1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1, \2, \3 - that many literal bytes follow in the code stream
11 * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
12 * (POP is never used for CS) depending on operand 0
13 * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
15 * \10..\13 - a literal byte follows in the code stream, to be added
16 * to the register value of operand 0..3
17 * \14..\17 - a signed byte immediate operand, from operand 0..3
18 * \20..\23 - a byte immediate operand, from operand 0..3
19 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
20 * \30..\33 - a word immediate operand, from operand 0..3
21 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
22 * assembly mode or the operand-size override on the operand
23 * \40..\43 - a long immediate operand, from operand 0..3
24 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
25 * depending on the address size of the instruction.
26 * \50..\53 - a byte relative operand, from operand 0..3
27 * \54..\57 - a qword immediate operand, from operand 0..3
28 * \60..\63 - a word relative operand, from operand 0..3
29 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
30 * assembly mode or the operand-size override on the operand
31 * \70..\73 - a long relative operand, from operand 0..3
32 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
33 * \1ab - a ModRM, calculated on EA in operand a, with the spare
34 * field the register value of operand b.
35 * \140..\143 - an immediate word or signed byte for operand 0..3
36 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
37 * is a signed byte rather than a word. Opcode byte follows.
38 * \150..\153 - an immediate dword or signed byte for operand 0..3
39 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
40 * is a signed byte rather than a dword. Opcode byte follows.
41 * \160..\163 - this instruction uses DREX rather than REX, with the
42 * OC0 field set to 0, and the dest field taken from
44 * \164..\167 - this instruction uses DREX rather than REX, with the
45 * OC0 field set to 1, and the dest field taken from
47 * \171 - placement of DREX suffix in the absence of an EA
48 * \172\ab - the register number from operand a in bits 7..4, with
49 * the 4-bit immediate from operand b in bits 3..0.
50 * \173\xab - the register number from operand a in bits 7..4, with
51 * the value b in bits 3..0.
52 * \174\a - the register number from operand a in bits 7..4, and
53 * an arbitrary value in bits 3..0 (assembled as zero.)
54 * \2ab - a ModRM, calculated on EA in operand a, with the spare
55 * field equal to digit b.
56 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
57 * is not equal to the truncated and sign-extended 32-bit
58 * operand; used for 32-bit immediates in 64-bit mode.
59 * \260..\263 - this instruction uses VEX rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX rather than REX, with the
62 * V field set to 1111b.
64 * VEX prefixes are followed by the sequence:
65 * \mm\wlp where mm is the M field; and wlp is:
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
73 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
74 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
75 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
76 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
77 * \314 - (disassembler only) invalid with REX.B
78 * \315 - (disassembler only) invalid with REX.X
79 * \316 - (disassembler only) invalid with REX.R
80 * \317 - (disassembler only) invalid with REX.W
81 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
82 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
83 * \322 - indicates that this instruction is only valid when the
84 * operand size is the default (instruction to disassembler,
85 * generates no code in the assembler)
86 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
87 * \324 - indicates 64-bit operand size requiring REX prefix.
88 * \330 - a literal byte follows in the code stream, to be added
89 * to the condition code value of the instruction.
90 * \331 - instruction not valid with REP prefix. Hint for
91 * disassembler only; for SSE instructions.
92 * \332 - REP prefix (0xF2 byte) used as opcode extension.
93 * \333 - REP prefix (0xF3 byte) used as opcode extension.
94 * \334 - LOCK prefix used instead of REX.R
95 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
96 * \340 - reserve <operand 0> bytes of uninitialized storage.
97 * Operand 0 had better be a segmentless constant.
98 * \360 - no SSE prefix (== \364\331)
99 * \361 - 66 SSE prefix (== \366\331)
100 * \362 - F2 SSE prefix (== \364\332)
101 * \363 - F3 SSE prefix (== \364\333)
102 * \364 - operand-size prefix (0x66) not permitted
103 * \365 - address-size prefix (0x67) not permitted
104 * \366 - operand-size prefix (0x66) used as opcode extension
105 * \367 - address-size prefix (0x67) used as opcode extension
106 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
107 * 370 is used for Jcc, 371 is used for JMP.
