1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2013 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
56 #define FILENAME_MAX 256
64 #define POSTFIX_MAX 10
67 #define IDLEN_MAX 4096
70 * Name pollution problems: <time.h> on Digital UNIX pulls in some
71 * strange hardware header file which sees fit to define R_SP. We
72 * undefine it here so as not to break the enum below.
79 * We must declare the existence of this structure type up here,
80 * since we have to reference it before we define it...
85 * Values for the `type' parameter to an output function.
87 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
88 * which will be a relative jump. For this we need to know the
89 * distance in bytes from the start of the relocated record until
90 * the end of the containing instruction. _This_ is what is stored
91 * in the size part of the parameter, in this case.
93 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
94 * and the contents of the "data" parameter is irrelevant.
96 * The "data" parameter for the output function points to a "int32_t",
97 * containing the address in question, unless the type is
98 * OUT_RAWDATA, in which case it points to an "uint8_t"
102 OUT_RAWDATA
, /* Plain bytes */
103 OUT_ADDRESS
, /* An address (symbol value) */
104 OUT_RESERVE
, /* Reserved bytes (RESB et al) */
105 OUT_REL1ADR
, /* 1-byte relative address */
106 OUT_REL2ADR
, /* 2-byte relative address */
107 OUT_REL4ADR
, /* 4-byte relative address */
108 OUT_REL8ADR
, /* 8-byte relative address */
112 * A label-lookup function.
114 typedef bool (*lfunc
)(char *label
, int32_t *segment
, int64_t *offset
);
117 * And a label-definition function. The boolean parameter
118 * `is_norm' states whether the label is a `normal' label (which
119 * should affect the local-label system), or something odder like
120 * an EQU or a segment-base symbol, which shouldn't.
122 typedef void (*ldfunc
)(char *label
, int32_t segment
, int64_t offset
,
123 char *special
, bool is_norm
, bool isextrn
);
125 void define_label(char *label
, int32_t segment
, int64_t offset
,
126 char *special
, bool is_norm
, bool isextrn
);
129 * List-file generators should look like this:
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
138 void (*init
)(char *fname
, efunc error
);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup
)(void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output
)(int32_t offset
, const void *data
, enum out_type type
, uint64_t size
);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line
)(int type
, char *line
);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel
)(int type
);
182 * Reverse the effects of uplevel.
184 void (*downlevel
)(int type
);
187 * Called on a warning or error, with the error message.
189 void (*error
)(int severity
, const char *pfx
, const char *msg
);
193 * Token types returned by the scanner, in addition to ordinary
194 * ASCII character values, and zero for end-of-string.
196 enum token_type
{ /* token types, other than chars */
197 TOKEN_INVALID
= -1, /* a placeholder value */
198 TOKEN_EOS
= 0, /* end of string */
201 TOKEN_LT
= '<', /* aliases */
202 TOKEN_ID
= 256, /* identifier */
203 TOKEN_NUM
, /* numeric constant */
204 TOKEN_ERRNUM
, /* malformed numeric constant */
205 TOKEN_STR
, /* string constant */
206 TOKEN_ERRSTR
, /* unterminated string constant */
207 TOKEN_FLOAT
, /* floating-point constant */
208 TOKEN_REG
, /* register name */
209 TOKEN_INSN
, /* instruction name */
212 TOKEN_SPECIAL
, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
213 TOKEN_PREFIX
, /* A32, O16, LOCK, REPNZ, TIMES, etc */
220 TOKEN_NE
, /* <> (!= is same as <>) */
221 TOKEN_DBL_AND
, /* && */
222 TOKEN_DBL_OR
, /* || */
223 TOKEN_DBL_XOR
, /* ^^ */
226 TOKEN_FLOATIZE
, /* __floatX__ */
227 TOKEN_STRFUNC
, /* __utf16*__, __utf32*__ */
228 TOKEN_IFUNC
, /* __ilog2*__ */
229 TOKEN_DECORATOR
, /* decorators such as {...} */
230 TOKEN_OPMASK
, /* translated token for opmask registers */
244 /* Must match the list in string_transform(), in strfunc.c */
261 size_t string_transform(char *, size_t, char **, enum strfunc
);
264 * The expression evaluator must be passed a scanner function; a
265 * standard scanner is provided as part of nasmlib.c. The
266 * preprocessor will use a different one. Scanners, and the
267 * token-value structures they return, look like this.
