changes.src: more updates for 2.12
[nasm.git] / nasm.h
blobf0cc3466b282732cfc7c912be8d429b7c9624d58
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
89 * which will be a relative jump. For this we need to know the
90 * distance in bytes from the start of the relocated record until
91 * the end of the containing instruction. _This_ is what is stored
92 * in the size part of the parameter, in this case.
94 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
95 * and the contents of the "data" parameter is irrelevant.
97 * The "data" parameter for the output function points to a "int32_t",
98 * containing the address in question, unless the type is
99 * OUT_RAWDATA, in which case it points to an "uint8_t"
100 * array.
102 enum out_type {
103 OUT_RAWDATA, /* Plain bytes */
104 OUT_ADDRESS, /* An address (symbol value) */
105 OUT_RESERVE, /* Reserved bytes (RESB et al) */
106 OUT_REL1ADR, /* 1-byte relative address */
107 OUT_REL2ADR, /* 2-byte relative address */
108 OUT_REL4ADR, /* 4-byte relative address */
109 OUT_REL8ADR, /* 8-byte relative address */
113 * A label-lookup function.
115 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
118 * And a label-definition function. The boolean parameter
119 * `is_norm' states whether the label is a `normal' label (which
120 * should affect the local-label system), or something odder like
121 * an EQU or a segment-base symbol, which shouldn't.
123 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
124 char *special, bool is_norm, bool isextrn);
126 void define_label(char *label, int32_t segment, int64_t offset,
127 char *special, bool is_norm, bool isextrn);
130 * List-file generators should look like this:
132 typedef struct {
134 * Called to initialize the listing file generator. Before this
135 * is called, the other routines will silently do nothing when
136 * called. The `char *' parameter is the file name to write the
137 * listing to.
139 void (*init)(char *fname, efunc error);
142 * Called to clear stuff up and close the listing file.
144 void (*cleanup)(void);
147 * Called to output binary data. Parameters are: the offset;
148 * the data; the data type. Data types are similar to the
149 * output-format interface, only OUT_ADDRESS will _always_ be
150 * displayed as if it's relocatable, so ensure that any non-
151 * relocatable address has been converted to OUT_RAWDATA by
152 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
153 * dummy call used to give the listing generator an offset to
154 * work with when doing things like uplevel(LIST_TIMES) or
155 * uplevel(LIST_INCBIN).
157 void (*output)(int32_t offset, const void *data, enum out_type type, uint64_t size);
160 * Called to send a text line to the listing generator. The
161 * `int' parameter is LIST_READ or LIST_MACRO depending on
162 * whether the line came directly from an input file or is the
163 * result of a multi-line macro expansion.
165 void (*line)(int type, char *line);
168 * Called to change one of the various levelled mechanisms in
169 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
170 * used to increase the nesting level of include files and
171 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
172 * two binary-output-suppression mechanisms for large-scale
173 * pseudo-instructions.
175 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
176 * it indicates the beginning of the expansion of a `nolist'
177 * macro, so anything under that level won't be expanded unless
178 * it includes another file.
180 void (*uplevel)(int type);
183 * Reverse the effects of uplevel.
185 void (*downlevel)(int type);
188 * Called on a warning or error, with the error message.
190 void (*error)(int severity, const char *pfx, const char *msg);
191 } ListGen;
194 * Token types returned by the scanner, in addition to ordinary
195 * ASCII character values, and zero for end-of-string.