108 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
109 * used for conditional jump over longer jump
112 #include "compiler.h"
116 #include <inttypes.h>
120 #include "assemble.h"
124 /* Initialized to zero by the C standard */
125 static const uint8_t const_zero_buf
[256];
128 int sib_present
; /* is a SIB byte necessary? */
129 int bytes
; /* # of bytes of offset needed */
130 int size
; /* lazy - this is sib+bytes+1 */
131 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
134 static uint32_t cpu
; /* cpu level received from nasm.c */
135 static efunc errfunc
;
136 static struct ofmt
*outfmt
;
137 static ListGen
*list
;
139 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
140 static void gencode(int32_t, int64_t, int, insn
*, const uint8_t *, int64_t);
141 static int matches(const struct itemplate
*, insn
*, int bits
);
142 static int32_t regflag(const operand
*);
143 static int32_t regval(const operand
*);
144 static int rexflags(int, int32_t, int);
145 static int op_rexflags(const operand
*, int);
146 static ea
*process_ea(operand
*, ea
*, int, int, int, int32_t, int);
147 static void add_asp(insn
*, int);
149 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
151 return ins
->prefixes
[pos
] == prefix
;
154 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
156 if (ins
->prefixes
[pos
])
157 errfunc(ERR_NONFATAL
, "invalid %s prefix",
158 prefix_name(ins
->prefixes
[pos
]));
161 static const char *size_name(int size
)
183 static void warn_overflow(int size
, int64_t data
)
186 int64_t lim
= ((int64_t)1 << (size
*8))-1;
188 if (data
< ~lim
|| data
> lim
)
189 errfunc(ERR_WARNING
| ERR_WARN_NOV
,
190 "%s data exceeds bounds", size_name(size
));
194 * This routine wrappers the real output format's output routine,
195 * in order to pass a copy of the data off to the listing file
196 * generator at the same time.
198 static void out(int64_t offset
, int32_t segto
, const void *data
,
199 enum out_type type
, uint64_t size
,
200 int32_t segment
, int32_t wrt
)
202 static int32_t lineno
= 0; /* static!!! */
203 static char *lnfname
= NULL
;
206 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
208 * This is a non-relocated address, and we're going to
209 * convert it into RAWDATA format.
214 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
218 WRITEADDR(q
, *(int64_t *)data
, size
);
223 list
->output(offset
, data
, type
, size
);
226 * this call to src_get determines when we call the
227 * debug-format-specific "linenum" function
228 * it updates lineno and lnfname to the current values
229 * returning 0 if "same as last time", -2 if lnfname
230 * changed, and the amount by which lineno changed,
231 * if it did. thus, these variables must be static
234 if (src_get(&lineno
, &lnfname
)) {
235 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
238 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
241 static int jmp_match(int32_t segment
, int64_t offset
, int bits
,
242 insn
* ins
, const uint8_t *code
)
247 if (c
!= 0370 && c
!= 0371)
249 if (ins
->oprs
[0].opflags
& OPFLAG_FORWARD
) {
250 if ((optimizing
< 0 || (ins
->oprs
[0].type
& STRICT
))
254 return (pass0
== 0); /* match a forward reference */
256 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
257 if (ins
->oprs
[0].segment
!= segment
)
259 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is now the delta */
260 if (isize
>= -128L && isize
<= 127L)
261 return 1; /* it is byte size */
266 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
267 insn
* instruction
, struct ofmt
*output
, efunc error
,
270 const struct itemplate
*temp
;
275 int64_t start
= offset
;
276 int64_t wsize
= 0; /* size for DB etc. */
278 errfunc
= error
; /* to pass to other functions */
280 outfmt
= output
; /* likewise */
281 list
= listgen
; /* and again */
283 switch (instruction
->opcode
) {
313 int32_t t
= instruction
->times
;
316 "instruction->times < 0 (%ld) in assemble()", t
);
318 while (t
--) { /* repeat TIMES times */
319 for (e
= instruction
->eops
; e
; e
= e
->next
) {
320 if (e
->type
== EOT_DB_NUMBER
) {
322 if (e
->segment
!= NO_SEG
)
323 errfunc(ERR_NONFATAL
,
324 "one-byte relocation attempted");
326 uint8_t out_byte
= e
->offset
;
327 out(offset
, segment
, &out_byte
,
328 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
330 } else if (wsize
> 8) {
331 errfunc(ERR_NONFATAL
,
332 "integer supplied to a DT, DO or DY"
335 out(offset
, segment
, &e
->offset
,
336 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
338 } else if (e
->type
== EOT_DB_STRING
||
339 e
->type
== EOT_DB_STRING_FREE
) {
342 out(offset
, segment
, e
->stringval
,
343 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
344 align
= e
->stringlen
% wsize
;
347 align
= wsize
- align
;
348 out(offset
, segment
, const_zero_buf
,
349 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
351 offset
+= e
->stringlen
+ align
;
352 if (e
->type
== EOT_DB_STRING_FREE
)
353 nasm_free(e
->stringval
);
356 if (t
> 0 && t
== instruction
->times
- 1) {
358 * Dummy call to list->output to give the offset to the
361 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
362 list
->uplevel(LIST_TIMES
);
365 if (instruction
->times
> 1)
366 list
->downlevel(LIST_TIMES
);
367 return offset
