1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2012 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * disasm.c where all the _work_ gets done in the Netwide Disassembler
53 * Flags that go into the `segment' field of `insn' structures
56 #define SEG_RELATIVE 1
63 #define SEG_SIGNED 128
70 uint8_t osize
; /* Operand size */
71 uint8_t asize
; /* Address size */
72 uint8_t osp
; /* Operand size prefix present */
73 uint8_t asp
; /* Address size prefix present */
74 uint8_t rep
; /* Rep prefix present */
75 uint8_t seg
; /* Segment override prefix present */
76 uint8_t wait
; /* WAIT "prefix" present */
77 uint8_t lock
; /* Lock prefix present */
78 uint8_t vex
[3]; /* VEX prefix present */
79 uint8_t vex_c
; /* VEX "class" (VEX, XOP, ...) */
80 uint8_t vex_m
; /* VEX.M field */
82 uint8_t vex_lp
; /* VEX.LP fields */
83 uint32_t rex
; /* REX prefix present */
84 uint8_t evex
[3]; /* EVEX prefix present */
87 #define getu8(x) (*(uint8_t *)(x))
89 /* Littleendian CPU which can handle unaligned references */
90 #define getu16(x) (*(uint16_t *)(x))
91 #define getu32(x) (*(uint32_t *)(x))
92 #define getu64(x) (*(uint64_t *)(x))
94 static uint16_t getu16(uint8_t *data
)
96 return (uint16_t)data
[0] + ((uint16_t)data
[1] << 8);
98 static uint32_t getu32(uint8_t *data
)
100 return (uint32_t)getu16(data
) + ((uint32_t)getu16(data
+2) << 16);
102 static uint64_t getu64(uint8_t *data
)
104 return (uint64_t)getu32(data
) + ((uint64_t)getu32(data
+4) << 32);
108 #define gets8(x) ((int8_t)getu8(x))
109 #define gets16(x) ((int16_t)getu16(x))
110 #define gets32(x) ((int32_t)getu32(x))
111 #define gets64(x) ((int64_t)getu64(x))
113 /* Important: regval must already have been adjusted for rex extensions */
114 static enum reg_enum
whichreg(opflags_t regflags
, int regval
, int rex
)
118 static const struct {
121 } specific_registers
[] = {
147 if (!(regflags
& (REGISTER
|REGMEM
)))
148 return 0; /* Registers not permissible?! */
150 regflags
|= REGISTER
;
152 for (i
= 0; i
< ARRAY_SIZE(specific_registers
); i
++)
153 if (!(specific_registers
[i
].flags
& ~regflags
))
154 return specific_registers
[i
].reg
;
156 /* All the entries below look up regval in an 16-entry array */
157 if (regval
< 0 || regval
> (rex
& REX_EV
? 31 : 15))
160 #define GET_REGISTER(__array, __index) \
161 ((size_t)(__index) < (size_t)ARRAY_SIZE(__array) ? __array[(__index)] : 0)
163 if (!(REG8
& ~regflags
)) {
164 if (rex
& (REX_P
|REX_NH
))
165 return GET_REGISTER(nasm_rd_reg8_rex
, regval
);
167 return GET_REGISTER(nasm_rd_reg8
, regval
);
169 if (!(REG16
& ~regflags
))
170 return GET_REGISTER(nasm_rd_reg16
, regval
);
171 if (!(REG32
& ~regflags
))
172 return GET_REGISTER(nasm_rd_reg32
, regval
);
173 if (!(REG64
& ~regflags
))
174 return GET_REGISTER(nasm_rd_reg64
, regval
);
175 if (!(REG_SREG
& ~regflags
))
176 return GET_REGISTER(nasm_rd_sreg
, regval
& 7); /* Ignore REX */
177 if (!(REG_CREG
& ~regflags
))
178 return GET_REGISTER(nasm_rd_creg
, regval
);
179 if (!(REG_DREG
& ~regflags
))
180 return GET_REGISTER(nasm_rd_dreg
, regval
);
181 if (!(REG_TREG
& ~regflags
)) {
183 return 0; /* TR registers are ill-defined with rex */
184 return GET_REGISTER(nasm_rd_treg
, regval
);
186 if (!(FPUREG
& ~regflags
))
187 return GET_REGISTER(nasm_rd_fpureg
, regval
& 7); /* Ignore REX */
188 if (!(MMXREG
& ~regflags
))
189 return GET_REGISTER(nasm_rd_mmxreg
, regval
& 7); /* Ignore REX */
190 if (!(XMMREG
& ~regflags
))
191 return GET_REGISTER(nasm_rd_xmmreg
, regval
);
192 if (!(YMMREG
& ~regflags
))
193 return GET_REGISTER(nasm_rd_ymmreg
, regval
);
194 if (!(ZMMREG