197 enum token_type { /* token types, other than chars */
198 TOKEN_INVALID = -1, /* a placeholder value */
199 TOKEN_EOS = 0, /* end of string */
200 TOKEN_EQ = '=',
201 TOKEN_GT = '>',
202 TOKEN_LT = '<', /* aliases */
203 TOKEN_ID = 256, /* identifier */
204 TOKEN_NUM, /* numeric constant */
205 TOKEN_ERRNUM, /* malformed numeric constant */
206 TOKEN_STR, /* string constant */
207 TOKEN_ERRSTR, /* unterminated string constant */
208 TOKEN_FLOAT, /* floating-point constant */
209 TOKEN_REG, /* register name */
210 TOKEN_INSN, /* instruction name */
211 TOKEN_HERE, /* $ */
212 TOKEN_BASE, /* $$ */
213 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
214 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
215 TOKEN_SHL, /* << */
216 TOKEN_SHR, /* >> */
217 TOKEN_SDIV, /* // */
218 TOKEN_SMOD, /* %% */
219 TOKEN_GE, /* >= */
220 TOKEN_LE, /* <= */
221 TOKEN_NE, /* <> (!= is same as <>) */
222 TOKEN_DBL_AND, /* && */
223 TOKEN_DBL_OR, /* || */
224 TOKEN_DBL_XOR, /* ^^ */
225 TOKEN_SEG, /* SEG */
226 TOKEN_WRT, /* WRT */
227 TOKEN_FLOATIZE, /* __floatX__ */
228 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
229 TOKEN_IFUNC, /* __ilog2*__ */
230 TOKEN_DECORATOR, /* decorators such as {...} */
231 TOKEN_OPMASK, /* translated token for opmask registers */
234 enum floatize {
235 FLOAT_8,
236 FLOAT_16,
237 FLOAT_32,
238 FLOAT_64,
239 FLOAT_80M,
240 FLOAT_80E,
241 FLOAT_128L,
242 FLOAT_128H,
245 /* Must match the list in string_transform(), in strfunc.c */
246 enum strfunc {
247 STRFUNC_UTF16,
248 STRFUNC_UTF16LE,
249 STRFUNC_UTF16BE,
250 STRFUNC_UTF32,
251 STRFUNC_UTF32LE,
252 STRFUNC_UTF32BE,
255 enum ifunc {
256 IFUNC_ILOG2E,
257 IFUNC_ILOG2W,
258 IFUNC_ILOG2F,
259 IFUNC_ILOG2C,
262 size_t string_transform(char *, size_t, char **, enum strfunc);
265 * The expression evaluator must be passed a scanner function; a
266 * standard scanner is provided as part of nasmlib.c. The
267 * preprocessor will use a different one. Scanners, and the
268 * token-value structures they return, look like this.
270 * The return value from the scanner is always a copy of the
271 * `t_type' field in the structure.
273 struct tokenval {
274 char *t_charptr;
275 int64_t t_integer;
276 int64_t t_inttwo;
277 enum token_type t_type;
278 int8_t t_flag;
280 typedef int (*scanner)(void *private_data, struct tokenval *tv);
282 struct location {
283 int64_t offset;
284 int32_t segment;
285 int known;
289 * Expression-evaluator datatype. Expressions, within the
290 * evaluator, are stored as an array of these beasts, terminated by
291 * a record with type==0. Mostly, it's a vector type: each type
292 * denotes some kind of a component, and the value denotes the
293 * multiple of that component present in the expression. The
294 * exception is the WRT type, whose `value' field denotes the
295 * segment to which the expression is relative. These segments will
296 * be segment-base types, i.e. either odd segment values or SEG_ABS
297 * types. So it is still valid to assume that anything with a
298 * `value' field of zero is insignificant.
300 typedef struct {
301 int32_t type; /* a register, or EXPR_xxx */
302 int64_t value; /* must be >= 32 bits */
303 } expr;
306 * Library routines to manipulate expression data types.
308 int is_reloc(expr *vect);
309 int is_simple(expr *vect);
310 int is_really_simple(expr *vect);
311 int is_unknown(expr *vect);
312 int is_just_unknown(expr *vect);
313 int64_t reloc_value(expr *vect);
314 int32_t reloc_seg(expr *vect);
315 int32_t reloc_wrt(expr *vect);
318 * The evaluator can also return hints about which of two registers
319 * used in an expression should be the base register. See also the
320 * `operand' structure.
322 struct eval_hints {
323 int64_t base;
324 int type;
328 * The actual expression evaluator function looks like this. When
329 * called, it expects the first token of its expression to already
330 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
331 * it will start by calling the scanner.
333 * If a forward reference happens during evaluation, the evaluator
334 * must set `*fwref' to true if `fwref' is non-NULL.