- start
;
370 if (instruction
->opcode
== I_INCBIN
) {
371 const char *fname
= instruction
->eops
->stringval
;
374 fp
= fopen(fname
, "rb");
376 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
378 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
379 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
382 static char buf
[4096];
383 size_t t
= instruction
->times
;
388 if (instruction
->eops
->next
) {
389 base
= instruction
->eops
->next
->offset
;
391 if (instruction
->eops
->next
->next
&&
392 len
> (size_t)instruction
->eops
->next
->next
->offset
)
393 len
= (size_t)instruction
->eops
->next
->next
->offset
;
396 * Dummy call to list->output to give the offset to the
399 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
400 list
->uplevel(LIST_INCBIN
);
404 fseek(fp
, base
, SEEK_SET
);
408 fread(buf
, 1, (l
> (int32_t) sizeof(buf
) ? (int32_t) sizeof(buf
) : l
),
412 * This shouldn't happen unless the file
413 * actually changes while we are reading
417 "`incbin': unexpected EOF while"
418 " reading file `%s'", fname
);
419 t
= 0; /* Try to exit cleanly */
422 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
427 list
->downlevel(LIST_INCBIN
);
428 if (instruction
->times
> 1) {
430 * Dummy call to list->output to give the offset to the
433 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
434 list
->uplevel(LIST_TIMES
);
435 list
->downlevel(LIST_TIMES
);
438 return instruction
->times
* len
;
440 return 0; /* if we're here, there's an error */
443 /* Check to see if we need an address-size prefix */
444 add_asp(instruction
, bits
);
448 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++){
449 int m
= matches(temp
, instruction
, bits
);
452 m
+= jmp_match(segment
, offset
, bits
, instruction
, temp
->code
);
454 if (m
== 100) { /* matches! */
455 const uint8_t *codes
= temp
->code
;
456 int64_t insn_size
= calcsize(segment
, offset
, bits
,
458 itimes
= instruction
->times
;
459 if (insn_size
< 0) /* shouldn't be, on pass two */
460 error(ERR_PANIC
, "errors made it through from pass one");
463 for (j
= 0; j
< MAXPREFIX
; j
++) {
465 switch (instruction
->prefixes
[j
]) {
481 "cs segment base generated, but will be ignored in 64-bit mode");
488 "ds segment base generated, but will be ignored in 64-bit mode");
495 "es segment base generated, but will be ignored in 64-bit mode");
508 "ss segment base generated, but will be ignored in 64-bit mode");
515 "segr6 and segr7 cannot be used as prefixes");
520 "16-bit addressing is not supported "
522 } else if (bits
!= 16)
532 "64-bit addressing is only supported "
556 error(ERR_PANIC
, "invalid instruction prefix");
559 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
564 insn_end
= offset
+ insn_size
;
565 gencode(segment
, offset
, bits
, instruction
, codes
,
568 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
570 * Dummy call to list->output to give the offset to the
573 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
574 list
->uplevel(LIST_TIMES
);
577 if (instruction
->times
> 1)
578 list
->downlevel(LIST_TIMES
);
579 return offset
- start
;
580 } else if (m
> 0 && m
> size_prob
) {
586 if (temp
->opcode
== -1) { /* didn't match any instruction */
589 error(ERR_NONFATAL
, "operation size not specified");
592 error(ERR_NONFATAL
, "mismatch in operand sizes");
595 error(ERR_NONFATAL
, "no instruction for this cpu level");
598 error(ERR_NONFATAL
, "instruction not supported in 64-bit mode");
602 "invalid combination of opcode and operands");
609 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
610 insn
* instruction
, efunc error
)
612 const struct itemplate
*temp
;
614 errfunc
= error
; /* to pass to other functions */
617 if (instruction
->opcode
== -1)
620 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
621 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
622 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
623 instruction
->opcode
== I_DY
) {
625 int32_t isize
, osize
, wsize
= 0; /* placate gcc */
628 switch (instruction
->opcode
) {
654 for (e
= instruction
->eops
; e
; e
= e
->next
) {
658 if (e
->type
== EOT_DB_NUMBER
)
660 else if (e
->type
== EOT_DB_STRING
||
661 e
->type
== EOT_DB_STRING_FREE
)
662 osize
= e
->stringlen
;
664 align
= (-osize
) % wsize
;
667 isize
+= osize
+ align
;
669 return isize
* instruction
->times
;
672 if (instruction
->opcode
== I_INCBIN
) {
673 const char *fname
= instruction
->eops
->stringval
;
677 fp
= fopen(fname
, "rb");
679 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
681 else if (fseek(fp
, 0L, SEEK_END
) < 0)
682 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
687 if (instruction
->eops
->next
) {
688 len
-= instruction
->eops
->next
->offset
;
689 if (instruction
->eops
->next
->next
&&
690 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
691 len
= (size_t)instruction
->eops
->next
->next
->offset
;
694 return instruction
->times
* len
;
696 return 0; /* if we're here, there's an error */
699 /* Check to see if we need an address-size prefix */
700 add_asp(instruction
, bits
);
702 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++) {
703 int m
= matches(temp
, instruction
, bits
);
705 m
+= jmp_match(segment
, offset
, bits
, instruction
, temp