269 * The return value from the scanner is always a copy of the
270 * `t_type' field in the structure.
276 enum token_type t_type
;
279 typedef int (*scanner
)(void *private_data
, struct tokenval
*tv
);
288 * Expression-evaluator datatype. Expressions, within the
289 * evaluator, are stored as an array of these beasts, terminated by
290 * a record with type==0. Mostly, it's a vector type: each type
291 * denotes some kind of a component, and the value denotes the
292 * multiple of that component present in the expression. The
293 * exception is the WRT type, whose `value' field denotes the
294 * segment to which the expression is relative. These segments will
295 * be segment-base types, i.e. either odd segment values or SEG_ABS
296 * types. So it is still valid to assume that anything with a
297 * `value' field of zero is insignificant.
300 int32_t type
; /* a register, or EXPR_xxx */
301 int64_t value
; /* must be >= 32 bits */
305 * Library routines to manipulate expression data types.
307 int is_reloc(expr
*vect
);
308 int is_simple(expr
*vect
);
309 int is_really_simple(expr
*vect
);
310 int is_unknown(expr
*vect
);
311 int is_just_unknown(expr
*vect
);
312 int64_t reloc_value(expr
*vect
);
313 int32_t reloc_seg(expr
*vect
);
314 int32_t reloc_wrt(expr
*vect
);
317 * The evaluator can also return hints about which of two registers
318 * used in an expression should be the base register. See also the
319 * `operand' structure.
327 * The actual expression evaluator function looks like this. When
328 * called, it expects the first token of its expression to already
329 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
330 * it will start by calling the scanner.
332 * If a forward reference happens during evaluation, the evaluator
333 * must set `*fwref' to true if `fwref' is non-NULL.
335 * `critical' is non-zero if the expression may not contain forward
336 * references. The evaluator will report its own error if this
337 * occurs; if `critical' is 1, the error will be "symbol not
338 * defined before use", whereas if `critical' is 2, the error will
339 * be "symbol undefined".
341 * If `critical' has bit 8 set (in addition to its main value: 0x101
342 * and 0x102 correspond to 1 and 2) then an extended expression
343 * syntax is recognised, in which relational operators such as =, <
344 * and >= are accepted, as well as low-precedence logical operators
347 * If `hints' is non-NULL, it gets filled in with some hints as to
348 * the base register in complex effective addresses.
350 #define CRITICAL 0x100
351 typedef expr
*(*evalfunc
)(scanner sc
, void *scprivate
,
352 struct tokenval
*tv
, int *fwref
, int critical
,
353 efunc error
, struct eval_hints
*hints
);
356 * Special values for expr->type.
357 * These come after EXPR_REG_END as defined in regs.h.
358 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
359 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
361 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
362 #define EXPR_SIMPLE (EXPR_REG_END+2)
363 #define EXPR_WRT (EXPR_REG_END+3)
364 #define EXPR_RDSAE (EXPR_REG_END+4)
365 #define EXPR_SEGBASE (EXPR_REG_END+5)
368 * Linked list of strings
370 typedef struct string_list
{
371 struct string_list
*next
;
376 * preprocessors ought to look like this:
380 * Called at the start of a pass; given a file name, the number
381 * of the pass, an error reporting function, an evaluator
382 * function, and a listing generator to talk to.