336 * `critical' is non-zero if the expression may not contain forward
337 * references. The evaluator will report its own error if this
338 * occurs; if `critical' is 1, the error will be "symbol not
339 * defined before use", whereas if `critical' is 2, the error will
340 * be "symbol undefined".
342 * If `critical' has bit 8 set (in addition to its main value: 0x101
343 * and 0x102 correspond to 1 and 2) then an extended expression
344 * syntax is recognised, in which relational operators such as =, <
345 * and >= are accepted, as well as low-precedence logical operators
346 * &&, ^^ and ||.
348 * If `hints' is non-NULL, it gets filled in with some hints as to
349 * the base register in complex effective addresses.
351 #define CRITICAL 0x100
352 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
353 struct tokenval *tv, int *fwref, int critical,
354 efunc error, struct eval_hints *hints);
357 * Special values for expr->type.
358 * These come after EXPR_REG_END as defined in regs.h.
359 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
360 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
362 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
363 #define EXPR_SIMPLE (EXPR_REG_END+2)
364 #define EXPR_WRT (EXPR_REG_END+3)
365 #define EXPR_RDSAE (EXPR_REG_END+4)
366 #define EXPR_SEGBASE (EXPR_REG_END+5)
369 * Linked list of strings
371 typedef struct string_list {
372 struct string_list *next;
373 char str[1];
374 } StrList;
377 * preprocessors ought to look like this:
379 struct preproc_ops {
381 * Called at the start of a pass; given a file name, the number
382 * of the pass, an error reporting function, an evaluator
383 * function, and a listing generator to talk to.
385 void (*reset)(char *file, int pass, ListGen *listgen, StrList **deplist);
388 * Called to fetch a line of preprocessed source. The line
389 * returned has been malloc'ed, and so should be freed after
390 * use.
392 char *(*getline)(void);
394 /* Called at the end of a pass */
395 void (*cleanup)(int pass);
397 /* Additional macros specific to output format */
398 void (*extra_stdmac)(macros_t *macros);
400 /* Early definitions and undefinitions for macros */
401 void (*pre_define)(char *definition);
402 void (*pre_undefine)(char *definition);
404 /* Include file from command line */
405 void (*pre_include)(char *fname);
407 /* Include path from command line */
408 void (*include_path)(char *path);
411 extern struct preproc_ops nasmpp;
412 extern struct preproc_ops preproc_nop;
415 * Some lexical properties of the NASM source language, included
416 * here because they are shared between the parser and preprocessor.
420 * isidstart matches any character that may start an identifier, and isidchar
421 * matches any character that may appear at places other than the start of an
422 * identifier. E.g. a period may only appear at the start of an identifier
423 * (for local labels), whereas a number may appear anywhere *but* at the
424 * start.
425 * isbrcchar matches any character that may placed inside curly braces as a
426 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
429 #define isidstart(c) (nasm_isalpha(c) || \
430 (c) == '_' || \
431 (c) == '.' || \
432 (c) == '?' || \
433 (c) == '@')
435 #define isidchar(c) (isidstart(c) || \
436 nasm_isdigit(c) || \
437 (c) == '$' || \
438 (c) == '#' || \
439 (c) == '~')
441 #define isbrcchar(c) (isidchar(c) || \
442 (c) == '-')
444 /* Ditto for numeric constants. */
446 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
447 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
450 * Data-type flags that get passed to listing-file routines.