& ~regflags
))
195 return GET_REGISTER(nasm_rd_zmmreg
, regval
);
196 if (!(OPMASKREG
& ~regflags
))
197 return GET_REGISTER(nasm_rd_opmaskreg
, regval
);
198 if (!(BNDREG
& ~regflags
))
199 return GET_REGISTER(nasm_rd_bndreg
, regval
);
205 static uint32_t append_evex_reg_deco(char *buf
, uint32_t num
,
206 decoflags_t deco
, uint8_t *evex
)
208 const char * const er_names
[] = {"rn-sae", "rd-sae", "ru-sae", "rz-sae"};
209 uint32_t num_chars
= 0;
211 if ((deco
& MASK
) && (evex
[2] & EVEX_P2AAA
)) {
212 enum reg_enum opmasknum
= nasm_rd_opmaskreg
[evex
[2] & EVEX_P2AAA
];
213 const char * regname
= nasm_reg_names
[opmasknum
- EXPR_REG_START
];
215 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
218 if ((deco
& Z
) && (evex
[2] & EVEX_P2Z
)) {
219 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
224 if (evex
[2] & EVEX_P2B
) {
226 uint8_t er_type
= (evex
[2] & EVEX_P2LL
) >> 5;
227 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
228 ",{%s}", er_names
[er_type
]);
229 } else if (deco
& SAE
) {
230 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
238 static uint32_t append_evex_mem_deco(char *buf
, uint32_t num
, opflags_t type
,
239 decoflags_t deco
, uint8_t *evex
)
241 uint32_t num_chars
= 0;
243 if ((evex
[2] & EVEX_P2B
) && (deco
& BRDCAST_MASK
)) {
244 decoflags_t deco_brsize
= deco
& BRSIZE_MASK
;
245 opflags_t template_opsize
= (deco_brsize
== BR_BITS32
? BITS32
: BITS64
);
246 uint8_t br_num
= (type
& SIZE_MASK
) / BITS128
*
247 BITS64
/ template_opsize
* 2;
249 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
253 if ((deco
& MASK
) && (evex
[2] & EVEX_P2AAA
)) {
254 enum reg_enum opmasknum
= nasm_rd_opmaskreg
[evex
[2] & EVEX_P2AAA
];
255 const char * regname
= nasm_reg_names
[opmasknum
- EXPR_REG_START
];
257 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
260 if ((deco
& Z
) && (evex
[2] & EVEX_P2Z
)) {
261 num_chars
+= snprintf(buf
+ num_chars
, num
- num_chars
,
271 * Process an effective address (ModRM) specification.
273 static uint8_t *do_ea(uint8_t *data
, int modrm
, int asize
,
274 int segsize
, enum ea_type type
,
275 operand
*op
, insn
*ins
)
277 int mod
, rm
, scale
, index
, base
;
281 bool is_evex
= !!(ins
->rex
& REX_EV
);
283 mod
= (modrm
>> 6) & 03;
286 if (mod
!= 3 && asize
!= 16 && rm
== 4)
292 if (mod
== 3) { /* pure register version */
293 op
->basereg
= rm
+(rex
& REX_B
? 8 : 0);
294 op
->segment
|= SEG_RMREG
;
295 if (is_evex
&& segsize
== 64) {
296 op
->basereg
+= (evex
[0] & EVEX_P0X
? 0 : 16);
306 * <mod> specifies the displacement size (none, byte or
307 * word), and <rm> specifies the register combination.
308 * Exception: mod=0,rm=6 does not specify [BP] as one might
309 * expect, but instead specifies [disp16].
312 if (type
!= EA_SCALAR
)
315 op
->indexreg
= op
->basereg
= -1;
316 op
->scale
= 1; /* always, in 16 bits */
347 if (rm
== 6 && mod
== 0) { /* special case */
351 mod
= 2; /* fake disp16 */
355 op
->segment
|= SEG_NODISP
;
358 op
->segment
|= SEG_DISP8
;
359 if (ins
->evex_tuple
!= 0) {
360 op
->offset
= gets8(data
) * get_disp8N(ins
);
362 op
->offset
= gets8(data
);
367 op
->segment
|= SEG_DISP16
;
368 op
->offset
= *data
++;
369 op
->offset
|= ((unsigned)*data
++) << 8;
375 * Once again, <mod> specifies displacement size (this time
376 * none, byte or *dword*), while <rm> specifies the base
377 * register. Again, [EBP] is missing, replaced by a pure
378 * disp32 (this time that's mod=0,rm=*5*) in 32-bit mode,
379 * and RIP-relative addressing in 64-bit mode.
382 * indicates not a single base register, but instead the
383 * presence of a SIB byte...