384 void (*reset
)(char *file
, int pass
, ListGen
*listgen
, StrList
**deplist
);
387 * Called to fetch a line of preprocessed source. The line
388 * returned has been malloc'ed, and so should be freed after
391 char *(*getline
)(void);
393 /* Called at the end of a pass */
394 void (*cleanup
)(int pass
);
396 /* Additional macros specific to output format */
397 void (*extra_stdmac
)(macros_t
*macros
);
399 /* Early definitions and undefinitions for macros */
400 void (*pre_define
)(char *definition
);
401 void (*pre_undefine
)(char *definition
);
403 /* Include file from command line */
404 void (*pre_include
)(char *fname
);
406 /* Include path from command line */
407 void (*include_path
)(char *path
);
410 extern struct preproc_ops nasmpp
;
411 extern struct preproc_ops preproc_nop
;
414 * Some lexical properties of the NASM source language, included
415 * here because they are shared between the parser and preprocessor.
419 * isidstart matches any character that may start an identifier, and isidchar
420 * matches any character that may appear at places other than the start of an
421 * identifier. E.g. a period may only appear at the start of an identifier
422 * (for local labels), whereas a number may appear anywhere *but* at the
426 #define isidstart(c) (nasm_isalpha(c) || \
432 #define isidchar(c) (isidstart(c) || \
438 /* Ditto for numeric constants. */
440 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
441 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
444 * Data-type flags that get passed to listing-file routines.
456 * -----------------------------------------------------------
457 * Format of the `insn' structure returned from `parser.c' and
458 * passed into `assemble.c'
459 * -----------------------------------------------------------
462 /* Verify value to be a valid register */
463 static inline bool is_register(int reg
)
465 return reg
>= EXPR_REG_START
&& reg
< REG_ENUM_LIMIT
;
468 enum ccode
{ /* condition code names */
469 C_A
, C_AE
, C_B
, C_BE
, C_C
, C_E
, C_G
, C_GE
, C_L
, C_LE
, C_NA
, C_NAE
,
470 C_NB
, C_NBE
, C_NC
, C_NE
, C_NG
, C_NGE
, C_NL
, C_NLE
, C_NO
, C_NP
,
471 C_NS
, C_NZ
, C_O
, C_P
, C_PE
, C_PO
, C_S
, C_Z
,
478 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
479 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
480 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
481 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
483 static inline uint8_t get_cond_opcode(enum ccode c
)
485 static const uint8_t ccode_opcodes
[] = {
486 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
487 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
488 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
491 return ccode_opcodes
[(int)c
];
497 #define REX_REAL 0x4f /* Actual REX prefix bits */
498 #define REX_B 0x01 /* ModRM r/m extension */
499 #define REX_X 0x02 /* SIB index extension */
500 #define REX_R 0x04 /* ModRM reg extension */
501 #define REX_W 0x08 /* 64-bit operand size */
502 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
503 #define REX_P 0x40 /* REX prefix present/required */
504 #define REX_H 0x80 /* High register present, REX forbidden */
505 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
506 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
507 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
512 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
513 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
514 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
515 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
516 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
517 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length / RC */
518 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
521 * REX_V "classes" (prefixes which behave like VEX)
524 RV_VEX
= 0, /* C4/C5 */
529 * Note that because segment registers may be used as instruction
530 * prefixes, we must ensure the enumerations for prefixes and
531 * register names do not overlap.