452 enum {
453 LIST_READ,
454 LIST_MACRO,
455 LIST_MACRO_NOLIST,
456 LIST_INCLUDE,
457 LIST_INCBIN,
458 LIST_TIMES
462 * -----------------------------------------------------------
463 * Format of the `insn' structure returned from `parser.c' and
464 * passed into `assemble.c'
465 * -----------------------------------------------------------
468 /* Verify value to be a valid register */
469 static inline bool is_register(int reg)
471 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
474 enum ccode { /* condition code names */
475 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
476 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
477 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
478 C_none = -1
482 * token flags
484 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
485 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
486 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
487 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
489 static inline uint8_t get_cond_opcode(enum ccode c)
491 static const uint8_t ccode_opcodes[] = {
492 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
493 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
494 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
497 return ccode_opcodes[(int)c];
501 * REX flags
503 #define REX_MASK 0x4f /* Actual REX prefix bits */
504 #define REX_B 0x01 /* ModRM r/m extension */
505 #define REX_X 0x02 /* SIB index extension */
506 #define REX_R 0x04 /* ModRM reg extension */
507 #define REX_W 0x08 /* 64-bit operand size */
508 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
509 #define REX_P 0x40 /* REX prefix present/required */
510 #define REX_H 0x80 /* High register present, REX forbidden */
511 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
512 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
513 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
516 * EVEX bit field
518 #define EVEX_P0MM 0x03 /* EVEX P[1:0] : Legacy escape */
519 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
520 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
521 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
522 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
523 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
524 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
525 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
526 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
527 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
528 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
529 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
532 * REX_V "classes" (prefixes which behave like VEX)
534 enum vex_class {
535 RV_VEX = 0, /* C4/C5 */
536 RV_XOP = 1, /* 8F */
537 RV_EVEX = 2, /* 62 */
541 * Note that because segment registers may be used as instruction
542 * prefixes, we must ensure the enumerations for prefixes and
543 * register names do not overlap.
545 enum prefixes { /* instruction prefixes */
546 P_none = 0,
547 PREFIX_ENUM_START = REG_ENUM_LIMIT,
548 P_A16 = PREFIX_ENUM_START,
549 P_A32,
550 P_A64,
551 P_ASP,
552 P_LOCK,
553 P_O16,
554 P_O32,
555 P_O64,
556 P_OSP,
557 P_REP,
558 P_REPE,
559 P_REPNE,
560 P_REPNZ,
561 P_REPZ,
562 P_TIMES,
563 P_WAIT,
564 P_XACQUIRE,
565 P_XRELEASE,
566 P_BND,
567 P_NOBND,
568 P_EVEX,
569 P_VEX3,
570 P_VEX2,
571 PREFIX_ENUM_LIMIT
574 enum extop_type { /* extended operand types */
575 EOT_NOTHING,
576 EOT_DB_STRING, /* Byte string */
577 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
578 EOT_DB_NUMBER, /* Integer */
581 enum ea_flags { /* special EA flags */
582 EAF_BYTEOFFS = 1, /* force offset part to byte size */
583 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
584 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
585 EAF_REL = 8, /* IP-relative addressing */
586 EAF_ABS = 16, /* non-IP-relative addressing */
587 EAF_FSGS = 32, /* fs/gs segment override present */
588 EAF_MIB = 64, /* mib operand */
591 enum eval_hint { /* values for `hinttype' */
592 EAH_NOHINT = 0, /* no hint at all - our discretion */
593 EAH_MAKEBASE = 1, /* try to make given reg the base */
594 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
595 EAH_SUMMED = 3, /* base and index are summed into index */
598 typedef struct operand { /* operand to an instruction */
599 opflags_t type; /* type of operand */
600 int disp_size; /* 0 means default; 16; 32; 64 */
601 enum reg_enum basereg;
602 enum reg_enum indexreg; /* address registers */
603 int scale; /* index scale */
604 int hintbase;
605 enum eval_hint hinttype; /* hint as to real base register */
606 int32_t segment; /* immediate segment, if needed */
607 int64_t offset; /* any immediate number */
608 int32_t wrt; /* segment base it's relative to */
609 int eaflags; /* special EA flags */
610 int opflags; /* see OPFLAG_* defines below */
611 decoflags_t decoflags; /* decorator flags such as {...} */
612 } operand;
614 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
615 #define OPFLAG_EXTERN 2 /* operand is an external reference */
616 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
617 * (always a forward reference also)
620 typedef struct extop { /* extended operand */
621 struct extop *next; /* linked list */
622 char *stringval; /* if it's a string, then here it is */
623 size_t stringlen; /* ... and here's how long it is */
624 int64_t offset; /* ... it's given here ... */
625 int32_t segment; /* if it's a number/address, then... */
626 int32_t wrt; /* ... and here */
627 enum extop_type type; /* defined above */
628 } extop;
630 enum ea_type {
631 EA_INVALID, /* Not a valid EA at all */
632 EA_SCALAR, /* Scalar EA */
633 EA_XMMVSIB, /* XMM vector EA */
634 EA_YMMVSIB, /* YMM vector EA */
635 EA_ZMMVSIB, /* ZMM vector EA */
639 * Prefix positions: each type of prefix goes in a specific slot.