->code
);
708 /* we've matched an instruction. */
710 const uint8_t *codes
= temp
->code
;
713 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
716 for (j
= 0; j
< MAXPREFIX
; j
++) {
717 switch (instruction
->prefixes
[j
]) {
743 return isize
* instruction
->times
;
746 return -1; /* didn't match any instruction */
749 static bool possible_sbyte(insn
* ins
, int op
)
751 return !(ins
->forw_ref
&& ins
->oprs
[op
].opflags
) &&
753 !(ins
->oprs
[op
].type
& STRICT
) &&
754 ins
->oprs
[op
].wrt
== NO_SEG
&& ins
->oprs
[op
].segment
== NO_SEG
;
757 /* check that opn[op] is a signed byte of size 16 or 32 */
758 static bool is_sbyte16(insn
* ins
, int op
)
762 if (!possible_sbyte(ins
, op
))
765 v
= ins
->oprs
[op
].offset
;
766 return v
>= -128 && v
<= 127;
769 static bool is_sbyte32(insn
* ins
, int op
)
773 if (!possible_sbyte(ins
, op
))
776 v
= ins
->oprs
[op
].offset
;
777 return v
>= -128 && v
<= 127;
780 /* check that opn[op] is a signed byte of size 32; warn if this is not
781 the original value when extended to 64 bits */
782 static bool is_sbyte64(insn
* ins
, int op
)
787 /* dead in the water on forward reference or External */
788 if (!possible_sbyte(ins
, op
))
791 v64
= ins
->oprs
[op
].offset
;
794 warn_overflow(32, v64
);
796 return v32
>= -128 && v32
<= 127;
798 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
799 insn
* ins
, const uint8_t *codes
)
806 ins
->rex
= 0; /* Ensure REX is reset */
808 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
811 (void)segment
; /* Don't warn that this parameter is unused */
812 (void)offset
; /* Don't warn that this parameter is unused */
816 opx
= &ins
->oprs
[c
& 3];
821 codes
+= c
, length
+= c
;
834 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
865 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
866 length
+= (opx
->type
& BITS16
) ? 2 : 4;
868 length
+= (bits
== 16) ? 2 : 4;
880 length
+= ins
->addr_size
>> 3;
892 length
+= 8; /* MOV reg64/imm */
904 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
905 length
+= (opx
->type
& BITS16
) ? 2 : 4;
907 length
+= (bits
== 16) ? 2 : 4;
925 length
+= is_sbyte16(ins
, c
& 3) ? 1 : 2;
938 length
+= is_sbyte32(ins
, c
& 3) ? 1 : 4;
953 ins
->drexdst
= regval(opx
);
960 ins
->rex
|= REX_D
|REX_OC
;
961 ins
->drexdst
= regval(opx
);
975 length
+= is_sbyte64(ins
, c
& 3) ? 1 : 4;
983 ins
->drexdst
= regval(opx
);
984 ins
->vex_m
= *codes
++;
985 ins
->vex_wlp
= *codes
++;
991 ins
->vex_m
= *codes
++;
992 ins
->vex_wlp
= *codes
++;
1002 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
1005 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
1010 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
1011 has_prefix(ins
, PPS_ASIZE
, P_A32
))
1020 length
+= (bits
!= 16);
1023 length
+= (bits
== 16);
1048 if (ins
->oprs
[0].segment
!= NO_SEG
)
1049 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1050 " quantity of BSS space");
1052 length
+= ins
->oprs
[0].offset
;
1075 default: /* can't do it by 'case' statements */
1076 if (c
>= 0100 && c
<= 0277) { /* it's an EA */
1080 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1083 /* pick rfield from operand b */
1084 rflags
= regflag(&ins
->oprs
[c
& 7]);
1085 rfield
= nasm_regvals
[ins
->oprs
[c
& 7].basereg
];
1092 (&ins
->oprs
[(c
>> 3) & 7], &ea_data
, bits
,
1093 ins
->addr_size
, rfield
, rflags
, ins
->forw_ref
)) {
1094 errfunc(ERR_NONFATAL
, "invalid effective address");
1097 ins
->rex
|= ea_data
.rex
;
1098 length
+= ea_data
.size
;
1101 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1102 ": instruction code 0x%02X given", c
);
1107 ins
->rex
&= rex_mask
;
1109 if (ins
->rex
& REX_V
) {
1110 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1112 if (ins
->rex
& REX_H
) {
1113 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1116 switch (ins
->vex_wlp
& 030) {
1130 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1131 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1134 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1138 } else if (ins
->rex
& REX_D
) {
1139 if (ins
->rex
& REX_H
) {
1140 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1143 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1144 ins
->drexdst
> 7)) {
1145 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1149 } else if (ins
->rex
& REX_REAL
) {
1150 if (ins
->rex
& REX_H
) {
1151 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1153 } else if (bits
== 64) {
1155 } else if ((ins
->rex
& REX_L
) &&
1156 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1159 assert_no_prefix(ins
, PPS_LREP
);
1162 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1170 #define EMIT_REX() \
1171 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1172 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1173 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1178 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1179 insn
* ins
, const uint8_t *codes
, int64_t insn_end
)
1181 static char condval
[] = { /* conditional opcodes */
1182 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1183 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1184 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1190 struct operand
*opx
;
1194 opx
= &ins
->oprs
[c