533 enum prefixes
{ /* instruction prefixes */
535 PREFIX_ENUM_START
= REG_ENUM_LIMIT
,
536 P_A16
= PREFIX_ENUM_START
,
557 enum extop_type
{ /* extended operand types */
559 EOT_DB_STRING
, /* Byte string */
560 EOT_DB_STRING_FREE
, /* Byte string which should be nasm_free'd*/
561 EOT_DB_NUMBER
, /* Integer */
564 enum ea_flags
{ /* special EA flags */
565 EAF_BYTEOFFS
= 1, /* force offset part to byte size */
566 EAF_WORDOFFS
= 2, /* force offset part to [d]word size */
567 EAF_TIMESTWO
= 4, /* really do EAX*2 not EAX+EAX */
568 EAF_REL
= 8, /* IP-relative addressing */
569 EAF_ABS
= 16, /* non-IP-relative addressing */
570 EAF_FSGS
= 32 /* fs/gs segment override present */
573 enum eval_hint
{ /* values for `hinttype' */
574 EAH_NOHINT
= 0, /* no hint at all - our discretion */
575 EAH_MAKEBASE
= 1, /* try to make given reg the base */
576 EAH_NOTBASE
= 2 /* try _not_ to make reg the base */
579 typedef struct operand
{ /* operand to an instruction */
580 opflags_t type
; /* type of operand */
581 int disp_size
; /* 0 means default; 16; 32; 64 */
582 enum reg_enum basereg
;
583 enum reg_enum indexreg
; /* address registers */
584 int scale
; /* index scale */
586 enum eval_hint hinttype
; /* hint as to real base register */
587 int32_t segment
; /* immediate segment, if needed */
588 int64_t offset
; /* any immediate number */
589 int32_t wrt
; /* segment base it's relative to */
590 int eaflags
; /* special EA flags */
591 int opflags
; /* see OPFLAG_* defines below */
592 decoflags_t decoflags
; /* decorator flags such as {...} */
595 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
596 #define OPFLAG_EXTERN 2 /* operand is an external reference */
597 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
598 * (always a forward reference also)
601 typedef struct extop
{ /* extended operand */
602 struct extop
*next
; /* linked list */
603 char *stringval
; /* if it's a string, then here it is */
604 size_t stringlen
; /* ... and here's how long it is */
605 int64_t offset
; /* ... it's given here ... */
606 int32_t segment
; /* if it's a number/address, then... */
607 int32_t wrt
; /* ... and here */
608 enum extop_type type
; /* defined above */
612 EA_INVALID
, /* Not a valid EA at all */
613 EA_SCALAR
, /* Scalar EA */
614 EA_XMMVSIB
, /* XMM vector EA */
615 EA_YMMVSIB
, /* YMM vector EA */
616 EA_ZMMVSIB
, /* ZMM vector EA */
620 * Prefix positions: each type of prefix goes in a specific slot.
621 * This affects the final ordering of the assembled output, which
622 * shouldn't matter to the processor, but if you have stylistic
623 * preferences, you can change this. REX prefixes are handled
624 * differently for the time being.
626 * LOCK and REP used to be one slot; this is no longer the case since
627 * the introduction of HLE.
630 PPS_WAIT
, /* WAIT (technically not a prefix!) */
631 PPS_REP
, /* REP/HLE prefix */
632 PPS_LOCK
, /* LOCK prefix */
633 PPS_SEG
, /* Segment override prefix */
634 PPS_OSIZE
, /* Operand size prefix */
635 PPS_ASIZE
, /* Address size prefix */
636 MAXPREFIX
/* Total number of prefix slots */
640 * Tuple types that are used when determining Disp8*N eligibility
641 * The order must match with a hash %tuple_codes in insns.pl
662 /* EVEX.L'L : Vector length on vector insns */
670 /* If you need to change this, also change it in insns.pl */
671 #define MAX_OPERANDS 5
673 typedef struct insn
{ /* an instruction itself */
674 char *label
; /* the label defined, or NULL */
675 int prefixes
[MAXPREFIX
]; /* instruction prefixes, if any */
676 enum opcode opcode
; /* the opcode - not just the string */
677 enum ccode condition
; /* the condition code, if Jcc/SETcc */
678 int operands
; /* how many operands? 0-3 (more if db et al) */
679 int addr_size
; /* address size */
680 operand oprs
[MAX_OPERANDS
]; /* the operands, defined as above */
681 extop
*eops
; /* extended operands */
682 int eops_float
; /* true if DD and floating */
683 int32_t times
; /* repeat count (TIMES prefix) */
684 bool forw_ref
; /* is there a forward reference? */
685 int rex
; /* Special REX Prefix */
686 int vexreg
; /* Register encoded in VEX prefix */
687 int vex_cm
; /* Class and M field for VEX prefix */
688 int vex_wlp
; /* W, P and L information for VEX prefix */
689 uint8_t evex_p
[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
690 /* EVEX.P2: [z,L'L,b,V',aaa] */
691 enum ttypes evex_tuple
; /* Tuple type for compressed Disp8*N */
692 int evex_rm
; /* static rounding mode for AVX3 (EVEX) */
695 enum geninfo
{ GI_SWITCH
};
697 typedef uint64_t iflags_t
;
700 * The data structure defining an output format driver, and the
701 * interfaces to the functions therein.