640 * This affects the final ordering of the assembled output, which
641 * shouldn't matter to the processor, but if you have stylistic
642 * preferences, you can change this. REX prefixes are handled
643 * differently for the time being.
645 * LOCK and REP used to be one slot; this is no longer the case since
646 * the introduction of HLE.
648 enum prefix_pos {
649 PPS_WAIT, /* WAIT (technically not a prefix!) */
650 PPS_REP, /* REP/HLE prefix */
651 PPS_LOCK, /* LOCK prefix */
652 PPS_SEG, /* Segment override prefix */
653 PPS_OSIZE, /* Operand size prefix */
654 PPS_ASIZE, /* Address size prefix */
655 PPS_VEX, /* VEX type */
656 MAXPREFIX /* Total number of prefix slots */
660 * Tuple types that are used when determining Disp8*N eligibility
661 * The order must match with a hash %tuple_codes in insns.pl
663 enum ttypes {
664 FV = 001,
665 HV = 002,
666 FVM = 003,
667 T1S8 = 004,
668 T1S16 = 005,
669 T1S = 006,
670 T1F32 = 007,
671 T1F64 = 010,
672 T2 = 011,
673 T4 = 012,
674 T8 = 013,
675 HVM = 014,
676 QVM = 015,
677 OVM = 016,
678 M128 = 017,
679 DUP = 020,
682 /* EVEX.L'L : Vector length on vector insns */
683 enum vectlens {
684 VL128 = 0,
685 VL256 = 1,
686 VL512 = 2,
687 VLMAX = 3,
690 /* If you need to change this, also change it in insns.pl */
691 #define MAX_OPERANDS 5
693 typedef struct insn { /* an instruction itself */
694 char *label; /* the label defined, or NULL */
695 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
696 enum opcode opcode; /* the opcode - not just the string */
697 enum ccode condition; /* the condition code, if Jcc/SETcc */
698 int operands; /* how many operands? 0-3 (more if db et al) */
699 int addr_size; /* address size */
700 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
701 extop *eops; /* extended operands */
702 int eops_float; /* true if DD and floating */
703 int32_t times; /* repeat count (TIMES prefix) */
704 bool forw_ref; /* is there a forward reference? */
705 bool rex_done; /* REX prefix emitted? */
706 int rex; /* Special REX Prefix */
707 int vexreg; /* Register encoded in VEX prefix */
708 int vex_cm; /* Class and M field for VEX prefix */
709 int vex_wlp; /* W, P and L information for VEX prefix */
710 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
711 /* EVEX.P2: [z,L'L,b,V',aaa] */
712 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
713 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
714 int8_t evex_brerop; /* BR/ER/SAE operand position */
715 } insn;
717 enum geninfo { GI_SWITCH };
719 /* Instruction flags type: IF_* flags are defined in insns.h */
720 typedef uint64_t iflags_t;
723 * The data structure defining an output format driver, and the
724 * interfaces to the functions therein.
726 struct ofmt {
728 * This is a short (one-liner) description of the type of
729 * output generated by the driver.
731 const char *fullname;
734 * This is a single keyword used to select the driver.
736 const char *shortname;
739 * Output format flags.
741 #define OFMT_TEXT 1 /* Text file format */
742 unsigned int flags;
744 int maxbits; /* Maximum segment bits supported */
747 * this is a pointer to the first element of the debug information
749 struct dfmt **debug_formats;
752 * and a pointer to the element that is being used
753 * note: this is set to the default at compile time and changed if the
754 * -F option is selected. If developing a set of new debug formats for
755 * an output format, be sure to set this to whatever default you want
758 const struct dfmt *current_dfmt;
761 * This, if non-NULL, is a NULL-terminated list of `char *'s
762 * pointing to extra standard macros supplied by the object
763 * format (e.g. a sensible initial default value of __SECT__,
764 * and user-level equivalents for any format-specific
765 * directives).