& 3];
1200 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1207 switch (ins
->oprs
[0].basereg
) {
1209 bytes
[0] = 0x0E + (c
== 0x04 ? 1 : 0);
1212 bytes
[0] = 0x1E + (c
== 0x04 ? 1 : 0);
1215 bytes
[0] = 0x06 + (c
== 0x04 ? 1 : 0);
1218 bytes
[0] = 0x16 + (c
== 0x04 ? 1 : 0);
1222 "bizarre 8086 segment register received");
1224 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1230 switch (ins
->oprs
[0].basereg
) {
1232 bytes
[0] = 0xA0 + (c
== 0x05 ? 1 : 0);
1235 bytes
[0] = 0xA8 + (c
== 0x05 ? 1 : 0);
1239 "bizarre 386 segment register received");
1241 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1250 bytes
[0] = *codes
++ + ((regval(opx
)) & 7);
1251 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1259 /* XXX: warns for legitimate optimizer actions */
1260 if (opx
->offset
< -128 || opx
->offset
> 127) {
1261 errfunc(ERR_WARNING
| ERR_WARN_NOV
,
1262 "signed byte value exceeds bounds");
1265 if (opx
->segment
!= NO_SEG
) {
1267 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1268 opx
->segment
, opx
->wrt
);
1270 bytes
[0] = opx
->offset
;
1271 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1281 if (opx
->offset
< -256 || opx
->offset
> 255) {
1282 errfunc(ERR_WARNING
| ERR_WARN_NOV
,
1283 "byte value exceeds bounds");
1285 if (opx
->segment
!= NO_SEG
) {
1287 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1288 opx
->segment
, opx
->wrt
);
1290 bytes
[0] = opx
->offset
;
1291 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1301 if (opx
->offset
< 0 || opx
->offset
> 255)
1302 errfunc(ERR_WARNING
| ERR_WARN_NOV
,
1303 "unsigned byte value exceeds bounds");
1304 if (opx
->segment
!= NO_SEG
) {
1306 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1307 opx
->segment
, opx
->wrt
);
1309 bytes
[0] = opx
->offset
;
1310 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1321 if (opx
->segment
== NO_SEG
&& opx
->wrt
== NO_SEG
)
1322 warn_overflow(2, data
);
1323 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1324 opx
->segment
, opx
->wrt
);
1332 if (opx
->type
& (BITS16
| BITS32
))
1333 size
= (opx
->type
& BITS16
) ? 2 : 4;
1335 size
= (bits
== 16) ? 2 : 4;
1337 if (opx
->segment
== NO_SEG
&& opx
->wrt
== NO_SEG
)
1338 warn_overflow(size
, data
);
1339 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1340 opx
->segment
, opx
->wrt
);
1349 if (opx
->segment
== NO_SEG
&& opx
->wrt
== NO_SEG
)
1350 warn_overflow(4, data
);
1351 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1352 opx
->segment
, opx
->wrt
);
1361 size
= ins
->addr_size
>> 3;
1362 if (opx
->segment
== NO_SEG
&&
1364 warn_overflow(size
, data
);
1365 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1366 opx
->segment
, opx
->wrt
);
1374 if (opx
->segment
!= segment
)
1375 errfunc(ERR_NONFATAL
,
1376 "short relative jump outside segment");
1377 data
= opx
->offset
- insn_end
;
1378 if (data
> 127 || data
< -128)
1379 errfunc(ERR_NONFATAL
, "short jump is out of range");
1381 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1389 data
= (int64_t)opx
->offset
;
1390 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1391 opx
->segment
, opx
->wrt
);
1399 if (opx
->segment
!= segment
) {
1401 out(offset
, segment
, &data
,
1402 OUT_REL2ADR
, insn_end
- offset
,
1403 opx
->segment
, opx
->wrt
);
1405 data
= opx
->offset
- insn_end
;
1406 out(offset
, segment
, &data
,
1407 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1416 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1417 size
= (opx
->type
& BITS16
) ? 2 : 4;
1419 size
= (bits
== 16) ? 2 : 4;
1420 if (opx
->segment
!= segment
) {
1422 out(offset
, segment
, &data
,
1423 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1424 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1426 data
= opx
->offset
- insn_end
;
1427 out(offset
, segment
, &data
,
1428 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1437 if (opx
->segment
!= segment
) {
1439 out(offset
, segment
, &data
,
1440 OUT_REL4ADR
, insn_end
- offset
,
1441 opx
->segment
, opx
->wrt
);
1443 data
= opx
->offset
- insn_end
;
1444 out(offset
, segment
, &data
,
1445 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1454 if (opx
->segment
== NO_SEG
)
1455 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1458 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1459 outfmt
->segbase(1 + opx
->segment
),
1469 if (is_sbyte16(ins
, c
& 3)) {
1471 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1475 if (opx
->segment
== NO_SEG
&&
1477 warn_overflow(2, data
);
1478 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1479 opx
->segment
, opx
->wrt
);
1489 bytes
[0] = *codes
++;
1490 if (is_sbyte16(ins
, c
& 3))
1491 bytes
[0] |= 2; /* s-bit */
1492 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1501 if (is_sbyte32(ins
, c
& 3)) {
1503 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1507 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1508 opx
->segment
, opx
->wrt
);
1518 bytes
[0] = *codes
++;
1519 if (is_sbyte32(ins
, c
& 3))
1520 bytes
[0] |= 2; /* s-bit */
1521 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1537 (ins
->drexdst
<< 4) |
1538 (ins
->rex
& REX_OC
? 0x08 : 0) |
1539 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1541 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1547 opx