705 * This is a short (one-liner) description of the type of
706 * output generated by the driver.
708 const char *fullname
;
711 * This is a single keyword used to select the driver.
713 const char *shortname
;
716 * Output format flags.
718 #define OFMT_TEXT 1 /* Text file format */
722 * this is a pointer to the first element of the debug information
724 struct dfmt
**debug_formats
;
727 * and a pointer to the element that is being used
728 * note: this is set to the default at compile time and changed if the
729 * -F option is selected. If developing a set of new debug formats for
730 * an output format, be sure to set this to whatever default you want
733 const struct dfmt
*current_dfmt
;
736 * This, if non-NULL, is a NULL-terminated list of `char *'s
737 * pointing to extra standard macros supplied by the object
738 * format (e.g. a sensible initial default value of __SECT__,
739 * and user-level equivalents for any format-specific
745 * This procedure is called at the start of an output session to set
746 * up internal parameters.
751 * This procedure is called to pass generic information to the
752 * object file. The first parameter gives the information type
753 * (currently only command line switches)
754 * and the second parameter gives the value. This function returns
755 * 1 if recognized, 0 if unrecognized
757 int (*setinfo
)(enum geninfo type
, char **string
);
760 * This procedure is called by assemble() to write actual
761 * generated code or data to the object file. Typically it
762 * doesn't have to actually _write_ it, just store it for
765 * The `type' argument specifies the type of output data, and
766 * usually the size as well: its contents are described below.
768 void (*output
)(int32_t segto
, const void *data
,
769 enum out_type type
, uint64_t size
,
770 int32_t segment
, int32_t wrt
);
773 * This procedure is called once for every symbol defined in
774 * the module being assembled. It gives the name and value of
775 * the symbol, in NASM's terms, and indicates whether it has
776 * been declared to be global. Note that the parameter "name",
777 * when passed, will point to a piece of static storage
778 * allocated inside the label manager - it's safe to keep using
779 * that pointer, because the label manager doesn't clean up
780 * until after the output driver has.
782 * Values of `is_global' are: 0 means the symbol is local; 1
783 * means the symbol is global; 2 means the symbol is common (in
784 * which case `offset' holds the _size_ of the variable).
785 * Anything else is available for the output driver to use
788 * This routine explicitly _is_ allowed to call the label
789 * manager to define further symbols, if it wants to, even
790 * though it's been called _from_ the label manager. That much
791 * re-entrancy is guaranteed in the label manager. However, the
792 * label manager will in turn call this routine, so it should
793 * be prepared to be re-entrant itself.
795 * The `special' parameter contains special information passed
796 * through from the command that defined the label: it may have
797 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
798 * be obvious to the output format from the other parameters.
800 void (*symdef
)(char *name
, int32_t segment
, int64_t offset
,
801 int is_global
, char *special
);
804 * This procedure is called when the source code requests a
805 * segment change. It should return the corresponding segment
806 * _number_ for the name, or NO_SEG if the name is not a valid
809 * It may also be called with NULL, in which case it is to
810 * return the _default_ section number for starting assembly in.