767 macros_t *stdmac;
770 * This procedure is called at the start of an output session to set
771 * up internal parameters.
773 void (*init)(void);
776 * This procedure is called to pass generic information to the
777 * object file. The first parameter gives the information type
778 * (currently only command line switches)
779 * and the second parameter gives the value. This function returns
780 * 1 if recognized, 0 if unrecognized
782 int (*setinfo)(enum geninfo type, char **string);
785 * This procedure is called by assemble() to write actual
786 * generated code or data to the object file. Typically it
787 * doesn't have to actually _write_ it, just store it for
788 * later.
790 * The `type' argument specifies the type of output data, and
791 * usually the size as well: its contents are described below.
793 void (*output)(int32_t segto, const void *data,
794 enum out_type type, uint64_t size,
795 int32_t segment, int32_t wrt);
798 * This procedure is called once for every symbol defined in
799 * the module being assembled. It gives the name and value of
800 * the symbol, in NASM's terms, and indicates whether it has
801 * been declared to be global. Note that the parameter "name",
802 * when passed, will point to a piece of static storage
803 * allocated inside the label manager - it's safe to keep using
804 * that pointer, because the label manager doesn't clean up
805 * until after the output driver has.
807 * Values of `is_global' are: 0 means the symbol is local; 1
808 * means the symbol is global; 2 means the symbol is common (in
809 * which case `offset' holds the _size_ of the variable).
810 * Anything else is available for the output driver to use
811 * internally.
813 * This routine explicitly _is_ allowed to call the label
814 * manager to define further symbols, if it wants to, even
815 * though it's been called _from_ the label manager. That much
816 * re-entrancy is guaranteed in the label manager. However, the
817 * label manager will in turn call this routine, so it should
818 * be prepared to be re-entrant itself.
820 * The `special' parameter contains special information passed
821 * through from the command that defined the label: it may have
822 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
823 * be obvious to the output format from the other parameters.
825 void (*symdef)(char *name, int32_t segment, int64_t offset,
826 int is_global, char *special);
829 * This procedure is called when the source code requests a
830 * segment change. It should return the corresponding segment
831 * _number_ for the name, or NO_SEG if the name is not a valid
832 * segment name.
834 * It may also be called with NULL, in which case it is to
835 * return the _default_ section number for starting assembly in.
837 * It is allowed to modify the string it is given a pointer to.
839 * It is also allowed to specify a default instruction size for
840 * the segment, by setting `*bits' to 16 or 32. Or, if it
841 * doesn't wish to define a default, it can leave `bits' alone.
843 int32_t (*section)(char *name, int pass, int *bits);
846 * This procedure is called to modify section alignment,
847 * note there is a trick, the alignment can only increase
849 void (*sectalign)(int32_t seg, unsigned int value);
852 * This procedure is called to modify the segment base values
853 * returned from the SEG operator. It is given a segment base
854 * value (i.e. a segment value with the low bit set), and is
855 * required to produce in return a segment value which may be
856 * different. It can map segment bases to absolute numbers by
857 * means of returning SEG_ABS types.
859 * It should return NO_SEG if the segment base cannot be
860 * determined; the evaluator (which calls this routine) is
861 * responsible for throwing an error condition if that occurs
862 * in pass two or in a critical expression.
864 int32_t (*segbase)(int32_t segment);
867 * This procedure is called to allow the output driver to
868 * process its own specific directives. When called, it has the
869 * directive word in `directive' and the parameter string in
870 * `value'. It is called in both assembly passes, and `pass'
871 * will be either 1 or 2.
873 * This procedure should return zero if it does not _recognise_
874 * the directive, so that the main program can report an error.
875 * If it recognises the directive but then has its own errors,
876 * it should report them itself and then return non-zero. It
877 * should also return non-zero if it correctly processes the
878 * directive.