385 int a64
= asize
== 64;
390 op
->basereg
= nasm_rd_reg64
[rm
| ((rex
& REX_B
) ? 8 : 0)];
392 op
->basereg
= nasm_rd_reg32
[rm
| ((rex
& REX_B
) ? 8 : 0)];
394 if (rm
== 5 && mod
== 0) {
396 op
->eaflags
|= EAF_REL
;
397 op
->segment
|= SEG_RELATIVE
;
398 mod
= 2; /* fake disp32 */
402 op
->disp_size
= asize
;
405 mod
= 2; /* fake disp32 */
409 if (rm
== 4) { /* process SIB */
411 scale
= (sib
>> 6) & 03;
412 index
= (sib
>> 3) & 07;
415 op
->scale
= 1 << scale
;
418 vsib_hi
= (rex
& REX_X
? 8 : 0) |
419 (evex
[2] & EVEX_P2VP
? 0 : 16);
422 if (type
== EA_XMMVSIB
)
423 op
->indexreg
= nasm_rd_xmmreg
[index
| vsib_hi
];
424 else if (type
== EA_YMMVSIB
)
425 op
->indexreg
= nasm_rd_ymmreg
[index
| vsib_hi
];
426 else if (type
== EA_ZMMVSIB
)
427 op
->indexreg
= nasm_rd_zmmreg
[index
| vsib_hi
];
428 else if (index
== 4 && !(rex
& REX_X
))
429 op
->indexreg
= -1; /* ESP/RSP cannot be an index */
431 op
->indexreg
= nasm_rd_reg64
[index
| ((rex
& REX_X
) ? 8 : 0)];
433 op
->indexreg
= nasm_rd_reg32
[index
| ((rex
& REX_X
) ? 8 : 0)];
435 if (base
== 5 && mod
== 0) {
437 mod
= 2; /* Fake disp32 */
439 op
->basereg
= nasm_rd_reg64
[base
| ((rex
& REX_B
) ? 8 : 0)];
441 op
->basereg
= nasm_rd_reg32
[base
| ((rex
& REX_B
) ? 8 : 0)];
445 } else if (type
!= EA_SCALAR
) {
446 /* Can't have VSIB without SIB */
452 op
->segment
|= SEG_NODISP
;
455 op
->segment
|= SEG_DISP8
;
456 if (ins
->evex_tuple
!= 0) {
457 op
->offset
= gets8(data
) * get_disp8N(ins
);
459 op
->offset
= gets8(data
);
464 op
->segment
|= SEG_DISP32
;
465 op
->offset
= gets32(data
);
474 * Determine whether the instruction template in t corresponds to the data
475 * stream in data. Return the number of bytes matched if so.
477 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
479 static int matches(const struct itemplate
*t
, uint8_t *data
,
480 const struct prefix_info
*prefix
, int segsize
, insn
*ins
)
482 uint8_t *r
= (uint8_t *)(t
->code
);
483 uint8_t *origdata
= data
;
484 bool a_used
= false, o_used
= false;
485 enum prefixes drep
= 0;
486 enum prefixes dwait
= 0;
487 uint8_t lock
= prefix
->lock
;
488 int osize
= prefix
->osize
;
489 int asize
= prefix
->asize
;
492 struct operand
*opx
, *opy
;
495 int regmask
= (segsize
== 64) ? 15 : 7;
496 enum ea_type eat
= EA_SCALAR
;
498 for (i
= 0; i
< MAX_OPERANDS
; i
++) {
499 ins
->oprs
[i
].segment
= ins
->oprs
[i
].disp_size
=
500 (segsize
== 64 ? SEG_64BIT
: segsize
== 32 ? SEG_32BIT
: 0);
504 ins
->rex
= prefix
->rex
;
505 memset(ins
->prefixes
, 0, sizeof ins
->prefixes
);
507 if (itemp_has(t
, (segsize
== 64 ? IF_NOLONG
: IF_LONG
)))
510 if (prefix
->rep
== 0xF2)
511 drep
= (itemp_has(t
, IF_BND
) ? P_BND
: P_REPNE
);
512 else if (prefix
->rep
== 0xF3)
515 dwait
= prefix
->wait
? P_WAIT
: 0;
517 while ((c
= *r
++) != 0) {
518 op1
= (c
& 3) + ((opex
& 1) << 2);
519 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
520 opx
= &ins
->oprs
[op1
];
521 opy
= &ins
->oprs
[op2
];
542 int t
= *r
++, d
= *data
++;
543 if (d
< t