812 * It is allowed to modify the string it is given a pointer to.
814 * It is also allowed to specify a default instruction size for
815 * the segment, by setting `*bits' to 16 or 32. Or, if it
816 * doesn't wish to define a default, it can leave `bits' alone.
818 int32_t (*section
)(char *name
, int pass
, int *bits
);
821 * This procedure is called to modify section alignment,
822 * note there is a trick, the alignment can only increase
824 void (*sectalign
)(int32_t seg
, unsigned int value
);
827 * This procedure is called to modify the segment base values
828 * returned from the SEG operator. It is given a segment base
829 * value (i.e. a segment value with the low bit set), and is
830 * required to produce in return a segment value which may be
831 * different. It can map segment bases to absolute numbers by
832 * means of returning SEG_ABS types.
834 * It should return NO_SEG if the segment base cannot be
835 * determined; the evaluator (which calls this routine) is
836 * responsible for throwing an error condition if that occurs
837 * in pass two or in a critical expression.
839 int32_t (*segbase
)(int32_t segment
);
842 * This procedure is called to allow the output driver to
843 * process its own specific directives. When called, it has the
844 * directive word in `directive' and the parameter string in
845 * `value'. It is called in both assembly passes, and `pass'
846 * will be either 1 or 2.
848 * This procedure should return zero if it does not _recognise_
849 * the directive, so that the main program can report an error.
850 * If it recognises the directive but then has its own errors,
851 * it should report them itself and then return non-zero. It
852 * should also return non-zero if it correctly processes the
855 int (*directive
)(enum directives directive
, char *value
, int pass
);
858 * This procedure is called before anything else - even before
859 * the "init" routine - and is passed the name of the input
860 * file from which this output file is being generated. It
861 * should return its preferred name for the output file in
862 * `outname', if outname[0] is not '\0', and do nothing to
863 * `outname' otherwise. Since it is called before the driver is
864 * properly initialized, it has to be passed its error handler
867 * This procedure may also take its own copy of the input file
868 * name for use in writing the output file: it is _guaranteed_
869 * that it will be called before the "init" routine.
871 * The parameter `outname' points to an area of storage
872 * guaranteed to be at least FILENAME_MAX in size.
874 void (*filename
)(char *inname
, char *outname
);
877 * This procedure is called after assembly finishes, to allow
878 * the output driver to clean itself up and free its memory.
879 * Typically, it will also be the point at which the object
880 * file actually gets _written_.
882 * One thing the cleanup routine should always do is to close
883 * the output file pointer.
885 void (*cleanup
)(int debuginfo
);
889 * Output format driver alias
892 const char *shortname
;
893 const char *fullname
;
897 extern struct ofmt
*ofmt
;
901 * ------------------------------------------------------------
902 * The data structure defining a debug format driver, and the
903 * interfaces to the functions therein.
904 * ------------------------------------------------------------
909 * This is a short (one-liner) description of the type of
910 * output generated by the driver.
912 const char *fullname
;
915 * This is a single keyword used to select the driver.
917 const char *shortname
;
920 * init - called initially to set up local pointer to object format.
925 * linenum - called any time there is output with a change of
926 * line number or file.
928 void (*linenum
)(const char *filename
, int32_t linenumber
, int32_t segto
);
931 * debug_deflabel - called whenever a label is defined. Parameters
932 * are the same as to 'symdef()' in the output format. This function
933 * would be called before the output format version.
936 void (*debug_deflabel
)(char *name
, int32_t segment
, int64_t offset
,
937 int is_global
, char *special
);
939 * debug_directive - called whenever a DEBUG directive other than 'LINE'
940 * is encountered. 'directive' contains the first parameter to the
941 * DEBUG directive, and params contains the rest. For example,
942 * 'DEBUG VAR _somevar:int' would translate to a call to this
943 * function with 'directive' equal to "VAR" and 'params' equal to
946 void (*debug_directive
)(const char *directive
, const char *params
);
949 * typevalue - called whenever the assembler wishes to register a type
950 * for the last defined label. This routine MUST detect if a type was
951 * already registered and not re-register it.