= &ins
->oprs
[c
>> 3];
1548 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1549 opx
= &ins
->oprs
[c
& 7];
1550 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1551 errfunc(ERR_NONFATAL
,
1552 "non-absolute expression not permitted as argument %d",
1555 if (opx
->offset
& ~15) {
1556 errfunc(ERR_WARNING
| ERR_WARN_NOV
,
1557 "four-bit argument exceeds bounds");
1559 bytes
[0] |= opx
->offset
& 15;
1561 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1567 opx
= &ins
->oprs
[c
>> 4];
1568 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1570 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1576 opx
= &ins
->oprs
[c
];
1577 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1578 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1587 /* is_sbyte32() is right here, we have already warned */
1588 if (is_sbyte32(ins
, c
& 3)) {
1590 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1594 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1595 opx
->segment
, opx
->wrt
);
1606 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1608 bytes
[1] = ins
->vex_m
| ((~ins
->rex
& 7) << 5);
1609 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1610 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1611 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1615 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1616 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1617 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1629 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1631 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1638 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1640 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1662 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1671 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1686 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1687 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1696 *bytes
= c
- 0332 + 0xF2;
1697 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1702 if (ins
->rex
& REX_R
) {
1704 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1707 ins
->rex
&= ~(REX_L
|REX_R
);
1714 if (ins
->oprs
[0].segment
!= NO_SEG
)
1715 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1717 int64_t size
= ins
->oprs
[0].offset
;
1719 out(offset
, segment
, NULL
,
1720 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1730 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1736 bytes
[0] = c
- 0362 + 0xf2;
1737 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1747 *bytes
= c
- 0366 + 0x66;
1748 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1758 *bytes
= bits
== 16 ? 3 : 5;
1759 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1763 default: /* can't do it by 'case' statements */
1764 if (c
>= 0100 && c
<= 0277) { /* it's an EA */
1772 /* pick rfield from operand b */
1773 rflags
= regflag(&ins
->oprs
[c
& 7]);
1774 rfield
= nasm_regvals
[ins
->oprs
[c
& 7].basereg
];
1776 /* rfield is constant */
1782 (&ins
->oprs
[(c
>> 3) & 7], &ea_data
, bits
,
1783 ins
->addr_size
, rfield
, rflags
, ins
->forw_ref
)) {
1784 errfunc(ERR_NONFATAL
, "invalid effective address");
1789 *p
++ = ea_data
.modrm
;
1790 if (ea_data
.sib_present
)
1793 /* DREX suffixes come between the SIB and the displacement */
1794 if (ins
->rex
& REX_D
) {
1796 (ins
->drexdst
<< 4) |
1797 (ins
->rex
& REX_OC
? 0x08 : 0) |
1798 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1803 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1805 switch (ea_data
.bytes
) {
1809 if (ins
->oprs
[(c
>> 3) & 7].segment
!= NO_SEG
) {
1810 data
= ins
->oprs
[(c
>> 3) & 7].offset
;
1811 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1812 ins
->oprs
[(c
>> 3) & 7].segment
,
1813 ins
->oprs
[(c
>> 3) & 7].wrt
);
1815 *bytes
= ins
->oprs
[(c
>> 3) & 7].offset
;
1816 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1,
1824 data
= ins
->oprs
[(c
>> 3) & 7].offset
;
1825 warn_overflow(ea_data
.bytes
, data
);
1826 out(offset
, segment
, &data
,
1827 ea_data
.rip
? OUT_REL4ADR
: OUT_ADDRESS
,
1829 ins
->oprs
[(c
>> 3) & 7].segment
,
1830 ins
->oprs
[(c
>> 3) & 7].wrt
);
1836 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1837 ": instruction code 0x%02X given", c
);
1843 static int32_t regflag(const operand
* o
)
1845 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1846 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1848 return nasm_reg_flags
[o
->basereg
];
1851 static int32_t regval(const operand
* o
)
1853 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1854 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1856 return nasm_regvals
[o
->basereg
];
1859 static int op_rexflags(const operand
* o
, int mask
)
1864 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1865 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1868 flags
= nasm_reg_flags
[o
->basereg
];
1869 val
= nasm_regvals
[o
->basereg
];
1871 return rexflags(val
, flags
, mask
);
1874 static int rexflags(int val
, int32_t flags
, int mask
)
1879 rex
|= REX_B
|REX_X
|REX_R
;
1882 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1884 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1890 static int matches(const struct itemplate