|| d
> t
+ 7)
546 opx
->basereg
= (d
-t
)+
547 (ins
->rex
& REX_B
? 8 : 0);
548 opx
->segment
|= SEG_RMREG
;
554 /* this is an separate index reg position of MIB operand (ICC) */
555 /* Disassembler uses NASM's split EA form only */
559 opx
->offset
= (int8_t)*data
++;
560 opx
->segment
|= SEG_SIGNED
;
564 opx
->offset
= *data
++;
568 opx
->offset
= *data
++;
572 opx
->offset
= getu16(data
);
578 opx
->offset
= getu32(data
);
581 opx
->offset
= getu16(data
);
584 if (segsize
!= asize
)
585 opx
->disp_size
= asize
;
589 opx
->offset
= getu32(data
);
594 opx
->offset
= gets32(data
);
601 opx
->offset
= getu16(data
);
607 opx
->offset
= getu32(data
);
613 opx
->offset
= getu64(data
);
621 opx
->offset
= gets8(data
++);
622 opx
->segment
|= SEG_RELATIVE
;
626 opx
->offset
= getu64(data
);
631 opx
->offset
= gets16(data
);
633 opx
->segment
|= SEG_RELATIVE
;
634 opx
->segment
&= ~SEG_32BIT
;
637 case4(064): /* rel */
638 opx
->segment
|= SEG_RELATIVE
;
639 /* In long mode rel is always 32 bits, sign extended. */
640 if (segsize
== 64 || osize
== 32) {
641 opx
->offset
= gets32(data
);
644 opx
->segment
|= SEG_32BIT
;
645 opx
->type
= (opx
->type
& ~SIZE_MASK
)
646 | (segsize
== 64 ? BITS64
: BITS32
);
648 opx
->offset
= gets16(data
);
650 opx
->segment
&= ~SEG_32BIT
;
651 opx
->type
= (opx
->type
& ~SIZE_MASK
) | BITS16
;
656 opx
->offset
= gets32(data
);
658 opx
->segment
|= SEG_32BIT
| SEG_RELATIVE
;
667 opx
->segment
|= SEG_RMREG
;
668 data
= do_ea(data
, modrm
, asize
, segsize
, eat
, opy
, ins
);
671 opx
->basereg
= ((modrm
>> 3) & 7) + (ins
->rex
& REX_R
? 8 : 0);
672 if ((ins
->rex
& REX_EV
) && (segsize
== 64))
673 opx
->basereg
+= (ins
->evex_p
[0] & EVEX_P0RP
? 0 : 16);
679 uint8_t ximm
= *data
++;
681 ins
->oprs
[c
>> 3].basereg
= (ximm
>> 4) & regmask
;
682 ins
->oprs
[c
>> 3].segment
|= SEG_RMREG
;
683 ins
->oprs
[c
& 7].offset
= ximm
& 15;
689 uint8_t ximm
= *data
++;
695 ins
->oprs
[c
>> 4].basereg
= (ximm
>> 4) & regmask
;
696 ins
->oprs
[c
>> 4].segment
|= SEG_RMREG
;
702 uint8_t ximm
= *data
++;
704 opx
->basereg
= (ximm
>> 4) & regmask
;
705 opx
->segment
|= SEG_RMREG
;
719 if (((modrm
>> 3) & 07) != (c
& 07))
720 return 0; /* spare field doesn't match up */
721 data
= do_ea(data
, modrm
, asize
, segsize
, eat
, opy
, ins
);
730 uint8_t evexm
= *r
++;
731 uint8_t evexwlp
= *r
++;
732 uint8_t modrm
, valid_mask
;
733 ins
->evex_tuple
= *r
++ - 0300;
734 modrm
= *(origdata
+ 1);
737 if ((prefix
->rex
& (REX_EV
|REX_V
|REX_P
)) != REX_EV
)
740 if ((evexm
& 0x1f) != prefix
->vex_m
)
743 switch (evexwlp
& 060) {
745 if (prefix
->rex
& REX_W
)
749 if (!(prefix
->rex
& REX_W
))
753 case 040: /* VEX.W is a don't care */
760 /* If EVEX.b is set with reg-reg op,
761 * EVEX.L'L contains embedded rounding control info
763 if ((prefix
->evex
[2] & EVEX_P2B
) && ((modrm
>> 6) == 3)) {
764 valid_mask
= 0x3; /* prefix only */
766 valid_mask
= 0xf; /* vector length and prefix */
768 if ((evexwlp
^ prefix
->vex_lp
) & valid_mask
)
772 if ((prefix
