBYTEDWORD | UDWORD | SDWORD;
1153 } else if (is_reloc(value)) { /* it's immediate */
1154 uint64_t n = reloc_value(value);
1156 op->type |= IMMEDIATE;
1157 op->offset = n;
1158 op->segment = reloc_seg(value);
1159 op->wrt = reloc_wrt(value);
1160 op->opflags |= is_self_relative(value) ? OPFLAG_RELATIVE : 0;
1162 if (is_simple(value)) {
1163 if (n == 1)
1164 op->type |= UNITY;
1165 if (optimizing.level >= 0 && !(op->type & STRICT)) {
1166 if ((uint32_t) (n + 128) <= 255)
1167 op->type |= SBYTEDWORD;
1168 if ((uint16_t) (n + 128) <= 255)
1169 op->type |= SBYTEWORD;
1170 if (n <= UINT64_C(0xFFFFFFFF))
1171 op->type |= UDWORD;
1172 if (n + UINT64_C(0x80000000) <= UINT64_C(0xFFFFFFFF))
1173 op->type |= SDWORD;
1176 } else if (value->type == EXPR_RDSAE) {
1178 * it's not an operand but a rounding or SAE decorator.
1179 * put the decorator information in the (opflag_t) type field
1180 * of previous operand.
1182 opnum--; op--;
1183 switch (value->value) {
1184 case BRC_RN:
1185 case BRC_RU:
1186 case BRC_RD:
1187 case BRC_RZ:
1188 case BRC_SAE:
1189 op->decoflags |= (value->value == BRC_SAE ? SAE : ER);
1190 result->evex_rm = value->value;
1191 break;
1192 default:
1193 nasm_nonfatal("invalid decorator");
1194 break;
1196 } else { /* it's a register */
1197 opflags_t rs;
1198 uint64_t regset_size = 0;
1200 if (value->type >= EXPR_SIMPLE || value->value != 1) {
1201 nasm_nonfatal("invalid operand type");
1202 goto fail;
1206 * We do not allow any kind of expression, except for
1207 * reg+value in which case it is a register set.
1209 for (i = 1; value[i].type; i++) {
1210 if (!value[i].value)
1211 continue;
1213 switch (value[i].type) {
1214 case EXPR_SIMPLE:
1215 if (!regset_size) {
1216 regset_size = value[i].value + 1;
1217 break;
1219 /* fallthrough */
1220 default:
1221 nasm_nonfatal("invalid operand type");
1222 goto fail;
1226 if ((regset_size & (regset_size - 1)) ||
1227 regset_size >= (UINT64_C(1) << REGSET_BITS)) {
1228 nasm_nonfatalf(ERR_PASS2, "invalid register set size");
1229 regset_size = 0;
1232 /* clear overrides, except TO which applies to FPU regs */
1233 if (op->type & ~TO) {
1235 * we want to produce a warning iff the specified size
1236 * is different from the register size
1238 rs = op->type & SIZE_MASK;
1239 } else {
1240 rs = 0;
1244 * Make sure we're not out of nasm_reg_flags, still
1245 * probably this should be fixed when we're defining
1246 * the label.
1248 * An easy trigger is
1250 * e equ 0x80000000:0
1251 * pshufw word e-0
1254 if (value->type < EXPR_REG_START ||
1255 value->type > EXPR_REG_END) {
1256 nasm_nonfatal("invalid operand type");
1257 goto fail;
1260 op->type &= TO;
1261 op->type |= REGISTER;
1262 op->type |= nasm_reg_flags[value->type];
1263 op->type |= (regset_size >> 1) << REGSET_SHIFT;
1264 op->decoflags |= brace_flags;
1265 op->basereg = value->type;
1267 if (rs) {
1268 opflags_t opsize = nasm_reg_flags[value->type] & SIZE_MASK;
1269 if (!opsize) {
1270 op->type |= rs; /* For non-size-specific registers, permit size override */
1271 } else if (opsize != rs) {
1273 *!regsize [on] register size specification ignored
1275 *! warns about a register with implicit size (such as \c{EAX}, which is always 32 bits)
1276 *! been given an explicit size specification which is inconsistent with the size
1277 *! of the named register, e.g. \c{WORD EAX}. \c{DWORD EAX} or \c{WORD AX} are
1278 *! permitted, and do not trigger this warning. Some registers which \e{do not} imply
1279 *! a specific size, such as \c{K0}, may need this specification unless the instruction
1280 *! itself implies the instruction size:
1282 *! \c KMOVW K0,[foo] ; Permitted, KMOVW implies 16 bits
1283 *! \c KMOV WORD K0,[foo] ; Permitted, WORD K0 specifies instruction size
1284 *! \c KMOV K0,WORD [foo] ; Permitted, WORD [foo] specifies instruction size
1285 *! \c KMOV K0,[foo] ; Not permitted, instruction size ambiguous
1287 nasm_warn(WARN_REGSIZE, "invalid register size specification ignored");
1293 /* remember the position of operand having broadcasting/ER mode */
1294 if (op->decoflags & (BRDCAST_MASK | ER | SAE))
1295 result->evex_brerop = opnum;
1298 result->operands = opnum; /* set operand count */
1300 /* clear remaining operands */
1301 while (opnum < MAX_OPERANDS)
1302 result->oprs[opnum++].type = 0;
1304 return result;
1306 fail:
1307 result->opcode = I_none;
1308 return result;
1311 static int end_expression_next(void)
1313 struct tokenval tv;
1314 char *p;
1315 int i;
1317 p = stdscan_get();
1318 i = stdscan(NULL, &tv);
1319 stdscan_set(p);
1321 return (i == ',' || i == ';' || i == ')' || !i);
1324 static void free_eops(extop *e)
1326 extop *next;
1328 while (e) {
1329 next = e->next;
1330 switch (e->type) {
1331 case EOT_EXTOP:
1332 free_eops(e->val.subexpr);
1333 break;
1335 case EOT_DB_STRING_FREE:
1336 nasm_free(e->val.string.data);
1337 break;
1339 default:
1340 break;
1343 nasm_free(e);
1344 e = next;
1348 void cleanup_insn(insn * i)
1350 free_eops(i->eops);