*itemp
, insn
* instruction
, int bits
)
1892 int i
, size
[MAX_OPERANDS
], asize
, oprs
, ret
;
1899 if (itemp
->opcode
!= instruction
->opcode
)
1903 * Count the operands
1905 if (itemp
->operands
!= instruction
->operands
)
1909 * Check that no spurious colons or TOs are present
1911 for (i
= 0; i
< itemp
->operands
; i
++)
1912 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
1916 * Process size flags
1918 if (itemp
->flags
& IF_ARMASK
) {
1919 memset(size
, 0, sizeof size
);
1921 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
1923 switch (itemp
->flags
& IF_SMASK
) {
1960 switch (itemp
->flags
& IF_SMASK
) {
1995 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2000 * Check that the operand flags all match up
2002 for (i
= 0; i
< itemp
->operands
; i
++) {
2003 int32_t type
= instruction
->oprs
[i
].type
;
2004 if (!(type
& SIZE_MASK
))
2007 if (itemp
->opd
[i
] & SAME_AS
) {
2008 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2009 if (type
!= instruction
->oprs
[j
].type
||
2010 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2012 } else if (itemp
->opd
[i
] & ~type
||
2013 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2014 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2015 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) ||
2024 * Check operand sizes
2026 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2027 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2029 for (i
= 0; i
< oprs
; i
++) {
2030 if ((asize
= itemp
->opd
[i
] & SIZE_MASK
) != 0) {
2032 for (j
= 0; j
< oprs
; j
++)
2038 oprs
= itemp
->operands
;
2041 for (i
= 0; i
< itemp
->operands
; i
++) {
2042 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2043 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2048 * Check template is okay at the set cpu level
2050 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2054 * Check if instruction is available in long mode
2056 if ((itemp
->flags
& IF_NOLONG
) && (bits
== 64))
2060 * Check if special handling needed for Jumps
2062 if ((uint8_t)(itemp
->code
[0]) >= 0370)
2068 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2069 int addrbits
, int rfield
, int32_t rflags
, int forw_ref
)
2071 output
->rip
= false;
2073 /* REX flags for the rfield operand */
2074 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2076 if (!(REGISTER
& ~input
->type
)) { /* register direct */
2080 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2081 || input
->basereg
>= REG_ENUM_LIMIT
)
2084 i
= nasm_regvals
[input
->basereg
];
2087 return NULL
; /* Invalid EA register */
2089 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2091 output
->sib_present
= false; /* no SIB necessary */
2092 output
->bytes
= 0; /* no offset necessary either */
2093 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2094 } else { /* it's a memory reference */
2095 if (input
->basereg
== -1
2096 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2097 /* it's a pure offset */
2098 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2099 int scale
, index
, base
;
2100 output
->sib_present
= true;
2104 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2106 output
->modrm
= 4 | ((rfield
& 7) << 3);
2107 output
->rip
= false;
2109 output
->sib_present
= false;
2110 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2111 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2112 output
->rip
= bits
== 64;
2114 } else { /* it's an indirection */
2115 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2116 int32_t o
= input
->offset
, seg
= input
->segment
;
2117 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2120 int32_t ix
, bx
; /* register flags */
2123 i
= -1; /* make this easy, at least */
2125 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2126 it
= nasm_regvals
[i
];
2127 ix
= nasm_reg_flags
[i
];
2133 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2134 bt
= nasm_regvals
[b
];
2135 bx
= nasm_reg_flags
[b
];
2141 /* check for a 32/64-bit memory reference... */
2142 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2143 /* it must be a 32/64-bit memory reference. Firstly we have
2144 * to check that all registers involved are type E/Rxx. */
2145 int32_t sok
= BITS32
|BITS64
;
2148 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2156 return NULL
; /* Invalid register */
2157 if (~sok
& bx
& SIZE_MASK
)
2158 return NULL
; /* Invalid size */
2162 /* While we're here, ensure the user didn't specify
2164 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2167 if (addrbits
== 16 ||
2168 (addrbits
== 32 && !(sok
& BITS32
)) ||
2169 (addrbits
== 64 && !(sok
& BITS64
)))
2172 /* now reorganize base/index */
2173 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2174 ((hb
== b
&& ht
== EAH_NOTBASE
)
2175 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2176 /* swap if hints say so */
2177 t
= bt
, bt
= it
, it
= t
;
2178 t
= bx
, bx
= ix
, ix
= t
;
2180 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2181 bt
= -1, bx
= 0, s
++;
2182 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2183 /* make single reg base, unless hint */
2184 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2186 if (((s
== 2 && it
!= REG_NUM_ESP