->vex_v
!= 0) ||
773 (!(prefix
->evex
[2] & EVEX_P2VP
) &&
774 ((eat
< EA_XMMVSIB
) || (eat
> EA_ZMMVSIB
))))
777 opx
->segment
|= SEG_RMREG
;
778 opx
->basereg
= ((~prefix
->evex
[2] & EVEX_P2VP
) << (4 - 3) ) |
782 memcpy(ins
->evex_p
, prefix
->evex
, 3);
793 if ((prefix
->rex
& (REX_V
|REX_P
)) != REX_V
)
796 if ((vexm
& 0x1f) != prefix
->vex_m
)
799 switch (vexwlp
& 060) {
801 if (prefix
->rex
& REX_W
)
805 if (!(prefix
->rex
& REX_W
))
809 case 040: /* VEX.W is a don't care */
816 /* The 010 bit of vexwlp is set if VEX.L is ignored */
817 if ((vexwlp
^ prefix
->vex_lp
) & ((vexwlp
& 010) ? 03 : 07))
821 if (prefix
->vex_v
!= 0)
824 opx
->segment
|= SEG_RMREG
;
825 opx
->basereg
= prefix
->vex_v
;
832 if (prefix
->rep
== 0xF3)
837 if (prefix
->rep
== 0xF2)
839 else if (prefix
->rep
== 0xF3)
844 if (prefix
->lock
== 0xF0) {
845 if (prefix
->rep
== 0xF2)
847 else if (prefix
->rep
== 0xF3)
867 if (asize
!= segsize
)
881 if (prefix
->rex
& REX_B
)
886 if (prefix
->rex
& REX_X
)
891 if (prefix
->rex
& REX_R
)
896 if (prefix
->rex
& REX_W
)
915 if (osize
!= (segsize
== 16) ? 16 : 32)
922 ins
->rex
|= REX_W
; /* 64-bit only instruction */
939 int t
= *r
++, d
= *data
++;
940 if (d
< t
|| d
> t
+ 15)
943 ins
->condition
= d
- t
;
948 if (prefix
->rep
== 0xF3)
958 if (prefix
->rep
!= 0xF2)
964 if (prefix
->rep
!= 0xF3)
989 if (prefix
->wait
!= 0x9B)
995 if (prefix
->osp
|| prefix
->rep
)
1000 if (!prefix
->osp
|| prefix
->rep
)
1044 return 0; /* Unknown code */
1048 if (!vex_ok
&& (ins
->rex
& (REX_V
| REX_EV
)))
1051 /* REX cannot be combined with VEX */
1052 if ((ins
->rex
& REX_V
) && (prefix
->rex
& REX_P
))
1056 * Check for unused rep or a/o prefixes.
1058 for (i
= 0; i
< t
->operands
; i
++) {
1059 if (ins
->oprs
[i
].segment
!= SEG_RMREG
)
1064 if (ins
->prefixes
[PPS_LOCK
])
1066 ins
->prefixes
[PPS_LOCK
] = P_LOCK
;
1069 if (ins
->prefixes
[PPS_REP
])
1071 ins
->prefixes
[PPS_REP
] = drep
;
1073 ins
->prefixes
[PPS_WAIT
] = dwait
;
1075 if (osize
!= ((segsize
== 16) ? 16 : 32)) {
1076 enum prefixes pfx
= 0;
1090 if (ins
->prefixes
[PPS_OSIZE
])
1092 ins
->prefixes
[PPS_OSIZE
] = pfx
;
1095 if (!a_used
&& asize
!= segsize
) {
1096 if (ins
->prefixes
[PPS_ASIZE
])
1098 ins
->prefixes
[PPS_ASIZE
] = asize
== 16 ? P_A16
: P_A32
;
1101 /* Fix: check for redundant REX prefixes */
1103 return data
- origdata
;
1106 /* Condition names for disassembly, sorted by x86 code */
1107 static const char * const condition_name
[16] = {
1108 "o", "no", "c", "nc", "z", "nz", "na", "a",
1109 "s", "ns", "pe", "po", "l", "nl", "ng", "g"
1112 int32_t disasm(uint8_t *data
, char *output
, int outbufsize
, int segsize
,
1113 int32_t offset
, int autosync
, iflag_t
*prefer
)
1115 const struct itemplate
* const *p
, * const *best_p
;
1116 const struct disasm_index
*ix
;
1118 int length
, best_length
= 0;
1120 int i
, slen
, colon
, n
;
1124 iflag_t goodness
, best
;
1126 struct prefix_info prefix
;
1130 memset(&ins
, 0, sizeof ins
);
1133 * Scan for prefixes.