953 void (*debug_typevalue
)(int32_t type
);
956 * debug_output - called whenever output is required
957 * 'type' is the type of info required, and this is format-specific
959 void (*debug_output
)(int type
, void *param
);
962 * cleanup - called after processing of file is complete
964 void (*cleanup
)(void);
967 extern const struct dfmt
*dfmt
;
970 * The type definition macros
973 * low 3 bits: reserved
975 * next 24 bits: number of elements for arrays (0 for labels)
978 #define TY_UNKNOWN 0x00
979 #define TY_LABEL 0x08
982 #define TY_DWORD 0x20
983 #define TY_FLOAT 0x28
984 #define TY_QWORD 0x30
985 #define TY_TBYTE 0x38
986 #define TY_OWORD 0x40
987 #define TY_YWORD 0x48
988 #define TY_COMMON 0xE0
990 #define TY_EXTERN 0xF0
993 #define TYM_TYPE(x) ((x) & 0xF8)
994 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
996 #define TYS_ELEMENTS(x) ((x) << 8)
998 enum special_tokens
{
999 SPECIAL_ENUM_START
= PREFIX_ENUM_LIMIT
,
1000 S_ABS
= SPECIAL_ENUM_START
,
1020 enum decorator_tokens
{
1021 DECORATOR_ENUM_START
= SPECIAL_ENUM_LIMIT
,
1022 BRC_1TO8
= DECORATOR_ENUM_START
,
1030 DECORATOR_ENUM_LIMIT
1034 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1036 * 10987654321098765432109876543210
1039 * ............................1111 opmask
1040 * ...........................1.... zeroing / merging
1041 * ..........................1..... broadcast
1042 * .........................1...... static rounding
1043 * ........................1....... SAE
1044 * ......................11........ broadcast element size
1046 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1049 * Opmask register number
1050 * identical to EVEX.aaa
1054 #define OPMASK_SHIFT (0)
1055 #define OPMASK_BITS (4)
1056 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1057 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1058 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1061 * zeroing / merging control available
1062 * matching to EVEX.z
1068 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1069 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1072 * broadcast - Whether this operand can be broadcasted
1076 #define BRDCAST_SHIFT (5)
1077 #define BRDCAST_BITS (1)
1078 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1079 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1082 * Whether this instruction can have a static rounding mode.
1083 * It goes with the last simd operand because the static rounding mode
1084 * decorator is located between the last simd operand and imm8 (if any).
1088 #define STATICRND_SHIFT (6)
1089 #define STATICRND_BITS (1)
1090 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1091 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1094 * SAE(Suppress all exception) available
1098 #define SAE_SHIFT (7)
1099 #define SAE_BITS (1)
1100 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1101 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1104 * Broadcasting element size.
1108 #define BRSIZE_SHIFT (8)
1109 #define BRSIZE_BITS (2)
1110 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1111 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1113 #define BR_BITS32 GEN_BRSIZE(0)
1114 #define BR_BITS64 GEN_BRSIZE(1)
1116 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1118 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1119 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1120 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1121 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1128 * This declaration passes the "pass" number to all other modules
1129 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1130 * where 0 = optimizing pass
1136 extern int passn
; /* Actual pass number */
1138 extern bool tasm_compatible_mode
;
1139 extern int optimizing
;
1140 extern int globalbits
; /* 16, 32 or 64-bit mode */
1141 extern int globalrel
; /* default to relative addressing? */
1142 extern int maxbits
; /* max bits supported by output */
1145 * NASM version strings, defined in ver.c
1147 extern const char nasm_version
[];
1148 extern const char nasm_date
[];
1149 extern const char nasm_compile_options
[];
1150 extern const char nasm_comment
[];
1151 extern const char nasm_signature
[];