2187 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2188 || s
== 5 || s
== 9) && bt
== -1)
2189 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2190 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2191 && (input
->eaflags
& EAF_TIMESTWO
))
2192 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2193 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2194 if (s
== 1 && it
== REG_NUM_ESP
) {
2195 /* swap ESP into base if scale is 1 */
2196 t
= it
, it
= bt
, bt
= t
;
2197 t
= ix
, ix
= bx
, bx
= t
;
2199 if (it
== REG_NUM_ESP
2200 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2201 return NULL
; /* wrong, for various reasons */
2203 output
->rex
|= rexflags(it
, ix
, REX_X
);
2204 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2206 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2215 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2216 seg
== NO_SEG
&& !forw_ref
&&
2218 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2220 else if (input
->eaflags
& EAF_BYTEOFFS
||
2221 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2223 && !(input
->eaflags
& EAF_WORDOFFS
)))
2229 output
->sib_present
= false;
2230 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2231 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2234 int mod
, scale
, index
, base
;
2254 default: /* then what the smeg is it? */
2255 return NULL
; /* panic */
2263 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2264 seg
== NO_SEG
&& !forw_ref
&&
2266 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2268 else if (input
->eaflags
& EAF_BYTEOFFS
||
2269 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2271 && !(input
->eaflags
& EAF_WORDOFFS
)))
2277 output
->sib_present
= true;
2278 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2279 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2280 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2282 } else { /* it's 16-bit */
2285 /* check for 64-bit long mode */
2289 /* check all registers are BX, BP, SI or DI */
2290 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2291 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2292 && i
!= R_SI
&& i
!= R_DI
))
2295 /* ensure the user didn't specify DWORD/QWORD */
2296 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2299 if (s
!= 1 && i
!= -1)
2300 return NULL
; /* no can do, in 16-bit EA */
2301 if (b
== -1 && i
!= -1) {
2306 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2311 /* have BX/BP as base, SI/DI index */
2313 return NULL
; /* shouldn't ever happen, in theory */
2314 if (i
!= -1 && b
!= -1 &&
2315 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2316 return NULL
; /* invalid combinations */
2317 if (b
== -1) /* pure offset: handled above */
2318 return NULL
; /* so if it gets to here, panic! */
2322 switch (i
* 256 + b
) {
2323 case R_SI
* 256 + R_BX
:
2326 case R_DI
* 256 + R_BX
:
2329 case R_SI
* 256 + R_BP
:
2332 case R_DI
* 256 + R_BP
:
2350 if (rm
== -1) /* can't happen, in theory */
2351 return NULL
; /* so panic if it does */
2353 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2354 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2356 else if (input
->eaflags
& EAF_BYTEOFFS
||
2357 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2359 && !(input
->eaflags
& EAF_WORDOFFS
)))
2364 output
->sib_present
= false; /* no SIB - it's 16-bit */
2365 output
->bytes
= mod
; /* bytes of offset needed */
2366 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2371 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2375 static void add_asp(insn
*ins
, int addrbits
)
2380 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2382 switch (ins
->prefixes
[PPS_ASIZE
]) {
2393 valid
&= (addrbits
== 32) ? 16 : 32;
2399 for (j
= 0; j
< ins
->operands
; j
++) {
2400 if (!(MEMORY
& ~ins
->oprs
[j
].type
)) {
2403 /* Verify as Register */
2404 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2405 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2408 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2410 /* Verify as Register */
2411 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2412 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2415 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2417 if (ins
->oprs
[j
].scale
== 0)
2421 int ds
= ins
->oprs
[j
].disp_size
;
2422 if ((addrbits
!= 64 && ds
> 8) ||
2423 (addrbits
== 64 && ds
== 16))
2443 if (valid
& addrbits
) {
2444 ins
->addr_size
= addrbits
;
2445 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2446 /* Add an address size prefix */
2447 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2448 ins
->prefixes
[PPS_ASIZE
] = pref
;
2449 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2452 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2453 ins
->addr_size
= addrbits
; /* Error recovery */
2456 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2458 for (j
= 0; j
< ins
->operands
; j
++) {
2459 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2460 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2461 != ins
->addr_size
) {
2462 /* mem_offs sizes must match the address size; if not,
2463 strip the MEM_OFFS bit and match only EA instructions */
2464 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);