1135 memset(&prefix
, 0, sizeof prefix
);
1136 prefix
.asize
= segsize
;
1137 prefix
.osize
= (segsize
== 64) ? 32 : segsize
;
1144 while (!end_prefix
) {
1148 prefix
.rep
= *data
++;
1152 prefix
.wait
= *data
++;
1156 prefix
.lock
= *data
++;
1160 segover
= "cs", prefix
.seg
= *data
++;
1163 segover
= "ss", prefix
.seg
= *data
++;
1166 segover
= "ds", prefix
.seg
= *data
++;
1169 segover
= "es", prefix
.seg
= *data
++;
1172 segover
= "fs", prefix
.seg
= *data
++;
1175 segover
= "gs", prefix
.seg
= *data
++;
1179 prefix
.osize
= (segsize
== 16) ? 32 : 16;
1180 prefix
.osp
= *data
++;
1183 prefix
.asize
= (segsize
== 32) ? 16 : 32;
1184 prefix
.asp
= *data
++;
1189 if (segsize
== 64 || (data
[1] & 0xc0) == 0xc0) {
1190 prefix
.vex
[0] = *data
++;
1191 prefix
.vex
[1] = *data
++;
1194 prefix
.vex_c
= RV_VEX
;
1196 if (prefix
.vex
[0] == 0xc4) {
1197 prefix
.vex
[2] = *data
++;
1198 prefix
.rex
|= (~prefix
.vex
[1] >> 5) & 7; /* REX_RXB */
1199 prefix
.rex
|= (prefix
.vex
[2] >> (7-3)) & REX_W
;
1200 prefix
.vex_m
= prefix
.vex
[1] & 0x1f;
1201 prefix
.vex_v
= (~prefix
.vex
[2] >> 3) & 15;
1202 prefix
.vex_lp
= prefix
.vex
[2] & 7;
1204 prefix
.rex
|= (~prefix
.vex
[1] >> (7-2)) & REX_R
;
1206 prefix
.vex_v
= (~prefix
.vex
[1] >> 3) & 15;
1207 prefix
.vex_lp
= prefix
.vex
[1] & 7;
1210 ix
= itable_vex
[RV_VEX
][prefix
.vex_m
][prefix
.vex_lp
& 3];
1217 if (segsize
== 64 || ((data
[1] & 0xc0) == 0xc0)) {
1218 data
++; /* 62h EVEX prefix */
1219 prefix
.evex
[0] = *data
++;
1220 prefix
.evex
[1] = *data
++;
1221 prefix
.evex
[2] = *data
++;
1223 prefix
.rex
= REX_EV
;
1224 prefix
.vex_c
= RV_EVEX
;
1225 prefix
.rex
|= (~prefix
.evex
[0] >> 5) & 7; /* REX_RXB */
1226 prefix
.rex
|= (prefix
.evex
[1] >> (7-3)) & REX_W
;
1227 prefix
.vex_m
= prefix
.evex
[0] & EVEX_P0MM
;
1228 prefix
.vex_v
= (~prefix
.evex
[1] & EVEX_P1VVVV
) >> 3;
1229 prefix
.vex_lp
= ((prefix
.evex
[2] & EVEX_P2LL
) >> (5-2)) |
1230 (prefix
.evex
[1] & EVEX_P1PP
);
1232 ix
= itable_vex
[prefix
.vex_c
][prefix
.vex_m
][prefix
.vex_lp
& 3];
1239 if ((data
[1] & 030) != 0 &&
1240 (segsize
== 64 || (data
[1] & 0xc0) == 0xc0)) {
1241 prefix
.vex
[0] = *data
++;
1242 prefix
.vex
[1] = *data
++;
1243 prefix
.vex
[2] = *data
++;
1246 prefix
.vex_c
= RV_XOP
;
1248 prefix
.rex
|= (~prefix
.vex
[1] >> 5) & 7; /* REX_RXB */
1249 prefix
.rex
|= (prefix
.vex
[2] >> (7-3)) & REX_W
;
1250 prefix
.vex_m
= prefix
.vex
[1] & 0x1f;
1251 prefix
.vex_v
= (~prefix
.vex
[2] >> 3) & 15;
1252 prefix
.vex_lp
= prefix
.vex
[2] & 7;
1254 ix
= itable_vex
[RV_XOP
][prefix
.vex_m
][prefix
.vex_lp
& 3];
1275 if (segsize
== 64) {
1276 prefix
.rex
= *data
++;
1277 if (prefix
.rex
& REX_W
)
1289 iflag_set_all(&best
); /* Worst possible */
1291 best_pref
= INT_MAX
;
1294 return 0; /* No instruction table at all... */
1298 while (ix
->n
== -1) {
1299 ix
= (const struct disasm_index
*)ix
->p
+ *dp
++;
1302 p
= (const struct itemplate
* const *)ix
->p
;
1303 for (n
= ix
->n
; n
; n
--, p
++) {
1304 if ((length
= matches(*p
, data
, &prefix
, segsize
, &tmp_ins
))) {
1307 * Final check to make sure the types of r/m match up.
1308 * XXX: Need to make sure this is actually correct.