880 int (*directive)(enum directives directive, char *value, int pass);
883 * This procedure is called before anything else - even before
884 * the "init" routine - and is passed the name of the input
885 * file from which this output file is being generated. It
886 * should return its preferred name for the output file in
887 * `outname', if outname[0] is not '\0', and do nothing to
888 * `outname' otherwise. Since it is called before the driver is
889 * properly initialized, it has to be passed its error handler
890 * separately.
892 * This procedure may also take its own copy of the input file
893 * name for use in writing the output file: it is _guaranteed_
894 * that it will be called before the "init" routine.
896 * The parameter `outname' points to an area of storage
897 * guaranteed to be at least FILENAME_MAX in size.
899 void (*filename)(char *inname, char *outname);
902 * This procedure is called after assembly finishes, to allow
903 * the output driver to clean itself up and free its memory.
904 * Typically, it will also be the point at which the object
905 * file actually gets _written_.
907 * One thing the cleanup routine should always do is to close
908 * the output file pointer.
910 void (*cleanup)(int debuginfo);
914 * Output format driver alias
916 struct ofmt_alias {
917 const char *shortname;
918 const char *fullname;
919 struct ofmt *ofmt;
922 extern struct ofmt *ofmt;
923 extern FILE *ofile;
926 * ------------------------------------------------------------
927 * The data structure defining a debug format driver, and the
928 * interfaces to the functions therein.
929 * ------------------------------------------------------------
932 struct dfmt {
934 * This is a short (one-liner) description of the type of
935 * output generated by the driver.
937 const char *fullname;
940 * This is a single keyword used to select the driver.
942 const char *shortname;
945 * init - called initially to set up local pointer to object format.
947 void (*init)(void);
950 * linenum - called any time there is output with a change of
951 * line number or file.
953 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
956 * debug_deflabel - called whenever a label is defined. Parameters
957 * are the same as to 'symdef()' in the output format. This function
958 * would be called before the output format version.
961 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
962 int is_global, char *special);
964 * debug_directive - called whenever a DEBUG directive other than 'LINE'
965 * is encountered. 'directive' contains the first parameter to the
966 * DEBUG directive, and params contains the rest. For example,
967 * 'DEBUG VAR _somevar:int' would translate to a call to this
968 * function with 'directive' equal to "VAR" and 'params' equal to
969 * "_somevar:int".
971 void (*debug_directive)(const char *directive, const char *params);
974 * typevalue - called whenever the assembler wishes to register a type
975 * for the last defined label. This routine MUST detect if a type was
976 * already registered and not re-register it.
978 void (*debug_typevalue)(int32_t type);
981 * debug_output - called whenever output is required
982 * 'type' is the type of info required, and this is format-specific
984 void (*debug_output)(int type, void *param);
987 * cleanup - called after processing of file is complete
989 void (*cleanup)(void);
992 extern const struct dfmt *dfmt;
995 * The type definition macros
996 * for debugging
998 * low 3 bits: reserved
999 * next 5 bits: type
1000 * next 24 bits: number of elements for arrays (0 for labels)
1003 #define TY_UNKNOWN 0x00
1004 #define TY_LABEL 0x08
1005 #define TY_BYTE 0x10
1006 #define TY_WORD 0x18
1007 #define TY_DWORD 0x20
1008 #define TY_FLOAT 0x28
1009 #define TY_QWORD 0x30
1010 #define TY_TBYTE 0x38
1011 #define TY_OWORD 0x40
1012 #define TY_YWORD 0x48
1013 #define TY_COMMON 0xE0
1014 #define TY_SEG 0xE8
1015 #define TY_EXTERN 0xF0
1016 #define TY_EQU 0xF8
1018 #define TYM_TYPE(x) ((x) & 0xF8)
1019 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1021 #define TYS_ELEMENTS(x) ((x) << 8)
1023 enum special_tokens {
1024 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1025 S_ABS = SPECIAL_ENUM_START,
1026 S_BYTE,
1027 S_DWORD,
1028 S_FAR,
1029 S_LONG,