1310 for (i
= 0; i
< (*p
)->operands
; i
++) {
1312 /* If it's a mem-only EA but we have a
1314 ((tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
1315 is_class(MEMORY
, (*p
)->opd
[i
])) ||
1316 /* If it's a reg-only EA but we have a memory
1318 (!(tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
1319 !(REG_EA
& ~(*p
)->opd
[i
]) &&
1320 !((*p
)->opd
[i
] & REG_SMASK
)) ||
1321 /* Register type mismatch (eg FS vs REG_DESS):
1323 ((((*p
)->opd
[i
] & (REGISTER
| FPUREG
)) ||
1324 (tmp_ins
.oprs
[i
].segment
& SEG_RMREG
)) &&
1325 !whichreg((*p
)->opd
[i
],
1326 tmp_ins
.oprs
[i
].basereg
, tmp_ins
.rex
))
1334 * Note: we always prefer instructions which incorporate
1335 * prefixes in the instructions themselves. This is to allow
1336 * e.g. PAUSE to be preferred to REP NOP, and deal with
1337 * MMX/SSE instructions where prefixes are used to select
1338 * between MMX and SSE register sets or outright opcode
1343 goodness
= iflag_pfmask(*p
);
1344 goodness
= iflag_xor(&goodness
, prefer
);
1346 for (i
= 0; i
< MAXPREFIX
; i
++)
1347 if (tmp_ins
.prefixes
[i
])
1349 if (nprefix
< best_pref
||
1350 (nprefix
== best_pref
&&
1351 iflag_cmp(&goodness
, &best
) < 0)) {
1352 /* This is the best one found so far */
1355 best_pref
= nprefix
;
1356 best_length
= length
;
1364 return 0; /* no instruction was matched */
1366 /* Pick the best match */
1368 length
= best_length
;
1372 /* TODO: snprintf returns the value that the string would have if
1373 * the buffer were long enough, and not the actual length of
1374 * the returned string, so each instance of using the return
1375 * value of snprintf should actually be checked to assure that
1376 * the return value is "sane." Maybe a macro wrapper could
1377 * be used for that purpose.
1379 for (i
= 0; i
< MAXPREFIX
; i
++) {
1380 const char *prefix
= prefix_name(ins
.prefixes
[i
]);
1382 slen
+= snprintf(output
+slen
, outbufsize
-slen
, "%s ", prefix
);
1386 if (i
>= FIRST_COND_OPCODE
)
1387 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s%s",
1388 nasm_insn_names
[i
], condition_name
[ins
.condition
]);
1390 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1391 nasm_insn_names
[i
]);
1394 is_evex
= !!(ins
.rex
& REX_EV
);
1395 length
+= data
- origdata
; /* fix up for prefixes */
1396 for (i
= 0; i
< (*p
)->operands
; i
++) {
1397 opflags_t t
= (*p
)->opd
[i
];
1398 decoflags_t deco
= (*p
)->deco
[i
];
1399 const operand
*o
= &ins
.oprs
[i
];
1402 output
[slen
++] = (colon
? ':' : i
== 0 ? ' ' : ',');
1405 if (o
->segment
& SEG_RELATIVE
) {
1406 offs
+= offset
+ length
;
1408 * sort out wraparound
1410 if (!(o
->segment
& (SEG_32BIT
|SEG_64BIT
)))
1412 else if (segsize
!= 64)
1416 * add sync marker, if autosync is on
1427 if ((t
& (REGISTER
| FPUREG
)) ||
1428 (o
->segment
& SEG_RMREG
)) {
1430 reg
= whichreg(t
, o
->basereg
, ins
.rex
);
1432 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "to ");
1433 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1434 nasm_reg_names
[reg
-EXPR_REG_START
]);
1435 if (is_evex
&& deco
)
1436 slen
+= append_evex_reg_deco(output
+ slen
, outbufsize
- slen
,
1438 } else if (!(UNITY
& ~t
)) {
1439 output
[slen
++] = '1';
1440 } else if (t
& IMMEDIATE
) {
1443 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1444 if (o
->segment
& SEG_SIGNED
) {
1447 output
[slen
++] = '-';
1449 output
[slen
++] = '+';
1451 } else if (t
& BITS16
) {
1453 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1454 } else if (t
& BITS32
) {
1456 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1457 } else if (t
& BITS64
) {
1459 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1460 } else if (t
& NEAR
) {
1462 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1463 } else if (t
& SHORT
) {
1465 snprintf(output
+ slen
, outbufsize
- slen
, "short ");
1468 snprintf(output
+ slen
, outbufsize
- slen
, "0x%"PRIx64
"",
1470 } else if (!(MEM_OFFS
& ~t
)) {
1472 snprintf(output
+ slen
, outbufsize
- slen
,
1473 "[%s%s%s0x%"PRIx64
"]",
1474 (segover
? segover
: ""),
1475 (segover
? ":" : ""),
1476 (o
->disp_size
== 64 ? "qword " :
1477 o
->disp_size
== 32 ? "dword " :
1478 o
->disp_size
== 16 ? "word " : ""), offs
);
1480 } else if (is_class(REGMEM
, t
)) {
1481 int started
= false;
1484 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1487 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1490 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1493 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1496 snprintf(output
+ slen
, outbufsize
- slen
, "tword ");
1497 if ((ins
.evex_p
[2] & EVEX_P2B
) && (deco
& BRDCAST_MASK
)) {
1498 /* when broadcasting, each element size should be used */
1499 if (deco
& BR_BITS32
)
1501 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1502 else if (deco
& BR_BITS64
)
1504 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1508 snprintf(output
+ slen
, outbufsize
- slen
, "oword ");
1511 snprintf(output
+ slen
, outbufsize
- slen
, "yword ");
1514 snprintf(output
+ slen
, outbufsize
- slen
, "zword ");
1517 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "far ");
1520 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1521 output
[slen
++] = '[';
1523 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1524 (o
->disp_size
== 64 ? "qword " :
1525 o
->disp_size
== 32 ? "dword " :
1526 o
->disp_size
== 16 ? "word " :
1528 if (o
->eaflags
& EAF_REL
)
1529 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "rel ");
1532 snprintf(output
+ slen
, outbufsize
- slen
, "%s:",
1536 if (o
->basereg
!= -1) {
1537 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1538 nasm_reg_names
[(o
->basereg
-EXPR_REG_START
)]);
1541 if (o
->indexreg
!= -1 && !itemp_has(*best_p
, IF_MIB
)) {
1543 output
[slen
++] = '+';
1544 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1545 nasm_reg_names
[(o
->indexreg
-EXPR_REG_START
)]);
1548 snprintf(output
+ slen
, outbufsize
- slen
, "*%d",
1554 if (o
->segment
& SEG_DISP8
) {
1557 uint32_t offset
= offs
;
1558 if ((int32_t)offset
< 0) {
1565 snprintf(output
+ slen
, outbufsize
- slen
, "%s0x%"PRIx32
"",
1569 uint8_t offset
= offs
;
1570 if ((int8_t)offset
< 0) {
1577 snprintf(output
+ slen
, outbufsize
- slen
, "%s0x%"PRIx8
"",
1580 } else if (o
->segment
& SEG_DISP16
) {
1582 uint16_t offset
= offs
;
1583 if ((int16_t)offset
< 0 && started
) {
1587 prefix
= started
? "+" : "";
1590 snprintf(output
+ slen
, outbufsize
- slen
,
1591 "%s0x%"PRIx16
"", prefix
, offset
);
1592 } else if (o
->segment
& SEG_DISP32
) {
1593 if (prefix
.asize
== 64) {
1595 uint64_t offset
= (int64_t)(int32_t)offs
;
1596 if ((int32_t)offs
< 0 && started
) {
1600 prefix
= started
? "+" : "";
1603 snprintf(output
+ slen
, outbufsize
- slen
,
1604 "%s0x%"PRIx64
"", prefix
, offset
);
1607 uint32_t offset
= offs
;
1608 if ((int32_t) offset
< 0 && started
) {
1612 prefix
= started
? "+" : "";
1615 snprintf(output
+ slen
, outbufsize
- slen
,
1616 "%s0x%"PRIx32
"", prefix
, offset
);
1620 if (o
->indexreg
!= -1 && itemp_has(*best_p
, IF_MIB
)) {
1621 output
[slen
++] = ',';
1622 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1623 nasm_reg_names
[(o
->indexreg
-EXPR_REG_START
)]);
1626 snprintf(output
+ slen
, outbufsize
- slen
, "*%d",
1631 output
[slen
++] = ']';
1633 if (is_evex
&& deco
)
1634 slen
+= append_evex_mem_deco(output
+ slen
, outbufsize
- slen
,
1635 t
, deco
, ins
.evex_p
);
1638 snprintf(output
+ slen
, outbufsize
- slen
, "<operand%d>",
1642 output
[slen
] = '\0';
1643 if (segover
) { /* unused segment override */
1645 int count
= slen
+ 1;
1647 p
[count
+ 3] = p
[count
];
1648 strncpy(output
, segover
, 2);
1655 * This is called when we don't have a complete instruction. If it
1656 * is a standalone *single-byte* prefix show it as such, otherwise
1657 * print it as a literal.
1659 int32_t eatbyte(uint8_t *data
, char *output
, int outbufsize
, int segsize
)
1661 uint8_t byte
= *data
;
1662 const char *str
= NULL
;
1696 str
= (segsize
== 16) ? "o32" : "o16";
1699 str
= (segsize
== 32) ? "a16" : "a32";
1717 if (segsize
== 64) {
1718 snprintf(output
, outbufsize
, "rex%s%s%s%s%s",
1719 (byte
== REX_P
) ? "" : ".",
1720 (byte
& REX_W
) ? "w" : "",
1721 (byte
& REX_R
) ? "r" : "",
1722 (byte
& REX_X
) ? "x" : "",
1723 (byte
& REX_B
) ? "b" : "");
1726 /* else fall through */
1728 snprintf(output
, outbufsize
, "db 0x%02x", byte
);
1733 snprintf(output
, outbufsize
, "%s", str
);