1030 S_NEAR,
1031 S_NOSPLIT,
1032 S_OWORD,
1033 S_QWORD,
1034 S_REL,
1035 S_SHORT,
1036 S_STRICT,
1037 S_TO,
1038 S_TWORD,
1039 S_WORD,
1040 S_YWORD,
1041 S_ZWORD,
1042 SPECIAL_ENUM_LIMIT
1045 enum decorator_tokens {
1046 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1047 BRC_1TO2 = DECORATOR_ENUM_START,
1048 BRC_1TO4,
1049 BRC_1TO8,
1050 BRC_1TO16,
1051 BRC_RN,
1052 BRC_RD,
1053 BRC_RU,
1054 BRC_RZ,
1055 BRC_SAE,
1056 BRC_Z,
1057 DECORATOR_ENUM_LIMIT
1061 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1062 * 3 2 1
1063 * 10987654321098765432109876543210
1065 * | word boundary
1066 * ............................1111 opmask
1067 * ...........................1.... zeroing / merging
1068 * ..........................1..... broadcast
1069 * .........................1...... static rounding
1070 * ........................1....... SAE
1071 * ......................11........ broadcast element size
1072 * ....................11.......... number of broadcast elements
1074 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1077 * Opmask register number
1078 * identical to EVEX.aaa
1080 * Bits: 0 - 3
1082 #define OPMASK_SHIFT (0)
1083 #define OPMASK_BITS (4)
1084 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1085 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1086 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1089 * zeroing / merging control available
1090 * matching to EVEX.z
1092 * Bits: 4
1094 #define Z_SHIFT (4)
1095 #define Z_BITS (1)
1096 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1097 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1100 * broadcast - Whether this operand can be broadcasted
1102 * Bits: 5
1104 #define BRDCAST_SHIFT (5)
1105 #define BRDCAST_BITS (1)
1106 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1107 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1110 * Whether this instruction can have a static rounding mode.
1111 * It goes with the last simd operand because the static rounding mode
1112 * decorator is located between the last simd operand and imm8 (if any).
1114 * Bits: 6
1116 #define STATICRND_SHIFT (6)
1117 #define STATICRND_BITS (1)
1118 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1119 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1122 * SAE(Suppress all exception) available
1124 * Bits: 7
1126 #define SAE_SHIFT (7)
1127 #define SAE_BITS (1)
1128 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1129 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1132 * Broadcasting element size.
1134 * Bits: 8 - 9
1136 #define BRSIZE_SHIFT (8)
1137 #define BRSIZE_BITS (2)
1138 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1139 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1141 #define BR_BITS32 GEN_BRSIZE(0)
1142 #define BR_BITS64 GEN_BRSIZE(1)
1145 * Number of broadcasting elements
1147 * Bits: 10 - 11
1149 #define BRNUM_SHIFT (10)
1150 #define BRNUM_BITS (2)
1151 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1152 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1154 #define BR_1TO2 VAL_BRNUM(0)
1155 #define BR_1TO4 VAL_BRNUM(1)
1156 #define BR_1TO8 VAL_BRNUM(2)
1157 #define BR_1TO16 VAL_BRNUM(3)
1159 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1160 #define Z Z_MASK
1161 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1162 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1163 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1164 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1167 * Global modes
1171 * This declaration passes the "pass" number to all other modules
1172 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1173 * where 0 = optimizing pass
1174 * 1 = pass 1
1175 * 2 = pass 2
1178 extern int pass0;
1179 extern int passn; /* Actual pass number */
1181 extern bool tasm_compatible_mode;
1182 extern int optimizing;
1183 extern int globalbits; /* 16, 32 or 64-bit mode */
1184 extern int globalrel; /* default to relative addressing? */
1185 extern int globalbnd; /* default to using bnd prefix? */
1188 * NASM version strings, defined in ver.c
1190 extern const char nasm_version[];
1191 extern const char nasm_date[];
1192 extern const char nasm_compile_options[];
1193 extern const char nasm_comment[];
1194 extern const char nasm_signature[];
1196 #endif